Science.gov

Sample records for negative momentum compaction

  1. Orbit, optics and chromaticity correction for PS2 negative momentum compaction lattices

    SciTech Connect

    Papaphilippou,Y.; Barranco, J.; Bartmann, W.; Benedikt, M.; Carli, C.; de Maria, R.; Peggs, S.; Trbojevic, D.

    2009-05-04

    The effect of magnet misalignments in the beam orbit and linear optics functions are reviewed and correction schemes are applied to the negative momentum compaction lattice of PS2. Chromaticity correction schemes are also proposed and tested with respect to off-momentum optics properties. The impact of the correction schemes in the dynamic aperture of the lattice is finally evaluated.

  2. Linear optics design of negative momentum compaction lattices for PS2

    SciTech Connect

    Papaphilippou,Y.; de Maria,R.; Barranco, J.; Bartmann, W.; Benedikt, M.; Carli, C.; Goddard, B.; Peggs, S.; Trbojevic, D.

    2009-05-04

    In view of the CERN Proton Synchrotron proposed replacement with a new ring (PS2), a detailed optics design has been undertaken following the evaluation of several lattice options. The basic arc module consists of cells providing negative momentum compaction. The straight section is formed with a combination of FODO and quadrupole triplet cells, to accommodate the injection and extraction systems, in particular the H{sup -} injection elements. The arc is matched to the straight section with a dispersion suppressor and matching module. Different lattices are compared with respect to their linear optics functions, tuning flexibility and geometrical acceptance properties.

  3. A Compact Ring Design with Tunable Momentum Compaction

    SciTech Connect

    Sun, Y.; /SLAC

    2012-05-17

    A storage ring with tunable momentum compaction has the advantage in achieving different RMS bunch length with similar RF capacity, which is potentially useful for many applications, such as linear collider damping ring and predamping ring where injected beam has a large energy spread and a large transverse emittance. A tunable bunch length also makes the commissioning and fine tuning easier in manipulating the single bunch instabilities. In this paper, a compact ring design based on a supercell is presented, which achieves a tunable momentum compaction while maintaining a large dynamic aperture.

  4. Momentum compaction and phase slip factor

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2010-10-01

    Section 2.3.11 of the Handbook of Accelerator Physics and Engineering on Landau damping is updated. The slip factor and its higher orders are given in terms of the various orders of the momentum compaction. With the aid of a simplified FODO lattice, formulas are given for the alteration of the lower orders of the momentum compaction by various higher multipole magnets. The transition to isochronicity is next demonstrated. Formulas are given for the extraction of the first three orders of the slip factor from the measurement of the synchrotron tune while changing the rf frequency. Finally bunch-length compression experiments in semi-isochronous rings are reported.

  5. A Standard FODO Lattice with Adjustable Momentum Compaction

    NASA Astrophysics Data System (ADS)

    Trbojevic, D.; Courant, E. D.

    1997-05-01

    An exisisting lattice made of identical FODO cells can be modified to have adjustable momentum compaction. The modified lattice consists of repeating superperiods of four FODO cells where every two cells have different horizontal phase advance. In exisiting FODO cell rings an additional quad bus is required for every two consecutive cells. This allows tuning of the momentum compaction or γt (transition) to any desired value. A value of the γt could be an imaginary number. A drawback of this modification is relatively large values of the dispersion function (two or three times larger than in the regular FODO cell design).

  6. Compact expressions for spherically averaged position and momentum densities

    NASA Astrophysics Data System (ADS)

    Crittenden, Deborah L.; Bernard, Yves A.

    2009-08-01

    Compact expressions for spherically averaged position and momentum density integrals are given in terms of spherical Bessel functions (jn) and modified spherical Bessel functions (in), respectively. All integrals required for ab initio calculations involving s, p, d, and f-type Gaussian functions are tabulated, highlighting a neat isomorphism between position and momentum space formulae. Spherically averaged position and momentum densities are calculated for a set of molecules comprising the ten-electron isoelectronic series (Ne-CH4) and the eighteen-electron series (Ar-SiH4, F2-C2H6).

  7. FODO-Supercell Based Compact Ring Design with Tunable Momentum Compaction and Optimized Dynamic Aperture

    SciTech Connect

    Sun, Yipeng; /SLAC

    2012-05-11

    A storage ring with tunable momentum compaction has the advantage in achieving different RMS bunch length with similar RF capacity, which is potentially useful for many applications, such as linear collider damping ring and pre-damping ring where injected beam has a large energy spread and a large transverse emittance. A tunable bunch length also makes the commissioning and fine tuning easier in manipulating the single bunch instabilities. In this paper, a compact ring design based on a supercell is presented, which achieves a tunable momentum compaction while maintaining a large dynamic aperture.

  8. MEASUREMENT OF THE NONLINEAR MOMENTUM COMPACTION FACTOR IN RHIC.

    SciTech Connect

    MONTAG,C.

    2003-05-12

    During gold beam acceleration in the Relativistic Heavy Ion Collider (RHIC), the transition energy has to be crossed at {gamma}{sub t} {approx} 23. Since close to {gamma}{sub t} the longitudinal slip factor {gamma}{sub t}{sup -2} - {gamma}{sup -2} becomes very small, the longitudinal momentum compaction factor {alpha}{sub 1} becomes significant. Measurements of this factor using longitudinal phase space tomography will be reported.

  9. Compact and high-resolution optical orbital angular momentum sorter

    NASA Astrophysics Data System (ADS)

    Wan, Chenhao; Chen, Jian; Zhan, Qiwen

    2017-03-01

    A compact and high-resolution optical orbital angular momentum (OAM) sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM) to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  10. Non-negative Wigner functions for orbital angular momentum states

    SciTech Connect

    Rigas, I.; Sanchez-Soto, L. L.; Klimov, A. B.; Rehacek, J.; Hradil, Z.

    2010-01-15

    The Wigner function of a pure continuous-variable quantum state is non-negative if and only if the state is Gaussian. Here we show that for the canonical pair angle and angular momentum, the only pure states with non-negative Wigner functions are the eigenstates of the angular momentum. Some implications of this surprising result are discussed.

  11. A compact magnetic bearing for gimballed momentum wheel

    NASA Technical Reports Server (NTRS)

    Yabu-Uchi, K.; Inoue, M.; Akishita, S.; Murakami, C.; Okamoto, O.

    1983-01-01

    A three axis controlled magnetic bearing and its application to a momentum wheel are described. The four divided stators provide a momentum wheel with high reliability, low weight, large angular momentum storage capacity, and gimbal control. Those characteristics are desirable for spacecraft attitude control.

  12. Status of the variable momentum compaction storage ring experiment in SPEAR

    SciTech Connect

    Tran, P.; Amiry, A.; Pellegrini, C.

    1993-09-01

    Variable momentum compaction lattices have been proposed for electron-positron colliders and synchrotron radiation sources to control synchrotron tune and bunch length. To address questions of single particle stability limits, a study has been initiated to change the SPEAR lattice into a variable momentum compaction configuration for experimental investigation of the beam dynamics. In this paper, we describe a model-based method used to transform SPEAR from the injection lattice to the low momentum compaction configuration. Experimental observations of the process are reviewed.

  13. A Proton Driver for the Muon Collider Source with a Tunable Momentum Compaction Lattice

    NASA Astrophysics Data System (ADS)

    Trbojevic, D.; Brennan, J. M.; Courant, E. D.; Roser, T.; Peggs, S.; Norem, J.; Johnstone, C.; Ng, K. Y.; Popovic, M.

    1997-05-01

    The future Muon Collider will have a luminosity of the order of 10^35 cm-2s-1 during 1000 turns when the muons decay. This requires 10^12 muons per bunch. The muon source is a 30 GeV proton driver with 2.5 10^13 protons per pulse. The proton bunch length should be of the order of 1 ns. The short bunches could be created by a tunable momentum compaction lattice which would bring the momentum compaction to zero in short time. This isochronous condition would allow bunches to shear and become very short in time. We present a lattice where the momentum compaction is a tunable parameter at fixed horizontal and vertical betatron tunes. The values of the maxima of the dispersion function are kept small which would make the bunch momentum size smaller. We examine two kinds of lattices, with combined function as well as normal dipole and quadrupole magnets.

  14. Choice of momentum compaction factor for the APIARY low-energy ring

    SciTech Connect

    Zisman, M.S. )

    1990-08-01

    For the new low-energy ring of the APIARY B factory collider, there are several considerations that go into the choice of momentum compaction factor. In this note we enumerate these considerations and indicate the restrictions on momentum compaction factor that arise therefrom. Probably the most difficult condition to achieve is maintaining the same betatron tune modulation at the IP as occurs for the high-energy ring. Generally, however, we find that the constraints are rather loose, so the ring design is not heavily influenced. 5 refs.

  15. Spontaneous toroidal flow generation due to negative effective momentum diffusivity

    SciTech Connect

    McMillan, Ben F.

    2015-02-15

    Spontaneous structure formation, and in particular, zonal flows, is observed in a broad range of natural and engineered systems, often arising dynamically as the saturated state of a linear instability. Flows in tokamaks are known to self-organise on small scales, but large scale toroidal flows also arise even when externally applied torques are zero. This has previously been interpreted as the result of small externally imposed breaking of a symmetry. However, we show that for large enough field line pitch, a robust spontaneous symmetry breaking occurs, leading to the generation of strong toroidal flow structures; parameters are typical of Spherical Tokamak discharges with reversed shear profiles. The short wavelength dynamics are qualitatively similar to the growth of poloidal flow structures, and toroidal flow gradients nonlinearly saturate at levels where the shearing rate is comparable to linear growth rate. On long wavelengths, we measure Prandtl numbers of around zero for these systems, in conjunction with the formation of structured toroidal flows, and we show that this is consistent with a model of momentum transport where fluxes act to reinforce small flow gradients: the effective momentum diffusivity is negative. Toroidal flow structures are largely unaffected by collisional damping, so this may allow toroidal bulk flows of order the ion thermal velocity to be maintained with zero momentum input. This phenomenon also provides a mechanism for the generation of localised meso-scale structures like transport barriers.

  16. Spontaneous toroidal flow generation due to negative effective momentum diffusivity

    NASA Astrophysics Data System (ADS)

    McMillan, Ben F.

    2015-02-01

    Spontaneous structure formation, and in particular, zonal flows, is observed in a broad range of natural and engineered systems, often arising dynamically as the saturated state of a linear instability. Flows in tokamaks are known to self-organise on small scales, but large scale toroidal flows also arise even when externally applied torques are zero. This has previously been interpreted as the result of small externally imposed breaking of a symmetry. However, we show that for large enough field line pitch, a robust spontaneous symmetry breaking occurs, leading to the generation of strong toroidal flow structures; parameters are typical of Spherical Tokamak discharges with reversed shear profiles. The short wavelength dynamics are qualitatively similar to the growth of poloidal flow structures, and toroidal flow gradients nonlinearly saturate at levels where the shearing rate is comparable to linear growth rate. On long wavelengths, we measure Prandtl numbers of around zero for these systems, in conjunction with the formation of structured toroidal flows, and we show that this is consistent with a model of momentum transport where fluxes act to reinforce small flow gradients: the effective momentum diffusivity is negative. Toroidal flow structures are largely unaffected by collisional damping, so this may allow toroidal bulk flows of order the ion thermal velocity to be maintained with zero momentum input. This phenomenon also provides a mechanism for the generation of localised meso-scale structures like transport barriers.

  17. Achromatic recirculated chicane with fixed geometry and independently variable path length and momentum compaction

    DOEpatents

    Douglas, David R.; Neil, George R.

    2005-04-26

    A particle beam recirculated chicane geometry that, through the inducement of a pair of 180 degree bends directed by the poles of a pair of controllable magnetic fields allows for variation of dipole position, return loop radii and steering/focussing, thereby allowing the implementation of independent variation of path length and momentum compaction.

  18. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters.

    PubMed

    Strain, Michael J; Cai, Xinlun; Wang, Jianwei; Zhu, Jiangbo; Phillips, David B; Chen, Lifeng; Lopez-Garcia, Martin; O'Brien, Jeremy L; Thompson, Mark G; Sorel, Marc; Yu, Siyuan

    2014-09-17

    The ability to rapidly switch between orbital angular momentum modes of light has important implications for future classical and quantum systems. In general, orbital angular momentum beams are generated using free-space bulk optical components where the fastest reconfiguration of such systems is around a millisecond using spatial light modulators. In this work, an extremely compact optical vortex emitter is demonstrated with the ability to actively tune between different orbital angular momentum modes. The emitter is tuned using a single electrically contacted thermo-optical control, maintaining device simplicity and micron scale footprint. On-off keying and orbital angular momentum mode switching are achieved at rates of 10 μs and 20 μs respectively.

  19. How psychological and behavioral team states change during positive and negative momentum.

    PubMed

    Den Hartigh, Ruud J R; Gernigon, Christophe; Van Yperen, Nico W; Marin, Ludovic; Van Geert, Paul L C

    2014-01-01

    In business and sports, teams often experience periods of positive and negative momentum while pursuing their goals. However, researchers have not yet been able to provide insights into how psychological and behavioral states actually change during positive and negative team momentum. In the current study we aimed to provide these insights by introducing an experimental dynamical research design. Rowing pairs had to compete against a virtual opponent on rowing ergometers, while a screen in front of the team broadcasted the ongoing race. The race was manipulated so that the team's rowing avatar gradually progressed (positive momentum) or regressed (negative momentum) in relation to the victory. The participants responded verbally to collective efficacy and task cohesion items appearing on the screen each minute. In addition, effort exertion and interpersonal coordination were continuously measured. Our results showed negative psychological changes (perceptions of collective efficacy and task cohesion) during negative team momentum, which were stronger than the positive changes during positive team momentum. Moreover, teams' exerted efforts rapidly decreased during negative momentum, whereas positive momentum accompanied a more variable and adaptive sequence of effort exertion. Finally, the interpersonal coordination was worse during negative momentum than during positive momentum. These results provide the first empirical insights into actual team momentum dynamics, and demonstrate how a dynamical research approach significantly contributes to current knowledge on psychological and behavioral processes.

  20. How Psychological and Behavioral Team States Change during Positive and Negative Momentum

    PubMed Central

    Den Hartigh, Ruud J. R.; Gernigon, Christophe; Van Yperen, Nico W.; Marin, Ludovic; Van Geert, Paul L. C.

    2014-01-01

    In business and sports, teams often experience periods of positive and negative momentum while pursuing their goals. However, researchers have not yet been able to provide insights into how psychological and behavioral states actually change during positive and negative team momentum. In the current study we aimed to provide these insights by introducing an experimental dynamical research design. Rowing pairs had to compete against a virtual opponent on rowing ergometers, while a screen in front of the team broadcasted the ongoing race. The race was manipulated so that the team’s rowing avatar gradually progressed (positive momentum) or regressed (negative momentum) in relation to the victory. The participants responded verbally to collective efficacy and task cohesion items appearing on the screen each minute. In addition, effort exertion and interpersonal coordination were continuously measured. Our results showed negative psychological changes (perceptions of collective efficacy and task cohesion) during negative team momentum, which were stronger than the positive changes during positive team momentum. Moreover, teams’ exerted efforts rapidly decreased during negative momentum, whereas positive momentum accompanied a more variable and adaptive sequence of effort exertion. Finally, the interpersonal coordination was worse during negative momentum than during positive momentum. These results provide the first empirical insights into actual team momentum dynamics, and demonstrate how a dynamical research approach significantly contributes to current knowledge on psychological and behavioral processes. PMID:24838238

  1. Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms.

    PubMed

    Momeni, Babak; Huang, Jiandong; Soltani, Mohammad; Askari, Murtaza; Mohammadi, Saeed; Rakhshandehroo, Mohammad; Adibi, Ali

    2006-03-20

    Here, we demonstrate a compact photonic crystal wavelength demultiplexing device based on a diffraction compensation scheme with two orders of magnitude performance improvement over the conventional superprism structures reported to date. We show that the main problems of the conventional superprism-based wavelength demultiplexing devices can be overcome by combining the superprism effect with two other main properties of photonic crystals, i.e., negative diffraction and negative refraction. Here, a 4-channel optical demultiplexer with a channel spacing of 8 nm and cross-talk level of better than -6.5 dB is experimentally demonstrated using a 4500 microm(2) photonic crystal region.

  2. Spin angular momentum transfer from TEM00 focused Gaussian beams to negative refractive index spherical particles

    PubMed Central

    Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.

    2011-01-01

    We investigate optical torques over absorbent negative refractive index spherical scatterers under the influence of linear and circularly polarized TEM00 focused Gaussian beams, in the framework of the generalized Lorenz-Mie theory with the integral localized approximation. The fundamental differences between optical torques due to spin angular momentum transfer in positive and negative refractive index optical trapping are outlined, revealing the effect of the Mie scattering coefficients in one of the most fundamental properties in optical trapping systems. PMID:21833372

  3. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel vortex beam of progressive waves.

    PubMed

    Mitri, F G

    2016-09-01

    Energy and angular momentum flux density characteristics of an optical nondiffracting nonparaxial vector Bessel vortex beam of fractional order are examined based on the dual-field method for the generation of symmetric electric and magnetic fields. Should some conditions determined by the polarization state, the half-cone angle as well as the beam-order (or topological charge) be met, the axial energy and angular momentum flux densities vanish (representing Poynting singularities), before they become negative. These negative counterintuitive properties suggest retrograde (negative) propagation as well as a rotation reversal of the angular momentum with respect to the beam handedness. These characteristics of nondiffracting nonparaxial Bessel fractional vortex beams of progressive waves open new capabilities in optical tractor beam tweezers, optical spanners, invisibility cloaks, optically engineered metamaterials, and other applications.

  4. Compact and broadband antenna using double-negative transmission line metamaterial

    NASA Astrophysics Data System (ADS)

    Islam, M. M.; Faruque, M. R. I.; Islam, M. T.; Mansor, M. F.

    2017-01-01

    In this manuscript, double-negative transmission line (TL) metamaterial-inspired antenna has been proposed with compactness and improved bandwidth. This antenna is made of double-negative meander lines, microstrip feed and partial ground. Double-negative TL metamaterials show negative permittivity and permeability simultaneously and play important role for antenna miniaturization and the impedance bandwidth improved. The antenna provides 600 MHz bandwidth (-10 dB) with 23.81% fractional bandwidth. The antenna radiating element size is 0.07 λ × 0.07 λ at 2.51 GHz frequency with 3.72 dBi maximum gain where the electrical dimension is 0.30 λ × 0.30 λ.

  5. A New Compact Double-Negative Miniaturized Metamaterial for Wideband Operation

    PubMed Central

    Hasan, Md. Mehedi; Faruque, Mohammad Rashed Iqbal; Islam, Sikder Sunbeam; Islam, Mohammad Tariqul

    2016-01-01

    The aim of this paper is to introduce a compact double-negative (DNG) metamaterial that exhibits a negative refractive index (NRI) bandwidth of more than 3.6 GHz considering the frequency from 2 to 14 GHz. In this framework, two arms of the designed unit cell are split in a way that forms a Modified-Z-shape structure of the FR-4 substrate material. The finite integration technique (FIT)-based Computer Simulation Technology (CST) Microwave Studio is applied for computation, and the experimental setup for measuring the performance is performed inside two waveguide ports. Therefore, the measured data complies well with the simulated data of the unit cell at 0-degree and 90-degree rotation angles. The designed unit cell shows a negative refractive index from 3.482 to 7.096 GHz (bandwidth of 3.61 GHz), 7.876 to 10.047 GHz (bandwidth of 2.171 GHz), and 11.594 to 14 GHz (bandwidth of 2.406 GHz) in the microwave spectra. The design also exhibits almost the same wide negative refractive index bandwidth in the major region of the C-band and X-band if it is rotated 90 degrees. However, the novelty of the proposed structure lies in its effective medium ratio of more than 4, wide bandwidth, and compact size. PMID:28773951

  6. Influence of the photon orbital angular momentum on electric dipole transitions: negative experimental evidence.

    PubMed

    Giammanco, F; Perona, A; Marsili, P; Conti, F; Fidecaro, F; Gozzini, S; Lucchesini, A

    2017-01-15

    We describe an experiment of atomic spectroscopy devoted to ascertaining whether the orbital angular momentum (OAM) of photons has the same property of interacting with atoms or molecules as occurs for the spin angular momentum (SAM). In our experiment, rubidium vapors are excited by means of laser radiation with different combinations of OAM and SAM, particularly selected to inhibit or enhance the fluorescence according to the selection rules for the electric dipole transitions between the fundamental state and the first excited doublet. Our results clearly show that an electric-dipole-type transition is insensitive to the OAM value, and provide an original validation of a problem long debated in theoretical works.

  7. Ultra-compact chiral metamaterial with negative refractive index based on miniaturized structure

    NASA Astrophysics Data System (ADS)

    Li, Minhua; Song, Jian; Wu, Fei

    2017-03-01

    An ultra-compact chiral metamaterial with thin thickness and small unit cells is proposed. Echelon meandered conjugated gammadions are introduced into the planar miniaturized design. In particular, the ratio between period (p) and resonant wavelength (λ) is as small as 1/10.8 in experiment. Negative refractive indexes for circularly polarized waves are demonstrated and the effective parameters are retrieved. The effects of the length of the swing arms, number of folded lines and dielectric layer thickness on the optical activity have also been investigated. This miniaturized structure has great potential application in electronic and photonic devices with small size and integration.

  8. A Circumbinary Disk Scenario for the Negative Orbital-period Derivative of the Ultra-compact X-Ray Binary 4U 1820-303

    NASA Astrophysics Data System (ADS)

    Jiang, Long; Chen, Wen-Cong; Li, Xiang-Dong

    2017-03-01

    It is generally thought that an ultra-compact X-ray Binary is composed of a neutron star and a helium white dwarf donor star. As one of the most compact binaries, 4U 1820-303 in globular cluster NGC 6624 was predicted to have an orbital period of \\dot{P}/P∼ 1.1× {10}-7 yr‑1 if the mass transfer is fully driven by gravitational radiation. However, recent analysis of 16 year data from Rossi X-ray Timing Explorer and other historical records has yielded a negative orbital-period derivative in the past 35 years. In this work, we propose an evolutionary circumbinary (CB) disk model to account for this anomalous orbital-period derivative. 4U 1820-30 is known to undergo superburst events caused by runaway thermal nuclear burning on the neutron star. We assume that, for a small fraction of the superbursts, part of the ejected material may form a CB disk around the binary. If the recurrence time of such superbursts is ∼10,000 year and ∼10% of the ejected mass feeds a CB disk, the abrupt angular-momentum loss causes a temporary orbital shrink, and the donor’s radius and its Roche lobe radius do not keep in step. Driven by mass transfer and angular-momentum loss, the binary would adjust its orbital parameters to recover a new stable stage. Based on theoretical analysis and numerical simulation, we find that the required feed mass at the CB disk is approximately ∼10‑8 M ⊙.

  9. A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes).

    PubMed

    Li, Shuhui; Wang, Jian

    2014-01-24

    We present a compact (130 μm cladding diameter) trench-assisted multi-orbital-angular-momentum (OAM) multi-ring fiber with 19 rings each supporting 22 modes with 18 OAM ones. Using the high-contrast-index ring and trench designs, the trench-assisted multi-OAM multi-ring fiber (TA-MOMRF) features both low-level inter-mode crosstalk and inter-ring crosstalk within a wide wavelength range (1520 to 1630 nm), which can potentially enable Pbit/s total transmission capacity and hundreds bit/s/Hz spectral efficiency in a single TA-MOMRF. Moreover, the effective refractive index difference of even and odd fiber eigenmodes induced by the ellipticity of ring and fiber bending and their impacts on the purity of OAM mode and mode coupling/crosstalk are analyzed. It is found that high-order OAM modes show preferable tolerance to the ring ellipticity and fiber bending. The designed fiber offers favorable tolerance to both small ellipticity of ring (<-22 dB crosstalk under an ellipticity of 0.5%) and small bend radius (<-20 dB crosstalk under a bend radius of 2 cm).

  10. A Compact Trench-Assisted Multi-Orbital-Angular-Momentum Multi-Ring Fiber for Ultrahigh-Density Space-Division Multiplexing (19 Rings × 22 Modes)

    PubMed Central

    Li, Shuhui; Wang, Jian

    2014-01-01

    We present a compact (130 μm cladding diameter) trench-assisted multi-orbital-angular-momentum (OAM) multi-ring fiber with 19 rings each supporting 22 modes with 18 OAM ones. Using the high-contrast-index ring and trench designs, the trench-assisted multi-OAM multi-ring fiber (TA-MOMRF) features both low-level inter-mode crosstalk and inter-ring crosstalk within a wide wavelength range (1520 to 1630 nm), which can potentially enable Pbit/s total transmission capacity and hundreds bit/s/Hz spectral efficiency in a single TA-MOMRF. Moreover, the effective refractive index difference of even and odd fiber eigenmodes induced by the ellipticity of ring and fiber bending and their impacts on the purity of OAM mode and mode coupling/crosstalk are analyzed. It is found that high-order OAM modes show preferable tolerance to the ring ellipticity and fiber bending. The designed fiber offers favorable tolerance to both small ellipticity of ring (<−22 dB crosstalk under an ellipticity of 0.5%) and small bend radius (<−20 dB crosstalk under a bend radius of 2 cm). PMID:24458159

  11. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma source.

    PubMed

    Sahu, D; Bhattacharjee, S; Singh, M J; Bandyopadhyay, M; Chakraborty, A

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE(11) mode. The source is operated at different discharge conditions to obtain the optimized negative H(-) ion current which is ∼33 μA (0.26 mA∕cm(2)). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  12. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma sourcea)

    NASA Astrophysics Data System (ADS)

    Sahu, D.; Bhattacharjee, S.; Singh, M. J.; Bandyopadhyay, M.; Chakraborty, A.

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE11 mode. The source is operated at different discharge conditions to obtain the optimized negative H- ion current which is ˜33 μA (0.26 mA/cm2). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  13. A physics study for negative void reactivity in compact supercritical CO{sub 2}-cooled fast reactor

    SciTech Connect

    Kim, Y.; Hartanto, D.; Lee, J. I.

    2013-07-01

    A compact S-CO{sub 2}-cooled fast reactor which has negative Coolant Void Reactivity (CVR) has been investigated. A negative CVR is important for the gas cooled fast reactor as an inherent safety mechanism to prevent the sudden positive reactivity insertion when the loss of coolant accident happens. An alternative solution to reduce the CVR is investigated in this study by using O-17 instead of O-16 in UO{sub 2} fuel. By using O-17 in the fuel, it is found that the CVR can even be negative. Impacts of the radial reflector on the CVR are also evaluated for the small SCO{sub 2} cooled fast reactor in this study. We have considered a pure lead (Pb) reflector and a lead magnesium eutectic (LME) reflector as alternative radial reflectors of the S-CO 2-cooled fast reactor. It has been shown that, with the LME radial reflector, the CVR can be negative, while the pure lead reflector provides a slightly positive CVR. (authors)

  14. Extraction of negative hydrogen ions from a compact 14 GHz microwave ion source

    SciTech Connect

    Wada, M.; Kasuya, T.; Nishida, T.; Kenmotsu, T.; Maeno, S.; Nishiura, M.; Shinto, K.; Yamaoka, H.

    2012-02-15

    A pair of permanent magnets has formed enough intensity to realize electron cyclotron resonance condition for a 14 GHz microwave in a 2 cm diameter 9 cm long alumina discharge chamber. A three-electrode extraction system assembled in a magnetic shielding has formed a stable beam of negative hydrogen ions (H{sup -}) in a direction perpendicular to the magnetic field. The measured H{sup -} current density was about 1 mA/cm{sup 2} with only 50 W of discharge power, but the beam intensity had shown saturation against further increase in microwave power. The beam current decreased monotonically against increasing pressure.

  15. Eta Production at High Transverse Momentum by Negative 520 GeV/c Pions Incident on Beryllium and Copper Targets

    SciTech Connect

    Roser, Robert Martin

    1994-01-01

    This thesis presents a measurement of the production of high transverse momentum 17 mesons by a 520 GeV /c $\\sqrt{s}$ = 31.2) $\\pi^-$ beam using data collected during the 1990 fixed target run of Fermilab experiment E706. E706 is a second generation fixed target experiment designed to measure direct-photon production in hadron-nucleus collisions. These data provide a clean test of perturbative QCD and serve as a valuable tool for probing hadronic structure. The $\\gamma\\gamma$ decay mode of the $\\eta$ meson was studied using data from a highly segmented electromagnetic lead liquid argon sampling calorimeter. Results are presented for inclusive $\\eta$ production by $\\pi^-$ beams on both beryllium and copper targets. The $\\eta$ to $\\pi^0$ production ratio and the nuclear dependence of the $\\eta$ production cross section are also reported. These results are for $\\eta$'s in the transverse momentum range 3.5 to 9 Ge V / c and the center of mass rapidity range -0.75 to 0.75, and are the highest energy results ever obtained for inclusive $\\eta$ production using a $\\pi^-$ beam.

  16. The rigorous bound on the transmission probability for massless scalar field of non-negative-angular-momentum mode emitted from a Myers-Perry black hole

    NASA Astrophysics Data System (ADS)

    Ngampitipan, Tritos; Boonserm, Petarpa; Chatrabhuti, Auttakit; Visser, Matt

    2016-06-01

    Hawking radiation is the evidence for the existence of black hole. What an observer can measure through Hawking radiation is the transmission probability. In the laboratory, miniature black holes can successfully be generated. The generated black holes are, most commonly, Myers-Perry black holes. In this paper, we will derive the rigorous bounds on the transmission probabilities for massless scalar fields of non-negative-angular-momentum modes emitted from a generated Myers-Perry black hole in six, seven, and eight dimensions. The results show that for low energy, the rigorous bounds increase with the increase in the energy of emitted particles. However, for high energy, the rigorous bounds decrease with the increase in the energy of emitted particles. When the black holes spin faster, the rigorous bounds decrease. For dimension dependence, the rigorous bounds also decrease with the increase in the number of extra dimensions. Furthermore, as comparison to the approximate transmission probability, the rigorous bound is proven to be useful.

  17. The rigorous bound on the transmission probability for massless scalar field of non-negative-angular-momentum mode emitted from a Myers-Perry black hole

    SciTech Connect

    Ngampitipan, Tritos; Boonserm, Petarpa; Chatrabhuti, Auttakit; Visser, Matt

    2016-06-02

    Hawking radiation is the evidence for the existence of black hole. What an observer can measure through Hawking radiation is the transmission probability. In the laboratory, miniature black holes can successfully be generated. The generated black holes are, most commonly, Myers-Perry black holes. In this paper, we will derive the rigorous bounds on the transmission probabilities for massless scalar fields of non-negative-angular-momentum modes emitted from a generated Myers-Perry black hole in six, seven, and eight dimensions. The results show that for low energy, the rigorous bounds increase with the increase in the energy of emitted particles. However, for high energy, the rigorous bounds decrease with the increase in the energy of emitted particles. When the black holes spin faster, the rigorous bounds decrease. For dimension dependence, the rigorous bounds also decrease with the increase in the number of extra dimensions. Furthermore, as comparison to the approximate transmission probability, the rigorous bound is proven to be useful.

  18. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David [Yorktown, VA

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  19. OBSERVATIONAL UPPER BOUND ON THE COSMIC ABUNDANCES OF NEGATIVE-MASS COMPACT OBJECTS AND ELLIS WORMHOLES FROM THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH

    SciTech Connect

    Takahashi, Ryuichi; Asada, Hideki

    2013-05-01

    The latest result in the Sloan Digital Sky Survey Quasar Lens Search (SQLS) has set the first cosmological constraints on negative-mass compact objects and Ellis wormholes. There are no multiple images lensed by the above two exotic objects for {approx}50, 000 distant quasars in the SQLS data. Therefore, an upper bound is put on the cosmic abundances of these lenses. The number density of negative-mass compact objects is n < 10{sup -8}(10{sup -4}) h {sup 3} Mpc{sup -3} at the mass scale |M| > 10{sup 15}(10{sup 12}) M{sub Sun }, which corresponds to the cosmological density parameter |{Omega}| < 10{sup -4} at the galaxy and cluster mass range |M| = 10{sup 12-15} M{sub Sun }. The number density of the Ellis wormhole is n < 10{sup -4} h {sup 3} Mpc{sup -3} for a range of the throat radius a = 10-10{sup 4} pc, which is much smaller than the Einstein ring radius.

  20. Electromagnetic coupling reduction in dual-band microstrip antenna array using ultra-compact single-negative electric metamaterials for MIMO application

    NASA Astrophysics Data System (ADS)

    Fu, Xiao-Long; Wu, Guo-Cheng; Bai, Wei-Xiong; Wang, Guang-Ming; Liang, Jian-Gang

    2017-01-01

    In this paper, an ultra-compact single negative (SNG) electric waveguided metamaterial (WG-MTM) is first investigated and used to reduce the mutual coupling in E & H planes of a dual-band microstrip antenna array. The proposed SNG electric WG-MTM unit cell is designed by etching two different symmetrical spiral lines on the ground, and has two stopbands operating at 1.86 GHz and 2.40 GHz. The circuit size is very compact, which is only {λ }0/33.6× {λ }0/15.1 (where λ 0 is the wavelength at 1.86 GHz in free space). Taking advantage of the dual-stopband property of the proposed SNG electric WG-MTM, a dual-band microstrip antenna array operating at 1.86 GHz and 2.40 GHz with very low mutual coupling is designed by embedding a cross shaped array of the proposed SNG electric WG-MTM. The measured and simulated results of the designed dual-band antenna array are in good agreement with each other, indicating that the mutual coupling of the fabricated dual-band antenna array realizes 9.8/11.1 dB reductions in the H plane, 8.5/7.9 dB reductions in the E plane at 1.86 GHz and 2.40 GHz, respectively. Besides, the distance of the antenna elements in the array is only 0.35λ 0 (where λ 0 is the wavelength at 1.86 GHz in free space). The proposed strategy is used for the first time to reduce the mutual coupling in E & H planes of the dual-band microstrip antenna array by using ultra-compact SNG electric WG-MTM. Project supported by the National Natural Science Foundation of China (Grant No. 61372034).

  1. Angular Momentum

    ERIC Educational Resources Information Center

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  2. Angular Momentum

    ERIC Educational Resources Information Center

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  3. Losing forward momentum holographically

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Koushik; Herzog, Christopher P.

    2014-06-01

    We present a numerical scheme for solving Einstein’s Equations in the presence of a negative cosmological constant and an event horizon with planar topology. Our scheme allows for the introduction of a particular metric source at the conformal boundary. Such a spacetime has a dual holographic description in terms of a strongly interacting quantum field theory at nonzero temperature. By introducing a sinusoidal static metric source that breaks translation invariance, we study momentum relaxation in the field theory. In the long wavelength limit, our results are consistent with the fluid-gravity correspondence and relativistic hydrodynamics. In the small amplitude limit, our results are consistent with the memory function prediction for the momentum relaxation rate. Our numerical scheme allows us to study momentum relaxation outside these two limits as well.

  4. [Comparative evaluation of in vitro activities of carbapenems against gram-negative pathogens: Turkish data of COMPACT study].

    PubMed

    Korten, Volkan; Söyletir, Güner; Yalçın, Ata Nevzat; Oğünç, Dilara; Dokuzoğuz, Başak; Esener, Harika; Ulusoy, Sercan; Tünger, Alper; Aygen, Bilgehan; Sümerkan, Bülent; Arman, Dilek; Dizbay, Murat; Akova, Murat; Hasçelik, Gülşen; Eraksoy, Haluk; Başaran, Seniha; Köksal, Iftihar; Bayramoğlu, Gülçin; Akalın, Halis; Sınırtaş, Melda

    2011-04-01

    The aim of this study was to determine the in vitro activities of doripenem, imipenem, and meropenem against clinical gram-negative isolates. A total of 596 clinical isolates were obtained from intensive care unit (ICU) and non-ICU patients in 10 centers over Turkey between September-December 2008. The origin of the isolates was patients with nosocomial pneumonia (42.4%), bloodstream infections (%40.4), and complicated intraabdominal infections (17.1%). Of the isolates, 51.8% were obtained from ICU patients. The study isolates consisted of Pseudomonas spp. in 49.8%, Enterobacteriaceae in 40.3%, and other gram-negative agents in 9.9%. The minimum inhibitory concentrations (MIC) for doripenem, imipenem and meropenem were determined for all isolates in each center using Etest® strips (AB Biodisk, Solna, Sweden). Of the isolates, 188 (31.5%) were resistant to at least one of the carbapenems. MIC50 of doripenem against Pseudomonas spp. Was 1 mg/L which was similar to that of meropenem and two-fold lower than imipenem. Susceptibility to carbapenems in P.aeruginosa was 64% for doripenem at an MIC level of 2 mg/L, 53.9% and 63% for imipenem and meropenem at an MIC level of 4 mg/L, respectively. Doripenem and meropenem showed similar activity with the MIC90 of 0.12 mg/L whereas imipenem was four-fold less active at 0.5 mg/L. Against other gramnegative pathogens, mostly Acinetobacter spp., MIC50 was 8 mg/L for doripenem and 32 mg/L for other two carbapenems. P.aeruginosa isolates were inhibited 84.2% with doripenem and 72.1% with meropenem at the MIC level of 8 mg/L. Doripenem generally showed similar or slightly better activity than meropenem and better activity than imipenem against pathogens collected in this study. Against Pseudomonas spp., doripenem was the most active of the three carbapenems. Doripenem and meropenem were equally active against Enterobacteriaceae and at least four-fold more active than imipenem. It was concluded that doripenem seemed to be a promising

  5. Pion Pion Correlations at Low Relative Momentum Produced in the Reactions Proton-Proton Going to Proton-Proton Pion, Negative Pion)(n) with N = 2,3,4,5,6

    NASA Astrophysics Data System (ADS)

    Uribe Duque, Jorge

    We have measured low relative momentum correlations between like sign pions produced in the reactions pp to pp(pi^+,pi^ {-})^{n} with n ranging from 2 to 6. The data sample consisted of 0.93 times10^6 fully reconstructed exclusive interactions, with incident proton momentum of 27.5 GeV/c, recorded by experiment E766 at the AGS in Brookhaven National Laboratory. By parametrizing the correlation with a function of Q^2 representing the dynamics of the reaction and the correlation itself, it was shown that the Q^2 scale does not depend on the final state multiplicity and has a value of 1.08 fermi. The "strength" of the correlation does depend on multiplicity. For negative pions the "strength" is 26% larger than for positive pions.

  6. Comparative in vitro activity of carbapenems against major Gram-negative pathogens: results of Asia-Pacific surveillance from the COMPACT II study.

    PubMed

    Kiratisin, Pattarachai; Chongthaleong, Anan; Tan, Thean Yen; Lagamayo, Evelina; Roberts, Sally; Garcia, Jemelyn; Davies, Todd

    2012-04-01

    Resistance rates amongst Gram-negative pathogens are increasing in the Asia-Pacific region. The Comparative Activity of Carbapenem Testing (COMPACT) II study surveyed the carbapenem susceptibility and minimum inhibitory concentrations (MICs) of doripenem, imipenem and meropenem against 1260 major Gram-negative pathogens isolated from hospitalised patients at 20 centres in five Asia-Pacific countries (New Zealand, the Philippines, Singapore, Thailand and Vietnam) during 2010. Pseudomonas aeruginosa (n=625), Enterobacteriaceae (n=500), and other Gram-negative pathogens including Acinetobacter baumannii (n=135) were collected from patients with bloodstream infection (32.2%), nosocomial pneumonia including ventilator-associated pneumonia (58.1%), and complicated intra-abdominal infection (9.7%), with 36.7% being isolated from patients in an Intensive Care Unit. As high as 29.8% of P. aeruginosa and 73.0% of A. baumannii isolates were not susceptible to at least a carbapenem, whereas the majority of Enterobacteriaceae (97.2%) were susceptible to all carbapenems. Respective MIC(50)/MIC(90) values (MICs for 50% and 90% of the organisms, respectively) of doripenem, imipenem and meropenem were: 0.38/8, 1.5/32 and 0.38/16 mg/L for P. aeruginosa; 0.023/0.094, 0.25/0.5 and 0.032/0.094 mg/L for Enterobacteriaceae; and 32/64, 32/128 and 32/64 mg/L for A. baumannii. Doripenem and meropenem had comparable activity against P. aeruginosa, both being more active than imipenem. All carbapenems were highly potent against Enterobacteriaceae, although imipenem demonstrated higher MIC values than doripenem and meropenem. The three carbapenems showed less activity against A. baumannii. The high prevalence of carbapenem resistance amongst important nosocomial pathogens (P. aeruginosa and A. baumannii) warrants rigorous infection control measures and appropriate antimicrobial use in the Asia-Pacific region.

  7. High Transverse Momentum Neutral Pion Production from Negative Pion and Proton Beams at 530 Gev/c on Beryllium and Copper

    NASA Astrophysics Data System (ADS)

    Mansour, John Philip

    1990-01-01

    The pi^circ inclusive cross section for pi^- and p interactions on nuclear targets at 530 GeV/c has been measured as a function of transverse momentum (p _{T}) and rapidity, using the E706 spectrometer at FNAL. The photon detector used was a large liquid argon sampling calorimeter with an energy resolution of ~15%/sqrt{E }. The experiment employed a high p _{T}) trigger formed by weighting the energy deposited in the calorimeter by the sine of the production angle as measured in the laboratory. The kinematic range studied is 4.0 GeV/c < p_{rm T} < 10.0 GeV/c and -0.7 to 0.7 in rapidity. Beryllium and copper targets were used to measure the atomic number (A) dependence of the cross section. The measurements are compared with other published results, as well as with leading order predictions from Quantium Chromodynamics (QCD).

  8. Evaluating energy sorghum harvest thresholds and tillage cropping systems to offset negative environmental impacts and harvesting equipment-induced soil compaction

    NASA Astrophysics Data System (ADS)

    Meki, M. N.; Snider, J. L.; Kiniry, J. R.; Raper, R. L.; Rocateli, A. C.

    2011-12-01

    Energy sorghum (Sorghum bicolor L. Moench) could be the ideal feedstock for the cellulosic ethanol industry because of its robust establishment, broader adaptability and drought tolerance, water and nutrient use efficiency, and the relatively high annual biomass yields. Of concern, however, is the limited research data on harvest thresholds, subsequent environmental impacts and the potential cumulative effects of harvesting equipment-induced soil compaction. Indiscriminate harvests of the high volume wet energy sorghum biomass, coupled with repeated field passes, could cause irreparable damage to the soil due to compaction. Furthermore, biomass harvests result in lower soil organic matter returns to the soil, making the soil even more susceptible to soil compaction. Compacted soils result in poor root zone aeration and drainage, more losses of nitrogen from denitrification, and restricted root growth, which reduces yields. Given the many positive attributes of conservation tillage and crop residue retention, our research and extension expectations are that sustainable energy sorghum cropping systems ought to include some form of conservation tillage. The challenge is to select cropping and harvesting systems that optimize feedstock production while ensuring adequate residue biomass to sustainably maintain soil structure and productivity. Producers may have to periodically subsoil-till or plow-back their lands to alleviate problems of soil compaction and drainage, weeds, insects and disease infestations. Little, however, is known about the potential impact of these tillage changes on soil productivity, environmental integrity, and sustainability of bioenergy agro-ecosystems. Furthermore, 'safe' energy sorghum feedstock removal thresholds have yet to be established. We will apply the ALMANAC biophysical model to evaluate permissible energy sorghum feedstock harvest thresholds and the effects of subsoil tillage and periodically plowing no-tilled (NT) energy sorghum

  9. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  10. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  11. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  12. Comparative evaluation of the Vitek-2 Compact and Phoenix systems for rapid identification and antibiotic susceptibility testing directly from blood cultures of Gram-negative and Gram-positive isolates.

    PubMed

    Gherardi, Giovanni; Angeletti, Silvia; Panitti, Miriam; Pompilio, Arianna; Di Bonaventura, Giovanni; Crea, Francesca; Avola, Alessandra; Fico, Laura; Palazzo, Carlo; Sapia, Genoveffa Francesca; Visaggio, Daniela; Dicuonzo, Giordano

    2012-01-01

    We performed a comparative evaluation of the Vitek-2 Compact and Phoenix systems for direct identification and antimicrobial susceptibility testing (AST) from positive blood culture bottles in comparison to the standard methods. Overall, 139 monomicrobial blood cultures, comprising 91 Gram-negative and 48 Gram-positive isolates, were studied. Altogether, 100% and 92.3% of the Gram-negative isolates and 75% and 43.75% of the Gram-positive isolates showed concordant identification between the direct and the standard methods with Vitek and Phoenix, respectively. AST categorical agreements of 98.7% and 99% in Gram-negative and of 96.2% and 99.5% in Gram-positive isolates with Vitek and Phoenix, respectively, were observed. In conclusion, direct inoculation procedures for Gram-negative isolates showed an excellent performance with both automated systems, while for identification of Gram-positive isolates they proved to be less reliable, although Vitek provided acceptable results. This approach contributes to reducing the turnaround time to result of blood cultures, with a positive impact on patient care.

  13. Nonsurvivable momentum exchange system

    NASA Technical Reports Server (NTRS)

    Roder, Russell (Inventor); Ahronovich, Eliezer (Inventor); Davis, III, Milton C. (Inventor)

    2007-01-01

    A demiseable momentum exchange system includes a base and a flywheel rotatably supported on the base. The flywheel includes a web portion defining a plurality of web openings and a rim portion. The momentum exchange system further includes a motor for driving the flywheel and a cover for engaging the base to substantially enclose the flywheel. The system may also include components having a melting temperature below 1500 degrees Celsius. The momentum exchange system is configured to demise on reentry.

  14. TDRSS momentum unload planning

    NASA Technical Reports Server (NTRS)

    Cross, George R.; Potter, Mitchell A.; Whitehead, J. Douglass; Smith, James T.

    1991-01-01

    A knowledge-based system is described which monitors TDRSS telemetry for problems in the momentum unload procedure. The system displays TDRSS telemetry and commands in real time via X-windows. The system constructs a momentum unload plan which agrees with the preferences of the attitude control specialists and the momentum growth characteristics of the individual spacecraft. During the execution of the plan, the system monitors the progress of the procedure and watches for unexpected problems.

  15. Do waves carrying orbital angular momentum possess azimuthal linear momentum?

    PubMed

    Speirits, Fiona C; Barnett, Stephen M

    2013-09-06

    All beams are a superposition of plane waves, which carry linear momentum in the direction of propagation with no net azimuthal component. However, plane waves incident on a hologram can produce a vortex beam carrying orbital angular momentum that seems to require an azimuthal linear momentum, which presents a paradox. We resolve this by showing that the azimuthal momentum is not a true linear momentum but the azimuthal momentum density is a true component of the linear momentum density.

  16. Ureilite compaction

    NASA Astrophysics Data System (ADS)

    Walker, D.; Agee, C. B.

    1988-03-01

    Ureilite meteorites show the simple mineralogy and compact recrystallized textures of adcumulate rock or melting residues. A certain amount of controversy exists about whether they are in fact adcumulate rocks or melting residues and about the nature of the precursor liquid or solid assemblage. The authors undertook a limited experimental study which made possible the evaluation of the potential of the thermal migration mechanism (diffusion on a saturation gradient) for forming ureilite-like aggregates from carbonaceous chondrite precursors. They find that the process can produce compact recrystallized aggregates of silicate crystals which do resemble the ureilities and other interstitial-liquid-free adcumulate rocks in texture.

  17. Performance of VITEK-2 Compact and overnight MicroScan panels for direct identification and susceptibility testing of Gram-negative bacilli from positive FAN BacT/ALERT blood culture bottles.

    PubMed

    Quesada, M D; Giménez, M; Molinos, S; Fernández, G; Sánchez, M D; Rivelo, R; Ramírez, A; Banqué, G; Ausina, V

    2010-02-01

    We describe the reliability of the VITEK-2 Compact and overnight MicroScan panels for direct identification and susceptibility testing from the BacT/ALERT blood culture system when using FAN (FA and FN) bottles. A simple procedure, in two centrifugation steps, was designed to remove the charcoal particles present in FA and FN bottles. A total of 113 positive blood cultures showing Gram-negative rods were investigated. Enterobacteriaceae were isolated in 104 cases, and Pseudomonas aeruginosa in nine. The MicroScan system correctly identified 106 (93.8%) of the 113 isolates. The seven identificaction errors included P. aeruginosa (three), Enterobacter cloacae (one), Escherichia coli (one), Klebsiella oxytoca (one), and Klebsiella pneumoniae (one). The VITEK-2 system correctly identified 109 (96.5%) of the 113 samples obtained directly from the blood culture bottles. The four unidentified isolates were Enterobacter cloacae (two), Escherichia coli (one), and P. aeruginosa (one). MicroScan yielded 4/779 (0.5%) very major errors and 28/2825 (0.9%) minor errors. VITEK-2 yielded 2/550 (0.36%) very major errors, 1/1718 (0.05%) major error, and 32/2373 (1.3%) minor errors. Both systems provided excellent identification (correlation of >90%) and susceptibility (correlation of >98%) results. The average times required to obtain identification and susceptibility results using the direct test applied to the VITEK-2 Compact system were 4.57 +/- 1.37 h and 6.52 +/- 1.64 h, respectively. The VITEK-2 compact system provided results on the same day that the blood culture was found to be positive.

  18. Angular momentum radio

    NASA Astrophysics Data System (ADS)

    Thidé, B.; Tamburini, F.; Then, H.; Someda, C. G.; Mari, Elletra; Parisi, G.; Spinello, F.; Romanato, Fra

    2014-02-01

    Wireless communication amounts to encoding information onto physical observables carried by electromagnetic (EM) fields, radiating them into surrounding space, and detecting them remotely by an appropriate sensor connected to an informationdecoding receiver. Each observable is second order in the fields and fulfills a conservation law. In present-day radio only the EM linear momentum observable is fully exploited. A fundamental physical limitation of this observable, which represents the translational degrees of freedom of the charges (typically an oscillating current along a linear antenna) and the fields, is that it is single-mode. This means that a linear-momentum radio communication link comprising one transmitting and one receiving antenna, known as a single-input-single-output (SISO) link, can provide only one transmission channel per frequency (and polarization). In contrast, angular momentum, which represents the rotational degrees of freedom, is multi-mode, allowing an angular-momentum SISO link to accommodate an arbitrary number of independent transmission channels on one and the same frequency (and polarization). We describe the physical properties of EM angular momentum and how they can be exploited, discuss real-world experiments, and outline how the capacity of angular momentum links may be further enhanced by employing multi-port techniques, i.e., the angular momentum counterpart of linear-momentum multiple-input-multiple-output (MIMO).

  19. Introducing Conservation of Momentum

    ERIC Educational Resources Information Center

    Brunt, Marjorie; Brunt, Geoff

    2013-01-01

    The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…

  20. Introducing Conservation of Momentum

    ERIC Educational Resources Information Center

    Brunt, Marjorie; Brunt, Geoff

    2013-01-01

    The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…

  1. Hydrogen negative ion production in a 14 GHz electron cyclotron resonance compact ion source with a cone-shaped magnetic filter.

    PubMed

    Ichikawa, T; Kasuya, T; Kenmotsu, T; Maeno, S; Nishiura, M; Shimozuma, T; Yamaoka, H; Wada, M

    2014-02-01

    The plasma electrode structure of a 14 GHz ECR ion source was modified to enlarge the plasma volume of low electron temperature region. The result shows that the extracted beam current reached about 0.6 mA/cm(2) with about 40 W microwave power. To investigate the correlation between the volume of the low electron temperature region and the H(-) current, a vacuum ultraviolet (VUV) spectrometer had been installed to observe light emission in the VUV wavelength range from the plasma. From the results of the negative ion beam current and that from VUV spectrometry, production rate of vibrationally excited hydrogen molecule seems to be enhanced by increasing the volume of low electron temperature region.

  2. Compact vortices

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.; Zafalan, I.

    2017-02-01

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane.

  3. Compact HPD

    SciTech Connect

    Suyama, M.; Kawai, Y.; Kimura, S.

    1996-12-31

    In order to be utilized in such application fields as high energy physics or medical imaging, where a huge number of photodetectors are assembled in designated small area, the world`s smallest HPD, the compact BFD, has been developed. The overall diameter and the length of the tube are 16mm and 15mm, respectively. The effective photocathode area is 8mm in diameter. At applied voltage of -8kV to the photocathode, the electron multiplication gain of a PD incorporated HPD (PD-BPD) is 1,600, and that of an APD (APD-BPD) is 65,000. In the pulse height distribution measurement, photoelectron peaks up to 6 photoelectrons are clearly distinguishable with the APD-BPD. Experiments established that there was no degradation of gain in magnetic fields up to 1.5T, an important performance characteristic of the compact BPD for application in high energy physics.

  4. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  5. Momentum fractionation on superstrata

    SciTech Connect

    Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.

    2016-05-11

    Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in highdegree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Lastly, our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.

  6. Momentum fractionation on superstrata

    DOE PAGES

    Bena, Iosif; Martinec, Emil; Turton, David; ...

    2016-05-11

    Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in highdegree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifoldmore » singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Lastly, our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.« less

  7. Generation and detection of orbital angular momentum via metasurface

    PubMed Central

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-01-01

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device. PMID:27052796

  8. Generation and detection of orbital angular momentum via metasurface.

    PubMed

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-04-07

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device.

  9. On Angular Momentum

    DOE R&D Accomplishments Database

    Schwinger, J.

    1952-01-26

    The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.

  10. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  11. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  12. Thermal momentum distribution from shifted boundary conditions

    NASA Astrophysics Data System (ADS)

    Giusti, L.

    At finite temperature the distribution of the total momentum is an observable characterizing the thermal state of a field theory, and its cumulants are related to thermodynamic potentials. In a relativistic system at zero chemical potential, for instance, the thermal variance of the total momentum is a direct measure of the entropy. We relate the generating function of the cumulants to the ratio of a path integral with properly shifted boundary conditions in the compact direction over the ordinary partition function. In this form it is well suited for Monte-Carlo evaluation, and the cumulants can be extracted straightforwardly. We test the method in the SU(3) Yang--Mills theory, and obtain the entropy density at three different temperatures.

  13. The Angular Momentum Dichotomy

    NASA Astrophysics Data System (ADS)

    Teklu, Adelheid; Remus, Rhea-Silvia; Dolag, Klaus; Burkert, Andreas

    2015-02-01

    In the context of the formation of spiral galaxies the evolution and distribution of the angular momentum of dark matter halos have been discussed for more than 20 years, especially the idea that the specific angular momentum of the halo can be estimated from the specific angular momentum of its disk (e.g. Fall & Efstathiou (1980), Fall (1983) and Mo et al. (1998)). We use a new set of hydrodynamic cosmological simulations called Magneticum Pathfinder which allow us to split the galaxies into spheroidal and disk galaxies via the circularity parameter ɛ, as commonly used (e.g. Scannapieco et al. (2008)). Here, we focus on the dimensionless spin parameter λ = J |E|1/2 / (G M5/2) (Peebles 1969, 1971), which is a measure of the rotation of the total halo and can be fitted by a lognormal distribution, e.g. Mo et al. (1998). The spin parameter allows one to compare the relative angular momentum of halos across different masses and different times. Fig. 1 reveals a dichotomy in the distribution of λ at all redshifts when the galaxies are split into spheroids (dashed) and disk galaxies (dash-dotted). The disk galaxies preferentially live in halos with slightly larger spin parameter compared to spheroidal galaxies. Thus, we see that the λ of the whole halo reflects the morphology of its central galaxy. For more details and a larger study of the angular momentum properties of disk and spheroidal galaxies, see Teklu et al. (in prep.).

  14. Compact torus

    SciTech Connect

    Furth, H.P.

    1980-10-01

    The objective of the compact torus approach is to provide toroidal magnetic-field configurations that are based primarily on plasma currents and can be freed from closely surrounding mechanical structures. Some familiar examples are the current-carrying plasma rings of reversed-field theta pinches and relativistic-electron smoke ring experiments. The spheromak concept adds an internal toroidal magnetic field component, in order to enhance MHD stability. In recent experiments, three different approaches have been used to generate spheromak plasmas: (1) the reversed-field theta pinch; (2) the coaxial plasma gun; (3) a new quasi-static method, based on the initial formation of a toroidal plasma sleeve around a mechanical ring that generates poloidal and toroidal fluxes, followed by field-line reconnection to form a detached spheromak plasma. The theoretical and experimental MHD stability results for the spheromak configuration are found to have common features.

  15. Reaction/Momentum Wheel

    NASA Technical Reports Server (NTRS)

    1997-01-01

    CTA Space Systems, Inc. has been licensed to sell commercially a reaction/momentum wheel originally developed for NASA's scientific satellites. NASA originally identified a need for the wheel in its Small Explorer program. The Submillimeter Wave Astronomy Satellite required extremely low jitter and a reaction/momentum wheel with a torque greater than any comparably sized commercially available wheel to keep the instrument pointed at celestial objects to a high degree of precision. After development, a market assessment by Research Triangle Institute was completed, showing commercial potential for the flywheel technology. A license was granted to CTA in the fall of 1996. The company currently uses the technology in its complete spacecraft fabrication services and has built over 10 reaction/momentum wheels for commercial, scientific, and military customers.

  16. Optical orbital angular momentum.

    PubMed

    Barnett, Stephen M; Babiker, Mohamed; Padgett, Miles J

    2017-02-28

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next.This article is part of the themed issue 'Optical orbital angular momentum'.

  17. Unveiling Angular Momentum

    NASA Astrophysics Data System (ADS)

    Robinson, Stephen

    2015-03-01

    Angular momentum is a notoriously difficult concept to grasp. Visualization often requires three-dimensional pictures of vectors pointing in seemingly arbitrary directions. A simple student-run laboratory experiment coupled with intuitive explanations by an instructor can clear up some of the inherent ambiguity of rotational motion. Specifically, the precessional period of a suspended spinning bicycle wheel can be related to the spinning frequency through a simple algebraic expression. An explanation of this precession apart from the concept of angular momentum will be given.

  18. Optical orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.

    2017-02-01

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue 'Optical orbital angular momentum'.

  19. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  20. Induced Angular Momentum

    ERIC Educational Resources Information Center

    Parker, G. W.

    1978-01-01

    Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)

  1. Induced Angular Momentum

    ERIC Educational Resources Information Center

    Parker, G. W.

    1978-01-01

    Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)

  2. Momentum sequence and environmental climate influence levels of perceived psychological momentum within a sport competition.

    PubMed

    Briki, Walid; Markman, Keith D; Coudevylle, Guillaume; Sinnapah, Stéphane; Hue, Olivier

    2016-01-01

    The present study examined the influence of momentum sequence (positive vs. negative) and environmental climate (hot-wet vs. neutral) on supporters' (i.e. virtual observers') reported levels of perceived psychological momentum (PM) during a simulated cycling competition. Participants supported one of two competing cyclists involved in a race that was displayed on a screen in a lecture hall. The race scenario was manipulated so that the supported cyclist appeared to undergo either a positive or negative momentum sequence. In addition, participants were either exposed to a hot-wet environmental climate or to a neutral environmental climate while observing the race scenario. According to the results, reported levels of PM were higher in the positive momentum sequence condition than in the negative momentum sequence condition, consistent with the notion that supporters' PM is influenced by a positivity bias, and reported levels of PM were also found to be higher in the hot-wet climate condition than in the neutral climate condition, consistent with the notion that environmental climate is a contextual factor that influences PM through the operation of a causal augmenting mechanism.

  3. Compaction behavior of roller compacted ibuprofen.

    PubMed

    Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-06-01

    The effect of roller compaction pressure on the bulk compaction of roller compacted ibuprofen was investigated using instrumented rotary tablet press. Three different roller pressures were utilized to prepare granules and Heckel analysis, Walker analysis, compressibility, and tabletability were performed to derive densification, deformation, course of volume reduction and bonding phenomenon of different pressure roller compacted granules. Nominal single granule fracture strength was obtained by micro tensile testing. Heckel analysis indicated that granules prepared using lower pressure during roller compaction showed lower yield strength. The reduction in tabletability was observed for higher pressure roller compacted granules. The reduction in tabletability supports the results of granule size enlargement theory. Apart from the granule size enlargement theory, the available fines and relative fragmentation during compaction is responsible for higher bonding strength and provide larger areas for true particle contact at constant porosity for lower pressure roller compacted granules. Overall bulk compaction parameters indicated that granules prepared by lower roller compaction pressure were advantageous in terms of tabletability and densification. Overall results suggested that densification during roller compaction affects the particle level properties of specific surface area, nominal fracture strength, and compaction behavior.

  4. Compact Reactor

    NASA Astrophysics Data System (ADS)

    Williams, Pharis E.

    2007-01-01

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  5. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  6. Analysis techniques for momentum transport

    SciTech Connect

    Scott, S.D.

    1991-08-01

    This report discusses the following topics on momentum analysis in tokamaks and stellarators: the momentum balance equation; deposition of torque by neutral beams; effects of toroidal rotation; and experimental observations. (LSP)

  7. Optical angular momentum and atoms.

    PubMed

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'.

  8. Optical angular momentum and atoms

    NASA Astrophysics Data System (ADS)

    Franke-Arnold, Sonja

    2017-02-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue 'Optical orbital angular momentum'.

  9. Quantum Heuristics of Angular Momentum

    ERIC Educational Resources Information Center

    Levy-Leblond, Jean-Marc

    1976-01-01

    Discusses the quantization of angular momentum components, Heisenberg-type inequalities for their spectral dispersions, and the quantization of the angular momentum modulus, without using operators or commutation relations. (MLH)

  10. Electromagnetic momentum conservation in media

    NASA Astrophysics Data System (ADS)

    Brevik, Iver; Ellingsen, Simen Å.

    2011-03-01

    That static electric and magnetic fields can store momentum may be perplexing, but is necessary to ensure total conservation of momentum. Simple situations in which such field momentum is transferred to nearby bodies and point charges have often been considered for pedagogical purposes, normally assuming vacuum surroundings. If dielectric media are involved, however, the analysis becomes more delicate, not least since one encounters the electromagnetic energy-momentum problem in matter, the 'Abraham-Minkowski enigma', of what the momentum is of a photon in matter. We analyze the momentum balance in three nontrivial examples obeying azimuthal symmetry, showing how the momentum conservation is satisfied as the magnetic field decays and momentum is transferred to bodies present. In the last of the examples, that of point charge outside a dielectric sphere in an infinite magnetic field, we find that not all of the field momentum is transferred to the nearby bodies; a part of the momentum appears to vanish as momentum flux towards infinity. We discuss this and other surprising observations which can be attributed to the assumption of magnetic fields of infinite extent. We emphasize how formal arguments of conserved quantities cannot determine which energy-momentum tensor is more "correct", and each of our conservation checks may be performed equally well in the Minkowski or Abraham framework.

  11. Electromagnetic momentum conservation in media

    SciTech Connect

    Brevik, Iver; Ellingsen, Simen A.

    2011-03-15

    That static electric and magnetic fields can store momentum may be perplexing, but is necessary to ensure total conservation of momentum. Simple situations in which such field momentum is transferred to nearby bodies and point charges have often been considered for pedagogical purposes, normally assuming vacuum surroundings. If dielectric media are involved, however, the analysis becomes more delicate, not least since one encounters the electromagnetic energy-momentum problem in matter, the 'Abraham-Minkowski enigma', of what the momentum is of a photon in matter. We analyze the momentum balance in three nontrivial examples obeying azimuthal symmetry, showing how the momentum conservation is satisfied as the magnetic field decays and momentum is transferred to bodies present. In the last of the examples, that of point charge outside a dielectric sphere in an infinite magnetic field, we find that not all of the field momentum is transferred to the nearby bodies; a part of the momentum appears to vanish as momentum flux towards infinity. We discuss this and other surprising observations which can be attributed to the assumption of magnetic fields of infinite extent. We emphasize how formal arguments of conserved quantities cannot determine which energy-momentum tensor is more 'correct', and each of our conservation checks may be performed equally well in the Minkowski or Abraham framework.

  12. Calibrating Momentum Measurements Of The CMS Detector Using Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Zaleski, Shawn

    2017-01-01

    We report results on the muon momentum calibration using cosmic-ray data taken by the Compact Muon Solenoid (CMS) experiment during run 2 at the Large Hadron Collider (LHC). The momentum scale of high-pT muons is sensitive to a possible bias on the curvature coming from the alignment of the muon system. Cosmic rays are a source of high-pT muons that can be used to measure the momentum scale of muons with pT > 200 GeV. The present talk describes the method used to measure the momentum scale from cosmic data and the measurement using the 2016 cosmic data is presented.

  13. Optical orbital angular momentum

    PubMed Central

    Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.

    2017-01-01

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069775

  14. Momentum dependence of the topological susceptibility and its derivative at zero momentum with overlap fermions

    NASA Astrophysics Data System (ADS)

    Koma, Y.

    The derivative of the topological susceptibility at zero momentum is responsible for the validity of the Witten-Veneziano formula for the η mass, and also for the resolution of the EMC pro- ton spin problem. We investigate the momentum dependence of the topological susceptibility and its derivative at zero momentum using lattice QCD simulations with overlap fermions within quenched approximation. We expose the role of the low-lying Dirac eigenmodes for the topolog- ical charge density, and find the negative value for the derivative. While the sign of the derivative is consistent with the QCD sum rule in pure Yang-Mills theory, the absolute value becomes larger if only the contribution from the zero modes and the low-lying eigenmodes is taken into account.

  15. The Angular Momentum Distribution within Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Chen, D.; Jing, Y.

    We study the angular momentum profile of dark matter halos for a statistical sample drawn from a set of high-resolution cosmological simulations of 2563 particles. Two typical Cold Dark Matter (CDM) models have been analyzed, and the halos are selected to have at least 3× 104 particles in order to reliably measure the angular momentum profile. In contrast with the recent claims of Bullock et al. (2001), we find that the degree of misalignment of angular momentum within a halo is very high. About 50 percent of halos have more than 10 percent of halo mass in the mass of negative angular momentum j. After the mass of negative j is excluded, the cumulative mass function M(momentum profile of halos in a Warm Dark Matter (WDM) model and a Self-Interacting Dark Matter (SIDM) model. We find that the angular momentum profile of halos in the WDM is statistically indistinguishable from that in the CDM model, but the angular momentum of halos in the SIDM is reduced by the self-interaction of dark matter.

  16. Momentum Deposition in Curvilinear Coordinates

    SciTech Connect

    Cleveland, Mathew Allen; Lowrie, Robert Byron; Rockefeller, Gabriel M.; Thompson, Kelly Glen; Wollaber, Allan Benton

    2015-08-03

    The momentum imparted into a material by thermal radiation deposition is an important physical process in astrophysics and inertial confinement fusion (ICF) simulations. In recent work we presented a new method of evaluating momentum deposition that relies on the combination of a time-averaged approximation and a numerical integration scheme. This approach robustly and efficiently evaluates the momentum deposition in spherical geometry. Future work will look to extend this approach to 2D cylindrical geometries.

  17. Partonic Transverse Momentum Distributions

    SciTech Connect

    Rossi, Patrizia

    2010-08-04

    In recent years parton distributions have been generalized to account also for transverse degrees of freedom and new sets of more general distributions, Transverse Momentum Dependent (TMD) parton distributions and fragmentation functions were introduced. Different experiments worldwide (HERMES, COMPASS, CLAS, JLab-Hall A) have measurements of TMDs in semi-inclusive DIS processes as one of their main focuses of research. TMD studies are also an important part of the present and future Drell-Yan experiments at RICH and JPARC and GSI, respectively, Studies of TMDs are also one of the main driving forces of the Jefferson Lab (JLab) 12 GeV upgrade project. Progress in phenomenology and theory is flourishing as well. In this talk an overview of the latest developments in studies of TMDs will be given and newly released results, ongoing activities, as well as planned near term and future measurements will be discussed.

  18. Orbital angular momentum microlaser

    NASA Astrophysics Data System (ADS)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  19. Orbital angular momentum microlaser.

    PubMed

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang

    2016-07-29

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes. Copyright © 2016, American Association for the Advancement of Science.

  20. Momentum Analysis for Metasurfaces

    NASA Astrophysics Data System (ADS)

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Chen, Shuqi; Tian, Jianguo

    2017-07-01

    Utilizing discrete phase distribution to fit continuous phase distribution has been a primary routine for designing metasurfaces. In the existing method, the validation of the discrete designs is guaranteed only by using the subwavelength condition of unit cells, which is insufficient—especially for arbitrary phase distribution. Herein, we propose an analytical method to design metasurfaces by estimating the width of the source in a unit cell. Also, by calculating field patterns in both real and momentum space, we provide four guidelines for directing future applications of metasurfaces, such as an arbitrary multifocal lens with the same strength of each focus, a convex-concave double lens, and a lens with a large numerical aperture that can precisely prevent undesired diffraction orders. In addition to metalenses, this methodology can provide a wide platform for designing tailored and multifunctional metasurfaces in the future, especially large-area ones in practical applications.

  1. Force As A Momentum Current

    SciTech Connect

    Munera, Hector A.

    2010-07-28

    Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.

  2. Force As A Momentum Current

    NASA Astrophysics Data System (ADS)

    Múnera, Héctor A.

    2010-07-01

    Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.

  3. Angular Momentum in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.

    We study the ``angular momentum catastrophe" in the framework of interaction among baryons and dark matter through dynamical friction. By means of Del Popolo (2009) model we simulate 14 galaxies similar to those investigated by van den Bosch, Burkert and Swaters (2001), and calculate the distribution of their spin parameters and the angular momenta. Our model gives the angular momentum distribution which is in agreement with the van den Bosch et al. observations. Our result shows that the ``angular momentum catastrophe" can be naturally solved in a model that takes into account the baryonic physics and the exchange of energy and angular momentum between the baryonic clumps and dark matter through dynamical friction.

  4. Compact hadron driver for cancer therapies using continuous energy sweep scanning

    NASA Astrophysics Data System (ADS)

    Wah, Leo Kwee; Monma, Takumi; Adachi, Toshikazu; Kawakubo, Tadamichi; Dixit, Tanuja; Takayama, Ken

    2016-04-01

    A design of a compact hadron driver for future cancer therapies based on the induction synchrotron concept is presented. To realize a slow extraction technique in a fast-cycling synchrotron, which allows energy sweep beam scanning, a zero momentum-dispersion D (s ) region and a high flat D (s ) region are necessary. The proposed design meets both requirements. The lattice has two-fold symmetry with a circumference of 52.8 m, a 2-m dispersion-free straight section, and a 3-m-long large flat dispersion straight section. Assuming a 1.5-T bending magnet, the ring can deliver heavy ions (200 MeV /u ) at 10 Hz. A beam fraction is dropped from the barrier bucket at the desired timing, and the increasing negative momentum deviation of this beam fraction becomes large enough for the fraction to fall in the electrostatic septum extraction gap, which is placed at the large D (s ) region. The programmed energy sweep extraction enables scanning beam irradiation on a cancer site in depth without an energy degrader, avoiding the production of secondary particles and the degradation of emittance. Details of the lattice parameters and computer simulations for slow extraction are discussed. An example extraction scenario is presented. Qualities of the spilled beam such as emittance and momentum spread are discussed, as well as necessary functions and parameters required for the extraction system.

  5. Optical Momentum, Spin, and Angular Momentum in Dispersive Media

    NASA Astrophysics Data System (ADS)

    Bliokh, Konstantin Y.; Bekshaev, Aleksandr Y.; Nori, Franco

    2017-08-01

    We examine the momentum, spin, and orbital angular momentum of structured monochromatic optical fields in dispersive inhomogeneous isotropic media. There are two bifurcations in this general problem: the Abraham-Minkowski dilemma and the kinetic (Poynting-like) versus canonical (spin-orbital) pictures. We show that the kinetic Abraham momentum describes the energy flux and group velocity of the wave in the medium. At the same time, we introduce novel canonical Minkowski-type momentum, spin, and orbital angular momentum densities of the field. These quantities exhibit fairly natural forms, analogous to the Brillouin energy density, as well as multiple advantages as compared with previously considered formalisms. As an example, we apply this general theory to inhomogeneous surface plasmon-polariton (SPP) waves at a metal-vacuum interface and show that SPPs carry a "supermomentum," proportional to the wave vector kp>ω /c , and a transverse spin, which can change its sign depending on the frequency ω .

  6. Optical Momentum, Spin, and Angular Momentum in Dispersive Media.

    PubMed

    Bliokh, Konstantin Y; Bekshaev, Aleksandr Y; Nori, Franco

    2017-08-18

    We examine the momentum, spin, and orbital angular momentum of structured monochromatic optical fields in dispersive inhomogeneous isotropic media. There are two bifurcations in this general problem: the Abraham-Minkowski dilemma and the kinetic (Poynting-like) versus canonical (spin-orbital) pictures. We show that the kinetic Abraham momentum describes the energy flux and group velocity of the wave in the medium. At the same time, we introduce novel canonical Minkowski-type momentum, spin, and orbital angular momentum densities of the field. These quantities exhibit fairly natural forms, analogous to the Brillouin energy density, as well as multiple advantages as compared with previously considered formalisms. As an example, we apply this general theory to inhomogeneous surface plasmon-polariton (SPP) waves at a metal-vacuum interface and show that SPPs carry a "supermomentum," proportional to the wave vector k_{p}>ω/c, and a transverse spin, which can change its sign depending on the frequency ω.

  7. The Compact for Education.

    ERIC Educational Resources Information Center

    Harrington, Fred Harvey

    The Compact for Education is not yet particularly significant either for good or evil. Partly because of time and partly because of unreasonable expectations, the Compact is not yet a going concern. Enthusiasts have overestimated Compact possibilities and opponents have overestimated its dangers, so if the organization has limited rather than…

  8. Fermionic condensate and Casimir densities in the presence of compact dimensions with applications to nanotubes

    SciTech Connect

    Elizalde, E.; Odintsov, S. D.; Saharian, A. A.

    2011-05-15

    We investigate the fermionic condensate and the vacuum expectation value of the energy-momentum tensor for a massive fermionic field in the geometry of two parallel plates on the background of Minkowski spacetime with an arbitrary number of toroidally compactified spatial dimensions, in the presence of a constant gauge field. Bag boundary conditions are imposed on the plates and periodicity conditions with arbitrary phases are considered along the compact dimensions. The nontrivial topology of the background spacetime leads to an Aharonov-Bohm effect for the vacuum expectation values induced by the gauge field. The fermionic condensate and the expectation value of the energy-momentum tensor are periodic functions of the magnetic flux with period equal to the flux quantum. The boundary induced parts in the fermionic condensate and the vacuum energy density are negative, with independence of the phases in the periodicity conditions and of the value of the gauge potential. Interaction forces between the plates are thus always attractive. However, in physical situations where the quantum field is confined to the region between the plates, the pure topological part contributes as well, and then the resulting force can be either attractive or repulsive, depending on the specific phases encoded in the periodicity conditions along the compact dimensions, and on the gauge potential, too. Applications of the general formulas to cylindrical carbon nanotubes are considered, within the framework of a Dirac-like theory for the electronic states in graphene. In the absence of a magnetic flux, the energy density for semiconducting nanotubes is always negative. For metallic nanotubes the energy density is positive for long tubes and negative for short ones. The resulting Casimir forces acting on the edges of the nanotube are attractive for short tubes with independence of the tube chirality. The sign of the force for long nanotubes can be controlled by tuning the magnetic flux

  9. Intrinsic Angular Momentum of Light.

    ERIC Educational Resources Information Center

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  10. Intrinsic Angular Momentum of Light.

    ERIC Educational Resources Information Center

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  11. Scattering and momentum space entanglement

    NASA Astrophysics Data System (ADS)

    Grignani, Gianluca; Semenoff, Gordon W.

    2017-09-01

    We derive a formula for the entanglement entropy of two regions in momentum space that is generated by the scattering of weakly interacting scalar particles. We discuss an example where weak interactions entangle momentum scales above and below an infrared cutoff.

  12. Transverse angular momentum of photons

    SciTech Connect

    Aiello, Andrea

    2010-05-15

    We develop the quantum theory of transverse angular momentum of light beams. The theory applies to paraxial and quasiparaxial photon beams in vacuum and reproduces the known results for classical beams when applied to coherent states of the field. Both the Poynting vector, alias the linear momentum, and the angular-momentum quantum operators of a light beam are calculated including contributions from first-order transverse derivatives. This permits a correct description of the energy flow in the beam and the natural emergence of both the spin and the angular momentum of the photons. We show that for collimated beams of light, orbital angular-momentum operators do not satisfy the standard commutation rules. Finally, we discuss the application of our theory to some concrete cases.

  13. Orbital angular momentum entanglement

    NASA Astrophysics Data System (ADS)

    Romero, Mary Jacquiline Romero

    Entanglement in higher dimensions is an attractive concept that is a challenge to realise experimentally. To this end, the entanglement of the orbital angular momentum (OAM) of photons holds promise. The OAM state-space is discrete and theoretically unbounded. In the work that follows, we investigate various aspects of OAM entanglement. We show how the correlations in OAM and its conjugate variable, angular position, are determined by phase- matching and the shape of the pump beam in spontaneous parametric down- conversion. We implement tests of quantum mechanics which have been previously done for other variables. We show the Einstein-Podolsky-Rosen paradox for OAM and angle, supporting the incompatibility of quantum mechanics with locality and realism. We demonstrate violations of Bell-type inequalities, thereby discounting local hidden variables for describing the correlations we observe. We show the Hardy paradox using OAM, again highlighting the nonlocal nature of quantum mechanics. We demonstrate violations of Leggett-type inequalities, thereby discounting nonlocal hidden variables for describing correlations. Lastly, we have looked into the entanglement of topological vortex structures formed from a special superposition of OAM modes and show violations of Bell-type inequalities confined to a finite, isolated volume.

  14. Accelerating momentum for change!

    PubMed

    Wenzel, S; Panetta, J

    1995-05-01

    As we develop strategies to compete globally, we are challenged with integrating our resources to execute these strategies effectively. Many companies are in the midst of dramatic shifts in corporate cultures, giving more responsibility to employees while raising expectations for their performance. The extent of these changes is far reaching and brings significant challenges to both employees and corporations. This article is a continuation of the evolution (over five years) of a corrective action/continuous improvement process implemented at Exide Electronics. It discusses organizational structures, including steering committees, corrective action teams, task teams, and work cells. Specific expectations, goals, and results of the teams are presented, along with ground rules for functioning within the organization. After structuring the organization and coordinating the resources effectively, the next challenge is accelerating momentum for change. The presentation also discusses the evolutionary process required to make a culture focused on change, including ongoing communication and feedback, constant evaluation and direction of the process, and measuring and paying for performance.

  15. Negative optical torque.

    PubMed

    Chen, Jun; Ng, Jack; Ding, Kun; Fung, Kin Hung; Lin, Zhifang; Chan, C T

    2014-09-17

    Light carries angular momentum, and as such it can exert torques on material objects. Applications of these opto-mechanical effects were limited initially due to their smallness in magnitude, but later becomes powerful and versatile after the invention of laser. Novel and practical approaches for harvesting light for particle rotation have since been demonstrated, where the structure is always subjected to a positive optical torque along a certain axis if the incident angular momentum has a positive projection on the same axis. We report here an interesting phenomenon of "negative optical torque", meaning that incoming photons carrying angular momentum rotate an object in the opposite sense. Surprisingly this can be realized quite straightforwardly in simple planar structures. Field retardation is a necessary condition and discrete rotational symmetry of material object plays an important role. The optimal conditions are explored and explained.

  16. Negative Optical Torque

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Ng, Jack; Ding, Kun; Fung, Kin Hung; Lin, Zhifang; Chan, C. T.

    2014-09-01

    Light carries angular momentum, and as such it can exert torques on material objects. Applications of these opto-mechanical effects were limited initially due to their smallness in magnitude, but later becomes powerful and versatile after the invention of laser. Novel and practical approaches for harvesting light for particle rotation have since been demonstrated, where the structure is always subjected to a positive optical torque along a certain axis if the incident angular momentum has a positive projection on the same axis. We report here an interesting phenomenon of ``negative optical torque'', meaning that incoming photons carrying angular momentum rotate an object in the opposite sense. Surprisingly this can be realized quite straightforwardly in simple planar structures. Field retardation is a necessary condition and discrete rotational symmetry of material object plays an important role. The optimal conditions are explored and explained.

  17. Negative Optical Torque

    PubMed Central

    Chen, Jun; Ng, Jack; Ding, Kun; Fung, Kin Hung; Lin, Zhifang; Chan, C. T.

    2014-01-01

    Light carries angular momentum, and as such it can exert torques on material objects. Applications of these opto-mechanical effects were limited initially due to their smallness in magnitude, but later becomes powerful and versatile after the invention of laser. Novel and practical approaches for harvesting light for particle rotation have since been demonstrated, where the structure is always subjected to a positive optical torque along a certain axis if the incident angular momentum has a positive projection on the same axis. We report here an interesting phenomenon of “negative optical torque”, meaning that incoming photons carrying angular momentum rotate an object in the opposite sense. Surprisingly this can be realized quite straightforwardly in simple planar structures. Field retardation is a necessary condition and discrete rotational symmetry of material object plays an important role. The optimal conditions are explored and explained. PMID:25226863

  18. Orbital angular momentum density of a general Lorentz-Gauss vortex beam

    NASA Astrophysics Data System (ADS)

    Zhou, Guoquan; Ji, Zhiyue; Ru, Guoyun

    2016-07-01

    Based on the vectorial Rayleigh-Sommerfeld integral formulae, the analytical expression of a general Lorentz-Gauss vortex beam with an arbitrary topological charge is derived in free space. By using the analytical expressions of the electromagnetic field beyond the paraxial approximation, the orbital angular momentum density of a general Lorentz-Gauss vortex beam can be calculated. The effects of the linearly polarized angle and the topological charge on the three components of the orbital angular momentum density are investigated in the reference plane. The two transversal components of the orbital angular momentum are composed of two lobes with the same areas and opposite signs. The longitudinal component of the orbital angular momentum density is composed of four lobes with the same areas. The sign of the orbital angular momentum density in a pair of lobes is positive, and that of the orbital angular momentum density in the other pair of lobes is negative. Moreover, the negative magnitude of the orbital angular momentum density is larger than the positive magnitude of the orbital angular momentum density. The linearly polarized angle affects not only the shape and the location of the lobes, but also the magnitude of the three components of the orbital angular momentum density. With increasing the topological charge, the distribution of the orbital angular momentum density expands, the magnitude of the orbital angular momentum density increases, and the shape of the lobe also slightly changes.

  19. MSWAVEF: Momentum-Space Wavefunctions

    NASA Astrophysics Data System (ADS)

    Barklem, Paul S.

    2017-01-01

    MSWAVEF calculates hydrogenic and non-hydrogenic momentum-space electronic wavefunctions. Such wavefunctions are often required to calculate various collision processes, such as excitation and line broadening cross sections. The hydrogenic functions are calculated using the standard analytical expressions. The non-hydrogenic functions are calculated within quantum defect theory according to the method of Hoang Binh and van Regemorter (1997). Required Hankel transforms have been determined analytically for angular momentum quantum numbers ranging from zero to 13 using Mathematica. Calculations for higher angular momentum quantum numbers are possible, but slow (since calculated numerically). The code is written in IDL.

  20. Momentum resolution in inverse photoemission

    SciTech Connect

    Zumbülte, A.; Schmidt, A. B.; Donath, M.

    2015-01-15

    We present a method to determine the electron beam divergence, and thus the momentum resolution, of an inverse-photoemission setup directly from a series of spectra measured on Cu(111). Simulating these spectra with different beam divergences shows a distinct influence of the divergence on the appearance of the Shockley surface state. Upon crossing the Fermi level, its rise in intensity can be directly linked with the beam divergence. A comparison of measurement and simulation enables us to quantify the momentum resolution independent of surface quality, energy resolution, and experimental geometry. With spin resolution, a single spectrum taken around the Fermi momentum of a spin-split surface state, e.g., on Au(111), is sufficient to derive the momentum resolution of an inverse-photoemission setup.

  1. Compact Polarimetry Potentials

    NASA Technical Reports Server (NTRS)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  2. MBL Experiment in Angular Momentum

    NASA Astrophysics Data System (ADS)

    Gluck, Paul

    2002-04-01

    Among the series of beautiful take-home experiments designed by A.P. French and J.G. King for MIT students, the one on angular momentum studies the loss and conservation of angular momentum using a small dc motor as generator. Here we describe a version of the experiment that increases its accuracy, enables students to perform detailed rotational dynamics calculations, and sharpens the ability to isolate the region where the collision occurs.

  3. The varieties of momentum-like experience.

    PubMed

    Hubbard, Timothy L

    2015-11-01

    Cognition and behavior exhibit biases consistent with future expectations, and some of these biases result in momentum-like effects and have been linked with the idea of momentum. These momentum-like effects include representational momentum, operational momentum, attentional momentum, behavioral momentum, and psychological momentum. Effects of numerous variables involving characteristics of the target, display, context, or observer on each momentum-like effect are considered, and similarities of different momentum-like effects are considered. It is suggested that representational momentum, operational momentum, and attentional momentum reflect similar or overlapping mechanisms based on a perceptual time-scale and extrapolation primarily across space, and that behavioral momentum and psychological momentum reflect similar or overlapping mechanisms based on a longer time-scale and extrapolation primarily across time. It is further suggested that all 5 forms of momentum-like effect could reflect a more general extrapolation mechanism that anticipates the future action, behavior, or outcome of a given target, person, or process. A list of properties characterizing momentum-like effects is proposed, and constraints and issues relevant to future models of momentum-like effects are discussed. (PsycINFO Database Record

  4. Momentum flux in breaking wavelets

    NASA Astrophysics Data System (ADS)

    Csanady, G. T.

    1990-08-01

    A breaking wavelet is taken to consist of a roller and a trailing turbulent wake, both riding on an irrotational wave. The shear stress force on the separation streamline between the roller and the underlying flow is balanced mainly by the horizontal pressure force on the same streamline. The pressure force acts on the underlying flow and reduces wavelet momentum; the shear force generates the momentum deficit of the wake. In this manner, wavelet momentum is turned into shear flow momentum. In wind-driven wavelets the shear force of the wind aids roller formation: rollers form at a relatively low approach momentum from boundary layer fluid generated by surface shear. Breaking wavelets have been modeled by superimposing the surface disturbance generated by a roller on a sinusoidal wave. The phase relationship of the two components determines how much momentum is extracted from the wave. The models show the characteristic asymmetric, forward leaning shape of breakers. The wave under the roller is shortened, so that the steepness of the breaker is even greater than it would be on account of the roller's presence alone. Ahead of the roller's toe, capillary waves are generated. On short waves these are of easily visible amplitude and serve to identify the presence of a roller.

  5. Momentum Confinement at Low Torque

    SciTech Connect

    Solomon, W M; Burrell, K H; deGrassie, J S; Budny, R; Groebner, R J; Heidbrink, W W; Kinsey, J E; Kramer, G J; Makowski, M A; Mikkelsen, D; Nazikian, R; Petty, C C; Politzer, P A; Scott, S D; Van Zeeland, M A; Zarnstorff, M C

    2007-06-26

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized {beta}{sub N}, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co-neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q{sub min} show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. The relative importance of E x B shearing between the two is modeled using GLF23 and may suggest a possible explanation.

  6. Spin supplementary conditions for spinning compact binaries

    NASA Astrophysics Data System (ADS)

    Mikóczi, Balázs

    2017-03-01

    We consider different spin supplementary conditions (SSC) for a spinning compact binary with the leading-order spin-orbit (SO) interaction. The Lagrangian of the binary system can be constructed, but it is acceleration-dependent in two cases of SSC. We rewrite the generalized Hamiltonian formalism proposed by Ostrogradsky and compute the conserved quantities and the dissipative part of relative motion during the gravitational radiation of each SSC. We give the orbital elements and observed quantities of the SO dynamics, for instance, the energy and the orbital angular momentum losses and waveforms, and discuss their SSC dependence.

  7. The origin of ultra-compact binaries

    NASA Technical Reports Server (NTRS)

    Hachisu, Izumi; Miyaji, Shigeki; Saio, Hideyuki

    1987-01-01

    The origin of ultra-compact binaries composed of a neutron star and a low-mass (about 0.06 solar mass) white dwarf is considered. Taking account of the systemic losses of mass and angular momentum, it was found that a serious difficulty exists in the scenarios which involve tidal captures of a normal star (a main sequence star or a red giant) by a neutron star. This difficulty can be avoided if a red giant star is captured by a massive white dwarf (M is approx. greater than 1.2 solar masses), which becomes a neutron star through the accretion induced collapse.

  8. The origin of ultra-compact binaries

    NASA Astrophysics Data System (ADS)

    Hachisu, Izumi; Miyaji, Shigeki; Saio, Hideyuki

    The origin of ultra-compact binaries composed of a neutron star and a low-mass (about 0.06 solar mass) white dwarf is considered. Taking account of the systemic losses of mass and angular momentum, it was found that a serious difficulty exists in the scenarios which involve tidal captures of a normal star (a main sequence star or a red giant) by a neutron star. This difficulty can be avoided if a red giant star is captured by a massive white dwarf (M is approx. greater than 1.2 solar masses), which becomes a neutron star through the accretion induced collapse.

  9. Stabilization of compactible waste

    SciTech Connect

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

  10. Thermal Momentum Distribution from Path Integrals with Shifted Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Giusti, Leonardo; Meyer, Harvey B.

    2011-04-01

    For a thermal field theory formulated in the grand canonical ensemble, the distribution of the total momentum is an observable characterizing the thermal state. We show that its cumulants are related to thermodynamic potentials. In a relativistic system, for instance, the thermal variance of the total momentum is a direct measure of the enthalpy. We relate the generating function of the cumulants to the ratio of (a) a partition function expressed as a Matsubara path integral with shifted boundary conditions in the compact direction and (b) the ordinary partition function. In this form the generating function is well suited for Monte Carlo evaluation, and the cumulants can be extracted straightforwardly. We test the method in the SU(3) Yang-Mills theory and obtain the entropy density at three different temperatures.

  11. On nonstable and stable population momentum.

    PubMed

    Espenshade, Thomas J; Olgiati, Analia S; Levin, Simon A

    2011-11-01

    This article decomposes total population momentum into two constituent and multiplicative parts: "nonstable" momentum and "stable" momentum. Nonstable momentum depends on deviations between a population's current age distribution and its implied stable age distribution. Stable momentum is a function of deviations between a population's implied stable and stationary age distributions. In general, the factorization of total momentum into the product of nonstable and stable momentum is a very good approximation. The factorization is exact, however, when the current age distribution is stable or when observed fertility is already at replacement. We provide numerical illustrations by calculating nonstable, stable, and total momentum for 176 countries, the world, and its major regions. In short, the article brings together disparate strands of the population momentum literature and shows how the various kinds of momentum fit together into a single unifying framework.

  12. On Nonstable and Stable Population Momentum

    PubMed Central

    Olgiati, Analia S.; Levin, Simon A.

    2014-01-01

    This article decomposes total population momentum into two constituent and multiplicative parts: “nonstable” momentum and “stable” momentum. Nonstable momentum depends on deviations between a population’s current age distribution and its implied stable age distribution. Stable momentum is a function of deviations between a population’s implied stable and stationary age distributions. In general, the factorization of total momentum into the product of nonstable and stable momentum is a very good approximation. The factorization is exact, however, when the current age distribution is stable or when observed fertility is already at replacement. We provide numerical illustrations by calculating nonstable, stable, and total momentum for 176 countries, the world, and its major regions. In short, the article brings together disparate strands of the population momentum literature and shows how the various kinds of momentum fit together into a single unifying framework. PMID:21948106

  13. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  14. Classical and quantum chaotic angular-momentum pumps.

    PubMed

    Dittrich, T; Dubeibe, F L

    2015-03-06

    We study directed transport of charge and intrinsic angular momentum by periodically driven scattering in the regime of fast and strong driving. A spin-orbit coupling through a kicked magnetic field confined to a compact region in space leads to irregular scattering and triggers spin flips in a spatially asymmetric manner which allows us to generate polarized currents. The dynamical mechanisms responsible for the spin separation carry over to the quantum level and give rise to spin pumping. Our theory based on the Floquet formalism is confirmed by numerical solutions of the time-dependent inhomogeneous Schrödinger equation with a continuous source term.

  15. Variations in atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Rosen, R. D.; Salstein, D. A.

    1981-01-01

    Twice-daily values of the atmosphere's angular momentum about the polar axis during the five years from 1976 through 1980 are presented in graphs and a table. The compilation is based on a global data set, incorporating 90 percent of the mass of the atmosphere. The relationship between changes in the angular momentum of the atmosphere and changes in the length of day is described, as are the main sources of error in the data. The variability in angular momentum is revealed in a preliminary fashion by means of a spectral decomposition. The data presented should stimulate comparisons with other measures of the length of day and so provide a basis for greater understanding of Earth-atmosphere interactions.

  16. Negative-viscosity lattice gases

    SciTech Connect

    Rothman, D.H. )

    1989-08-01

    A new irreversible collision rule is introduced for lattice-gas automata. The rule maximizes the flux of momentum in the direction of the local momentum gradient, yielding a negative shear viscosity. Numerically results in 2D show that the negative viscosity leads to the spontaneous ordering of the velocity field, with vorticity resolvable down to one lattice-link length. The new rule may be used in conjunction with previously proposed collision rules to yield a positive shear viscosity lower than the previous rules provide. In particular, Poiseuille flow tests demonstrate a decrease in viscosity by more than a factor of 2.

  17. Automated Angular Momentum Recoupling Algebra

    NASA Astrophysics Data System (ADS)

    Williams, H. T.; Silbar, Richard R.

    1992-04-01

    We present a set of heuristic rules for algebraic solution of angular momentum recoupling problems. The general problem reduces to that of finding an optimal path from one binary tree (representing the angular momentum coupling scheme for the reduced matrix element) to another (representing the sub-integrals and spin sums to be done). The method lends itself to implementation on a microcomputer, and we have developed such an implementation using a dialect of LISP. We describe both how our code, called RACAH, works and how it appears to the user. We illustrate the use of RACAH for several transition and scattering amplitude matrix elements occurring in atomic, nuclear, and particle physics.

  18. Proposal for the proper gravitational energy-momentum tensor

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsutaro

    2016-08-01

    We propose a gravitational energy-momentum (GEMT) tensor of the general relativity obtained using Noether’s theorem. It transforms as a tensor under general coordinate transformations. One of the two indices of the GEMT labels a local Lorentz frame that satisfies the energy-momentum conservation law. The energies for a gravitational wave, a Schwarzschild black hole and a Friedmann-Lemaitre-Robertson-Walker (FLRW) universe are calculated as examples. The gravitational energy of the Schwarzschild black hole exists only outside the horizon, its value being the negative of the black hole mass.

  19. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  20. Angular Momentum Redistribution in Turbulent Compressible Convection

    NASA Astrophysics Data System (ADS)

    Hurlburt, Neal; Brummell, Nicholas; Toomre, Juri

    1997-08-01

    We consider the dynamics of turbulent compressible convection within a curved local segment of a rotating spherical shell. We aim to understand the disparity between the observed solar differential rotation and previous numerical simulations. The angular extent of the curved domain is limited to a small solid angle in order to exploit fully the available spatial degrees of freedom on current supercomputers and attain the highest possible Reynolds numbers. Here we present simulations with Rayleigh numbers in excess of 10^7, and Prandtl numbers less than 0.1. This computational domain takes the form of a curved, periodic channel in longitude with stress-free sidewalls in latitude and radius. The numerical solutions are obtained using high-order accuracy explicit code. It evaluates spatial derivatives using sixth-order compact finite differences in radius and latitude and psuedospectral methods in longitude and advances the solutions in time using a fourth-order Bulirsch-Stoer integrator. The surface flows form broad, laminar networks which mask the much more turbulent flows of the interior. The dynamics within this turbulent region is controlled by the interactions of a tangled web of strong vortex tubes. These tubes and their interactions redistrubute the angular momentum, generating azimuthal flows with strong shear in both radius and latitude. Lockheed Martin Solar and Astrophysics Lab

  1. Design of Large Momentum Acceptance Transport Systems

    SciTech Connect

    D.R. Douglas

    2005-05-01

    The use of energy recovery to enable high power linac operation often gives rise to an attendant challenge--the transport of high power beams subtending large phase space volumes. In particular applications--such as FEL driver accelerators--this manifests itself as a requirement for beam transport systems with large momentum acceptance. We will discuss the design, implementation, and operation of such systems. Though at times counterintuitive in behavior (perturbative descriptions may, for example, be misleading), large acceptance systems have been successfully utilized for generations as spectrometers and accelerator recirculators [1]. Such systems are in fact often readily designed using appropriate geometric descriptions of beam behavior; insight provided using such a perspective may in addition reveal inherent symmetries that simplify construction and improve operability. Our discussion will focus on two examples: the Bates-clone recirculator used in the Jefferson Lab 10 kW IR U pgrade FEL (which has an observed acceptance of 10% or more) and a compaction-managed mirror-bend achromat concept with an acceptance ranging from 50 to 150 MeV.

  2. Gas Accretion and Angular Momentum

    NASA Astrophysics Data System (ADS)

    Stewart, Kyle R.

    In this chapter, we review the role of gas accretion to the acquisition of angular momentum, both in galaxies and in their gaseous halos. We begin by discussing angular momentum in dark matter halos, with a brief review of tidal torque theory and the importance of mergers, followed by a discussion of the canonical picture of galaxy formation within this framework, where halo gas is presumed to shock-eat to the virial temperature of the halo, following the same spin distribution as the dark matter halo before cooling to the center of the halo to form a galaxy there. In the context of recent observational evidence demonstrating the presence of high angular momentum gas in galaxy halos, we review recent cosmological hydrodynamic simulations that have begun to emphasize the role of "cold flow" accretion—anisotropic gas accretion along cosmic filaments that does not shock-heat before sinking to the central galaxy. We discuss the implications of these simulations, reviewing a number of recent developments in the literature, and suggest a revision to the canonical model as it relates to the expected angular momentum content of gaseous halos around galaxies.

  3. Representational Momentum in Older Adults

    ERIC Educational Resources Information Center

    Piotrowski, Andrea S.; Jakobson, Lorna S.

    2011-01-01

    Humans have a tendency to perceive motion even in static images that simply "imply" movement. This tendency is so strong that our memory for actions depicted in static images is distorted in the direction of implied motion--a phenomenon known as representational momentum (RM). In the present study, we created an RM display depicting a pattern of…

  4. Teaching about Impulse and Momentum

    ERIC Educational Resources Information Center

    Franklin, Bill

    2004-01-01

    This American Association of Physics Teachers/Physics Teaching Resource Agents (APPT/PTRA) spiral-bound manual features labs and demos physics teachers can use to give students hands-on opportunities to learn about impulse and momentum. "Make-and-take activities" include AAPT Apparatus Contest winners "An Air Impulse Rocket," "A Fan Driven…

  5. Teaching about Impulse and Momentum

    ERIC Educational Resources Information Center

    Franklin, Bill

    2004-01-01

    This American Association of Physics Teachers/Physics Teaching Resource Agents (APPT/PTRA) spiral-bound manual features labs and demos physics teachers can use to give students hands-on opportunities to learn about impulse and momentum. "Make-and-take activities" include AAPT Apparatus Contest winners "An Air Impulse Rocket," "A Fan Driven…

  6. Reducing compaction effort and incorporating air permeability in Proctor testing for design of urban green spaces on cohesive soils

    USDA-ARS?s Scientific Manuscript database

    It is well established that compaction negatively affects agronomic productivity, that air permeability is a sensitive measure of the degree of soil compaction and therefore a good indicator of soil productivity impairment from compaction. Cohesive soils in urban settings are often heavily compacted...

  7. Energy, momentum and angular momentum conservations in de Sitter gravity

    NASA Astrophysics Data System (ADS)

    Lu, Jia-An

    2016-08-01

    In de Sitter (dS) gravity, where gravity is a gauge field introduced to realize the local dS invariance of the matter field, two kinds of conservation laws are derived. The first kind is a differential equation for a dS-covariant current, which unites the canonical energy-momentum (EM) and angular momentum (AM) tensors. The second kind presents a dS-invariant current which is conserved in the sense that its torsion-free divergence vanishes. The dS-invariant current unites the total (matter plus gravity) EM and AM currents. It is well known that the AM current contains an inherent part, called the spin current. Here it is shown that the EM tensor also contains an inherent part, which might be observed by its contribution to the deviation of the dust particle’s world line from a geodesic. All the results are compared to the ordinary Lorentz gravity.

  8. Physically detached 'compact groups'

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  9. Minkowski momentum resulting from a vacuum-medium mapping procedure, and a brief review of Minkowski momentum experiments

    NASA Astrophysics Data System (ADS)

    Brevik, Iver

    2017-02-01

    A discussion is given on the interpretation and physical importance of the Minkowski momentum in macroscopic electrodynamics (essential for the Abraham-Minkowski problem). We focus on the following two facets: (1) Adopting a simple dielectric model where the refractive index n is constant, we demonstrate by means of a mapping procedure how the electromagnetic field in a medium can be mapped into a corresponding field in vacuum. This mapping was presented many years ago (Brevik and Lautrup, 1970), but is apparently not well known. A characteristic property of this procedure is that it shows how naturally the Minkowski energy-momentum tensor fits into the canonical formalism. Especially the spacelike character of the electromagnetic total four-momentum for a radiation field (implying negative electromagnetic energy in some inertial frames), so strikingly demonstrated in the Cherenkov effect, is worth attention. (2) Our second objective is to give a critical analysis of some recent experiments on electromagnetic momentum. Care must here be taken in the interpretations: it is easy to be misled and conclude that an experiment is important for the energy-momentum problem, while what is demonstrated experimentally is merely the action of the Abraham-Minkowski force acting in surface layers or inhomogeneous regions. The Abraham-Minkowski force is common for the two energy-momentum tensors and carries no information about field momentum. As a final item, we propose an experiment that might show the existence of the Abraham force at high frequencies. This would eventually be a welcome optical analogue to the classic low-frequency 1975 Lahoz-Walker experiment.

  10. Sigma models with negative curvature

    NASA Astrophysics Data System (ADS)

    Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.

    2016-05-01

    We construct Higgs Effective Field Theory (HEFT) based on the scalar manifold Hn, which is a hyperbolic space of constant negative curvature. The Lagrangian has a non-compact O (n , 1) global symmetry group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the curvature (including its sign) determines deviations from Standard Model values.

  11. Sigma models with negative curvature

    DOE PAGES

    Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.

    2016-03-16

    Here, we construct Higgs Effective Field Theory (HEFT) based on the scalar manifold Hn, which is a hyperbolic space of constant negative curvature. The Lagrangian has a non-compact O(n, 1) global symmetry group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the curvature (including its sign) determines deviations from Standard Model values.

  12. Differential compaction behaviour of roller compacted granules of clopidogrel bisulphate polymorphs.

    PubMed

    Khomane, Kailas S; Bansal, Arvind K

    2014-09-10

    In the present work, in-die and out-of-die compaction behaviour of dry-granulated powders of clopidogrel bisulphate (CLP) polymorphs, form I and form II, was investigated using a fully instrumented rotary tablet press. Each polymorph was compacted at three different roller pressures [70.3 (S1), 105.5 (S2) and 140.6 (S3)kgf/cm(2)], and obtained granules were characterized for their physico-mechanical properties. Compaction data were analyzed for out-of-die compressibility, tabletability and compactibility profiles, and in-die Heckel, Kawakita and Walker analysis. The roller compacted granules of both forms showed markedly different tabletting behaviour. Roller pressure exhibited a trend on compaction behaviour of form I granules, whereas, in case of form II, the effect was insignificant. Tabletability of the six granule batches follows the order; I_S1>I_S2>I_S3>II_S1≈II_S2≈II_S3. In case of form I, the reduced tabletability of the granules compacted at higher roller pressure was attributed to the decreased compressibility and plastic deformation. This was confirmed by compressibility plot and various mathematical parameters derived from Heckel (Py), Kawakita (1/b) and Walker (W) equations. The reduced tabletability of form I granules was due to 'granule hardening' during roller compaction. On the other hand, insignificant effect of roller compaction on tabletting behaviour of form II granules was attributed to brittle fragmentation. The extensive fragmentation of granules offered new 'clean' surfaces and higher contact points that negated the effect of granule hardening.

  13. Energy and Momentum Transport in String Waves

    ERIC Educational Resources Information Center

    Juenker, D. W.

    1976-01-01

    Formulas are derived for the energy, momentum, and angular momentum transmitted by waves of arbitrary shape in an inextensible string by pure transverse waves in a string using Tait's procedure. (Author/CP)

  14. Population momentum across the demographic transition.

    PubMed

    Blue, Laura; Espenshade, Thomas J

    2011-01-01

    Population momentum is the main driver of global population growth today, and this makes an appreciation of momentum critical to understanding contemporary worldwide growth dynamics. This article traces population momentum along with two recently defined measures of momentum decomposed—stable and nonstable momentum—across the demographic transition. We use historical data and population projections from 16 countries to illustrate some previously ignored empirical regularities of the demographic transition in both the developed and the developing world. We also demonstrate the dynamic nature of stable and nonstable momentum, as changes in stable momentum lead to predictable changes in current and future nonstable momentum. These results suggest that momentum, which by definition is measured at a point in time, can also be considered as a process that unfolds over time.

  15. Energy and Momentum Transport in String Waves

    ERIC Educational Resources Information Center

    Juenker, D. W.

    1976-01-01

    Formulas are derived for the energy, momentum, and angular momentum transmitted by waves of arbitrary shape in an inextensible string by pure transverse waves in a string using Tait's procedure. (Author/CP)

  16. Nuclei at High Angular Momentum

    SciTech Connect

    Diamond, R. M.; Stephens, F. S.

    1980-12-01

    It appears that most nuclei show a compromise between purely collective and purely non-collective behavior at very high spins.non~collective behavior in nuclei has been seen only as high as 36 or 37{bar h}, at which point a more collective structure seems to develop. The concepts underlying the study of high angular momentum states are discussed. The factors that limit angular momentum in nuclei are considered. The currently emerging state of physics of very high spin states is reviewed. The detailed calculations currently made for high spin states are described, focusing not on the calculations themselves, but on the physical input to them and results that come out. Production of high-spin states using heavy-ion reactions is reviewed. Studies of {gamma}-rays de-exciting the evaporation residues from heavy-ion reactions are covered. Two types of {gamma} rays occur: those that cool the nucleus to or toward the yrast line, called "statistical," and those that are more or less parallel to the yrast line and remove the angular momentum, called "yrast~like." Collective rotation, in simplest form the motion of a deformed nucleus around an axis perpendicular to its symmetry axis, is also covered.

  17. Extinction, relapse, and behavioral momentum.

    PubMed

    Podlesnik, Christopher A; Shahan, Timothy A

    2010-05-01

    Previous experiments on behavioral momentum have shown that relative resistance to extinction of operant behavior in the presence of a discriminative stimulus depends upon the baseline rate or magnitude of reinforcement associated with that stimulus (i.e., the Pavlovian stimulus-reinforcer relation). Recently, we have shown that relapse of operant behavior in reinstatement, resurgence, and context renewal preparations also is a function of baseline stimulus-reinforcer relations. In this paper we present new data examining the role of baseline stimulus-reinforcer relations on resistance to extinction and relapse using a variety of baseline training conditions and relapse operations. Furthermore, we evaluate the adequacy of a behavioral momentum based model in accounting for the results. The model suggests that relapse occurs as a result of a decrease in the disruptive impact of extinction precipitated by a change in circumstances associated with extinction, and that the degree of relapse is a function of the pre-extinction baseline Pavlovian stimulus-reinforcer relation. Across experiments, relative resistance to extinction and relapse were greater in the presence of stimuli associated with more favorable conditions of reinforcement and were positively related to one another. In addition, the model did a good job in accounting for these effects. Thus, behavioral momentum theory may provide a useful quantitative approach for characterizing how differential reinforcement conditions contribute to relapse of operant behavior.

  18. Achromatic orbital angular momentum generator

    NASA Astrophysics Data System (ADS)

    Bouchard, Frédéric; Mand, Harjaspreet; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W.

    2014-12-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of two glued hollow axicons, is used to introduce a nonuniform rotation of polarization into a linearly polarized input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarization, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of 95% for these three different wavelengths is observed. This device may find applications in imaging from micro- to astronomical systems where a white vortex beam is needed.

  19. Extinction, Relapse, and Behavioral Momentum

    PubMed Central

    Podlesnik, Christopher A.; Shahan, Timothy A.

    2010-01-01

    Previous experiments on behavioral momentum have shown that relative resistance to extinction of operant behavior in the presence of a discriminative stimulus depends upon the baseline rate or magnitude of reinforcement associated with that stimulus (i.e., the Pavlovian stimulus-reinforcer relation). Recently, we have shown that relapse of operant behavior in reinstatement, resurgence, and context renewal preparations also is a function of baseline stimulus-reinforcer relations. In this paper we present new data examining the role of baseline stimulus-reinforcer relations on resistance to extinction and relapse using a variety of baseline training conditions and relapse operations. Furthermore, we evaluate the adequacy of a behavioral-momentum based model in accounting for the results. The model suggests that relapse occurs as a result of a decrease in the disruptive impact of extinction precipitated by a change in circumstances associated with extinction, and that the degree of relapse is a function of the pre-extinction baseline Pavlovian stimulus-reinforcer relation. Across experiments, relative resistance to extinction and relapse were greater in the presence of stimuli associated with more favorable conditions of reinforcement and were positively related to one another. In addition, the model did a good job in accounting for these effects. Thus, behavioral momentum theory may provide a useful quantitative approach for characterizing how differential reinforcement conditions contribute to relapse of operant behavior. PMID:20152889

  20. Compact fringe projection profilometer

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Chng, Sian Shing; Lee, Cheok Peng; Chua, Patrick S. K.; Asundi, A.

    2010-03-01

    A compact fringe projection profilometer is recently developed for profiling small objects. A handphone-size microprojector with LED illumination is assembled into our system to minimize the size optical 3D sensor. In our compact 3D shape measurement system, the approaches of phase shifting, temporal phase unwrapping and modified least-squares calibration are utilized to achieve high precision and an easy procedure. The portable system allows for easy and convenient 3D profile measurement to meet the requirements under diverse application conditions, such as profiling small turbine blades in aerospace workshop. Experimental results testify to the robust and reliable performance of this LED micro-projector based FPP system.

  1. Compact fringe projection profilometer

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Chng, Sian Shing; Lee, Cheok Peng; Chua, Patrick S. K.; Asundi, A.

    2009-12-01

    A compact fringe projection profilometer is recently developed for profiling small objects. A handphone-size microprojector with LED illumination is assembled into our system to minimize the size optical 3D sensor. In our compact 3D shape measurement system, the approaches of phase shifting, temporal phase unwrapping and modified least-squares calibration are utilized to achieve high precision and an easy procedure. The portable system allows for easy and convenient 3D profile measurement to meet the requirements under diverse application conditions, such as profiling small turbine blades in aerospace workshop. Experimental results testify to the robust and reliable performance of this LED micro-projector based FPP system.

  2. Inhomogeneous compact extra dimensions

    NASA Astrophysics Data System (ADS)

    Bronnikov, K. A.; Budaev, R. I.; Grobov, A. V.; Dmitriev, A. E.; Rubin, Sergey G.

    2017-10-01

    We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ4 in pure f(R) theory, and the extra dimensions are stable relative to the "radion mode" of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ4. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f(R) gravity.

  3. Angular momentum decomposition for an electron

    SciTech Connect

    Burkardt, Matthias; Hikmat, BC

    2009-04-01

    We calculate the orbital angular momentum of the 'quark' in the scalar diquark model as well as that of the electron in QED (to order {alpha}). We compare the orbital angular momentum obtained from the Jaffe-Manohar decomposition to that obtained from the Ji relation and estimate the importance of the vector potential in the definition of orbital angular momentum.

  4. Angular Momentum Decomposition for an Electron

    SciTech Connect

    Burkardt, Matthias; BC, Hikmat

    2009-01-01

    We calculate the orbital angular momentum of the `quark' in the scalar diquark model as well as that of the electron in QED (to order $\\alpha$). We compare the orbital angular momentum obtained from the Jaffe-Manohar decomposition to that obtained from the Ji relation and estimate the importance of the vector potential in the definition of orbital angular momentum.

  5. Magnetized Compact Stars

    NASA Astrophysics Data System (ADS)

    Pérez Martínez, Aurora; González Felipe, Ricardo; Manreza Paret, Daryel

    2015-01-01

    The magnetized color flavor locked matter phase can be more stable than the unpaired phase, thus becoming the ground state inside neutron stars. In the presence of a strong magnetic field, there exist an anisotropy in the pressures. We estimate the mass-radius relation of magnetized compact stars taking into account the parallel and perpendicular (to the magnetic field) pressure components.

  6. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  7. Compact Information Representations

    DTIC Science & Technology

    2016-08-02

    detections (e.g., DDoS attacks), machine learning, databases, and search. Fundamentally, compact data representations are highly beneficial because they...Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit, to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence... Machine Learning (ICML), 2016 11. Ping Li, One Scan 1-Bit Compressed Sensing, in International Conference on Artificial Intelligence and Statistics

  8. Compact rotating cup anemometer

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.

    1968-01-01

    Compact, collapsible rotating cup anemometer is used in remote locations where portability and durability are factors in the choice of equipment. This lightweight instrument has a low wind-velocity threshold, is capable of withstanding large mechanical shocks while in its stowed configuration, and has fast response to wind fluctuations.

  9. Granular compaction by fluidization

    NASA Astrophysics Data System (ADS)

    Tariot, Alexis; Gauthier, Georges; Gondret, Philippe

    2017-06-01

    How to arrange a packing of spheres is a scientific question that aroused many fundamental works since a long time from Kepler's conjecture to Edward's theory (S. F. Edwards and R.B.S Oakeshott. Theory of powders. Physica A, 157: 1080-1090, 1989), where the role traditionally played by the energy in statistical problems is replaced by the volume for athermal grains. We present experimental results on the compaction of a granular pile immersed in a viscous fluid when submited to a continuous or bursting upward flow. An initial fluidized bed leads to a well reproduced initial loose packing by the settling of grains when the high enough continuous upward flow is turned off. When the upward flow is then turned on again, we record the dynamical evolution of the bed packing. For a low enough continuous upward flow, below the critical velocity of fluidization, a slow compaction dynamics is observed. Strikingly, a slow compaction can be also observed in the case of "fluidization taps" with bursts of fluid velocity higher than the critical fluidization velocity. The different compaction dynamics is discussed when varying the different control parameters of these "fluidization taps".

  10. Compact, Integrated Photoelectron Linacs

    NASA Astrophysics Data System (ADS)

    Yu, David

    2000-12-01

    The innovative compact high energy iniector which has been developed by DULY Research Inc., will have wide scientific industrial and medical applications. The new photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injector and the linac. By focusing the beam with solenoid or permanent magnets, and producing high current with low emittance, extremely high brightness is achieved. In addition to providing a small footprint and improved beam quality in an integrated structure, the compact system considerably simplifies external subsystems required to operate the photoelectron linac, including rf power transport, beam focusing, vacuum and cooling. The photoelectron linac employs an innovative Plane-Wave-Transformer (PWT) design, which provides strong cell-to-cell coupling, relaxes manufacturing tolerance and facilitates the attachment of external ports to the compact structure with minimal field interference. DULY Research Inc. under the support of the DOE Small Business Innovation Research (SBIR) program, has developed, constructed and installed a 20-MeV, S-band compact electron source at UCLA. DULY Research is also presently engaged in the development of an X-band photoelectron linear accelerator in another SBIR project. The higher frequency structure when completed will be approximately three times smaller, and capable of a beam brightness ten times higher than the S-band structure.

  11. Compact optical transconductance varistor

    SciTech Connect

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  12. Compact Solar Camera.

    ERIC Educational Resources Information Center

    Juergens, Albert

    1980-01-01

    Describes a compact solar camera built as a one-semester student project. This camera is used for taking pictures of the sun and moon and for direct observation of the image of the sun on a screen. (Author/HM)

  13. Compact Pinch Welder

    NASA Technical Reports Server (NTRS)

    Starck, Thomas F.; Brennan, Andrew D.

    1990-01-01

    Compact resistance-welding pinch gun lets one operator do jobs formerly needing two workers. Light in weight and produces repeatable, high-quality weld joints. Welding-electrode head rotates for easy positioning. Lever at top of handle activates spring to pinch electrodes together at preset welding force. Button at bottom of handle activates welding current. Cables supply electrical power.

  14. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  15. Limestone compaction: an enigma

    USGS Publications Warehouse

    Shinn, Eugene A.; Halley, Robert B.; Hudson, J. Harold; Lidz, Barbara H.

    1977-01-01

    Compression of an undisturbed carbonate sediment core under a pressure of 556 kg/cm2 produced a “rock” with sedimentary structures similar to typical ancient fine-grained limestones. Surprisingly, shells, foraminifera, and other fossils were not noticeably crushed, which indicates that absence of crushed fossils in ancient limestones can no longer be considered evidence that limestones do not compact.

  16. Optical angular momentum in classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2017-06-01

    Invoking Maxwell’s classical equations in conjunction with expressions for the electromagnetic (EM) energy, momentum, force, and torque, we use a few simple examples to demonstrate the nature of the EM angular momentum. The energy and the angular momentum of an EM field will be shown to have an intimate relationship; a source radiating EM angular momentum will, of necessity, pick up an equal but opposite amount of mechanical angular momentum; and the spin and orbital angular momenta of the EM field, when absorbed by a small particle, will be seen to elicit different responses from the particle.

  17. Confining potential in momentum space

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Kahana, David E.; Maung, Khin Maung

    1992-01-01

    A method is presented for the solution in momentum space of the bound state problem with a linear potential in r space. The potential is unbounded at large r leading to a singularity at small q. The singularity is integrable, when regulated by exponentially screening the r-space potential, and is removed by a subtraction technique. The limit of zero screening is taken analytically, and the numerical solution of the subtracted integral equation gives eigenvalues and wave functions in good agreement with position space calculations.

  18. Plate tectonics conserves angular momentum

    NASA Astrophysics Data System (ADS)

    Bowin, C.

    2009-03-01

    A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm2s-1). Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates). Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth). The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive features, and fracture zones (and wedge-shaped sites

  19. Momentum deficit in quantum glasses

    SciTech Connect

    Andreev, A. F.

    2009-07-15

    Using the concept of tunneling two-level systems, we explain the reduction of rotational inertia of disordered solid {sup 4}He observed in the torsional oscillator experiments. The key point is a peculiar quantum phenomenon of momentum deficit for two-level systems in moving solids. We show that an unusual state that is essentially different from both normal and superfluid solid states can be realized in quantum glasses. This state is characterized by reduced rotational inertia in oscillator experiments, by the absence of a superflow, and by the normal behavior in steady rotation.

  20. Compact chopper spectrometers for pulsed sources

    NASA Astrophysics Data System (ADS)

    Voigt, J.; Violini, N.; Schweika, W.

    2016-09-01

    We report on the opportunities for direct geometry chopper spectrometers (DGCS) by polychromatic illumination of the sample. At pulsed sources the use of multiple initial neutron energies appears naturally, if the repetition rate of chopper in front of the sample is larger than the repetition rate of the source. As a consequence, a large part of the spectrum is measured redundantly with variable energy and momentum transfer resolution. This can be used to optimize a chopper instrument for deep inelastic scattering, relaxing the requirements on the pulse length, by which the sample is illuminated, and on the secondary flight path, while the width of the spectral distribution must be narrowed down. This can open the path to new types of compact direct geometry chopper spectrometers, which need comparably small areas of detector coverage and allow very high repetition rates to provide a high intensity even if sample size and divergence distributions are limited.

  1. Simplified Generation of High-Angular-Momentum Light Beams

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Strekalov, Dmitry; Grudinin, Ivan

    2007-01-01

    A simplified method of generating a beam of light having a relatively high value of angular momentum (see figure) involves the use of a compact apparatus consisting mainly of a laser, a whispering- gallery-mode (WGM) resonator, and optical fibers. The method also can be used to generate a Bessel beam. ( Bessel beam denotes a member of a class of non-diffracting beams, so named because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have high values of angular momentum.) High-angular-momentum light beams are used in some applications in biology and nanotechnology, wherein they are known for their ability to apply torque to make microscopic objects rotate. High-angular-momentum light beams could also be used to increase bandwidths of fiber-optic communication systems. The present simplified method of generating a high-angular-momentum light beam was conceived as an alternative to prior such methods, which are complicated and require optical setups that include, variously, holograms, modulating Fabry-Perot cavities, or special microstructures. The present simplified method exploits a combination of the complex structure of the electromagnetic field inside a WGM resonator, total internal reflection in the WGM resonator, and the electromagnetic modes supported by an optical fiber. The optical fiber used to extract light from the WGM resonator is made of fused quartz. The output end of this fiber is polished flat and perpendicular to the fiber axis. The input end of this fiber is cut on a slant and placed very close to the WGM resonator at an appropriate position and orientation. To excite the resonant whispering- gallery modes, light is introduced into the WGM resonator via another optical fiber that is part of a pigtailed fiber-optic coupler. Light extracted from the WGM resonator is transformed into a high-angular- momentum beam inside the extraction optical fiber and this beam is emitted from the

  2. Progress in Compact Toroid Experiments

    SciTech Connect

    Dolan, Thomas James

    2002-09-01

    The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.

  3. Compact Optical Correlators

    NASA Astrophysics Data System (ADS)

    Gregory, Don A.; Kirsch, James C.

    1989-02-01

    In the past 15 years, a dozen or so designs have been proposed for compact optical correlators. Of these, maybe one-third of them have actually been built and only a few of those tested. This paper will give an overview of some of the systems that have been built as well as mention some promising early and current designs that have not been built. The term compact, as used in the title of this paper, will be applied very loosely; to mean smaller than a laboratory size optical table. To date, only one correlator has been built and tested that actually can be called miniature. This softball size correlator was built by the Perkin-Elmer Corporation for the U. S. Army Missile Command at Redstone Arsenal, Alabama. More will be said about this correlator in following sections.

  4. Compact Spreader Schemes

    SciTech Connect

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  5. Super-Compact Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.

  6. Compact spreader schemes

    NASA Astrophysics Data System (ADS)

    Placidi, M.; Jung, J.-Y.; Ratti, A.; Sun, C.

    2014-12-01

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  7. Analysis of laboratory compaction methods of roller compacted concrete

    NASA Astrophysics Data System (ADS)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  8. Compact Torsatron configurations

    SciTech Connect

    Carreras, B. A.; Dominguez, N.; Garcia, L.; Lynch, V. E.; Lyon, J. F.; Cary, J. R.; Hanson, J. D.; Navarro, A. P.

    1987-09-01

    Low-aspect-ratio stellarator configurations can be realized by using torsatron winding. Plasmas with aspect ratios in the range of 3.5 to 5 can be confined by these Compact Torsatron configurations. Stable operation at high BETA should be possible in these devices, if a vertical field coil system is adequately designed to avoid breaking of the magnetic surfaces at finite BETA. 17 refs., 21 figs., 1 tab.

  9. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  10. Compact optical isolator.

    PubMed

    Sansalone, F J

    1971-10-01

    This paper describes a compact Faraday rotation isolator using terbium aluminum garnet (TAG) as the Faraday rotation material and small high field permanent magnets made of copper-rare earth alloys. The nominal isolation is 26 dB with a 0.4-dB forward loss. The present isolator can be adjusted to provide effective isolation from 4880 A to 5145 A. Details of the design, fabrication, and performance of the isolator are presented.

  11. Compact Pinch Welder

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Thomas, Clark S.

    1991-01-01

    Spot welder designed for bonding insulated metal strips together. Compact, measuring only about 33.5 cm in its largest linear dimension. Pinch welder clamps electrodes on weldments with strong, repeatable force. Compressed air supplied through fitting on one handle. Small switch on same handle starts welding process when operator presses it with trigger. Provides higher, more repeatable clamping force than manually driven gun and thus produces weld joints of higher quality. Light in weight and therefore positioned precisely by operator.

  12. Gravitational radiation from a spinning compact object around a supermassive Kerr black hole in circular orbit

    SciTech Connect

    Han Wenbiao

    2010-10-15

    The gravitational waves and energy radiation from a spinning compact object with stellar mass in a circular orbit in the equatorial plane of a supermassive Kerr black hole are investigated in this paper. The effect of how the spin acts on energy and angular moment fluxes is discussed in detail. The calculation results indicate that the spin of a small body should be considered in waveform-template production for the upcoming gravitational wave detections. It is clear that when the direction of spin axes is the same as the orbitally angular momentum ('positive' spin), spin can decrease the energy fluxes which radiate to infinity. For antidirection spin ('negative'), the energy fluxes to infinity can be enlarged. And the relations between fluxes (both infinity and horizon) and spin look like quadratic functions. From frequency shift due to spin, we estimate the wave-phase accumulation during the inspiraling process of the particle. We find that the time of particle inspiral into the black hole is longer for positive spin and shorter for negative compared with the nonspinning particle. Especially, for extreme spin value, the energy radiation near the horizon of the extreme Kerr black hole is much more than that for the nonspinning one. And consequently, the maximum binging energy of the extreme spinning particle is much larger than that of the nonspinning particle.

  13. Psychological Momentum During and Across Sports Matches: Evidence for Interconnected Time Scales.

    PubMed

    Den Hartigh, Ruud J; Van Geert, Paul L; Van Yperen, Nico W; Cox, Ralf F; Gernigon, Christophe

    2016-02-01

    This study on psychological momentum (PM) in sports provides the first experimental test of an interconnection between short-term PM (during a match) and long-term PM (across a series of matches). Twenty-two competitive athletes were striving to win a prize during a rowing-ergometer tournament, consisting of manipulated races. As hypothesized, athletes who had developed long-term positive PM after two successful races were less sensitive to a negative momentum scenario in the third race, compared with athletes who had developed long-term negative PM after two unsuccessful races. More specifically, the exerted efforts, perceptions of momentum, and self-efficacy were higher for participants who had developed long-term positive PM, and their perceptions of momentum and self-efficacy decreased less rapidly. These results illustrate a typical complex dynamical systems property, namely interconnected time scales, and provide deeper insights into the dynamical nature of PM.

  14. Polymer quantum effects on compact stars models

    NASA Astrophysics Data System (ADS)

    Chacón-Acosta, Guillermo; Hernandez-Hernandez, Héctor H.

    2015-03-01

    In this work we study a completely degenerate Fermi gas at zero temperature by a semiclassical approximation for a Hamiltonian that arises in polymer quantum mechanics. Polymer quantum systems are quantum mechanical models quantized in a similar way as in loop quantum gravity, allowing the study of the discreteness of space and other features of the loop quantization in a simplified way. We obtain the polymer modified thermodynamical properties for this system by noticing that the corresponding Fermi energy is exactly the same as if one directly polymerizes the momentum pF. We also obtain the expansion of the corresponding thermodynamical variables in terms of small values of the polymer length scale λ. We apply these results to study a simple model of a compact one-dimensional star where the gravitational collapse is supported by electron degeneracy pressure. As a consequence, polymer corrections to the mass of the object are found. By using bounds for the polymer length found in Bose-Einstein condensates experiments we compute the modification in the mass of the compact object due to polymer effects of order 10-8. This result is similar to the other order found by different approaches such as generalized uncertainty principle (GUP), and that certainly is within the error reported in typical measurements of white dwarf masses.

  15. Tidal deformations of a spinning compact object

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2015-07-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  16. Electromagnetic energy momentum in dispersive media

    SciTech Connect

    Philbin, T. G.

    2011-01-15

    The standard derivations of electromagnetic energy and momentum in media take Maxwell's equations as the starting point. It is well known that for dispersive media this approach does not directly yield exact expressions for the energy and momentum densities. Although Maxwell's equations fully describe electromagnetic fields, the general approach to conserved quantities in field theory is not based on the field equations, but rather on the action. Here an action principle for macroscopic electromagnetism in dispersive, lossless media is used to derive the exact conserved energy-momentum tensor. The time-averaged energy density reduces to Brillouin's simple formula when the fields are monochromatic. The time-averaged momentum density for monochromatic fields corresponds to the familiar Minkowski expression DxB, but for general fields in dispersive media the momentum density does not have the Minkowski value. The results are unaffected by the debate over momentum balance in light-matter interactions.

  17. Coulomb wave functions in momentum space

    SciTech Connect

    Eremenko, V.; Upadhyay, N. J.; Thompson, I. J.; Elster, Ch.; Nunes, F. M.; Arbanas, G.; Escher, J. E.; Hlophe, L.

    2015-10-15

    We present an algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space. The arguments are the Sommerfeld parameter η, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p → q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical bar in the range of 10-1 to 10, and thus is particularly suited for momentum space calculations of nuclear reactions.

  18. Coulomb wave functions in momentum space

    DOE PAGES

    Eremenko, V.; Upadhyay, N. J.; Thompson, I. J.; ...

    2015-10-15

    We present an algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space. The arguments are the Sommerfeld parameter η, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p → q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical barmore » in the range of 10-1 to 10, and thus is particularly suited for momentum space calculations of nuclear reactions.« less

  19. Momentum and Hamiltonian in Complex Action Theory

    NASA Astrophysics Data System (ADS)

    Nagao, Keiichi; Nielsen, Holger Bech

    In the complex action theory (CAT) we explicitly examine how the momentum and Hamiltonian are defined from the Feynman path integral (FPI) point of view based on the complex coordinate formalism of our foregoing paper. After reviewing the formalism briefly, we describe in FPI with a Lagrangian the time development of a ξ-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator. Solving this eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led to the momentum relation again via the saddle point for p. This study confirms that the momentum and Hamiltonian in the CAT have the same forms as those in the real action theory. We also show the third derivation of the momentum relation via the saddle point for q.

  20. Wave function for spontaneous parametric down-conversion with orbital angular momentum

    SciTech Connect

    Barbosa, Geraldo A.

    2009-12-15

    Several wave-function approximations describing spontaneous parametric down-conversion can be found in the literature. Basically all cases are derived from the standard Hamiltonian for parametric down-conversion. Most frequently, particular cases describing collinear or paraxial approximations are described. This work presents a wave function in compact form, valid for all cases of single photon-pair conversion (Type I or Type II), for all angles allowed by the phase-matching conditions and for all orbital angular momentum values l. Examples are given of coincidence structures to be expected for signal and idler photons. Partial transfer of orbital angular momentum from the pump laser to the photon pair is discussed. Some hypothesis for the decay channels of the nontransferred part of the orbital angular momentum is made.

  1. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  2. Generalized Uncertainty Principle and angular momentum

    NASA Astrophysics Data System (ADS)

    Bosso, Pasquale; Das, Saurya

    2017-08-01

    Various models of quantum gravity suggest a modification of the Heisenberg's Uncertainty Principle, to the so-called Generalized Uncertainty Principle, between position and momentum. In this work we show how this modification influences the theory of angular momentum in Quantum Mechanics. In particular, we compute Planck scale corrections to angular momentum eigenvalues, the hydrogen atom spectrum, the Stern-Gerlach experiment and the Clebsch-Gordan coefficients. We also examine effects of the Generalized Uncertainty Principle on multi-particle systems.

  3. Chirality and the angular momentum of light.

    PubMed

    Cameron, Robert P; Götte, Jörg B; Barnett, Stephen M; Yao, Alison M

    2017-02-28

    Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light-matter interactions.This article is part of the themed issue 'Optical orbital angular momentum'.

  4. Chirality and the angular momentum of light

    NASA Astrophysics Data System (ADS)

    Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.; Yao, Alison M.

    2017-02-01

    Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light-matter interactions. This article is part of the themed issue 'Optical orbital angular momentum'.

  5. Orbital angular momentum in phase space

    SciTech Connect

    Rigas, I.; Sanchez-Soto, L.L.; Klimov, A.B.; Rehacek, J.; Hradil, Z.

    2011-02-15

    Research Highlights: > We propose a comprehensive Weyl-Wigner formalism for the canonical pair angle-angular momentum. > We present a simple and useful toolkit for the practitioner. > We derive simple evolution equations in terms of a star product in the semiclassical limit. - Abstract: A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.

  6. Anti-de Sitter momentum space

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Gubitosi, Giulia; Magueijo, João; Amelino-Camelia, Giovanni

    2015-07-01

    We investigate the anti-de Sitter (AdS) counterpart to the well-studied de Sitter (dS) model for energy-momentum space, viz "κ -momentum space" space (with a structure based on the properties of the κ -Poincaré Hopf algebra). On the basis of previous preliminary results one might expect the two models to be complementary: dS exhibiting an invariant maximal spatial momentum but unbounded energy, AdS a maximal energy but unbounded momentum. If that were the case AdS momentum space could be used to implement a principle of maximal Planck-scale energy, just as several studies use dS momentum space to postulate of maximal Planck-scale spatial momentum. However, several unexpected features are uncovered in this paper, which limit the scope of the expected complementarity, and interestingly they take different forms in different coordinatizations of AdS momentum space. "Cosmological" AdS coordinates mimic the dS construction used for κ -momentum space, and produce a Carrol limit in the ultraviolet. However, unlike the κ -momentum space, the boundary of the covered patch breaks Lorentz invariance, thereby introducing a preferred frame. In "horospherical" coordinates we achieve full consistency with frame independence as far as boost transformations are concerned, but find that rotational symmetry is broken, leading to an anisotropic model for the speed of light. Finally, in "static" coordinates we find a way of deforming relativistic transformations that successfully enforces frame invariance and isotropy, and produces a Carrol limit in the ultraviolet. Our results are also relevant for a long-standing debate on whether or not coordinate redefinitions in momentum space lead to physically equivalent theories: our three proposals are evidently physically inequivalent, leading to alternative models of Planck-scale effects. As a corollary we study the UV running of the Hausdorff dimension of momentum space in the first and third model, obtaining different results.

  7. Momentum management strategy during Space Station buildup

    NASA Technical Reports Server (NTRS)

    Bishop, Lynda; Malchow, Harvey; Hattis, Philip

    1988-01-01

    The use of momentum storage devices to control effectors for Space Station attitude control throughout the buildup sequence is discussed. Particular attention is given to the problem of providing satisfactory management of momentum storage effectors throughout buildup while experiencing variable torque loading. Continuous and discrete control strategies are compared and the effects of alternative control moment gyro strategies on peak momentum storage requirements and on commanded maneuver characteristics are described.

  8. Plate tectonics conserves angular momentum

    NASA Astrophysics Data System (ADS)

    Bowin, C.

    2010-03-01

    A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4+27 kg m2 s-1). Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates). Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies revealed by geoid anomalies of the degree 4-10 packet of the Earth's spherical harmonic coefficients. These linear positive geoid anomalies underlie plate subduction zones and are presumed due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth). The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant

  9. Mood as Representation of Momentum

    PubMed Central

    Eldar, Eran; Rutledge, Robb B.; Dolan, Raymond J.; Niv, Yael

    2016-01-01

    Experiences affect mood, which in turn affects subsequent experiences. Recent studies suggest two specific principles. First, mood depends on how recent reward outcomes differ from expectations. Second, mood biases the way we perceive outcomes (e.g., rewards), and this bias affects learning about those outcomes. We propose that this two-way interaction serves to mitigate inefficiencies in the application of reinforcement learning to real-world problems. Specifically, we propose that mood represents the overall momentum of recent outcomes, and its biasing influence on the perception of outcomes ‘corrects’ learning to account for environmental dependencies. We describe potential dysfunctions of this adaptive mechanism that might contribute to the symptoms of mood disorders. PMID:26545853

  10. Representational momentum in older adults.

    PubMed

    Piotrowski, Andrea S; Jakobson, Lorna S

    2011-10-01

    Humans have a tendency to perceive motion even in static images that simply "imply" movement. This tendency is so strong that our memory for actions depicted in static images is distorted in the direction of implied motion - a phenomenon known as representational momentum (RM). In the present study, we created an RM display depicting a pattern of implied (clockwise) rotation of a rectangle. Young adults viewers' memory of the final position of the test rectangle was biased in the direction of continuing rotation, but older adults did not show a similar memory bias. We discuss several possible explanations for this group difference, but argue that the failure of older adults to shown an RM effect most likely reflects age-related changes in areas of the brain involved in processing real and implied motion. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. GPDs and Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Burkardt, Matthias

    2017-05-01

    Generalized Parton Distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark Orbital Angular Momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs. In the context of the scalar diquark model we demonstrate that the effect from that torque contributes at the same order as single-spin asymmetries.

  12. Phonons with orbital angular momentum

    SciTech Connect

    Ayub, M. K.; Ali, S.; Mendonca, J. T.

    2011-10-15

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  13. Quantum transport in strongly disordered crystals: Electrical conductivity with large negative vertex corrections

    NASA Astrophysics Data System (ADS)

    Janiš, Václav; Pokorný, Vladislav

    2012-12-01

    We propose a renormalization scheme of the Kubo formula for the electrical conductivity with multiple backscatterings contributing to the electron-hole irreducible vertex derived from the asymptotic limit to high spatial dimensions. We use this vertex to represent the two-particle Green function via a symmetrized Bethe-Salpeter equation in momentum space. We further utilize the dominance of a pole in the irreducible vertex to an approximate diagonalization of the Bethe-Salpeter equation and a non-perturbative representation of the electron-hole correlation function. The latter function is then used to derive a compact representation for the electrical conductivity at zero temperature without the necessity to evaluate separately the Drude term and vertex corrections. The electrical conductivity calculated in this way remains nonnegative also in the strongly disordered regime where the localization effects become significant and the negative vertex corrections in the standard Kubo formula overweight the Drude term.

  14. Hollow ballistic pendulum for plasma momentum measurements

    SciTech Connect

    Goncharov, S.F.; Pashinin, P.P.; Perov, V.Y.; Serov, R.V.; Yanovsky, V.P.

    1988-05-01

    A novel pendulum design: hollow ballistic pendulum: is suggested for plasma momentum measurements. It has an advantage over the pendula used earlier in laser plasma experiments of being insensitive to a momentum of matter evaporated and scattered by the pendulum wall exposed to the plasma, which usually exceeds plasma momentum to be measured. Simple expressions describing pendulum performance are derived, and requirements of shape and size are established. Using this kind of pendulum in experiments on laser acceleration of thin foils made it possible to measure the momentum of accelerated foil with an accuracy of about 10%.

  15. The Angular Momentum of the Solar System

    NASA Astrophysics Data System (ADS)

    Cang, Rongquin; Guo, Jianpo; Hu, Juanxiu; He, Chaoquiong

    2016-05-01

    The angular momentum of the Solar System is a very important physical quantity to the formation and evolution of the Solar System. Previously, the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets were only taken into consideration, when researchers calculated the angular momentum of the Solar System. Nowadays, it seems narrow and conservative. Using Eggleton's code, we calculate the rotational inertia of the Sun. Furthermore, we obtain that the spin angular momentum of the Sun is 1.8838 x 10^41 kg m^2 s^-1. Besides the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets, we also account for the orbital angular momentum of the Asteroid Belt, the Kuiper Belt, the Oort Cloud, the Ninth Giant Planet and the Solar Companion. We obtain that the angular momentum of the whole Solar System is 3.3212 x 10^45 kg m^2 s^-1.

  16. Momentum harvesting techniques for solar system travel

    NASA Technical Reports Server (NTRS)

    Willoughby, Alan J.

    1990-01-01

    Astronomers are lately estimating there are 400,000 Earth visiting asteroids larger than 100 meters in diameter. These asteroids are accessible sources of building materials, propellants, oxygen, water, and minerals which also constitute a huge momentum reserve, potentially usable for travel throughout the solar system. To use this momentum, these stealthy objects must be tracked and the extraction of the momentum wanted must be learned. Momentum harvesting by momentum transfer from asteroid to spacecraft, and by using the momentum of the extraterrestrial material to help deliver itself to the destination are discussed. A net and tether concept is the suggested means of asteroid capture, the basic momentum exchange process. The energy damping characteristics of the tether will determine the velocity mismatch that can be tolerated, and hence the amount of momentum that can be harvested per capture. As it plays out of its reel, drag on the tether steadily accelerates the spacecraft. A variety of concepts for riding and using the asteroid after capture are discussed. The hitchhiker uses momentum transfer only. The beachcomber, the caveman, the swinger, the prospector, and the rock wrecker also take advantage of raw asteroidal materials. The chemist and the hijacker go further, they process the asteroid into propellant. Or, an 'asteroid railway system' could evolve with each hijacked asteroid becoming a scheduled train. Travelers could board the space railway system assured that water, oxygen, and propellants await them.

  17. Detection of orbital angular momentum using a photonic integrated circuit.

    PubMed

    Rui, Guanghao; Gu, Bing; Cui, Yiping; Zhan, Qiwen

    2016-06-20

    Orbital angular momentum (OAM) state of photons offer an attractive additional degree of freedom that has found a variety of applications. Measurement of OAM state, which is a critical task of these applications, demands photonic integrated devices for improved fidelity, miniaturization, and reconfiguration. Here we report the design of a silicon-integrated OAM receiver that is capable of detecting distinct and variable OAM states. Furthermore, the reconfiguration capability of the detector is achieved by applying voltage to the GeSe film to form gratings with alternate states. The resonant wavelength for arbitrary OAM state is demonstrated to be tunable in a quasi-linear manner through adjusting the duty cycle of the gratings. This work provides a viable approach for the realization of a compact integrated OAM detection device with enhanced functionality that may find important applications in optical communications and information processing with OAM states.

  18. Detection of orbital angular momentum using a photonic integrated circuit

    PubMed Central

    Rui, Guanghao; Gu, Bing; Cui, Yiping; Zhan, Qiwen

    2016-01-01

    Orbital angular momentum (OAM) state of photons offer an attractive additional degree of freedom that has found a variety of applications. Measurement of OAM state, which is a critical task of these applications, demands photonic integrated devices for improved fidelity, miniaturization, and reconfiguration. Here we report the design of a silicon-integrated OAM receiver that is capable of detecting distinct and variable OAM states. Furthermore, the reconfiguration capability of the detector is achieved by applying voltage to the GeSe film to form gratings with alternate states. The resonant wavelength for arbitrary OAM state is demonstrated to be tunable in a quasi-linear manner through adjusting the duty cycle of the gratings. This work provides a viable approach for the realization of a compact integrated OAM detection device with enhanced functionality that may find important applications in optical communications and information processing with OAM states. PMID:27321916

  19. Thai Negation.

    ERIC Educational Resources Information Center

    Alam, Samsul

    A study analyzed the structure of negative sentences in the Thai language, based on data gathered from two native speakers. It is shown that the Thai negative marker generally occurs between the noun phrase (subject) and the verb phrase in simple active sentences and in passive sentences. Negation of noun phrases is also allowed in Thai, with a…

  20. Compact gate valve

    DOEpatents

    Bobo, Gerald E.

    1977-01-01

    This invention relates to a double-disc gate valve which is compact, comparatively simple to construct, and capable of maintaining high closing pressures on the valve discs with low frictional forces. The valve casing includes axially aligned ports. Mounted in the casing is a sealed chamber which is pivotable transversely of the axis of the ports. The chamber contains the levers for moving the valve discs axially, and an actuator for the levers. When an external drive means pivots the chamber to a position where the discs are between the ports and axially aligned therewith, the actuator for the levers is energized to move the discs into sealing engagement with the ports.

  1. COMPACT CASCADE IMPACTS

    DOEpatents

    Lippmann, M.

    1964-04-01

    A cascade particle impactor capable of collecting particles and distributing them according to size is described. In addition the device is capable of collecting on a pair of slides a series of different samples so that less time is required for the changing of slides. Other features of the device are its compactness and its ruggedness making it useful under field conditions. Essentially the unit consists of a main body with a series of transverse jets discharging on a pair of parallel, spaced glass plates. The plates are capable of being moved incremental in steps to obtain the multiple samples. (AEC)

  2. [Non-compaction cardiomyopathy].

    PubMed

    Wieneke, Heinrich; Neumann, Till; Breuckmann, Frank; Hunold, Peter; Fries, Jochen W U; Dirsch, Olaf; Erbel, Raimund

    2005-09-01

    Isolated non-compaction of the ventricular myocardium (INVM), also known as left ventricular hypertrabeculation or spongy myocardium, belongs to the "unclassified" cardiomyopathies according to the World Health Organization. The main characteristic of this entity is a prominent trabeculation of the left ventricle with deep intertrabecular recesses communicating with the ventricular cavity. The pathomechanism of INVM is thought to be an arrest in cardiac myogenesis with persistence of embryonic myocardial morphology. The most frequent clinical manifestations include congestive heart failure, ventricular arrhythmias and systemic thromboembolic events. The therapy of INVM comprises standard medical therapy for heart failure.

  3. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  4. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  5. Oil shale compaction experimental results

    SciTech Connect

    Fahy, L.J.

    1985-11-01

    Oil shale compaction reduces the void volume available for gas flow in vertical modified in situ (VMIS) retorts. The mechanical forces caused by the weight of the overlying shale can equal 700 kPa near the bottom of commercial retorts. Clear evidence of shale compaction was revealed during postburn investigation of the Rio Blanco retorts at the C-a lease tract in Colorado. Western Research Institute conducted nine laboratory experiments to measure the compaction of Green River oil shale rubble during retorting. The objectives of these experiments were (1) to determine the effects of particle size, (2) to measure the compaction of different shale grades with 12 to 25 percent void volume and (3) to study the effects of heating rate on compaction. The compaction recorded in these experiments can be separated into the compaction that occurred during retorting and the compaction that occurred as the retort cooled down. The leaner oil shale charges compacted about 3 to 4 percent of the bed height at the end of retorting regardless of the void volume or heating rate. The richer shale charges compacted by 6.6 to 22.9 percent of the bed height depending on the shale grade and void volume used. Additional compaction of approximately 1.5 to 4.3 percent of the bed height was measured as the oil shale charges cooled down. Compaction increased with an increase in void volume for oil shale grades greater than 125 l/Mg. The particle size of the oil shale brick and the heating rate did not have a significant effect on the amount of compaction measured. Kerogen decomposition is a major factor in the compaction process. The compaction may be influenced by the bitumen intermediate acting as a lubricant, causing compaction to occur over a narrow temperature range between 315 and 430/sup 0/C. While the majority of the compaction occurs early in the retorting phase, mineral carbonate decomposition may also increase the amount of compaction. 14 refs., 12 figs., 4 tabs.

  6. Quark Helicity Distributions at Large Longitudinal Momentum Fraction

    SciTech Connect

    Harutyun Avakian; Stanley Brodsky; Alexandre Deur; Feng Yuan

    2007-08-01

    We study the quark helicity distributions at large $x$ in perturbative QCD, taking into account contributions from the valence Fock states of the nucleon which have nonzero orbital angular momentum. These states are necessary to have a nonzero anomalous magnetic moment. We find that the quark orbital angular momentum contributes a large logarithm to the negative helicity quark distribution in addition to its power behavior, scaling as $(1-x)^5\\log^2(1-x)$ in the limit of $x\\to 1$. Our analysis show that the ratio of the polarized over unpolarized down quark distributions, $\\Delta d/d$, will still approach 1 in this limit. By comparing with the current experimental data, we find that this ratio will cross zero at $x\\approx 0.75$.

  7. Momentum harvesting techniques for solar system travel

    NASA Technical Reports Server (NTRS)

    Willoughby, Alan J.

    1991-01-01

    Astronomers are lately estimating there are 400,000 earth visiting asteroids larger than 100 meters in diameter. These asteroids are uniquely accessible sources of building materials, propellants, oxygen, water, and minerals. They also constitute a huge momentum reserve, potentially usable for travel throughout the solar system. To use this momentum, these stealthy objects must be tracked and the ability to extract the desired momentum obtained. Momentum harvesting by momentum transfer from asteroid to spacecraft, and by using the momentum of the extraterrestrial material to help deliver itself to its destination is discussed. The purpose is neither to quantify nor justify the momentum exchange processes, but to stimulate collective imaginations with some intriguing possibilities which emerge when momentum as well as material is considered. A net and tether concept is the suggested means of asteroid capture, the basic momentum exchange process. The energy damping characteristics of the tether determines the velocity mismatch that can be tolerated, and hence the amount of momentum that can be harvested per capture. As the tether plays out of its reel, drag on the tether steadily accelerates the spacecraft and dilutes, in time, the would-be collision. A variety of concepts for riding and using asteroids after capture are introduced. The hitchhiker uses momentum transfer only. The beachcomber, the caveman, the swinger, the prospector, and the rock wrecker also take advantage of raw asteroid materials. The chemist and the hijacker go further, they process the asteroid into propellants. Or, an asteroid railway system could be constructed with each hijacked asteroid becoming a scheduled train. Travelers could board this space railway system assured that water, oxygen propellants, and shielding await them. Austere space travel could give way to comforts, with a speed and economy impossible without nature's gift of earth visiting asteroids.

  8. Momentum harvesting techniques for solar system travel

    NASA Technical Reports Server (NTRS)

    Willoughby, Alan J.

    1991-01-01

    Astronomers are lately estimating there are 400,000 earth visiting asteroids larger than 100 meters in diameter. These asteroids are uniquely accessible sources of building materials, propellants, oxygen, water, and minerals. They also constitute a huge momentum reserve, potentially usable for travel throughout the solar system. To use this momentum, these stealthy objects must be tracked and the ability to extract the desired momentum obtained. Momentum harvesting by momentum transfer from asteroid to spacecraft, and by using the momentum of the extraterrestrial material to help deliver itself to its destination is discussed. The purpose is neither to quantify nor justify the momentum exchange processes, but to stimulate collective imaginations with some intriguing possibilities which emerge when momentum as well as material is considered. A net and tether concept is the suggested means of asteroid capture, the basic momentum exchange process. The energy damping characteristics of the tether determines the velocity mismatch that can be tolerated, and hence the amount of momentum that can be harvested per capture. As the tether plays out of its reel, drag on the tether steadily accelerates the spacecraft and dilutes, in time, the would-be collision. A variety of concepts for riding and using asteroids after capture are introduced. The hitchhiker uses momentum transfer only. The beachcomber, the caveman, the swinger, the prospector, and the rock wrecker also take advantage of raw asteroid materials. The chemist and the hijacker go further, they process the asteroid into propellants. Or, an asteroid railway system could be constructed with each hijacked asteroid becoming a scheduled train. Travelers could board this space railway system assured that water, oxygen propellants, and shielding await them. Austere space travel could give way to comforts, with a speed and economy impossible without nature's gift of earth visiting asteroids.

  9. Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles.

    PubMed

    Alabastri, Alessandro; Yang, Xiao; Manjavacas, Alejandro; Everitt, Henry O; Nordlander, Peter

    2016-04-26

    The intense local field induced near metallic nanostructures provides strong enhancements for surface-enhanced spectroscopies, a major focus of plasmonics research over the past decade. Here we consider that plasmonic nanoparticles can also induce remarkably large electromagnetic field gradients near their surfaces. Sizeable field gradients can excite dipole-forbidden transitions in nearby atoms or molecules and provide unique spectroscopic fingerprinting for chemical and bimolecular sensing. Specifically, we investigate how the local field gradients near metallic nanostructures depend on geometry, polarization, and wavelength. We introduce the concept of the local angular momentum (LAM) vector as a useful figure of merit for the design of nanostructures that provide large field gradients. This quantity, based on integrated fields rather than field gradients, is particularly well-suited for optimization using numerical grid-based full wave electromagnetic simulations. The LAM vector has a more compact structure than the gradient matrix and can be straightforwardly associated with the angular momentum of the electromagnetic field incident on the plasmonic structures.

  10. Scalable Nonlinear Compact Schemes

    SciTech Connect

    Ghosh, Debojyoti; Constantinescu, Emil M.; Brown, Jed

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  11. Compaction of Titanium Powders

    SciTech Connect

    Gerdemann, Stephen,J; Jablonski, Paul, J

    2011-05-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines<150 {micro}m,<75 {micro}m, and<45 {micro}m; two different sizes of a hydride-dehydride [HDH]<75 {micro}m and<45 {micro}m; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  12. Lacunarity for compact groups.

    PubMed

    Edwards, R E; Hewitt, E; Ross, K A

    1971-01-01

    Let G be a compact Abelian group with character group X. A subset Delta of X is called a [unk](q) set (1 < q < infinity) if for all trigonometric polynomials f = [unk](k=1) (n) alpha(k)chi(k) (chi(1),...,chi(n) [unk] Delta) an inequality parallelf parallel(q) [unk] [unk] parallelf parallel(1) obtains, where [unk] is a positive constant depending only on Delta. The subset Delta is called a Sidon set if every bounded function on Delta can be matched by a Fourier-Stieltjes transform. It is known that every Sidon set is a [unk](q) set for all q. For G = T, X = Z, Rudin (J. Math. Mech., 9, 203 (1960)) has found a set that is [unk](q) for all q but not Sidon. We extend this result to all infinite compact Abelian groups G: the character group X contains a subset Delta that is [unk](q) for all q, 1 < q < infinity, but Delta is not a Sidon set.

  13. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  14. Compact Infrasonic Windscreen

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Shams, Qamar A.; Sealey, Bradley S.; Comeaux, Toby

    2005-01-01

    A compact windscreen has been conceived for a microphone of a type used outdoors to detect atmospheric infrasound from a variety of natural and manmade sources. Wind at the microphone site contaminates received infrasonic signals (defined here as sounds having frequencies <20 Hz), because a microphone cannot distinguish between infrasonic pressures (which propagate at the speed of sound) and convective pressure fluctuations generated by wind turbulence. Hence, success in measurement of outdoor infrasound depends on effective screening of the microphone from the wind. The present compact windscreen is based on a principle: that infrasound at sufficiently large wavelength can penetrate any barrier of practical thickness. Thus, a windscreen having solid, non-porous walls can block convected pressure fluctuations from the wind while transmitting infrasonic acoustic waves. The transmission coefficient depends strongly upon the ratio between the acoustic impedance of the windscreen and that of air. Several materials have been found to have impedance ratios that render them suitable for use in constructing walls that have practical thicknesses and are capable of high transmission of infrasound. These materials (with their impedance ratios in parentheses) are polyurethane foam (222), space shuttle tile material (332), balsa (323), cedar (3,151), and pine (4,713).

  15. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  16. Relative contributions of momentum forcing and heating to high-latitude lower thermospheric winds

    NASA Astrophysics Data System (ADS)

    Kwak, Young-Sil; Richmond, Arthur D.

    2017-01-01

    We discuss the significance of potential vorticity in the thermosphere and quantify the relative contributions of momentum forcing and heating to its total time derivative in the high-latitude lower thermosphere during the southern hemisphere summertime for negative interplanetary magnetic field (IMF) Bz conditions on the basis of numerical simulations. A term analysis of the potential vorticity equation for weak or strong southward IMF (Bz = -2.0 nT or -10.0 nT) gives the following results: the ratios of the momentum forcing term to the heating term at 142, 123, and 111 km altitudes for IMF Bz = -2.0 nT are roughly 6:1, 4:1, and 2:1, respectively, indicating that the momentum forcing term makes the larger contribution to the total time derivative of the potential vorticity, although the relative contribution of the momentum forcing weakens with descending altitude. The ratios of the momentum forcing term to the heating term at 142, 123, and 111 km altitudes for IMF Bz = -10.0 nT are roughly 3:1, 2:1, and 1:1, indicating that, at higher altitudes, the momentum forcing term makes the larger contribution to the total time derivative of the potential vorticity, but the relative contributions of momentum forcing and heating are comparable at lower altitudes. A comparison of the heating term and the momentum forcing term for IMF Bz = -2.0 nT and IMF Bz = -10.0 nT conditions indicates that the heating term increases more significantly than the momentum forcing term as IMF Bz becomes more negative.

  17. The Orbital Angular Momentum Sum Rule

    NASA Astrophysics Data System (ADS)

    Aslan, Fatma; Burkardt, Matthias

    2015-10-01

    As an alternative to the Ji sum rule for the quark angular momentum, a sum rule for the quark orbital angular momentum, based on a twist-3 generalized parton distribution, has been suggested. We study the validity of this sum rule in the context of scalar Yukawa interactions as well as in QED for an electron.

  18. Orbital angular momentum: a personal memoir.

    PubMed

    Allen, L

    2017-02-28

    A definitive statement of the model used to describe orbital angular momentum is essentially now available. Its early history, and the interaction of those who played key roles in its development over 20 years ago in its development, is outlined in this Memoir.This article is part of the themed issue 'Optical orbital angular momentum'.

  19. Representational momentum in memory for pitch.

    PubMed

    Freyd, J J; Kelly, M H; DeKay, M L

    1990-11-01

    When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.

  20. Orbital angular momentum: a personal memoir

    NASA Astrophysics Data System (ADS)

    Allen, L.

    2017-02-01

    A definitive statement of the model used to describe orbital angular momentum is essentially now available. Its early history, and the interaction of those who played key roles in its development over 20 years ago in its development, is outlined in this Memoir. This article is part of the themed issue 'Optical orbital angular momentum'.

  1. Orbital angular momentum in the nucleon

    SciTech Connect

    Garvey, Gerald T.

    2010-05-15

    Analysis of the measured value of the integrated d-bar-u-bar asymmetry (I{sub fas} = 0.147 +- 0.027) in the nucleon show it to arise from nucleon fluctuations into baryon plus pion. Requiring angular momentum conservation in these fluctuations shows the associated orbital angular momentum is equal to the value of the flavor asymmetry.

  2. Forms of momentum across space: representational, operational, and attentional.

    PubMed

    Hubbard, Timothy L

    2014-12-01

    Cognition can exhibit biases consistent with future expectations, and some of these biases result in momentum-like effects and have been linked with the idea of an internalization of the effects of momentum. These momentum-like effects include representational momentum, operational momentum, and attentional momentum. Similarities and differences between these different momentum-like effects are considered. Hubbard's (2005) review of representational momentum is updated to include studies published since that review appeared, and the first full reviews of operational momentum and attentional momentum are provided. It is suggested that (1) many variables that influence one of these momentum-like effects have a similar influence on another momentum-like effect, (2) representational momentum, operational momentum, and attentional momentum reflect similar or overlapping mechanisms, and operational momentum and attentional momentum are special cases of representational momentum, and (3) representational momentum, operational momentum, and attentional momentum reflect properties of a more general spatial representation in which change or transformation of a stimulus is mapped onto motion in a spatial coordinate system.

  3. Quantum gravity momentum representation and maximum energy

    NASA Astrophysics Data System (ADS)

    Moffat, J. W.

    2016-11-01

    We use the idea of the symmetry between the spacetime coordinates xμ and the energy-momentum pμ in quantum theory to construct a momentum space quantum gravity geometry with a metric sμν and a curvature tensor Pλ μνρ. For a closed maximally symmetric momentum space with a constant 3-curvature, the volume of the p-space admits a cutoff with an invariant maximum momentum a. A Wheeler-DeWitt-type wave equation is obtained in the momentum space representation. The vacuum energy density and the self-energy of a charged particle are shown to be finite, and modifications of the electromagnetic radiation density and the entropy density of a system of particles occur for high frequencies.

  4. The angular momentum of the Oort cloud

    SciTech Connect

    Weissman, P.R. )

    1991-01-01

    An evaluation is made of the work of Marochnik et al. (1988), which estimated that the angular momentum of the Oort cloud is 2-3 orders of magnitude greater than the planetary system's total angular momentum. It is noted that most of the angular momentum in the currently observed Oort cloud is the result of the effects of external perturbers over the solar system's history, and it is demonstrated that the total current angular momentum is probably in the 6.0 x 10 to the 50th to 1.1 x 10 to the 51st g sq cm/sec range; original angular momentum was probably a factor of 5 below such values. 21 refs.

  5. The angular momentum of the Oort cloud

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    1991-01-01

    An evaluation is made of the work of Marochnik et al. (1988), which estimated that the angular momentum of the Oort cloud is 2-3 orders of magnitude greater than the planetary system's total angular momentum. It is noted that most of the angular momentum in the currently observed Oort cloud is the result of the effects of external perturbers over the solar system's history, and it is demonstrated that the total current angular momentum is probably in the 6.0 x 10 to the 50th to 1.1 x 10 to the 51st g sq cm/sec range; original angular momentum was probably a factor of 5 below such values.

  6. Population momentum across vertebrate life histories

    USGS Publications Warehouse

    Koons, D.N.; Grand, J.B.; Arnold, J.M.

    2006-01-01

    Population abundance is critically important in conservation, management, and demographic theory. Thus, to better understand how perturbations to the life history affect long-term population size, we examined population momentum for four vertebrate classes with different life history strategies. In a series of demographic experiments we show that population momentum generally has a larger effect on long-term population size for organisms with long generation times than for organisms with short generation times. However, patterns between population momentum and generation time varied across taxonomic groups and according to the life history parameter that was changed. Our findings indicate that momentum may be an especially important aspect of population dynamics for long-lived vertebrates, and deserves greater attention in life history studies. Further, we discuss the importance of population momentum in natural resource management, pest control, and conservation arenas. ?? 2006 Elsevier B.V. All rights reserved.

  7. Extraordinary momentum and spin in evanescent waves.

    PubMed

    Bliokh, Konstantin Y; Bekshaev, Aleksandr Y; Nori, Franco

    2014-03-06

    Momentum and spin represent fundamental dynamic properties of quantum particles and fields. In particular, propagating optical waves (photons) carry momentum and longitudinal spin determined by the wave vector and circular polarization, respectively. Here we show that exactly the opposite can be the case for evanescent optical waves. A single evanescent wave possesses a spin component, which is independent of the polarization and is orthogonal to the wave vector. Furthermore, such a wave carries a momentum component, which is determined by the circular polarization and is also orthogonal to the wave vector. We show that these extraordinary properties reveal a fundamental Belinfante's spin momentum, known in field theory and unobservable in propagating fields. We demonstrate that the transverse momentum and spin push and twist a probe Mie particle in an evanescent field. This allows the observation of 'impossible' properties of light and of a fundamental field-theory quantity, which was previously considered as 'virtual'.

  8. Physical angular momentum separation for QED

    NASA Astrophysics Data System (ADS)

    Sun, Weimin

    2017-04-01

    We study the non-uniqueness problem of the gauge-invariant angular momentum separation for the case of QED, which stems from the recent controversy concerning the proper definitions of the orbital angular momentum and spin operator of the individual parts of a gauge field system. For the free quantum electrodynamics without matter, we show that the basic requirement of Euclidean symmetry selects a unique physical angular momentum separation scheme from the multitude of the possible angular momentum separation schemes constructed using the various gauge-invariant extensions (GIEs). Based on these results, we propose a set of natural angular momentum separation schemes for the case of interacting QED by invoking the formalism of asymptotic fields. Some perspectives on such a problem for the case of QCD are briefly discussed.

  9. Momentum kill procedure can quickly control blowouts

    SciTech Connect

    Watson, W.D. ); Moore, P. )

    1993-08-30

    The momentum kill method can help in quickly regaining control of a blowing well, providing the blowing well rate and fluid properties can be estimated reasonably. The momentum of the kill fluid counteracts and overcomes the flowing momentum of formation fluids. In other words, sufficient mud density pumped at a sufficient rate is directed into the flow stream to force the escaping fluid column back into the well bore. Sufficient kill fluid hydrostatic pressure must be stacked'' in the hole so that the well remains dead after the operation. The momentum kill is not a panacea for all blowouts. An assessment must be made of the potential problems unique to this method, and certain requirements must be met if the technique is to be successful. The paper discusses some of the considerations for evaluating the use of the momentum kill method.

  10. The analysis of behavioral momentum

    PubMed Central

    Nevin, John A.; Mandell, Charlotte; Atak, Jean R.

    1983-01-01

    Learned behavior varies in its resistance to change, depending on the rate of reinforcement. Resistance to change may be characterized as behavioral momentum, which in turn may be analyzed into terms corresponding to mass and velocity in classical physics. Behavioral mass may be inferred from changes in response rate when experimental conditions are altered. Relevant data were obtained by training pigeons to peck a key on two-component multiple variable-interval, variable-interval schedules. Six pigeons were studied on three pairs of variable-interval schedules in all possible orders. When performance stabilized, resistance to change was assessed by arranging response-independent food during periods between components and by extinction. For each operation, the data for all schedule performances converged onto a single function, permitting estimation of the ratio of behavioral masses for each pair of schedules. The response-independent food data suggested that the ratio of behavioral masses is a power function of the ratio of reinforcement rates and that behavioral mass may be measured on a ratio scale. PMID:16812312

  11. Energy-momentum squared gravity

    NASA Astrophysics Data System (ADS)

    Roshan, Mahmood; Shojai, Fatimah

    2016-08-01

    A new covariant generalization of Einstein's general relativity is developed which allows the existence of a term proportional to Tα βTα β in the action functional of the theory (Tα β is the energy-momentum tensor). Consequently, the relevant field equations are different from general relativity only in the presence of matter sources. In the case of a charged black hole, we find exact solutions for the field equations. Applying this theory to a homogeneous and isotropic spacetime, we find that there is a maximum energy density ρmax , and correspondingly a minimum length amin , at the early Universe. This means that there is a bounce at early times, and this theory avoids the existence of an early-time singularity. Moreover, we show that this theory possesses a true sequence of cosmological eras. We also argue that, although in the context of the standard cosmological model the cosmological constant Λ does not play any important role in the early times and becomes important only after the matter-dominated era, in this theory the "repulsive" nature of the cosmological constant plays a crucial role at early times in resolving the singularity.

  12. Controlling neutron orbital angular momentum.

    PubMed

    Clark, Charles W; Barankov, Roman; Huber, Michael G; Arif, Muhammad; Cory, David G; Pushin, Dmitry A

    2015-09-24

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a 'twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies.

  13. Angular Momentum of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Butler, Kirsty M.; Obreschkow, Danail; Oh, Se-Heon

    2017-01-01

    We present measurements of baryonic mass {M}{{b}} and specific angular momentum (sAM) {j}{{b}} in 14 rotating dwarf Irregular (dIrr) galaxies from the LITTLE THINGS sample. These measurements, based on 21 cm kinematic data from the Very Large Array and stellar mass maps from the Spitzer Space Telescope, extend previous AM measurements by more than two orders of magnitude in {M}{{b}}. The dwarf galaxies show systematically higher {j}{{b}} values than expected from the {j}{{b}}\\propto {M}{{b}}2/3 scaling of spiral galaxies, representative of a scale-free galaxy formation scenario. This offset can be explained by decreasing baryon mass fractions {f}{{M}}={M}{{b}}/{M}{dyn} (where {M}{dyn} is the dynamical mass) with decreasing {M}{{b}} (for {M}{{b}}< {10}11 {M}ȯ ). We find that the sAM of neutral atomic hydrogen (H i) alone is about 2.5 times higher than that of the stars. The M–j relation of H i is significantly steeper than that of the stars, as a direct consequence of the systematic variation of the H i fraction with {M}{{b}}.

  14. Dynamic Compaction of Porous Beds

    DTIC Science & Technology

    1985-12-26

    NSWVC TR 83-246 00 00 SDYNAMIC COMPACTION OF POROUS B3EDS BY H. W. SANDUSKY T. P. LIDDIARD RESEARCH AND TECHNOLOGY DEPARTMENT D I 26 DECEMBER 1985...RIOBA4313 11. TITLE (Include Security Classfication3 Dynamic Compaction of Porous Beds 12. PERSONAL AUTHOR(S) Sandusky, H. W., and Liddiard, T. P. 13a... Porous Bed Compaction Wave Velocity Oeflaaration-to-Detonation Transition Particle Velocity ABSTRACT (Continue on reverse if necessary and identify

  15. METHOD OF FORMING ELONGATED COMPACTS

    DOEpatents

    Larson, H.F.

    1959-05-01

    A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)

  16. Physical approach to price momentum and its application to momentum strategy

    NASA Astrophysics Data System (ADS)

    Choi, Jaehyung

    2014-12-01

    We introduce various quantitative and mathematical definitions for price momentum of financial instruments. The price momentum is quantified with velocity and mass concepts originated from the momentum in physics. By using the physical momentum of price as a selection criterion, the weekly contrarian strategies are implemented in South Korea KOSPI 200 and US S&P 500 universes. The alternative strategies constructed by the physical momentum achieve the better expected returns and reward-risk measures than those of the traditional contrarian strategy in weekly scale. The portfolio performance is not understood by the Fama-French three-factor model.

  17. Production of high-angular-momentum electron beams in laser-plasma interactions.

    PubMed

    Ju, L B; Zhou, C T; Huang, T W; Jiang, K; Zhang, H; Wu, S Z; Qiao, B; Ruan, S C

    2017-05-01

    It was shown that in the interactions of ultra-intense circularly polarized laser pulse with the near-critical plasmas, the angular momentum can be transferred efficiently from the laser beam to electrons through the resonance acceleration process. The transferred angular momentum increases almost linearly with the acceleration time t_{a} when the electrons are resonantly accelerated by the laser field. In addition, it is shown analytically that the averaged angular momentum of electrons is proportional to the laser amplitude a_{L}, and the total angular momentum of the accelerated electron beam is proportional to the square of the laser amplitude a_{L}^{2} for a fixed parameter of n_{e}/n_{c}a_{L}. These results are verified by three-dimensional particle-in-cell simulations. This regime provides an efficient and compact alternative for the production of high angular momentum electron beams, which may have many potential applications in condensed-matter spectroscopy, new electron microscopes, and bright x-ray vortex generation.

  18. Production of high-angular-momentum electron beams in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Ju, L. B.; Zhou, C. T.; Huang, T. W.; Jiang, K.; Zhang, H.; Wu, S. Z.; Qiao, B.; Ruan, S. C.

    2017-05-01

    It was shown that in the interactions of ultra-intense circularly polarized laser pulse with the near-critical plasmas, the angular momentum can be transferred efficiently from the laser beam to electrons through the resonance acceleration process. The transferred angular momentum increases almost linearly with the acceleration time ta when the electrons are resonantly accelerated by the laser field. In addition, it is shown analytically that the averaged angular momentum of electrons is proportional to the laser amplitude aL, and the total angular momentum of the accelerated electron beam is proportional to the square of the laser amplitude aL2 for a fixed parameter of n/encaL . These results are verified by three-dimensional particle-in-cell simulations. This regime provides an efficient and compact alternative for the production of high angular momentum electron beams, which may have many potential applications in condensed-matter spectroscopy, new electron microscopes, and bright x-ray vortex generation.

  19. Innermost Stable Circular Orbits Around Rotating Compact Stars

    NASA Astrophysics Data System (ADS)

    Goluchová, Katerina

    2017-08-01

    Orbital motion close to a rotating neutron star (NS) is affected by effects of strong gravity. Keplerian frequency at the innermost stable circular orbit (ISCO frequency) depends on the interplay between relativistic effects and geometric Newtonian effects given by NS oblateness, and may increase as well as decrease when NS angular momentum increases. In this context we examine a large set of NS equations of state (EoS) as well as strange star (QS) EoS. We find simple approximative formulae determining the ISCO frequency for a given gravitational mass M and rotational frequency of the compact star (NS or QS).

  20. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  1. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  2. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  3. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  4. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  5. Compact photonic spin filters

    NASA Astrophysics Data System (ADS)

    Ke, Yougang; Liu, Zhenxing; Liu, Yachao; Zhou, Junxiao; Shu, Weixing; Luo, Hailu; Wen, Shuangchun

    2016-10-01

    In this letter, we propose and experimentally demonstrate a compact photonic spin filter formed by integrating a Pancharatnam-Berry phase lens (focal length of ±f ) into a conventional plano-concave lens (focal length of -f). By choosing the input port of the filter, photons with a desired spin state, such as the right-handed component or the left-handed one, propagate alone its original propagation direction, while the unwanted spin component is quickly diverged after passing through the filter. One application of the filter, sorting the spin-dependent components of vector vortex beams on higher-order Poincaré sphere, is also demonstrated. Our scheme provides a simple method to manipulate light, and thereby enables potential applications for photonic devices.

  6. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  7. Compact SAW aerosol generator.

    PubMed

    Winkler, A; Harazim, S; Collins, D J; Brünig, R; Schmidt, H; Menzel, S B

    2017-03-01

    In this work, we discuss and demonstrate the principle features of surface acoustic wave (SAW) aerosol generation, based on the properties of the fluid supply, the acoustic wave field and the acoustowetting phenomena. Furthermore, we demonstrate a compact SAW-based aerosol generator amenable to mass production fabricated using simple techniques including photolithography, computerized numerical control (CNC) milling and printed circuit board (PCB) manufacturing. Using this device, we present comprehensive experimental results exploring the complexity of the acoustic atomization process and the influence of fluid supply position and geometry, SAW power and fluid flow rate on the device functionality. These factors in turn influence the droplet size distribution, measured here, that is important for applications including liquid chromatography, pulmonary therapies, thin film deposition and olfactory displays.

  8. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  9. Multipurpose Compact Spectrometric Unit

    SciTech Connect

    Bocarov, Viktor; Cermak, Pavel; Mamedov, Fadahat; Stekl, Ivan

    2009-11-09

    A new standalone compact spectrometer was developed. The device consists of analog (peamplifier, amplifier) and digital parts. The digital part is based on the 160 MIPS Digital Signal Processor. It contains 20 Msps Flash-ADC, 1 MB RAM for spectra storage, 128 KB Flash/ROM for firmware storage, Real Time Clock and several voltage regulators providing the power for user peripherals (e.g. amplifier, temperature sensors, etc.). Spectrometer is connected with a notebook via high-speed USB 2.0 bus. The spectrometer is multipurpose device, which is planned to be used for measurements of Rn activities, energy of detected particles by CdTe pixel detector or for coincidence measurements.

  10. Compact artificial hand

    NASA Technical Reports Server (NTRS)

    Wiker, G. A.; Mann, W. A. (Inventor)

    1979-01-01

    A relatively simple, compact artificial hand, is described which includes hooks pivotally mounted on first frame to move together and apart. The first frame is rotatably mounted on a second frame to enable "turning at the wrist" movement without limitation. The second frame is pivotally mounted on a third frame to permit 'flexing at the wrist' movement. A hook-driving motor is fixed to the second frame but has a shaft that drives a speed reducer on the first frame which, in turn, drives the hooks. A second motor mounted on the second frame, turns a gear on the first frame to rotate the first frame and the hooks thereon. A third motor mounted on the third frame, turns a gear on a second frame to pivot it.

  11. Polarization of molecular angular momentum in the chemical reactions Li + HF and F + HD.

    PubMed

    Krasilnikov, Mikhail B; Popov, Ruslan S; Roncero, Octavio; De Fazio, Dario; Cavalli, Simonetta; Aquilanti, Vincenzo; Vasyutinskii, Oleg S

    2013-06-28

    The quantum mechanical approach to vector correlation of angular momentum orientation and alignment in chemical reactions [G. Balint-Kurti and O. S. Vasyutinskii, J. Phys. Chem. A 113, 14281 (2009)] is applied to the molecular reagents and products of the Li + HF [L. Gonzalez-Sanchez, O. S. Vasyutinskii, A. Zanchet, C. Sanz-Sanz, and O. Roncero, Phys. Chem. Chem. Phys. 13, 13656 (2011)] and F + HD [D. De Fazio, J. Lucas, V. Aquilanti, and S. Cavalli, Phys. Chem. Chem. Phys. 13, 8571 (2011)] reactions for which accurate scattering information has become recently available through time-dependent and time-independent approaches. Application of the theory to two important particular cases of the reactive collisions has been considered: (i) the influence of the angular momentum polarization of reactants in the entrance channel on the spatial distribution of the products in the exit channel and (ii) angular momentum polarization of the products of the reaction between unpolarized reactants. In the former case, the role of the angular momentum alignment of the reactants is shown to be large, particularly when the angular momentum is perpendicular to the reaction scattering plane. In the latter case, the orientation and alignment of the product angular momentum was found to be significant and strongly dependent on the scattering angle. The calculation also reveals significant differences between the vector correlation properties of the two reactions under study which are due to difference in the reaction mechanisms. In the case of F + HD reaction, the branching ratio between HF and DF production points out interest in the insight gained into the detailed dynamics, when information is available either from exact quantum mechanical calculations or from especially designed experiments. Also, the geometrical arrangement for the experimental determination of the product angular momentum orientation and alignment based on a compact and convenient spherical tensor expression for

  12. Vector correlation analysis for inelastic and reactive collisions between partners possessing spin and orbital angular momentum.

    PubMed

    Balint-Kurti, Gabriel G; Vasyutinskii, Oleg S

    2009-12-31

    A general reactive collision of the type A + B --> C + D is considered where both the collision partners (A and B) or the products (C and D) may possess internal, i.e., spin, orbital or rotational, angular momenta. Compact expressions are derived using a rigorous quantum mechanical analysis for the angular momentum anisotropy of either of the products (C or D) arising from an initially polarized distribution of the reactant angular momentum. The angular momentum distribution of the product is expressed in terms of canonical spherical tensors multiplied by anisotropy-transforming coefficients c(K(i)q(k))(K)(K(r),L). These coefficients act as transformation coefficients between the angular momentum anisotropy of the reactants and that of the product. They are independent of scattering angle but depend on the details of the scattering dynamics. The relationship between the coefficients c(K(i)q(k))(K)(K(r),L) and the body-fixed scattering S matrix is given and the methodology for the quantum mechanical calculation of the anisotropy-transforming coefficients is clearly laid out. The anisotropy-transforming coefficients are amenable to direct experimental measurement in a similar manner to vector correlation and alignment parameters in photodissociation processes. A key aspect of the theory is the use of projections of both reactant and product angular momenta onto the product recoil vector direction. An important new conservation rule is revealed through the analysis, namely that if the state multipole for reactant angular momentum distribution has a projection q(k) onto the product recoil vector the state multipoles for the product angular momentum distribution all have this same projection. Expressions are also presented for the distribution of the product angular momentum when its components are evaluated relative to the space-fixed Z-axis. Notes with detailed derivations of all the formulas are available as Supporting Information.

  13. Radiation pressure of light pulses and conservation of linear momentum in dispersive media.

    PubMed

    Scalora, Michael; D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; Centini, Marco; Sibilia, Concita; Haus, Joseph W

    2006-05-01

    We derive an expression for the Minkowski momentum under conditions of dispersive susceptibility and permeability, and compare it to the Abraham momentum in order to test the principle of conservation of linear momentum when matter is present. We investigate cases when an incident pulse interacts with a variety of structures, including thick substrates, resonant, free-standing, micron-sized multilayer stacks, and negative index materials. In general, we find that for media only a few wavelengths thick the Minkowski and Abraham momentum densities yield similar results. For more extended media, including substrates and Bragg mirrors embedded inside thick dielectric substrates, our calculations show dramatic differences between the Minkowski and Abraham momenta. Without exception, in all cases investigated the instantaneous Lorentz force exerted on the medium is consistent only with the rate of change of the Abraham momentum. As a practical example, we use our model to predict that electromagnetic momentum and energy buildup inside a multilayer stack can lead to widely tunable accelerations that may easily reach and exceed 10(10) m/s(2) for a mass of 10(-5) g. Our results suggest that the physics of the photonic band edge and other similar finite structures may be used as a testing ground for basic electromagnetic phenomena such as momentum transfer to macroscopic media.

  14. Photon momentum and optical forces in cavities

    NASA Astrophysics Data System (ADS)

    Partanen, Mikko; Häyrynen, Teppo; Oksanen, Jani; Tulkki, Jukka

    2016-03-01

    During the past century the electromagnetic field momentum in material media has been under debate in the Abraham-Minkowski controversy as convincing arguments have been advanced in favor of both the Abraham and Minkowski forms of photon momentum. Here we study the photon momentum and optical forces in cavity structures in the cases of dynamical and steady state fields. In the description of the single-photon transmission process we use a field-kinetic one-photon theory. Our model suggests that in the medium photons couple with the induced atomic dipoles forming polariton quasiparticles with the Minkowski form momentum. The Abraham momentum can be associated to the electromagnetic field part of the coupled polariton state. The polariton with the Minkowski momentum is shown to obey the uniform center of mass of energy motion that has previously been interpreted to support only the Abraham momentum. When describing the steady state non-equilibrium field distributions we use the recently developed quantized fluctuational electrodynamics (QFED) formalism. While allowing detailed studies of light propagation and quantum field fluctuations in interfering structures, our methods also provide practical tools for modeling optical energy transfer and the formation of thermal balance in nanodevices as well as studying electromagnetic forces in optomechanical devices.

  15. The angular momentum distribution within haloes in different dark matter models

    NASA Astrophysics Data System (ADS)

    Chen, D. N.; Jing, Y. P.

    2002-10-01

    We study the angular momentum profile of dark matter haloes for a statistical sample drawn from a set of high-resolution cosmological simulations of 2563 particles. Two typical cold dark matter (CDM) models have been analysed, and the haloes are selected to have at least 3 × 104 particles in order to measure the angular momentumprofile reliably. In contrast with the recent claims of Bullock et al., we find that the degree of misalignment of angular momentum within a halo is very high. Approximately 50 per cent of haloes have more than 10 per cent of the halo mass in the mass of negative angular momentum j. After the mass of negative j is excluded, the cumulative mass function M(momentum profile of haloes in a warm dark matter (WDM) model and a self-interacting dark matter (SIDM) model. We find that the angular momentum profile of haloes in the WDM is statistically indistinguishable from that in the CDM model, but the angular momentum of haloes in the SIDM is reduced by the self-interaction of dark matter.

  16. Angular Momentum Distribution of Hot Gas and Implications for Disk Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Chen, D. N.; Jing, Y. P.; Yoshikaw, Kohji

    2003-11-01

    We study the angular momentum profiles both for dark matter and for gas within virialized halos using a statistical sample of halos drawn from cosmological hydrodynamics simulations. Three simulations have been analyzed: one is the nonradiative simulation and the other two have radiative cooling. We find that the gas component, on average, has a larger spin and contains a smaller fraction of mass with negative angular momentum than its dark matter counterpart in the nonradiative model. As to the cooling models, the gas component shares approximately the same spin parameter as its dark matter counterpart, but the hot gas has a higher spin and is more aligned in angular momentum than dark matter, while the opposite holds for the cold gas. After the mass of negative angular momentum is excluded, the angular momentum profile of the hot gas component approximately follows the universal function originally proposed by Bullock et al. for dark matter, though the shape parameter μ is much larger for hot gas and is comfortably in the range required by observations of disk galaxies. Since disk formation is related to the distribution of hot gas that will cool, our study may explain the fact that the disk component of observed galaxies contains a smaller fraction of low angular momentum material than dark matter in halos.

  17. Ion Momentum Imaging of Dissociative Electron Attachment to Small Molecules

    NASA Astrophysics Data System (ADS)

    Fogle, Michael

    2015-09-01

    In recent years, low energy dissociative electron attachment (DEA) interactions have been of interest to varying biological and technological applications. To study the dynamics resulting from DEA, we used an ion-momentum imaging apparatus based on the Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) technique in which a molecular beam is crossed by a pulsed electron beam. The beam interaction takes place in a 4 π pulsed electrostatic spectrometer that collects the anion fragments resulting from DEA. The molecular beam is formed by a supersonic expansion which results in a well-localized and cold target. Using this apparatus we have investigated the DEA dynamics for several small molecules: CO2 at the 4 eV shape resonance and the 8 eV Feshbach resonance; N2O at the 2.3 eV shape resonance; HCCH at the 3 eV shape resonance; and CF4 near the 7 eV resonance. An overview of these experimental ion-momentum results will be compared to ab initio electronic structure and fixed-nuclei scattering calculations to gauge the resulting dynamics driven by DEA. In many cases, conical intersections play a pivotal role in driving the dynamics. Some of these systems exhibit non-axial recoil conditions indicative of a bending dynamics in the transitory negative ion state while others exhibit a direct axial recoil dissociation without any bending. This work is supported by the National Science Foundation under Contract NSF-PHYS1404366.

  18. DC conductivities with momentum dissipation in Horndeski theories

    NASA Astrophysics Data System (ADS)

    Jiang, Wei-Jian; Liu, Hai-Shan; Lü, H.; Pope, C. N.

    2017-07-01

    In this paper, we consider two four-dimensional Horndeski-type gravity theories with scalar fields that give rise to solutions with momentum dissipation in the dual boundary theories. Firstly, we study Einstein-Maxwell theory with a Horndeski axion term and two additional free axions which are responsible for momentum dissipation. We construct static electrically charged AdS planar black hole solutions in this theory and calculate analytically the holographic DC conductivity of the dual field theory. We then generalize the results to include magnetic charge in the black hole solution. Secondly, we analyze Einstein-Maxwell theory with two Horndeski axions which are used for momentum dissipation. We obtain AdS planar black hole solutions in the theory and we calculate the holographic DC conductivity of the dual field theory. The theory has a critical point α+γΛ = 0, beyond which the kinetic terms of the Horndeski axions become ghost-like. The conductivity as a function of temperature behaves qualitatively like that of a conductor below the critical point, becoming semiconductor-like at the critical point. Beyond the critical point, the ghost-like nature of the Horndeski fields is associated with the onset of unphysical singular or negative conductivities. Some further generalisations of the above theories are considered also.

  19. Compact stars in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Das, Amit; Rahaman, Farook; Guha, B. K.; Ray, Saibal

    2016-12-01

    In the present paper we generate a set of solutions describing the interior of a compact star under f(R,T) theory of gravity which admits conformal motion. An extension of general relativity, the f(R,T) gravity is associated to Ricci scalar R and the trace of the energy-momentum tensor T. To handle the Einstein field equations in the form of differential equations of second order, first of all we adopt the Lie algebra with conformal Killing vectors (CKV) which enable one to get a solvable form of such equations and second we consider the equation of state (EOS) p=ω ρ with 0<ω <1 for the fluid distribution consisting of normal matter, ω being the EOS parameter. We therefore analytically explore several physical aspects of the model to represent behavior of the compact stars such as—energy conditions, TOV equation, stability of the system, Buchdahl condition, compactness and redshift. It is checked that the physical validity and the acceptability of the present model within the specified observational constraint in connection to a dozen of the compact star candidates are quite satisfactory.

  20. Study of spin momentum density in Ga doped cobalt ferrite

    SciTech Connect

    Bapna, Komal Sharma, Arvind; Mund, H. S.; Ahuja, B. L.; Sakurai, Y.; Itou, M.

    2016-05-23

    We have studied spin dependent electron momentum density in CoGa{sub 0.3}Fe{sub 1.7}O{sub 4} at 300 K using magnetic Compton spectroscopy. It is observed that major contribution to total spin moment mainly arises from Co ions while itinerant electrons show negative polarization. Orbital contribution has been deduced by comparing the magnetic Compton spectroscopy with the magnetization data. It is revealed that the anisotropy in magnetization in the system increases with the Ga doping.

  1. Cloaking of the momentum in acoustic waves.

    PubMed

    Sklan, Sophia

    2010-01-01

    Through an appropriate change in variables, we find that the three-dimensional acoustic wave equation is subject to the transformation media interpretation. In particular, we determine that this interpretation can be extended beyond the pressure difference to also account for the momentum transported by the wave. The suitability of momentum transport is especially interesting as it is an example where the field of interest is not governed by a wave equation. We examine how both fields behave in the case of cloaking. Explicit consideration of the boundary conditions shows that perfect cloaking is preserved, even when the incoming momentum is nonzero at the surface of the cloak.

  2. Constraining nucleon high momentum in nuclei

    NASA Astrophysics Data System (ADS)

    Yong, Gao-Chan

    2017-02-01

    Recent studies at Jefferson Lab show that there are a certain proportion of nucleons in nuclei have momenta greater than the so-called nuclear Fermi momentum pF. Based on the transport model of nucleus-nucleus collisions at intermediate energies, nucleon high momentum caused by the neutron-proton short-range correlations in nuclei is constrained by comparing with π and photon experimental data and considering some uncertainties. The high momentum cutoff value pmax ≤ 2pF is obtained.

  3. Autonomous momentum management for space station

    NASA Technical Reports Server (NTRS)

    Hahn, E.

    1984-01-01

    Momentum management for the CDG planar space platform is discussed. It is assumed that the external torques on the space station are gravity gradient and aerodynamic, both have bias and cyclic terms. The integrals of the cyclic torques are the cyclic momenti which will be stored in the momentum storage actuator. Techniques to counteract the bias torques and center the cyclic momentum and gravity gradient desaturation by adjusting vehicle attitude, aerodynamic desaturation using solar panels and radiators and the deployment of flat plates at the end of long booms generating aerodynamic torques are investigated.

  4. Magnetically suspended momentum wheels for spacecraft stabilization

    NASA Technical Reports Server (NTRS)

    Henrikson, C. H.; Lyman, J.; Studer, P. A.

    1974-01-01

    Magnetic bearings for spacecraft momentum wheels offer the promise of low friction and unlimited life. This paper describes how magnetic bearings work and their advantages and disadvantages. The present status of magnetic bearings is described and examples are shown of the various and widely-different magnetically suspended momentum wheels that have been built to date. These include wheels whose bearings exhibit high stiffness and wheels with zero-power suspensions. The future of magnetically suspended momentum wheels is discussed including the possibility of wheels with neither spokes nor shaft.

  5. Wave angular momentum in nonneutral plasmas

    NASA Astrophysics Data System (ADS)

    Gould, Roy W.

    1999-12-01

    Angular momentum and energy are added (or removed) when exciting a mode, such as a diocotron, Trivelpiece-Gould, or Dubin mode, and we discuss rates at which mode angular momentum and energy are added by applied fields. Excitation of a plasma mode is an effective way to transfer angular momentum and energy to the plasma because it is a resonant process. We relate this to recent experiments on compression and expansion of plasmas using a "rotating wall" field. We also calculate the torque on a Coulomb crystal which is phase-locked to a "rotating wall" field and describe phase oscillations and the maximum rate of acceleration which can be achieved.

  6. Angular and Linear Momentum of Excited Ferromagnets

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Kamra, Akashdeep; Cao, Yunshan; Bauer, Gerrit

    2014-03-01

    The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist in the presence of dipole-dipole interactions. However, spin and orbital angular momentum are not conserved separately anymore. We also define the linear momentum of ferromagnetic textures. We illustrate the general principles with special reference to spin transfer torques and identify the emergence of a non-adiabatic effective field acting on domain walls in ferromagnetic insulators

  7. Angular momentum in the Local Group

    SciTech Connect

    Dunn, A.; Laflamme, R.

    1994-04-01

    We briefly review models for the Local Group and the acquisition of its angular momentum. We describe early attempts to understand the origin of the spin of the galaxies discussing the hypothesis that the Local Group has little angular momentum. Finally we show that using Peebles` least action principle there should be a rather large amount of orbital angular momentum compared to the magnitude of the spin of its galaxies. Therefore the Local Group cannot be thought as tidally isolated. Using Peebles` trajectories we give a possible set of trajectories for Local Group galaxies which would predict their spin.

  8. Momentum-Space Correlations of a One-Dimensional Bose Gas.

    PubMed

    Fang, Bess; Johnson, Aisling; Roscilde, Tommaso; Bouchoule, Isabelle

    2016-02-05

    Analyzing the noise in the momentum profiles of single realizations of one-dimensional Bose gases, we present the experimental measurement of the full momentum-space density correlations ⟨δn_{p}δn_{p^{'}}⟩, which are related to the two-body momentum correlation function. Our data span the weakly interacting region of the phase diagram, going from the ideal Bose gas regime to the quasicondensate regime. We show experimentally that the bunching phenomenon, which manifests itself as super-Poissonian local fluctuations in momentum space, is present in all regimes. The quasicondensate regime is, however, characterized by the presence of negative correlations between different momenta, in contrast to the Bogolyubov theory for Bose condensates, predicting positive correlations between opposite momenta. Our data are in good agreement with ab initio calculations.

  9. Compaction with Automatic Jog Introduction,

    DTIC Science & Technology

    1985-10-01

    The compaction algorithm This section defines mathematically the problem of compaction with auto- matk jog introduction, and presents a practical...t(5) of potential cuts of S, and usng their mutability cmndi to constrain the positiokn of modulo in S. The proof that this technique gen - erates a

  10. The Meaning of a Compact

    ERIC Educational Resources Information Center

    Wasescha, Anna

    2016-01-01

    To mark the 30th anniversary of "Campus Compact," leaders from across the network came together in the summer of 2015 to reaffirm a shared commitment to the public purposes of higher education. Campus Compact's 30th Anniversary Action Statement of Presidents and Chancellors is the product of that collective endeavor. In signing the…

  11. Compost improves compacted urban soil

    USDA-ARS?s Scientific Manuscript database

    Urban construction sites usually result in compacted soils that limit infiltration and root growth. The purpose of this study was to determine if compost, aeration, and/or prairie grasses can remediate a site setup as a simulated post-construction site (compacted). Five years after establishing the ...

  12. Construction of ``resonant'' magneto-optical lattices with controlled momentum compaction factor

    NASA Astrophysics Data System (ADS)

    Senichev, Yu. V.; Chechenin, A. N.

    2007-12-01

    On the basis of the theory of “resonant” magneto-optical lattices for synchrotrons with complex transition energy developed in [1], methods for construction of such lattices with application to various accelerators are proposed. Apart from allowing elimination of transition energy crossing by accelerated particles, these lattices should meet a number of important requirements. In particular, they must have dispersion-free straight sections intended for accommodation of RF cavities, Siberian snakes and detectors, and a large enough dynamic aperture for minimizing the effect of magnetic optics nonlinearity on the beam parameters after chromaticity correction by sextupoles.

  13. Construction of 'resonant' magneto-optical lattices with controlled momentum compaction factor

    SciTech Connect

    Senichev, Yu. V. Chechenin, A. N.

    2007-12-15

    On the basis of the theory of 'resonant' magneto-optical lattices for synchrotrons with complex transition energy developed in [1], methods for construction of such lattices with application to various accelerators are proposed. Apart from allowing elimination of transition energy crossing by accelerated particles, these lattices should meet a number of important requirements. In particular, they must have dispersion-free straight sections intended for accommodation of RF cavities, Siberian snakes and detectors, and a large enough dynamic aperture for minimizing the effect of magnetic optics nonlinearity on the beam parameters after chromaticity correction by sextupoles.

  14. Flow Control in a Compact Inlet

    NASA Astrophysics Data System (ADS)

    Vaccaro, John C.

    2011-12-01

    An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by

  15. Helicon modes in uniform plasmas. III. Angular momentum

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.

    2015-09-01

    Helicons are electromagnetic waves with helical phase fronts propagating in the whistler mode in magnetized plasmas and solids. They have similar properties to electromagnetic waves with angular momentum in free space. Helicons are circularly polarized waves carrying spin angular momentum and orbital angular momentum due to their propagation around the ambient magnetic field B0. These properties have not been considered in the community of researchers working on helicon plasma sources, but are the topic of the present work. The present work focuses on the field topology of helicons in unbounded plasmas, not on helicon source physics. Helicons are excited in a large uniform laboratory plasma with a magnetic loop antenna whose dipole axis is aligned along or across B0. The wave fields are measured in orthogonal planes and extended to three dimensions (3D) by interpolation. Since density and B0 are uniform, small amplitude waves from loops at different locations can be superimposed to generate complex antenna patterns. With a circular array of phase shifted loops, whistler modes with angular and axial wave propagation, i.e., helicons, are generated. Without boundaries radial propagation also arises. The azimuthal mode number m can be positive or negative while the field polarization remains right-hand circular. The conservation of energy and momentum implies that these field quantities are transferred to matter which causes damping or reflection. Wave-particle interactions with fast electrons are possible by Doppler shifted resonances. The transverse Doppler shift is demonstrated. Wave-wave interactions are also shown by showing collisions between different helicons. Whistler turbulence does not always have to be created by nonlinear wave-interactions but can also be a linear superposition of waves from random sources. In helicon collisions, the linear and/or orbital angular momenta can be canceled, which results in a great variety of field topologies. The work will

  16. Helicon modes in uniform plasmas. III. Angular momentum

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.

    2015-09-15

    Helicons are electromagnetic waves with helical phase fronts propagating in the whistler mode in magnetized plasmas and solids. They have similar properties to electromagnetic waves with angular momentum in free space. Helicons are circularly polarized waves carrying spin angular momentum and orbital angular momentum due to their propagation around the ambient magnetic field B{sub 0}. These properties have not been considered in the community of researchers working on helicon plasma sources, but are the topic of the present work. The present work focuses on the field topology of helicons in unbounded plasmas, not on helicon source physics. Helicons are excited in a large uniform laboratory plasma with a magnetic loop antenna whose dipole axis is aligned along or across B{sub 0}. The wave fields are measured in orthogonal planes and extended to three dimensions (3D) by interpolation. Since density and B{sub 0} are uniform, small amplitude waves from loops at different locations can be superimposed to generate complex antenna patterns. With a circular array of phase shifted loops, whistler modes with angular and axial wave propagation, i.e., helicons, are generated. Without boundaries radial propagation also arises. The azimuthal mode number m can be positive or negative while the field polarization remains right-hand circular. The conservation of energy and momentum implies that these field quantities are transferred to matter which causes damping or reflection. Wave-particle interactions with fast electrons are possible by Doppler shifted resonances. The transverse Doppler shift is demonstrated. Wave-wave interactions are also shown by showing collisions between different helicons. Whistler turbulence does not always have to be created by nonlinear wave-interactions but can also be a linear superposition of waves from random sources. In helicon collisions, the linear and/or orbital angular momenta can be canceled, which results in a great variety of field

  17. Quantum complexity and negative curvature

    NASA Astrophysics Data System (ADS)

    Brown, Adam R.; Susskind, Leonard; Zhao, Ying

    2017-02-01

    As time passes, once simple quantum states tend to become more complex. For strongly coupled k -local Hamiltonians, this growth of computational complexity has been conjectured to follow a distinctive and universal pattern. In this paper we show that the same pattern is exhibited by a much simpler system—classical geodesics on a compact two-dimensional geometry of uniform negative curvature. This striking parallel persists whether the system is allowed to evolve naturally or is perturbed from the outside.

  18. Enhancement models of momentum densities of annihilating electron-positron pairs: The many-body picture of natural geminals

    NASA Astrophysics Data System (ADS)

    Makkonen, Ilja; Ervasti, Mikko M.; Siro, Topi; Harju, Ari

    2014-01-01

    The correlated motion of a positron surrounded by electrons is a fundamental many-body problem. We approach this by modeling the momentum density of annihilating electron-positron pairs using the framework of reduced density matrices, natural orbitals, and natural geminals (electron-positron pair wave functions) of the quantum theory of many-particle systems. We find that an expression based on the natural geminals provides an exact, unique, and compact expression for the momentum density. The natural geminals can be used to define and to determine enhancement factors for enhancement models going beyond the independent-particle model for a better understanding of the results of positron annihilation experiments.

  19. Studies on gravity waves momentum flux variations in different seasons using MST radar

    NASA Astrophysics Data System (ADS)

    I, V.; Y-H, C.; v, S.; D, N.; S, V.

    2006-12-01

    MST radars are the best tools to study the high frequency gravity waves and its associated momentum fluxes because of excellent temporal and spatial resolutions. The upward propagating gravity waves transport energy and momentum in different regions of the atmosphere along with their propagation to produce effects at upper heights. The estimation of the vertical flux of horizontal momentum in the troposphere and lower stratosphere involves two methods, using three beams V one vertical and two oblique, and using four beams V two pairs of oblique beams systematically offset from the vertical. The rapid steerability of the Indian MST radar allows to make three and four beam measurements simultaneously. The objective of this study is to examine the variations of zonal and meridional momentum fluxes with height, variation of momentum fluxes with wave periods and body forces. We choose frequency bands corresponding to periods of 30 min-2h, 2-8 h, and 2-16h. Vertical profiles of the zonal and meridional flux in each frequency band were found to be consistent, in general, with the total flux. The study also compares momentum fluxes computed with three and four beam methods. Zonal fluxes were small at lower levels and increasingly negative (westward) at higher heights. The dominant contributions to the meridional flux occur in the lower-frequency band. The large vertical momentum flux values observed around the 16 km altitude on most of the observations are due to the presence of large zonal wind shears at that altitude. Due to their persistent southward direction of propagation the meridional momentum flux during winter and summer shows southward direction of propagation and long period waves make contributions to the momentum flux in the lower stratosphere which is comparable to that of short period waves. The detailed discussion will be presented in the meeting.

  20. Momentum sharing in imbalanced Fermi systems

    SciTech Connect

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron stars and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.

  1. Momentum sharing in imbalanced Fermi systems

    DOE PAGES

    Hen, O.; Sargsian, M.; Weinstein, L. B.; ...

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron starsmore » and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.« less

  2. Quantum Hall effect in momentum space

    NASA Astrophysics Data System (ADS)

    Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo

    2016-05-01

    We theoretically discuss a momentum-space analog of the quantum Hall effect, which could be observed in topologically nontrivial lattice models subject to an external harmonic trapping potential. In our proposal, the Niu-Thouless-Wu formulation of the quantum Hall effect on a torus is realized in the toroidally shaped Brillouin zone. In this analogy, the position of the trap center in real space controls the magnetic fluxes that are inserted through the holes of the torus in momentum space. We illustrate the momentum-space quantum Hall effect with the noninteracting trapped Harper-Hofstadter model, for which we numerically demonstrate how this effect manifests itself in experimental observables. Extension to the interacting trapped Harper-Hofstadter model is also briefly considered. We finally discuss possible experimental platforms where our proposal for the momentum-space quantum Hall effect could be realized.

  3. Momentum-space Harper-Hofstadter model

    NASA Astrophysics Data System (ADS)

    Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo

    2015-08-01

    We show how the weakly trapped Harper-Hofstadter model can be mapped onto a Harper-Hofstadter model in momentum space. In this momentum-space model, the band dispersion plays the role of the periodic potential, the Berry curvature plays the role of an effective magnetic field, the real-space harmonic trap provides the momentum-space kinetic energy responsible for the hopping, and the trap position sets the boundary conditions around the magnetic Brillouin zone. Spatially local interactions translate into nonlocal interactions in momentum space: within a mean-field approximation, we show that increasing interparticle interactions leads to a structural change of the ground state, from a single rotationally symmetric ground state to degenerate ground states that spontaneously break rotational symmetry.

  4. Psychological momentum: intuitive physics and naive beliefs.

    PubMed

    Markman, Keith D; Guenther, Corey L

    2007-06-01

    The present research examines psychological momentum (PM), a perceived force that lay intuition suggests influences performance. PM theory is proposed to account for how momentum perceptions arise, and four studies demonstrate the influence of lay intuitions about PM on expectations regarding performance outcomes. Study 1 establishes that individuals share intuitions about the types of events that precipitate PM, and Study 2 finds that defeating a rival increases momentum perceptions. Study 3 provides evidence for the lay belief that as more PM accumulates during a prior task, there should be more residual momentum left to carry over to a subsequent task, and Study 4 finds that an individual whose PM is interrupted is expected to have greater difficulty completing a task than is an individual whose steady progress is interrupted. Discussion focuses on linkages between PM and related constructs.

  5. Unipolar motor and angular momentum conservation law

    NASA Astrophysics Data System (ADS)

    Mayer, V. V.; Varaksina, E. I.

    2017-07-01

    A simple unipolar electric motor is described. The motor is a closed electromechanical system. The proposed apparatus allows us to demonstrate angular momentum conservation law at a qualitative level.

  6. Orbital angular momentum 25 years on [Invited].

    PubMed

    Padgett, Miles J

    2017-05-15

    Twenty-five years ago Allen, Beijersbergen, Spreeuw, and Woerdman published their seminal paper establishing that light beams with helical phase-fronts carried an orbital angular momentum. Previously orbital angular momentum had been associated only with high-order atomic/molecular transitions and hence considered to be a rare occurrence. The realization that every photon in a laser beam could carry an orbital angular momentum that was in excess of the angular momentum associated with photon spin has led both to new understandings of optical effects and various applications. These applications range from optical manipulation, imaging and quantum optics, to optical communications. This brief review will examine some of the research in the field to date and consider what future directions might hold.

  7. Spin Calogero models associated with Riemannian symmetric spaces of negative curvature

    NASA Astrophysics Data System (ADS)

    Fehér, L.; Pusztai, B. G.

    2006-09-01

    The Hamiltonian symmetry reduction of the geodesics system on a symmetric space of negative curvature by the maximal compact subgroup of the isometry group is investigated at an arbitrary value of the momentum map. Restricting to regular elements in the configuration space, the reduction generically yields a spin Calogero model with hyperbolic interaction potentials defined by the root system of the symmetric space. These models come equipped with Lax pairs and many constants of motion, and can be integrated by the projection method. The special values of the momentum map leading to spinless Calogero models are classified under some conditions, explaining why the BC models with two independent coupling constants are associated with SU(n+1,n)/S(U(n+1)×U(n)) as found by Olshanetsky and Perelomov. In the zero curvature limit our models reproduce rational spin Calogero models studied previously and similar models correspond to other (affine) symmetric spaces, too. The construction works at the quantized level as well.

  8. Transverse-momentum-dependent parton distributions (TMDs)

    SciTech Connect

    Bacchetta, Alessandro

    2011-10-24

    Transverse-momentum-dependent parton distributions (TMDs) provide three-dimensional images of the partonic structure of the nucleon in momentum space. We made impressive progress in understanding TMDs, both from the theoretical and experimental point of view. This brief overview on TMDs is divided in two parts: in the first, an essential list of achievements is presented. In the second, a selection of open questions is discussed.

  9. Nonlinearity effects on the directed momentum current.

    PubMed

    Zhao, Wen-Lei; Fu, Li-Bin; Liu, Jie

    2014-08-01

    We investigate the quantum transport dynamics governed by the nonlinear Schrödinger equation with a periodically-δ-kicking potential and discover the emergence of a directed current in momentum space. With the increase of nonlinearity, we find strikingly that the momentum current decreases, reverses, and finally vanishes, indicating that the quantum transport can be effectively manipulated through adjusting the nonlinearity. The underlying dynamic mechanism is uncovered and some important implications are addressed.

  10. Momentum errors in an RF separated beam

    SciTech Connect

    T. Kobilarcik

    2002-09-19

    The purity of an RF separated beam is affected by the difference in mass of the particle types and the momentum bite of the beam. The resulting time-of-flight difference between different types allows separation to occur; the finite momentum bite results in chromatic aberration. Both these features also give rise to a particle type dependent velocity bite, which must also be taken into account. This memo demonstrates a generalizable method for calculating the effect.

  11. Relativistic Electron Wave Packets Carrying Angular Momentum

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2017-03-01

    There are important differences between the nonrelativistic and relativistic description of electron beams. In the relativistic case the orbital angular momentum quantum number cannot be used to specify the wave functions and the structure of vortex lines in these two descriptions is completely different. We introduce analytic solutions of the Dirac equation in the form of exponential wave packets and we argue that they properly describe relativistic electron beams carrying angular momentum.

  12. Relativistic Electron Wave Packets Carrying Angular Momentum.

    PubMed

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2017-03-17

    There are important differences between the nonrelativistic and relativistic description of electron beams. In the relativistic case the orbital angular momentum quantum number cannot be used to specify the wave functions and the structure of vortex lines in these two descriptions is completely different. We introduce analytic solutions of the Dirac equation in the form of exponential wave packets and we argue that they properly describe relativistic electron beams carrying angular momentum.

  13. Total longitudinal momentum in a dispersive optical waveguide.

    PubMed

    Yu, Jianhui; Chen, Chunyan; Zhai, Yanfang; Chen, Zhe; Zhang, Jun; Wu, Lijun; Huang, Furong; Xiao, Yi

    2011-12-05

    Using the Lorentz force law, we derived simpler expressions for the total longitudinal (conserved) momentum and the mechanical momentums associated with an optical pulse propagating along a dispersive optical waveguide. These expressions can be applied to an arbitrary non-absorptive optical waveguide having continuous translational symmetry. Our simulation using finite difference time domain (FDTD) method verified that the total momentum formula is valid in a two-dimensional infinite waveguide. We studied the conservation of the total momentum and the transfer of the momentum to the waveguide for the case when an optical pulse travels from a finite waveguide to vacuum. We found that neither the Abraham nor the Minkowski momentum expression for an electromagnetic wave in a waveguide represents the complete total (conserved) momentum. Only the total momentum as we derived for a mode propagating in a dispersive optical waveguides is the 'true' conserved momentum. This total momentum can be expressed as PTot = -U Die/(vg) + neff (U/c). It has three contributions: (1) the Abraham momentum; (2) the momentum from the Abraham force, which equals to the difference between the Abraham momentum and the Minkowski momentum; and (3) the momentum from the dipole force which can be expressed as -UDie/vg. The last two contributions constitute the mechanical momentum. Compared with FDTD-Lorentz-force method, the presently derived total momentum formula provides a better method in terms of analyzing the permanent transfer of optical momentum to a waveguide.

  14. Compact Dexterous Robotic Hand

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  15. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  16. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  17. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  18. Compact plasma accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2004-01-01

    A compact plasma accelerator having components including a cathode electron source, an anodic ionizing gas source, and a magnetic field that is cusped. The components are held by an electrically insulating body having a central axis, a top axial end, and a bottom axial end. The cusped magnetic field is formed by a cylindrical magnet having an axis of rotation that is the same as the axis of rotation of the insulating body, and magnetized with opposite poles at its two axial ends; and an annular magnet coaxially surrounding the cylindrical magnet, magnetized with opposite poles at its two axial ends such that a top axial end has a magnetic polarity that is opposite to the magnetic polarity of a top axial end of the cylindrical magnet. The ionizing gas source is a tubular plenum that has been curved into a substantially annular shape, positioned above the top axial end of the annular magnet such that the plenum is centered in a ring-shaped cusp of the magnetic field generated by the magnets. The plenum has one or more capillary-like orifices spaced around its top such that an ionizing gas supplied through the plenum is sprayed through the one or more orifices. The plenum is electrically conductive and is positively charged relative to the cathode electron source such that the plenum functions as the anode; and the cathode is positioned above and radially outward relative to the plenum.

  19. Compact photoacoustic tomography system

    NASA Astrophysics Data System (ADS)

    Kalva, Sandeep Kumar; Pramanik, Manojit

    2017-03-01

    Photoacoustic tomography (PAT) is a non-ionizing biomedical imaging modality which finds applications in brain imaging, tumor angiogenesis, monitoring of vascularization, breast cancer imaging, monitoring of oxygen saturation levels etc. Typical PAT systems uses Q-switched Nd:YAG laser light illumination, single element large ultrasound transducer (UST) as detector. By holding the UST in horizontal plane and moving it in a circular motion around the sample in full 2π radians photoacoustic data is collected and images are reconstructed. The horizontal positioning of the UST make the scanning radius large, leading to larger water tank and also increases the load on the motor that rotates the UST. To overcome this limitation, we present a compact photoacoustic tomographic (ComPAT) system. In this ComPAT system, instead of holding the UST in horizontal plane, it is held in vertical plane and the photoacoustic waves generated at the sample are detected by the UST after it is reflected at 45° by an acoustic reflector attached to the transducer body. With this we can reduce the water tank size and load on the motor, thus overall PAT system size can be reduced. Here we show that with the ComPAT system nearly similar PA images (phantom and in vivo data) can be obtained as that of the existing PAT systems using both flat and cylindrically focused transducers.

  20. Enhanced momentum feedback from clustered supernovae

    NASA Astrophysics Data System (ADS)

    Gentry, Eric S.; Krumholz, Mark R.; Dekel, Avishai; Madau, Piero

    2017-02-01

    Young stars typically form in star clusters, so the supernovae (SNe) they produce are clustered in space and time. This clustering of SNe may alter the momentum per SN deposited in the interstellar medium (ISM) by affecting the local ISM density, which in turn affects the cooling rate. We study the effect of multiple SNe using idealized 1D hydrodynamic simulations which explore a large parameter space of the number of SNe, and the background gas density and metallicity. The results are provided as a table and an analytic fitting formula. We find that for clusters with up to ∼100 SNe, the asymptotic momentum scales superlinearly with the number of SNe, resulting in a momentum per SN which can be an order of magnitude larger than for a single SN, with a maximum efficiency for clusters with 10-100 SNe. We argue that additional physical processes not included in our simulations - self-gravity, breakout from a galactic disc, and galactic shear - can slightly reduce the momentum enhancement from clustering, but the average momentum per SN still remains a factor of 4 larger than the isolated SN value when averaged over a realistic cluster mass function for a star-forming galaxy. We conclude with a discussion of the possible role of mixing between hot and cold gas, induced by multidimensional instabilities or pre-existing density variations, as a limiting factor in the build-up of momentum by clustered SNe, and suggest future numerical experiments to explore these effects.

  1. Searching for momentum enhancement in hypervelocity impacts

    SciTech Connect

    Stradling, G.L.; Idzorek, G.C.; Keaton, P.W.; Studebaker, J.K. ); Blossom, A.A.H. ); Collopy, M.T.; Curling, H.L. Jr. ); Bergeson, S.D. )

    1990-01-01

    In conjunction with the Los Alamos National Laboratory hypervelocity microparticle impact (HMI) team effort to produce higher impact velocities and to understand the physics of crater formation and momentum transfer, the authors have implemented a low noise microphone as a momentum detector on both the 6 MV Van de Graaff and 85 KV test stand' particle accelerators. Calculations are presented showing that the impulse response of a circular membrane. When used as a momentum impulse detector, the microphone theoretically may detect impulses as small as 8.8 {times} 10{sup {minus}15} N s. Sensitivity of the microphone in this application is limited by the noise threshold of the electronic amplifiers and the ambient microphinic vibration of the system. Calculations lead the authors to anticipate detection of particles over the full range of the Van de Graaff acceleration capability and up to 7 km/s on the test stand. They present momentum enhancement data in the velocity range between 10 km/s and 20 km/s. Preliminary work is presented on momentum impulse calibration of the microphone using laser-pulse photon momentum as an impulse source.

  2. Universal spin-momentum locked optical forces

    SciTech Connect

    Kalhor, Farid; Thundat, Thomas; Jacob, Zubin

    2016-02-08

    Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE{sub 11} mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.

  3. Soil compaction and initial height growth of planted ponderosa pine.

    Treesearch

    P. H. Cochran; Terry. Brock

    1985-01-01

    Early height growth of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings planted in clearcuts in central Oregon was negatively correlated with increasing soil bulk density. Change in bulk density accounted for less than half the total variation in height growth. Although many other factors affect the development of seedlings, compaction...

  4. Our compact with tomorrow's doctors.

    PubMed

    Cohen, Jordan J

    2002-06-01

    In recent years, the image of medicine as a caring profession has been badly tarnished by a rash of critical reports in the media. In the face of this negative publicity, do young people still want to be doctors? The author reviews conventional reasons given for the declining applicant pool (e.g., issues of declining income, loss of autonomy, etc.) and posits that an additional reason may be perceptions that doctors no longer command respect and that they are being oppressed by, rather than being guardians of, the health care system. Such views challenge academic medicine to broadcast to the world a realistic picture of the fabulous opportunities and gratifications that lie ahead for the next generation of physicians. However, academic medicine must also address some current realities within medical education, such as the admission process (where at present there is a tendency to overemphasize indices of academic achievement and underemphasize the personal characteristics sought in applicants) and the acculturation process in medical school (which can often dehumanize students and convert idealistic ones into cynics). The author acknowledges that these are tough challenges. He suggests as a first step that leaders of academic medicine prepare and disseminate an explicit statement of their commitments, a kind of compact between teachers and learners of medicine. He outlines these commitments, and states his hope that by fulfilling them, the academic medicine community can make clear that medicine-which at its core is still about the doctor-patient relationship-is a true calling, not just beleaguered occupation.

  5. Geometric momentum: The proper momentum for a free particle on a two-dimensional sphere

    SciTech Connect

    Liu, Q. H.; Tang, L. H.; Xun, D. M.

    2011-10-15

    In Dirac's canonical quantization theory on systems with second-class constraints, the commutators between the position, momentum, and Hamiltonian form a set of algebraic relations that are fundamental in construction of both the quantum momentum and the Hamiltonian. For a free particle on a two-dimensional sphere or a spherical top, results show that the well-known canonical momentum p{sub {theta}} breaks one of the relations, while three components of the momentum expressed in the three-dimensional Cartesian system of axes as p{sub i} (i=1,2,3) are satisfactory all around. This momentum is not only geometrically invariant but also self-adjoint, and we call it geometric momentum. The nontrivial commutators between p{sub i} generate three components of the orbital angular momentum; thus the geometric momentum is fundamental to the angular one. We note that there are five different forms of the geometric momentum proposed in the current literature, but only one of them turns out to be meaningful.

  6. Treating Problem Behaviors Maintained by Negative Reinforcement.

    ERIC Educational Resources Information Center

    Cipani, Ennio; Spooner, Fred

    1997-01-01

    Identifies four treatment techniques that may be applied when problem behavior is maintained by negative reinforcement: (1) functional communication training; (2) behavioral momentum; (3) differential reinforcement or an alternative escape behavior; and (4) errorless learning. Each of the techniques is defined, and applications and guidelines for…

  7. Compactness of lateral shearing interferometers

    NASA Astrophysics Data System (ADS)

    Ferrec, Yann; Taboury, Jean; Sauer, Hervé; Chavel, Pierre

    2011-08-01

    Imaging lateral shearing interferometers are good candidates for airborne or spaceborne Fourier-transform spectral imaging. For such applications, compactness is one key parameter. In this article, we compare the size of four mirror-based interferometers, the Michelson interferometer with roof-top (or corner-cube) mirrors, and the cyclic interferometers with two, three, and four mirrors, focusing more particularly on the last two designs. We give the expression of the translation they induce between the two exiting rays. We then show that the cyclic interferometer with three mirrors can be made quite compact. Nevertheless, the Michelson interferometer is the most compact solution, especially for highly diverging beams.

  8. Compactness of lateral shearing interferometers.

    PubMed

    Ferrec, Yann; Taboury, Jean; Sauer, Hervé; Chavel, Pierre

    2011-08-10

    Imaging lateral shearing interferometers are good candidates for airborne or spaceborne Fourier-transform spectral imaging. For such applications, compactness is one key parameter. In this article, we compare the size of four mirror-based interferometers, the Michelson interferometer with roof-top (or corner-cube) mirrors, and the cyclic interferometers with two, three, and four mirrors, focusing more particularly on the last two designs. We give the expression of the translation they induce between the two exiting rays. We then show that the cyclic interferometer with three mirrors can be made quite compact. Nevertheless, the Michelson interferometer is the most compact solution, especially for highly diverging beams.

  9. Compact, Reliable EEPROM Controller

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2010-01-01

    A compact, reliable controller for an electrically erasable, programmable read-only memory (EEPROM) has been developed specifically for a space-flight application. The design may be adaptable to other applications in which there are requirements for reliability in general and, in particular, for prevention of inadvertent writing of data in EEPROM cells. Inadvertent writes pose risks of loss of reliability in the original space-flight application and could pose such risks in other applications. Prior EEPROM controllers are large and complex and do not provide all reasonable protections (in many cases, few or no protections) against inadvertent writes. In contrast, the present controller provides several layers of protection against inadvertent writes. The controller also incorporates a write-time monitor, enabling determination of trends in the performance of an EEPROM through all phases of testing. The controller has been designed as an integral subsystem of a system that includes not only the controller and the controlled EEPROM aboard a spacecraft but also computers in a ground control station, relatively simple onboard support circuitry, and an onboard communication subsystem that utilizes the MIL-STD-1553B protocol. (MIL-STD-1553B is a military standard that encompasses a method of communication and electrical-interface requirements for digital electronic subsystems connected to a data bus. MIL-STD- 1553B is commonly used in defense and space applications.) The intent was to both maximize reliability while minimizing the size and complexity of onboard circuitry. In operation, control of the EEPROM is effected via the ground computers, the MIL-STD-1553B communication subsystem, and the onboard support circuitry, all of which, in combination, provide the multiple layers of protection against inadvertent writes. There is no controller software, unlike in many prior EEPROM controllers; software can be a major contributor to unreliability, particularly in fault

  10. Compact Holographic Data Storage

    NASA Technical Reports Server (NTRS)

    Chao, T. H.; Reyes, G. F.; Zhou, H.

    2001-01-01

    NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.

  11. Compact Star Time Scales

    NASA Astrophysics Data System (ADS)

    Swank, J. H.

    1996-12-01

    A major goal of RXTE is to investigate the fastest timing signals from compact stars, especially neutron stars and black holes. Signals have now been found from many (at least nine) low mass X-ray binaries containing neutron stars in the frequency range (100-1200 Hz) expected for the rotation period of the neutron star after being spun up by accretion over a long period. The kilohertz frequency domain for these sources is simpler than the domain of oscillations below about 50 Hz in that a few isolated features can dominate over white noise. However there are three main features to consider (not all present at the same time) and at least two are quasiperiodic with varying widths and frequencies. Several models are pitting their predictions against the behavior of these features, but the bursters, especially, appear to be revealing the neutron stars's spin. It is consistent with our beliefs that no black hole candidate has shown the same complex of signals, although at least one QPO frequency of a few hundred Hz could be expected in black hole candidates by analogy to the 67 Hz observed from GRS 1915+105. The observations also provide critical tests of the interpretions of the lower frequency (5-50 Hz) QPO and the variable noise seen in both low magnetic field neutron stars and black hole candidates. The kilohertz features have not been seen from the accreting pulsars with relatively high magnetic fields, but high luminosity pulsars (such as last year's transient, GRO J1744-28) reveal signatures of the dynamic interaction between the accretion flow, the magnetic field, and perhaps the neutron star surface in addition to their coherent pulsations.

  12. Localizing the angular momentum of linear gravity

    NASA Astrophysics Data System (ADS)

    Butcher, Luke M.; Lasenby, Anthony; Hobson, Michael

    2012-10-01

    In a previous article [L. M. Butcher, , Phys. Rev. D 82, 104040 (2010).], we derived an energy-momentum tensor for linear gravity that exhibited positive energy density and causal energy flux. Here we extend this framework by localizing the angular momentum of the linearized gravitational field, deriving a gravitational spin tensor which possesses similarly desirable properties. By examining the local exchange of angular momentum (between matter and gravity) we find that gravitational intrinsic spin is localized, separately from “orbital” angular momentum, in terms of a gravitational spin tensor. This spin tensor is then uniquely determined by requiring that it obey two simple physically motivated algebraic conditions. Firstly, the spin of an arbitrary (harmonic-gauge) gravitational plane wave is required to flow in the direction of propagation of the wave. Secondly, the spin tensor of any transverse-traceless gravitational field is required to be traceless. (The second condition ensures that local field redefinitions suffice to cast our gravitational energy-momentum tensor and spin tensor as sources of gravity in a quadratic approximation to general relativity.) Additionally, the following properties arise in the spin tensor spontaneously: all transverse-traceless fields have purely spatial spin, and any field generated by a static distribution of matter will carry no spin at all. Following the structure of our previous paper, we then examine the (spatial) angular momentum exchanged between the gravitational field and an infinitesimal detector, and develop a microaveraging procedure that renders the process gauge-invariant. The exchange of nonspatial angular momentum (i.e., moment of energy) is also analyzed, leading us to conclude that a gravitational wave can displace the center of mass of the detector; this conclusion is also confirmed by a “first principles” treatment of the system. Finally, we discuss the spin carried by a gravitational plane wave.

  13. Development of a repetitive compact torus injector

    NASA Astrophysics Data System (ADS)

    Onchi, Takumi; McColl, David; Dreval, Mykola; Rohollahi, Akbar; Xiao, Chijin; Hirose, Akira; Zushi, Hideki

    2013-10-01

    A system for Repetitive Compact Torus Injection (RCTI) has been developed at the University of Saskatchewan. CTI is a promising fuelling technology to directly fuel the core region of tokamak reactors. In addition to fuelling, CTI has also the potential for (a) optimization of density profile and thus bootstrap current and (b) momentum injection. For steady-state reactor operation, RCTI is necessary. The approach to RCTI is to charge a storage capacitor bank with a large capacitance and quickly charge the CT capacitor bank through a stack of integrated-gate bipolar transistors (IGBTs). When the CT bank is fully charged, the IGBT stack will be turned off to isolate banks, and CT formation/acceleration sequence will start. After formation of each CT, the fast bank will be replenished and a new CT will be formed and accelerated. Circuits for the formation and the acceleration in University of Saskatchewan CT Injector (USCTI) have been modified. Three CT shots at 10 Hz or eight shots at 1.7 Hz have been achieved. This work has been sponsored by the CRC and NSERC, Canada.

  14. Final fate of compact boson star mergers

    NASA Astrophysics Data System (ADS)

    Bezares, Miguel; Palenzuela, Carlos; Bona, Carles

    2017-06-01

    Boson stars, self-gravitating objects made of a complex scalar field, have been proposed as simple models for very different scenarios, ranging from galaxy dark matter to black hole mimickers. Here we focus on a very compact type of boson stars to study binary mergers by varying different parameters, namely the phase shift, the direction of rotation, and the angular momentum. Our aim is to investigate the properties of the object resulting from the merger in these different scenarios by means of numerical evolutions. These simulations, performed by using a modification of the covariant conformal Z4 formalism of the Einstein equations that does not require the algebraic enforcing of any constraint, indicate that the final state after a head-on collision of low mass boson stars is another boson star. However, almost complete annihilation of the stars occurs during the merger of a boson-antiboson pair. The merger of orbiting boson stars form a rotating bar that quickly relaxes to a nonrotating boson star.

  15. Compact sorting of optical vortices by means of diffractive transformation optics.

    PubMed

    Ruffato, Gianluca; Massari, Michele; Romanato, Filippo

    2017-02-01

    The orbital angular momentum (OAM) of light has recently attracted a growing interest as a new degree of freedom in order to increase the information capacity of today's optical networks, both for free-space and optical fiber transmission. Here we present our work of design, fabrication, and optical characterization of diffractive optical elements for compact OAM mode division demultiplexing based on optical transformations. Samples have been fabricated with 3D high-resolution electron beam lithography on a polymethylmethacrylate resist layer spun over a glass substrate. Their high compactness and efficiency make these optical devices promising for integration into next-generation platforms for OAM modes processing in telecom applications.

  16. Compact sorting of optical vortices by means of diffractive transformation optics

    NASA Astrophysics Data System (ADS)

    Ruffato, Gianluca; Massari, Michele; Romanato, Filippo

    2017-02-01

    The orbital angular momentum (OAM) of light has recently attracted a growing interest as a new degree of freedom in order to increase the information capacity of today optical networks both for free-space and optical fiber transmission. Here we present our work of design, fabrication and optical characterization of diffractive optical elements for compact OAM-mode division demultiplexing based on optical transformations. Samples have been fabricated with 3D high-resolution electron beam lithography on polymethylmethacrylate (PMMA) resist layer spun over a glass substrate. Their high compactness and efficiency make these optical devices promising for integration into next-generation platforms for OAM-modes processing in telecom applications.

  17. What Is Business's Social Compact?

    ERIC Educational Resources Information Center

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  18. What Is Business's Social Compact?

    ERIC Educational Resources Information Center

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  19. An isolated compact galaxy triplet

    NASA Astrophysics Data System (ADS)

    Feng, Shuai; Shao, Zheng-Yi; Shen, Shi-Yin; Argudo-Fernández, Maria; Wu, Hong; Lam, Man-I.; Yang, Ming; Yuan, Fang-Ting

    2016-05-01

    We report the discovery of an isolated compact galaxy triplet SDSS J084843.45+164417.3, which is first detected by the LAMOST spectral survey and then confirmed by a spectroscopic observation of the BFOSC mounted on the 2.16 meter telescope located at Xinglong Station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. It is found that this triplet is an isolated and extremely compact system, which has an aligned configuration and very small radial velocity dispersion. The member galaxies have similar colors and show marginal star formation activities. These results support the opinion that the compact triplets are well-evolved systems rather than hierarchically forming structures. This serendipitous discovery reveals the limitations of fiber spectral redshift surveys in studying such a compact system, and demonstrates the necessity of additional observations to complete the current redshift sample.

  20. Compact Shelving Ten Years Later.

    ERIC Educational Resources Information Center

    Morris, Leslie R.

    1998-01-01

    Discusses experiences at the Niagara University Library with compact shelving. Highlights include citations to other relevant articles; patron use; selection of vendor; reliability; possible problems; and installation considerations, such as floor-load requirements. (LRW)

  1. A compact rotary vane attenuator

    NASA Technical Reports Server (NTRS)

    Nixon, D. L.; Otosh, T. Y.; Stelzried, C. T.

    1969-01-01

    Rotary vane attenuator, when used as a front end attenuator, introduces an insertion loss that is proportional to the angle of rotation. New technique allows the construction of a shortened compact unit suitable for most installations.

  2. Compact Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1988-01-01

    Longitudinal pumping by laser diodes increases efficiency. Improved holmium:yttrium lithium fluoride laser radiates as much as 56 mW of power at wavelength of 2.1 micrometer. New Ho:YLF laser more compact and efficient than older, more powerful devices of this type. Compact, efficient Ho:YLF laser based on recent successes in use of diode lasers to pump other types of solid-state lasers.

  3. Negative Certainty

    ERIC Educational Resources Information Center

    Ariso, José María

    2017-01-01

    The definitions of "negative knowledge" and the studies in this regard published to date have not considered the categorial distinction Wittgenstein established between knowledge and certainty. Hence, the important role that certainty, despite its omission, should have in these definitions and studies has not yet been shown. In this…

  4. Negative Certainty

    ERIC Educational Resources Information Center

    Ariso, José María

    2017-01-01

    The definitions of "negative knowledge" and the studies in this regard published to date have not considered the categorial distinction Wittgenstein established between knowledge and certainty. Hence, the important role that certainty, despite its omission, should have in these definitions and studies has not yet been shown. In this…

  5. Negative Numbers

    ERIC Educational Resources Information Center

    Galbraith, Mary J.

    1974-01-01

    Examination of models for representing integers demonstrates that formal operational thought is required for establishing the operations on integers. Advocated is the use of many models for introducing negative numbers but, apart from addition, it is recommended that operations on integers be delayed until the formal operations stage. (JP)

  6. Seismic evidence for the loss of stellar angular momentum before the white-dwarf stage.

    PubMed

    Charpinet, S; Fontaine, G; Brassard, P

    2009-09-24

    White-dwarf stars represent the final products of the evolution of some 95% of all stars. If stars were to keep their angular momentum throughout their evolution, their white-dwarf descendants, owing to their compact nature, should all rotate relatively rapidly, with typical periods of the order of a few seconds. Observations of their photospheres show, in contrast, that they rotate much more slowly, with periods ranging from hours to tens of years. It is not known, however, whether a white dwarf could 'hide' some of its original angular momentum below the superficial layers, perhaps spinning much more rapidly inside than at its surface. Here we report a determination of the internal rotation profile of a white dwarf using a method based on asteroseismology. We show that the pulsating white dwarf PG 1159-035 rotates as a solid body (encompassing more than 97.5% of its mass) with the relatively long period of 33.61 +/- 0.59 h. This implies that it has lost essentially all of its angular momentum, thus favouring theories which suggest important angular momentum transfer and loss in evolutionary phases before the white-dwarf stage.

  7. IN-SPIRALING CLUMPS IN BLUE COMPACT DWARF GALAXIES

    SciTech Connect

    Elmegreen, Bruce G.; Zhang Hongxin; Hunter, Deidre A.

    2012-03-10

    Giant star formation clumps in dwarf irregular galaxies can have masses exceeding a few percent of the galaxy mass enclosed inside their orbital radii. They can produce sufficient torques on dark matter halo particles, halo stars, and the surrounding disk to lose their angular momentum and spiral into the central region in 1 Gyr. Pairs of giant clumps with similarly large relative masses can interact and exchange angular momentum to the same degree. The result of this angular momentum loss is a growing central concentration of old stars, gas, and star formation that can produce a long-lived starburst in the inner region, identified with the blue compact dwarf (BCD) phase. This central concentration is proposed to be analogous to the bulge in a young spiral galaxy. Observations of star complexes in five local BCDs confirm the relatively large clump masses that are expected for this process. The observed clumps also seem to contain old field stars, even after background light subtraction, in which case the clumps may be long-lived. The two examples with clumps closest to the center have the largest relative clump masses and the greatest contributions from old stars. An additional indication that the dense central regions of BCDs are like bulges is the high ratio of the inner disk scale height to the scale length, which is comparable to 1 for four of the galaxies.

  8. Numerical validation of axial plasma momentum lost to a lateral wall induced by neutral depletion

    SciTech Connect

    Takao, Yoshinori; Takahashi, Kazunori

    2015-11-15

    Momentum imparted to a lateral wall of a compact inductively coupled plasma thruster is numerically investigated for argon and xenon gases by a particle-in-cell simulation with Monte Carlo collisions (PIC-MCC). Axial plasma momentum lost to a lateral wall is clearly shown when axial depletion of the neutrals is enhanced, which is in qualitative agreement with the result in a recent experiment using a helicon plasma source [Takahashi et al., Phys. Rev. Lett. 114, 195001 (2015)]. The PIC-MCC calculations demonstrate that the neutral depletion causes an axially asymmetric profile of the plasma density and potential, leading to axial ion acceleration and the non-negligible net axial force exerted to the lateral wall in the opposite direction of the thrust.

  9. Compaction with automatic jog introduction

    NASA Astrophysics Data System (ADS)

    Maley, F. M.

    1985-10-01

    A novel polynomial-time algorithm for compacting a VLSI layout is presented. Compared to previous algorithms, the algorithm promises to produce higher quality output while reducing the need for designer intervention. The performance gain is realized by converting wires into constraints on the positions of the active devices. These constraints can be solved by graph-theoretic techniques to yield optimal positions for chip components. A single-layer router is then used to restore the wires to the layout, using as many as jogs as necessary. An automated compaction procedure is an effective tool for cutting production costs of a VLSI circuit at low cost to the designer, because the yield of fabricated chips is strongly dependent on the total circuit area. Sect 1 is an introduction. Sect 2 states the definitions and theoretical results that underlie the new compaction method. Sect 3 shows how the circuit layout is converted to a data structure appropriate for compaction, and Sect 4 details the body of the compaction algorithm. Sect 5 covers several improvements to the algorithm that should make it run considerably faster. Sect 6 comments on the algorithms of results, and a discussion of the practical value of the compaction algorithm.

  10. Onset of superradiant instabilities in rotating spacetimes of exotic compact objects

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2017-06-01

    Exotic compact objects, horizonless spacetimes with reflective properties, have intriguingly been suggested by some quantum-gravity models as alternatives to classical black-hole spacetimes. A remarkable feature of spinning horizonless compact objects with reflective boundary conditions is the existence of a discrete set of critical surface radii, { r c( ā; n)} n = 1 n = ∞ , which can support spatially regular static ( marginally-stable) scalar field configurations (here ā≡ J/ M 2 is the dimensionless angular momentum of the exotic compact object). Interestingly, the outermost critical radius r c max ≡ max n { r c( ā; n)} marks the boundary between stable and unstable exotic compact objects: spinning objects whose reflecting surfaces are situated in the region r c > r c max ( ā) are stable, whereas spinning objects whose reflecting surfaces are situated in the region r c < r c max ( ā) are superradiantly unstable to scalar perturbation modes. In the present paper we use analytical techniques in order to explore the physical properties of the critical (marginally-stable) spinning exotic compact objects. In particular, we derive a remarkably compact analytical formula for the discrete spectrum { r c max ( ā)} of critical radii which characterize the marginally-stable exotic compact objects. We explicitly demonstrate that the analytically derived resonance spectrum agrees remarkably well with numerical results that recently appeared in the physics literature.

  11. An orbital angular momentum spectrometer for electrons

    NASA Astrophysics Data System (ADS)

    Harvey, Tyler; Grillo, Vincenzo; McMorran, Benjamin

    2016-05-01

    With the advent of techniques for preparation of free-electron and neutron orbital angular momentum (OAM) states, a basic follow-up question emerges: how do we measure the orbital angular momentum state distribution in matter waves? Control of both the energy and helicity of light has produced a range of spectroscopic applications, including molecular fingerprinting and magnetization mapping. Realization of an analogous dual energy-OAM spectroscopy with matter waves demands control of both initial and final energy and orbital angular momentum states: unlike for photons, final state post-selection is necessary for particles that cannot be annihilated. We propose a magnetic field-based mechanism for quantum non-demolition measurement of electron OAM. We show that OAM-dependent lensing is produced by an operator of form U =exp iLzρ2/ℏb2 where ρ =√{x2 +y2 } is the radial position operator, Lz is the orbital angular momentum operator along z, and b is the OAM dispersion length. We can physically realize this operator as a term in the time evolution of an electron in magnetic round lens. We discuss prospects and practical challenges for implementation of a lensing orbital angular momentum measurement. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under the Early Career Research Program Award # DE-SC0010466.

  12. Wave Angular Momentum in Nonneutral Plasmas

    NASA Astrophysics Data System (ADS)

    Gould, Roy W.

    1999-11-01

    We show that angular momentum and energy are added or removed when exciting a mode, such as a diocotron, Trivelpiece-Gould, or Dubin mode, and we calculate the rates (with sign) at which angular momentum and energy are added by the application of a ``rotating wall" field. Excitation of a mode which rotates faster than the plasma increases the total angular momentum and total energy and compresses the plasma, whereas excitation of a mode which rotates slower than the plasma decreases the total angular momentum and total energy and expands the plasma, in accord with recent ``rotating wall" experiments^1. Furthermore, the transfer rates are sharply peaked when the angular velocity of the ``rotating wall" is equal to the angular velocity of a mode, because mode excitation is a resonant process. Thus mode excitation is a very efficient way to transfer angular momentum and energy to or from the plasma. We also calculate the torque on a spheroidal Coulomb crystal which is phase-locked^2 to a ``rotating wall" field, and discuss phase oscillations and the maximum rate of acceleration which can be achieved. 1 F. Anderegg et al, Phys. Rev. Lett. 81 4875 (1998). 2 X.-P. Huang et al, Phys. Rev. Lett. 80 73 (1998).

  13. Momentum considerations on the New MEXICO experiment

    NASA Astrophysics Data System (ADS)

    Parra, E. A.; Boorsma, K.; Schepers, J. G.; Snel, H.

    2016-09-01

    The present paper regards axial and angular momentum considerations combining detailed loads from pressure sensors and the flow field mapped with particle image velocimetry (PIV) techniques. For this end, the study implements important results leaning on experimental data from wind tunnel measurements of the New MEXICO project. The measurements, taken on a fully instrumented rotor, were carried out in the German Dutch Wind tunnel Organisation (DNW) testing the MEXICO rotor in the open section. The work revisits the so-called momentum theory, showing that the integral thrust and torque measured on the rotor correspond with an extent of 0.7 and 2.4% respectively to the momentum balance of the global flow field using the general momentum equations. Likewise, the sectional forces combined with the local induced velocities are found to plausibly obey the annular streamtube theory, albeit some limitations in the axial momentum become more apparent at high inductions after a=0.3. Finally, azimuth induced velocities are measured and compared to predictions from models of Glauert and Burton et al., showing close-matching forecasts for blade spans above 25%.

  14. Compact Optoelectronic Compass

    NASA Technical Reports Server (NTRS)

    Christian, Carl

    2004-01-01

    A compact optoelectronic sensor unit measures the apparent motion of the Sun across the sky. The data acquired by this chip are processed in an external processor to estimate the relative orientation of the axis of rotation of the Earth. Hence, the combination of this chip and the external processor finds the direction of true North relative to the chip: in other words, the combination acts as a solar compass. If the compass is further combined with a clock, then the combination can be used to establish a threeaxis inertial coordinate system. If, in addition, an auxiliary sensor measures the local vertical direction, then the resulting system can determine the geographic position. This chip and the software used in the processor are based mostly on the same design and operation as those of the unit described in Micro Sun Sensor for Spacecraft (NPO-30867) elsewhere in this issue of NASA Tech Briefs. Like the unit described in that article, this unit includes a small multiple-pinhole camera comprising a micromachined mask containing a rectangular array of microscopic pinholes mounted a short distance in front of an image detector of the active-pixel sensor (APS) type (see figure). Further as in the other unit, the digitized output of the APS in this chip is processed to compute the centroids of the pinhole Sun images on the APS. Then the direction to the Sun, relative to the compass chip, is computed from the positions of the centroids (just like a sundial). In the operation of this chip, one is interested not only in the instantaneous direction to the Sun but also in the apparent path traced out by the direction to the Sun as a result of rotation of the Earth during an observation interval (during which the Sun sensor must remain stationary with respect to the Earth). The apparent path of the Sun across the sky is projected on a sphere. The axis of rotation of the Earth lies at the center of the projected circle on the sphere surface. Hence, true North (not magnetic

  15. Non-compact local excitations in spin-glasses

    NASA Astrophysics Data System (ADS)

    Lamarcq, J.; Bouchaud, J.-P.; Martin, O. C.; Mézard, M.

    2002-05-01

    We study numerically the local low-energy excitations in the 3d Edwards-Anderson model for spin-glasses. Given the ground state, we determine the lowest-lying connected cluster of flipped spins with a fixed volume containing one given spin. These excitations are not compact, having a fractal dimension close to two, suggesting an analogy with lattice animals. Also, their energy does not grow with their size; the associated exponent is slightly negative whereas the one for compact clusters is positive. These findings call for a modification of the basic hypotheses underlying the droplet model.

  16. Ball bearing versus magnetic bearing reaction and momentum wheels as momentum actuators

    NASA Technical Reports Server (NTRS)

    Auer, W.

    1980-01-01

    Different bearing technologies of momentum actuators for the attitude control of satellites are compared and a guideline for the selection of the suitable momentum actuators or momentum actuator configurations to meet given mission goals with high reliability and low cost is developed. The comparison between ball bearing and magnetic bearing momentum actuators shows that given mission requirements can be economically met by employing the ball bearing technology without decreasing reliability and lifetime. However, for some special mission requirements, such as 'zero friction at zero speed,' fine pointing (met by vernier gimballing), and/or active damping, magnetic bearings may be advantageous. This makes it evident that magnetic bearing technology will not replace ball bearing technology for momentum actuators, but will supplement it for some special mission requirements.

  17. Observation of anomalous momentum transport in tokamak plasmas with no momentum input.

    PubMed

    Lee, W D; Rice, J E; Marmar, E S; Greenwald, M J; Hutchinson, I H; Snipes, J A

    2003-11-14

    Anomalous momentum transport has been observed in Alcator C-Mod tokamak plasmas through analysis of the time evolution of core impurity toroidal rotation velocity profiles. Following the L-mode to EDA (enhanced D(alpha)) H-mode transition, the ensuing cocurrent toroidal rotation velocity, which is generated in the absence of any external momentum source, is observed to propagate in from the edge plasma to the core. The steady state toroidal rotation velocity profiles are relatively flat and the momentum transport can be simulated with a simple diffusion model. Velocity profiles during edge localized mode free (ELM-free) H-modes are centrally peaked, which suggests the addition of inward momentum convection. In all operating regimes the observed momentum diffusivities are much larger than the neoclassical values.

  18. Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination

    SciTech Connect

    Barada, Daisuke; Juman, Guzhaliayi; Yoshida, Itsuki; Miyamoto, Katsuhiko; Omatsu, Takashige; Kawata, Shigeo; Ohno, Seigo

    2016-02-01

    It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum and a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.

  19. No time machine construction in open 2+1 gravity with timelike total energy-momentum

    NASA Astrophysics Data System (ADS)

    Tiglio, Manuel H.

    1998-09-01

    It is shown that in (2+1)-dimensional gravity an open spacetime with timelike sources and total energy momentum cannot have a stable compactly generated Cauchy horizon. This constitutes a proof of a version of Kabat's conjecture and shows, in particular, that not only a Gott time machine cannot be formed from processes such as the decay of a single cosmic string as has been shown by Carroll et al., but that, in a precise sense, a time machine cannot be constructed at all.

  20. Universal high frequency high momentum behavior of dynamic structure factor in one dimensional interacting boson gas

    NASA Astrophysics Data System (ADS)

    Qi, Ran; Pustilnik, Michael; Tan, Shina

    2014-03-01

    We study the short-distance and short-time structure of density-density correlation in one dimensional repulsively interacting boson gas. A compact universal formula is obtained for the high frequency high momentum asymptotic behavior of dynamic structure factor. We observe non-monotonous behavior in the dependence of DSF on interacting strength and qualitative change in the singular behavior in different region of q2 / ω . Possible experimental applications are discussed. R.Q. is supported by the NSFC under Grant No. 11104157.

  1. Jet momentum balance independent of shear viscosity

    NASA Astrophysics Data System (ADS)

    Neufeld, R. B.

    2012-03-01

    Jet momentum balance measurements, such as those recently performed by the CMS collaboration, provide an opportunity to quantify the energy transferred from a parton shower to the underlying medium in heavy-ion collisions. Specifically, I argue that the Cooper-Frye freeze-out distribution associated with the energy and momentum deposited by the parton shower is controlled to a significant extent by the distribution of the underlying bulk matter and independent of the details of how deposited energy is redistributed in the medium, which is largely determined by transport coefficients such as shear viscosity. Thus, by matching the distribution of momentum associated with the secondary jet in such measurements to the thermal distribution of the underlying medium, one can obtain a model-independent estimate on the amount of parton shower energy deposited.

  2. Electromagnetic angular momentum transport in Saturn's rings

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Morfill, G. E.; Ip, W.; Gruen, E.; Havnes, O.

    1986-01-01

    It is shown here that submicrometer dust particles sporadically elevated above Saturn's ring are subject to electromagnetic forces which will reduce their angular momentum inside synchronous orbit and increase it outside. When the dust is reabsorbed by the ring the angular momentum of the ring is decreased (increased) inside (outside) of synchronous orbit. For the case of the spokes in Saturn's B-ring it is estimated that the timescale for transporting ring material due to this angular momentum coupling effect is comparable to the viscous transport time or even smaller. It is suggested that the minimum in the optical depth of the B-ring at synchronous orbit is due to this effect.

  3. Lagrange-mesh calculations in momentum space.

    PubMed

    Lacroix, Gwendolyn; Semay, Claude; Buisseret, Fabien

    2012-08-01

    The Lagrange-mesh method is a powerful method to solve eigenequations written in configuration space. It is very easy to implement and very accurate. Using a Gauss quadrature rule, the method requires only the evaluation of the potential at some mesh points. The eigenfunctions are expanded in terms of regularized Lagrange functions which vanish at all mesh points except one. It is shown that this method can be adapted to solve eigenequations written in momentum space, keeping the convenience and the accuracy of the original technique. In particular, the kinetic operator is a diagonal matrix. Observables and wave functions in both configuration space and momentum space can also be easily computed with good accuracy using only eigenfunctions computed in the momentum space. The method is tested with Gaussian and Yukawa potentials, requiring, respectively, a small and a large mesh to reach convergence. Corresponding wave functions in both spaces are compared with each other using the Fourier transform.

  4. Energy angular momentum closed-loop guidance

    NASA Astrophysics Data System (ADS)

    Patera, Russell P.

    2015-03-01

    A novel guidance algorithm for launch vehicle ascent to the desired mission orbit is proposed. The algorithm uses total specific energy and orbital angular momentum as new state vector parameters. These parameters are ideally suited for the ascent guidance task, since the guidance algorithm steers the launch vehicle along a pre-flight optimal trajectory in energy angular momentum space. The guidance algorithm targets apogee, perigee, inclination and right ascension of ascending node. Computational complexities are avoided by eliminating time in the guidance computation and replacing it with angular momentum magnitude. As a result, vehicle acceleration, mass, thrust, length of motor burns, and staging times are also eliminated from the pitch plane guidance calculations. The algorithm does not involve launch vehicle or target state propagation, which results in minimal computational effort. Proof of concept of the new algorithm is presented using several numerical examples that illustrate performance results.

  5. Optical angular momentum in a rotating frame.

    PubMed

    Speirits, Fiona C; Lavery, Martin P J; Padgett, Miles J; Barnett, Stephen M

    2014-05-15

    It is well established that light carrying orbital angular momentum (OAM) can be used to induce a mechanical torque causing an object to spin. We consider the complementary scenario: will an observer spinning relative to the beam axis measure a change in OAM as a result of their rotational velocity? Remarkably, although a linear Doppler shift changes the linear momentum of a photon, the angular Doppler shift induces no change in the angular momentum. Further, we examine the rotational Doppler shift in frequency imparted to the incident light due to the relative motion of the beam with respect to the observer and consider what must happen to the measured wavelength if the speed of light c is to remain constant. We show specifically that the OAM of the incident beam is not affected by the rotating observer and that the measured wavelength is shifted by a factor equal and opposite to that of the frequency shift induced by the rotational Doppler effect.

  6. Plasma electron hole kinematics. I. Momentum conservation

    SciTech Connect

    Hutchinson, I. H.; Zhou, C.

    2016-08-15

    We analyse the kinematic properties of a plasma electron hole: a non-linear self-sustained localized positive electric potential perturbation, trapping electrons, which behaves as a coherent entity. When a hole accelerates or grows in depth, ion and electron plasma momentum is changed both within the hole and outside, by an energization process we call jetting. We present a comprehensive analytic calculation of the momentum changes of an isolated general one-dimensional hole. The conservation of the total momentum gives the hole's kinematics, determining its velocity evolution. Our results explain many features of the behavior of hole speed observed in numerical simulations, including self-acceleration at formation, and hole pushing and trapping by ion streams.

  7. Adaptive momentum management for large space structures

    NASA Technical Reports Server (NTRS)

    Hahn, E.

    1987-01-01

    Momentum management is discussed for a Large Space Structure (LSS) with the structure selected configuration being the Initial Orbital Configuration (IOC) of the dual keel space station. The external forces considered were gravity gradient and aerodynamic torques. The goal of the momentum management scheme developed is to remove the bias components of the external torques and center the cyclic components of the stored angular momentum. The scheme investigated is adaptive to uncertainties of the inertia tensor and requires only approximate knowledge of principle moments of inertia. Computational requirements are minimal and should present no implementation problem in a flight type computer and the method proposed is shown to be effective in the presence of attitude control bandwidths as low as .01 radian/sec.

  8. Angular momentum conservation in dipolar energy transfer.

    PubMed

    Guo, Dong; Knight, Troy E; McCusker, James K

    2011-12-23

    Conservation of angular momentum is a familiar tenet in science but has seldom been invoked to understand (or predict) chemical processes. We have developed a general formalism based on Wigner's original ideas concerning angular momentum conservation to interpret the photo-induced reactivity of two molecular donor-acceptor assemblies with physical properties synthetically tailored to facilitate intramolecular energy transfer. Steady-state and time-resolved spectroscopic data establishing excited-state energy transfer from a rhenium(I)-based charge-transfer state to a chromium(III) acceptor can be fully accounted for by Förster theory, whereas the corresponding cobalt(III) adduct does not undergo an analogous reaction despite having a larger cross-section for dipolar coupling. Because this pronounced difference in reactivity is easily explained within the context of the angular momentum conservation model, this relatively simple construct may provide a means for systematizing a broad range of chemical reactions.

  9. Large Quantum Probability Backflow and the Azimuthal Angle-Angular Momentum Uncertainty Relation for an Electron in a Constant Magnetic Field

    ERIC Educational Resources Information Center

    Strange, P.

    2012-01-01

    In this paper we demonstrate a surprising aspect of quantum mechanics that is accessible to an undergraduate student. We discuss probability backflow for an electron in a constant magnetic field. It is shown that even for a wavepacket composed entirely of states with negative angular momentum the effective angular momentum can take on positive…

  10. Large Quantum Probability Backflow and the Azimuthal Angle-Angular Momentum Uncertainty Relation for an Electron in a Constant Magnetic Field

    ERIC Educational Resources Information Center

    Strange, P.

    2012-01-01

    In this paper we demonstrate a surprising aspect of quantum mechanics that is accessible to an undergraduate student. We discuss probability backflow for an electron in a constant magnetic field. It is shown that even for a wavepacket composed entirely of states with negative angular momentum the effective angular momentum can take on positive…

  11. Natural examples of Valdivia compact spaces

    NASA Astrophysics Data System (ADS)

    Kalenda, Ondrej F. K.

    2008-04-01

    We collect examples of Valdivia compact spaces, their continuous images and associated classes of Banach spaces which appear naturally in various branches of mathematics. We focus on topological constructions generating Valdivia compact spaces, linearly ordered compact spaces, compact groups, L1 spaces, Banach lattices and noncommutative L1 spaces.

  12. Convective Momentum Transport Associated with the Madden-Julian Oscillation Based on Reanalysis Dataset

    NASA Astrophysics Data System (ADS)

    Oh, J. H.; Jiang, X.; Waliser, D. E.; Moncrieff, M. W.; Johnson, R. H.

    2014-12-01

    As one of the most prominent tropical atmospheric variability modes, the Madden-Julian Oscillation (MJO) exerts profound influences on global weather and climate, and serves as a critical predictability source for extend-range forecast. In spite of the recent effort toward improving the ability of general circulation models (GCMs) to simulate the MJO, significant challenges still remain for current GCMs to produce more realistic MJO simulations. Previous studies have highlighted the important role of multi-scale interactions within the MJO including the momentum exchanges in order to improve MJO prediction skill. In this study, convective momentum transport (CMT) associated with the MJO is analyzed based on the recent NOAA Climate Forecast System Reanalysis (CFSR), in particular, by capitalizing on its archive of the parameterized subgrid CMT. Consistent with previous cloud-resolving model study, a three-layer vertical structure associated with the MJO is clear in the subgrid CMT from the CFSR. In association with enhanced MJO convection over both the Indian Ocean (IO) and western Pacific (WP), within and to the west (east) of the MJO convection, positive (negative), negative (positive), positive (negative) subgrid CMT momentum tendency anomalies are evident in the upper, middle, and lower troposphere, respectively. This subgrid CMT vertical structure tends to damp the large-scale MJO circulation in the middle and upper troposphere, but enhances MJO winds in a shallow near-surface layer. Further analyses illustrate that this three-layer vertical structure in subgrid momentum tendency of the MJO is largely balanced by grid-scale u-momentum transport. The momentum tendency structure associated with the MJO based on the CFSR is also confirmed with the European Centre for Medium-Range Forecasts (ECMWF) analysis for the two-year period of the Year of the Tropical Convection (YOTC), which further lends confidence to our results.

  13. Laser Propulsion and the Constant Momentum Mission

    SciTech Connect

    Larson, C. William; Mead, Franklin B. Jr.; Knecht, Sean D.

    2004-03-30

    We show that perfect propulsion requires a constant momentum mission, as a consequence of Newton's second law. Perfect propulsion occurs when the velocity of the propelled mass in the inertial frame of reference matches the velocity of the propellant jet in the rocket frame of reference. We compare constant momentum to constant specific impulse propulsion, which, for a given specification of the mission delta V, has an optimum specific impulse that maximizes the propelled mass per unit jet kinetic energy investment. We also describe findings of more than 50 % efficiency for conversion of laser energy into jet kinetic energy by ablation of solids.

  14. Quantized adiabatic transport in momentum space.

    PubMed

    Ho, Derek Y H; Gong, Jiangbin

    2012-07-06

    Though topological aspects of energy bands are known to play a key role in quantum transport in solid-state systems, the implications of Floquet band topology for transport in momentum space (i.e., acceleration) have not been explored so far. Using a ratchet accelerator model inspired by existing cold-atom experiments, here we characterize a class of extended Floquet bands of one-dimensional driven quantum systems by Chern numbers, reveal topological phase transitions therein, and theoretically predict the quantization of adiabatic transport in momentum space. Numerical results confirm our theory and indicate the feasibility of experimental studies.

  15. Development of a magnetically suspended momentum wheel

    NASA Technical Reports Server (NTRS)

    Hamilton, S. B.

    1973-01-01

    An engineering model of a magnetically suspended momentum wheel was designed, fabricated, and tested under laboratory conditions. The basic unit consisted of two magnet bearings, a sculptured aluminum rotor, brushless dc spin motor, and electronics. The magnet bearings, utilizing rare-earth cobltrat-samarium magnets were active radially and passive axially. The results of the program showed that momentum wheels with magnetic bearings are feasible and operable, and that magnetic bearings of this type are capable of being used for applications where high capacity, high stiffness, and low power consumption are required. The tests performed developed criteria for improved performance for future designs.

  16. Time-resolved orbital angular momentum spectroscopy

    SciTech Connect

    Noyan, Mehmet A.; Kikkawa, James M.

    2015-07-20

    We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes.

  17. The Annular Momentum Control Device (AMCD)

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Groom, N. J.

    1975-01-01

    An annular momentum control device consisting principally of a spinning rim, a set of noncontacting magnetic bearings for supporting the rim, a noncontacting electric motor for driving the rim, and, for some applications, one or more gimbals is described. The device is intended for applications where requirements for control torque and momentum storage exist. Hardware requirements and potential unit configurations are discussed. Theoretical considerations for the passive use of the device are discussed. Potential applications of the device in other than passive configurations for the attitude control, stabilization, and maneuvering of spacecraft are reported.

  18. Spacecraft momentum unloading using controlled magnetic torques

    NASA Technical Reports Server (NTRS)

    Linder, David M. (Inventor); Goodzeit, Neil E. (Inventor); Schwarzschild, Marc (Inventor)

    1992-01-01

    A method for maintaining the attitude of a three-axis controlled satellite by use of magnetic torquers includes using magnetometers for measuring the direction of the ambient geomagnetic field. The direction of the net reaction wheel momentum is also determined. The angle between the direction of the geomagnetic field and the net reaction wheel momentum is determined. The angle is compared with a threshold value. Magnetic torquer power consumption is reduced by operating the magnetic torquers only when the angle exceeds the threshold value.

  19. On the vector model of angular momentum

    NASA Astrophysics Data System (ADS)

    Saari, Peeter

    2016-09-01

    Instead of (or in addition to) the common vector diagram with cones, we propose to visualize the peculiarities of quantum mechanical angular momentum by a completely quantized 3D model. It spotlights the discrete eigenvalues and noncommutativity of components of angular momentum and corresponds to outcomes of measurements—real or computer-simulated. The latter can be easily realized by an interactive worksheet of a suitable program package of algebraic calculations. The proposed complementary method of visualization helps undergraduate students to better understand the counterintuitive properties of this quantum mechanical observable.

  20. Angular momentum paradoxes with solenoids and monopoles

    NASA Astrophysics Data System (ADS)

    Lipkin, Harry J.; Peshkin, Murray

    1982-12-01

    The Poynting vector produced by crossing the Coulomb field from a charged particle with a distant external magnetic field gives rise to a physical angular momentum which must be included in applications of angular momentum conservation and quantization. Simple examples show how the neglect of the return flux in an infinite solenoid or in two-dimensional models can lead to unphysical effects, how the Dirac charge quantization is obtained and can be modified by the presence of additional long range forces, and why the origin must be excluded in describing the motion of a point charge in the field of a fixed point monopole.

  1. Chirality and the angular momentum of light

    PubMed Central

    Götte, Jörg B.; Barnett, Stephen M.; Yao, Alison M.

    2017-01-01

    Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light–matter interactions. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069764

  2. Compact intracloud discharges

    NASA Astrophysics Data System (ADS)

    Smith, David Adam

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackbeard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackbeard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackbeard observations. On two occasions, the ground-based systems and Blackbeard even recorded emissions that were produced by the same exact events. From the ground-based observations, it has been determined that TIPP events are produced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDs, an acronym for compact intracloud discharges. During the summer of 1996, ground- based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDs. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDs were recorded from three

  3. Compact Intracloud Discharges

    SciTech Connect

    Smith, David A.

    1998-11-01

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackboard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackboard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackboard observations. On two occasions, the ground-based systems and Blackboard even recorded emissions that were produced by the same exact events. From the ground based observations, it has been determined that TIPP events areproduced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDS, an acronym for compact intracloud discharges. During the summer of 1996, ground-based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDS. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDS were recorded from three

  4. Estimating gravitational radiation from super-emitting compact binary systems

    NASA Astrophysics Data System (ADS)

    Hanna, Chad; Johnson, Matthew C.; Lehner, Luis

    2017-06-01

    Binary black hole mergers are among the most violent events in the Universe, leading to extreme warping of spacetime and copious emission of gravitational radiation. Even though black holes are the most compact objects they are not necessarily the most efficient emitters of gravitational radiation in binary systems. The final black hole resulting from a binary black hole merger retains a significant fraction of the premerger orbital energy and angular momentum. A nonvacuum system can in principle shed more of this energy than a black hole merger of equivalent mass. We study these super-emitters through a toy model that accounts for the possibility that the merger creates a compact object that retains a long-lived time-varying quadrupole moment. This toy model may capture the merger of (low mass) neutron stars, but it may also be used to consider more exotic compact binaries. We hope that this toy model can serve as a guide to more rigorous numerical investigations into these systems.

  5. Some topics in the magnetohydrodynamics of accreting magnetic compact objects

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1986-01-01

    Magnetic compact objects (neutron stars or white dwarfs) are currently thought to be present in many accreting systems that are releasing large amounts of energy. The magnetic field of the compact star may interact strongly with the accretion flow and play an essential role in the physics of these systems. Some magnetohydrodynamic (MHD) problems that are likely to be relevant in building up self-consistent models of the interaction between the accreting plasma and the star's magnetosphere are addressed in this series of lectures. The basic principles of MHD are first introduced and some important MHD mechanisms (Rayleigh-Taylor and Kelvin-Helmholtz instabilities; reconnection) are discussed, with particular reference to their role in allowing the infalling matter to penetrate the magnetosphere and mix with the field. The structure of a force-free magnetosphere and the possibility of quasistatic momentum and energy transfer between regions linked by field-aligned currents are then studied in some detail. Finally, the structure of axisymmetric accretion flows onto magnetic compact objects is considered.

  6. Some topics in the magnetohydrodynamics of accreting magnetic compact objects

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1986-01-01

    Magnetic compact objects (neutron stars or white dwarfs) are currently thought to be present in many accreting systems that are releasing large amounts of energy. The magnetic field of the compact star may interact strongly with the accretion flow and play an essential role in the physics of these systems. Some magnetohydrodynamic (MHD) problems that are likely to be relevant in building up self-consistent models of the interaction between the accreting plasma and the star's magnetosphere are addressed in this series of lectures. The basic principles of MHD are first introduced and some important MHD mechanisms (Rayleigh-Taylor and Kelvin-Helmholtz instabilities; reconnection) are discussed, with particular reference to their role in allowing the infalling matter to penetrate the magnetosphere and mix with the field. The structure of a force-free magnetosphere and the possibility of quasistatic momentum and energy transfer between regions linked by field-aligned currents are then studied in some detail. Finally, the structure of axisymmetric accretion flows onto magnetic compact objects is considered.

  7. Viral RNAs Are Unusually Compact

    PubMed Central

    Gopal, Ajaykumar; Egecioglu, Defne E.; Yoffe, Aron M.; Ben-Shaul, Avinoam; Rao, Ayala L. N.; Knobler, Charles M.; Gelbart, William M.

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly. PMID:25188030

  8. Viral RNAs are unusually compact.

    PubMed

    Gopal, Ajaykumar; Egecioglu, Defne E; Yoffe, Aron M; Ben-Shaul, Avinoam; Rao, Ayala L N; Knobler, Charles M; Gelbart, William M

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly.

  9. Inverse momentum expectation values for hydrogenic systems

    SciTech Connect

    Delbourgo, R.; Elliott, D.

    2009-06-15

    By using the Fourier transforms of the general hydrogenic bound state wave functions (as ultraspherical polynomials), one may find expectation values of arbitrary functions of momentum p. In this manner the effect of a reciprocity perturbation b/p can be evaluated for all hydrogenic states.

  10. Obama Team's Advocacy Boosts Charter Momentum

    ERIC Educational Resources Information Center

    Maxwell, Lesli A.

    2009-01-01

    President Barack Obama and U.S. Secretary of Education Arne Duncan have been championing charter schools for months, creating what some advocates believe is the most forceful national momentum to expand the largely independent public schools since the first charter opened nearly 20 years ago. That high-profile advocacy is being matched, moreover,…

  11. Momentum aperture of the advanced light source

    NASA Astrophysics Data System (ADS)

    Decking, W.; Robin, D.

    1999-04-01

    This paper shows measurements of the momentum aperture of the Advanced Light Source (ALS) based on Touschek lifetime measurements. The measured data is compared with tracking simulations and a simple model for the apertures will help to explain the observed effects.

  12. Imaging molecular geometry with electron momentum spectroscopy.

    PubMed

    Wang, Enliang; Shan, Xu; Tian, Qiguo; Yang, Jing; Gong, Maomao; Tang, Yaguo; Niu, Shanshan; Chen, Xiangjun

    2016-12-22

    Electron momentum spectroscopy is a unique tool for imaging orbital-specific electron density of molecule in momentum space. However, the molecular geometry information is usually veiled due to the single-centered character of momentum space wavefunction of molecular orbital (MO). Here we demonstrate the retrieval of interatomic distances from the multicenter interference effect revealed in the ratios of electron momentum profiles between two MOs with symmetric and anti-symmetric characters. A very sensitive dependence of the oscillation period on interatomic distance is observed, which is used to determine F-F distance in CF4 and O-O distance in CO2 with sub-Ångström precision. Thus, using one spectrometer, and in one measurement, the electron density distributions of MOs and the molecular geometry information can be obtained simultaneously. Our approach provides a new robust tool for imaging molecules with high precision and has potential to apply to ultrafast imaging of molecular dynamics if combined with ultrashort electron pulses in the future.

  13. Inclusion of angular momentum in FREYA

    SciTech Connect

    Randrup, Jørgen; Vogt, Ramona

    2015-05-18

    The event-by-event fission model FREYA generates large samples of complete fission events from which any observable can extracted, including fluctuations of the observables and the correlations between them. We describe here how FREYA was recently refined to include angular momentum throughout. Subsequently we present some recent results for both neutron and photon observables.

  14. The high momentum spectrometer drift chambers

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Baker, O. K.; Beaufait, J.; Bennett, C.; Bryant, E.; Carlini, R.; Kross, B.; McCauley, A.; Naing, W.; Shin, T.; Vulcan, W.

    1992-12-01

    The High Momentum Spectrometer in Hall C will use planar drift chambers for charged particle track reconstruction. The chambers are constructed using well understood technology and a conventional gas mixture. Two (plus one spare) drift chambers will be constructed for this spectrometers. Each chamber will contain 6 planes of readout channels. This paper describes the chamber design and gas handling system used.

  15. Behavioral Momentum Theory: Equations and Applications

    ERIC Educational Resources Information Center

    Nevin, John A.; Shahan, Timothy A.

    2011-01-01

    Behavioral momentum theory provides a quantitative account of how reinforcers experienced within a discriminative stimulus context govern the persistence of behavior that occurs in that context. The theory suggests that all reinforcers obtained in the presence of a discriminative stimulus increase resistance to change, regardless of whether those…

  16. Unified Technical Concepts. Module 4: Momentum.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on momentum is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. This…

  17. Imaging molecular geometry with electron momentum spectroscopy

    PubMed Central

    Wang, Enliang; Shan, Xu; Tian, Qiguo; Yang, Jing; Gong, Maomao; Tang, Yaguo; Niu, Shanshan; Chen, Xiangjun

    2016-01-01

    Electron momentum spectroscopy is a unique tool for imaging orbital-specific electron density of molecule in momentum space. However, the molecular geometry information is usually veiled due to the single-centered character of momentum space wavefunction of molecular orbital (MO). Here we demonstrate the retrieval of interatomic distances from the multicenter interference effect revealed in the ratios of electron momentum profiles between two MOs with symmetric and anti-symmetric characters. A very sensitive dependence of the oscillation period on interatomic distance is observed, which is used to determine F-F distance in CF4 and O-O distance in CO2 with sub-Ångström precision. Thus, using one spectrometer, and in one measurement, the electron density distributions of MOs and the molecular geometry information can be obtained simultaneously. Our approach provides a new robust tool for imaging molecules with high precision and has potential to apply to ultrafast imaging of molecular dynamics if combined with ultrashort electron pulses in the future. PMID:28004794

  18. The angular momentum distribution in galactic halos

    NASA Astrophysics Data System (ADS)

    Quinn, P. J.; Zurek, W. H.

    1988-08-01

    N-body simulations are used to model the formation of individual galactic halos from scale-free density perturbations in universes dominated by cold, nondissipative dark matter. In well-mixed halos, the angular momentum distribution is shown to have a systematic behavior with power law index n corresponding to that found for circular rotation curves. For a given n, the distribution of angular momentum has the same trend with radius and energy as that implied for a halo in which all the matter has its maximum possible angular momentum. Dynamical mixing during the relaxation of the halo redistributes both angular momentum and binding energy in an orderly manner. The organized nature of the collapse means that relaxation is not completely violent and that the secondary infall paradigm, in its simplest form, needs to be modified to include the organizing effects of dynamical friction. It is shown that the Mestel hypothesis is not consistent with the final collapsed state of halos, but may be applicable to the collapse of the disks of spirals.

  19. Angular Momentum Eigenstates for Equivalent Electrons.

    ERIC Educational Resources Information Center

    Tuttle, E. R.; Calvert, J. B.

    1981-01-01

    Simple and efficient methods for adding angular momenta and for finding angular momentum eigenstates for systems of equivalent electrons are developed. Several different common representations are used in specific examples. The material is suitable for a graduate course in quantum mechanics. (SK)

  20. Turbulent Equipartition Theory of Toroidal Momentum Pinch

    SciTech Connect

    T.S. Hahm, P.H. Diamond, O.D. Gurcan, and G. Rewaldt

    2008-01-31

    The mode-independet part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density [Hahm et al., Phys. Plasmas 14,072302 (2007)] which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of "magnetically weighted angular momentum density," nmi U|| R/B2, and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustratd that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.

  1. Size, angular momentum and mass for objects

    NASA Astrophysics Data System (ADS)

    Anglada, Pablo; Gabach-Clement, M. E.; Ortiz, Omar E.

    2017-06-01

    We obtain a geometrical inequality involving the ADM mass, the angular momentum and the size of an ordinary, axially symmetric object. We use the monotonicity of the Geroch quasi-local energy on 2-surfaces along the inverse mean curvature flow. We also compute numerical examples to test the robustness of our hypotheses and results

  2. Solution of Coulomb system in momentum space

    SciTech Connect

    Lin, D.-H.

    2008-02-15

    The solution of D-dimensional Coulomb system is solved in momentum space by path integral. From which the topological effect of a magnetic flux in the system is given. It is revealed that the flux effect represented by the two-dimensional field of Aharonov-Bohm covers any space-dimensions.

  3. Angular momentum decomposition of Richardson's pairs

    SciTech Connect

    Dussel, G. G.; Sofia, H. M.

    2008-07-15

    The angular momentum decomposition of pairs obtained using Richardson's exact solution of the pairing Hamiltonian for the deformed {sup 174}Yb nucleus are displayed. The probabilities for low angular momenta of the collective pairs are strikingly different from the ones obtained in the BCS ground state.

  4. ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS

    SciTech Connect

    Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Juerg; Wadsley, James; Moustakas, Leonidas A.

    2013-05-20

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with {approx}70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by {lambda} {approx} 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  5. Turbulent equipartition theory of toroidal momentum pincha)

    NASA Astrophysics Data System (ADS)

    Hahm, T. S.; Diamond, P. H.; Gurcan, O. D.; Rewoldt, G.

    2008-05-01

    The mode-independent part of the magnetic curvature driven turbulent convective (TurCo) pinch of the angular momentum density [Hahm et al., Phys. Plasmas 14, 072302 (2007)], which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of "magnetically weighted angular momentum density," nmiU∥R/B2, and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustrated that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms that exist in a simpler geometry.

  6. Angular Momentum Eigenstates for Equivalent Electrons.

    ERIC Educational Resources Information Center

    Tuttle, E. R.; Calvert, J. B.

    1981-01-01

    Simple and efficient methods for adding angular momenta and for finding angular momentum eigenstates for systems of equivalent electrons are developed. Several different common representations are used in specific examples. The material is suitable for a graduate course in quantum mechanics. (SK)

  7. Unified Technical Concepts. Module 4: Momentum.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on momentum is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. This…

  8. Ultrafast angular momentum transfer in multisublattice ferrimagnets.

    PubMed

    Bergeard, N; López-Flores, V; Halté, V; Hehn, M; Stamm, C; Pontius, N; Beaurepaire, E; Boeglin, C

    2014-03-11

    Femtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. However, one of the unsolved questions is that of conservation of the total angular momentum during the ultrafast demagnetization. Here we report the ultrafast transfer of angular momentum during the first hundred femtoseconds in ferrimagnetic Co0.8Gd0.2 and Co0.74Tb0.26 films. Using time-resolved X-ray magnetic circular dichroism allowed for time-resolved determination of spin and orbital momenta for each element. We report an ultrafast quenching of the magnetocrystalline anisotropy and show that at early times the demagnetization in ferrimagnetic alloys is driven by the local transfer of angular momenta between the two exchange-coupled sublattices while the total angular momentum stays constant. In Co0.74Tb0.26 we have observed a transfer of the total angular momentum to an external bath, which is delayed by ~150 fs.

  9. Momentum Aperture of the Advanced Light Source

    SciTech Connect

    Decking, W.; Robin, D.

    1998-08-01

    This paper shows measurements of the momentum aperture of the Advanced Light Source (ALS) based on Touschek lifetime measurements. The measured data is compared with tracking simulations and a simple model for the apertures will help to explain the observed effects.

  10. Imaging molecular geometry with electron momentum spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Enliang; Shan, Xu; Tian, Qiguo; Yang, Jing; Gong, Maomao; Tang, Yaguo; Niu, Shanshan; Chen, Xiangjun

    2016-12-01

    Electron momentum spectroscopy is a unique tool for imaging orbital-specific electron density of molecule in momentum space. However, the molecular geometry information is usually veiled due to the single-centered character of momentum space wavefunction of molecular orbital (MO). Here we demonstrate the retrieval of interatomic distances from the multicenter interference effect revealed in the ratios of electron momentum profiles between two MOs with symmetric and anti-symmetric characters. A very sensitive dependence of the oscillation period on interatomic distance is observed, which is used to determine F-F distance in CF4 and O-O distance in CO2 with sub-Ångström precision. Thus, using one spectrometer, and in one measurement, the electron density distributions of MOs and the molecular geometry information can be obtained simultaneously. Our approach provides a new robust tool for imaging molecules with high precision and has potential to apply to ultrafast imaging of molecular dynamics if combined with ultrashort electron pulses in the future.

  11. Angular-momentum-bearing modes in fission

    SciTech Connect

    Moretto, L.G.; Peaslee, G.F.; Wozniak, G.J.

    1989-03-01

    The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs.

  12. Multi-state complex angular momentum residues

    NASA Astrophysics Data System (ADS)

    Thylwe, Karl-Erik

    2006-09-01

    A relation between a multi-state complex angular momentum (CAM) pole residue and the corresponding CAM-state wavefunction is derived for a real symmetric potential matrix. The result generalizes a residue formula available for single-channel atomical collision systems and it is based on a diagonalization of the S matrix together with the use of exact Wronskian relations.

  13. Nonlinear Optics in Negative Index Metamaterials

    DTIC Science & Technology

    2012-06-05

    analytical model and solutions for nonlinear wave propagation in waveguide couplers with opposite signs of the linear refractive index, non-zero phase... couplers based on either double-negative or strongly anisotropic metamaterials that are likely to enable ultra-compact optical strorage and memory...Venugopal, Zhaxylyk Kudyshev, Natalia Litchinitser. Asymmetric Positive-Negative IndexNonlinear Waveguide Couplers , IEEE Journal of Selected Topics in

  14. Compaction Stress in Fine Powders

    SciTech Connect

    Hurd, A.J.; Kenkre, V.M.; Pease, E.A.; Scott, J.E.

    1999-04-01

    A vexing feature in granular materials compaction is density extrema interior to a compacted shape. Such inhomogeneities can lead to weaknesses and loss of dimensional control in ceramic parts, unpredictable dissolution of pharmaceuticals, and undesirable stress concentration in load-bearing soil. As an example, the centerline density in a cylindrical compact often does not decrease monotonically from the pressure source but exhibits local maxima and minima. Two lines of thought in the literature predict, respectively, diffusive and wavelike propagation of stress. Here, a general memory function approach has been formulated that unifies these previous treatments as special cases; by analyzing a convenient intermediate case, the telegrapher's equation, one sees that local density maxima arise via semidiffusive stress waves reflecting from the die walls and adding constructively at the centerline.

  15. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  16. Transport of parallel momentum by collisionless drift wave turbulence

    SciTech Connect

    Diamond, P. H.; McDevitt, C. J.; Guercan, Oe. D.; Hahm, T. S.; Naulin, V.

    2008-01-15

    This paper presents a novel, unified approach to the theory of turbulent transport of parallel momentum by collisionless drift waves. The physics of resonant and nonresonant off-diagonal contributions to the momentum flux is emphasized, and collisionless momentum exchange between waves and particles is accounted for. Two related momentum conservation theorems are derived. These relate the resonant particle momentum flux, the wave momentum flux, and the refractive force. A perturbative calculation, in the spirit of Chapman-Enskog theory, is used to obtain the wave momentum flux, which contributes significantly to the residual stress. A general equation for mean k{sub parallel} () is derived and used to develop a generalized theory of symmetry breaking. The resonant particle momentum flux is calculated, and pinch and residual stress effects are identified. The implications of the theory for intrinsic rotation and momentum transport bifurcations are discussed.

  17. DC conductivities with momentum dissipation in Horndeski theories

    DOE PAGES

    Jiang, Wei-Jian; Liu, Hai-Shan; Lü, H.; ...

    2017-07-17

    In this paper, we consider two four-dimensional Horndeski-type gravity theories with scalar fields that give rise to solutions with momentum dissipation in the dual boundary theories. Firstly, we study Einstein-Maxwell theory with a Horndeski axion term and two additional free axions which are responsible for momentum dissipation. We construct static electrically charged AdS planar black hole solutions in this theory and calculate analytically the holographic DC conductivity of the dual field theory. We then generalize the results to include magnetic charge in the black hole solution. Secondly, we analyze Einstein-Maxwell theory with two Horndeski axions which are used for momentummore » dissipation. We obtain AdS planar black hole solutions in the theory and we calculate the holographic DC conductivity of the dual field theory. The theory has a critical point α+γΛ = 0, beyond which the kinetic terms of the Horndeski axions become ghost-like. The conductivity as a function of temperature behaves qualitatively like that of a conductor below the critical point, becoming semiconductor-like at the critical point. Beyond the critical point, the ghost-like nature of the Horndeski fields is associated with the onset of unphysical singular or negative conductivities. Some further generalisations of the above theories are considered also.« less

  18. Magnetic field and angular momentum evolution models

    NASA Astrophysics Data System (ADS)

    Gallet, F.

    2013-11-01

    The magnetic field in young stellar object is clearly the most important component when one dealing with the angular momentum evolution of solar-like stars. It controls this latter one from the pre-main sequence, during the ``disk locking'' phase where the stars magnetically interact with their surrounding disk, to the main-sequence through powerful stellar winds that remove angular momentum from the stellar surface. We present new models for the rotational evolution of solar-like stars between 1 Myr and 10 Gyr with the aim to reproduce the distributions of rotational periods observed for star forming regions and young open clusters within this age range. Our simulations are produced by a recent model dedicated to the study of the angular momentum evolution of solar-type stars. This model include a new wind braking law based on recent numerical simulations of magnetized stellar winds and a specific dynamo and mass-loss prescription are used to link the angular momentum loss-rate to angular velocity evolution. The model additionally allows for a core/envelope decoupling with an angular momentum transfer between these two regions. Since this former model didn't include any physical star/disk interaction description, two star/disk interaction processes are eventually added to it in order to reproduce the apparent small angular velocities to which the stellar surface is subject during the disk accretion phase. We have developed rotational evolution models for slow, median and fast rotators including two star/disk interaction scenarios that are the magnetospheric ejection and the accretion powered stellar winds processes. The models appear to fail at reproducing the rotational behaviour of solar-type stars except when a more intense magnetic field is used during the disk accretion phase.

  19. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  20. Compact accelerator for medical therapy

    DOEpatents

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  1. Compact Chern-Simons vortices

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.

    2017-09-01

    We introduce and investigate new models of the Chern-Simons type in the three-dimensional spacetime, focusing on the existence of compact vortices. The models are controlled by potentials driven by a single real parameter that can be used to change the profile of the vortex solutions as they approach their boundary values. One of the models unveils an interesting new behavior, the tendency to make the vortex compact, as the parameter increases to larger and larger values. We also investigate the behavior of the energy density and calculate the total energy numerically.

  2. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  3. Compressibility Characteristics of Compacted Snow

    DTIC Science & Technology

    1976-06-01

    Cornpressibility characteristics 7Jj i C’p of compacted snowifAG2� 004 t Cover: ~ ~ ~ ~ ~ ~ ~ ~ a - Thn***o htgrp fpoyrsaliekAmgife i ote rm...nwcmrse to7 asa 10 Phtgahb nhn Gow1 CRREL Report 76-21 Compressibility characteristics of compacted snow %i" Gunars Abele and Anthony J. Cow I ~ June 1976 A ...c , I fu. A AD,:j ly M3rs CORPS OF ENGINEERS, U.S. ARMY COLD REGIONS RESEARCH AND ENGINEERZ]NG LABORATORY HANOVER, NEW HAMPSHIRE Approved for public

  4. Improving compact gravity inversion based on new weighting functions

    NASA Astrophysics Data System (ADS)

    Ghalehnoee, Mohammad Hossein; Ansari, Abdolhamid; Ghorbani, Ahmad

    2016-11-01

    We have developed a method to estimate the geometry, location and densities of anomalies coming from two-dimensional gravity data based on compact gravity inversion technique. Compact gravity inversion is simple, fast and user friendly but severely depends on the number of model parameters, i.e. by increasing the model parameters, the anomalies tend to concentrate near the surface. To overcome this ambiguity new weighting functions based on density contrast, depth, and compactness models have been introduced. Variable compactness factors have been defined here to get either a sharp or a smooth model based on the depth of the source or existence of prior information. Depth weighting derived from one station of gravity data whereas the effect of gravity data is two- and three-dimensional. To compensate this limitation an innovating weighting function namely kernel function has been introduced which multiplies with weight and compactness matrixes to yield a general model weighting function. The method is tested using three different sets of synthetic examples: a body at various depths (20, 40, 80 and 140 m), two bodies at the same depth but various distances to estimate lateral resolution and three bodies with negative and positive density contrast in different depths. The method is also applied to three real gravity data of Woodlawn massive sulfide body, sulfides mineralization of British Colombia and iron ore body of Missouri. The method produces solutions consistent with the known geologic attributes of the gravity sources, illustrating its potential practicality.

  5. Improving compact gravity inversion using new weighting functions

    NASA Astrophysics Data System (ADS)

    Ghalehnoee, Mohammad Hossein; Ansari, Abdolhamid; Ghorbani, Ahmad

    2017-01-01

    We have developed a method to estimate the geometry, location and densities of anomalies coming from 2-D gravity data based on compact gravity inversion technique. Compact gravity inversion is simple, fast and user friendly but severely depends on the number of model parameters, that is, by increasing the model parameters, the anomalies tend to concentrate near the surface. To overcome this ambiguity new weighting functions based on density contrast, depth, and compactness models have been introduced. Variable compactness factors have been defined here to get either a sharp or a smooth model based on the depth of the source or existence of prior information. Depth weighting derived from one station of gravity data whereas the effect of gravity data is 2-D and 3-D. To compensate this limitation an innovating weighting function namely kernel function has been introduced which multiplies with weight and compactness matrixes to yield a general model weighting function. The method is tested using three different sets of synthetic examples: a body at various depths (20, 40, 80 and 140 m), two bodies at the same depth but various distances to estimate lateral resolution and three bodies with negative and positive density contrast in different depths. The method is also applied to three real gravity data of Woodlawn massive sulphide body, sulphides mineralization of British Colombia and iron ore body of Missouri. The method produces solutions consistent with the known geologic attributes of the gravity sources, illustrating its potential practicality.

  6. Obstacle optimization for panic flow--reducing the tangential momentum increases the escape speed.

    PubMed

    Jiang, Li; Li, Jingyu; Shen, Chao; Yang, Sicong; Han, Zhangang

    2014-01-01

    A disastrous form of pedestrian behavior is a stampede occurring in an event involving a large crowd in a panic situation. To deal with such stampedes, the possibility to increase the outflow by suitably placing a pillar or some other shaped obstacles in front of the exit has been demonstrated. We present a social force based genetic algorithm to optimize the best design of architectural entities to deal with large crowds. Unlike existing literature, our simulation results indicate that appropriately placing two pillars on both sides but not in front of the door can maximize the escape efficiency. Human experiments using 80 participants correspond well with the simulations. We observed a peculiar property named tangential momentum, the escape speed and the tangential momentum are found to be negatively correlated. The idea to reduce the tangential momentum has practical implications in crowd architectural design.

  7. Unconventional entropy production in the presence of momentum-dependent forces

    NASA Astrophysics Data System (ADS)

    Kwon, Chulan; Yeo, Joonhyun; Lee, Hyun Keun; Park, Hyunggyu

    2016-03-01

    We investigate the unconventional nature of entropy production (EP) in nonequilibrium systems with odd-parity variables that change signs under time reversal. We consider the Brownian motion of a particle in contact with a heat reservoir, where the particle's momentum is an odd-parity variable. In the presence of an external momentum-dependent force, the EP transferred to the environment is found to be not equivalent to the usual reservoir entropy change due to heat transfer. An additional unconventional contribution to the EP, which is crucial for maintaining the non-negativity of the (average) total EP enforced by the second law of thermodynamics, appears. A few examples are considered to elucidate the novel nature of the EP. We also discuss detailed balance conditions with a momentum-dependent force.

  8. Obstacle Optimization for Panic Flow - Reducing the Tangential Momentum Increases the Escape Speed

    PubMed Central

    Jiang, Li; Li, Jingyu; Shen, Chao; Yang, Sicong; Han, Zhangang

    2014-01-01

    A disastrous form of pedestrian behavior is a stampede occurring in an event involving a large crowd in a panic situation. To deal with such stampedes, the possibility to increase the outflow by suitably placing a pillar or some other shaped obstacles in front of the exit has been demonstrated. We present a social force based genetic algorithm to optimize the best design of architectural entities to deal with large crowds. Unlike existing literature, our simulation results indicate that appropriately placing two pillars on both sides but not in front of the door can maximize the escape efficiency. Human experiments using 80 participants correspond well with the simulations. We observed a peculiar property named tangential momentum, the escape speed and the tangential momentum are found to be negatively correlated. The idea to reduce the tangential momentum has practical implications in crowd architectural design. PMID:25531676

  9. Effect of a target size on the recoil momentum upon laser irradiation of absorbing materials

    SciTech Connect

    Chumakou, A N; Petrenko, A M; Bosak, N A

    2004-10-31

    The dependence of a recoil momentum on the radius of a target irradiated by a single-pulse Nd{sup 3+}:YAG laser ({lambda}=1.064 {mu}m, {tau}=20 ns, E{<=}300 mJ) in the air is studied. The recoil momentum decreases three-fold with increasing the relative target radius from 0.3 to 5 and tends to saturation for r>3. The calculation of the recoil momentum on the basis of the Euler and Navier-Stokes equations gave understated values for r>1, which lowered to negative values. The reasons for the qualitative discrepancy between the experimental and calculated data is discussed. (interaction of laser radiation with matter)

  10. Orbital angular momentum modes do not increase the channel capacity in communication links

    NASA Astrophysics Data System (ADS)

    Andersson, Mauritz; Berglind, Eilert; Björk, Gunnar

    2015-04-01

    The orbital momentum of optical or radio waves can be used as a degree of freedom to transmit information. However, mainly for technical reasons, this degree of freedom has not been widely used in communication channels. The question is if this degree of freedom opens up a new, hitherto unused ‘communication window'supporting ‘an infinite number of channels in a given, fixed bandwidth’ in free space communication as has been claimed? We answer this question in the negative by showing that on the fundamental level, the mode density, and thus room for mode multiplexing, is the same for this degree of freedom as for sets of modes lacking angular momentum. In addition we show that modes with angular momentum are unsuitable for broadcasting applications due to excessive crosstalk or a poor signal-to-noise ratio.

  11. Non-compact nonlinear sigma models

    NASA Astrophysics Data System (ADS)

    de Rham, Claudia; Tolley, Andrew J.; Zhou, Shuang-Yong

    2016-09-01

    The target space of a nonlinear sigma model is usually required to be positive definite to avoid ghosts. We introduce a unique class of nonlinear sigma models where the target space metric has a Lorentzian signature, thus the associated group being non-compact. We show that the would-be ghost associated with the negative direction is fully projected out by 2 second-class constraints, and there exist stable solutions in this class of models. This result also has important implications for Lorentz-invariant massive gravity: There exist stable nontrivial vacua in massive gravity that are free from any linear vDVZ-discontinuity and a Λ2 decoupling limit can be defined on these vacua.

  12. Compaction dynamics of crunchy granular material

    NASA Astrophysics Data System (ADS)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdès, Julio R.; Einav, Itai

    2017-06-01

    Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  13. Momentum relaxation due to polar optical phonons in AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, J.-Z.; Dyson, A.; Ridley, B. K.

    2011-10-01

    Using the dielectric continuum (DC) model, momentum relaxation rates are calculated for electrons confined in quasi-two-dimensional (quasi-2D) channels of AlGaN/GaN heterostructures. Particular attention is paid to the effects of half-space and interface modes on the momentum relaxation. The total momentum relaxation rates are compared with those evaluated by the three-dimensional phonon (3DP) model, and also with the Callen results for bulk GaN. In heterostructures with a wide channel (effective channel width >100 Å), the DC and 3DP models yield very close momentum relaxation rates. Only for narrow-channel heterostructures do interface phonons become important in momentum relaxation processes, and an abrupt threshold occurs for emission of interface as well as half-space phonons. For a 30-Å GaN channel, for instance, the 3DP model is found to underestimate rates just below the bulk phonon energy by 70% and overestimate rates just above the bulk phonon energy by 40% compared to the DC model. Owing to the rapid decrease in the electron-phonon interaction with the phonon wave vector, negative momentum relaxation rates are predicted for interface phonon absorption in usual GaN channels. The total rates remain positive due to the dominant half-space phonon scattering. The quasi-2D rates can have substantially higher peak values than the three-dimensional rates near the phonon emission threshold. Analytical expressions for momentum relaxation rates are obtained in the extreme quantum limits (i.e., the threshold emission and the near subband-bottom absorption). All the results are well explained in terms of electron and phonon densities of states.

  14. Possible formation of compact stars in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Abbas, G.; Noureen, I.

    2016-01-01

    This paper reports on the investigations regarding the possible formation of compact stars in f(R,T) theory of gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor. In this connection, we use the analytic solution of the Krori and Barua metric (Krori and Barua in J. Phys. A., Math. Gen. 8:508, 1975) for a spherically symmetric anisotropic star in the context of f(R,T) gravity. The masses and radii of compact star models, namely Model 1, Model 2, and Model 3, are employed to incorporate the unknown constants in the Krori and Barua metric. The physical features such as regularity at the center, the anisotropy measure, causality, and the well-behaved condition of the above-mentioned class of compact starts are analyzed. Moreover, we also discuss the energy conditions, stability, and surface redshift in f(R,T) gravity.

  15. Quasi-Local Energy-Momentum and Angular Momentum in General Relativity

    NASA Astrophysics Data System (ADS)

    Szabados, László B.

    2009-06-01

    The present status of the quasi-local mass, energy-momentum and angular-momentum constructions in general relativity is reviewed. First, the general ideas, concepts, and strategies, as well as the necessary tools to construct and analyze the quasi-local quantities, are recalled. Then, the various specific constructions and their properties (both successes and deficiencies are discussed. Finally, some of the (actual and potential) applications of the quasi-local concepts and specific constructions are briefly mentioned.

  16. Classification of radiating compact stars

    NASA Technical Reports Server (NTRS)

    Coppi, B.; Treves, A.

    1971-01-01

    A classification of compact stars, depending on the electron distribution in velocity space and the density profiles characterizing their magnetospheric plasma, is proposed. Fast pulsars, such as NP 0532, X-ray sources such as Sco-X1, and slow pulsars are suggested as possible evolutionary stages of similar objects. The heating mechanism of Sco-X1 is discussed in some detail.

  17. Compact Photon Source Conceptual Design

    SciTech Connect

    Degtyarenko, Pavel V.; Wojtsekhowski, Bogdan B.

    2016-04-01

    We describe options for the production of an intense photon beam at the CEBAF Hall D Tagger facility, needed for creating a high-quality secondary K 0 L delivered to the Hall D detector. The conceptual design for the Compact Photon Source apparatus is presented.

  18. The Compact Project: Final Report.

    ERIC Educational Resources Information Center

    National Alliance of Business, Inc., Washington, DC.

    The National Alliance of Business (NAB) surveyed the 12 sites that participated in the Compact Project to develop and implement programs of business-education collaboration. NAB studied start-up activities, key players, conditions for collaboration, accomplishments, challenges, and future plans. Program outcomes indicated that building successful…

  19. Upwind Compact Finite Difference Schemes

    NASA Astrophysics Data System (ADS)

    Christie, I.

    1985-07-01

    It was shown by Ciment, Leventhal, and Weinberg ( J. Comput. Phys.28 (1978), 135) that the standard compact finite difference scheme may break down in convection dominated problems. An upwinding of the method, which maintains the fourth order accuracy, is suggested and favorable numerical results are found for a number of test problems.

  20. Photons with Momentum Along Curved Paths

    NASA Astrophysics Data System (ADS)

    Davis, Basil S.

    Electromagnetic energy flow is expressed mathematically by the Poynting Vector. Quantum theory determines that the Poynting Vector provides the direction of movement of the photons which are the quanta of the electromagnetic field. In this dissertation important phenomena featuring the flow of electromagnetic energy—and hence transport of photons—along curved paths are investigated. A circuit is considered in the shape of a ring, with a battery of negligible size and a wire of uniform resistance. A linear charge distribution in the wire generates an electrostatic field and a steady current through the circuit which maintains a constant magnetic field. Earlier studies of the Poynting vector and the rate of flow of energy considered only idealized geometries in which the Poynting vector was confined to the space within the circuit. But in more realistic cases the Poynting vector is nonzero outside as well as inside the circuit. An expression is obtained for the Poynting vector in terms of products of integrals, which are evaluated numerically to show the energy flow. Limiting expressions are obtained analytically. It is shown that the total power generated by the battery equals the energy flowing into the wire per unit time. Whereas the Poynting Vector flows along the direction of propagation of a plane wave photon, it is a different matter with photons described by Laguerre-Gaussian transverse profiles. Such "twisted" photon beams have a spiraling Poynting Vector that generates an orbital angular momentum that is distinct from the photon's spin angular momentum. The transverse confinement of the twisted photon beam gives rise to a Gouy phase shift, and the transverse structure of this phase shift is characterized by the Gouy radius. A new expression is obtained for this radius in terms of the parameters w, p, and ℓ of the Laguerre-Gaussian beam profile. The orbital angular momentum states have a two-fold degeneracy with respect to the winding

  1. Compact CFB: The next generation CFB boiler

    SciTech Connect

    Utt, J.

    1996-12-31

    The next generation of compact circulating fluidized bed (CFB) boilers is described in outline form. The following topics are discussed: compact CFB = pyroflow + compact separator; compact CFB; compact separator is a breakthrough design; advantages of CFB; new design with substantial development history; KUHMO: successful demo unit; KUHMO: good performance over load range with low emissions; KOKKOLA: first commercial unit and emissions; KOKKOLA: first commercial unit and emissions; compact CFB installations; next generation CFB boiler; grid nozzle upgrades; cast segmented vortex finders; vortex finder installation; ceramic anchors; pre-cast vertical bullnose; refractory upgrades; and wet gunning.

  2. Converging stepped spillways: Simplified momentum analysis approach

    USDA-ARS?s Scientific Manuscript database

    Roller compacted concrete (RCC) stepped spillways are growing in popularity for providing overtopping protection for aging watershed dams with inadequate auxiliary spillway capacity and for the construction of new dams. Site conditions, such as limited right-of-way, topography, and geological forma...

  3. Mass bounds for compact spherically symmetric objects in generalized gravity theories

    NASA Astrophysics Data System (ADS)

    Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.

    2016-09-01

    We derive upper and lower bounds on the mass-radius ratio of stable compact objects in extended gravity theories, in which modifications of the gravitational dynamics via-á-vis standard general relativity are described by an effective contribution to the matter energy-momentum tensor. Our results include the possibility of a variable coupling between the matter sector and the gravitational field and are valid for a large class of generalized gravity models. The generalized continuity and Tolman-Oppenheimer-Volkoff equations are expressed in terms of the effective mass, density, and pressure, given by the bare values plus additional contributions from the total energy-momentum tensor, and general theoretical limits for the maximum and minimum mass-radius ratios are explicitly obtained. As applications of the formalism developed herein, we consider compact bosonic objects, described by scalar-tensor gravitational theories with self-interacting scalar field potentials, and charged compact objects, respectively. For Higgs-type models, we find that these bounds can be expressed in terms of the value of the potential at the surface of the compact object. Minimizing the energy with respect to the radius, we obtain explicit upper and lower bounds on the mass, which admits a Chandrasekhar-type representation. For charged compact objects, we consider the effects of the Poincaré stresses on the equilibrium structure and obtain bounds on the radial and tangential stresses. As a possible astrophysical test of our results, we obtain the general bound on the gravitational redshift for compact objects in extended gravity theories and explicitly compute the redshift restrictions for objects with nonzero effective surface pressure. General implications of minimum mass bounds for the gravitational stability of fundamental particles and for the existence of holographic duality between bulk and boundary degrees of freedom are also considered.

  4. Polarization of molecular angular momentum in the chemical reactions Li + HF and F + HD

    NASA Astrophysics Data System (ADS)

    Krasilnikov, Mikhail B.; Popov, Ruslan S.; Roncero, Octavio; De Fazio, Dario; Cavalli, Simonetta; Aquilanti, Vincenzo; Vasyutinskii, Oleg S.

    2013-06-01

    The quantum mechanical approach to vector correlation of angular momentum orientation and alignment in chemical reactions [G. Balint-Kurti and O. S. Vasyutinskii, J. Phys. Chem. A 113, 14281 (2009)], 10.1021/jp902796v is applied to the molecular reagents and products of the Li + HF [L. Gonzalez-Sanchez, O. S. Vasyutinskii, A. Zanchet, C. Sanz-Sanz, and O. Roncero, Phys. Chem. Chem. Phys. 13, 13656 (2011)], 10.1039/c0cp02452j and F + HD [D. De Fazio, J. Lucas, V. Aquilanti, and S. Cavalli, Phys. Chem. Chem. Phys. 13, 8571 (2011)], 10.1039/c0cp02738c reactions for which accurate scattering information has become recently available through time-dependent and time-independent approaches. Application of the theory to two important particular cases of the reactive collisions has been considered: (i) the influence of the angular momentum polarization of reactants in the entrance channel on the spatial distribution of the products in the exit channel and (ii) angular momentum polarization of the products of the reaction between unpolarized reactants. In the former case, the role of the angular momentum alignment of the reactants is shown to be large, particularly when the angular momentum is perpendicular to the reaction scattering plane. In the latter case, the orientation and alignment of the product angular momentum was found to be significant and strongly dependent on the scattering angle. The calculation also reveals significant differences between the vector correlation properties of the two reactions under study which are due to difference in the reaction mechanisms. In the case of F + HD reaction, the branching ratio between HF and DF production points out interest in the insight gained into the detailed dynamics, when information is available either from exact quantum mechanical calculations or from especially designed experiments. Also, the geometrical arrangement for the experimental determination of the product angular momentum orientation and alignment based

  5. Binary Solid Propellants for Constant Momentum Missions

    SciTech Connect

    Pakhomov, Andrew V.; Mahaffy, Kevin E.

    2008-04-28

    A constant momentum mission is achieved when the speed of the vehicle in the inertial frame of reference is equal to the speed of exhaust relative to the vehicle. Due to 100% propulsive efficiency such missions are superior to traditional constant specific impulse missions. A new class of solid binary propellants for constant momentum missions is under development. A typical propellant column is prepared as a solid solution of two components, with composition gradually changing from 100% of a propellant of high coupling coefficient (C{sub m}) to one which has high specific impulse (I{sub sp}). The high coupling component is ablated first, gradually giving way to the high I{sub sp} component, as the vehicle accelerates. This study opens new opportunities for further design of complex propellants for laser propulsion, providing variable C{sub m} and I{sub sp} during missions.

  6. Momentum transfer dependence of generalized parton distributions

    NASA Astrophysics Data System (ADS)

    Sharma, Neetika

    2016-11-01

    We revisit the model for parametrization of the momentum dependence of nucleon generalized parton distributions in the light of recent MRST measurements of parton distribution functions (A.D. Martin et al., Eur. Phys. J. C 63, 189 (2009)). Our parametrization method with a minimum set of free parameters give a sufficiently good description of data for Dirac and Pauli electromagnetic form factors of proton and neutron at small and intermediate values of momentum transfer. We also calculate the GPDs for up- and down-quarks by decomposing the electromagnetic form factors for the nucleon using the charge and isospin symmetry and also study the evolution of GPDs to a higher scale. We further investigate the transverse charge densities for both the unpolarized and transversely polarized nucleon and compare our results with Kelly's distribution.

  7. Construction of momentum theorem using cross moments

    NASA Astrophysics Data System (ADS)

    Hahm, T. S.; Wang, Lu; Diamond, P. H.

    2009-11-01

    Charney-Drazin theorem has been extended to Hasegawa Wakatani system for zonal flow problem in magnetic fusion [P.H. Diamond, et al., Plasma Phys. Control. Fusion 50, 124018 (2008)]. For this model, the guiding center density is the potential vorticity and zonal flow is influenced by the particle flux. In this work we construct momentum theorems in terms of a hierarchy of cross moments , , and . Then we show that the particle flux, momentum flux, and heat flux influence the zonal flow for each system respectively. This work was supported by U. S. Department of Energy Contract No. DE--AC02--09CH11466 (TSH, LW), China Scholarship Council (LW), U. S. DOE SciDAC center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas, and the U. S. DOE SciDAC-FSP Center for Plasma Edge Simulation (TSH).

  8. Measuring momentum for charged particle tomography

    DOEpatents

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  9. Momentum projection of solitons including quantum corrections

    NASA Astrophysics Data System (ADS)

    Wilets, Lawrence

    1986-02-01

    The method of projection is applied to a relativistic field theory of fermions interacting with a nonlinear scalar field, specifically the Friedberg-Lee soliton model. Projection is effected by operating on a localized “bag” state with the translation operator exp (i P·Z), and integrating over Z. The resulting state is an eigenstate of zero momentum. The energy and the expectation value of other physical operators can be expressed as Gaussian moments of the Hamiltonian or the physical operator times powers of the momentum operator taken with respect to the bag state. Renormalization in the one-loop approximation is discussed in detail for the boson sector, and briefly for the fermion sector. The method can be tested for convergence against nonexpansion techniques. The latter, however, cannot so easily handle distortion of the Bose modes or the distortion of the Dirac sea.

  10. Double-slit experiment in momentum space

    NASA Astrophysics Data System (ADS)

    Ivanov, I. P.; Seipt, D.; Surzhykov, A.; Fritzsche, S.

    2016-08-01

    Young's classic double-slit experiment demonstrates the reality of interference when waves and particles travel simultaneously along two different spatial paths. Here, we propose a double-slit experiment in momentum space, realized in the free-space elastic scattering of vortex electrons. We show that this process proceeds along two paths in momentum space, which are well localized and well separated from each other. For such vortex beams, the (plane-wave) amplitudes along the two paths acquire adjustable phase shifts and produce interference fringes in the final angular distribution. We argue that this experiment can be realized with the present-day technology. We show that it gives experimental access to the Coulomb phase, a quantity which plays an important role in all charged particle scattering but which usual scattering experiments are insensitive to.

  11. Angular Momentum Loss Via Stellar Winds

    NASA Astrophysics Data System (ADS)

    Matt, Sean; Pinzon, G.; Greene, T. P.

    2010-01-01

    The evolution of stellar spin rates observed during star formation is not yet understood, due primarily to the fact that it is still not clear which mechanism(s) is responsible for removing angular momentum. Stellar winds may exert significant torques during pre-main-sequence evolution, provided that the mass loss rates are enhanced by several orders of magnitude relative to their main sequence values. This may be possible, if the winds are powered by the accretion process. We present new calculations of the angular momentum loss from enhanced stellar winds and address how this may help our understanding of young star spins. SPM was supported by an appointment to the NASA Postdoctoral Program at Ames Research Center, administered by ORAU through a contract with NASA.

  12. Angular momentum in cluster Spherical Collapse Model

    NASA Astrophysics Data System (ADS)

    Cupani, Guido; Mezzetti, Marino; Mardirossian, Fabio

    2011-11-01

    Our new formulation of the Spherical Collapse Model (SCM-L) takes into account the presence of angular momentum associated with the motion of galaxy groups infalling towards the centre of galaxy clusters. The angular momentum is responsible for an additional term in the dynamical equation which is useful to describe the evolution of the clusters in the non-equilibrium region which is investigated in the present paper. Our SCM-L can be used to predict the profiles of several strategic dynamical quantities as the radial and tangential velocities of member galaxies, and the total cluster mass. A good understanding of the non-equilibrium region is important since it is the natural scenario where the infall in galaxy clusters and the accretion phenomena present in these objects can be studied. Our results corroborate previous estimates and are in very good agreement with the analysis of recent observations and of simulated clusters.

  13. Transverse momentum distributions inside the nucleon from lattice QCD

    SciTech Connect

    Musch, B. U.; Haegler, Ph.; Negele, J. W.; Schaefer, A.

    2011-07-15

    We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.

  14. Transverse momentum distributions inside the nucleon from lattice QCD

    SciTech Connect

    Bernhard Musch, Philipp Haegler, John Negele, Andreas Schaefer

    2011-07-01

    We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.

  15. Orbital angular momentum light in microscopy

    NASA Astrophysics Data System (ADS)

    Ritsch-Marte, Monika

    2017-02-01

    Light with a helical phase has had an impact on optical imaging, pushing the limits of resolution or sensitivity. Here, special emphasis will be given to classical light microscopy of phase samples and to Fourier filtering techniques with a helical phase profile, such as the spiral phase contrast technique in its many variants and areas of application. This article is part of the themed issue 'Optical orbital angular momentum'.

  16. Energy and momentum entanglement in parametric downconversion

    NASA Astrophysics Data System (ADS)

    Saldanha, Pablo L.; Monken, C. H.

    2013-01-01

    We present a simple treatment of the phenomenon of spontaneous parametric downconversion consisting of the coherent scattering of a single pump photon into an entangled photon pair inside a nonlinear crystal. The energy and momentum entanglement of the quantum state of the generated twin photons are seen as a consequence of the fundamental indistinguishability of the time and the position in which the photon pair is created inside the crystal. We also discuss some consequences of photon entanglement.

  17. Orbital angular momentum light in microscopy.

    PubMed

    Ritsch-Marte, Monika

    2017-02-28

    Light with a helical phase has had an impact on optical imaging, pushing the limits of resolution or sensitivity. Here, special emphasis will be given to classical light microscopy of phase samples and to Fourier filtering techniques with a helical phase profile, such as the spiral phase contrast technique in its many variants and areas of application.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  18. Spacecraft momentum management procedures. [large space telescope

    NASA Technical Reports Server (NTRS)

    Chen, L. C.; Davenport, P. B.; Sturch, C. R.

    1980-01-01

    Techniques appropriate for implementation onboard the space telescope and other spacecraft to manage the accumulation of momentum in reaction wheel control systems using magnetic torquing coils are described. Generalized analytical equations are derived for momentum control laws that command the magnetic torquers. These control laws naturally fall into two main categories according to the methods used for updating the magnetic dipole command: closed loop, in which the update is based on current measurements to achieve a desired torque instantaneously, and open-loop, in which the update is based on predicted information to achieve a desired momentum at the end of a period of time. Physical interpretations of control laws in general and of the Space Telescope cross product and minimum energy control laws in particular are presented, and their merits and drawbacks are discussed. A technique for retaining the advantages of both the open-loop and the closed-loop control laws is introduced. Simulation results are presented to compare the performance of these control laws in the Space Telescope environment.

  19. On Energy and Momentum in Contemporary Physics

    NASA Astrophysics Data System (ADS)

    Sujak, Peter

    2014-03-01

    This paper analyzes the quantities of energy and momentum in the definitional relationship of classical mechanics and relativistic mechanics, in the de Broglie momentum hypothesis and in the Klein-Gordon, Dirac and Schrodinger equation. The results of analysis shows that λ designated in the de Broglie hypothesis λ = h / mv as the wave of matter with rest state value λ = ∞ must be connected with a real dimension of a particle with rest state value λ =lo = h /mo c and that on this basis we can come to the fundamental equations of quantum mechanics that are the Klein-Gordon, Dirac and Schrodinger equation without the necessity of the wave functions. Energies in relativistic mechanics as mc2 , mvc , and moc2 , and energy of a photon hν do not represent quantities of energies, but quantity of momentums intentionally multiplied by c, so mc . c , mv . c , mo c . c , hν / c . c and merely the dimension of such quantities equals in dimension the quantity of energy.

  20. Envelope Modes of Beams with Angular Momentum

    SciTech Connect

    Barnard, J J; Losic, B

    2000-08-21

    For a particle beam propagating in an alternating gradient focusing system, envelope equations are often employed to describe the evolution of the beam radii in the two directions transverse to the direction of propagation, and aligned with the principle axes of the alternating gradient system. When the beams have zero net angular momentum and when the alternating gradient focusing is approximated by a continuous focusing system, there are two normal modes to the envelope equations: the 'breathing' mode and a 'quadrupole' mode. In the former, the two radii oscillate in phase, and in the latter the radii oscillate 180 degrees out of phase. In this paper, we extend the analysis to include beams that have a finite angular momentum. We perturb the moment equations of ref. [1], wherein it was assumed that space charge is a distributed in a uniform density ellipse. Two additional modes are obtained. The breathing mode remains, but the quadrupole mode is split into two modes, and a new low frequency mode appears. We calculate the frequencies and eigenmodes of these four modes as a function of tune depression and a dimensionless net angular momentum. These modes can be excited by rotational errors of the quadrupoles in an alternating gradient focusing channel.

  1. Integral momentum balance on a growing bubble

    NASA Astrophysics Data System (ADS)

    Siedel, S.; Cioulachtjian, S.; Robinson, A. J.; Bonjour, J.

    2013-12-01

    The integral momentum balance on a growing boiling bubble is investigated. All forces acting on the bubble are detailed, and the methods and assumptions used to calculate their integral resultants are discussed. The momentum balance computation is then performed using experimental data of bubbles growing on an artificial nucleation site in a controlled environment. The relative magnitude of each force component is compared, showing negligible dynamic forces, upwards forces composed mainly of the buoyancy and contact pressure components, and downwards forces being exclusively due to surface tension and adhesion. The difficulty encountered in measuring the apparent contact angle due to mirage effects has been highlighted; a new method, fitting numerically simulated bubble profile to the contour measurements has been proposed and used to correct the effects of refraction on the bubble profile determination. As all forces acting on the bubble were measured, it was possible to estimate the residuals of the momentum balance. Their small value validated both the expressions used for the forces and the methodology to evaluate their value.

  2. Energy-momentum tensor of bouncing gravitons

    SciTech Connect

    Iofa, Mikhail Z.

    2015-07-01

    In models of the Universe with extra dimensions gravity propagates in the whole space-time. Graviton production by matter on the brane is significant in the early hot Universe. In a model of 3-brane with matter embedded in 5D space-time conditions for gravitons emitted from the brane to the bulk to return back to the brane are found. For a given 5-momentum of graviton falling back to the brane the interval between the times of emission and return to the brane is calculated. A method to calculate contribution to the energy-momentum tensor from multiple graviton bouncings is developed. Explicit expressions for contributions to the energy-momentum tensor of gravitons which have made one, two and three bounces are obtained and their magnitudes are numerically calculated. These expressions are used to solve the evolution equation for dark radiation. A relation connecting reheating temperature and the scale of extra dimension is obtained. For the reheating temperature T{sub R}∼ 10{sup 6} GeV we estimate the scale of extra dimension μ to be of order 10{sup −9} GeV (μ{sup −1}∼ 10{sup −5} cm)

  3. Resistance to extinction and behavioral momentum.

    PubMed

    Nevin, John A

    2012-05-01

    In the metaphor of behavioral momentum, reinforcement is assumed to strengthen discriminated operant behavior in the sense of increasing its resistance to disruption, and extinction is viewed as disruption by contingency termination and reinforcer omission. In multiple schedules of intermittent reinforcement, resistance to extinction is an increasing function of reinforcer rate, consistent with a model based on the momentum metaphor. The partial-reinforcement extinction effect, which opposes the effects of reinforcer rate, can be explained by the large disruptive effect of terminating continuous reinforcement despite its strengthening effect during training. Inclusion of a term for the context of reinforcement during training allows the model to account for a wide range of multiple-schedule extinction data and makes contact with other formulations. The relation between resistance to extinction and reinforcer rate on single schedules of intermittent reinforcement is exactly opposite to that for multiple schedules over the same range of reinforcer rates; however, the momentum model can give an account of resistance to extinction in single as well as multiple schedules. An alternative analysis based on the number of reinforcers omitted to an extinction criterion supports the conclusion that response strength is an increasing function of reinforcer rate during training.

  4. Angular momentum evolution of galaxies in EAGLE

    NASA Astrophysics Data System (ADS)

    Lagos, Claudia del P.; Theuns, Tom; Stevens, Adam R. H.; Cortese, Luca; Padilla, Nelson D.; Davis, Timothy A.; Contreras, Sergio; Croton, Darren

    2017-02-01

    We use the EAGLE cosmological hydrodynamic simulation suite to study the specific angular momentum of galaxies, j, with the aims of (i) investigating the physical causes behind the wide range of j at fixed mass and (ii) examining whether simple, theoretical models can explain the seemingly complex and non-linear nature of the evolution of j. We find that j of the stars, jstars, and baryons, jbar, are strongly correlated with stellar and baryon mass, respectively, with the scatter being highly correlated with morphological proxies such as gas fraction, stellar concentration, (u-r) intrinsic colour, stellar age and the ratio of circular velocity to velocity dispersion. We compare with available observations at z = 0 and find excellent agreement. We find that jbar follows the theoretical expectation of an isothermal collapsing halo under conservation of specific angular momentum to within ≈50 per cent, while the subsample of rotation-supported galaxies are equally well described by a simple model in which the disc angular momentum is just enough to maintain marginally stable discs. We extracted evolutionary tracks of the stellar spin parameter of EAGLE galaxies and found that the fate of their jstars at z = 0 depends sensitively on their star formation and merger histories. From these tracks, we identified two distinct physical channels behind low jstars galaxies at z = 0: (i) galaxy mergers, and (ii) early star formation quenching. The latter can produce galaxies with low jstars and early-type morphologies even in the absence of mergers.

  5. Energy-momentum tensor of bouncing gravitons

    SciTech Connect

    Iofa, Mikhail Z.

    2015-07-14

    In models of the Universe with extra dimensions gravity propagates in the whole space-time. Graviton production by matter on the brane is significant in the early hot Universe. In a model of 3-brane with matter embedded in 5D space-time conditions for gravitons emitted from the brane to the bulk to return back to the brane are found. For a given 5-momentum of graviton falling back to the brane the interval between the times of emission and return to the brane is calculated. A method to calculate contribution to the energy-momentum tensor from multiple graviton bouncings is developed. Explicit expressions for contributions to the energy-momentum tensor of gravitons which have made one, two and three bounces are obtained and their magnitudes are numerically calculated. These expressions are used to solve the evolution equation for dark radiation. A relation connecting reheating temperature and the scale of extra dimension is obtained. For the reheating temperature T{sub R}∼10{sup 6} GeV we estimate the scale of extra dimension μ to be of order 10{sup −9} GeV (μ{sup −1}∼10{sup −5} cm)

  6. Energy-momentum tensor of bouncing gravitons

    NASA Astrophysics Data System (ADS)

    Iofa, Mikhail Z.

    2015-07-01

    In models of the Universe with extra dimensions gravity propagates in the whole space-time. Graviton production by matter on the brane is significant in the early hot Universe. In a model of 3-brane with matter embedded in 5D space-time conditions for gravitons emitted from the brane to the bulk to return back to the brane are found. For a given 5-momentum of graviton falling back to the brane the interval between the times of emission and return to the brane is calculated. A method to calculate contribution to the energy-momentum tensor from multiple graviton bouncings is developed. Explicit expressions for contributions to the energy-momentum tensor of gravitons which have made one, two and three bounces are obtained and their magnitudes are numerically calculated. These expressions are used to solve the evolution equation for dark radiation. A relation connecting reheating temperature and the scale of extra dimension is obtained. For the reheating temperature TR~ 106 GeV we estimate the scale of extra dimension μ to be of order 10-9 GeV (μ-1~ 10-5 cm).

  7. Nuclear structure at high angular momentum

    SciTech Connect

    Stephens, F.S.

    1980-06-01

    This review paper begins by discussing the limits faced in the attempts to get nuclei to hold very high angular momentum. The method presently used to produce nuclei with the maximum angular momentum is described. Then the physics of high-spin states is taken up; some properties of a purely collective, classical rotor are described, and the effects of coupling single-particle motion to this are considered. Next, backbending, its causes, and a new spectroscopy of bands and backbends at high spin values are discussed. Noncollective states occur when the nuclear angular momentum is carried by a few high-j particles and is aligned along a symmetry axis. There results an irregular yrast line, along which there are no collective transitions. Noncollective behavior in the lead region, the hafnium region, and the N = 82 region is examined. Then the discussion moves on to collective behavior and recent studies on continuum spectra. Evidence for rotation is given, and effective moments of inertia for this rotation are evaluated. Finally, current ..gamma..-ray energy correlation studies are described. 68 references, 36 figures. (RWR)

  8. Coherent Detection of Orbital Angular Momentum in Radio

    DTIC Science & Technology

    2014-08-31

    SECURITY CLASSIFICATION OF: The angular momentum propagated by a beam of radiation has two contributions: spin angular momentum (SAM) and orbital...angular momentum (OAM). SAM corresponds to wave polarisation, while OAM-carrying beams are characterized by a phase which is a function of azimuth. We...Coherent detection of orbital angular momentum in radio The views, opinions and/or findings contained in this report are those of the author(s) and

  9. Localization of angular momentum in optical waves propagating through turbulence.

    PubMed

    Sanchez, Darryl J; Oesch, Denis W

    2011-12-05

    This is the first in a series of papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. The scope of this first paper is much narrower. Here, we demonstrate that atmospheric turbulence can impart non-trivial angular momentum to beams and that this non-trivial angular momentum is highly localized. Furthermore, creation of this angular momentum is a normal part of propagation through atmospheric turbulence.

  10. Transverse momentum dependence of Bose-Einstein correlations in S+nucleus collisions at 200 GeV/nucleon

    SciTech Connect

    Morse, R.J.; NA35 Collaboration

    1994-07-01

    The NA35 experiment has collected a high statistics set of momentum analyzed negative hadrons near and forward of mid-rapidity for central collisions of 200 GeV/Nucleon {sup 32}S projectiles incident on S, Ag and Au targets. Using two pion momentum space correlations in order to study the size of the source of particle production, small dependences upon transverse momentum are found for the transverse source dimensions; however for the heaviest system, R{sub long} decreases by about 40% as transverse momentum is increased over the interval 50 < P{sub T} < 600 MeV/c. Preliminary model calculations using a microscopic phase space approach (RQMD) appear to reproduce the observed characteristics of the data.

  11. Invariant distributions on compact homogeneous spaces

    SciTech Connect

    Gorbatsevich, V V

    2013-12-31

    In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.

  12. Studies of vertical fluxes of horizontal momentum in the lower atmosphere using the MU-radar

    NASA Astrophysics Data System (ADS)

    Kuo, F. S.; Lue, H. Y.; Fern, C. L.; Röttger, J.; Fukao, S.; Yamamoto, M.

    2008-11-01

    We study the momentum flux of the atmospheric motions in the height ranges between 6 and 22 km observed using the MU radar at Shigaraki in Japan during a 3 day period in January 1988. The data were divided by double Fourier transformation into data set of waves with downward- phase- velocity and data set of waves with upward-phase-velocity for independent momentum flux calculation. The result showed that both the 72 h averaged upward flux and downward flux of zonal momentum were negative at nearly each height, meaning that the upward flux was dominated by westward propagating waves while the downward flux was dominated by eastward propagating waves. The magnitude of the downward flux was approximately a factor of 1.5 larger than the upward flux for waves in the 2~7 h and 7~24 h period bands, and about equal to the upward flux in the 10 30 min and 30 min 2 h period bands. It is also observed that the vertical flux of zonal momentum tended to be small in each frequency band at the altitudes below the jet maximum (10~12 km), and the flux increased toward more negative values to reach a negative maximum at some altitude well above the jet maximum. Daily averaged flux showed tremendous variation: The 1st 24 h (quiet day) was relatively quiet, and the fluxes of the 2nd and 3rd 24 h (active days) increased sharply. Moreover, the upward fluxes of zonal momentum below 17 km in the quiet day for each period band (10~30 min, 30 min~2 h, 2~7 h, and 7~24 h) were dominantly positive, while the corresponding downward fluxes were dominantly negative, meaning that the zonal momentum below 17 km in each period band under study were dominantly eastward (propagating along the mean wind). In the active days, both the upward fluxes and downward fluxes in each frequency band were dominantly negative throughout the whole altitude range 6.1 18.95 km.

  13. Compact lanthanum hexaboride hollow cathode.

    PubMed

    Goebel, Dan M; Watkins, Ronald M

    2010-08-01

    A compact lanthanum hexaboride hollow cathode has been developed for space applications where size and mass are important and research and industrial applications where access for implementation might be limited. The cathode design features a refractory metal cathode tube that is easily manufactured, mechanically captured orifice and end plates to eliminate expensive e-beam welding, graphite sleeves to provide a diffusion boundary to protect the LaB6 insert from chemical reactions with the refractory metal tube, and several heater designs to provide long life. The compact LaB(6) hollow cathode assembly including emitter, support tube, heater, and keeper electrode is less than 2 cm in diameter and has been fabricated in lengths of 6-15 cm for different applications. The cathode has been operated continuously at discharge currents of 5-60 A in xenon. Slightly larger diameter versions of this design have operated at up to 100 A of discharge current.

  14. Marginally compact hyperbranched polymer trees.

    PubMed

    Dolgushev, M; Wittmer, J P; Johner, A; Benzerara, O; Meyer, H; Baschnagel, J

    2017-03-29

    Assuming Gaussian chain statistics along the chain contour, we generate by means of a proper fractal generator hyperbranched polymer trees which are marginally compact. Static and dynamical properties, such as the radial intrachain pair density distribution ρpair(r) or the shear-stress relaxation modulus G(t), are investigated theoretically and by means of computer simulations. We emphasize that albeit the self-contact density diverges logarithmically with the total mass N, this effect becomes rapidly irrelevant with increasing spacer length S. In addition to this it is seen that the standard Rouse analysis must necessarily become inappropriate for compact objects for which the relaxation time τp of mode p must scale as τp ∼ (N/p)(5/3) rather than the usual square power law for linear chains.

  15. Rapid compaction during RNA folding

    NASA Astrophysics Data System (ADS)

    Russell, Rick; Millett, Ian S.; Tate, Mark W.; Kwok, Lisa W.; Nakatani, Bradley; Gruner, Sol M.; Mochrie, Simon G. J.; Pande, Vijay; Doniach, Sebastian; Herschlag, Daniel; Pollack, Lois

    2002-04-01

    We have used small angle x-ray scattering and computer simulations with a coarse-grained model to provide a time-resolved picture of the global folding process of the Tetrahymena group I RNA over a time window of more than five orders of magnitude. A substantial phase of compaction is observed on the low millisecond timescale, and the overall compaction and global shape changes are largely complete within one second, earlier than any known tertiary contacts are formed. This finding indicates that the RNA forms a nonspecifically collapsed intermediate and then searches for its tertiary contacts within a highly restricted subset of conformational space. The collapsed intermediate early in folding of this RNA is grossly akin to molten globule intermediates in protein folding.

  16. Dynamics of compact homogeneous universes

    SciTech Connect

    Tanimoto, M.; Koike, T.; Hosoya, A.

    1997-01-01

    A complete description of dynamics of compact locally homogeneous universes is given, which, in particular, includes explicit calculations of Teichm{umlt u}ller deformations and careful counting of dynamical degrees of freedom. We regard each of the universes as a simply connected four-dimensional space{endash}time with identifications by the action of a discrete subgroup of the isometry group. We then reduce the identifications defined by the space{endash}time isometries to ones in a homogeneous section, and find a condition that such spatial identifications must satisfy. This is essential for explicit construction of compact homogeneous universes. Some examples are demonstrated for Bianchi II, VI{sub 0}, VII{sub 0}, and I universal covers. {copyright} {ital 1997 American Institute of Physics.}

  17. Cold compaction of water ice

    NASA Astrophysics Data System (ADS)

    Durham, William B.; McKinnon, William B.; Stern, Laura A.

    2005-09-01

    Hydrostatic compaction of granulated water ice was measured in laboratory experiments at temperatures 77 K to 120 K. We performed step-wise hydrostatic pressurization tests on 5 samples to maximum pressures P of 150 MPa, using relatively tight (0.18-0.25 mm) and broad (0.25-2.0 mm) starting grain-size distributions. Compaction change of volume is highly nonlinear in P, typical for brittle, granular materials. No time-dependent creep occurred on the lab time scale. Significant residual porosity (~0.10) remains even at highest P. Examination by scanning electron microscopy (SEM) reveals a random configuration of fractures and broad distribution of grain sizes, again consistent with brittle behavior. Residual porosity appears as smaller, well-supported micropores between ice fragments. Over the interior pressures found in smaller midsize icy satellites and Kuiper Belt objects (KBOs), substantial porosity can be sustained over solar system history in the absence of significant heating and resultant sintering.

  18. Poynting Theorem, Relativistic Transformation of Total Energy-Momentum and Electromagnetic Energy-Momentum Tensor

    NASA Astrophysics Data System (ADS)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga

    2016-02-01

    We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.

  19. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  20. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  1. COMB: Compact embedded object simulations

    NASA Astrophysics Data System (ADS)

    McEwen, Jason D.

    2016-06-01

    COMB supports the simulation on the sphere of compact objects embedded in a stochastic background process of specified power spectrum. Support is provided to add additional white noise and convolve with beam functions. Functionality to support functions defined on the sphere is provided by the S2 code (ascl:1606.008); HEALPix (ascl:1107.018) and CFITSIO (ascl:1010.001) are also required.

  2. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  3. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  4. Compaction of Global Data Fields

    DTIC Science & Technology

    1990-05-01

    AD- A225 856 Naval Oceanographic and Technical Note 27 Atmospheric Research Laboratory May 1990 nC II FILF Copy Compaction of Global Data Fields A. H...IU 0 Ij P\\ I -’ as - -O - - YrŘ 5/ ii Ch Cc I 4" IIJ /1 1 att, 14 o c qu 0 in 64 low Ln u Ln U Ln LLJ KA E0 U-j u odd LD x 0 LL- cr - -1 Ap 0 Ln 00

  5. Nuclear Physics for Compact Stars

    SciTech Connect

    Baldo, M.

    2009-05-04

    A brief overview is given of the different lines of research developed under the INFN project 'Compact Stellar Objects and Dense Hadronic Matter' (acronym CT51). The emphasis of the project is on the structure of Neutron Stars (NS) and related objects. Starting from crust, the different Nuclear Physics problems are described which are encountered going inside a NS down to its inner core. The theoretical challenges and the observational inputs are discussed in some detail.

  6. Compact optical microfiber phase modulator.

    PubMed

    Zhang, Xueliang; Belal, M; Chen, G Y; Song, Zhangqi; Brambilla, G; Newson, T P

    2012-02-01

    A compact optical microfiber phase modulator with MHz bandwidth is presented. A micrometer-diameter microfiber is wound on a millimeter-diameter piezoelectric ceramic rod with two electrodes. When a voltage is applied to the piezoelectric ceramic, the rod is strained, leading to a phase change along the microfiber; because of the small size, the optical microfiber phase modulator can have as high as a few MHz bandwidth response.

  7. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  8. Compaction with automatic jog introduction

    NASA Astrophysics Data System (ADS)

    Maley, F. M.

    1986-05-01

    This thesis presents an algorithm for one-dimensional compaction of VLSI layouts. It differs from older methods in treating wires not as objects to be moved, but as constraints on the positions of other circuit components. These constraints are determined for each wiring layer using the theory of planar routing. Assuming that the wiring layers can be treated independently, the algorithm minimizes the width of a layout, automatically inserting as many jogs in wires as necessary. It runs in time 0(n4) on input of size n. Several heuristics are suggested for improving the algorithm's practical performance. The compaction algorithm takes as input a data structure called a sketch, which explicitly distinguishes between flexible components (wires) and rigid components (modules). The algorithm first finds constraints on the positions of modules that ensure enough space is left for wires. Next, it solves the system of constraints by a standard graph-theoretic technique, obtaining a placement for the modules. It then relies on a single-layer router to restore the wires to each circuit layer. An efficient single-layer router is already known; it is able to minimize the length of every wire, though not the number of jogs. As given, the compaction algorithm applies only to a VLSI model that requires wires to run a rectilinear grid. This restriction is needed only because the theory of planar routing (and single-layer routers) has not yet been extended to other models.

  9. Compact Stellarator Path to DEMO

    NASA Astrophysics Data System (ADS)

    Lyon, J. F.

    2007-11-01

    Issues for a DEMO reactor are sustaining an ignited/high-Q plasma in steady state, avoiding disruptions and large variations in power flux to the wall, adequate confinement of thermal plasma and alpha-particles, control of a burning plasma, particle and power handling, etc. Compact stellarators have key advantages -- steady-state high-plasma-density operation without external current drive or disruptions, stability without a close conducting wall or active feedback systems, and low recirculating power -- in addition to moderate plasma aspect ratio, good confinement, and high-beta potential. The ARIES-CS study established that compact stellarators can be competitive with tokamaks as reactors. Many of the issues for a compact stellarator DEMO can be answered using results from large tokamaks, ITER D-T experiments and fusion materials, technology and component development programs, in addition to stellarators in operation, under construction or in development. However, a large next-generation stellarator will be needed to address some physics issues: size scaling and confinement at higher parameters, burning plasma issues, and operation with a strongly radiative divertor. Technology issues include simpler coils, structure, and divertor fabrication, and better cost information.

  10. Angular-momentum evolution in laser-plasma accelerators.

    PubMed

    Thaury, C; Guillaume, E; Corde, S; Lehe, R; Le Bouteiller, M; Ta Phuoc, K; Davoine, X; Rax, J M; Rousse, A; Malka, V

    2013-09-27

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for nonplanar electron trajectories. Whereas the emittance of electron beams produced in a laser-plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in a laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular-momentum growth and we present experimental results showing that the angular-momentum content evolves during the acceleration.

  11. Energy momentum distributions of monopole metric in teleparallel gravity

    NASA Astrophysics Data System (ADS)

    Aygün, Sezgin

    2017-02-01

    In this study, we investigate energy and momentum distributions of Monopole metric. For this purpose, we have used Einstein, Bergmann-Thomson and Landau-Lifshitz energy and momentum densities in Teleparallel Gravity (TG). We obtained that: (i) The solutions of Einstein and Bergmann-Thomson energy and momentum distributions give the same results but Landau-Lifshitz energy distribution does not provide same results in TG. (ii) The momentum densities of Einstein, Bergmann-Thomson and Landau-Lifshitz are vanish in TG for monopole metric. (iii) The obtained energy-momentum solutions are different from the earlier results in General Relativity (GR).

  12. Integrated Attitude Control Based on Momentum Management for Space Station

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Ni

    An integrated attitude control for attitude control, momentum management and power storage is proposed as a momentum-management-based IPACS. The integrated attitude control combines ACMM and IPACS to guarantees the momentum of CMGs and flywheels within acceptable limits as well as satisfying the requirements of attitude control and power storage. The later objective is to testify the foundation of the integrated attitude control by the fact that the momentum management of the integrated attitude control is able to keep the momentum exchange actuators including flywheels and VSCMG out of singularity. Finally, the space station attitude control task during assembly process is illustrated to testify the effectiveness of the integrated attitude control.

  13. First-Principles Momentum-Dependent Local Ansatz Wavefunction and Momentum Distribution Function Bands of Iron

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-04-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.

  14. Whole-body angular momentum during stair ascent and descent.

    PubMed

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent.

  15. Magnets in an electric field: hidden forces and momentum conservation

    NASA Astrophysics Data System (ADS)

    Redfern, Francis

    2017-06-01

    In 1967 Shockley and James addressed the situation of a magnet in an electric field. The magnet is at rest and contains electromagnetic momentum, but there was no obvious mechanical momentum to balance this for momentum conservation. They concluded that some sort of mechanical momentum, which they called "hidden momentum", was contained in the magnet and ascribed this momentum to relativistic effects, a contention that was apparently confirmed by Coleman and Van Vleck. Since then, a magnetic dipole in an electric field has been considered to have this new form of momentum, but this view ignores the electromagnetic forces that arise when an electric field is applied to a magnet or a magnet is formed in an electric field. The electromagnetic forces result in the magnet-charge system gaining electromagnetic momentum and an equal and opposite amount of mechanical momentum so that it is moving in its original rest frame. This moving reference frame is erroneously taken to be the rest frame in studies that purport to show hidden momentum. Here I examine the analysis of Shockley and James and of Coleman and Van Vleck and consider a model of a magnetic dipole formed in a uniform electric field. These calculations show no hidden momentum.

  16. Far-field momentum flux of high-frequency axisymmetric synthetic jets

    NASA Astrophysics Data System (ADS)

    Xia, X.; Mohseni, K.

    2015-11-01

    This study focuses on predicting the far-field momentum flux for axisymmetric synthetic jets, which is an important parameter that characterizes the performance of such jets in flow-control applications. Previous researchers have found that a negative pressure gradient near the jet orifice is responsible for the observed decrease in the momentum flux in the streamwise direction. As a result, prediction of the far field momentum flux of synthetic jets has encountered serious challenges. In this paper, the far-field momentum flux is modeled by calculating the hydrodynamic impulse of the vortical structure formed during one actuation cycle, under the assumption that the jet is fully developed and periodic. In this manner, the complex near-field effect of a synthetic jet is explicitly captured by the interactions between the vortices and the actuator. Furthermore, the impulse of these vortical structures is predicted using only the actuation parameters of the synthetic jet, namely, the stroke length, L, the orifice diameter, d, and the actuation frequency, f. For a synthetic jet with a stroke ratio, L/d, larger than the formation number, L∗/d, this model predicts that the normalized far-field momentum flux, K/Ks, decreases when L/d increases. This can be explained by an increasing circulation fraction of the trailing jet, which contains less impulse per unit circulation compared with the leading vortex. This model is validated using hot-wire anemometry measurement of a series of synthetic jets. Moreover, by comparing with experimental data that have large L/d, this model suggests that the contribution of trailing jet to the overall far-field momentum flux is not negligible.

  17. Alongshore Momentum Balance Over Shoreface-Connected Ridges, Fire Island, NY

    NASA Astrophysics Data System (ADS)

    Ofsthun, C.; Wu, X.; Voulgaris, G.; Warner, J. C.

    2016-12-01

    he momentum balance of alongshore flows over straight, uniform shelfs has been analyzed extensively over the last few decades. More recently, the effect of coastline curvature and how this might alter the relative significance of the momentum terms has received additional attention. In this contribution, the alongshore momentum over shelves with straight coastline, but non-uniform bathymetry is examined. Hydrodynamic and hydrographic data collected by the US Geological Survey (Fire Island Coastal Change project) on the inner shelf of Fire Island, NY over a region of shore-face connected ridges (SFCRs) are used to describe wind-induced circulation and the terms of the alongshore momentum balance equation. Analysis of the data revealed a predominantly alongshore circulation, under westward wind forcing, with localized offshore (onshore) current veering over the ridge crests (troughs). Momentum balance analysis hinted that local acceleration, advective acceleration, and bottom stress are balanced by wind stress and regional (>100 km) pressure gradient force. In addition, a numerical model using an idealized SFCR bathymetry, forced by our observed winds, was employed to compare the momentum balance relationships identified by the data and those under steady-state conditions published earlier (Warner et al., 2014). A synthesis of the numerical and experimental data revealed that the true pressure gradient force results from the sum of local pressure gradient force, which maintains a Bernoulli-like relationship with alongshore advective acceleration, and regional pressure gradient force, which maintains a strong, negative relationship with wind stress. The differences between steady-state and realistic conditions is mainly on the contributions of regional scale pressure gradients that develop under realistic conditions, and the reduced contribution of local scale pressure gradients which develop best under steady-state conditions. Our analysis indicates that current

  18. LIGHT SOURCE: Optics for the lattice of the compact storage ring for a Compton X-ray source

    NASA Astrophysics Data System (ADS)

    Yu, Pei-Cheng; Wang, Yu; Shen, Xiao-Zhe; Huang, Wen-Hui; Yan, Li-Xin; Du, Ying-Chao; Li, Ren-Kai; Tang, Chuan-Xiang

    2009-06-01

    We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source. The optics design for different operation modes of the storage ring are discussed in detail. For the pulse mode optics, an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate; as for the steady mode, the method to control momentum compact factor is adopted [Gladkikh P, Phys. Rev. ST Accel. Beams 8, 050702] to obtain stability of the electron beam.

  19. Representational momentum is not (totally) impervious to error feedback.

    PubMed

    Ruppel, Susan E; Fleming, Carmen N; Hubbard, Timothy L

    2009-03-01

    The influence of feedback on representational momentum for the final location of a moving target was examined in 3 experiments. The presence of binary feedback (correct, error) during practise trials or during larger blocks of experimental trials did not reduce representational momentum, nor did the presence of more informative feedback specifying the direction of error (error-in front of, error-behind) during larger blocks of experimental trials reduce representational momentum. Effects on representational momentum of whether feedback was consistently provided were inconsistent. Even though feedback did not reduce representational momentum per se, feedback did influence the probability of a same response for different probe positions. Implications of the data for R. A. Finke and J. J. Freyd's (1985; J. J. Freyd, 1987) claim that representational momentum is impervious to error feedback, and possible roles of perceptual learning in representational momentum, are discussed.

  20. Angular Momentum and Galaxy Formation Revisited

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-01

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j sstarf and mass M sstarf (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j sstarf reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j sstarf in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of ~100 nearby bright galaxies of all types, placing them on a diagram of j sstarf versus M sstarf. The ellipticals and spirals form two parallel j sstarf-M sstarf tracks, with log-slopes of ~0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of ~3-4 if mass-to-light ratio variations are neglected for simplicity, and ~7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j sstarf-M sstarf trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j sstarf