Repression of enhancer II activity by a negative regulatory element in the hepatitis B virus genome.
Lo, W Y; Ting, L P
1994-01-01
Enhancer II of human hepatitis B virus has dual functions in vivo. Located at nucleotides (nt) 1646 to 1741, it can stimulate the surface and X promoters from a downstream position. Moreover, the same sequence can also function as upstream regulatory element that activates the core promoter in a position- and orientation-dependent manner. In this study, we report the identification and characterization of a negative regulatory element (NRE) upstream of enhancer II (nt 1613 to 1636) which can repress both the enhancer and upstream stimulatory function of the enhancer II sequence in differentiated liver cells. This NRE has marginal inhibitory effect by itself but a strong repressive function in the presence of a functional enhancer II. Mutational analysis reveals that sequence from nt 1616 to 1621 is required for repression of enhancer activity by the NRE. Gel shift analysis reveals that this negative regulatory region can be recognized by a specific protein factor(s) present at the 0.4 M NaCl fraction of HepG2 nuclear extracts. The discovery of the NRE indicates that HBV gene transcription is controlled by combined effects of both positive and negative regulation. It also provides a unique system with which to study the mechanism of negative regulation of gene expression. Images PMID:8107237
Zhang, Chenyan; Ni, Yan; Feng, Tingyong
2017-06-30
Previous research has elucidated that procrastination can be influenced by regulatory mode orientations. However, the neural mechanism of regulatory modes affecting procrastination is not well understood. To address this question, we employed resting-state functional magnetic resonance imaging (RS-fMRI) to test the influence of two regulatory modes (assessment and locomotion) on procrastination. The behavioral results showed that procrastination was positively correlated with assessment orientation but negatively correlated with locomotion orientation. Neuroimaging results indicated that the functional connectivity between parahippocampal cortex (PHC) and dorsal anterior cingulate (dACC) was negatively correlated with assessment scores, while the functional connectivity between anterior prefrontal cortex (aPFC) and parahippocampal cortex (PHC) was negatively correlated with locomotion scores. Critically, mediation analysis showed that the different effects of two distinct regulatory modes on procrastination were mediated by PHC-dACC and aPFC-PHC functional connectivity respectively. These results suggested that people's procrastination could be predicted by regulatory mode orientations, which is mediated by PHC connectivity with dACC and aPFC respectively. The present study extends our knowledge on procrastination and provides neural mechanism for understanding the link between regulatory mode orientations and procrastination. Copyright © 2017. Published by Elsevier B.V.
Fourie, Melike M; Thomas, Kevin G F; Amodio, David M; Warton, Christopher M R; Meintjes, Ernesta M
2014-01-01
Guilt, shame, and embarrassment are quintessential moral emotions with important regulatory functions for the individual and society. Moral emotions are, however, difficult to study with neuroimaging methods because their elicitation is more intricate than that of basic emotions. Here, using functional MRI (fMRI), we employed a novel social prejudice paradigm to examine specific brain regions associated with real-time moral emotion, focusing on guilt and related moral-negative emotions. The paradigm induced intense moral-negative emotion (primarily guilt) in 22 low-prejudice individuals through preprogrammed feedback indicating implicit prejudice against Black and disabled people. fMRI data indicated that this experience of moral-negative emotion was associated with increased activity in anterior paralimbic structures, including the anterior cingulate cortex (ACC) and anterior insula, in addition to areas associated with mentalizing, including the dorsomedial prefrontal cortex, posterior cingulate cortex, and precuneus. Of significance was prominent conflict-related activity in the supragenual ACC, which is consistent with theories proposing an association between acute guilt and behavioral inhibition. Finally, a significant negative association between self-reported guilt and neural activity in the pregenual ACC suggested a role of self-regulatory processes in response to moral-negative affect. These findings are consistent with the multifaceted self-regulatory functions of moral-negative emotions in social behavior.
Krendl, Anne C
2018-05-21
Although engaging explicit regulatory strategies may reduce negative bias toward outgroup members, these strategies are cognitively demanding and thus may not be effective for older adults (OA) who have reduced cognitive resources. The current study therefore examines whether individual differences in cognitive capacity disrupt OA' ability to explicitly regulate their bias to stigmatized individuals. Young and OA were instructed to explicitly regulate their negative bias toward stigmatized individuals by using an explicit reappraisal strategy. Regulatory success was assessed as a function of age and individual differences in cognitive capacity (Experiment 1). In Experiment 2, the role of executive function in implementing cognitive reappraisal strategies was examined by using a divided attention manipulation. Results from Experiment 1 revealed that individual differences in OA' cognitive capacity disrupted their ability to regulate their negative emotional response to stigma. In Experiment 2, it was found that dividing attention in young adults (YA) significantly reduced their regulatory success as compared to YA' regulatory capacity in the full attention condition. As expected, dividing YA' attention made their performance similar to OA with relatively preserved cognitive capacity. Together, the results from this study demonstrated that individual differences in cognitive capacity predicted OA' ability to explicitly regulate their negative bias to a range of stigmatized individuals.
A regulatory role for TGF-β signaling in the establishment and function of the thymic medulla.
Hauri-Hohl, Mathias; Zuklys, Saulius; Holländer, Georg A; Ziegler, Steven F
2014-06-01
Medullary thymic epithelial cells (mTECs) are critical in establishing and maintaining the appropriate microenvironment for negative selection and maturation of immunocompetent T cells with a self-tolerant T cell antigen receptor repertoire. Cues that direct proliferation and maturation of mTECs are provided by members of the tumor necrosis factor (TNF) superfamily expressed on developing thymocytes. Here we demonstrate a negative role of the morphogen TGF-β in tempering these signals under physiological conditions, limiting both growth and function of the thymic medulla. Eliminating TGF-β signaling specifically in TECs or by pharmacological means increased the size of the mTEC compartment, enhanced negative selection and functional maturation of medullary thymocytes as well as the production of regulatory T cells, thus reducing the autoreactive potential of peripheral T cells.
Oelze, I; Rittner, K; Sczakiel, G
1994-01-01
Adeno-associated virus type 2 (AAV-2), a human parvovirus which is apathogenic in adults, inhibits replication and gene expression of human immunodeficiency virus type 1 (HIV-1) in human cells. The rep gene of AAV-2, which was shown earlier to be sufficient for this negative interference, also down-regulated the expression of heterologous sequences driven by the long terminal repeat (LTR) of HIV-1. This effect was observed in the absence of the HIV-1 transactivator Tat, i.e., at basal levels of LTR-driven transcription. In this work, we studied the involvement of functional subsequences of the HIV-1 LTR in rep-mediated inhibition in the absence of Tat. Mutated LTRs driving an indicator gene (cat) were cointroduced into human SW480 cells together with rep alone or with double-stranded DNA fragments or RNA containing sequences of the HIV-1 LTR. The results indicate that rep strongly enhances the function of negative regulatory elements of the LTR. In addition, the experiments revealed a transcribed sequence element located within the TAR-coding sequence termed AHHH (AAV-HIV homology element derived from HIV-1) which is involved in rep-mediated inhibition. The AHHH element is also involved in down-regulation of basal expression levels in the absence of rep, suggesting that AHHH also contributes to negative regulatory functions of the LTR of HIV-1. In contrast, positive regulatory elements of the HIV-1 LTR such as the NF kappa B and SP1 binding sites have no significant influence on the rep-mediated inhibition. Images PMID:8289357
Morgan, Judith K.; Izard, Carroll E.; Hyde, Christopher
2013-01-01
Children’s emotional reactivity may interact with their regulatory behaviors to contribute to internalizing problems and social functioning even early in development. Ninety-one preschool children participated in a longitudinal project examining children’s reactivity and regulatory behaviors as predictors of internalizing problems and positive and negative social behavior in the classroom. Children who paired negative emotion expression with disengagement during a laboratory task showed higher levels of internalizing problems and more negative social behavior in the classroom six months later. Positive emotion expression paired with engagement during a laboratory task predicted more positive social behavior in the classroom six months later. Physiological reactivity and regulation also predicted children’s social behavior in the classroom. Findings suggest that preschool children with maladaptive reactivity and regulatory patterns may be at greater risk for internalizing problems even in early childhood. PMID:25067866
A Developmental Shift from Positive to Negative Connectivity in Human Amygdala-Prefrontal Circuitry
Gee, Dylan G.; Humphreys, Kathryn L.; Flannery, Jessica; Goff, Bonnie; Telzer, Eva H.; Shapiro, Mor; Hare, Todd A.; Bookheimer, Susan Y.; Tottenham, Nim
2013-01-01
Recent human imaging and animal studies highlight the importance of frontoamygdala circuitry in the regulation of emotional behavior and its disruption in anxiety-related disorders. While tracing studies have suggested changes in amygdala-cortical connectivity through the adolescent period in rodents, less is known about the reciprocal connections within this circuitry across human development, when these circuits are being fine-tuned and substantial changes in emotional control are observed. The present study examined developmental changes in amygdala-prefrontal circuitry across the ages of 4 to 22 years using task-based functional magnetic resonance imaging (fMRI). Results suggest positive amygdala-prefrontal connectivity in early childhood that switches to negative functional connectivity during the transition to adolescence. Amygdala-mPFC functional connectivity was significantly positive (greater than zero) among participants younger than ten, whereas functional connectivity was significantly negative (less than zero) among participants ten years and older, over and above the effect of amygdala reactivity. The developmental switch in functional connectivity was paralleled by a steady decline in amygdala reactivity. Moreover, the valence switch might explain age-related improvement in task performance and a developmentally normative decline in anxiety. Initial positive connectivity followed by a valence shift to negative connectivity provides a neurobiological basis for regulatory development and may present novel insight into a more general process of developing regulatory connections. PMID:23467374
Mindfulness and emotion regulation—an fMRI study
Lutz, Jacqueline; Herwig, Uwe; Opialla, Sarah; Hittmeyer, Anna; Jäncke, Lutz; Rufer, Michael; Grosse Holtforth, Martin
2014-01-01
Mindfulness—an attentive non-judgmental focus on present experiences—is increasingly incorporated in psychotherapeutic treatments as a skill fostering emotion regulation. Neurobiological mechanisms of actively induced emotion regulation are associated with prefrontally mediated down-regulation of, for instance, the amygdala. We were interested in neurobiological correlates of a short mindfulness instruction during emotional arousal. Using functional magnetic resonance imaging, we investigated effects of a short mindfulness intervention during the cued expectation and perception of negative and potentially negative pictures (50% probability) in 24 healthy individuals compared to 22 controls. The mindfulness intervention was associated with increased activations in prefrontal regions during the expectation of negative and potentially negative pictures compared to controls. During the perception of negative stimuli, reduced activation was identified in regions involved in emotion processing (amygdala, parahippocampal gyrus). Prefrontal and right insular activations when expecting negative pictures correlated negatively with trait mindfulness, suggesting that more mindful individuals required less regulatory resources to attenuate emotional arousal. Our findings suggest emotion regulatory effects of a short mindfulness intervention on a neurobiological level. PMID:23563850
Neural correlates of preparatory and regulatory control over positive and negative emotion.
Seo, Dongju; Olman, Cheryl A; Haut, Kristen M; Sinha, Rajita; MacDonald, Angus W; Patrick, Christopher J
2014-04-01
This study used functional magnetic resonance imaging to investigate brain activation during preparatory and regulatory control while participants (N = 24) were instructed either to simply view or decrease their emotional response to, pleasant, neutral or unpleasant pictures. A main effect of emotional valence on brain activity was found in the right precentral gyrus, with greater activation during positive than negative emotion regulation. A main effect of regulation phase was evident in the bilateral anterior prefrontal cortex (PFC), precuneus, posterior cingulate cortex, right putamen and temporal and occipital lobes, with greater activity in these regions during preparatory than regulatory control. A valence X regulation interaction was evident in regions of ventromedial PFC and anterior cingulate cortex, reflecting greater activation while regulating negative than positive emotion, but only during active emotion regulation (not preparation). Conjunction analyses revealed common brain regions involved in differing types of emotion regulation including selected areas of left lateral PFC, inferior parietal lobe, temporal lobe, right cerebellum and bilateral dorsomedial PFC. The right lateral PFC was additionally activated during the modulation of both positive and negative valence. Findings demonstrate significant modulation of brain activity during both preparation for, and active regulation of positive and negative emotional states.
Regulatory T cells: mechanisms of differentiation and function.
Josefowicz, Steven Z; Lu, Li-Fan; Rudensky, Alexander Y
2012-01-01
The immune system has evolved to mount an effective defense against pathogens and to minimize deleterious immune-mediated inflammation caused by commensal microorganisms, immune responses against self and environmental antigens, and metabolic inflammatory disorders. Regulatory T (Treg) cell-mediated suppression serves as a vital mechanism of negative regulation of immune-mediated inflammation and features prominently in autoimmune and autoinflammatory disorders, allergy, acute and chronic infections, cancer, and metabolic inflammation. The discovery that Foxp3 is the transcription factor that specifies the Treg cell lineage facilitated recent progress in understanding the biology of regulatory T cells. In this review, we discuss cellular and molecular mechanisms in the differentiation and function of these cells.
Effect of Incest on Self and Social Functioning: A Developmental Psychopathology Perspective.
ERIC Educational Resources Information Center
Cole, Pamela M.; Putnam, Frank W.
1992-01-01
Proposes model based on developmental psychopathology for conceptualizing effects of child sexual abuse. Argues that incest has negative effects on self and social functioning, by jeopardizing self-definition and integration, self-regulatory processes, and sense of security and trust in relationships. Reviews self and social development…
Directed evolution of a synthetic phylogeny of programmable Trp repressors.
Ellefson, Jared W; Ledbetter, Michael P; Ellington, Andrew D
2018-04-01
As synthetic regulatory programs expand in sophistication, an ever increasing number of biological components with predictable phenotypes is required. Regulators are often 'part mined' from a diverse, but uncharacterized, array of genomic sequences, often leading to idiosyncratic behavior. Here, we generate an entire synthetic phylogeny from the canonical allosteric transcription factor TrpR. Iterative rounds of positive and negative compartmentalized partnered replication (CPR) led to the exponential amplification of variants that responded with high affinity and specificity to halogenated tryptophan analogs and novel operator sites. Fourteen repressor variants were evolved with unique regulatory profiles across five operators and three ligands. The logic of individual repressors can be modularly programmed by creating heterodimeric fusions, resulting in single proteins that display logic functions, such as 'NAND'. Despite the evolutionarily limited regulatory role of TrpR, vast functional spaces exist around this highly conserved protein scaffold and can be harnessed to create synthetic regulatory programs.
Davydyan, Garri
2015-12-01
The evolution of biologic systems (BS) includes functional mechanisms that in some conditions may lead to the development of cancer. Using mathematical group theory and matrix analysis, previously, it was shown that normally functioning BS are steady functional structures regulated by three basis regulatory components: reciprocal links (RL), negative feedback (NFB) and positive feedback (PFB). Together, they form an integrative unit maintaining system's autonomy and functional stability. It is proposed that phylogenetic development of different species is implemented by the splitting of "rudimentary" characters into two relatively independent functional parts that become encoded in chromosomes. The functional correlate of splitting mechanisms is RL. Inversion of phylogenetic mechanisms during ontogenetic development leads cell differentiation until cells reach mature states. Deterioration of reciprocal structure in the genome during ontogenesis gives rise of pathological conditions characterized by unsteadiness of the system. Uncontrollable cell proliferation and invasive cell growth are the leading features of the functional outcomes of malfunctioning systems. The regulatory element responsible for these changes is RL. In matrix language, pathological regulation is represented by matrices having positive values of diagonal elements ( TrA > 0) and also positive values of matrix determinant ( detA > 0). Regulatory structures of that kind can be obtained if the negative entry of the matrix corresponding to RL is replaced with the positive one. To describe not only normal but also pathological states of BS, a unit matrix should be added to the basis matrices representing RL, NFB and PFB. A mathematical structure corresponding to the set of these four basis functional patterns (matrices) is a split quaternion (coquaternion). The structure and specific role of basis elements comprising four-dimensional linear space of split quaternions help to understand what changes in mechanism of cell differentiation may lead to cancer development.
Lakes, Kimberley D
2013-10-01
The purpose of this study is to report psychometric properties of scores obtained using a novel observer-rated measure of children's self-regulation, the Response to Challenge Scale (RCS). The RCS was developed to rate children's self-regulatory abilities in a physically active context (e.g., while completing a physical challenge course). The RCS and other study measures were administered in a private school sample of 207 children. Analyses of score distributions indicated that the RCS was able to capture variance among children in self-regulatory abilities; the distribution was normal for the Affective, Cognitive, and Total Self-Regulation scales. Validity analyses revealed significant positive correlations between Cognitive, Affective, Motor, and Total Self-Regulation and executive function task performance; significant negative correlations between Cognitive Regulation and teacher-rated hyperactivity and inattention; significant negative correlations between Affective, Motor, and Total Self-Regulation and teacher ratings of peer problems; and significant positive correlations between Cognitive and Affective Regulation and parent ratings of prosocial behavior. Parent and teacher rated Total Difficulties scores were both negatively correlated with RCS Total Self-Regulation scores. Results suggest that it is possible for observers to rate self-regulatory abilities in the context of physical activities, and that these ratings correspond with performance on tasks requiring executive function as well as teacher and parent ratings of children's difficulties.
Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function
Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua
2015-01-01
SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609
Sachdeva, Meenakshi; Sharma, Aman; Arora, Sunil K
2015-01-01
Severely immunocompromised state during advanced stage of HIV-1 infection has been linked to functionally defective antigen presentation by dendritic cells (DCs). The molecular mechanisms behind DC impairment are still obscure. We investigated changes in DC function and association of key regulators of cytokine signaling during different stages of HIV-1 infection and following antiretroviral therapy (ART). Phenotypic and functional characteristics of circulating myeloid DCs (mDCs) in 56 ART-naive patients (23 in early and 33 in advanced stage of disease), 36 on ART and 24 healthy controls were evaluated. Sixteen patients were studied longitudinally prior-to and 6 months after the start of ART. For functional studies, monocyte-derived DCs (Mo-DCs) were evaluated for endocytosis, allo-stimulation and cytokine secretion. The expression of suppressor of cytokine signaling (SOCS)-1 and other regulators of cytokine signaling was evaluated by real-time RT-PCR. The ability to respond to an antigenic stimulation was severely impaired in patients in advanced HIV-1 disease which showed partial recovery in the treated group. Mo-DCs from patients with advanced HIV-disease remained immature with low allo-stimulation and reduced cytokine secretion even after TLR-4 mediated stimulation ex-vivo. The cells had an increased expression of negative regulatory factors like SOCS-1, SOCS-3, SH2-containing phosphatase (SHP)-1 and a reduced expression of positive regulators like Janus kinase (JAK)2 and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)1. A functional recovery after siRNA mediated silencing of SOCS-1 in these mo-DCs confirms the role of negative regulatory factors in functional impairment of these cells. Functionally defective DCs in advanced stage of HIV-1 infection seems to be due to imbalanced state of negative and positive regulatory gene expression. Whether this is a cause or effect of increased viral replication at this stage of disease, needs further investigation. The information may be useful in design of novel therapeutic targets for better management of disease.
A global interaction network maps a wiring diagram of cellular function
Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N.; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D.; Pelechano, Vicent; Styles, Erin B.; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S.; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F.; Li, Sheena C.; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; Luis, Bryan-Joseph San; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W.; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G.; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M.; Moore, Claire L.; Rosebrock, Adam P.; Caudy, Amy A.; Myers, Chad L.; Andrews, Brenda; Boone, Charles
2017-01-01
We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. PMID:27708008
Chatterjee, Sumantra; Kapoor, Ashish; Akiyama, Jennifer A.; ...
2016-09-29
Common sequence variants in cis-regulatory elements (CREs) are suspected etiological causes of complex disorders. We previously identified an intronic enhancer variant in the RET gene disrupting SOX10 binding and increasing Hirschsprung disease (HSCR) risk 4-fold. We now show that two other functionally independent CRE variants, one binding Gata2 and the other binding Rarb, also reduce Ret expression and increase risk 2- and 1.7-fold. By studying human and mouse fetal gut tissues and cell lines, we demonstrate that reduced RET expression propagates throughout its gene regulatory network, exerting effects on both its positive and negative feedback components. We also provide evidencemore » that the presence of a combination of CRE variants synergistically reduces RET expression and its effects throughout the GRN. These studies show how the effects of functionally independent non-coding variants in a coordinated gene regulatory network amplify their individually small effects, providing a model for complex disorders.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Sumantra; Kapoor, Ashish; Akiyama, Jennifer A.
Common sequence variants in cis-regulatory elements (CREs) are suspected etiological causes of complex disorders. We previously identified an intronic enhancer variant in the RET gene disrupting SOX10 binding and increasing Hirschsprung disease (HSCR) risk 4-fold. We now show that two other functionally independent CRE variants, one binding Gata2 and the other binding Rarb, also reduce Ret expression and increase risk 2- and 1.7-fold. By studying human and mouse fetal gut tissues and cell lines, we demonstrate that reduced RET expression propagates throughout its gene regulatory network, exerting effects on both its positive and negative feedback components. We also provide evidencemore » that the presence of a combination of CRE variants synergistically reduces RET expression and its effects throughout the GRN. These studies show how the effects of functionally independent non-coding variants in a coordinated gene regulatory network amplify their individually small effects, providing a model for complex disorders.« less
Evolutionary Plasticity of AmrZ Regulation in Pseudomonas
Dougherty, Kevin; Diaz, Beatriz; Murillo, Rachel
2018-01-01
ABSTRACT amrZ encodes a master regulator protein conserved across pseudomonads, which can be either a positive or negative regulator of swimming motility depending on the species examined. To better understand plasticity in the regulatory function of AmrZ, we characterized the mode of regulation for this protein for two different motility-related phenotypes in Pseudomonas stutzeri. As in Pseudomonas syringae, AmrZ functions as a positive regulator of swimming motility within P. stutzeri, which suggests that the functions of this protein with regard to swimming motility have switched at least twice across pseudomonads. Shifts in mode of regulation cannot be explained by changes in AmrZ sequence alone. We further show that AmrZ acts as a positive regulator of colony spreading within this strain and that this regulation is at least partially independent of swimming motility. Closer investigation of mechanistic shifts in dual-function regulators like AmrZ could provide unique insights into how transcriptional pathways are rewired between closely related species. IMPORTANCE Microbes often display finely tuned patterns of gene regulation across different environments, with major regulatory changes controlled by a small group of “master” regulators within each cell. AmrZ is a master regulator of gene expression across pseudomonads and can be either a positive or negative regulator for a variety of pathways depending on the strain and genomic context. Here, we demonstrate that the phenotypic outcomes of regulation of swimming motility by AmrZ have switched at least twice independently in pseudomonads, so that AmrZ promotes increased swimming motility in P. stutzeri and P. syringae but represses this phenotype in Pseudomonas fluorescens and Pseudomonas aeruginosa. Since examples of switches in regulatory mode are relatively rare, further investigation into the mechanisms underlying shifts in regulator function for AmrZ could provide unique insights into the evolution of bacterial regulatory proteins. PMID:29669886
St Jacques, Peggy L; Dolcos, Florin; Cabeza, Roberto
2009-01-01
Aging is associated with preserved enhancement of emotional memory, as well as with age-related reductions in memory for negative stimuli, but the neural networks underlying such alterations are not clear. We used a subsequent-memory paradigm to identify brain activity predicting enhanced emotional memory in young and older adults. Activity in the amygdala predicted enhanced emotional memory, with subsequent-memory activity greater for negative stimuli than for neutral stimuli, across age groups, a finding consistent with an overall enhancement of emotional memory. However, older adults recruited greater activity in anterior regions and less activity in posterior regions in general for negative stimuli that were subsequently remembered. Functional connectivity of the amygdala with the rest of the brain was consistent with age-related reductions in memory for negative stimuli: Older adults showed decreased functional connectivity between the amygdala and the hippocampus, but increased functional connectivity between the amygdala and dorsolateral prefrontal cortices. These findings suggest that age-related differences in the enhancement of emotional memory might reflect decreased connectivity between the amygdala and typical subsequent-memory regions, as well as the engagement of regulatory processes that inhibit emotional responses.
Regulatory T Cells: Differentiation and Function.
Plitas, George; Rudensky, Alexander Y
2016-09-02
The immune system of vertebrate animals has evolved to mount an effective defense against a diverse set of pathogens while minimizing transient or lasting impairment in tissue function that could result from the inflammation caused by immune responses to infectious agents. In addition, misguided immune responses to "self" and dietary antigens, as well as to commensal microorganisms, can lead to a variety of inflammatory disorders, including autoimmunity, metabolic syndrome, allergies, and cancer. Regulatory T cells expressing the X chromosome-linked transcription factor Foxp3 suppress inflammatory responses in diverse biological settings and serve as a vital mechanism of negative regulation of immune-mediated inflammation. Cancer Immunol Res; 4(9); 721-5. ©2016 AACR. ©2016 American Association for Cancer Research.
Scott, Walter D; Beevers, Christopher G; Mermelstein, Robin J
2008-07-01
The present study extended previous tests of cognitive priming theories of depression by examining cognitive self-regulatory, motivational, and affective functioning of depression-vulnerable and nonvulnerable individuals after a failure experience. Participants were enrolled in a clinic-based smoking cessation program that consisted of seven group meetings. Major findings show that compared to the nonvulnerable group, depression-vulnerable individuals were less motivated to quit and experienced more negative affect, but only after a failure to quit smoking. However, after controlling for actual smoking rate, depression-vulnerable individuals did not evaluate their success any more negatively, nor did they indicate lower self-efficacy for quitting. Results are discussed in terms of cognitive self-regulatory and affect temperament models of motivation and depression.
Haskett, Mary E.; Stelter, Rebecca; Proffit, Katie; Nice, Rachel
2012-01-01
Objective Identifying factors associated with school functioning of abused children is important in prevention of long-term negative outcomes associated with school failure. The purpose of this study was to examine the degree to which parent emotional expressiveness and children's self-regulation predicted early school behavior of abused children. Methods The sample included 92 physically abused children ages 4-7 and one of their parents (95.7% mothers). Parents completed a measure of their own emotional expressiveness, and parents and teachers provided reports of children's self-regulatory skills. Children's school functioning was measured by observations of playground aggression and teacher reports of aggression and classroom behavior. Results Parents’ expression of positive and negative emotions was associated with various aspects of children's self-regulation and functioning in the school setting. Links between self-regulation and children's school adjustment were robust; poor self-regulation was associated with higher aggression and lower cooperation and self-directed behavior in the classroom. There was minimal support for a mediating role of children's self-regulation in links between parent expressiveness and children's behavior. Practice implications Findings point to the relevance of parent emotional expressivity and children's self-regulatory processes in understanding physically abused children's functioning at the transition to school. Although further research is needed, findings indicate that increasing parental expression of positive emotion should be a focus in treatment along with reduction in negativity of abusive parents. Further, addressing children's self-regulation could be important in efforts to reduce aggression and enhance children's classroom competence. PMID:22565040
Haskett, Mary E; Stelter, Rebecca; Proffit, Katie; Nice, Rachel
2012-04-01
Identifying factors associated with school functioning of abused children is important in prevention of long-term negative outcomes associated with school failure. The purpose of this study was to examine the degree to which parent emotional expressiveness and children's self-regulation predicted early school behavior of abused children. The sample included 92 physically abused children ages 4-7 and one of their parents (95.7% mothers). Parents completed a measure of their own emotional expressiveness, and parents and teachers provided reports of children's self-regulatory skills. Children's school functioning was measured by observations of playground aggression and teacher reports of aggression and classroom behavior. Parents' expression of positive and negative emotions was associated with various aspects of children's self-regulation and functioning in the school setting. Links between self-regulation and children's school adjustment were robust; poor self-regulation was associated with higher aggression and lower cooperation and self-directed behavior in the classroom. There was minimal support for a mediating role of children's self-regulation in links between parent expressiveness and children's behavior. Findings point to the relevance of parent emotional expressivity and children's self-regulatory processes in understanding physically abused children's functioning at the transition to school. Although further research is needed, findings indicate that increasing parental expression of positive emotion should be a focus in treatment along with reduction in negativity of abusive parents. Further, addressing children's self-regulation could be important in efforts to reduce aggression and enhance children's classroom competence. Copyright © 2012 Elsevier Ltd. All rights reserved.
Suzuki, Toru; Muto, Shinsuke; Miyamoto, Saku; Aizawa, Kenichi; Horikoshi, Masami; Nagai, Ryozo
2003-08-01
Transcription involves molecular interactions between general and regulatory transcription factors with further regulation by protein-protein interactions (e.g. transcriptional cofactors). Here we describe functional interaction between DNA-binding transcription factor and histone chaperone. Affinity purification of factors interacting with the DNA-binding domain of the transcription factor Sp1 showed Sp1 to interact with the histone chaperone TAF-I, both alpha and beta isoforms. This interaction was specific as Sp1 did not interact with another histone chaperone CIA nor did other tested DNA-binding regulatory factors (MyoD, NFkappaB, p53) interact with TAF-I. Interaction of Sp1 and TAF-I occurs both in vitro and in vivo. Interaction with TAF-I results in inhibition of DNA-binding, and also likely as a result of such, inhibition of promoter activation by Sp1. Collectively, we describe interaction between DNA-binding transcription factor and histone chaperone which results in negative regulation of the former. This novel regulatory interaction advances our understanding of the mechanisms of eukaryotic transcription through DNA-binding regulatory transcription factors by protein-protein interactions, and also shows the DNA-binding domain to mediate important regulatory interactions.
Emotion: The Self-regulatory Sense
2014-01-01
While emotion is a central component of human health and well-being, traditional approaches to understanding its biological function have been wanting. A dynamic systems model, however, broadly redefines and recasts emotion as a primary sensory system—perhaps the first sensory system to have emerged, serving the ancient autopoietic function of “self-regulation.” Drawing upon molecular biology and revelations from the field of epigenetics, the model suggests that human emotional perceptions provide an ongoing stream of “self-relevant” sensory information concerning optimally adaptive states between the organism and its immediate environment, along with coupled behavioral corrections that honor a universal self-regulatory logic, one still encoded within cellular signaling and immune functions. Exemplified by the fundamental molecular circuitry of sensorimotor control in the E coli bacterium, the model suggests that the hedonic (affective) categories emerge directly from positive and negative feedback processes, their good/bad binary appraisals relating to dual self-regulatory behavioral regimes—evolutionary purposes, through which organisms actively participate in natural selection, and through which humans can interpret optimal or deficit states of balanced being and becoming. The self-regulatory sensory paradigm transcends anthropomorphism, unites divergent theoretical perspectives and isolated bodies of literature, while challenging time-honored assumptions. While suppressive regulatory strategies abound, it suggests that emotions are better understood as regulating us, providing a service crucial to all semantic language, learning systems, evaluative decision-making, and fundamental to optimal physical, mental, and social health. PMID:24808986
A HLA class I cis-regulatory element whose activity can be modulated by hormones.
Sim, B C; Hui, K M
1994-12-01
To elucidate the basis of the down-regulation in major histocompatibility complex (MHC) class I gene expression and to identify possible DNA-binding regulatory elements that have the potential to interact with class I MHC genes, we have studied the transcriptional regulation of class I HLA genes in human breast carcinoma cells. A 9 base pair (bp) negative cis-regulatory element (NRE) has been identified using band-shift assays employing DNA sequences derived from the 5'-flanking region of HLA class I genes. This 9-bp element, GTCATGGCG, located within exon I of the HLA class I gene, can potently inhibit the expression of a heterologous thymidine kinase (TK) gene promoter and the HLA enhancer element. Furthermore, this regulatory element can exert its suppressive function in either the sense or anti-sense orientation. More interestingly, NRE can suppress dexamethasone-mediated gene activation in the context of the reported glucocorticoid-responsive element (GRE) in MCF-7 cells but has no influence on the estrogen-mediated transcriptional activation of MCF-7 cells in the context of the reported estrogen-responsive element (ERE). Furthermore, the presence of such a regulatory element within the HLA class I gene whose activity can be modulated by hormones correlates well with our observation that the level of HLA class I gene expression can be down-regulated by hormones in human breast carcinoma cells. Such interactions between negative regulatory elements and specific hormone trans-activators are novel and suggest a versatile form of transcriptional control.
Garcia-Willingham, Natasha E; Roach, Abbey R; Kasarskis, Edward J; Segerstrom, Suzanne C
2018-05-16
Disease progression varies widely among patients with motor neuron disease (MND). Patients with MND and coexisting dementia have shorter survival. However, implications of mild cognitive and behavioral difficulties are unclear. The present study examined the relative contribution of executive functioning and self-regulation difficulties on survival over a 6-year period among patients with MND, who scored largely within normal limits on cognitive and behavioral indices. Patients with MND (N=37, age=59.97±11.57, 46% female) completed the Wisconsin Card Sorting Task (WCST) as an executive functioning perseveration index. The Behavior Rating Inventory of Executive Functions (BRIEF-A) was used as a behavioral measure of self-regulation in two subdomains self-regulatory behavior (Behavioral Regulation) and self-regulatory problem-solving (Metacognition). Cox proportional hazard regression analyses were used. In total, 23 patients died during follow-up. In Cox proportional hazard regressions adjusted for a priori covariates, each 10-point T-score increment in patient-reported BRIEF-A self-regulatory behavior and problem-solving difficulties increased mortality risk by 94% and103%, respectively (adjusted HR=1.94, 95% CI [1.07, 3.52]; adjusted HR=2.03, 95% CI [1.19, 3.48]). In sensitivity analyses, patient-reported self-regulatory problem-solving remained significant independent of disease severity and a priori covariates (adjusted HR=1.68, 95% CI [1.01, 2.78], though the predictive value of self-regulatory behavior was attenuated in adjusted models (HR=1.67, 95% CI [0.85, 3.27). Caregiver-reported BRIEF-A ratings of patients and WCST perseverative errors did not significantly predict survival. Preliminary evidence suggests patient-reported self-regulatory problem-solving difficulties indicate poorer prognosis in MND. Further research is needed to uncover mechanisms that negatively affect patient survival.
NASA Astrophysics Data System (ADS)
Wang, Liu-Suo; Li, Ning-Xi; Chen, Jing-Jia; Zhang, Xiao-Peng; Liu, Feng; Wang, Wei
2018-04-01
A positive and a negative feedback loop can induce bistability and oscillation, respectively, in biological networks. Nevertheless, they are frequently interlinked to perform more elaborate functions in many gene regulatory networks. Coupled positive and negative feedback loops may exhibit either oscillation or bistability depending on the intensity of the stimulus in some particular networks. It is less understood how the transition between the two dynamic modes is modulated by the positive and negative feedback loops. We developed an abstract model of such systems, largely based on the core p53 pathway, to explore the mechanism for the transformation of dynamic behaviors. Our results show that enhancing the positive feedback may promote or suppress oscillations depending on the strength of both feedback loops. We found that the system oscillates with low amplitudes in response to a moderate stimulus and switches to the on state upon a strong stimulus. When the positive feedback is activated much later than the negative one in response to a strong stimulus, the system exhibits long-term oscillations before switching to the on state. We explain this intriguing phenomenon using quasistatic approximation. Moreover, early switching to the on state may occur when the system starts from a steady state in the absence of stimuli. The interplay between the positive and negative feedback plays a key role in the transitions between oscillation and bistability. Of note, our conclusions should be applicable only to some specific gene regulatory networks, especially the p53 network, in which both oscillation and bistability exist in response to a certain type of stimulus. Our work also underscores the significance of transient dynamics in determining cellular outcome.
Oncogenic B-Raf(V600E) abrogates the AKT/B-Raf/Mps1 interaction in melanoma cells.
Zhang, Ling; Shi, Ruyi; He, Chanting; Cheng, Caixia; Song, Bin; Cui, Heyang; Zhang, Yanyan; Zhao, Zhiping; Bi, Yanghui; Yang, Xiaofeng; Miao, Xiaoping; Guo, Jiansheng; Chen, Xing; Wang, Jinfen; Li, Yaoping; Cheng, Xiaolong; Liu, Jing; Cui, Yongping
2013-08-28
Activating B-Raf mutations that deregulate the mitogen-activated protein kinase (MAPK) pathway commonly occur in cancer. Although B-Raf(V600E) induces increased Mps1 protein contributing to centrosome amplification and chromosome instability, the regulatory mechanisms of Mps1 in melanoma cells is not fully understood. Here, we report that Mps1/AKT and B-Raf(WT)/ERK signaling form an auto-regulatory negative feedback loop in melanoma cells; notably, oncogenic B-Raf(V600E) abrogates the negative feedback loop, contributing the aberrant Mps1 functions and tumorigenesis. Our findings raise the possibility that targeting the oncogenic B-Raf and Mps1, especially when used in combination could potentially provide great therapeutic opportunities for cancer treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Kubiak, Thomas; Zahn, Daniela; Siewert, Kerstin; Jonas, Cornelia; Weber, Hannelore
2014-09-01
Self-regulatory executive function theory (Wells and Matthews, 1994; Wells, 2008) stresses the role of metacognitions in the development of emotional disorders. Within this metacognitive model, positive beliefs about ruminative thinking are thought to be a risk factor for engaging in rumination and subsequently for depression. However, most of the existing research relies on retrospective self-report trait measures. The aim of the present study was to examine the theory's predictions with an Ecological Momentary Assessment approach capturing rumination as it occurs in daily life. Non-clinical participants (N = 93) were equipped with electronic diaries and completed four signal-contingent momentary self-reports per day for 4 weeks. A multilevel mediation model was computed to examine associations between positive beliefs about rumination and ruminative thinking and negative affect in daily life. Positive beliefs about rumination were significantly associated with ruminative thinking as it occurs in daily life. We further found evidence for a negative association with positive affect that was completely mediated via ruminative thinking in daily life occurring in response to negative emotions. Our results add ecologically valid corroborating evidence for the metacognitive model of emotional disorders within the framework of self-regulatory executive function theory.
Heitzeg, Mary M; Cope, Lora M; Martz, Meghan E; Hardee, Jillian E; Zucker, Robert A
2015-12-01
This work investigated the impact of heavy marijuana use during adolescence on emotional functioning, as well as the brain functional mediators of this effect. Participants (n=40) were recruited from the Michigan Longitudinal Study (MLS). Data on marijuana use were collected prospectively beginning in childhood as part of the MLS. Participants were classified as heavy marijuana users (n=20) or controls with minimal marijuana use. Two facets of emotional functioning-negative emotionality and resiliency (a self-regulatory mechanism)-were assessed as part of the MLS at three time points: mean age 13.4, mean age 19.6, and mean age 23.1. Functional neuroimaging data during an emotion-arousal word task were collected at mean age 20.2. Negative emotionality decreased and resiliency increased across the three time points in controls but not heavy marijuana users. Compared with controls, heavy marijuana users had less activation to negative words in temporal, prefrontal, and occipital cortices, insula, and amygdala. Activation of dorsolateral prefrontal cortex to negative words mediated an association between marijuana group and later negative emotionality. Activation of the cuneus/lingual gyrus mediated an association between marijuana group and later resiliency. Results support growing evidence that heavy marijuana use during adolescence affects later emotional outcomes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Smyth, Redmond P; Smith, Maureen R; Jousset, Anne-Caroline; Despons, Laurence; Laumond, Géraldine; Decoville, Thomas; Cattenoz, Pierre; Moog, Christiane; Jossinet, Fabrice; Mougel, Marylène; Paillart, Jean-Christophe; von Kleist, Max; Marquet, Roland
2018-05-18
Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5' region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5' PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production.
Smith, Maureen R; Jousset, Anne-Caroline; Despons, Laurence; Laumond, Géraldine; Decoville, Thomas; Cattenoz, Pierre; Moog, Christiane; Jossinet, Fabrice; Mougel, Marylène; Paillart, Jean-Christophe
2018-01-01
Abstract Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5′ region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5′ PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production. PMID:29514260
Using a Non-Fit Message Helps to De-Intensify Negative Reactions to Tough Advice.
Fridman, Ilona; Scherr, Karen A; Glare, Paul A; Higgins, E Tory
2016-08-01
Sometimes physicians need to provide patients with potentially upsetting advice. For example, physicians may recommend hospice for a terminally ill patient because it best meets their needs, but the patient and their family dislike this advised option. We explore whether regulatory non-fit could be used to improve these types of situations. Across five studies in which participants imagined receiving upsetting advice from a physician, we demonstrate that regulatory non-fit between the form of the physician's advice (emphasizing gains vs. avoiding losses) and the participants' motivational orientation (promotion vs. prevention) improves participants' evaluation of an initially disliked option. Regulatory non-fit de-intensifies participants' initial attitudes by making them less confident in their initial judgments and motivating them to think more thoroughly about the arguments presented. Furthermore, consistent with previous research on regulatory fit, we showed that the mechanism of regulatory non-fit differs as a function of participants' cognitive involvement in the evaluation of the option. © 2016 by the Society for Personality and Social Psychology, Inc.
Role of antisense RNAs in evolution of yeast regulatory complexity.
Lin, Chih-Hsu; Tsai, Zing Tsung-Yeh; Wang, Daryi
2013-01-01
Antisense RNAs (asRNAs) are known to regulate gene expression. However, a genome-wide mechanism of asRNA regulation is unclear, and there is no good explanation why partial asRNAs are not functional. To explore its regulatory role, we investigated asRNAs using an evolutionary approach, as genome-wide experimental data are limited. We found that the percentage of genes coupling with asRNAs in Saccharomyces cerevisiae is negatively associated with regulatory complexity and evolutionary age. Nevertheless, asRNAs evolve more slowly when their sense genes are under more complex regulation. Older genes coupling with asRNAs are more likely to demonstrate inverse expression, reflecting the role of these asRNAs as repressors. Our analyses provide novel evidence, suggesting a minor contribution of asRNAs in developing regulatory complexity. Although our results support the leaky hypothesis for asRNA transcription, our evidence also suggests that partial asRNAs may have evolved as repressors. Our study deepens the understanding of asRNA regulatory evolution. Copyright © 2013 Elsevier Inc. All rights reserved.
Using a Non-Fit Message Helps to De-Intensify Negative Reactions to Tough Advice
Fridman, Ilona; Scherr, Karen; Glare, Paul; Higgins, E. Tory
2017-01-01
Sometimes physicians need to provide patients with potentially upsetting advice. For example, physicians may recommend hospice for a terminally ill patient because it best meets their needs, but the patient and their family dislike this advised option. We explore whether regulatory non-fit could be used to improve these types of situations. Across five studies in which participants imagined receiving upsetting advice from a physician, we demonstrate that regulatory non-fit between the form of the physician’s advice (emphasizing gains vs. avoiding losses) and the participants’ motivational orientation (promotion vs. prevention) improves participants’ evaluation of an initially disliked option. Regulatory non-fit de-intensifies participants’ initial attitudes by making them less confident in their initial judgments and motivating them to think more thoroughly about the arguments presented. Furthermore, consistent with previous research on regulatory fit, we showed that the mechanism of regulatory non-fit differs as a function of participants’ cognitive involvement in the evaluation of the option. PMID:27341845
Expressing negative emotions to children: Mothers' aversion sensitivity and children's adjustment.
Moed, Anat; Dix, Theodore; Anderson, Edward R; Greene, Shannon M
2017-03-01
Research is unclear about when expressing negative emotions to children performs valuable socialization and regulatory functions and when, instead, it undermines children's adjustment. In this study, we isolated 1 kind of negative expression to test the aversion sensitivity hypothesis: that rapid increases in mothers' negativity as a function of increases in the aversiveness of children's behavior are uniquely problematic for children. During multiple assessments of a divorcing sample over 2 years (N = 284), 12-min interactions between mothers and their 4- to 11-year-old children were recorded. Forty-seven observed child behaviors were ranked from low to high aversive. Within-dyad changes demonstrated that mothers' general negativity-their tendency to express negative emotion at high rates-was unrelated to children's adjustment. In contrast, mothers' aversion-focused negativity-their tendency to increase negative emotional expression rapidly as the aversiveness of children's behavior increased-predicted children's poor social competence, poor emotion regulation, and externalizing behavior problems at the next assessment. The findings suggest that negative expression that reflects mothers' affective sensitivity to aversive child behavior may promote interaction patterns and adaptations in children that are particularly likely to place children at risk for adjustment problems. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Back to basics: a naturalistic assessment of the experience and regulation of emotion.
Heiy, Jane E; Cheavens, Jennifer S
2014-10-01
Emotion regulation research links regulatory responding to important outcomes in psychological well-being, physical health, and interpersonal relations, but several fundamental questions remain. As much of the previous research has addressed generalized regulatory habits, far less is known about the ways in which individuals respond to emotions in daily life. The literature is particularly sparse in explorations of positive emotion regulation. In the current study, we provide an assessment of naturalistic experiences and regulation of emotion, both positive and negative in valence. Using an electronic experience sampling methodology, participants reported on their use of 40 regulatory strategies in response to 14 emotions for 10 consecutive days. On average, participants used 15 different regulatory strategies in response to negative emotions over this time, most frequently relying on acceptance, behavioral activation, and rumination. Participants used a similarly large repertoire of strategies, approximately 16 total, in response to positive emotions, particularly savoring, future focus, and behavioral activation. Participants' mood ratings following strategy use, however, indicated that the most frequently used strategies were often not the most effective strategies. The results of this study provide estimates of the frequency and effectiveness of a large number of emotion regulation strategies in response to both negative and positive emotions. Such findings characterize naturalistic emotion regulation, and estimates of normative emotion regulation processes are imperative to determining the ways in which deviations (e.g., small emotion regulation repertoires, insufficient attention to regulation of positive emotions) impact emotional functioning. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function
Spencer, William C.; Deneris, Evan S.
2017-01-01
The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling these processes may result in long-lasting changes in brain function in adulthood. Further study of 5-HT neuron gene regulatory networks is likely to provide additional insight into how neurons acquire their mature identities and how terminal selector-type TFs function in postmitotic vertebrate neurons. PMID:28769770
Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function.
Spencer, William C; Deneris, Evan S
2017-01-01
The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling these processes may result in long-lasting changes in brain function in adulthood. Further study of 5-HT neuron gene regulatory networks is likely to provide additional insight into how neurons acquire their mature identities and how terminal selector-type TFs function in postmitotic vertebrate neurons.
Zeng, Quan; Sundin, George W
2014-05-31
Erwinia amylovora is a phytopathogenic bacterium and causal agent of fire blight disease in apples and pears. Although many virulence factors have been characterized, the coordination of expression of these virulence factors in E. amylovora is still not clear. Regulatory small RNAs (sRNAs) are important post-transcriptional regulatory components in bacteria. A large number of sRNAs require the RNA chaperone Hfq for both stability and functional activation. In E. amylovora, Hfq was identified as a major regulator of virulence and various virulence traits. However, information is still lacking about Hfq-dependent sRNAs on a genome scale, including the virulence regulatory functions of these sRNAs in E. amylovora. Using both an RNA-seq analysis and a Rho-independent terminator search, 40 candidate Hfq-dependent sRNAs were identified in E. amylovora. The expression and sizes of 12 sRNAs and the sequence boundaries of seven sRNAs were confirmed by Northern blot and 5' RACE assay respectively. Sequence conservation analysis identified sRNAs conserved only in the Erwinia genus as well as E. amylovora species-specific sRNAs. In addition, a dynamic re-patterning of expression of Hfq-dependent sRNAs was observed at 6 and 12 hours after induction in Hrp-inducing minimal medium. Furthermore, sRNAs that control virulence traits were characterized, among which ArcZ positively controls the type III secretion system (T3SS), amylovoran exopolysaccahride production, biofilm formation, and motility, and negatively modulates attachment while RmaA (Hrs6) and OmrAB both negatively regulate amylovoran production and positively regulate motility. This study has significantly enhanced our understanding of the Hfq-dependent sRNAs in E. amylovora at the genome level. The identification of multiple virulence-regulating sRNAs also suggests that post-transcriptional regulation by sRNAs may play a role in the deployment of virulence factors needed during varying stages of pathogenesis during host invasion by E. amylovora.
Gutiérrez, Jayson
2009-01-01
The way in which the information contained in genotypes is translated into complex phenotypic traits (i.e. embryonic expression patterns) depends on its decoding by a multilayered hierarchy of biomolecular systems (regulatory networks). Each layer of this hierarchy displays its own regulatory schemes (i.e. operational rules such as +/− feedback) and associated control parameters, resulting in characteristic variational constraints. This process can be conceptualized as a mapping issue, and in the context of highly-dimensional genotype-phenotype mappings (GPMs) epistatic events have been shown to be ubiquitous, manifested in non-linear correspondences between changes in the genotype and their phenotypic effects. In this study I concentrate on epistatic phenomena pervading levels of biological organization above the genetic material, more specifically the realm of molecular networks. At this level, systems approaches to studying GPMs are specially suitable to shed light on the mechanistic basis of epistatic phenomena. To this aim, I constructed and analyzed ensembles of highly-modular (fully interconnected) networks with distinctive topologies, each displaying dynamic behaviors that were categorized as either arbitrary or functional according to early patterning processes in the Drosophila embryo. Spatio-temporal expression trajectories in virtual syncytial embryos were simulated via reaction-diffusion models. My in silico mutational experiments show that: 1) the average fitness decay tendency to successively accumulated mutations in ensembles of functional networks indicates the prevalence of positive epistasis, whereas in ensembles of arbitrary networks negative epistasis is the dominant tendency; and 2) the evaluation of epistatic coefficients of diverse interaction orders indicates that, both positive and negative epistasis are more prevalent in functional networks than in arbitrary ones. Overall, I conclude that the phenotypic and fitness effects of multiple perturbations are strongly conditioned by both the regulatory architecture (i.e. pattern of coupled feedback structures) and the dynamic nature of the spatio-temporal expression trajectories displayed by the simulated networks. PMID:19738908
ERIC Educational Resources Information Center
Sang, Biao; Pan, Tingting; Deng, Xinmei; Zhao, Xu
2018-01-01
Numerous studies have suggested that academic stress has negative impact on adolescents' psychological function, few of those studies, however, considered whether and how the impact of stress on adolescents' emotional states is moderated by corresponding regulation. This study aimed to examine the fluctuation of emotional states before and after…
A RHIM with a View: FLYing with Functional Amyloids.
Shin, Sunny; Cherry, Sara
2017-10-17
Recognition of bacterial peptidoglycan by the Drosophila IMD pathway triggers NF-κB activation and an associated immune response. In this issue of Immunity, Kleino et al. (2017) show that proteins in the IMD pathway form functional amyloids via a cryptic motif resembling the RHIM motif found in mammalian RIPK proteins. Amyloid formation can be negatively regulated, suggesting that it presents a regulatory point in multiple biological processes. Copyright © 2017 Elsevier Inc. All rights reserved.
Piek, Susannah; Kahler, Charlene M.
2012-01-01
The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism. PMID:23267440
Roy, Sujoy; Yun, Daqing; Madahian, Behrouz; Berry, Michael W.; Deng, Lih-Yuan; Goldowitz, Daniel; Homayouni, Ramin
2017-01-01
In this study, we developed and evaluated a novel text-mining approach, using non-negative tensor factorization (NTF), to simultaneously extract and functionally annotate transcriptional modules consisting of sets of genes, transcription factors (TFs), and terms from MEDLINE abstracts. A sparse 3-mode term × gene × TF tensor was constructed that contained weighted frequencies of 106,895 terms in 26,781 abstracts shared among 7,695 genes and 994 TFs. The tensor was decomposed into sub-tensors using non-negative tensor factorization (NTF) across 16 different approximation ranks. Dominant entries of each of 2,861 sub-tensors were extracted to form term–gene–TF annotated transcriptional modules (ATMs). More than 94% of the ATMs were found to be enriched in at least one KEGG pathway or GO category, suggesting that the ATMs are functionally relevant. One advantage of this method is that it can discover potentially new gene–TF associations from the literature. Using a set of microarray and ChIP-Seq datasets as gold standard, we show that the precision of our method for predicting gene–TF associations is significantly higher than chance. In addition, we demonstrate that the terms in each ATM can be used to suggest new GO classifications to genes and TFs. Taken together, our results indicate that NTF is useful for simultaneous extraction and functional annotation of transcriptional regulatory networks from unstructured text, as well as for literature based discovery. A web tool called Transcriptional Regulatory Modules Extracted from Literature (TREMEL), available at http://binf1.memphis.edu/tremel, was built to enable browsing and searching of ATMs. PMID:28894735
Ritchie, Timothy D; Sedikides, Constantine; Skowronski, John J
2016-01-01
The intensity of positive affect elicited by recall of positive events exceeds the intensity of negative affect elicited by recall of negative events (fading affect bias, or FAB). The research described in the present article examined the relation between the FAB and three regulatory goals of the self: esteem, continuity and meaningfulness. The extent to which an event contributed to esteem (Study 1), continuity (Study 2) or meaningfulness (Study 3) was related to positive affect at event recall provoked by positive memories and to negative affect at event recall provoked by negative memories. The relation between affect experienced at recall and the three regulatory goals was bidirectional. The results showcase how individuals use recall for self-regulatory purposes and how they implement self-regulatory goals for positive affect.
Schwank, S; Hoffmann, B; Sch-uller, H J
1997-06-01
Expression of structural genes of phospholipid biosynthesis in yeast is mediated by the inositol/choline-responsive element (ICRE). ICRE-dependent gene activation, requiring the regulatory genes INO2 and INO4, is repressed in the presence of the phospholipid precursors inositol and choline. INO2 and, to a less extent, INO4 are positively autoregulated by functional ICRE sequences in the respective upstream regions. However, an INO2 allele devoid of its ICRE functionally complemented an ino2 mutation and completely restored inositol/choline regulation of Ino2p-dependent reporter genes. Low-level expression of INO2 and INO4 genes, each under control of the heterologous MET25 promoter, did not alter the regulatory pattern of target genes. Thus, upstream regions of INO2 and INO4 are not crucial for transcriptional control of ICRE-dependent genes by inositol and choline. Interestingly, over-expression of INO2, but not of INO4, counteracted repression by phospholipid precursors. Possibly, a functional antagonism between INO2 and a negative regulator is the key event responsible for repression or de-repression.
Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M; Lentes, K U
1999-11-19
As a member of the uncoupling protein family, UCP2 is ubiquitously expressed in rodents and humans, implicating a major role in thermogenesis. To analyze promoter function and regulatory motifs involved in the transcriptional regulation of UCP2 gene expression, 3.3 kb of 5'-flanking region of the human UCP2 (hUCP2) gene have been cloned. Sequence analysis showed that the promoter region of hUCP2 lacks a classical TATA or CAAT box, however, appeared GC-rich resulting in the presence of several Sp-1 motifs and Ap-1/-2 binding sites near the transcription initiation site. Functional characterization of human UCP2 promoter-CAT fusion constructs in transient expression assays showed that minimal promoter activity was observed within 65 bp upstream of the transcriptional start site (+1). 75 bp further upstream (from nt -141 to -66) a strong cis-acting regulatory element (or enhancer) was identified, which significantly enhanced basal promoter activity. The regulation of human UCP2 gene expression involves complex interactions among positive and negative regulatory elements distributed over a minimum of 3.3 kb of the promoter region. Copyright 1999 Academic Press.
Intrinsic functional connectivity underlying successful emotion regulation of angry faces
Morawetz, Carmen; Kellermann, Tanja; Kogler, Lydia; Radke, Sina; Blechert, Jens; Derntl, Birgit
2016-01-01
Most of our social interaction is naturally based on emotional information derived from the perception of faces of other people. Negative facial expressions of a counterpart might trigger negative emotions and initiate emotion regulatory efforts to reduce the impact of the received emotional message in a perceiver. Despite the high adaptive value of emotion regulation in social interaction, the neural underpinnings of it are largely unknown. To remedy this, this study investigated individual differences in emotion regulation effectiveness during the reappraisal of angry faces on the underlying functional activity using functional magnetic resonance imaging (fMRI) as well as the underlying functional connectivity using resting-state fMRI. Greater emotion regulation ability was associated with greater functional activity in the ventromedial prefrontal cortex. Furthermore, greater functional coupling between activity in the ventrolateral prefrontal cortex and the amygdala was associated with emotion regulation success. Our findings provide a first link between prefrontal cognitive control and subcortical emotion processing systems during successful emotion regulation in an explicitly social context. PMID:27510495
Abh and AbrB Control of Bacillus subtilis Antimicrobial Gene Expression▿
Strauch, Mark A.; Bobay, Benjamin G.; Cavanagh, John; Yao, Fude; Wilson, Angelo; Le Breton, Yoann
2007-01-01
The Bacillus subtilis abh gene encodes a protein whose N-terminal domain has 74% identity to the DNA-binding domain of the global regulatory protein AbrB. Strains with a mutation in abh showed alterations in the production of antimicrobial compounds directed against some other Bacillus species and gram-positive microbes. Relative to its wild-type parental strain, the abh mutant was found deficient, enhanced, or unaffected for the production of antimicrobial activity. Using lacZ fusions, we examined the effects of abh upon the expression of 10 promoters known to be regulated by AbrB, including five that transcribe well-characterized antimicrobial functions (SdpC, SkfA, TasA, sublancin, and subtilosin). For an otherwise wild-type background, the results show that Abh plays a negative regulatory role in the expression of four of the promoters, a positive role for the expression of three, and no apparent regulatory role in the expression of the other three promoters. Binding of AbrB and Abh to the promoter regions was examined using DNase I footprinting, and the results revealed significant differences. The transcription of abh is not autoregulated, but it is subject to a degree of AbrB-afforded negative regulation. The results indicate that Abh is part of the complex interconnected regulatory system that controls gene expression during the transition from active growth to stationary phase. PMID:17720793
Regulation and Socio-Emotional Interactions in a Positive and a Negative Group Climate
ERIC Educational Resources Information Center
Bakhtiar, Aishah; Webster, Elizabeth A.; Hadwin, Allyson F.
2018-01-01
Collaboration in an online environment can be a socially and emotionally demanding task. It requires group members to engage in a great deal of regulation, where favourable emotions need to be sustained for the group's productive functioning. The purpose of this cross-case analysis was to examine the interplay of two groups' regulatory processes,…
Soloff, Paul H; Abraham, Kristy; Ramaseshan, Karthik; Burgess, Ashley; Diwadkar, Vaibhav A
2017-05-01
Emotion dysregulation is a core characteristic of patients with Borderline Personality Disorder (BPD), and is often attributed to an imbalance in fronto-limbic network function. Hyperarousal of amygdala, especially in response to negative affective stimuli, results in affective interference with cognitive processing of executive functions. Clinical consequences include the impulsive-aggression, suicidal and self-injurious behaviors which characterize BPD. Dysfunctional interactions between amygdala and its network targets have not been well characterized during cognitive task performance. Using psychophysiological interaction analysis (PPI), we mapped network profiles of amygdala interaction with key regulatory regions during a Go No-Go task, modified to use negative, positive and neutral Ekman faces as targets. Fifty-six female subjects, 31 BPD and 25 healthy controls (HC), completed the affectively valenced Go No-Go task during fMRI scanning. In the negative affective condition, the amygdala exerted greater modulation of its targets in BPD compared to HC subjects in Rt. OFC, Rt. dACC, Rt. Parietal cortex, Rt. Basal Ganglia, and Rt. dlPFC. Across the spectrum of affective contrasts, hypermodulation in BPD subjects observed the following ordering: Negative > Neutral > Positive contrast. The amygdala seed exerted modulatory effects on specific target regions important in processing response inhibition and motor impulsiveness. The vulnerability of BPD subjects to affective interference with impulse control may be due to specific network dysfunction related to amygdala hyper-arousal and its effects on prefrontal regulatory regions such as the OFC and dACC. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nayidu, Naghabushana K.; Kagale, Sateesh; Taheri, Ali; Withana-Gamage, Thushan S.; Parkin, Isobel A. P.; Sharpe, Andrew G.; Gruber, Margaret Y.
2014-01-01
Coding sequences for major trichome regulatory genes, including the positive regulators GLABRA 1(GL1), GLABRA 2 (GL2), ENHANCER OF GLABRA 3 (EGL3), and TRANSPARENT TESTA GLABRA 1 (TTG1) and the negative regulator TRIPTYCHON (TRY), were cloned from wild Brassica villosa, which is characterized by dense trichome coverage over most of the plant. Transcript (FPKM) levels from RNA sequencing indicated much higher expression of the GL2 and TTG1 regulatory genes in B. villosa leaves compared with expression levels of GL1 and EGL3 genes in either B. villosa or the reference genome species, glabrous B. oleracea; however, cotyledon TTG1 expression was high in both species. RNA sequencing and Q-PCR also revealed an unusual expression pattern for the negative regulators TRY and CPC, which were much more highly expressed in trichome-rich B. villosa leaves than in glabrous B. oleracea leaves and in glabrous cotyledons from both species. The B. villosa TRY expression pattern also contrasted with TRY expression patterns in two diploid Brassica species, and with the Arabidopsis model for expression of negative regulators of trichome development. Further unique sequence polymorphisms, protein characteristics, and gene evolution studies highlighted specific amino acids in GL1 and GL2 coding sequences that distinguished glabrous species from hairy species and several variants that were specific for each B. villosa gene. Positive selection was observed for GL1 between hairy and non-hairy plants, and as expected the origin of the four expressed positive trichome regulatory genes in B. villosa was predicted to be from B. oleracea. In particular the unpredicted expression patterns for TRY and CPC in B. villosa suggest additional characterization is needed to determine the function of the expanded families of trichome regulatory genes in more complex polyploid species within the Brassicaceae. PMID:24755905
Miyagaki, Tomomitsu; Fujimoto, Manabu; Sato, Shinichi
2015-10-01
B cells have been generally considered to be positive regulators of immune responses because of their ability to produce antigen-specific antibodies and to activate T cells through antigen presentation. Impairment of B cell development and function may cause inflammatory and autoimmune diseases. Recently, specific B cell subsets that can negatively regulate immune responses have been described in mouse models of a wide variety of inflammatory and autoimmune diseases. The concept of those B cells, termed regulatory B cells, is now recognized as important in the murine immune system. Among several regulatory B cell subsets, IL-10-producing regulatory B cells are the most widely investigated. On the basis of discoveries from studies of such mice, human regulatory B cells that produce IL-10 in most cases are becoming an active area of research. There have been emerging data suggesting the importance of human regulatory B cells in various diseases. Revealing the immune regulation mechanisms of human regulatory B cells in human inflammatory and autoimmune diseases could lead to the development of novel B cell targeted therapies. This review highlights the current knowledge on regulatory B cells, mainly IL-10-producing regulatory B cells, in animal models of inflammatory and autoimmune diseases and in clinical research using human samples. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Varsamis, Panagiotis; Agaliotis, Ioannis
2015-12-01
This article reports research on self-regulatory aspects (i.e., goal-setting, self-efficacy and self-evaluation) of secondary and post-secondary students with congenital motor disabilities, who performed a ball-throwing-at-a-target task. Participants were divided into four subgroups presenting distinct combinations of motor and cognitive abilities (i.e., normal cognitive development and mild physical disabilities, normal cognitive development and severe physical disabilities, mild-to-moderate intellectual disability and mild physical disabilities, and mild-to-moderate intellectual disability and severe physical disabilities). Results showed that students presenting mild motor disabilities exhibited a positive self-concept and self-regulation profile, irrespective of their cognitive functioning. Students with considerable motor disabilities, but without cognitive challenges, presented a negative, though realistic self-concept and self-regulation profile. Finally, students with considerable motor disabilities and mild-to-moderate cognitive disabilities showed a positive, though unrealistic, self-regulation profile. The nature of the diverse relationship of motor and cognitive (dis)abilities to specific self-regulatory aspects are discussed, and important instructional implications are mentioned. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seong K., E-mail: skim1@lsuhsc.edu; Kim, Seongman; Dai Gan
2011-09-01
The equine herpesvirus 1 (EHV-1) negative regulatory IR2 protein (IR2P), an early 1,165-amino acid (aa) truncated form of the 1487-aa immediate-early protein (IEP), lacks the trans-activation domain essential for IEP activation functions but retains domains for binding DNA, TFIIB, and TBP and the nuclear localization signal. IR2P mutants of the N-terminal region which lack either DNA-binding activity or TFIIB-binding activity were unable to down-regulate EHV-1 promoters. In EHV-1-infected cells expressing full-length IR2P, transcription and protein expression of viral regulatory IE, early EICP0, IR4, and UL5, and late ETIF genes were dramatically inhibited. Viral DNA levels were reduced to 2.1% ofmore » control infected cells, but were vey weakly affected in cells that express the N-terminal 706 residues of IR2P. These results suggest that IR2P function requires the two N-terminal domains for binding DNA and TFIIB as well as the C-terminal residues 707 to 1116 containing the TBP-binding domain. - Highlights: > We examine the functional domains of IR2P that mediates negative regulation. > IR2P inhibits at the transcriptional level. > DNA-binding mutant or TFIIB-binding mutant fails to inhibit. > C-terminal aa 707 to 1116 are required for full inhibition. > Inhibition requires the DNA-binding domain, TFIIB-binding domain, and C-terminus.« less
Delage, Elise; Cervantes, Diégo Cordero; Pénard, Esthel; Schmitt, Christine; Syan, Sylvie; Disanza, Andrea; Scita, Giorgio; Zurzolo, Chiara
2016-12-23
Tunneling Nanotubes (TNTs) are actin enriched filopodia-like protrusions that play a pivotal role in long-range intercellular communication. Different pathogens use TNT-like structures as "freeways" to propagate across cells. TNTs are also implicated in cancer and neurodegenerative diseases, making them promising therapeutic targets. Understanding the mechanism of their formation, and their relation with filopodia is of fundamental importance to uncover their physiological function, particularly since filopodia, differently from TNTs, are not able to mediate transfer of cargo between distant cells. Here we studied different regulatory complexes of actin, which play a role in the formation of both these structures. We demonstrate that the filopodia-promoting CDC42/IRSp53/VASP network negatively regulates TNT formation and impairs TNT-mediated intercellular vesicle transfer. Conversely, elevation of Eps8, an actin regulatory protein that inhibits the extension of filopodia in neurons, increases TNT formation. Notably, Eps8-mediated TNT induction requires Eps8 bundling but not its capping activity. Thus, despite their structural similarities, filopodia and TNTs form through distinct molecular mechanisms. Our results further suggest that a switch in the molecular composition in common actin regulatory complexes is critical in driving the formation of either type of membrane protrusion.
Clegg, Steven; Wilson, Janet; Johnson, Jeremiah
2011-01-01
Many Gram-negative enterobacteria produce surface-associated fimbriae that facilitate attachment and adherence to eucaryotic cells and tissues. These organelles are believed to play an important role during infection by enabling bacteria to colonize specific niches within their hosts. One class of these fimbriae is assembled using a periplasmic chaperone and membrane-associated scaffolding protein that has been referred to as an usher because of its function in fimbrial biogenesis. The presence of multiple types of fimbriae assembled by the chaperone/usher pathway can be found both within a single bacterial species and also among different genera. One way of controlling fimbrial assembly in these bacteria is at the genetic level by positively or negatively regulating fimbrial gene expression. This minireview considers the mechanisms that have been described to control fimbrial gene expression and uses specific examples to demonstrate both unique and shared properties of such regulatory mechanisms. PMID:21398554
Regulation of error-prone translesion synthesis by Spartan/C1orf124
Kim, Myoung Shin; Machida, Yuka; Vashisht, Ajay A.; Wohlschlegel, James A.; Pang, Yuan-Ping; Machida, Yuichi J.
2013-01-01
Translesion synthesis (TLS) employs low fidelity polymerases to replicate past damaged DNA in a potentially error-prone process. Regulatory mechanisms that prevent TLS-associated mutagenesis are unknown; however, our recent studies suggest that the PCNA-binding protein Spartan plays a role in suppression of damage-induced mutagenesis. Here, we show that Spartan negatively regulates error-prone TLS that is dependent on POLD3, the accessory subunit of the replicative DNA polymerase Pol δ. We demonstrate that the putative zinc metalloprotease domain SprT in Spartan directly interacts with POLD3 and contributes to suppression of damage-induced mutagenesis. Depletion of Spartan induces complex formation of POLD3 with Rev1 and the error-prone TLS polymerase Pol ζ, and elevates mutagenesis that relies on POLD3, Rev1 and Pol ζ. These results suggest that Spartan negatively regulates POLD3 function in Rev1/Pol ζ-dependent TLS, revealing a previously unrecognized regulatory step in error-prone TLS. PMID:23254330
Lapate, R. C.; Rokers, B.; Tromp, D. P. M.; Orfali, N. S.; Oler, J. A.; Doran, S. T.; Adluru, N.; Alexander, A. L.; Davidson, R. J.
2016-01-01
Conscious awareness of negative cues is thought to enhance emotion-regulatory capacity, but the neural mechanisms underlying this effect are unknown. Using continuous flash suppression (CFS) in the MRI scanner, we manipulated visual awareness of fearful faces during an affect misattribution paradigm, in which preferences for neutral objects can be biased by the valence of a previously presented stimulus. The amygdala responded to fearful faces independently of awareness. However, when awareness of fearful faces was prevented, individuals with greater amygdala responses displayed a negative bias toward unrelated novel neutral faces. In contrast, during the aware condition, inverse coupling between the amygdala and prefrontal cortex reduced this bias, particularly among individuals with higher structural connectivity in the major white matter pathway connecting the prefrontal cortex and amygdala. Collectively, these results indicate that awareness promotes the function of a critical emotion-regulatory network targeting the amygdala, providing a mechanistic account for the role of awareness in emotion regulation. PMID:27181344
Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains.
Shi, Junwei; Wang, Eric; Milazzo, Joseph P; Wang, Zihua; Kinney, Justin B; Vakoc, Christopher R
2015-06-01
CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-Cas9-induced mutations to the 5' exons of candidate genes, but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR-Cas9 mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We also show that the magnitude of negative selection can be used to infer the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting.
Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria
Zeng, Ximin; Lin, Jun
2013-01-01
Production of beta-lactamases, the enzymes that degrade beta-lactam antibiotics, is the most widespread and threatening mechanism of antibiotic resistance. In the past, extensive research has focused on the structure, function, and ecology of beta-lactamases while limited efforts were placed on the regulatory mechanisms of beta-lactamases. Recently, increasing evidence demonstrate a direct link between beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Specifically, expression of beta-lactamase could be induced by the liberated murein fragments, such as muropeptides. This article summarizes current knowledge on cell wall metabolism, beta-lactam antibiotics, and beta-lactamases. In particular, we comprehensively reviewed recent studies on the beta-lactamase induction by muropeptides via two major molecular mechanisms (the AmpG–AmpR–AmpC pathway and BlrAB-like two-component regulatory system) in Gram-negative bacteria. The signaling pathways for beta-lactamase induction offer a broad array of promising targets for the discovery of new antibacterial drugs used for combination therapies. Therefore, to develop effective mitigation strategies against the widespread beta-lactam resistance, examination of the molecular basis of beta-lactamase induction by cell wall fragment is highly warranted. PMID:23734147
Regulatory T-cells in autoimmune diseases: challenges, controversies and--yet--unanswered questions.
Grant, Charlotte R; Liberal, Rodrigo; Mieli-Vergani, Giorgina; Vergani, Diego; Longhi, Maria Serena
2015-02-01
Regulatory T cells (Tregs) are central to the maintenance of self-tolerance and tissue homeostasis. Markers commonly used to define human Tregs in the research setting include high expression of CD25, FOXP3 positivity and low expression/negativity for CD127. Many other markers have been proposed, but none unequivocally identifies bona fide Tregs. Tregs are equipped with an array of mechanisms of suppression, including the modulation of antigen presenting cell maturation and function, the killing of target cells, the disruption of metabolic pathways and the production of anti-inflammatory cytokines. Treg impairment has been reported in a number of human autoimmune conditions and includes Treg numerical and functional defects and conversion into effector cells in response to inflammation. In addition to intrinsic Treg impairment, resistance of effector T cells to Treg control has been described. Discrepancies in the literature are common, reflecting differences in the choice of study participants and the technical challenges associated with investigating this cell population. Studies differ in terms of the methodology used to define and isolate putative regulatory cells and to assess their suppressive function. In this review we outline studies describing Treg frequency and suppressive function in systemic and organ specific autoimmune diseases, with a specific focus on the challenges faced when investigating Tregs in these conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Walden, Tedra A.; Conture, Edward G.; Erdemir, Aysu; Lambert, Warren E.; Porges, Stephen W.
2017-01-01
Purpose This study sought to determine whether respiratory sinus arrhythmia (RSA) and executive functions are associated with stuttered speech disfluencies of young children who do (CWS) and do not stutter (CWNS). Method Thirty-six young CWS and 36 CWNS were exposed to neutral, negative, and positive emotion-inducing video clips, followed by their participation in speaking tasks. During the neutral video, we measured baseline RSA, a physiological index of emotion regulation, and during video viewing and speaking, we measured RSA change from baseline, a physiological index of regulatory responses during challenge. Participants' caregivers completed the Children's Behavior Questionnaire from which a composite score of the inhibitory control and attentional focusing subscales served to index executive functioning. Results For both CWS and CWNS, greater decrease of RSA during both video viewing and speaking was associated with more stuttering. During speaking, CWS with lower executive functioning exhibited a negative association between RSA change and stuttering; conversely, CWNS with higher executive functioning exhibited a negative association between RSA change and stuttering. Conclusion Findings suggest that decreased RSA during video viewing and speaking is associated with increased stuttering and young CWS differ from CWNS in terms of how their executive functions moderate the relation between RSA change and stuttered disfluencies. PMID:28763803
Jones, Robin M; Walden, Tedra A; Conture, Edward G; Erdemir, Aysu; Lambert, Warren E; Porges, Stephen W
2017-08-16
This study sought to determine whether respiratory sinus arrhythmia (RSA) and executive functions are associated with stuttered speech disfluencies of young children who do (CWS) and do not stutter (CWNS). Thirty-six young CWS and 36 CWNS were exposed to neutral, negative, and positive emotion-inducing video clips, followed by their participation in speaking tasks. During the neutral video, we measured baseline RSA, a physiological index of emotion regulation, and during video viewing and speaking, we measured RSA change from baseline, a physiological index of regulatory responses during challenge. Participants' caregivers completed the Children's Behavior Questionnaire from which a composite score of the inhibitory control and attentional focusing subscales served to index executive functioning. For both CWS and CWNS, greater decrease of RSA during both video viewing and speaking was associated with more stuttering. During speaking, CWS with lower executive functioning exhibited a negative association between RSA change and stuttering; conversely, CWNS with higher executive functioning exhibited a negative association between RSA change and stuttering. Findings suggest that decreased RSA during video viewing and speaking is associated with increased stuttering and young CWS differ from CWNS in terms of how their executive functions moderate the relation between RSA change and stuttered disfluencies.
Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S
2013-06-01
A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.
Sato, Masanao; Tsuda, Kenichi; Wang, Lin; Coller, John; Watanabe, Yuichiro; Glazebrook, Jane; Katagiri, Fumiaki
2010-01-01
Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2). This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i) the components of the network are highly interconnected; and (ii) negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a “sector-switching” network, which effectively balances two apparently conflicting demands, robustness against pathogenic perturbations and moderation of negative impacts of immune responses on plant fitness. PMID:20661428
Hayes, Karen E.; Walk, Elyse L.; Ammer, Amanda Gatesman; Kelley, Laura C.; Martin, Karen H.; Weed, Scott A.
2014-01-01
Head and neck squamous cell carcinoma (HNSCC) has a proclivity for locoregional invasion. HNSCC mediates invasion in part through invadopodia-based proteolysis of the extracellular matrix (ECM). Activation of Src, Erk1/2, Abl and Arg downstream of epidermal growth factor receptor (EGFR) modulates invadopodia activity through phosphorylation of the actin regulatory protein cortactin. In MDA-MB-231 breast cancer cells, Abl and Arg function downstream of Src to phosphorylate cortactin, promoting invadopodia ECM degradation activity and thus assigning a pro-invasive role for Ableson kinases. We report that Abl kinases have an opposite, negative regulatory role in HNSCC where they suppress invadopodia and tumor invasion. Impairment of Abl expression or Abl kinase activity with imatinib mesylate enhanced HNSCC matrix degradation and 3D collagen invasion, functions that were impaired in MDA-MB-231. HNSCC lines with elevated EGFR and Src activation did not contain increased Abl or Arg kinase activity, suggesting Src could bypass Abl/Arg to phosphorylate cortactin and promote invadopodia ECM degradation. Src transformed Abl−/−/Arg−/− fibroblasts produced ECM degrading invadopodia containing pY421 cortactin, indicating that Abl/Arg are dispensable for invadopodia function in this system. Imatinib treated HNSCC cells had increased EGFR, Erk1/2 and Src activation, enhancing cortactin pY421 and pS405/418 required for invadopodia function. Imatinib stimulated shedding of the EGFR ligand heparin-binding EGF-like growth factor (HB-EGF) from HNSCC cells, where soluble HB-EGF enhanced invadopodia ECM degradation in HNSCC but not in MDA-MB-231. HNSCC cells treated with inhibitors of the EGFR invadopodia pathway indicated that EGFR and Src are required for invadopodia function. Collectively our results indicate that Abl kinases negatively regulate HNSCC invasive processes through suppression of an HB-EGF autocrine loop responsible for activating a EGFR-Src-cortactin cascade, in contrast to the invasion promoting functions of Abl kinases in breast and other cancer types. Our results provide mechanistic support for recent failed HNSCC clinical trials utilizing imatinib. PMID:23146907
Negative regulators in homeostasis of naïve peripheral T cells.
Modiano, Jaime F; Johnson, Lisa D S; Bellgrau, Donald
2008-01-01
It is now apparent that naïve peripheral T cells are a dynamic population where active processes prevent inappropriate activation while supporting survival. The process of thymic education makes naïve peripheral T cells dependent on interactions with self-MHC for survival. However, as these signals can potentially result in inappropriate activation, various non-redundant, intrinsic negative regulatory molecules including Tob, Nfatc2, and Smad3 actively enforce T cell quiescence. Interactions among these pathways are only now coming to light and may include positive or negative crosstalk. In the case of positive crosstalk, self-MHC initiated signals and intrinsic negative regulatory factors may cooperate to dampen T cell activation and sustain peripheral tolerance in a binary fashion (on-off). In the case of negative crosstalk, self-MHC signals may promote survival through partial activation while intrinsic negative regulatory factors act as rheostats to restrain cell cycle entry and prevent T cells from crossing a threshold that would break tolerance.
Acute Fasting Regulates Retrograde Synaptic Enhancement through a 4E-BP-Dependent Mechanism.
Kauwe, Grant; Tsurudome, Kazuya; Penney, Jay; Mori, Megumi; Gray, Lindsay; Calderon, Mario R; Elazouzzi, Fatima; Chicoine, Nicole; Sonenberg, Nahum; Haghighi, A Pejmun
2016-12-21
While beneficial effects of fasting on organismal function and health are well appreciated, we know little about the molecular details of how fasting influences synaptic function and plasticity. Our genetic and electrophysiological experiments demonstrate that acute fasting blocks retrograde synaptic enhancement that is normally triggered as a result of reduction in postsynaptic receptor function at the Drosophila larval neuromuscular junction (NMJ). This negative regulation critically depends on transcriptional enhancement of eukaryotic initiation factor 4E binding protein (4E-BP) under the control of the transcription factor Forkhead box O (Foxo). Furthermore, our findings indicate that postsynaptic 4E-BP exerts a constitutive negative input, which is counteracted by a positive regulatory input from the Target of Rapamycin (TOR). This combinatorial retrograde signaling plays a key role in regulating synaptic strength. Our results provide a mechanistic insight into how cellular stress and nutritional scarcity could acutely influence synaptic homeostasis and functional stability in neural circuits. Copyright © 2016 Elsevier Inc. All rights reserved.
Dörfler, P; Busslinger, M
1996-01-01
Pax-5 encodes the transcription factor BSAP which plays an essential role in early B cell development and midbrain patterning. In this study we have analysed the structural requirements for transcriptional activation by BSAP. In vitro mutagenesis and transient transfection experiments indicate that the C-terminal serine/threonine/proline-rich region of BSAP contains a potent transactivation domain of 55 amino acids which is active from promoter and enhancer positions. This transactivation domain was found to be inactivated by a naturally occurring frameshift mutation in one PAX-5 allele of the acute lymphoblastic leukemia cell line REH. The function of the transactivation domain is negatively regulated by adjacent sequences from the extreme C-terminus. The activating and inhibitory domains function together as an independent regulatory module in different cell types as shown by fusion to the GAL4 DNA binding domain. The same arrangement of positively and negatively acting sequences has been conserved in the mammalian Pax-2 and Pax-8, the zebrafish Pax-b as well as the sea urchin Pax-258 proteins. These data demonstrate that the transcriptional competence of a subfamily of Pax proteins is determined by a C-terminal regulatory module composed of activating and inhibitory sequences. Images PMID:8617244
Yin, Tao; Wu, Hanying; Zhang, Shanglong; Lu, Hongyu; Zhang, Lingxiao; Xu, Yong; Chen, Daming; Liu, Jingmei
2009-01-01
A 1.8 kb 5'-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from -986 to -959 and from -472 to -424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative beta-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were approximately 10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves.
Yin, Tao; Wu, Hanying; Zhang, Shanglong; Liu, Jingmei; Lu, Hongyu; Zhang, Lingxiao; Xu, Yong; Chen, Daming
2009-01-01
A 1.8 kb 5′-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from –986 to –959 and from –472 to –424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative β-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were ∼10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves. PMID:19073962
Mars, Ruben A T; Nicolas, Pierre; Denham, Emma L; van Dijl, Jan Maarten
2016-12-01
Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5' untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5' ends of mRNA molecules. These can include 5' secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Mars, Ruben A. T.; Nicolas, Pierre; Denham, Emma L.
2016-01-01
SUMMARY Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5′ untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5′ ends of mRNA molecules. These can include 5′ secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. PMID:27784798
Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles
Caswell, Clayton C.; Oglesby-Sherrouse, Amanda G.; Murphy, Erin R.
2014-01-01
Small RNA molecules (sRNAs) are now recognized as key regulators controlling bacterial gene expression, as sRNAs provide a quick and efficient means of positively or negatively altering the expression of specific genes. To date, numerous sRNAs have been identified and characterized in a myriad of bacterial species, but more recently, a theme in bacterial sRNAs has emerged: the presence of more than one highly related sRNAs produced by a given bacterium, here termed sibling sRNAs. Sibling sRNAs are those that are highly similar at the nucleotide level, and while it might be expected that sibling sRNAs exert identical regulatory functions on the expression of target genes based on their high degree of relatedness, emerging evidence is demonstrating that this is not always the case. Indeed, there are several examples of bacterial sibling sRNAs with non-redundant regulatory functions, but there are also instances of apparent regulatory redundancy between sibling sRNAs. This review provides a comprehensive overview of the current knowledge of bacterial sibling sRNAs, and also discusses important questions about the significance and evolutionary implications of this emerging class of regulators. PMID:25389522
Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles.
Caswell, Clayton C; Oglesby-Sherrouse, Amanda G; Murphy, Erin R
2014-01-01
Small RNA molecules (sRNAs) are now recognized as key regulators controlling bacterial gene expression, as sRNAs provide a quick and efficient means of positively or negatively altering the expression of specific genes. To date, numerous sRNAs have been identified and characterized in a myriad of bacterial species, but more recently, a theme in bacterial sRNAs has emerged: the presence of more than one highly related sRNAs produced by a given bacterium, here termed sibling sRNAs. Sibling sRNAs are those that are highly similar at the nucleotide level, and while it might be expected that sibling sRNAs exert identical regulatory functions on the expression of target genes based on their high degree of relatedness, emerging evidence is demonstrating that this is not always the case. Indeed, there are several examples of bacterial sibling sRNAs with non-redundant regulatory functions, but there are also instances of apparent regulatory redundancy between sibling sRNAs. This review provides a comprehensive overview of the current knowledge of bacterial sibling sRNAs, and also discusses important questions about the significance and evolutionary implications of this emerging class of regulators.
Daches, Shimrit; Kovacs, Maria; George, Charles J; Yaroslavsky, Ilya; Kiss, Eniko; Vetró, Ágnes; Dochnal, Roberta; Benák, István; Baji, Ildikó; Halas, Kitti; Makai, Attila; Kapornai, Krisztina; Rottenberg, Jonathan
2017-11-01
Adversity during early development has been shown to have enduring negative physiological consequences. In turn, atypical physiological functioning has been associated with maladaptive processing of negative affect, including its regulation. The present study therefore explored whether exposure to adverse life events in childhood predicted maladaptive (less flexible) parasympathetic nervous system functioning during the processing of negative affect among adolescents with depression histories. An initially clinic-referred, pediatric sample (N=189) was assessed at two time points. At Time 1, when subjects were 10.17years old (SD=1.42), on average, and were depressed, parents reported on adverse life events the offspring experienced up to that point. At Time 2, when subjects were 17.18years old (SD=1.28), and were remitted from depression, parents again reported on adverse life events in their offspring's lives for the interim period. At time 2, subjects' parasympathetic nervous system functioning (quantified as respiratory sinus arrhythmia) also was assessed at rest, during sad mood induction, and during instructed mood repair. Extent of adverse life events experienced by T1 (but not events occurring between T1 and T2) predicted less flexible RSA functioning 7years later during the processing of negative affect. Adolescents with more extensive early life adversities exhibited less vagal withdrawal following negative mood induction and tended to show less physiological recovery following mood repair. Early adversities appear to be associated with less flexible physiological regulatory control during negative affect experience, when measured later in development. Stress-related autonomic dysfunction in vulnerable youths may contribute to the unfavorable clinical prognosis associated with juvenile-onset depression. Copyright © 2017 Elsevier B.V. All rights reserved.
Lu, Leina; Zhou, Liang; Chen, Eric Z.; Sun, Kun; Jiang, Peiyong; Wang, Lijun; Su, Xiaoxi; Sun, Hao; Wang, Huating
2012-01-01
microRNAs (miRNAs) are non-coding RNAs that regulate gene expression post-transcriptionally, and mounting evidence supports the prevalence and functional significance of their interplay with transcription factors (TFs). Here we describe the identification of a regulatory circuit between muscle miRNAs (miR-1, miR-133 and miR-206) and Yin Yang 1 (YY1), an epigenetic repressor of skeletal myogenesis in mouse. Genome-wide identification of potential down-stream targets of YY1 by combining computational prediction with expression profiling data reveals a large number of putative miRNA targets of YY1 during skeletal myoblasts differentiation into myotubes with muscle miRs ranking on top of the list. The subsequent experimental results demonstrate that YY1 indeed represses muscle miRs expression in myoblasts and the repression is mediated through multiple enhancers and recruitment of Polycomb complex to several YY1 binding sites. YY1 regulating miR-1 is functionally important for both C2C12 myogenic differentiation and injury-induced muscle regeneration. Furthermore, we demonstrate that miR-1 in turn targets YY1, thus forming a negative feedback loop. Together, these results identify a novel regulatory circuit required for skeletal myogenesis and reinforce the idea that regulatory circuitries involving miRNAs and TFs are prevalent mechanisms. PMID:22319554
Cole, Pamela M.; LeDonne, Emily N.; Tan, Patricia Z.
2012-01-01
SYNOPSIS Objective This study examines how young children’s emotion and behavior relate to maternal emotions concurrently and as a function of children’s developmental changes in self-regulation. Design Mothers and their children (N = 120) participated in an 8 min waiting task at children’s ages 18, 24, 36, and 48 months. Children’s emotion expressions, misbehavior, and regulatory efforts were observed, and mothers rated their own emotions during the wait. Results Children’s emotion and behavior and maternal emotions related in expected directions at most time points. Over time, maternal positive emotion increased more if children were less angry, more content, or more engaged in regulatory efforts relative to age mates. Maternal negative emotion decreased more if children engaged more in regulatory efforts but less if children were angrier relative to age mates. Conclusions Individual differences in children’s emotions may influence parental emotions. Over time, only the intra-individual decline in children’s anger, not the decrease in their misbehavior or the increase in their regulatory efforts, predicted improvements in maternal emotions. PMID:23585731
Lim, Yi-Cheng; Budin, Siti Balkis; Othman, Faizah; Latip, Jalifah; Zainalabidin, Satirah
2017-07-01
Roselle (Hibiscus sabdariffa Linn.) calyces have demonstrated propitious cardioprotective effects in animal and clinical studies; however, little is known about its action on cardiac mechanical function. This study was undertaken to investigate direct action of roselle polyphenols (RP) on cardiac function in Langendorff-perfused rat hearts. We utilized RP extract which consists of 12 flavonoids and seven phenolic acids (as shown by HPLC profiling) and has a safe concentration range between 125 and 500 μg/ml in this study. Direct perfusion of RP in concentration-dependent manner lowered systolic function of the heart as shown by lowered LVDP and dP/dt max , suggesting a negative inotropic effect. RP also reduced heart rate (negative chronotropic action) while simultaneously increasing maximal velocity of relaxation (positive lusitropic action). Conversely, RP perfusion increased coronary pressure, an indicator for improvement in coronary blood flow. Inotropic responses elicited by pharmacological agonists for L-type Ca 2+ channel [(±)-Bay K 8644], ryanodine receptor (4-chloro-m-cresol), β-adrenergic receptor (isoproterenol) and SERCA blocker (thapsigargin) were all abolished by RP. In conclusion, RP elicits negative inotropic, negative chronotropic and positive lusitropic responses by possibly modulating calcium entry, release and reuptake in the heart. Our findings have shown the potential use of RP as a therapeutic agent to treat conditions like arrhythmia.
Meinhardt, Sarah; Swint-Kruse, Liskin
2008-12-01
In protein families, conserved residues often contribute to a common general function, such as DNA-binding. However, unique attributes for each homolog (e.g. recognition of alternative DNA sequences) must arise from variation in other functionally-important positions. The locations of these "specificity determinant" positions are obscured amongst the background of varied residues that do not make significant contributions to either structure or function. To isolate specificity determinants, a number of bioinformatics algorithms have been developed. When applied to the LacI/GalR family of transcription regulators, several specificity determinants are predicted in the 18 amino acids that link the DNA-binding and regulatory domains. However, results from alternative algorithms are only in partial agreement with each other. Here, we experimentally evaluate these predictions using an engineered repressor comprising the LacI DNA-binding domain, the LacI linker, and the GalR regulatory domain (LLhG). "Wild-type" LLhG has altered DNA specificity and weaker lacO(1) repression compared to LacI or a similar LacI:PurR chimera. Next, predictions of linker specificity determinants were tested, using amino acid substitution and in vivo repression assays to assess functional change. In LLhG, all predicted sites are specificity determinants, as well as three sites not predicted by any algorithm. Strategies are suggested for diminishing the number of false negative predictions. Finally, individual substitutions at LLhG specificity determinants exhibited a broad range of functional changes that are not predicted by bioinformatics algorithms. Results suggest that some variants have altered affinity for DNA, some have altered allosteric response, and some appear to have changed specificity for alternative DNA ligands.
Adapala, Naga Suresh; Barbe, Mary F; Langdon, Wallace Y; Nakamura, Mary C; Tsygankov, Alexander Y; Sanjay, Archana
2010-11-19
Cbl is an adaptor protein and an E3 ligase that plays both positive and negative roles in several signaling pathways that affect various cellular functions. Tyrosine 737 is unique to Cbl and is phosphorylated by Syk and Src family kinases. Phosphorylated Cbl Tyr(737) creates a binding site for the p85 regulatory subunit of PI3K, which also plays an important role in the regulation of bone resorption by osteoclasts. To investigate the role of Cbl-PI3K interaction in bone homeostasis, we examined the knock-in mice (Cbl(YF/YF)) in which the PI3K binding site in Cbl is ablated due to the mutation in the regulatory tyrosine. We report that in Cbl(YF/YF) mice, despite increased numbers of osteoclasts, bone volume is increased due to defective osteoclast function. Additionally, in ex vivo cultures, mature Cbl(YF/YF) osteoclasts showed an increased ability to survive in the presence of RANKL due to delayed onset of apoptosis. RANKL-mediated signaling is perturbed in Cbl(YF/YF) osteoclasts, and most interestingly, AKT phosphorylation is up-regulated, suggesting that the lack of PI3K sequestration by Cbl results in increased survival and decreased bone resorption. Cumulatively, these in vivo and in vitro results show that, on one hand, binding of Cbl to PI3K negatively regulates osteoclast differentiation, survival, and signaling events (e.g. AKT phosphorylation), whereas on the other hand it positively influences osteoclast function.
Company stock prices before and after public announcements related to oncology drugs.
Rothenstein, Jeffrey M; Tomlinson, George; Tannock, Ian F; Detsky, Allan S
2011-10-19
Phase III clinical trials and Food and Drug Administration (FDA) regulatory decisions are critical for success of new drugs and can influence a company's market valuation. Knowledge of trial results before they are made public (ie, "inside information") can affect the price of a drug company's stock. We examined the stock prices of companies before and after public announcements regarding experimental anticancer drugs owned by the companies. We identified drugs that were undergoing evaluation in phase III trials or for regulatory approval by the US FDA from January 2000 to January 2009. Stock prices of companies that owned such drugs were analyzed for 120 trading days before and after the first public announcement of 1) results of clinical trials with positive and negative outcomes and 2) positive and negative regulatory decisions. All statistical tests were two-sided. We identified public announcements from 23 positive trials and 36 negative trials and from 41 positive and nine negative FDA regulatory decisions. The mean stock price for the 120 trading days before a phase III clinical trial announcement increased by 13.7% (95% confidence interval = -2.2% to 29.6%) for companies that reported positive trials and decreased by 0.7% (95% confidence interval = -13.8% to 12.3%) for companies that reported negative trials (P = .09). In a post hoc analysis comparing the stock price averaged over 60 trading days before and after day -60 relative to the clinical trial announcement, the mean stock price increased by 9.4% for companies that reported positive trials and decreased by 4.5% for companies that reported negative trials (P = .03). Changes in company stock prices before FDA regulatory decisions did not differ statistically between companies with positive decision and companies with negative decisions. Trends in company stock prices before the first public announcement differ for companies that report positive vs negative trials. This finding has important legal and ethical implications for investigators, drug companies, and the investment industry.
Musicki, Biljana; Champion, Hunter C.; Hsu, Lewis L.; Bivalacqua, Trinity J.; Burnett, Arthur L.
2017-01-01
INTRODUCTION Sickle cell disease (SCD)-associated priapism is characterized by endothelial nitric oxide synthase (eNOS) dysfunction in the penis. However, the mechanism of decreased eNOS function/activation in the penis in association with SCD is not known. AIMS Our hypothesis in the present study was that eNOS is functionally inactivated in the SCD penis in association with impairments in eNOS posttranslational phosphorylation and the enzyme’s interactions with its regulatory proteins. METHODS Sickle cell transgenic (sickle) mice were used as an animal model of SCD. Wild type (WT) mice served as controls. Penes were excised at baseline for molecular studies. eNOS phosphorylation on Ser-1177 (positive regulatory site) and Thr-495 (negative regulatory site), total eNOS, and phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177) expressions, and eNOS interactions with heat shock protein 90 (HSP90) and caveolin-1 were measured by Western blot. Constitutive NOS catalytic activity was measured by conversion of L-[14C]arginine-to-L-[14C]citrulline in the presence of calcium. MAIN OUTCOME MEASURES Molecular mechanisms of eNOS dysfunction in the sickle mouse penis. RESULTS eNOS phosphorylated on Ser-1177, an active portion of eNOS, was decreased in the sickle mouse penis compared to WT penis. eNOS interaction with its positive protein regulator HSP90, but not with its negative protein regulator caveolin-1, and phosphorylated AKT expression, as well as constitutive NOS activity, were also decreased in the sickle mouse penis compared to WT penis. eNOS phosphorylated on Thr-495, total eNOS, HSP90, and caveolin-1 protein expressions in the penis were not affected by SCD. CONCLUSION These findings provide a molecular basis for chronically reduced eNOS function in the penis by SCD, which involves decreased eNOS phosphorylation on Ser-1177 and decreased eNOS-HSP90 interaction. PMID:21143412
Lin, Yanli; Fisher, Megan E.; Roberts, Sean M. M.; Moser, Jason S.
2016-01-01
The present study sought to uncover the emotion regulatory properties of mindfulness by examining its effects—differentiated as a meditative practice, state of mind and dispositional trait—on the late positive potential (LPP), an event-related potentials (ERPs) indexing emotional processing. Results revealed that mindfulness as a meditative practice produced a reduction in the difference between the LPP response to negative high arousing and neutral stimuli across time. In contrast, a state mindfulness induction (i.e., instructions to attend to the stimuli mindfully) failed to modulate the LPP. Dispositional mindfulness, however, was related to modulation of the LPP as a function of meditation practice. Dispositional mindfulness was associated with a reduction of the LPP response to negative high arousal stimuli and the difference between negative high arousal and neutral stimuli in participants who listened to a control audio recording but not for those who engaged in the guided meditation practice. Together, these findings provide experimental evidence demonstrating that brief mindfulness meditation, but not deliberate engagement in state mindfulness, produces demonstrable changes in emotional processing indicative of reduced emotional reactivity. Importantly, these effects are akin to those observed in individuals with naturally high dispositional mindfulness, suggesting that the benefits of mindfulness can be cultivated through practice. PMID:27656139
van Rensburg, Ilana C; Loxton, Andre G
2018-01-01
Regulatory B cells (Bregs) have been shown to be present during several disease states. The phenotype of the cells is not completely defined and the function of these cells differ between disease. The presence of FASL expressing (killer) B cells during latent and successfully treated TB disease have been shown but whether these cells are similar to regulatory B cells remain unclear. We assessed the receptor expression of FASL/IL5 (killer B cells), CD24/CD38 (regulatory B cells) on whole peripheral blood of participants with untreated active TB and healthy controls. We then isolated B cells from a second cohort of M.tb exposed (Quantiferon (QFN) positive) and unexposed (Quantiferon negative) HIV negative participants, and evaluated the frequency of killer B cells induced following stimulation with BCG and/or CD40 and IL5. Our data reveal no difference in the expression on CD24 and CD38 between participants with active TB and the controls. There was also no difference in the frequency of regulatory B cells measured in the peripheral blood mononuclear cells (PBMC) fraction between latent TB and uninfected controls. We did however notice that regulatory B cells (CD24hiCD38hi) population express the FASL receptor. The expression of killer B cell phenotype (CD178+IL5RA+) was significantly higher in controls compared to those with active TB disease (1,06% vs 0,455%). Furthermore, we found that BCG restimulation significantly induced the FASL/IL5RA B cells but this was only evident in the QFN positive group. Our data suggest that both regulatory and killer B cells are present during latent and active TB disease but that the frequency of these populations are increased during latent disease. We also show that the FASL+IL5RA+ B killer B cells are induced in latent TB infection following BCG restimulation but whether these cells are indicative of protection remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Yi; Zeng, Xing; Huang, Xuan; Serag, Sara; Woolf, Clifford J; Spiegelman, Bruce M
2017-11-02
Adrenergic stimulation promotes lipid mobilization and oxidation in brown and beige adipocytes, where the harnessed energy is dissipated as heat in a process known as adaptive thermogenesis. The signaling cascades and energy-dissipating pathways that facilitate thermogenesis have been extensively described, yet little is known about the counterbalancing negative regulatory mechanisms. Here, we identify a two-pore-domain potassium channel, KCNK3, as a built-in rheostat negatively regulating thermogenesis. Kcnk3 is transcriptionally wired into the thermogenic program by PRDM16, a master regulator of thermogenesis. KCNK3 antagonizes norepinephrine-induced membrane depolarization by promoting potassium efflux in brown adipocytes. This limits calcium influx through voltage-dependent calcium channels and dampens adrenergic signaling, thereby attenuating lipolysis and thermogenic respiration. Adipose-specific Kcnk3 knockout mice display increased energy expenditure and are resistant to hypothermia and obesity. These findings uncover a critical K + -Ca 2+ -adrenergic signaling axis that acts to dampen thermogenesis, maintain tissue homeostasis, and reveal an electrophysiological regulatory mechanism of adipocyte function. Copyright © 2017 Elsevier Inc. All rights reserved.
Xu, Xiang; Choi, Sung Hee; Hu, Tiancen; Tiyanont, Kittichoat; Habets, Roger; Groot, Arjan J; Vooijs, Marc; Aster, Jon C; Chopra, Rajiv; Fryer, Christy; Blacklow, Stephen C
2015-07-07
Notch receptors are transmembrane proteins that undergo activating proteolysis in response to ligand stimulation. A negative regulatory region (NRR) maintains receptor quiescence by preventing protease cleavage prior to ligand binding. We report here the X-ray structure of the NRR of autoinhibited human Notch3, and compare it with the Notch1 and Notch2 NRRs. The overall architecture of the autoinhibited conformation, in which three LIN12-Notch repeat (LNR) modules wrap around a heterodimerization domain, is preserved in Notch3, but the autoinhibited conformation of the Notch3 NRR is less stable. The Notch3 NRR uses a highly conserved surface on the third LNR module to form a dimer in the crystal. Similar homotypic interfaces exist in Notch1 and Notch2. Together, these studies reveal distinguishing structural features associated with increased basal activity of Notch3, demonstrate increased ligand-independent signaling for disease-associated mutations that map to the Notch3 NRR, and identify a conserved dimerization interface present in multiple Notch receptors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tissue-Specific Regulation of Chromatin Insulator Function
Matzat, Leah H.; Dale, Ryan K.; Moshkovich, Nellie; Lei, Elissa P.
2012-01-01
Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. PMID:23209434
Stress spillover in early marriage: the role of self-regulatory depletion.
Buck, April A; Neff, Lisa A
2012-10-01
Stressful experiences external to a marriage (e.g., work stress, finances) are often associated with poor relationship functioning and lowered marital satisfaction, a phenomenon called stress spillover. To date, however, little attention has been devoted to understanding the specific mechanisms through which stress may lead to maladaptive relationship patterns. Drawing from theories of self-regulatory depletion, it was predicted that coping with external stress is an effortful process that consumes spouses' regulatory resources, leaving spouses with less energy to effectively respond to their relationship issues. The current study relied on a sample of newly married couples to examine whether self-regulatory depletion may account for the link between external stress and relationship well-being. Couples were asked to complete a 14-day daily diary that assessed their daily stress, their state of self-regulatory depletion, their marital behaviors, and their daily marital appraisals. Within-person analyses revealed that, on average, couples experienced stress spillover, such that on days when their stress was higher than usual they reported enacting more negative behaviors toward their partner and endorsed less positive appraisals of the relationship. Further analyses confirmed that self-regulatory depletion accounted for a majority of these spillover effects. These findings suggest that even happy couples may find it difficult to engage in adaptive relationship processes under conditions of stress. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
In vivo Discovery of Immunotherapy Targets in the Tumor Microenvironment
Zhou, Penghui; Shaffer, Donald R.; Arias, Diana A. Alvarez; Nakazaki, Yukoh; Pos, Wouter; Torres, Alexis J.; Cremasco, Viviana; Dougan, Stephanie K.; Cowley, Glenn S.; Elpek, Kutlu; Brogdon, Jennifer; Lamb, John; Turley, Shannon; Ploegh, Hidde L.; Root, David E.; Love, J. Christopher; Dranoff, Glenn; Hacohen, Nir; Cantor, Harvey; Wucherpfennig, Kai W.
2014-01-01
Recent clinical trials showed that targeting of inhibitory receptors on T cells induces durable responses in a subset of cancer patients, despite advanced disease. However, the regulatory switches controlling T cell function in immunosuppressive tumors are not well understood. Here we show that such inhibitory mechanisms can be systematically discovered in the tumor microenvironment. We devised an in vivo pooled shRNA screen in which shRNAs targeting negative regulators became highly enriched in tumors by releasing a block on T cell proliferation upon tumor antigen recognition. Such shRNAs were identified by deep sequencing of the shRNA cassette from T cells infiltrating tumor or control tissues. One of the target genes was Ppp2r2d, a regulatory subunit of the PP2A phosphatase family: In tumors, Ppp2r2d knockdown inhibited T cell apoptosis and enhanced T cell proliferation as well as cytokine production. Key regulators of immune function can thus be discovered in relevant tissue microenvironments. PMID:24476824
ENDOCANNABINOID INFLUENCE IN DRUG REINFORCEMENT, DEPENDENCE AND ADDICTION-RELATED BEHAVIORS
Serrano, Antonia; Parsons, Loren H.
2011-01-01
The endogenous cannabinoid system is an important regulatory system involved in physiological homeostasis. Endocannabinoid signaling is known to modulate neural development, immune function, metabolism, synaptic plasticity and emotional state. Accumulating evidence also implicates brain endocannabinoid signaling in the etiology of drug addiction which is characterized by compulsive drug seeking, loss of control in limiting drug intake, emergence of a negative emotional state in the absence of drug use and a persistent vulnerability toward relapse to drug use during protracted abstinence. In this review we discuss the effects of drug intake on brain endocannabinoid signaling, evidence implicating the endocannabinoid system in the motivation for drug consumption, and drug-induced alterations in endocannabinoid function that may contribute to various aspects of addiction including dysregulated synaptic plasticity, increased stress responsivity, negative affective states, drug craving and relapse to drug taking. Current knowledge of genetic variants in endocannabinoid signaling associated with addiction is also discussed. PMID:21798285
Altered myofilament structure and function in dogs with Duchenne muscular dystrophy cardiomyopathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ait Mou, Younss; Lacampagne, Alain; Irving, Thomas
Aim Duchenne Muscular Dystrophy (DMD) is associated with progressive depressed left ventricular (LV) function. However, DMD effects on myofilament structure and function are poorly understood. Golden Retriever Muscular Dystrophy (GRMD) is a dog model of DMD recapitulating the human form of DMD. Objective The objective of this study is to evaluate myofilament structure and function alterations in GRMD model with spontaneous cardiac failure. Methods and results We have employed synchrotron X-rays diffraction to evaluate myofilament lattice spacing at various sarcomere lengths (SL) on permeabilized LV myocardium. We found a negative correlation between SL and lattice spacing in both sub-epicardium (EPI)more » and sub-endocardium (ENDO) LV layers in control dog hearts. In the ENDO of GRMD hearts this correlation is steeper due to higher lattice spacing at short SL (1.9 μm). Furthermore, cross-bridge cycling indexed by the kinetics of tension redevelopment (ktr) was faster in ENDO GRMD myofilaments at short SL. We measured post-translational modifications of key regulatory contractile proteins. S-glutathionylation of cardiac Myosin Binding Protein-C (cMyBP-C) was unchanged and PKA dependent phosphorylation of the cMyBP-C was significantly reduced in GRMD ENDO tissue and more modestly in EPI tissue. Conclusions We found a gradient of contractility in control dogs' myocardium that spreads across the LV wall, negatively correlated with myofilament lattice spacing. Chronic stress induced by dystrophin deficiency leads to heart failure that is tightly associated with regional structural changes indexed by increased myofilament lattice spacing, reduced phosphorylation of regulatory proteins and altered myofilament contractile properties in GRMD dogs.« less
Wang, Hong-Mei; Xu, Yun-Fei; Ning, Shang-Lei; Yang, Du-Xiao; Li, Yi; Du, Yu-Jie; Yang, Fan; Zhang, Ya; Liang, Nan; Yao, Wei; Zhang, Ling-Li; Gu, Li-Chuan; Gao, Cheng-Jiang; Pang, Qi; Chen, Yu-Xin; Xiao, Kun-Hong; Ma, Rong; Yu, Xiao; Sun, Jin-Peng
2014-09-01
The tyrosine phosphorylation barcode encoded in C-terminus of HER2 and its ubiquitination regulate diverse HER2 functions. PTPN18 was reported as a HER2 phosphatase; however, the exact mechanism by which it defines HER2 signaling is not fully understood. Here, we demonstrate that PTPN18 regulates HER2-mediated cellular functions through defining both its phosphorylation and ubiquitination barcodes. Enzymologic characterization and three crystal structures of PTPN18 in complex with HER2 phospho-peptides revealed the molecular basis for the recognition between PTPN18 and specific HER2 phosphorylation sites, which assumes two distinct conformations. Unique structural properties of PTPN18 contribute to the regulation of sub-cellular phosphorylation networks downstream of HER2, which are required for inhibition of HER2-mediated cell growth and migration. Whereas the catalytic domain of PTPN18 blocks lysosomal routing and delays the degradation of HER2 by dephosphorylation of HER2 on pY(1112), the PEST domain of PTPN18 promotes K48-linked HER2 ubiquitination and its rapid destruction via the proteasome pathway and an HER2 negative feedback loop. In agreement with the negative regulatory role of PTPN18 in HER2 signaling, the HER2/PTPN18 ratio was correlated with breast cancer stage. Taken together, our study presents a structural basis for selective HER2 dephosphorylation, a previously uncharacterized mechanism for HER2 degradation and a novel function for the PTPN18 PEST domain. The new regulatory role of the PEST domain in the ubiquitination pathway will broaden our understanding of the functions of other important PEST domain-containing phosphatases, such as LYP and PTPN12.
Hua, Charlotte; Audo, Rachel; Yeremenko, Nataliya; Baeten, Dominique; Hahne, Michael; Combe, Bernard; Morel, Jacques; Daïen, Claire
2016-09-01
B cells may have a negative regulatory role, mainly mediated by interleukin 10 (IL-10). We recently showed that regulatory B-cell functions are impaired in patients with rheumatoid arthritis (RA) and that mice transgenic for a proliferation-inducing ligand (APRIL) are protected against collagen-induced arthritis. We aimed to explore the effect of APRIL on human B-cell IL-10 production, in healthy subjects and in patients with RA. The IL-10 production of B-cell was greater with APRIL than with BLyS or control medium, in a dose dependent manner. TACI expression was greater in IL-10 producing B cells (B10) than non-IL-10-producing B cells whereas BAFF-R expression was lower. TNF-α and IFN-γ secretion of T-cells were decreased by APRIL-stimulated B cells. APRIL stimulated STAT3 and STAT3 inhibition decreased B10 cells. APRIL also promoted B10 cells in RA patients. In conclusion, APRIL but not BLyS promotes IL-10 production by CpG-activated B cells and enhances the regulatory role of B cells on T cells. B10 cells in RA patients are responsive to APRIL, which suggests a possible therapeutic application of APRIL to expand B10 cells. This could also explain the difference of clinical efficacy observed between belimumab and atacicept in RA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mao, Chaoming; Wang, Shu; Xiao, Yichuan; Xu, Jingwei; Jiang, Qian; Jin, Min; Jiang, Xiaohua; Guo, Hua; Ning, Guang; Zhang, Yanyun
2011-04-15
Graves' disease (GD) is one of the most common autoimmune diseases. The immune dysfunction in GD involves the generation of thyroid-stimulating hormone receptor (TSHR) autoantibodies that presumably arise consequent to interactions among dendritic cells (DCs), T cells, and regulatory T (Treg) cells. However, the immunological mechanisms of interactions between them that lead to the induction and regulation of this autoimmune disease are poorly defined. In this study, we investigated whether DCs are the main cause of the defective activity of Treg cells in GD patients. We found a significant decrease in the percentage of circulating CD4(+)CD25(+)FOXP3(+) Treg cells in untreated GD patients (uGD), which was negatively correlated with the concentration of TSHR autoantibodies. uGD-derived DCs were polarized to increase the number of plasmacytoid DCs (pDCs) and conferred the ability to abrogate the suppressive function of Treg cells through inducing apoptosis of CD4(+)CD25(+) Treg cells in an IFN-α-dependent manner, and elevated thyroid hormones further exacerbated the effect. The nucleotide UDP, which inhibits IFN-α secretion of pDCs through P2Y6 receptor signaling, restored the suppressive function of CD4(+)CD25(+) Treg cells. Collectively, uGD-derived DCs through pDC polarization and elevated thyroid hormones act in concert to impair the regulatory capacity of Treg cells, facilitating the production of TSHR autoantibodies in the pathogenesis of GD.
Neural Mechanisms of Cognitive Reappraisal of Negative Self-Beliefs in Social Anxiety Disorder
Goldin, Philippe R.; Ball, Tali M.; Werner, Kelly; Heimberg, Richard; Gross, James J.
2009-01-01
Background Social anxiety disorder (SAD) is characterized by distorted negative self-beliefs (NSBs) which are thought to enhance emotional reactivity, interfere with emotion regulation, and undermine social functioning. Cognitive reappraisal is a type of emotion regulation used to alter NSBs, with the goal of modulating emotional reactivity. Despite its relevance, little is known about the neural bases and temporal features of cognitive reappraisal in patients with SAD. Methods Twenty-seven patients with SAD and 27 healthy controls (HC) were trained to react and to implement cognitive reappraisal in order to down-regulate negative emotional reactivity to NSBs while undergoing functional magnetic resonance imaging and providing ratings of negative emotion experience. Results Behaviorally, compared with HC, patients with SAD reported greater negative emotion both while reacting to and reappraising NSBs. However, when cued, participants in both groups were able to use cognitive reappraisal to decrease emotion. Neurally, reacting to NSBs resulted in early amygdala response in both groups. Reappraising NSBs resulted in greater early cognitive control, language, and visual processing in HC, but greater late cognitive control, visceral, and visual processing in patients with SAD. Functional connectivity analysis during reappraisal identified more regulatory regions inversely related to left amygdala in HCs than in patients with SAD. Reappraisal-related brain regions that differentiated patients and controls were associated with negative emotion ratings and cognitive reappraisal self-efficacy. Conclusions Findings regarding cognitive reappraisal suggest neural timing, connectivity, and brain-behavioral associations specific to patients with SAD, and elucidate neural mechanisms that might serve as biomarkers of interventions for SAD. PMID:19717138
The locus of evolution: evo devo and the genetics of adaptation.
Hoekstra, Hopi E; Coyne, Jerry A
2007-05-01
An important tenet of evolutionary developmental biology ("evo devo") is that adaptive mutations affecting morphology are more likely to occur in the cis-regulatory regions than in the protein-coding regions of genes. This argument rests on two claims: (1) the modular nature of cis-regulatory elements largely frees them from deleterious pleiotropic effects, and (2) a growing body of empirical evidence appears to support the predominant role of gene regulatory change in adaptation, especially morphological adaptation. Here we discuss and critique these assertions. We first show that there is no theoretical or empirical basis for the evo devo contention that adaptations involving morphology evolve by genetic mechanisms different from those involving physiology and other traits. In addition, some forms of protein evolution can avoid the negative consequences of pleiotropy, most notably via gene duplication. In light of evo devo claims, we then examine the substantial data on the genetic basis of adaptation from both genome-wide surveys and single-locus studies. Genomic studies lend little support to the cis-regulatory theory: many of these have detected adaptation in protein-coding regions, including transcription factors, whereas few have examined regulatory regions. Turning to single-locus studies, we note that the most widely cited examples of adaptive cis-regulatory mutations focus on trait loss rather than gain, and none have yet pinpointed an evolved regulatory site. In contrast, there are many studies that have both identified structural mutations and functionally verified their contribution to adaptation and speciation. Neither the theoretical arguments nor the data from nature, then, support the claim for a predominance of cis-regulatory mutations in evolution. Although this claim may be true, it is at best premature. Adaptation and speciation probably proceed through a combination of cis-regulatory and structural mutations, with a substantial contribution of the latter.
Abo, Tokuhisa; Iida, Ryo-Hei; Kaneko, Syuhei; Suga, Takeo; Yamada, Hiroyuki; Hamada, Yoshiki; Yamane, Akira
2012-12-01
Clenbuterol, a β₂-adrenergic agonist, increases the hypertrophy of skeletal muscle. Insulin-like growth factor (IGF) is reported to work as a potent positive regulator in the clenbuterol-induced hypertrophy of skeletal muscles. However, the precise regulatory mechanism for the hypertrophy of skeletal muscle induced by clenbuterol is unknown. Myostatin, a member of the TGFβ super family, is a negative regulator of muscle growth. The aim of the present study is to elucidate the function of myostatin and IGF in the hypertrophy of rat masseter muscle induced by clenbuterol. To investigate the function of myostatin and IGF in regulatory mechanism for the clenbuterol-induced hypertrophy of skeletal muscles, we analysed the expression of myostatin and phosphorylation levels of myostatin and IGF signaling components in the masseter muscle of rat to which clenbuterol was orally administered for 21 days. Hypertrophy of the rat masseter muscle was induced between 3 and 14 days of oral administration of clenbuterol and was terminated at 21 days. The expression of myostatin and the phosphorylation of smad2/3 were elevated at 21 days. The phosphorylation of IGF receptor 1 (IGFR1) and akt1 was elevated at 3 and 7 days. These results suggest that myostatin functions as a negative regulator in the later stages in the hypertrophy of rat masseter muscle induced by clenbuterol, whereas IGF works as a positive regulator in the earlier stages. Copyright © 2012 John Wiley & Sons, Ltd.
Han, S-M; Namkoong, C; Jang, P G; Park, I S; Hong, S W; Katakami, H; Chun, S; Kim, S W; Park, J-Y; Lee, K-U; Kim, M-S
2005-10-01
Appropriate counter-regulatory hormonal responses are essential for recovery from hypoglycaemia. Although the hypothalamus is known to be involved in these responses, the molecular mechanisms have not been fully elucidated. AMP-activated protein kinase (AMPK) functions as a cellular energy sensor, being activated during energy depletion. As AMPK is expressed in the hypothalamus, an important site of neuroendocrine regulation, the present study was undertaken to determine whether hypothalamic AMPK mediates counter-regulatory responses to hypoglycaemia. Hypoglycaemia was induced by i.p. injection of regular insulin (6 U/kg) in Sprague-Dawley rats. Hypothalamic AMPK phosphorylation and activities were determined 1 h after i.p. insulin injection. To investigate the role of hypothalamic AMPK activation in mediating counter-regulatory responses, an AMPK inhibitor, compound C, was pre-administered intracerebroventricularly (i.c.v.) or dominant-negative (DN)-AMPK was overexpressed in the hypothalamus before induction of hypoglycaemia. Insulin-induced hypoglycaemia increased hypothalamic AMPK phosphorylation and alpha2-AMPK activities in rats. The change was significant in the arcuate nucleus/ventromedial hypothalamus (ARC/VMH) and paraventricular nuclei (PVN). Prior i.c.v. administration of compound C attenuated hypoglycaemia-induced increases in plasma concentrations of corticosterone, glucagon and catecholamines, resulting in severe and prolonged hypoglycaemia. ARC/VMH DN-AMPK overexpression impaired early counter-regulation, as evidenced by reduced glucagon and catecholamine responses. In contrast, PVN DN-AMPK overexpression attenuated late counter-regulation and corticosterone responses. Systemic hypoglycaemia causes hypothalamic AMPK activation, which is important for counter-regulatory hormonal responses. Our data indicate that hypothalamic AMPK acts as a fuel gauge, sensing the whole-body energy state and regulating not only energy homeostasis but also neuroendocrine functions.
Modus operandi and affect in Sweden: the Swedish version of the Regulatory Mode Questionnaire
Nima, Ali Al; Mihailovic, Marko
2017-01-01
Background The Regulatory Mode Questionnaire (RMQ) is the most used and internationally well-known instrument for the measurement of individual differences in the two self-regulatory modes: locomotion (i.e., the aspect of self-regulation that is concerned with movement from state to state) and assessment (i.e., the comparative aspect of self-regulation). The aim of the present study was to verify the independence of the two regulatory modes, as postulated by the Regulatory Mode Theory (Kruglanski et al., 2000), and the psychometric properties of the RMQ in the Swedish context. Furthermore, we investigated the relationship between regulatory modes (locomotion and assessment) and affective well-being (i.e., positive affect and negative affect). Method A total of 655 university and high school students in the West of Sweden (males = 408 females = 242, and five participants who didn’t report their gender; agemean = 21.93 ± 6.51) responded to the RMQ and the Positive Affect Negative Affect Schedule. We conducted two confirmatory factor analyses using structural equation modeling (SEM). A third SEM was conducted to test the relationship between locomotion and assessment to positive affect and negative affect. Results The first analyses confirmed the unidimensional factor structure of locomotion and assessment and both scales showed good reliability. The assessment scale, however, was modified by dropping item 10 (“I don’t spend much time thinking about ways others could improve themselves”.) because it showed low loading (.07, p = .115). Furthermore, the effect of locomotion on positive affect was stronger than the effect of assessment on positive affect (Z = −15.16, p < .001), while the effect of assessment on negative affect was stronger than the effect of locomotion on negative affect (Z = 10.73, p < .001). Conclusion The factor structure of the Swedish version of the RMQ is, as Regulatory Mode Theory suggests, unidimensional and it showed good reliability. The scales discriminated between the two affective well-being dimensions. We suggest that the Swedish version of the RMQ, with only minor modifications, is a useful instrument to tap individual differences in locomotion and assessment. Hence, the present study contributes to the validation of the RMQ in the Swedish culture and adds support to the theoretical framework of self-regulatory mode. PMID:29181282
Neves, Susana R; Tsokas, Panayiotis; Sarkar, Anamika; Grace, Elizabeth A; Rangamani, Padmini; Taubenfeld, Stephen M; Alberini, Cristina M; Schaff, James C; Blitzer, Robert D; Moraru, Ion I; Iyengar, Ravi
2008-05-16
The role of cell size and shape in controlling local intracellular signaling reactions, and how this spatial information originates and is propagated, is not well understood. We have used partial differential equations to model the flow of spatial information from the beta-adrenergic receptor to MAPK1,2 through the cAMP/PKA/B-Raf/MAPK1,2 network in neurons using real geometries. The numerical simulations indicated that cell shape controls the dynamics of local biochemical activity of signal-modulated negative regulators, such as phosphodiesterases and protein phosphatases within regulatory loops to determine the size of microdomains of activated signaling components. The model prediction that negative regulators control the flow of spatial information to downstream components was verified experimentally in rat hippocampal slices. These results suggest a mechanism by which cellular geometry, the presence of regulatory loops with negative regulators, and key reaction rates all together control spatial information transfer and microdomain characteristics within cells.
Negative emotions and behaviour: The role of regulatory emotional self-efficacy.
Mesurado, Belén; Vidal, Elisabeth Malonda; Mestre, Anna Llorca
2018-04-01
The objective of this study is to test a longitudinal model that analyses the direct effect of negative emotions (anger, depression and anxiety, wave 1) on prosocial and aggressive behaviour (wave 2) in adolescents. And the indirect effect of negative emotions (wave 1) on prosocial and aggressive behaviour (wave 2) through regulatory emotional self-efficacy. Data was obtained from 417 adolescents in a two-wave longitudinal study (225 girls, M age = 14.70 years) from schools located in Valencia, Spain. SEM was employed to explore longitudinal models. The results showed that anger had a direct relationship with prosocial behaviour and aggression, measured two years later. However, the depression and anxiety states did not predict prosociality and aggressiveness. The mediation role of regulatory emotional self-efficacy between negative emotion and behaviours was only partially confirmed. Finally, only the perception of self-efficacy in expressing positive affect is related to prosociality and aggressiveness. Copyright © 2018 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Sassenberg, Kai; Sassenrath, Claudia; Fetterman, Adam K
2015-01-01
The purpose of the current experiment was to distinguish between the impact of strategic and affective forms of gain- and loss-related motivational states on the attention to negative stimuli. On the basis of the counter-regulation principle and regulatory focus theory, we predicted that individuals would attend more to negative than to neutral stimuli in a prevention focus and when experiencing challenge, but not in a promotion focus and under threat. In one experiment (N = 88) promotion, prevention, threat, or challenge states were activated through a memory task, and a subsequent dot probe task was administered. As predicted, those in the prevention focus and challenge conditions had an attentional bias towards negative words, but those in promotion and threat conditions did not. These findings provide support for the idea that strategic mindsets (e.g., regulatory focus) and hot emotional states (e.g., threat vs. challenge) differently affect the processing of affective stimuli.
Characterization of the human UDP-galactose:ceramide galactosyltransferase gene promoter.
Tencomnao, T; Yu, R K; Kapitonov, D
2001-02-16
UDP-galactose:ceramide galactosyltransferase (CGT, EC 2.4.1.45) is a key enzyme in the biosynthesis of galactocerebroside, the most abundant glycosphingolipid in the myelin sheath. An 8 kb fragment upstream from the transcription initiation site of CGT gene was isolated from a human genomic DNA library. Primer extension analysis revealed a single transcription initiation site 329 bp upstream from the ATG start codon. Neither a consensus TATA nor a CCAAT box was identified in the proximity to the transcription start site; however, this region contains a high GC content and multiple putative regulatory elements. To investigate the transcriptional regulation of CGT, a series of 5' deletion constructs of the 5'-flanking region were generated and cloned upstream from the luciferase reporter gene. By comparing promoter activity in the human oligodendroglioma (HOG) and human neuroblastoma (LAN-5) cell lines, we found that the CGT promoter functions in a cell type-specific manner. Three positive cis-acting regulatory regions were identified, including a proximal region at -292/-256 which contains the potential binding sites for known transcription factors (TFs) such as Ets and SP1 (GC box), a distal region at -747/-688 comprising a number of binding sites such as the ERE half-site, NF1-like, TGGCA-BP, and CRE, and a third positive cis-acting region distally localized at -1325/-1083 consisting of binding sites for TFs such as nitrogen regulatory, TCF-1, TGGCA-BP, NF-IL6, CF1, bHLH, NF1-like, GATA, and gamma-IRE. A negative cis-acting domain localized in a far distal region at -1594/-1326 was also identified. Our results suggest the presence of both positive and negative cis-regulatory regions essential for the cell-specific expression in the TATA-less promoter of the human CGT gene.
Imai, S; Fujino, T; Nishibayashi, S; Manabe, T; Takano, T
1994-01-01
Dramatic changes occur in expression of the type I collagenase gene during the process of immortalization in simian virus 40 large T antigen-transformed human fibroblasts (S. Imai and T. Takano, Biochem. Biophys. Res. Commun. 189:148-153, 1992). From transient transfection assays, it was determined that these changes involved the functions of two immortalization-susceptible cis-acting elements, ISE1 and ISE2, located in a 100-bp region about 1.7 kb upstream. The profiles of binding of an activator, Proserpine, to the enhancer ISE1 were similar in the extracts of young, senescent preimmortalized and immortalized cells. ISE2 contained both negative and positive regulatory elements located adjacent to each other. The positive regulatory element consisted of a tandem array of putative Ets family- and AP-1-binding sites. An activator, Pluto, interacted with this positive regulatory element and had an AP-1-related component as a complex. The binding activity of Pluto was predominantly detected only in the extract from senescent preimmortalized cells. In contrast, a repressor, Orpheus, which bound to the ATG-rich negative regulatory element of ISE2, was prominently detected in extracts from both young preimmortalized and immortalized cells and appeared to suppress transcription in an orientation-dependent manner. Thus, the interplay of Pluto and Orpheus was suggested to be crucial for regulation of the collagenase gene accompanying in vitro aging and immortalization. Proserpine seemed to interact with Pluto to mediate strong expression of the collagenase gene in cellular senescence. On the basis of these results, we propose a model for regulation of the collagenase gene during in vitro aging and immortalization. Images PMID:7935433
Kumar, V; Wong, D T; Pasion, S G; Biswas, D K
1987-12-08
The prolactin-nonproducing (PRL-) GH cell strains (rat pituitary tumor cells in culture). GH12C1 and F1BGH12C1, do not respond to steroid hormones estradiol or hydrocortisone (HC). However, the stimulatory effect of estradiol and the inhibitory effect of hydrocortisone on prolactin synthesis can be demonstrated in the prolactin-producing GH cell strain, GH4C1. In this investigation we have examined the 5' end flanking region of rat prolactin (rat PRL) gene of steroid-responsive, GH4C1 cells to identify the positive and negative regulatory elements and to verify the status of these elements in steroid-nonresponsive F1BGH12C1 cells. Results presented in this report demonstrate that the basel level expression of the co-transferred Neo gene (neomycin phosphoribosyl transferase) is modulated by the distal upstream regulatory elements of rat PRL gene in response to steroid hormones. The expression of adjacent Neo gene is inhibited by dexamethasone and is stimulated by estradiol in transfectants carrying distal regulatory elements (SRE) of steroid-responsive cells. These responses are not observed in transfectants with the rat PRL upstream sequences derived from steroid-nonresponsive cells. The basal level expression of the host cell alpha-2 tubulin gene is not affected by dexamethasone. We report here the identification of the distal steroid regulatory element (SRE) located between 3.8 and 7.8 kb upstream of the transcription initiation site of rat PRL gene. Both the positive and the negative effects of steroid hormones can be identified within this upstream sequence. This distal SRE appears to be nonfunctional in steroid-nonresponsive cells. Though the proximal SRE is functional, the defect in the distal SRE makes the GH substrain nonresponsive to steroid hormones. These results suggest that both the proximal and the distal SREs are essential for the mediation of action of steroid hormones in GH cells.
How Do Negative Emotions Impair Self-Control? A Neural Model of Negative Urgency
Chester, David S.; Lynam, Donald R.; Milich, Richard; Powell, David K.; Andersen, Anders H.; DeWall, C. Nathan
2016-01-01
Self-control often fails when people experience negative emotions. Negative urgency represents the dispositional tendency to experience such self-control failure in response to negative affect. The neural underpinnings of negative urgency are not fully understood, nor is the more general phenomenon of self-control failure in response to negative emotions. Previous theorizing suggests that an insufficient, inhibitory response from the prefrontal cortex may be the culprit behind such self-control failure. However, we entertained an alternative hypothesis: negative emotions lead to self-control failure because they excessively tax inhibitory regions of the prefrontal cortex. Using fMRI, we compared the neural activity of people high in negative urgency with controls on an emotional, inhibitory Go/No-Go task. While experiencing negative (but not positive or neutral) emotions, participants high in negative urgency showed greater recruitment of inhibitory brain regions than controls. Suggesting a compensatory function, inhibitory accuracy among participants high in negative urgency was associated with greater prefrontal recruitment. Greater activity in the anterior insula on negatively-valenced, inhibitory trials predicted greater substance abuse one month and one year after the MRI scan among individuals high in negative urgency. These results suggest that, among people whose negative emotions often lead to self-control failure, excessive reactivity of the brain’s regulatory resources may be the culprit. PMID:26892861
The interactive effect of social pain and executive functioning on aggression: an fMRI experiment.
Chester, David S; Eisenberger, Naomi I; Pond, Richard S; Richman, Stephanie B; Bushman, Brad J; Dewall, C Nathan
2014-05-01
Social rejection often increases aggression, but the neural mechanisms underlying this effect remain unclear. This experiment tested whether neural activity in the dorsal anterior cingulate cortex (dACC) and anterior insula in response to social rejection predicted greater subsequent aggression. Additionally, it tested whether executive functioning moderated this relationship. Participants completed a behavioral measure of executive functioning, experienced social rejection while undergoing functional magnetic resonance imaging and then completed a task in which they could aggress against a person who rejected them using noise blasts . We found that dACC activation and executive functioning interacted to predict aggression. Specifically, participants with low executive functioning showed a positive association between dACC activation and aggression, whereas individuals with high executive functioning showed a negative association. Similar results were found for the left anterior insula. These findings suggest that social pain can increase or decrease aggression, depending on an individual's regulatory capability.
Hirschler-Guttenberg, Yael; Golan, Ofer; Ostfeld-Etzion, Sharon; Feldman, Ruth
2015-05-01
Children with autism spectrum disorder (ASD) exhibit difficulties in regulating emotions and authors have called to study the specific processes underpinning emotion regulation (ER) in ASD. Yet, little observational research examined the strategies preschoolers with ASD use to regulate negative and positive emotions in the presence of their mothers and fathers. Forty preschoolers with ASD and 40 matched typically developing children and their mothers and fathers participated. Families were visited twice for identical battery of paradigms with mother or father. Parent-child interactions were coded for parent and child behaviors and children engaged in ER paradigms eliciting negative (fear) and positive (joy) emotions with each parent. ER paradigms were microcoded for negative and positive emotionality, ER strategies, and parent regulation facilitation. During free play, mothers' and fathers' sensitivity and warm discipline were comparable across groups; however, children with ASD displayed lower positive engagement and higher withdrawal. During ER paradigms, children with ASD expressed less positive emotionality overall and more negative emotionality during fear with father. Children with ASD used more simple self-regulatory strategies, particularly during fear, but expressed comparable levels of assistance seeking behavior toward mother and father in negative and positive contexts. Parents of children with ASD used less complex regulation facilitation strategies, including cognitive reappraisal and emotional reframing, and employed simple tactics, such as physical comforting to manage fear and social gaze to maintain joy. Findings describe general and parent- and emotion-specific processes of child ER and parent regulation facilitation in preschoolers with ASD. Results underscore the ability of such children to seek parental assistance during moments of high arousal and the parents' sensitive adaptation to their children's needs. Reduced positive emotionality, rather than increased negative reactivity and self-regulatory efforts, emerges as the consistent element associated with ER processes in this group. © 2014 Association for Child and Adolescent Mental Health.
Kim, Seong K.; Kim, Seongman; Dai, Gan; Zhang, Yunfei; Ahn, Byung C.; O'Callaghan, Dennis J.
2012-01-01
The equine herpesvirus 1 (EHV-1) negative regulatory IR2 protein (IR2P), an early 1,165-amino acid (aa) truncated form of the 1,487-aa immediate-early protein (IEP), lacks the trans-activation domain essential for IEP activation functions but retains domains for binding DNA, TFIIB, and TBP and the nuclear localization signal. IR2P mutants of the N-terminal region which lack either DNA-binding activity or TFIIB-binding activity were unable to down-regulate EHV-1 promoters. In EHV-1-infected cells expressing full-length IR2P, transcription and protein expression of viral regulatory IE, early EICP0, IR4, and UL5, and late ETIF genes were dramatically inhibited. Viral DNA levels were reduced to 2.1% of control infected cells, but were vey weakly affected in cells that express the N-terminal 706 residues of IR2P. These results suggest that IR2P function requires the two N-terminal domains for binding DNA and TFIIB as well as the C-terminal residues 707 to 1116 containing the TBP-binding domain. PMID:21794889
2012-01-01
Summary: Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ54. We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ54 for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ54-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ54 to the bacterial cell and its unique role in regulating transcription. PMID:22933558
PD-1 and its ligands are important immune checkpoints in cancer
Dong, Yinan; Sun, Qian; Zhang, Xinwei
2017-01-01
Checkpoint programmed death-1 (PD-1)/programmed cell death ligands (PD-Ls) have been identified as negative immunoregulatory molecules that promote immune evasion of tumor cells. The interaction of PD-1 and PD-Ls inhibits the function of T cells and tumor-infiltrating lymphocytes (TIL) while increasing the function of immunosuppressive regulatory T cells (Tregs). This condition causes the tumor cells to evade immune response. Thus, the blockade of PD-1/PD-L1 enhances anti-tumor immunity by reducing the number and/or the suppressive activity of Tregs and by restoring the activity of effector T cells. Furthermore, some monoclonal antibodies blockading PD-1/PD-Ls axis have achieved good effect and received Food and Drug Administration approval. The role of PD-1/PD-Ls in tumors has been well studied, but little is known on the mechanism by which PD-1 blocks T-cell activation. In this study, we provide a brief overview on the discovery and regulatory mechanism of PD-1 and PD-L1 dysregulation in tumors, as well as the function and signaling pathway of PD-1 and its ligands; their roles in tumor evasion and clinical treatment were also studied. PMID:27974689
Characterization of noncoding regulatory DNA in the human genome.
Elkon, Ran; Agami, Reuven
2017-08-08
Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.
Keng, Shian-Ling; Ji, Jie Lisa; Moore, Tyler; Minkel, Jared; Dichter, Gabriel S.
2015-01-01
Mood disorders are characterized by impaired emotion regulation abilities, reflected in alterations in frontolimbic brain functioning during regulation. However, little is known about differences in brain function when comparing regulatory strategies. Reappraisal and emotional acceptance are effective in downregulating negative affect, and are components of effective depression psychotherapies. Investigating neural mechanisms of reappraisal vs emotional acceptance in remitted major depressive disorder (rMDD) may yield novel mechanistic insights into depression risk and prevention. Thirty-seven individuals (18 rMDD, 19 controls) were assessed during a functional magnetic resonance imaging task requiring reappraisal, emotional acceptance or no explicit regulation while viewing sad images. Lower negative affect was reported following reappraisal than acceptance, and was lower following acceptance than no explicit regulation. In controls, the acceptance > reappraisal contrast revealed greater activation in left insular cortex and right prefrontal gyrus, and less activation in several other prefrontal regions. Compared with controls, the rMDD group had greater paracingulate and right midfrontal gyrus (BA 8) activation during reappraisal relative to acceptance. Compared with reappraisal, acceptance is associated with activation in regions linked to somatic and emotion awareness, although this activation is associated with less reduction in negative affect. Additionally, a history of MDD moderated these effects. PMID:25617820
Terajima, Masanori; Ennis, Francis A.
2011-01-01
We previously hypothesized that increased capillary permeability observed in both hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) may be caused by hantavirus-specific cytotoxic T cells attacking endothelial cells presenting viral antigens on their surface based on clinical observations and in vitro experiments. In HCPS, hantavirus-specific T cell responses positively correlated with disease severity. In HFRS, in one report, contrary to HCPS, T cell responses negatively correlated with disease severity, but in another report the number of regulatory T cells, which are thought to suppress T cell responses, negatively correlated with disease severity. In rat experiments, in which hantavirus causes persistent infection, depletion of regulatory T cells helped infected rats clear virus without inducing immunopathology. These seemingly contradictory findings may suggest delicate balance in T cell responses between protection and immunopathogenesis. Both too strong and too weak T cell responses may lead to severe disease. It is important to clarify the role of T cells in these diseases for better treatment (whether to suppress T cell functions) and protection (vaccine design) which may need to take into account viral factors and the influence of HLA on T cell responses. PMID:21994770
Terajima, Masanori; Ennis, Francis A
2011-07-01
We previously hypothesized that increased capillary permeability observed in both hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) may be caused by hantavirus-specific cytotoxic T cells attacking endothelial cells presenting viral antigens on their surface based on clinical observations and in vitro experiments. In HCPS, hantavirus-specific T cell responses positively correlated with disease severity. In HFRS, in one report, contrary to HCPS, T cell responses negatively correlated with disease severity, but in another report the number of regulatory T cells, which are thought to suppress T cell responses, negatively correlated with disease severity. In rat experiments, in which hantavirus causes persistent infection, depletion of regulatory T cells helped infected rats clear virus without inducing immunopathology. These seemingly contradictory findings may suggest delicate balance in T cell responses between protection and immunopathogenesis. Both too strong and too weak T cell responses may lead to severe disease. It is important to clarify the role of T cells in these diseases for better treatment (whether to suppress T cell functions) and protection (vaccine design) which may need to take into account viral factors and the influence of HLA on T cell responses.
Functional Evolution of a cis-Regulatory Module
Palsson, Arnar; Alekseeva, Elena; Bergman, Casey M; Nathan, Janaki; Kreitman, Martin
2005-01-01
Lack of knowledge about how regulatory regions evolve in relation to their structure–function may limit the utility of comparative sequence analysis in deciphering cis-regulatory sequences. To address this we applied reverse genetics to carry out a functional genetic complementation analysis of a eukaryotic cis-regulatory module—the even-skipped stripe 2 enhancer—from four Drosophila species. The evolution of this enhancer is non-clock-like, with important functional differences between closely related species and functional convergence between distantly related species. Functional divergence is attributable to differences in activation levels rather than spatiotemporal control of gene expression. Our findings have implications for understanding enhancer structure–function, mechanisms of speciation and computational identification of regulatory modules. PMID:15757364
Neuenschwander, Regula; Blair, Clancy
2017-02-01
When delaying gratification, both motivational and regulatory processes are likely to be at play; however, the relative contributions of motivational and regulatory influences on delay behavior are unclear. By examining behavioral responses during a delay task, this study sought to examine the motivational (anticipatory behavior) and regulatory mechanisms (executive function and self-control strategies) underlying children's self-regulation. The participants, 65 5- to 9-year-old children (M age =7.19years, SD=0.89), were video-recorded during a delay procedure and later coded for anticipatory behaviors (e.g., gazing intensely at the tablet) and self-control strategies. Children also completed two executive function (EF) tasks. We found that anticipatory behavior was curvilinearly related to delay time. Children showing either very low or very high levels of anticipatory behavior were not able to wait the entire time. Furthermore, our results indicated that anticipatory behavior interacted with EF to predict delay time. Specifically, anticipatory behavior was negatively related to delay time only if EF abilities were low. Finally, self-control strategies also interacted with EF to predict children's ability to delay. Spontaneous engagement in self-control strategies such as fidgeting and engagement in alternative activities were beneficial for children with low EF but were unrelated to delay time for children with high EF. Results indicate the value of examining motivational and regulatory influences on delay behavior. Lapses in self-regulation may be due to the combination of powerful impulsigenic (i.e., anticipatory behavior) and weak volitional processes (i.e., EF, self-control strategies). Copyright © 2016. Published by Elsevier Inc.
Bosone, Lucia; Martinez, Frédéric; Kalampalikis, Nikos
2015-04-01
In health-promotional campaigns, positive and negative role models can be deployed to illustrate the benefits or costs of certain behaviors. The main purpose of this article is to investigate why, how, and when exposure to role models strengthens the persuasiveness of a message, according to regulatory fit theory. We argue that exposure to a positive versus a negative model activates individuals' goals toward promotion rather than prevention. By means of two experiments, we demonstrate that high levels of persuasion occur when a message advertising healthy dietary habits offers a regulatory fit between its framing and the described role model. Our data also establish that the effects of such internal regulatory fit by vicarious experience depend on individuals' perceptions of response-efficacy and self-efficacy. Our findings constitute a significant theoretical complement to previous research on regulatory fit and contain valuable practical implications for health-promotional campaigns. © 2015 by the Society for Personality and Social Psychology, Inc.
miRNomes of haematopoietic stem cells and dendritic cells identify miR-30b as a regulator of Notch1
Su, Xiaoping; Qian, Cheng; Zhang, Qian; Hou, Jin; Gu, Yan; Han, Yanmei; Chen, Yongjian; Jiang, Minghong; Cao, Xuetao
2013-01-01
Dendritic cells (DCs) are critical to initiate the immune response and maintain tolerance, depending on different status and subsets. The expression profiles of microRNAs (miRNAs) in various DC subsets and haematopoietic stem cells (HSCs), which generate DCs, remain to be fully identified. Here we examine miRNomes of mouse bone marrow HSCs, immature DCs, mature DCs and IL-10/NO-producing regulatory DCs by deep sequencing. We identify numerous stage-specific miRNAs and histone modification in HSCs and DCs at different differentiation stages. miR-30b, significantly upregulated via a TGF-beta/Smad3-mediated epigenetic pathway in regulatory DCs, can target Notch1 to promote IL-10 and NO production, suggesting that miR-30b is a negative regulator of immune response. We also identify miRNomes of in vivo counterparts of mature DCs and regulatory DCs and systematically compare them with DCs cultured in vitro. These results provide a resource for studying roles of miRNAs in stem cell biology, development and functional regulation of DC subsets. PMID:24309499
Revisiting the ERK/Src cortactin switch
Kelley, Laura C; Hayes, Karen E; Ammer, Amanda Gatesman; Martin, Karen H
2011-01-01
The filamentous (F)-actin regulatory protein cortactin plays an important role in tumor cell movement and invasion by promoting and stabilizing actin related protein (Arp)2/3-mediated actin networks necessary for plasma membrane protrusion. Cortactin is a substrate for ERK1/2 and Src family kinases, with previous in vitro findings demonstrating ERK1/2 phosphorylation of cortactin as a positive and Src phosphorylation as a negative regulatory event in promoting Arp2/3 activation through neuronal Wiskott Aldrich Syndrome protein (N-WASp). Evidence for this regulatory cortactin “switch” in cells has been hampered due to the lack of phosphorylation-specific antibodies that recognize ERK1/2-phosphorylated cortactin. Our findings with phosphorylation-specific antibodies against these ERK1/2 sites (pS405 and pS418) indicate that cortactin can be co-phosphorylated at 405/418 and tyrosine residues targeted by Src family tyrosine kinases. These results indicate that the ERK/Src cortactin switch is not the sole mechanism by which ERK1/2 and tyrosine phosphorylation events regulate cortactin function in cell systems. PMID:21655441
Akiyama, Taishin; Tateishi, Ryosuke; Akiyama, Nobuko; Yoshinaga, Riko; Kobayashi, Tetsuya J
2015-01-01
Self-tolerant T cells and regulatory T cells develop in the thymus. A wide variety of cell-cell interactions in the thymus is required for the differentiation, proliferation, and repertoire selection of T cells. Various secreted and cell surface molecules expressed in thymic epithelial cells (TECs) mediate these processes. Moreover, cytokines expressed by cells of hematopoietic origin regulate the cellularity of TECs. Tumor necrosis factor (TNF) family RANK ligand, lymphotoxin, and CD40 ligand, expressed in T cells and innate lymphoid cells (ILCs), promote the differentiation and proliferation of medullary TECs (mTECs) that play critical roles in the induction of immune tolerance. A recent study suggests that interleukin-22 (IL-22) produced by ILCs promotes regeneration of TECs after irradiation. Intriguingly, tumor growth factor-β and osteoprotegerin limit cellularity of mTECs, thereby attenuating regulatory T cell generation. We will review recent insights into the molecular basis for cell-cell interactions regulating differentiation and proliferation of mTECs and also discuss about a perspective on use of mathematical models for understanding this complicated system.
Roles of lignin biosynthesis and regulatory genes in plant development
Yoon, Jinmi; Choi, Heebak
2015-01-01
Abstract Lignin is an important factor affecting agricultural traits, biofuel production, and the pulping industry. Most lignin biosynthesis genes and their regulatory genes are expressed mainly in the vascular bundles of stems and leaves, preferentially in tissues undergoing lignification. Other genes are poorly expressed during normal stages of development, but are strongly induced by abiotic or biotic stresses. Some are expressed in non‐lignifying tissues such as the shoot apical meristem. Alterations in lignin levels affect plant development. Suppression of lignin biosynthesis genes causes abnormal phenotypes such as collapsed xylem, bending stems, and growth retardation. The loss of expression by genes that function early in the lignin biosynthesis pathway results in more severe developmental phenotypes when compared with plants that have mutations in later genes. Defective lignin deposition is also associated with phenotypes of seed shattering or brittle culm. MYB and NAC transcriptional factors function as switches, and some homeobox proteins negatively control lignin biosynthesis genes. Ectopic deposition caused by overexpression of lignin biosynthesis genes or master switch genes induces curly leaf formation and dwarfism. PMID:26297385
Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme.
Nishimura, Noriyuki; Tsuchiya, Wataru; Moresco, James J; Hayashi, Yuki; Satoh, Kouji; Kaiwa, Nahomi; Irisa, Tomoko; Kinoshita, Toshinori; Schroeder, Julian I; Yates, John R; Hirayama, Takashi; Yamazaki, Toshimasa
2018-06-06
Abscisic acid (ABA) regulates abiotic stress and developmental responses including regulation of seed dormancy to prevent seeds from germinating under unfavorable environmental conditions. ABA HYPERSENSITIVE GERMINATION1 (AHG1) encoding a type 2C protein phosphatase (PP2C) is a central negative regulator of ABA response in germination; however, the molecular function and regulation of AHG1 remain elusive. Here we report that AHG1 interacts with DELAY OF GERMINATION1 (DOG1), which is a pivotal positive regulator in seed dormancy. DOG1 acts upstream of AHG1 and impairs the PP2C activity of AHG1 in vitro. Furthermore, DOG1 has the ability to bind heme. Binding of DOG1 to AHG1 and heme are independent processes, but both are essential for DOG1 function in vivo. Our study demonstrates that AHG1 and DOG1 constitute an important regulatory system for seed dormancy and germination by integrating multiple environmental signals, in parallel with the PYL/RCAR ABA receptor-mediated regulatory system.
The pleasure of revenge: retaliatory aggression arises from a neural imbalance toward reward
DeWall, C. Nathan
2016-01-01
Most of daily life hums along peacefully but provocations tip the balance toward aggression. Negative feelings are often invoked to explain why people lash out after an insult. Yet people might retaliate because provocation makes aggression hedonically rewarding. To test this alternative hypothesis, 69 participants underwent functional neuroimaging while they completed a behavioral aggression task that repeatedly manipulated whether aggression was preceded by an instance of provocation or not. After provocation, greater activity in the nucleus accumbens (NAcc) (a brain region reliably associated with reward) during aggressive decisions predicted louder noise blasts administered in retaliation. Greater NAcc activation was also associated with participants’ history of real-world violence. Functional connectivity between the NAcc and a regulatory region in the lateral prefrontal cortex related to lower retaliatory aggression. These findings suggest that provocation tips the neural balance towards hedonic reward, which fosters retaliatory aggression. Although such pleasure of inflicting pain may promote retaliatory aggression, self-regulatory processes can keep such aggressive urges at bay. Implications for theory and violence reduction are discussed. PMID:26117504
Hannemann, Anke; Christie, Jenny K; Flatman, Peter W
2009-12-18
The renal bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) is the major salt transport pathway in the apical membrane of the mammalian thick ascending limb. It is differentially spliced and the three major variants (A, B, and F) differ in their localization and transport characteristics. Most knowledge about its regulation comes from experiments in Xenopus oocytes as NKCC2 proved difficult to functionally express in a mammalian system. Here we report the cloning and functional expression of untagged and unmodified versions of the major splice variants from ferret kidney (fNKCC2A, -B, and -F) in human embryonic kidney (HEK) 293 cells. Many NKCC2 antibodies used in this study detected high molecular weight forms of the transfected proteins, probably NKCC2 dimers, but not the monomers. Interestingly, monomers were strongly detected by phosphospecific antibodies directed against phosphopeptides in the regulatory N terminus. Bumetanide-sensitive (86)Rb uptake was significantly higher in transfected HEK-293 cells and could be stimulated by incubating cells in a medium containing a low chloride concentration prior the uptake measurements. fNKCC2 was less sensitive to the reduction in chloride concentration than NKCC1. Using HEK-293 cells stably expressing fNKCC2A we also show that co-expression of variant NKCC2AF does not have the dominant-negative effect on NKCC2A activity that was seen in Xenopus oocytes, nor is it trafficked to the cell surface. In addition, fNKCC2AF is neither complex glycosylated nor phosphorylated in its N terminus regulatory region like other variants.
Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth
Gasperini, Debora; Chételat, Aurore; Acosta, Ivan F.; Goossens, Jonas; Pauwels, Laurens; Goossens, Alain; Dreos, René; Alfonso, Esteban; Farmer, Edward E.
2015-01-01
Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific cell types in order to understand and potentially engineer the growth reduction that follows physical damage. PMID:26070206
Gonzalez, S M; Ferland, L H; Robert, B; Abdelhay, E
1998-06-01
Vertebrate Msx genes are related to one of the most divergent homeobox genes of Drosophila, the muscle segment homeobox (msh) gene, and are expressed in a well-defined pattern at sites of tissue interactions. This pattern of expression is conserved in vertebrates as diverse as quail, zebrafish, and mouse in a range of sites including neural crest, appendages, and craniofacial structures. In the present work, we performed structural and functional analyses in order to identify potential cis-acting elements that may be regulating Msx1 gene expression. To this end, a 4.9-kb segment of the 5'-flanking region was sequenced and analyzed for transcription-factor binding sites. Four regions showing a high concentration of these sites were identified. Transfection assays with fragments of regulatory sequences driving the expression of the bacterial lacZ reporter gene showed that a region of 4 kb upstream of the transcription start site contains positive and negative elements responsible for controlling gene expression. Interestingly, a fragment of 130 bp seems to contain the minimal elements necessary for gene expression, as its removal completely abolishes gene expression in cultured cells. These results are reinforced by comparison of this region with the human Msx1 gene promoter, which shows extensive conservation, including many consensus binding sites, suggesting a regulatory role for them.
Early trauma, negative affect, and anxious attachment: the role of metacognition.
Myers, Samuel G; Wells, Adrian
2015-01-01
Metacognition is linked to the etiology and maintenance of negative emotions and psychological disorder in the Self-Regulatory Executive Function Model. Although there is significant evidence supporting the model, little is currently known about the situational factors for developing dysfunctional metacognitions. The current study explored the hypothesis that early aversive experiences might be important and also tested if metacognitions could mediate the relationship between such experiences and psychological symptoms. Three hundred and fifty non-clinical adults completed a retrospective early trauma measure, as well as measures of current metacognitive beliefs, negative affect, and anxious attachment. Early emotional abuse positively and significantly correlated with several metacognitive belief dimensions but other forms of early trauma did not. Metacognition fully mediated the relationship between emotional abuse and negative affect. Anxious attachment was also positively and significantly associated with metacognitive beliefs and specific relationships remained after controlling for early emotional abuse and current negative affect. Findings are consistent with the ideas that: (i) early negative experiences, and emotional abuse in particular, could be a factor in the formation of problematic metacognitions and (ii) these metacognitions may be important in determining the effects of abuse on subsequent psychological symptoms.
Pandey, Sheo Shankar; Patnana, Pradeep Kumar; Lomada, Santosh Kumar; Tomar, Archana; Chatterjee, Subhadeep
2016-01-01
Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named X anthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon’s involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in response to iron availability. Our results provide insight of the complex regulatory mechanism of fine-tuning of virulence associated functions with iron availability in this important group of phytopathogen. PMID:27902780
Quorum-Sensing Signal-Response Systems in Gram-Negative Bacteria
Papenfort, Kai; Bassler, Bonnie
2016-01-01
Abstract / Preface Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal–response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host–microbial associations and antibacterial therapy. PMID:27510864
Tregs: Where We Are and What Comes Next?
Zhao, Hai; Liao, Xuelian; Kang, Yan
2017-01-01
Regulatory T cells are usually recognized as a specialized subset of CD4 + T cells functioning in establishment and maintenance of immune tolerance. Meanwhile, there is emerging evidence that regulatory T cells (Tregs) are also present in various non-lymphoid tissues, and that they have unique phenotypes credited with activities distinct from regulatory function. Their development and function have been described in plenty of manuscripts in the past two decades. However, with the deepening of research in recent years, emerging evidence revealed some novel mechanisms about how Tregs exert their activities. First, we discuss the expanding family of regulatory lymphocytes briefly and then, try to interpret how fork-head box P3 (Foxp3), a master regulator of the regulatory pathway in the development and function of regulatory T cells, functions. Subsequently, another part of our focus is varieties of tissue Tregs. Next, we primarily discuss recent research on how Tregs work and their faceted functions in terms of soluble mediators, functional proteins, and inhibitory receptors. In particular, unless otherwise noted, the term "Treg" is used here to refer specially to the "CD4 + CD25 + Foxp3 +" regulatory cells.
Ambjørn, Malene; Dubreuil, Véronique; Miozzo, Federico; Nigon, Fabienne; Møller, Bente; Issazadeh-Navikas, Shohreh; Berg, Jacob; Lees, Michael; Sap, Jan
2013-01-01
Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely result from activation of its tyrosine kinase receptor TrkB. Although intracellular neurotrophin (NT) signaling presumably reflects the combined action of kinases and phosphatases, little is known about the contributions of the latter to TrkB regulation. The issue is complicated by the fact that phosphatases belong to multiple independently evolved families, which are rarely studied together. We undertook a loss-of-function RNA-interference-based screen of virtually all known (254) human phosphatases to understand their function in BDNF/TrkB-mediated neurite outgrowth in differentiated SH-SY5Y cells. This approach identified phosphatases from diverse families, which either positively or negatively modulate BDNF-TrkB-mediated neurite outgrowth, and most of which have little or no previously established function related to NT signaling. “Classical” protein tyrosine phosphatases (PTPs) accounted for 13% of the candidate regulatory phosphatases. The top classical PTP identified as a negative regulator of BDNF-TrkB-mediated neurite outgrowth was PTPN12 (also called PTP-PEST). Validation and follow-up studies showed that endogenous PTPN12 antagonizes tyrosine phosphorylation of TrkB itself, and the downstream activation of ERK1/2. We also found PTPN12 to negatively regulate phosphorylation of p130cas and FAK, proteins with previously described functions related to cell motility and growth cone behavior. Our data provide the first comprehensive survey of phosphatase function in NT signaling and neurite outgrowth. They reveal the complexity of phosphatase control, with several evolutionarily unrelated phosphatase families cooperating to affect this biological response, and hence the relevance of considering all phosphatase families when mining for potentially druggable targets. PMID:23785422
Jin, Seung-A Annie
2010-08-01
This research explored the effects of priming interdependent self-construals (collective self ) versus independent self-construals (private self ) on exergame players' mood in response to negative performance feedback. An experiment was conducted to test the interaction effects of self-construal priming as a situational factor and game players' chronic regulatory focus as an individual difference factor. To this end, the author leveraged a video-game console (Wii) and an exergame (Dance Dance Revolution) in a controlled, randomized 2 x 2 (experimental priming: interdependent self-construal vs. independent self-construal x game players' chronic promotion regulatory focus: low vs. high) between-subjects factorial design experiment (N = 58). The results of a two-way analysis of variance demonstrated the proposed interaction effect between primed self-construal and game players' chronic regulatory focus on the game players' mood in response to negative performance. The theoretical mechanism underlying the two-way interaction is explicated by regulatory focus and the primed self-construals is explicated by regulatory focus theory and two-basket theory. Practical implications for game developers and theoretical contributions to video-game research are discussed.
Denz, Christopher R; Zhang, Chi; Jia, Pingping; Du, Jianfeng; Huang, Xupei; Dube, Syamalima; Thomas, Anish; Poiesz, Bernard J; Dube, Dipak K
2011-09-01
Tropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts. To identify the cis-elements that are essential for the expression of the TPM4, we created various deletion mutants of the TPM4 promoter DNA, inserted the deleted segments into PGL3 vector, and performed promoter-reporter assay using luciferase as the reporter gene. Comparison of sequences of the promoter region of the TPM4 gene from normal and mutant axolotl revealed no mutations in the promoter sequence of the mutant TPM4 gene. CArG box elements that are generally involved in controlling the expression of several other muscle-specific gene promoters were not found in the upstream regulatory region of the TPM4 gene. In deletion experiments, loss of activity of the reporter gene was noted upon deletion which was then restored upon further deletion suggesting the presence of both positive and negative cis-elements in the upstream regulatory region of the TPM4 gene. We believe that this is the first axolotl promoter that has ever been cloned and studied with clear evidence that it functions in mammalian cell lines. Although striated muscle-specific cis-acting elements are absent from the promoter region of TPM4 gene, our results suggest the presence of positive and negative cis-elements in the promoter region, which in conjunction with positive and negative trans-elements may be involved in regulating the expression of TPM4 gene in a tissue-specific manner.
Pan, Yue; Lu, Lingyun; Chen, Junquan; Zhong, Yong; Dai, Zhehao
2018-01-01
This study aimed to identify potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma by comprehensive bioinformatics analysis. Data of gene expression profiles (GSE28424) and miRNA expression profiles (GSE28423) were downloaded from GEO database. The differentially expressed genes (DEGs) and miRNAs (DEMIs) were obtained by R Bioconductor packages. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein-protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. The relationships among the DEGs and module in PPI network were analyzed by plug-in NetworkAnalyzer and MCODE seperately. Through the TargetScan and comparing target genes with DEGs, the miRNA-mRNA regulation network was established. Totally 346 DEGs and 90 DEMIs were found to be differentially expressed. These DEGs were enriched in biological processes and KEGG pathway of inflammatory immune response. 25 genes in the PPI network were selected as hub genes. Top 10 hub genes were TYROBP, HLA-DRA, VWF, PPBP, SERPING1, HLA-DPA1, SERPINA1, KIF20A, FERMT3, HLA-E. PPI network of DEGs followed a pattern of power law network and met the characteristics of small-world network. MCODE analysis identified 4 clusters and the most significant cluster consisted of 11 nodes and 55 edges. SEPP1, CKS2, TCAP, BPI were identified as the seed genes in their own clusters, respectively. The miRNA-mRNA regulation network which was composed of 89 pairs was established. MiR-210 had the highest connectivity with 12 target genes. Among the predicted target of MiR-96, HLA-DPA1 and TYROBP were the hub genes. Our study indicated possible differentially expressed genes and miRNA, and microRNA-mRNA negative regulatory networks in osteosarcoma by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of osteosarcoma.
Zapp, Daniel J.; Fettig, Nicole B.; Pérez-Edgar, Koraly
2015-01-01
Early temperamental sensitivity may form the basis for the later development of socioemotional maladjustment. In particular, temperamental negative affect places children at risk for the development of anxiety. However, not all children who show negative affect go on to develop anxiety or extreme social withdrawal. Recent research indicates that reactive control, in the form of attention to threat, may serve as a bridge between early temperament and the development of later social difficulties. In addition, variation in effortful control may also modulate this trajectory. Children (MeanAge=5.57 years) were assessed for attention bias to threatening and pleasant faces using a dot-probe paradigm. Attention bias to threatening (but not happy) faces moderated the direct positive relation between negative affect and social withdrawal. Children with threat biases showed a significant link between negative affect and social withdrawal, while children who avoided threat did not. In contrast, effortful control did not moderate the relation between negative affect and social withdrawal. Rather, there was a direct negative relation between effortful control and social withdrawal. The findings from this short report indicate that the relation amongst temperament, attention bias, and social withdrawal appears early in life and point to early emerging specificity in reactive and regulatory functioning. PMID:26477597
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Cabanban, Romeo; Crosson, Bruce A
2015-06-01
A major focus of brain research recently has been to map the resting-state functional connectivity (rsFC) network architecture of the normal brain and pathology through functional magnetic resonance imaging. However, the phenomenon of anticorrelations in resting-state signals between different brain regions has not been adequately examined. The preponderance of studies on resting-state fMRI (rsFMRI) have either ignored anticorrelations in rsFC networks or adopted methods in data analysis, which have rendered anticorrelations in rsFC networks uninterpretable. The few studies that have examined anticorrelations in rsFC networks using conventional methods have found anticorrelations to be weak in strength and not very reproducible across subjects. Anticorrelations in rsFC network architecture could reflect mechanisms that subserve a number of important brain processes. In this preliminary study, we examined the properties of anticorrelated rsFC networks by systematically focusing on negative cross-correlation coefficients (CCs) among rsFMRI voxel time series across the brain with graph theory-based network analysis. A number of methods were implemented to enhance the neuronal specificity of resting-state functional connections that yield negative CCs, although at the cost of decreased sensitivity. Hubs of anticorrelation were seen in a number of cortical and subcortical brain regions. Examination of the anticorrelation maps of these hubs indicated that negative CCs in rsFC network architecture highlight a number of regulatory interactions between brain networks and regions, including reciprocal modulations, suppression, inhibition, and neurofeedback.
Regulatory networks between neurotrophins and miRNAs in brain diseases and cancers
Shi, Jian
2015-01-01
Neurotrophins are involved in many physiological and pathological processes in the nervous system. They regulate and modify signal transduction, transcription and translation in neurons. It is recently demonstrated that the neurotrophin expression is regulated by microRNAs (miRNAs), changing our views on neurotrophins and miRNAs. Generally, miRNAs regulate neurotrophins and their receptors in at least two ways: (1) miRNAs bind directly to the 3′ untranslated region (UTR) of isoform-specific mRNAs and post-transcriptionally regulate their expression; (2) miRNAs bind to the 3′ UTR of the regulatory factors of neurotrophins and regulate their expression. On the other hand, neurotrophins can regulate miRNAs. The results of BNDF research show that neurotrophins regulate miRNAs in at least three ways: (1) ERK stimulation enhances the activation of TRBP (HIV-1 TAR RNA-binding protein) and Dicer, leading to the upregulation of miRNA biogenesis; (2) ERK-dependent upregulation of Lin28a (RNA-binding proteins) blocks select miRNA biogenesis; (3) transcriptional regulation of miRNA expression through activation of transcription factors, including CREB and NF-κB. These regulatory processes integrate positive and negative regulatory loops in neurotrophin and miRNA signaling pathways, and also expand the function of neurotrophins and miRNAs. In this review, we summarize the current knowledge of the regulatory networks between neurotrophins and miRNAs in brain diseases and cancers, for which novel cutting edge therapeutic, delivery and diagnostic approaches are emerging. PMID:25544363
Ooft, Marc L; van Ipenburg, Jolique A; Sanders, Maxime E; Kranendonk, Mariette; Hofland, Ingrid; de Bree, Remco; Koljenović, Senada; Willems, Stefan M
2018-03-01
Tumour-associated macrophages (TAMs) and regulatory T cells (Tregs) form a special niche supporting tumour progression, and both correlate with worse survival in head and neck cancers. However, the prognostic role of TAM and Tregs in nasopharyngeal carcinoma (NPC) is still unknown. Therefore, we determined differences in TAMs and Tregs in different NPC subtypes, and their prognostic significance. Tissue of 91 NPCs was assessed for TAMs and Tregs by determination of CD68, CD163, CD206 and FOXP3 expression in the tumour microenvironment. Clinicopathological correlations were assessed using Pearson X 2 test, Fisher's exact test, analysis of variance and Mann-Whitney U test. Survival was analysed using Kaplan-Meier curves and Cox regression. CD68 and FOXP3 counts were higher in Epstein-Barr virus (EBV)-positive NPC, while CD68-/FOXP3-, CD163+/FOXP3- and CD206+/FOXP3- infiltrates were more common in EBV-negative NPC. In the whole NPC group, CD68-/FOXP3- correlated with worse overall survival (OS), and after multivariate analysis high FOXP3 count showed better OS (HR 0.352, 95% CI 0.128 to 0.968). No difference in M2 counts existed between EBV-positive and negative NPC. FOXP3, a Treg marker, seems to be an independent prognostic factor for better OS in the whole NPC group. Therefore, immune-based therapies targeting Tregs should be carefully evaluated. M2 spectrum macrophages are probably more prominent in EBV-negative NPC with also functional differences compared with EBV-positive NPC. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Regulatory Eosinophils Suppress T Cells Partly through Galectin-10.
Lingblom, Christine; Andersson, Jennie; Andersson, Kerstin; Wennerås, Christine
2017-06-15
Eosinophils have the capacity to regulate the function of T cell subsets. Our aim was to test the hypothesis of the existence of a regulatory subset of eosinophils. Human eosinophils were incubated with T cells that were stimulated with allogeneic leukocytes or CD3/CD28 cross-linking. After 2 d of coculture, 11% of the eosinophils gained CD16 expression. A CD16 hi subset of eosinophils, encompassing 1-5% of all eosinophils, was also identified in the blood of healthy subjects. FACS sorting showed that these CD16 hi eosinophils were significantly stronger suppressors of T cell proliferation than were conventional CD16 neg eosinophils. Human eosinophils contain stores of the immunoregulatory protein galectin-10. We found that Ab-mediated neutralization of galectin-10 partially abrogated the suppressive function of the eosinophils. Moreover, recombinant galectin-10 by itself was able to suppress T cell proliferation. Finally, we detected galectin-10-containing immune synapses between eosinophils and lymphocytes. To conclude, we describe a subset of suppressive eosinophils expressing CD16 that may escape detection because CD16-based negative selection is the standard procedure for the isolation of human eosinophils. Moreover, we show that galectin-10 functions as a T cell-suppressive molecule in eosinophils. Copyright © 2017 by The American Association of Immunologists, Inc.
PD-1 regulates extrathymic regulatory T-cell differentiation
Chen, Xiufen; Fosco, Dominick; Kline, Douglas E.; Meng, Liping; Nishi, Saki; Savage, Peter A.; Kline, Justin
2014-01-01
Regulatory T (Treg) cells and the programmed death-1/programmed death ligand-1 (PD-1/PD-L1) pathway are both critical for maintaining peripheral tolerance to self antigens. A significant subset of Treg cells constitutively expresses PD-1, which prompted an investigation into the role of PD-1/PD-L1 interactions in Treg-cell development, function and induction in vivo. The phenotype and abundance of Treg cells was not significantly altered in PD-1-deficient mice. The thymic development of polyclonal and monospecific Treg cells was not negatively impacted by PD-1 deficiency. The suppressive function of PD-1−/− Treg cells was similar to their PD-1+/+ counterparts both in vitro and in vivo. However, in three different in vivo experimental settings, PD-1−/− conventional CD4+ T cells demonstrated a strikingly diminished tendency toward differentiation into peripherally induced Treg (pTreg) cells. Our results demonstrate that PD-1 is dispensable for thymic (tTreg) Treg-cell development and suppressive function, but is critical for the extrathymic differentiation of pTreg cells in vivo. These data suggest that antibody blockade of the PD-1/PD-L1 pathway may augment T-cell responses by acting directly on conventional T cells, and also by suppressing the differentiation of pTreg cells. PMID:24975127
Malin, Stephanie A; Mayer, Adam; Shreeve, Kelly; Olson-Hazboun, Shawn K; Adgate, John
2017-01-01
Unconventional oil and gas extraction (UOGE) has spurred an unprecedented boom in on-shore production in the U.S. Despite a surge in related research, a void exists regarding inquiries into policy outcomes and perceptions. To address this, support for federal regulatory exemptions for UOGE is examined using survey data collected in 2015 from two northern Colorado communities. Current regulatory exemptions for UOGE can be understood as components of broader societal processes of neoliberalization. Free market ideology increases public support for federal regulatory exemptions for UOGE. Perceived negative impacts do not necessarily drive people to support increased federal regulation. Utilizing neo-Polanyian theory, interaction between free market ideology and perceived negative impacts is explored. Free market ideology appears to moderate people's views of regulation: increasing the effect of perceived negative impacts while simultaneously increasing support for de regulation. To conclude, the ways in which free market ideology might normalize the impacts of UOGE activity are discussed.
Malin, Stephanie A.; Mayer, Adam; Shreeve, Kelly; Olson-Hazboun, Shawn K.; Adgate, John
2017-01-01
Unconventional oil and gas extraction (UOGE) has spurred an unprecedented boom in on-shore production in the U.S. Despite a surge in related research, a void exists regarding inquiries into policy outcomes and perceptions. To address this, support for federal regulatory exemptions for UOGE is examined using survey data collected in 2015 from two northern Colorado communities. Current regulatory exemptions for UOGE can be understood as components of broader societal processes of neoliberalization. Free market ideology increases public support for federal regulatory exemptions for UOGE. Perceived negative impacts do not necessarily drive people to support increased federal regulation. Utilizing neo-Polanyian theory, interaction between free market ideology and perceived negative impacts is explored. Free market ideology appears to moderate people’s views of regulation: increasing the effect of perceived negative impacts while simultaneously increasing support for deregulation. To conclude, the ways in which free market ideology might normalize the impacts of UOGE activity are discussed. PMID:29225425
Tregs: Where We Are and What Comes Next?
Zhao, Hai; Liao, Xuelian; Kang, Yan
2017-01-01
Regulatory T cells are usually recognized as a specialized subset of CD4+ T cells functioning in establishment and maintenance of immune tolerance. Meanwhile, there is emerging evidence that regulatory T cells (Tregs) are also present in various non-lymphoid tissues, and that they have unique phenotypes credited with activities distinct from regulatory function. Their development and function have been described in plenty of manuscripts in the past two decades. However, with the deepening of research in recent years, emerging evidence revealed some novel mechanisms about how Tregs exert their activities. First, we discuss the expanding family of regulatory lymphocytes briefly and then, try to interpret how fork-head box P3 (Foxp3), a master regulator of the regulatory pathway in the development and function of regulatory T cells, functions. Subsequently, another part of our focus is varieties of tissue Tregs. Next, we primarily discuss recent research on how Tregs work and their faceted functions in terms of soluble mediators, functional proteins, and inhibitory receptors. In particular, unless otherwise noted, the term “Treg” is used here to refer specially to the “CD4+CD25+Foxp3+” regulatory cells. PMID:29225597
Smoski, Moria J; Keng, Shian-Ling; Ji, Jie Lisa; Moore, Tyler; Minkel, Jared; Dichter, Gabriel S
2015-09-01
Mood disorders are characterized by impaired emotion regulation abilities, reflected in alterations in frontolimbic brain functioning during regulation. However, little is known about differences in brain function when comparing regulatory strategies. Reappraisal and emotional acceptance are effective in downregulating negative affect, and are components of effective depression psychotherapies. Investigating neural mechanisms of reappraisal vs emotional acceptance in remitted major depressive disorder (rMDD) may yield novel mechanistic insights into depression risk and prevention. Thirty-seven individuals (18 rMDD, 19 controls) were assessed during a functional magnetic resonance imaging task requiring reappraisal, emotional acceptance or no explicit regulation while viewing sad images. Lower negative affect was reported following reappraisal than acceptance, and was lower following acceptance than no explicit regulation. In controls, the acceptance > reappraisal contrast revealed greater activation in left insular cortex and right prefrontal gyrus, and less activation in several other prefrontal regions. Compared with controls, the rMDD group had greater paracingulate and right midfrontal gyrus (BA 8) activation during reappraisal relative to acceptance. Compared with reappraisal, acceptance is associated with activation in regions linked to somatic and emotion awareness, although this activation is associated with less reduction in negative affect. Additionally, a history of MDD moderated these effects. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Hofmann, Bianca T; Jücker, Manfred
2012-10-01
The phosphoinositide 3-kinase (PI3K) is frequently activated in human cancer cells due to gain of function mutations in the catalytic (p110) and the regulatory (p85) subunits. The regulatory subunit consists of an SH3 domain and two SH2 domains. An oncogenic form of p85α named p65 lacking the c-terminal SH2 domain (cSH2) has been cloned from an irradiation-induced murine thymic lymphoma and transgenic mice expressing p65 in T lymphocytes develop a lymphoproliferative disorder. We have recently detected a c-terminal truncated form of p85α named p76α in a human lymphoma cell line lacking most of the cSH2 domain due to a frame shift mutation. Here, we report that the deletion of the cSH2 domain enhances the activating effects of the n-terminal SH2 domain (nSH2) mutants K379E and R340E on the PI3K/Akt pathway and micro tumor formation in a focus assay. Further analysis revealed that this transforming effect is mediated by activation of the catalytic PI3K isoform p110α and downstream signaling through mTOR. Our data further support a mechanistic model in which mutations of the cSH2 domain of p85α can abrogate its negative regulatory function on PI3K activity via the nSH2 domain of p85α. Copyright © 2012 Elsevier Inc. All rights reserved.
The interactive effect of social pain and executive functioning on aggression: an fMRI experiment
Eisenberger, Naomi I.; Pond, Richard S.; Richman, Stephanie B.; Bushman, Brad J.; DeWall, C. Nathan
2014-01-01
Social rejection often increases aggression, but the neural mechanisms underlying this effect remain unclear. This experiment tested whether neural activity in the dorsal anterior cingulate cortex (dACC) and anterior insula in response to social rejection predicted greater subsequent aggression. Additionally, it tested whether executive functioning moderated this relationship. Participants completed a behavioral measure of executive functioning, experienced social rejection while undergoing functional magnetic resonance imaging and then completed a task in which they could aggress against a person who rejected them using noise blasts . We found that dACC activation and executive functioning interacted to predict aggression. Specifically, participants with low executive functioning showed a positive association between dACC activation and aggression, whereas individuals with high executive functioning showed a negative association. Similar results were found for the left anterior insula. These findings suggest that social pain can increase or decrease aggression, depending on an individual’s regulatory capability. PMID:23482622
Loveday, Chey; Tatton-Brown, Katrina; Clarke, Matthew; Westwood, Isaac; Renwick, Anthony; Ramsay, Emma; Nemeth, Andrea; Campbell, Jennifer; Joss, Shelagh; Gardner, McKinlay; Zachariou, Anna; Elliott, Anna; Ruark, Elise; van Montfort, Rob; Rahman, Nazneen
2015-09-01
Overgrowth syndromes comprise a group of heterogeneous disorders characterised by excessive growth parameters, often in association with intellectual disability. To identify new causes of human overgrowth, we have been undertaking trio-based exome sequencing studies in overgrowth patients and their unaffected parents. Prioritisation of functionally relevant genes with multiple unique de novo mutations revealed four mutations in protein phosphatase 2A (PP2A) regulatory subunit B family genes protein phosphatase 2, regulatory Subunit B', beta (PPP2R5B); protein phosphatase 2, regulatory Subunit B', gamma (PPP2R5C); and protein phosphatase 2, regulatory Subunit B', delta (PPP2R5D). This observation in 3 related genes in 111 individuals with a similar phenotype is greatly in excess of the expected number, as determined from gene-specific de novo mutation rates (P = 1.43 × 10(-10)). Analysis of exome-sequencing data from a follow-up series of overgrowth probands identified a further pathogenic mutation, bringing the total number of affected individuals to 5. Heterozygotes shared similar phenotypic features including increased height, increased head circumference and intellectual disability. The mutations clustered within a region of nine amino acid residues in the aligned protein sequences (P = 1.6 × 10(-5)). We mapped the mutations onto the crystal structure of the PP2A holoenzyme complex to predict their molecular and functional consequences. These studies suggest that the mutations may affect substrate binding, thus perturbing the ability of PP2A to dephosphorylate particular protein substrates. PP2A is a major negative regulator of v-akt murine thymoma viral oncogene homolog 1 (AKT). Thus, our data further expand the list of genes encoding components of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signalling cascade that are disrupted in human overgrowth conditions. © The Author 2015. Published by Oxford University Press.
Lin, Runmao; He, Liye; He, Jiayu; Qin, Peigang; Wang, Yanran; Deng, Qiming; Yang, Xiaoting; Li, Shuangcheng; Wang, Shiquan; Wang, Wenming; Liu, Huainian; Li, Ping; Zheng, Aiping
2016-07-03
MicroRNAs (miRNAs) are ∼22 nucleotide non-coding RNAs that regulate gene expression by targeting mRNAs for degradation or inhibiting protein translation. To investigate whether miRNAs regulate the pathogenesis in necrotrophic fungus Rhizoctonia solani AG1 IA, which causes significant yield loss in main economically important crops, and to determine the regulatory mechanism occurring during pathogenesis, we constructed hyphal small RNA libraries from six different infection periods of the rice leaf. Through sequencing and analysis, 177 miRNA-like small RNAs (milRNAs) were identified, including 15 candidate pathogenic novel milRNAs predicted by functional annotations of their target mRNAs and expression patterns of milRNAs and mRNAs during infection. Reverse transcription-quantitative polymerase chain reaction results for randomly selected milRNAs demonstrated that our novel comprehensive predictions had a high level of accuracy. In our predicted pathogenic protein-protein interaction network of R. solani, we added the related regulatory milRNAs of these core coding genes into the network, and could understand the relationships among these regulatory factors more clearly at the systems level. Furthermore, the putative pathogenic Rhi-milR-16, which negatively regulates target gene expression, was experimentally validated to have regulatory functions by a dual-luciferase reporter assay. Additionally, 23 candidate rice miRNAs that may involve in plant immunity against R. solani were discovered. This first study on novel pathogenic milRNAs of R. solani AG1 IA and the recognition of target genes involved in pathogenicity, as well as rice miRNAs, participated in defence against R. solani could provide new insights into revealing the pathogenic mechanisms of the severe rice sheath blight disease. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Landgren, Ola
2018-01-01
Minimal residual disease (MRD) testing in multiple myeloma is here to stay. Studies show that MRD negativity is consistently associated with longer progression-free survival (PFS). It is just a matter of time until MRD negativity will become a regulatory endpoint for drug approval. Until that can happen, more analysis will be required to define the exact details of MRD in the regulatory setting. For example, for randomized studies there is need to define the amount of improvement in MRD negativity between the experimental arm and the control arm at a given time-point for a drug to obtain regulatory accelerated approval. Such efforts are underway. For the multiple myeloma field as a whole, important tasks for the (near) coming future are as follows: (1) to conduct or finalize the expanded analysis to define the exact details of MRD in the regulatory setting, (2) to develop new and better MRD assays-both more sensitive MRD assays for bone marrow aspirates and nonbone marrow aspirate-based assays (eg, blood-based and imaging-based MRD assays), and (3) to design novel clinical studies to formally assess the effect of MRD negativity in clinical decision making. The aim with this issue of the Journal is to provide a deep and comprehensive summary of the latest MRD knowledge in the field, and to outline future directions. Copyright © 2018 Elsevier Inc. All rights reserved.
Cowan, Colleen; Muraleedharan, Chithra K; O'Donnell, James J; Singh, Pawan K; Lum, Hazel; Kumar, Ashok; Xu, Shunbin
2014-07-01
Nuclear factor-κB (NF-κB), a key regulator of immune and inflammatory responses, plays important roles in diabetes-induced microvascular complications including diabetic retinopathy (DR). Thrombin activates NF-κB through protease-activated receptor (PAR)-1, a member of the G-protein-coupled receptor (GPCR) superfamily, and contributes to DR. The current study is to uncover the roles of microRNA (miRNA) in thrombin-induced NF-κB activation and retinal endothelial functions. Target prediction was performed using the TargetScan algorithm. Predicted target was experimentally validated by luciferase reporter assays. Human retinal endothelial cells (HRECs) were transfected with miRNA mimics or antimiRs and treated with thrombin. Expression levels of miR-146 and related protein-coding genes were analyzed by quantitative (q)RT-PCR. Functional changes of HRECs were analyzed by leukocyte adhesion assays. We identified that caspase-recruitment domain (CARD)-containing protein 10 (CARD10), an essential scaffold/adaptor protein of GPCR-mediated NF-κB activation pathway, is a direct target of miR-146. Thrombin treatment resulted in NF-κB-dependent upregulation of miR-146 in HRECs; while transfection of miR-146 mimics resulted in significant downregulation of CARD10 and prevented thrombin-induced NF-κB activation, suggest that a negative feedback regulation of miR-146 on thrombin-induced NF-κB through targeting CARD10. Furthermore, overexpression of miR-146 prevented thrombin-induced increased leukocyte adhesion to HRECs. We uncovered a novel negative feedback regulatory mechanism on thrombin-induced GPCR-mediated NF-κB activation by miR-146. In combination with the negative feedback regulation of miR-146 on the IL-1R/toll-like receptor (TLR)-mediated NF-κB activation in RECs that we reported previously, our results underscore a pivotal, negative regulatory role of miR-146 on multiple NF-κB activation pathways and related inflammatory processes in DR. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
HIV-1 Recruits UPF1 but Excludes UPF2 to Promote Nucleocytoplasmic Export of the Genomic RNA
Ajamian, Lara; Abel, Karen; Rao, Shringar; Vyboh, Kishanda; García-de-Gracia, Francisco; Soto-Rifo, Ricardo; Kulozik, Andreas E.; Gehring, Niels H.; Mouland, Andrew J.
2015-01-01
Unspliced, genomic HIV-1 RNA (vRNA) is a component of several ribonucleoprotein complexes (RNP) during the viral replication cycle. In earlier work, we demonstrated that the host upframeshift protein 1 (UPF1), a key factor in nonsense-mediated mRNA decay (NMD), colocalized and associated to the viral structural protein Gag during viral egress. In this work, we demonstrate a new function for UPF1 in the regulation of vRNA nuclear export. We establish that the nucleocytoplasmic shuttling of UPF1 is required for this function and demonstrate that UPF1 exists in two essential viral RNPs during the late phase of HIV-1 replication: the first, in a nuclear export RNP that contains Rev, CRM1, DDX3 and the nucleoporin p62, and the second, which excludes these nuclear export markers but contains Gag in the cytoplasm. Interestingly, we observed that both UPF2 and the long isoform of UPF3a, UPF3aL, but not the shorter isoforms UPF3aS and UPF3b, are excluded from the UPF1-Rev-CRM1-DDX3 complex as they are negative regulators of vRNA nuclear export. In silico protein-protein docking analyses suggest that Rev binds UPF1 in a region that overlaps the UPF2 binding site, thus explaining the exclusion of this negative regulatory factor by HIV-1 that is necessary for vRNA trafficking. This work uncovers a novel and unique regulatory circuit involving several UPF proteins that ultimately regulate vRNA nuclear export and trafficking. PMID:26492277
Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ
Mank, Nils N.; Berghoff, Bork A.; Hermanns, Yannick N.; Klug, Gabriele
2012-01-01
The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA. PMID:22988125
Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.
Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele
2012-10-02
The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.
Kotaka, Masayo; Johnson, Christopher; Lamb, Heather K; Hawkins, Alastair R; Ren, Jingshan; Stammers, David K
2008-08-29
Amongst the most common protein motifs in eukaryotes are zinc fingers (ZFs), which, although largely known as DNA binding modules, also can have additional important regulatory roles in forming protein:protein interactions. AreA is a transcriptional activator central to nitrogen metabolism in Aspergillus nidulans. AreA contains a GATA-type ZF that has a competing dual recognition function, binding either DNA or the negative regulator NmrA. We report the crystal structures of three AreA ZF-NmrA complexes including two with bound NAD(+) or NADP(+). The molecular recognition of AreA ZF-NmrA involves binding of the ZF to NmrA via hydrophobic and hydrogen bonding interactions through helices alpha1, alpha6 and alpha11. Comparison with an earlier NMR solution structure of AreA ZF-DNA complex by overlap of the AreA ZFs shows that parts of helices alpha6 and alpha11 of NmrA are positioned close to the GATA motif of the DNA, mimicking the major groove of DNA. The extensive overlap of DNA with NmrA explains their mutually exclusive binding to the AreA ZF. The presence of bound NAD(+)/NADP(+) in the NmrA-AreaA ZF complex, however, causes minimal structural changes. Thus, any regulatory effects on AreA function mediated by the binding of oxidised nicotinamide dinucleotides to NmrA in the NmrA-AreA ZF complex appear not to be modulated via protein conformational rearrangements.
Role of affective self-regulatory efficacy in diverse spheres of psychosocial functioning.
Bandura, Albert; Caprara, Gian Vittorio; Barbaranelli, Claudio; Gerbino, Maria; Pastorelli, Concetta
2003-01-01
This prospective study with 464 older adolescents (14 to 19 years at Time 1; 16 to 21 years at Time 2) tested the structural paths of influence through which perceived self-efficacy for affect regulation operates in concert with perceived behavioral efficacy in governing diverse spheres of psychosocial functioning. Self-efficacy to regulate positive and negative affect is accompanied by high efficacy to manage one's academic development, to resist social pressures for antisocial activities, and to engage oneself with empathy in others' emotional experiences. Perceived self-efficacy for affect regulation essentially operated mediationally through the latter behavioral forms of self-efficacy rather than directly on prosocial behavior, delinquent conduct, and depression. Perceived empathic self-efficacy functioned as a generalized contributor to psychosocial functioning. It was accompanied by prosocial behavior and low involvement in delinquency but increased vulnerability to depression in adolescent females.
The POU Transcription Factor Oct-1 Represses Virus-Induced Interferon A Gene Expression
Mesplède, Thibault; Island, Marie-Laure; Christeff, Nicolas; Petek, Fahrettin; Doly, Janine; Navarro, Sébastien
2005-01-01
Alpha interferon (IFN-α) and IFN-β are able to interfere with viral infection. They exert a vast array of biologic functions, including growth arrest, cell differentiation, and immune system regulation. This regulation extends from innate immunity to cellular and humoral adaptive immune responses. A strict control of expression is needed to prevent detrimental effects of unregulated IFN. Multiple IFN-A subtypes are coordinately induced in human and mouse cells infected by virus and exhibit differences in expression of their individual mRNAs. We demonstrated that the weakly expressed IFN-A11 gene is negatively regulated after viral infection, due to a distal negative regulatory element, binding homeoprotein pituitary homeobox 1 (Pitx1). Here we show that the POU protein Oct-1 binds in vitro and in vivo to the IFN-A11 promoter and represses IFN-A expression upon interferon regulatory factor overexpression. Furthermore, we show that Oct-1-deficient MEFs exhibit increased in vivo IFN-A gene expression and increased antiviral activity. Finally, the IFN-A expression pattern is modified in Oct-1-deficient MEFs. The broad representation of effective and potent octamer-like sequences within IFN-A promoters suggests an important role for Oct-1 in IFN-A regulation. PMID:16166650
Tseng, Min-Chen; Chen, Chia-Cheng
2017-06-01
This study investigated the self-regulatory behaviors of arts students, namely memory strategy, goal-setting, self-evaluation, seeking assistance, environmental structuring, learning responsibility, and planning and organizing. We also explored approaches to learning, including deep approach (DA) and surface approach (SA), in a comparison between students' professional training and English learning. The participants consisted of 344 arts majors. The Academic Self-Regulation Questionnaire and the Revised Learning Process Questionnaire were adopted to examine students' self-regulatory behaviors and their approaches to learning. The results show that a positive and significant correlation was found in students' self-regulatory behaviors between professional training and English learning. The results indicated that increases in using self-regulatory behaviors in professional training were associated with increases in applying self-regulatory behaviors in learning English. Seeking assistance, self-evaluation, and planning and organizing were significant predictors for learning English. In addition, arts students used the deep approach more often than the surface approach in both their professional training and English learning. A positive correlation was found in DA, whereas a negative correlation was shown in SA between students' self-regulatory behaviors and their approaches to learning. Students with high self-regulation adopted a deep approach, and they applied the surface approach less in professional training and English learning. In addition, a SEM model confirmed that DA had a positive influence; however, SA had a negative influence on self-regulatory behaviors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penrose, Harrison; Heller, Sandra; Cable, Chloe
The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTORmore » and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.« less
Ikeda, Miho; Ohme-Takagi, Masaru
2014-01-01
In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP), WUSCHEL (WUS), and WOUND INDUCED DEDIFFERENTIATION (WIND1) families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS, and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.
Montgomery, J; Pollard, V; Deikman, J; Fischer, R L
1993-01-01
The tomato fruit consists of a thick, fleshy pericarp composed predominantly of highly vacuolated parenchymatous cells, which surrounds the seeds. During ripening, the activation of gene expression results in dramatic biochemical and physiological changes in the pericarp. The polygalacturonase (PG) gene, unlike many fruit ripening-induced genes, is not activated by the increase in ethylene hormone concentration associated with the onset of ripening. To investigate ethylene concentration-independent gene transcription in ripe tomato fruit, we analyzed the expression of chimeric PG promoter-beta-glucuronidase (GUS) reporter gene fusions in transgenic tomato plants. We determined that a 1.4-kb PG promoter directs ripening-regulated transcription in outer pericarp but not in inner pericarp cells, with a sharp boundary of PG promoter activity located midway through the pericarp. Promoter deletion analysis indicated that a minimum of three promoter regions influence the spatial regulation of PG transcription. A positive regulatory region from -231 to -134 promotes gene transcription in the outer pericarp of ripe fruit. A second positive regulatory region from -806 to -443 extends gene activity to the inner pericarp. However, a negative regulatory region from -1411 to -1150 inhibits gene transcription in the inner pericarp. DNase I footprint analysis showed that nuclear proteins in unripe and ripe fruit interact with DNA sequences within each of these three regulatory regions. Thus, temporal and spatial control of PG transcription is mediated by the interaction of negative and positive regulatory promoter elements, resulting in gene activity in the outer pericarp but not the inner pericarp of ripe tomato fruit. The expression pattern of PG suggests that, although they are morphologically similar, there is a fundamental difference between the parenchymatous cells within the inner and outer pericarp. PMID:8400876
Mancuso, Francesco; Horan, William P.; Kern, Robert S.; Green, Michael F.
2010-01-01
Social cognitive impairments are common, detectable across a wide range of tasks, and appear to play a key role in explaining poor outcome in schizophrenia and related psychotic disorders. However, little is known about the underlying factor structure of social cognition in people with psychotic disorders due to a lack of exploratory factor analyses using a relatively comprehensive social cognitive assessment battery. In a sample of 85 outpatients with psychosis, we examined the factor structure and clinical/functional correlates of eight indexes derived from five social cognition tasks that span the domains of emotional processing, social perception, attributional style, and Theory of Mind. Exploratory factor analysis revealed three factors with relatively low inter-correlations that explained a total of 54% of the variance: (1) Hostile attributional style, (2) Lower-level social cue detection, and (3) Higher-level inferential and regulatory processes. None of the factors showed significant correlations with negative symptoms. Factor 1 significantly correlated with clinical symptoms (positive, depression-anxiety, agitation) but not functional outcome, whereas Factors 2 and 3 significantly correlated with functional outcome (functional capacity and real-world social and work functioning) but not clinical symptoms. Furthermore, Factor 2 accounted for unique incremental variance in functional capacity, above and beyond non-social neurocognition (measured with MATRICS Consensus Cognitive Battery) and negative symptoms. Results suggest that multiple separable dimensions of social cognition can be identified in psychosis, and these factors show distinct patterns of correlation with clinical features and functional outcome. PMID:21112743
Genomic deletion of a long-range bone enhancer misregulatessclerostin in Van Buchem disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, Gabriela G.; Kneissel, Michaela; Keller, Hansjoerg
2005-04-15
Mutations in distant regulatory elements can negatively impact human development and health, yet due to the difficulty of detecting these critical sequences we predominantly focus on coding sequences for diagnostic purposes. We have undertaken a comparative sequence-based approach to characterize a large noncoding region deleted in patients affected by Van Buchem disease (VB), a severe sclerosing bone dysplasia. Using BAC recombination and transgenesis we characterized the expression of human sclerostin (sost) from normal (hSOSTwt) or Van Buchem(hSOSTvb D) alleles. Only the hSOSTwt allele faithfully expressed high levels of human sost in the adult bone and impacted bone metabolism, consistent withmore » the model that the VB noncoding deletion removes a sost specific regulatory element. By exploiting cross-species sequence comparisons with in vitro and in vivo enhancer assays we were able to identify a candidate enhancer element that drives human sost expression in osteoblast-like cell lines in vitro and in the skeletal anlage of the E14.5 mouse embryo, and discovered a novel function for sclerostin during limb development. Our approach represents a framework for characterizing distant regulatory elements associated with abnormal human phenotypes.« less
Winkler, Mark T; Bushey, Ryan T; Gottlin, Elizabeth B; Campa, Michael J; Guadalupe, Eross S; Volkheimer, Alicia D; Weinberg, J Brice; Patz, Edward F
2017-01-01
Rituximab therapy for B cell chronic lymphocytic leukemia (B-CLL) has met with mixed success. Among several factors to which resistance can be attributed is failure to activate complement dependent cytotoxicity (CDC) due to protective complement regulatory proteins, including the soluble regulator complement factor H (CFH). We hypothesized that rituximab killing of non-responsive B-CLL cells could be augmented by a novel human monoclonal antibody against CFH. The B cells from 11 patients with B-CLL were tested ex vivo in CDC assays with combinations of CFH monoclonal antibody, rituximab, and a negative control antibody. CDC of rituximab non-responsive malignant B cells from CLL patients could in some cases be augmented by the CFH monoclonal antibody. Antibody-mediated cytotoxicity of cells was dependent upon functional complement. In one case where B-CLL cells were refractory to CDC by the combination of rituximab plus CFH monoclonal antibody, additionally neutralizing the membrane complement regulatory protein CD59 allowed CDC to occur. Inhibiting CDC regulatory proteins such as CFH holds promise for overcoming resistance to rituximab therapy in B-CLL.
Pan, Yu; Li, Rui; Meng, Jun-Ling; Mao, He-Ting; Zhang, Yu; Zhang, Jun
2014-05-15
VISA (also known as MAVS, Cardif, IPS-1) is the essential adaptor protein for virus-induced activation of IFN regulatory factors 3 and 7 and production of type I IFNs. Understanding the regulatory mechanisms for VISA will provide detailed insights into the positive or negative regulation of innate immune responses. In this study, we identified Smad ubiquitin regulatory factor (Smurf) 2, one of the Smad ubiquitin regulator factor proteins, as an important negative regulator of virus-triggered type I IFN signaling, which targets at the VISA level. Overexpression of Smurf2 inhibits virus-induced IFN-β and IFN-stimulated response element activation. The E3 ligase defective mutant Smurf2/C716A loses the ability to suppress virus-induced type I IFN signaling, suggesting that the negative regulation is dependent on the ubiquitin E3 ligase activity of Smurf2. Further studies demonstrated that Smurf2 interacted with VISA and targeted VISA for K48-linked ubiquitination, which promoted the degradation of VISA. Consistently, knockout or knockdown of Smurf2 expression therefore promoted antiviral signaling, which was correlated with the increase in protein stability of VISA. Our findings suggest that Smurf2 is an important nonredundant negative regulator of virus-triggered type I IFN signaling by targeting VISA for K48-linked ubiquitination and degradation.
Dynamic control of type I IFN signalling by an integrated network of negative regulators.
Porritt, Rebecca A; Hertzog, Paul J
2015-03-01
Whereas type I interferons (IFNs) have critical roles in protection from pathogens, excessive IFN responses contribute to pathology in both acute and chronic settings, pointing to the importance of balancing activating signals with regulatory mechanisms that appropriately tune the response. Here we review evidence for an integrated network of negative regulators of IFN production and action, which function at all levels of the activating and effector signalling pathways. We propose that the aim of this extensive network is to limit tissue damage while enabling an IFN response that is temporally appropriate and of sufficient magnitude. Understanding the architecture and dynamics of this network, and how it differs in distinct tissues, will provide new insights into IFN biology and aid the design of more effective therapeutics. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Is androgen receptor targeting an emerging treatment strategy for triple negative breast cancer?
Anestis, Aristomenis; Karamouzis, Michalis V; Dalagiorgou, Georgia; Papavassiliou, Athanasios G
2015-06-01
Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype. The absence of expression and/or amplification of estrogen and progesterone receptor as well as ERBB-2 prevent the use of currently available endocrine options and/or ERBB-2-directed drugs and indicates chemotherapy as the main current therapy. TNBC represents approximately 15% of breast cancer cases with high index of heterogeneity. Here, we review the role of androgen receptor in breast carcinogenesis and its association with alterations in the expression pattern and functional roles of regulatory molecules and signal transduction pathways in TNBC. Additionally, based on the so far preclinical and clinical published data, we evaluate the perspectives for using and/or developing androgen receptor targeting strategies for specific TNBC subtypes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Philipson, Casandra W.; Bassaganya-Riera, Josep; Viladomiu, Monica; Kronsteiner, Barbara; Abedi, Vida; Hoops, Stefan; Michalak, Pawel; Kang, Lin; Girardin, Stephen E.; Hontecillas, Raquel
2015-01-01
Helicobacter pylori colonizes half of the world’s population as the dominant member of the gastric microbiota resulting in a lifelong chronic infection. Host responses toward the bacterium can result in asymptomatic, pathogenic or even favorable health outcomes; however, mechanisms underlying the dual role of H. pylori as a commensal versus pathogenic organism are not well characterized. Recent evidence suggests mononuclear phagocytes are largely involved in shaping dominant immunity during infection mediating the balance between host tolerance and succumbing to overt disease. We combined computational modeling, bioinformatics and experimental validation in order to investigate interactions between macrophages and intracellular H. pylori. Global transcriptomic analysis on bone marrow-derived macrophages (BMDM) in a gentamycin protection assay at six time points unveiled the presence of three sequential host response waves: an early transient regulatory gene module followed by sustained and late effector responses. Kinetic behaviors of pattern recognition receptors (PRRs) are linked to differential expression of spatiotemporal response waves and function to induce effector immunity through extracellular and intracellular detection of H. pylori. We report that bacterial interaction with the host intracellular environment caused significant suppression of regulatory NLRC3 and NLRX1 in a pattern inverse to early regulatory responses. To further delineate complex immune responses and pathway crosstalk between effector and regulatory PRRs, we built a computational model calibrated using time-series RNAseq data. Our validated computational hypotheses are that: 1) NLRX1 expression regulates bacterial burden in macrophages; and 2) early host response cytokines down-regulate NLRX1 expression through a negative feedback circuit. This paper applies modeling approaches to characterize the regulatory role of NLRX1 in mechanisms of host tolerance employed by macrophages to respond to and/or to co-exist with intracellular H. pylori. PMID:26367386
Widespread Site-Dependent Buffering of Human Regulatory Polymorphism
Kutyavin, Tanya; Stamatoyannopoulos, John A.
2012-01-01
The average individual is expected to harbor thousands of variants within non-coding genomic regions involved in gene regulation. However, it is currently not possible to interpret reliably the functional consequences of genetic variation within any given transcription factor recognition sequence. To address this, we comprehensively analyzed heritable genome-wide binding patterns of a major sequence-specific regulator (CTCF) in relation to genetic variability in binding site sequences across a multi-generational pedigree. We localized and quantified CTCF occupancy by ChIP-seq in 12 related and unrelated individuals spanning three generations, followed by comprehensive targeted resequencing of the entire CTCF–binding landscape across all individuals. We identified hundreds of variants with reproducible quantitative effects on CTCF occupancy (both positive and negative). While these effects paralleled protein–DNA recognition energetics when averaged, they were extensively buffered by striking local context dependencies. In the significant majority of cases buffering was complete, resulting in silent variants spanning every position within the DNA recognition interface irrespective of level of binding energy or evolutionary constraint. The prevalence of complex partial or complete buffering effects severely constrained the ability to predict reliably the impact of variation within any given binding site instance. Surprisingly, 40% of variants that increased CTCF occupancy occurred at positions of human–chimp divergence, challenging the expectation that the vast majority of functional regulatory variants should be deleterious. Our results suggest that, even in the presence of “perfect” genetic information afforded by resequencing and parallel studies in multiple related individuals, genomic site-specific prediction of the consequences of individual variation in regulatory DNA will require systematic coupling with empirical functional genomic measurements. PMID:22457641
2014-01-01
Background At the beginning of the transcription process, the RNA polymerase (RNAP) core enzyme requires a σ-factor to recognize the genomic location at which the process initiates. Although the crucial role of σ-factors has long been appreciated and characterized for many individual promoters, we do not yet have a genome-scale assessment of their function. Results Using multiple genome-scale measurements, we elucidated the network of σ-factor and promoter interactions in Escherichia coli. The reconstructed network includes 4,724 σ-factor-specific promoters corresponding to transcription units (TUs), representing an increase of more than 300% over what has been previously reported. The reconstructed network was used to investigate competition between alternative σ-factors (the σ70 and σ38 regulons), confirming the competition model of σ substitution and negative regulation by alternative σ-factors. Comparison with σ-factor binding in Klebsiella pneumoniae showed that transcriptional regulation of conserved genes in closely related species is unexpectedly divergent. Conclusions The reconstructed network reveals the regulatory complexity of the promoter architecture in prokaryotic genomes, and opens a path to the direct determination of the systems biology of their transcriptional regulatory networks. PMID:24461193
[CD4 + CD25 + regulatory T cells and their importance to human illnesses].
Kelsen, Jens; Hvas, Christian Lodberg; Agnholt, Jørgen; Dahlerup, Jens F
2006-01-03
Regulatory T cells ensure a balanced immune response that is competent both to fight pathogens, at the same time, to recognize self-antigens and commensals as harmless. Regulatory mechanisms are essential in preventing autoimmune disorders but may also facilitate the progression of malignant diseases and the establishment of latent infections via suppression of the host immune response. Regulatory T cells arise in the thymus, and regulatory T cell function can be induced in the periphery, so-called infectious tolerance. An absolute or relative defect in regulatory T cell function may contribute to the development of autoimmune disorders such as rheumatoid arthritis, type 1 diabetes mellitus, multiple sclerosis and chronic inflammatory bowel disease. Regulatory T cell therapy is a tempting strategy for reestablishing the immune balance and thus preventing or reversing these disorders. Reestablishment of the immune balance may be accomplished by adoptive transfer of ex vivo-propagated regulatory T cells or by induction of regulatory functions locally in the organs, although such strategies are in their infancy in human research.
Sustained attention in infancy as a longitudinal predictor of self-regulatory functions.
Johansson, Maria; Marciszko, Carin; Gredebäck, Gustaf; Nyström, Pär; Bohlin, Gunilla
2015-11-01
Previous literature suggests that attention processes such as sustained attention would constitute a developmental foundation for the self-regulatory functions executive functioning and effortful control (e.g., Garon, Bryson, & Smith, 2008; Rothbart, Derryberry, & Posner, 1994). Our main aim was to test this hypothesis by studying whether sustained attention at age 1 year can predict individual differences in self-regulatory functions at age 2 years. Longitudinal data from 66 infants and their parents were included in the study. Sustained attention was assessed during free play at age 1 year; executive functioning, measured using an eye-tracking version of the A-not-B task, and effortful control, measured using parental ratings, were assessed at both age 1 and age 2 years. The results did support a longitudinal prediction of individual differences in 2-year-olds' self-regulatory functions as a function of sustained attention at age 1 year. We also found significant improvement in both executive functioning and effortful control over time, and the two self-regulatory constructs were related in toddlerhood but not in infancy. The study helps increase our understanding of the early development of self-regulatory functions necessary for identifying developmental risks and, in the future, for developing new interventions. Copyright © 2015 Elsevier Inc. All rights reserved.
Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays
Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.
2016-01-01
Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer. PMID:26876008
Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays
NASA Astrophysics Data System (ADS)
Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.
2016-02-01
Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer.
Human myostatin negatively regulates human myoblast growth and differentiation
McFarlane, Craig; Hui, Gu Zi; Amanda, Wong Zhi Wei; Lau, Hiu Yeung; Lokireddy, Sudarsanareddy; XiaoJia, Ge; Mouly, Vincent; Butler-Browne, Gillian; Gluckman, Peter D.; Sharma, Mridula
2011-01-01
Myostatin, a member of the transforming growth factor-β superfamily, has been implicated in the potent negative regulation of myogenesis in murine models. However, little is known about the mechanism(s) through which human myostatin negatively regulates human skeletal muscle growth. Using human primary myoblasts and recombinant human myostatin protein, we show here that myostatin blocks human myoblast proliferation by regulating cell cycle progression through targeted upregulation of p21. We further show that myostatin regulates myogenic differentiation through the inhibition of key myogenic regulatory factors including MyoD, via canonical Smad signaling. In addition, we have for the first time demonstrated the capability of myostatin to regulate the Notch signaling pathway during inhibition of human myoblast differentiation. Treatment with myostatin results in the upregulation of Hes1, Hes5, and Hey1 expression during differentiation; moreover, when we interfere with Notch signaling, through treatment with the γ-secretase inhibitor L-685,458, we find enhanced myotube formation despite the presence of excess myostatin. Therefore, blockade of the Notch pathway relieves myostatin repression of differentiation, and myostatin upregulates Notch downstream target genes. Immunoprecipitation studies demonstrate that myostatin treatment of myoblasts results in enhanced association of Notch1-intracellular domain with Smad3, providing an additional mechanism through which myostatin targets and represses the activity of the myogenic regulatory factor MyoD. On the basis of these results, we suggest that myostatin function and mechanism of action are very well conserved between species, and that myostatin regulation of postnatal myogenesis involves interactions with numerous downstream signaling mediators, including the Notch pathway. PMID:21508334
Human myostatin negatively regulates human myoblast growth and differentiation.
McFarlane, Craig; Hui, Gu Zi; Amanda, Wong Zhi Wei; Lau, Hiu Yeung; Lokireddy, Sudarsanareddy; Xiaojia, Ge; Mouly, Vincent; Butler-Browne, Gillian; Gluckman, Peter D; Sharma, Mridula; Kambadur, Ravi
2011-07-01
Myostatin, a member of the transforming growth factor-β superfamily, has been implicated in the potent negative regulation of myogenesis in murine models. However, little is known about the mechanism(s) through which human myostatin negatively regulates human skeletal muscle growth. Using human primary myoblasts and recombinant human myostatin protein, we show here that myostatin blocks human myoblast proliferation by regulating cell cycle progression through targeted upregulation of p21. We further show that myostatin regulates myogenic differentiation through the inhibition of key myogenic regulatory factors including MyoD, via canonical Smad signaling. In addition, we have for the first time demonstrated the capability of myostatin to regulate the Notch signaling pathway during inhibition of human myoblast differentiation. Treatment with myostatin results in the upregulation of Hes1, Hes5, and Hey1 expression during differentiation; moreover, when we interfere with Notch signaling, through treatment with the γ-secretase inhibitor L-685,458, we find enhanced myotube formation despite the presence of excess myostatin. Therefore, blockade of the Notch pathway relieves myostatin repression of differentiation, and myostatin upregulates Notch downstream target genes. Immunoprecipitation studies demonstrate that myostatin treatment of myoblasts results in enhanced association of Notch1-intracellular domain with Smad3, providing an additional mechanism through which myostatin targets and represses the activity of the myogenic regulatory factor MyoD. On the basis of these results, we suggest that myostatin function and mechanism of action are very well conserved between species, and that myostatin regulation of postnatal myogenesis involves interactions with numerous downstream signaling mediators, including the Notch pathway.
Maxfield, Kimberly E.; Taus, Patrick J.; Corcoran, Kathleen; Wooten, Joshua; Macion, Jennifer; Zhou, Yunyun; Borromeo, Mark; Kollipara, Rahul K.; Yan, Jingsheng; Xie, Yang; Xie, Xian-Jin; Whitehurst, Angelique W.
2015-01-01
Tumours frequently activate genes whose expression is otherwise biased to the testis, collectively known as cancer–testis antigens (CTAs). The extent to which CTA expression represents epiphenomena or confers tumorigenic traits is unknown. In this study, to address this, we implemented a multidimensional functional genomics approach that incorporates 7 different phenotypic assays in 11 distinct disease settings. We identify 26 CTAs that are essential for tumor cell viability and/or are pathological drivers of HIF, WNT or TGFβ signalling. In particular, we discover that Foetal and Adult Testis Expressed 1 (FATE1) is a key survival factor in multiple oncogenic backgrounds. FATE1 prevents the accumulation of the stress-sensing BH3-only protein, BCL-2-Interacting Killer (BIK), thereby permitting viability in the presence of toxic stimuli. Furthermore, ZNF165 promotes TGFβ signalling by directly suppressing the expression of negative feedback regulatory pathways. This action is essential for the survival of triple negative breast cancer cells in vitro and in vivo. Thus, CTAs make significant direct contributions to tumour biology. PMID:26567849
Molecular Dynamic Simulation Insights into the Normal State and Restoration of p53 Function
Fu, Ting; Min, Hanyi; Xu, Yong; Chen, Jianzhong; Li, Guohui
2012-01-01
As a tumor suppressor protein, p53 plays a crucial role in the cell cycle and in cancer prevention. Almost 50 percent of all human malignant tumors are closely related to a deletion or mutation in p53. The activity of p53 is inhibited by over-active celluar antagonists, especially by the over-expression of the negative regulators MDM2 and MDMX. Protein-protein interactions, or post-translational modifications of the C-terminal negative regulatory domain of p53, also regulate its tumor suppressor activity. Restoration of p53 function through peptide and small molecular inhibitors has become a promising strategy for novel anti-cancer drug design and development. Molecular dynamics simulations have been extensively applied to investigate the conformation changes of p53 induced by protein-protein interactions and protein-ligand interactions, including peptide and small molecular inhibitors. This review focuses on the latest MD simulation research, to provide an overview of the current understanding of interactions between p53 and its partners at an atomic level. PMID:22949826
A Multi-Functional View of Moral Disengagement: Exploring the Effects of Learning the Consequences
Tillman, C. Justice; Gonzalez, Katerina; Whitman, Marilyn V.; Crawford, Wayne S.; Hood, Anthony C.
2018-01-01
This paper takes us beyond the unethical act and explores the use of moral disengagement as a multi-stage, multi-functional regulatory, and coping mechanism that not only allows individuals to engage in unethical behavior, but also manage the negative emotions (i.e., guilt and shame) from learning the consequences of such behavior. A resource-based lens is applied to the moral disengagement process, suggesting that individuals not only morally disengage prior to committing an unethical act in order to conserve their own resources, but also morally disengage as a coping mechanism to reduce emotional duress upon learning of the consequences of their actions, which we describe as post-moral disengagement. These assertions are tested using a scenario-based laboratory study consisting of 182 respondents. Findings indicate that individuals will morally disengage in order to commit an unethical act, will experience negative emotions from having learned of the consequences, and then will engage in post-moral disengagement as a coping mechanism. In addition, the findings suggest that guilt and shame relate differently to moral disengagement. PMID:29434557
Coordinated photomorphogenic UV-B signaling network captured by mathematical modeling.
Ouyang, Xinhao; Huang, Xi; Jin, Xiao; Chen, Zheng; Yang, Panyu; Ge, Hao; Li, Shigui; Deng, Xing Wang
2014-08-05
Long-wavelength and low-fluence UV-B light is an informational signal known to induce photomorphogenic development in plants. Using the model plant Arabidopsis thaliana, a variety of factors involved in UV-B-specific signaling have been experimentally characterized over the past decade, including the UV-B light receptor UV resistance locus 8; the positive regulators constitutive photomorphogenesis 1 and elongated hypocotyl 5; and the negative regulators cullin4, repressor of UV-B photomorphogenesis 1 (RUP1), and RUP2. Individual genetic and molecular studies have revealed that these proteins function in either positive or negative regulatory capacities for the sufficient and balanced transduction of photomorphogenic UV-B signal. Less is known, however, regarding how these signaling events are systematically linked. In our study, we use a systems biology approach to investigate the dynamic behaviors and correlations of multiple signaling components involved in Arabidopsis UV-B-induced photomorphogenesis. We define a mathematical representation of photomorphogenic UV-B signaling at a temporal scale. Supplemented with experimental validation, our computational modeling demonstrates the functional interaction that occurs among different protein complexes in early and prolonged response to photomorphogenic UV-B.
Yamasu, K; Wilt, F H
1999-02-01
The SM30a gene encodes a protein in the embryonic endoskeleton of the sea urchin Strongylocentrotus purpuratus, and is specifically expressed in the skeletogenic primary mesenchyme cell lineage. To clarify the mechanism for the differentiation of this cell lineage, which proceeds rather autonomously in the embryo, regulation of the SM30alpha gene was investigated previously and it was shown that the distal DNA region upstream of this gene from - 1.6 to - 1.0 kb contained numerous negative regulatory elements that suppressed the ectopic expression of the gene in the gut. Here we study the influence of the proximal region from - 303 to + 104 bp. Analysis of the expression of reporter constructs indicated that a strong positive enhancer element existed in the region from -142 to -105bp. This element worked both in forward and reverse orientations and additively when placed tandemly upstream to the reporter gene. In addition, other weaker positive and negative regulatory sites were also detected throughout the proximal region. Electrophoretic gel mobility shift analyses showed that multiple nuclear proteins were bound to the putative strong enhancer region. One of the proteins binding to this region was present in ear y blastulae, a time when the SM30 gene was still silent, but it was not in prism embryos actively expressing the gene. The binding region for this blastula-specific protein was narrowed down to the region from - 132 to -122 bp, which included the consensus binding site for the mammalian proto-oncogene product, Ets. Two possible SpGCF1 binding sites were identified in the vicinity of the enhancer region. This information was used to make a comparison of the general regulatory architecture of genes that contribute to the formation of the skeletal spicule.
Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/β-catenin signalling
Chen, Qing; Su, Yi; Wesslowski, Janine; Hagemann, Anja I; Ramialison, Mirana; Wittbrodt, Joachim; Scholpp, Steffen; Davidson, Gary
2014-01-01
Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt-induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture-based cDNA expression screen, we identified the non-receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6-Wnt signalling. Epistatically, they function upstream of β-catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer-induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de-represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over-activation of Wnt signalling at the level of the Wnt receptor, LRP6. Subject Categories Membrane & Intracellular Transport; Post-translational Modifications, Proteolysis & Proteomics PMID:25391905
Singh, Pratichi; Dass, J Febin Prabhu
2018-05-07
IFNL3 gene plays a crucial role in immune defense against viruses. It induces the interferon stimulated genes (ISGs) with antiviral properties by activating the JAK-STAT pathway. In this study, we investigated the evolutionary force involved in shaping the IFNL3 gene to perform its downstream function as a regulatory gene in HCV clearance. We have selected 25 IFNL3 coding sequences with human gene as a reference sequence and constructed a phylogeny. Furthermore, rate of variation, substitution saturation test, phylogenetic informativeness and differential selection were also analysed. The codon evolution result suggests that nearly neutral mutation is the key pattern in shaping the IFNL3 evolution. The results were validated by subjecting the human IFNL3 protein variants to that of the native through a molecular dynamics simulation study. The molecular dynamics simulation clearly depicts the negative impact on the reported variants in human IFNL3 protein. However, these detrimental mutations (R157Q and R157W) were shown to be negatively selected in the evolutionary study of the mammals. Hence, the variation revealed a mild impact on the IFNL3 function and may be removed from the population through negative selection due to its high functional constraints. In a nutshell, our study may contribute the overall evidence in phylotyping and structural transformation that takes place in the non-synonymous substitutions of IFNL3 protein. Substantially, our obtained theoretical knowledge will lay the path to extend the experimental validation in HCV clearance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cole, Claire E; Zapp, Daniel J; Fettig, Nicole B; Pérez-Edgar, Koraly
2016-01-01
Early temperamental sensitivity may form the basis for the later development of socioemotional maladjustment. In particular, temperamental negative affect places children at risk for the development of anxiety. However, not all children who show negative affect go on to develop anxiety or extreme social withdrawal. Recent research indicates that reactive control, in the form of attention to threat, may serve as a bridge between early temperament and the development of later social difficulties. In addition, variation in effortful control may also modulate this trajectory. Children (mean age=5.57 years) were assessed for attention bias to threatening and pleasant faces using a dot-probe paradigm. Attention bias to threatening (but not happy) faces moderated the direct positive relation between negative affect and social withdrawal. Children with threat biases showed a significant link between negative affect and social withdrawal, whereas children who avoided threat did not. In contrast, effortful control did not moderate the relation between negative affect and social withdrawal. Rather, there was a direct negative relation between effortful control and social withdrawal. The findings from this short report indicate that the relations among temperament, attention bias, and social withdrawal appears early in life and point to early emerging specificity in reactive and regulatory functioning. Copyright © 2015 Elsevier Inc. All rights reserved.
Castresana, C; Garcia-Luque, I; Alonso, E; Malik, V S; Cashmore, A R
1988-01-01
We have analyzed promoter regulatory elements from a photoregulated CAB gene (Cab-E) isolated from Nicotiana plumbaginifolia. These studies have been performed by introducing chimeric gene constructs into tobacco cells via Agrobacterium tumefaciens-mediated transformation. Expression studies on the regenerated transgenic plants have allowed us to characterize three positive and one negative cis-acting elements that influence photoregulated expression of the Cab-E gene. Within the upstream sequences we have identified two positive regulatory elements (PRE1 and PRE2) which confer maximum levels of photoregulated expression. These sequences contain multiple repeated elements related to the sequence-ACCGGCCCACTT-. We have also identified within the upstream region a negative regulatory element (NRE) extremely rich in AT sequences, which reduces the level of gene expression in the light. We have defined a light regulatory element (LRE) within the promoter region extending from -396 to -186 bp which confers photoregulated expression when fused to a constitutive nopaline synthase ('nos') promoter. Within this region there is a 132-bp element, extending from -368 to -234 bp, which on deletion from the Cab-E promoter reduces gene expression from high levels to undetectable levels. Finally, we have demonstrated for a full length Cab-E promoter conferring high levels of photoregulated expression, that sequences proximal to the Cab-E TATA box are not replaceable by corresponding sequences from a 'nos' promoter. This contrasts with the apparent equivalence of these Cab-E and 'nos' TATA box-proximal sequences in truncated promoters conferring low levels of photoregulated expression. Images PMID:2901343
Federal Trade Commission Semiannual Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
...) Retail Food Store Advertising and Marketing Practices, 16 CFR 424; (8) the Negative Option Rule, 16 CFR... Deregulatory Actions includes The Regulatory Plan, which appears in both the online Unified Agenda and in part... available online at www.reginfo.gov , in a format that offers users a greatly enhanced ability to obtain...
Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs
Sharifpoor, Sara; van Dyk, Dewald; Costanzo, Michael; Baryshnikova, Anastasia; Friesen, Helena; Douglas, Alison C.; Youn, Ji-Young; VanderSluis, Benjamin; Myers, Chad L.; Papp, Balázs; Boone, Charles; Andrews, Brenda J.
2012-01-01
A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated by cognate kinases. Kinases most sensitive to dosage perturbations had constitutive cell cycle or cell polarity functions under standard growth conditions. Condition-specific screens confirmed that the spectrum of kinase dosage interactions can be expanded substantially in activating conditions. An integrated network composed of systematic SDL, negative and positive loss-of-function GIs, and literature-curated kinase–substrate interactions revealed kinase-dependent regulatory motifs predictive of novel gene-specific phenotypes. Our study provides a valuable resource to unravel novel functional relationships and pathways regulated by kinases and outlines a general strategy for deciphering mutant phenotypes from large-scale GI networks. PMID:22282571
Gene regulatory networks and the underlying biology of developmental toxicity
Embryonic cells are specified by large-scale networks of functionally linked regulatory genes. Knowledge of the relevant gene regulatory networks is essential for understanding phenotypic heterogeneity that emerges from disruption of molecular functions, cellular processes or sig...
Stereotype Fit Effects for Golf Putting Nonexperts
Grimm, Lisa R.; Lewis, Benjamin; Maddox, W. Todd; Markman, Arthur B.
2015-01-01
Research has connected stereotype threat and regulatory fit by showing improved performance for individuals with negative stereotypes when they focused on minimizing potential losses. In the current study, non-Black participants, who were non-experts at golf putting, were told that a golf-putting task was diagnostic of natural athletic ability (i.e., negative stereotype) or sports intelligence (i.e., positive stereotype). Participants tried to maximize earned points or minimize lost points assigned after every putt, which was calculated based on the distance to a target. We demonstrate better performance for participants experiencing a fit between their global task stereotype and the task goal, and argue that regulatory fit allows for increased attention on the strategies beneficial for task performance. Interestingly, we find that performance of individuals high in working memory capacity suffers greatly when those individuals experience a regulatory mismatch. PMID:27162703
O’Connor, Roisin M.; Colder, Craig R.
2015-01-01
Objective: Dual-process models propose that behavior is influenced by the interactive effect of impulsive (automatic) and selfregulatory (controlled) processes. Elaborations of this model posit that the effect of impulsive processes on alcohol use is influenced by capacity and motivation to self-regulate. The interactive effect of these three processes on drinking has not previously been tested. The goal of this study was to provide a developmental extension of this model to early adolescent alcohol use and to test the three-way interaction between impulsive processes (implicit alcohol cognition), self-regulatory capacity (inhibitory and activation control), and self-regulatory motivation (negative alcohol outcome expectancies [AOE]) in a 1-year prospective prediction of adolescent alcohol use. Method: Adolescents (N = 325; 54% girls, mean age = 13.6 years at baseline) completed the Single Category Implicit Association Test and self-reports of alcohol expectancies and use. Inhibitory and activation control were based on parental report. Results: Negative AOE and inhibitory/activation control were supported as moderators of the effect of implicit alcohol cognition on 1-year prospective alcohol use. As expected, weak implicit negative alcohol cognition was associated with elevated alcohol use when both negative AOE and inhibitory control were low. Contrary to hypothesis, when activation control was high, weak implicit negative alcohol cognition was unrelated to alcohol use if negative AOE were high (p = .72) (vs. low, p < .01).Activation control may reflect the ability to plan ahead and act pro-socially. Conclusions: Our study supports current theory suggesting alcohol use is influenced by a complex interplay of impulsive and self-regulatory processes. PMID:26562596
Diehl, Adam G
2018-01-01
Abstract The mouse is widely used as system to study human genetic mechanisms. However, extensive rewiring of transcriptional regulatory networks often confounds translation of findings between human and mouse. Site-specific gain and loss of individual transcription factor binding sites (TFBS) has caused functional divergence of orthologous regulatory loci, and so we must look beyond this positional conservation to understand common themes of regulatory control. Fortunately, transcription factor co-binding patterns shared across species often perform conserved regulatory functions. These can be compared to ‘regulatory sentences’ that retain the same meanings regardless of sequence and species context. By analyzing TFBS co-occupancy patterns observed in four human and mouse cell types, we learned a regulatory grammar: the rules by which TFBS are combined into meaningful regulatory sentences. Different parts of this grammar associate with specific sets of functional annotations regardless of sequence conservation and predict functional signatures more accurately than positional conservation. We further show that both species-specific and conserved portions of this grammar are involved in gene expression divergence and human disease risk. These findings expand our understanding of transcriptional regulatory mechanisms, suggesting that phenotypic divergence and disease risk are driven by a complex interplay between deeply conserved and species-specific transcriptional regulatory pathways. PMID:29361190
Holler, Marianne; Hoelzl, Erik; Kirchler, Erich; Leder, Susanne; Mannetti, Lucia
2010-01-01
Information campaigns to increase tax compliance could be framed in different ways. They can either highlight the potential gains when tax compliance is high, or the potential losses when compliance is low. According to regulatory focus theory, such framing should be most effective when it is congruent with the promotion or prevention focus of its recipients. Two studies confirmed the hypothesized interaction effects between recipients' regulatory focus and framing of information campaigns, with tax compliance being highest under conditions of regulatory fit. To address taxpayers effectively, information campaigns by tax authorities should consider the positive and negative framing of information, and the moderating effect of recipients' regulatory focus. PMID:20495689
Holler, Marianne; Hoelzl, Erik; Kirchler, Erich; Leder, Susanne; Mannetti, Lucia
2008-08-01
Information campaigns to increase tax compliance could be framed in different ways. They can either highlight the potential gains when tax compliance is high, or the potential losses when compliance is low. According to regulatory focus theory, such framing should be most effective when it is congruent with the promotion or prevention focus of its recipients. Two studies confirmed the hypothesized interaction effects between recipients' regulatory focus and framing of information campaigns, with tax compliance being highest under conditions of regulatory fit. To address taxpayers effectively, information campaigns by tax authorities should consider the positive and negative framing of information, and the moderating effect of recipients' regulatory focus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, Sunil K.; Kaur, Simarna
Cystic fibrosis, an autosomal recessive disorder, is caused by the disruption of biosynthesis or function of CFTR. CFTR regulatory mechanisms include channel transport to plasma membrane and protein-protein interactions. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. The colorectal epithelial HT-29 cells natively express CFTR and respond to cAMP with an increase in CFTR-mediated currents. DPC-inhibited currents could be completely eliminated with CFTR-specific SiRNA. Over-expression of Rab27a inhibited, while isoform specific SiRNA and Rab27a antibody stimulated CFTR-mediated currents in HT-29 cells. CFTR activity is inhibited both by Rab27a (Q78L) (constitutive active GTP-bound form of Rab27a) andmore » Rab27a (T23N) (constitutive negative form that mimics the GDP-bound form). Rab27a mediated effects could be reversed by Rab27a-binding proteins, the synaptotagmin-like protein (SLP-5) and Munc13-4 accessory protein (a putative priming factor for exocytosis). The SLP reversal of Rab27a effect was restricted to C2A/C2B domains while the SHD motif imparted little more inhibition. The CFTR-mediated currents remain unaffected by Rab3 though SLP-5 appears to weakly bind it. The immunoprecipitation experiments suggest protein-protein interactions between Rab27a and CFTR. Rab27a appears to impair CFTR appearance at the cell surface by trapping CFTR in the intracellular compartments. Munc13-4 and SLP-5, on the other hand, limit Rab27a availability to CFTR, thus minimizing its effect on channel function. These observations decisively prove that Rab27a is involved in CFTR channel regulation through protein-protein interactions involving Munc13-4 and SLP-5 effector proteins, and thus could be a potential target for cystic fibrosis therapy.« less
Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E.; Sinnegger-Brauns, Martina J.; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra
2011-01-01
An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Cav1.3 L-type Ca2+ channels (Cav1.3L) is a major determinant of their voltage- and Ca2+-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Cav1.342A channels that activate at a more negative voltage range and exhibit more pronounced Ca2+-dependent inactivation. Here we describe the discovery of a novel short splice variant (Cav1.343S) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Cav1.342A, still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Cav1.343S also activated at more negative voltages like Cav1.342A but Ca2+-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Cav1.3L. The presence of the proximal C terminus in Cav1.343S channels preserved their modulation by distal C terminus-containing Cav1.3- and Cav1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca2+ influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Cav1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca2+ channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca2+ accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca2+-induced neurodegenerative processes. PMID:21998310
Kho, Steven; Marfurt, Jutta; Handayuni, Irene; Pava, Zuleima; Noviyanti, Rintis; Kusuma, Andreas; Piera, Kim A; Burdam, Faustina H; Kenangalem, Enny; Lampah, Daniel A; Engwerda, Christian R; Poespoprodjo, Jeanne R; Price, Ric N; Anstey, Nicholas M; Minigo, Gabriela; Woodberry, Tonia
2016-06-21
Plasmodium falciparum and Plasmodium vivax infections compromise dendritic cell (DC) function and expand regulatory T (Treg) cells in both clinical disease (malaria) and experimental human sub-microscopic infection. Conversely, in asymptomatic microscopy-positive (patent) P. falciparum or P. vivax infection in endemic areas, blood DC increase or retain HLA-DR expression and Treg cells exhibit reduced activation, suggesting that DC and Treg cells contribute to the control of patent asymptomatic infection. The effect of sub-microscopic (sub-patent) asymptomatic Plasmodium infection on DC and Treg cells in malaria-endemic area residents remains unclear. In a cross-sectional household survey conducted in Papua, Indonesia, 162 asymptomatic adults were prospectively evaluated for DC and Treg cells using field-based flow cytometry. Of these, 161 individuals (99 %) were assessed retrospectively by polymerase chain reaction (PCR), 19 of whom had sub-microscopic infection with P. falciparum and 15 with sub-microscopic P. vivax infection. Flow cytometric data were re-analysed after re-grouping asymptomatic individuals according to PCR results into negative controls, sub-microscopic and microscopic parasitaemia to examine DC and Treg cell phenotype in sub-microscopic infection. Asymptomatic adults with sub-microscopic P. falciparum or P. vivax infection had DC HLA-DR expression and Treg cell activation comparable to PCR-negative controls. Sub-microscopic P. falciparum infection was associated with lower peripheral CD4(+) T cells and lymphocytes, however sub-microscopic Plasmodium infection had no apparent effect on DC sub-set number or Treg cell frequency. In contrast to the impairment of DC maturation/function and the activation of Treg cells seen with sub-microscopic parasitaemia in primary experimental human Plasmodium infection, no phenotypic evidence of dysregulation of DC and Treg cells was observed in asymptomatic sub-microscopic Plasmodium infection in Indonesian adults. This is consistent with DC and Treg cells retaining their functional capacity in sub-microscopic asymptomatic infection with P. falciparum or P. vivax in malaria-endemic areas.
Protein tyrosine kinase regulation by ubiquitination: Critical roles of Cbl-family ubiquitin ligases
Mohapatra, Bhopal; Ahmad, Gulzar; Nadeau, Scott; Zutshi, Neha; An, Wei; Scheffe, Sarah; Dong, Lin; Feng, Dan; Goetz, Benjamin; Arya, Priyanka; Bailey, Tameka A.; Palermo, Nicholas; Borgstahl, Gloria E.O.; Natarajan, Amarnath; Raja, Srikumar M.; Naramura, Mayumi; Band, Vimla; Band, Hamid
2012-01-01
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell–cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant “activated PTK-selective” ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease. PMID:23085373
Zinc Signal in Brain Diseases.
Portbury, Stuart D; Adlard, Paul A
2017-11-23
The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer's disease or negative outcomes following brain injury.
Rational design of functional and tunable oscillating enzymatic networks
NASA Astrophysics Data System (ADS)
Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.
2015-02-01
Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.
HIV-1 Recruits UPF1 but Excludes UPF2 to Promote Nucleocytoplasmic Export of the Genomic RNA.
Ajamian, Lara; Abel, Karen; Rao, Shringar; Vyboh, Kishanda; García-de-Gracia, Francisco; Soto-Rifo, Ricardo; Kulozik, Andreas E; Gehring, Niels H; Mouland, Andrew J
2015-10-20
Unspliced, genomic HIV-1 RNA (vRNA) is a component of several ribonucleoprotein complexes (RNP) during the viral replication cycle. In earlier work, we demonstrated that the host upframeshift protein 1 (UPF1), a key factor in nonsense-mediated mRNA decay (NMD), colocalized and associated to the viral structural protein Gag during viral egress. In this work, we demonstrate a new function for UPF1 in the regulation of vRNA nuclear export. OPEN ACCESS Biomolecules 2015, 5 2809 We establish that the nucleocytoplasmic shuttling of UPF1 is required for this function and demonstrate that UPF1 exists in two essential viral RNPs during the late phase of HIV-1 replication: the first, in a nuclear export RNP that contains Rev, CRM1, DDX3 and the nucleoporin p62, and the second, which excludes these nuclear export markers but contains Gag in the cytoplasm. Interestingly, we observed that both UPF2 and the long isoform of UPF3a, UPF3aL, but not the shorter isoforms UPF3aS and UPF3b, are excluded from the UPF1-Rev-CRM1-DDX3 complex as they are negative regulators of vRNA nuclear export. In silico protein-protein docking analyses suggest that Rev binds UPF1 in a region that overlaps the UPF2 binding site, thus explaining the exclusion of this negative regulatory factor by HIV-1 that is necessary for vRNA trafficking. This work uncovers a novel and unique regulatory circuit involving several UPF proteins that ultimately regulate vRNA nuclear export and trafficking.
Cheng, Hongtao; Liu, Hongbo; Deng, Yong; Xiao, Jinghua; Li, Xianghua; Wang, Shiping
2015-01-01
Blast caused by fungal Magnaporthe oryzae is a devastating disease of rice (Oryza sativa) worldwide, and this fungus also infects barley (Hordeum vulgare). At least 11 rice WRKY transcription factors have been reported to regulate rice response to M. oryzae either positively or negatively. However, the relationships of these WRKYs in the rice defense signaling pathway against M. oryzae are unknown. Previous studies have revealed that rice WRKY13 (as a transcriptional repressor) and WRKY45-2 enhance resistance to M. oryzae. Here, we show that rice WRKY42, functioning as a transcriptional repressor, suppresses resistance to M. oryzae. WRKY42-RNA interference (RNAi) and WRKY42-overexpressing (oe) plants showed increased resistance and susceptibility to M. oryzae, accompanied by increased or reduced jasmonic acid (JA) content, respectively, compared with wild-type plants. JA pretreatment enhanced the resistance of WRKY42-oe plants to M. oryzae. WRKY13 directly suppressed WRKY42. WRKY45-2, functioning as a transcriptional activator, directly activated WRKY13. In addition, WRKY13 directly suppressed WRKY45-2 by feedback regulation. The WRKY13-RNAi WRKY45-2-oe and WRKY13-oe WRKY42-oe double transgenic lines showed increased susceptibility to M. oryzae compared with WRKY45-2-oe and WRKY13-oe plants, respectively. These results suggest that the three WRKYs form a sequential transcriptional regulatory cascade. WRKY42 may negatively regulate rice response to M. oryzae by suppressing JA signaling-related genes, and WRKY45-2 transcriptionally activates WRKY13, whose encoding protein in turn transcriptionally suppresses WRKY42 to regulate rice resistance to M. oryzae. PMID:25624395
Mechanisms of intragastric pH sensing.
Goo, Tyralee; Akiba, Yasutada; Kaunitz, Jonathan D
2010-12-01
Luminal amino acids and lack of luminal acidity as a result of acid neutralization by intragastric foodstuffs are powerful signals for acid secretion. Although the hormonal and neural pathways underlying this regulatory mechanism are well understood, the nature of the gastric luminal pH sensor has been enigmatic. In clinical studies, high pH, tryptic peptides, and luminal divalent metals (Ca(2+) and Mg(2+)) increase gastrin release and acid production. The calcium-sensing receptor (CaSR), first described in the parathyroid gland but expressed on gastric G cells, is a logical candidate for the gastric acid sensor. Because CaSR ligands include amino acids and divalent metals, and because extracellular pH affects ligand binding in the pH range of the gastric content, its pH, metal, and nutrient-sensing functions are consistent with physiologic observations. The CaSR is thus an attractive candidate for the gastric luminal sensor that is part of the neuroendocrine negative regulatory loop for acid secretion.
Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia
Wan, Zi Yi; Xia, Jun Hong; Lin, Grace; Wang, Le; Lin, Valerie C. L.; Yue, Gen Hua
2016-01-01
Sexual dimorphism is an interesting biological phenomenon. Previous studies showed that DNA methylation might play a role in sexual dimorphism. However, the overall picture of the genome-wide methylation landscape in sexually dimorphic species remains unclear. We analyzed the DNA methylation landscape and transcriptome in hybrid tilapia (Oreochromis spp.) using whole genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq). We found 4,757 sexually dimorphic differentially methylated regions (DMRs), with significant clusters of DMRs located on chromosomal regions associated with sex determination. CpG methylation in promoter regions was negatively correlated with the gene expression level. MAPK/ERK pathway was upregulated in male tilapia. We also inferred active cis-regulatory regions (ACRs) in skeletal muscle tissues from WGBS datasets, revealing sexually dimorphic cis-regulatory regions. These results suggest that DNA methylation contribute to sex-specific phenotypes and serve as resources for further investigation to analyze the functions of these regions and their contributions towards sexual dimorphisms. PMID:27782217
Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme.
Cho, Uhn Soo; Xu, Wenqing
2007-01-04
Protein phosphatase 2A (PP2A) is a principal Ser/Thr phosphatase, the deregulation of which is associated with multiple human cancers, Alzheimer's disease and increased susceptibility to pathogen infections. How PP2A is structurally organized and functionally regulated remains unclear. Here we report the crystal structure of an AB'C heterotrimeric PP2A holoenzyme. The structure reveals that the HEAT repeats of the scaffold A subunit form a horseshoe-shaped fold, holding the catalytic C and regulatory B' subunits together on the same side. The regulatory B' subunit forms pseudo-HEAT repeats and interacts with the C subunit near the active site, thereby defining substrate specificity. The methylated carboxy-terminal tail of the C subunit interacts with a highly negatively charged region at the interface between A and B' subunits, suggesting that the C-terminal carboxyl methylation of the C subunit promotes B' subunit recruitment by neutralizing charge repulsion. Together, our structural results establish a crucial foundation for understanding PP2A assembly, substrate recruitment and regulation.
Computational architecture of the yeast regulatory network
NASA Astrophysics Data System (ADS)
Maslov, Sergei; Sneppen, Kim
2005-12-01
The topology of regulatory networks contains clues to their overall design principles and evolutionary history. We find that while in- and out-degrees of a given protein in the regulatory network are not correlated with each other, there exists a strong negative correlation between the out-degree of a regulatory protein and in-degrees of its targets. Such correlation positions large regulatory modules on the periphery of the network and makes them rather well separated from each other. We also address the question of relative importance of different classes of proteins quantified by the lethality of null-mutants lacking one of them as well as by the level of their evolutionary conservation. It was found that in the yeast regulatory network highly connected proteins are in fact less important than their low-connected counterparts.
Marbach, Daniel; Roy, Sushmita; Ay, Ferhat; Meyer, Patrick E.; Candeias, Rogerio; Kahveci, Tamer; Bristow, Christopher A.; Kellis, Manolis
2012-01-01
Gaining insights on gene regulation from large-scale functional data sets is a grand challenge in systems biology. In this article, we develop and apply methods for transcriptional regulatory network inference from diverse functional genomics data sets and demonstrate their value for gene function and gene expression prediction. We formulate the network inference problem in a machine-learning framework and use both supervised and unsupervised methods to predict regulatory edges by integrating transcription factor (TF) binding, evolutionarily conserved sequence motifs, gene expression, and chromatin modification data sets as input features. Applying these methods to Drosophila melanogaster, we predict ∼300,000 regulatory edges in a network of ∼600 TFs and 12,000 target genes. We validate our predictions using known regulatory interactions, gene functional annotations, tissue-specific expression, protein–protein interactions, and three-dimensional maps of chromosome conformation. We use the inferred network to identify putative functions for hundreds of previously uncharacterized genes, including many in nervous system development, which are independently confirmed based on their tissue-specific expression patterns. Last, we use the regulatory network to predict target gene expression levels as a function of TF expression, and find significantly higher predictive power for integrative networks than for motif or ChIP-based networks. Our work reveals the complementarity between physical evidence of regulatory interactions (TF binding, motif conservation) and functional evidence (coordinated expression or chromatin patterns) and demonstrates the power of data integration for network inference and studies of gene regulation at the systems level. PMID:22456606
Emotional anticipation after delivery - a longitudinal neuroimaging study of the postpartum period.
Gingnell, Malin; Toffoletto, Simone; Wikström, Johan; Engman, Jonas; Bannbers, Elin; Comasco, Erika; Sundström-Poromaa, Inger
2017-03-08
Neuroimaging research has begun to unveil the mechanisms behind emotion processing during the postpartum period, which, in turn, may be of relevance for the development of postpartum depression. The present study sought to longitudinally investigate the neural correlates of emotion anticipation during the postpartum period in healthy women. Functional magnetic resonance imaging was employed to measure the blood oxygen level-dependent signal in the brain in response to anticipation of negative emotional stimuli and during processing of images with positive or negative valence. The participating women were scanned twice: the first scan occurred during the first 48 hours after delivery, and the second was performed 4-6 weeks after delivery. The early postpartum period was characterized by higher anterior cingulate cortex reactivity during anticipation of negative emotional stimuli than the late postpartum period. This was accompanied by a negative relationship with insular reactivity during the early postpartum period and a trend towards an increase in insular reactivity in the late postpartum period. Thus, during the first four weeks of the postpartum period, a diminished top-down regulatory feedback on emotion-related areas of the brain was noted. This finding suggests a physiologically important adaptation during the healthy postpartum period.
Noh, Soo Rim; Lohani, Monika; Isaacowitz, Derek M
2011-09-01
While previous research has linked executive attention to emotion regulation, the current study investigated the role of attentional alerting (i.e., efficient use of external warning cues) on younger (N=39) and older (N=44) adults' use of gaze to regulate their mood in real time. Participants viewed highly arousing unpleasant images while reporting their mood and were instructed to deliberately manage how they felt and to minimise the effect of those stimuli on their mood. Fixations toward the most negative areas of the images were recorded with eye tracking. We examined whether looking less at the most negative regions, compared to each individual's own tendency, was a beneficial mood regulatory strategy and how it interacted with age and alerting ability. High alerting older adults, who rely more on external cues to guide their attention, experienced a smaller decline in mood over time by activating a less-negative-looking approach (compared to their own average tendency), effectively looking away from the most negative areas of the images. More negative gaze patterns predicted better mood for younger adults, though this effect decreased over time. Alerting did not moderate gaze-mood links in younger adults. Successful mood regulation may thus depend on particular combinations of age, fixation, and attention.
Noh, Soo Rim; Lohani, Monika; Isaacowitz, Derek M.
2011-01-01
While previous research has linked executive attention to emotion regulation, the current study investigated the role of attentional alerting (i.e., efficient use of external warning cues) on younger (N = 39) and older (N = 44) adults’ use of gaze to regulate their mood in real time. Participants viewed highly arousing unpleasant images while reporting their mood and were instructed to deliberately manage how they felt and to minimize the effect of those stimuli on their mood. Fixations toward the most negative areas of the images were recorded with eye tracking. We examined whether looking less at the most negative regions, compared to each individual’s own tendency, was a beneficial mood regulatory strategy and how it interacted with age and alerting ability. High alerting older adults, who rely more on external cues to guide their attention, experienced a smaller decline in mood over time by activating a less-negative-looking approach (compared to their own average tendency), effectively looking away from the most negative areas of the images. More negative gaze patterns predicted better mood for younger adults, though this effect decreased over time. Alerting did not moderate gaze-mood links in younger adults. Successful mood regulation may thus depend on particular combinations of age, fixation, and attention. PMID:21432641
76 FR 9213 - Small Business Jobs Act: 504 Loan Program Debt Refinancing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-17
... negative impact on the availability of financing for small businesses. SBA finds that good cause exists to... 27, 2012 and would have less impact if delayed until notice and comment rulemaking could be completed... requiring Regulatory Impact Analysis as set forth below. A. Regulatory Objective of the Interim Final Rule...
Reducing the Effect of Stereotype Threat: The Role of Coaction Contexts and Regulatory Fit
ERIC Educational Resources Information Center
Wen, Fangfang; Zuo, Bin; Wu, Yang; Dong, Xuanhao; Wang, Wei
2016-01-01
Two experiments examined the effects of competition and cooperation contexts, as well as regulatory fit, on reducing the negative influence of stereotype threat. Experiment 1 demonstrated that in high stereotype threat conditions, participants in the cooperation context scored significantly higher on a math test than those in the competition…
Constraint and Contingency in Multifunctional Gene Regulatory Circuits
Payne, Joshua L.; Wagner, Andreas
2013-01-01
Gene regulatory circuits drive the development, physiology, and behavior of organisms from bacteria to humans. The phenotypes or functions of such circuits are embodied in the gene expression patterns they form. Regulatory circuits are typically multifunctional, forming distinct gene expression patterns in different embryonic stages, tissues, or physiological states. Any one circuit with a single function can be realized by many different regulatory genotypes. Multifunctionality presumably constrains this number, but we do not know to what extent. We here exhaustively characterize a genotype space harboring millions of model regulatory circuits and all their possible functions. As a circuit's number of functions increases, the number of genotypes with a given number of functions decreases exponentially but can remain very large for a modest number of functions. However, the sets of circuits that can form any one set of functions becomes increasingly fragmented. As a result, historical contingency becomes widespread in circuits with many functions. Whether a circuit can acquire an additional function in the course of its evolution becomes increasingly dependent on the function it already has. Circuits with many functions also become increasingly brittle and sensitive to mutation. These observations are generic properties of a broad class of circuits and independent of any one circuit genotype or phenotype. PMID:23762020
Cheung, Gordon Y C; Villaruz, Amer E; Joo, Hwang-Soo; Duong, Anthony C; Yeh, Anthony J; Nguyen, Thuan H; Sturdevant, Daniel E; Queck, S Y; Otto, M
2014-07-01
Several methicillin resistance (SCCmec) clusters characteristic of hospital-associated methicillin-resistant Staphylococcus aureus (MRSA) strains harbor the psm-mec locus. In addition to encoding the cytolysin, phenol-soluble modulin (PSM)-mec, this locus has been attributed gene regulatory functions. Here we employed genome-wide transcriptional profiling to define the regulatory function of the psm-mec locus. The immune evasion factor protein A emerged as the primary conserved and strongly regulated target of psm-mec, an effect we show is mediated by the psm-mec RNA. Furthermore, the psm-mec locus exerted regulatory effects that were more moderate in extent. For example, expression of PSM-mec limited expression of mecA, thereby decreasing methicillin resistance. Our study shows that the psm-mec locus has a rare dual regulatory RNA and encoded cytolysin function. Furthermore, our findings reveal a specific mechanism underscoring the recently emerging concept that S. aureus strains balance pronounced virulence and high expression of antibiotic resistance. Published by Elsevier GmbH.
Nuclear matrix protein SMAR1 control regulatory T-cell fate during inflammatory bowel disease (IBD)
Mirlekar, B; Ghorai, S; Khetmalas, M; Bopanna, R; Chattopadhyay, S
2015-01-01
Regulatory T (Treg) cells are essential for self-tolerance and immune homeostasis. Transcription factor Foxp3, a positive regulator of Treg cell differentiation, has been studied to some extent. Signal transducer and activator of transcription factor 3 (STAT3) is known to negatively regulate Foxp3. It is not clear how STAT3 is regulated during Treg differentiation. We show that SMAR1, a known transcription factor and tumor suppressor, is directly involved in maintaining Treg cell fate decision. T-cell-specific conditional knockdown of SMAR1 exhibits increased susceptibility towards inflammatory disorders, such as colitis. The suppressive function of Treg cells is compromised in the absence of SMAR1 leading to increased T helper type 17 (Th17) differentiation and inflammation. Compared with wild-type, the SMAR1−/− Treg cells showed increased susceptibility of inflammatory bowel disease in Rag1−/− mice, indicating the role of SMAR1 in compromising Treg cell differentiation resulting in severe colitis. We show that SMAR1 negatively regulate STAT3 expression favoring Foxp3 expression and Treg cell differentiation. SMAR1 binds to the MAR element of STAT3 promoter, present adjacent to interleukin-6 response elements. Thus Foxp3, a major driver of Treg cell differentiation, is regulated by SMAR1 via STAT3 and a fine-tune balance between Treg and Th17 phenotype is maintained. PMID:25993445
Costa, Ana; Barnhofer, Thorsten
2016-07-01
Disengaging from maladaptive thinking is an important imperative in the treatment of depression. Mindfulness training is aimed at helping patients acquire relevant skills for this purpose. It remains unclear, however, whether this practice is helpful when patients are acutely depressed. In order to investigate effects of mindfulness on symptoms and self-regulatory capacities in this group, the current study compared a brief training in mindfulness (n = 19) to guided imagery relaxation (n = 18). Participants were introduced to the respective techniques in a single session, and practised daily over one week. Self-reported severity of symptoms, difficulties in emotion-regulation, attentional control, the ability to decentre, and mindfulness were assessed pre and postintervention, and at a one-week follow-up. Symptoms of depression significantly decreased and self-regulatory functioning significantly increased in both groups, with changes being maintained during follow-up. When controlling for change in depressive symptoms, results showed significantly higher improvements in emotion regulation at follow-up in the mindfulness group. The ability to decentre predicted changes in symptoms from pre to postintervention, while mindfulness skills predicted changes in symptoms during the maintenance phase. The findings suggest that both practices can help to instigate reductions in symptoms and enhance self-regulatory functioning in depression. However, in order to improve emotion regulation above levels explained by reductions in symptoms more intentional mental training seems necessary. Furthermore, while the ability to disengage from negative patterns of thinking seems crucial for initial reduction of symptoms, maintenance of gains might require broader skills in mindfulness.
STriatal-Enriched protein tyrosine Phosphatase (STEP) Regulates the PTPα/Fyn Signaling Pathway
Xu, Jian; Kurup, Pradeep; Foscue, Ethan; Lombroso, Paul J.
2015-01-01
The tyrosine kinase Fyn has two regulatory tyrosine residues that when phosphorylated either activate (Tyr420) or inhibit (Tyr531) Fyn activity. Within the central nervous system, two protein tyrosine phosphatases (PTPs) target these regulatory tyrosines in Fyn. PTPα dephosphorylates Tyr531 and activates Fyn, while STEP (STriatal-Enriched protein tyrosine Phosphatase) dephosphorylates Tyr420 and inactivates Fyn. Thus, PTPα and STEP have opposing functions in the regulation of Fyn; however, whether there is cross talk between these two PTPs remains unclear. Here, we used molecular techniques in primary neuronal cultures and in vivo to demonstrate that STEP negatively regulates PTPα by directly dephosphorylating PTPα at its regulatory Tyr789. Dephosphorylation of Tyr789 prevents the translocation of PTPα to synaptic membranes, blocking its ability to interact with and activate Fyn. Genetic or pharmacologic reduction of STEP61 activity increased the phosphorylation of PTPα at Tyr789, as well as increased translocation of PTPα to synaptic membranes. Activation of PTPα and Fyn and trafficking of GluN2B to synaptic membranes are necessary for ethanol intake behaviors in rodents. We tested the functional significance of STEP61 in this signaling pathway by ethanol administration to primary cultures as well as in vivo, and demonstrated that the inactivation of STEP61 by ethanol leads to the activation of PTPα, its translocation to synaptic membranes, and the activation of Fyn. These findings indicate a novel mechanism by which STEP61 regulates PTPα and suggest that STEP and PTPα coordinate the regulation of Fyn. PMID:25951993
Ma, Michelle W.; Medicherla, Ratna C.; Qian, Meng; de Miera, Eleazar Vega-Saenz; Friedman, Erica B.; Berman, Russell S.; Shapiro, Richard L.; Pavlick, Anna C.; Ott, Patrick A.; Bhardwaj, Nina; Shao, Yongzhao; Osman, Iman; Darvishian, Farbod
2013-01-01
The sentinel lymph node is the initial site of metastasis. Down-regulation of anti-tumor immunity plays a role in nodal progression. Our objective was to investigate the relationship between immune modulation and sentinel lymph node positivity, correlating it with outcome in melanoma patients. Lymph node/primary tissues from melanoma patients prospectively accrued and followed at New York University Medical Center were evaluated for the presence of regulatory T-cells (Foxp3+) and dendritic cells (conventional: CD11c+, mature: CD86+) using immunohistochemistry. Primary melanoma immune cell profiles from sentinel lymph node-positive/-negative patients were compared. Logistic regression models inclusive of standard-of-care/immunologic primary tumor characteristics were constructed to predict the risk of sentinel lymph node positivity. Immunological responses in the positive sentinel lymph node were also compared to those in the negative non-sentinel node from the same nodal basin and matched negative sentinel lymph node. Decreased immune response was defined as increased regulatory T-cells or decreased dendritic cells. Associations between the expression of these immune modulators, clinicopathologic variables, and clinical outcome were evaluated using univariate/multivariate analyses. Primary tumor conventional dendritic cells and regression were protective against sentinel lymph node metastasis (odds ratio=0.714, 0.067; P=0.0099, 0.0816, respectively). Anti-tumor immunity was down-regulated in the positive sentinel lymph node with an increase in regulatory T-cells compared to the negative non-sentinel node from the same nodal basin (P=0.0005) and matched negative sentinel lymph node (P=0.0002). The positive sentinel lymph node also had decreased numbers of conventional dendritic cells compared to the negative sentinel lymph node (P<0.0001). Adding sentinel lymph node regulatory T-cell expression improved the discriminative power of a recurrence risk assessment model using clinical stage. Primary tumor regression was associated with prolonged disease-free (P=0.025) and melanoma-specific (P=0.014) survival. Our results support an assessment of local immune profiles in both the primary tumor and sentinel lymph node to help guide therapeutic decisions. PMID:22425909
Basu, Swaraj; Larsson, Erik
2018-05-31
Antisense transcripts and other long non-coding RNAs are pervasive in mammalian cells, and some of these molecules have been proposed to regulate proximal protein-coding genes in cis For example, non-coding transcription can contribute to inactivation of tumor suppressor genes in cancer, and antisense transcripts have been implicated in the epigenetic inactivation of imprinted genes. However, our knowledge is still limited and more such regulatory interactions likely await discovery. Here, we make use of available gene expression data from a large compendium of human tumors to generate hypotheses regarding non-coding-to-coding cis -regulatory relationships with emphasis on negative associations, as these are less likely to arise for reasons other than cis -regulation. We document a large number of possible regulatory interactions, including 193 coding/non-coding pairs that show expression patterns compatible with negative cis -regulation. Importantly, by this approach we capture several known cases, and many of the involved coding genes have known roles in cancer. Our study provides a large catalog of putative non-coding/coding cis -regulatory pairs that may serve as a basis for further experimental validation and characterization. Copyright © 2018 Basu and Larsson.
Semenova, O A; Machinskaya, R I
2015-01-01
A total number of 172 children aged 10-12 were electrophysiologically and neuropsychologically assessed in order to analyze the influence of the functioning of brain regulatory systems onto the voluntary regulation of cognitive performance during the preteen years. EEG patterns associated with the nonoptimal functioning of brain regulatory systems, particularly fronto-thalamic, limbic and fronto-striatal structures were significantly more often observed in children with learning and behavioral difficulties, as compared to the control group. Neuropsychological assessment showed that the nonoptimal functioning of different brain regulatory systems specifically affect the voluntary regulation of cognitive performance. Children with EEG patterns of fronto-thalamic nonoptimal functioning demonstrated poor voluntary regulation such as impulsiveness and difficulties in continuing the same algorithms. Children with EEG patterns of limbic nonoptimal functioning showed a less pronounced executive dysfunction manifested only in poor switching between program units within a task. Children with EEG patterns of fronto-striatal nonoptimal functioning struggled with such executive dysfunctions as motor and tactile perseverations and emotional-motivational deviations such as poor motivation and communicative skills.
The regulatory network analysis of long noncoding RNAs in human colorectal cancer.
Zhang, Yuwei; Tao, Yang; Li, Yang; Zhao, Jinshun; Zhang, Lina; Zhang, Xiaohong; Dong, Changzheng; Xie, Yangyang; Dai, Xiaoyu; Zhang, Xinjun; Liao, Qi
2018-05-01
Colorectal cancer (CRC) is among one of the most prevalent and lethiferous diseases worldwide. Long noncoding RNAs (lncRNAs) are commonly accepted to function as a key regulatory factor in human cancer, but the potential regulatory mechanisms of CRC-associated lncRNA are largely obscure. Here, we integrated several expression profiles to obtain 55 differentially expressed (DE) lncRNAs. We first detected lncRNA interactions with transcription factors, microRNAs, mRNAs, and RNA-binding proteins to construct a regulatory network and then create functional enrichment analyses for them using bioinformatics approaches. We found the upregulated genes in the regulatory network are enriched in cell cycle and DNA damage response, while the downregulated genes are enriched in cell differentiation, cellular response, and cell signaling. We then employed module-based methods to mine several intriguing modules from the overall network, which helps to classify the functions of genes more specifically. Next, we confirmed the validity of our network by comparisons with a randomized network using computational method. Finally, we attempted to annotate lncRNA functions based on the regulatory network, which indicated its potential application. Our study of the lncRNA regulatory network provided significant clues to unveil lncRNAs potential regulatory mechanisms in CRC and laid a foundation for further experimental investigation.
Modeling gene regulatory network motifs using statecharts
2012-01-01
Background Gene regulatory networks are widely used by biologists to describe the interactions among genes, proteins and other components at the intra-cellular level. Recently, a great effort has been devoted to give gene regulatory networks a formal semantics based on existing computational frameworks. For this purpose, we consider Statecharts, which are a modular, hierarchical and executable formal model widely used to represent software systems. We use Statecharts for modeling small and recurring patterns of interactions in gene regulatory networks, called motifs. Results We present an improved method for modeling gene regulatory network motifs using Statecharts and we describe the successful modeling of several motifs, including those which could not be modeled or whose models could not be distinguished using the method of a previous proposal. We model motifs in an easy and intuitive way by taking advantage of the visual features of Statecharts. Our modeling approach is able to simulate some interesting temporal properties of gene regulatory network motifs: the delay in the activation and the deactivation of the "output" gene in the coherent type-1 feedforward loop, the pulse in the incoherent type-1 feedforward loop, the bistability nature of double positive and double negative feedback loops, the oscillatory behavior of the negative feedback loop, and the "lock-in" effect of positive autoregulation. Conclusions We present a Statecharts-based approach for the modeling of gene regulatory network motifs in biological systems. The basic motifs used to build more complex networks (that is, simple regulation, reciprocal regulation, feedback loop, feedforward loop, and autoregulation) can be faithfully described and their temporal dynamics can be analyzed. PMID:22536967
Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species
Wythe, Joshua D.; Liu, Jiandong; Cartry, Jerome; Vogler, Georg; Mohapatra, Bhagyalaxmi; Otway, Robyn T.; Huang, Yu; King, Isabelle N.; Maillet, Marjorie; Zheng, Yi; Crawley, Timothy; Taghli-Lamallem, Ouarda; Semsarian, Christopher; Dunwoodie, Sally; Winlaw, David; Harvey, Richard P.; Fatkin, Diane; Towbin, Jeffrey A.; Molkentin, Jeffery D.; Srivastava, Deepak; Ocorr, Karen; Bruneau, Benoit G.
2011-01-01
Unraveling the gene regulatory networks that govern development and function of the mammalian heart is critical for the rational design of therapeutic interventions in human heart disease. Using the Drosophila heart as a platform for identifying novel gene interactions leading to heart disease, we found that the Rho-GTPase Cdc42 cooperates with the cardiac transcription factor Tinman/Nkx2-5. Compound Cdc42, tinman heterozygous mutant flies exhibited impaired cardiac output and altered myofibrillar architecture, and adult heart–specific interference with Cdc42 function is sufficient to cause these same defects. We also identified K+ channels, encoded by dSUR and slowpoke, as potential effectors of the Cdc42–Tinman interaction. To determine whether a Cdc42–Nkx2-5 interaction is conserved in the mammalian heart, we examined compound heterozygous mutant mice and found conduction system and cardiac output defects. In exploring the mechanism of Nkx2-5 interaction with Cdc42, we demonstrated that mouse Cdc42 was a target of, and negatively regulated by miR-1, which itself was negatively regulated by Nkx2-5 in the mouse heart and by Tinman in the fly heart. We conclude that Cdc42 plays a conserved role in regulating heart function and is an indirect target of Tinman/Nkx2-5 via miR-1. PMID:21690310
Regulatory networks and connected components of the neutral space. A look at functional islands
NASA Astrophysics Data System (ADS)
Boldhaus, G.; Klemm, K.
2010-09-01
The functioning of a living cell is largely determined by the structure of its regulatory network, comprising non-linear interactions between regulatory genes. An important factor for the stability and evolvability of such regulatory systems is neutrality - typically a large number of alternative network structures give rise to the necessary dynamics. Here we study the discretized regulatory dynamics of the yeast cell cycle [Li et al., PNAS, 2004] and the set of networks capable of reproducing it, which we call functional. Among these, the empirical yeast wildtype network is close to optimal with respect to sparse wiring. Under point mutations, which establish or delete single interactions, the neutral space of functional networks is fragmented into ≈ 4.7 × 108 components. One of the smaller ones contains the wildtype network. On average, functional networks reachable from the wildtype by mutations are sparser, have higher noise resilience and fewer fixed point attractors as compared with networks outside of this wildtype component.
Surface receptor Toso controls B cell-mediated regulation of T cell immunity.
Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee
2018-05-01
The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.
Working memory training improves emotional states of healthy individuals
Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Hashizume, Hiroshi; Sekiguchi, Atsushi; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Sassa, Yuko; Kawashima, Ryuta
2014-01-01
Working memory (WM) capacity is associated with various emotional aspects, including states of depression and stress, reactions to emotional stimuli, and regulatory behaviors. We have previously investigated the effects of WM training (WMT) on cognitive functions and brain structures. However, the effects of WMT on emotional states and related neural mechanisms among healthy young adults remain unknown. In the present study, we investigated these effects in young adults who underwent WMT or received no intervention for 4 weeks. Before and after the intervention, subjects completed self-report questionnaires related to their emotional states and underwent scanning sessions in which brain activities related to negative emotions were measured. Compared with controls, subjects who underwent WMT showed reduced anger, fatigue, and depression. Furthermore, WMT reduced activity in the left posterior insula during tasks evoking negative emotion, which was related to anger. It also reduced activity in the left frontoparietal area. These findings show that WMT can reduce negative mood and provide new insight into the clinical applications of WMT, at least among subjects with preclinical-level conditions. PMID:25360090
Cummings, E Mark; Schermerhorn, Alice C; Merrilees, Christine E; Goeke-Morey, Marcie C; Shirlow, Peter; Cairns, Ed
2010-07-01
Moving beyond simply documenting that political violence negatively impacts children, we tested a social-ecological hypothesis for relations between political violence and child outcomes. Participants were 700 mother-child (M = 12.1 years, SD = 1.8) dyads from 18 working-class, socially deprived areas in Belfast, Northern Ireland, including single- and two-parent families. Sectarian community violence was associated with elevated family conflict and children's reduced security about multiple aspects of their social environment (i.e., family, parent-child relations, and community), with links to child adjustment problems and reductions in prosocial behavior. By comparison, and consistent with expectations, links with negative family processes, child regulatory problems, and child outcomes were less consistent for nonsectarian community violence. Support was found for a social-ecological model for relations between political violence and child outcomes among both single- and two-parent families, with evidence that emotional security and adjustment problems were more negatively affected in single-parent families. The implications for understanding social ecologies of political violence and children's functioning are discussed.
The Scaffold Protein TANK/I-TRAF Inhibits NF-κB Activation by Recruiting Polo-like Kinase 1
Zhang, Wanqiao; Zhang, Ying; Yuan, Yanzhi; Guan, Wei; Jin, Chaozhi; Chen, Hui; Wang, Xiaohui
2010-01-01
TANK/I-TRAF is a TRAF-binding protein that negatively regulates NF-κB activation. The underlying mechanism of this activity remains unclear. Here we show that TANK directly interacts with PLK1, a conserved cell cycle–regulated kinase. PLK1 inhibits NF-κB transcriptional activation induced by TNF-α, IL-1β, or several activators, but not by nuclear transcription factor p65. PLK1 expression reduces the DNA-binding activity of NF-κB induced by TNF-α. Moreover, endogenous activation of PLK1 reduces the TNF-induced phosphorylation of endogenous IκBα. PLK1 is bound to NEMO (IKKγ) through TANK to form a ternary complex in vivo. We describe a new regulatory mechanism for PLK1: PLK1 negatively regulates TNF-induced IKK activation by inhibiting the ubiquitination of NEMO. These findings reveal that the scaffold protein TANK recruits PLK1 to negatively regulate NF-κB activation and provide direct evidence that PLK1 is required for the repression function of TANK. PMID:20484576
Cummings, E. Mark; Schermerhorn, Alice C.; Merrilees, Christine E.; Goeke-Morey, Marcie C.; Shirlow, Peter; Cairns, Ed
2013-01-01
Moving beyond simply documenting that political violence negatively impacts children, a social ecological hypothesis for relations between political violence and child outcomes was tested. Participants were 700 mother-child (M=12.1years, SD=1.8) dyads from 18 working class, socially deprived areas in Belfast, Northern Ireland, including single- and two-parent families. Sectarian community violence was associated with elevated family conflict and children’s reduced security about multiple aspects of their social environment (i.e., family, parent-child relations, and community), with links to child adjustment problems and reductions in prosocial behavior. By comparison, and consistent with expectations, links with negative family processes, child regulatory problems and child outcomes were less consistent for nonsectarian community violence. Support was found for a social ecological model for relations between political violence and child outcomes among both single and two parent families, with evidence that emotional security and adjustment problems were more negatively affected in single-parent families. The implications for understanding social ecologies of political violence and children’s functioning are discussed. PMID:20604605
Regulatory T cells in human disease and their potential for therapeutic manipulation
Taams, Leonie S; Palmer, Donald B; Akbar, Arne N; Robinson, Douglas S; Brown, Zarin; Hawrylowicz, Catherine M
2006-01-01
Regulatory T cells are proposed to play a central role in the maintenance of immunological tolerance in the periphery, and studies in many animal models demonstrate their capacity to inhibit inflammatory pathologies in vivo. At a recent meeting [Clinical Application of Regulatory T Cells, 7–8 April 2005, Horsham, UK, organized by the authors of this review, in collaboration with the British Society for Immunology and Novartis] evidence was discussed that certain human autoimmune, infectious and allergic diseases are associated with impaired regulatory T-cell function. In contrast, evidence from several human cancer studies and some infections indicates that regulatory T cells may impair the development of protective immunity. Importantly, certain therapies, both those that act non-specifically to reduce inflammation and antigen-specific immunotherapies, may induce or enhance regulatory T-cell function. The purpose of this review was to summarize current knowledge on regulatory T-cell function in human disease, and to assess critically how this can be tailored to suit the therapeutic manipulation of immunity. PMID:16630018
Signal integration and cross-talk during thymocyte migration and emigration
Love, Paul E.; Bhandoola, Avinash
2013-01-01
The thymus produces self-tolerant functionally competent T cells. This occurs by the import of multipotent hematopoietic progenitors that are signalled to adopt the T cell fate. Expression of T cell specific genes, including those encoding the T cell receptor (TCR), is followed by positive and negative selection and the eventual export of mature T cells. Significant progress has been made in elucidating the signals that direct progenitor cell trafficking to, within and out of the thymus. These advances are the subject of this Review, with a particular focus on the role of reciprocal cooperative and regulatory interactions between TCR and chemokine receptor-mediated signalling. PMID:21701522
Regulatory states in the developmental control of gene expression.
Peter, Isabelle S
2017-09-01
A growing body of evidence shows that gene expression in multicellular organisms is controlled by the combinatorial function of multiple transcription factors. This indicates that not the individual transcription factors or signaling molecules, but the combination of expressed regulatory molecules, the regulatory state, should be viewed as the functional unit in gene regulation. Here, I discuss the concept of the regulatory state and its proposed role in the genome-wide control of gene expression. Recent analyses of regulatory gene expression in sea urchin embryos have been instrumental for solving the genomic control of cell fate specification in this system. Some of the approaches that were used to determine the expression of regulatory states during sea urchin embryogenesis are reviewed. Significant developmental changes in regulatory state expression leading to the distinct specification of cell fates are regulated by gene regulatory network circuits. How these regulatory state transitions are encoded in the genome is illuminated using the sea urchin endoderm-mesoderms cell fate decision circuit as an example. These observations highlight the importance of considering developmental gene regulation, and the function of individual transcription factors, in the context of regulatory states. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Obscurin Targets Ankyrin-B and Protein Phosphatase 2A to the Cardiac M-line*
Cunha, Shane R.; Mohler, Peter J.
2008-01-01
Ankyrin-B targets ion channels and transporters in excitable cells. Dysfunction in ankyrin-B-based pathways results in defects in cardiac physiology. Despite a wealth of knowledge regarding the role of ankyrin-B for cardiac function, little is known regarding the mechanisms underlying ankyrin-B regulation. Moreover, the pathways underlying ankyrin-B targeting in heart are unclear. We report that alternative splicing regulates ankyrin-B localization and function in cardiomyocytes. Specifically, we identify a novel exon (exon 43′) in the ankyrin-B regulatory domain that mediates interaction with the Rho-GEF obscurin. Ankyrin-B transcripts harboring exon 43′ represent the primary cardiac isoform in human and mouse. We demonstrate that ankyrin-B and obscurin are co-localized at the M-line of myocytes and co-immunoprecipitate from heart. We define the structural requirements for ankyrin-B/obscurin interaction to two motifs in the ankyrin-B regulatory domain and demonstrate that both are critical for obscurin/ankyrin-B interaction. In addition, we demonstrate that interaction with obscurin is required for ankyrin-B M-line targeting. Specifically, both obscurin-binding motifs are required for the M-line targeting of a GFP-ankyrin-B regulatory domain. Moreover, this construct acts as a dominant-negative by competing with endogenous ankyrin-B for obscurin-binding at the M-line, thus providing a powerful new tool to evaluate the function of obscurin/ankyrin-B interactions. With this new tool, we demonstrate that the obscurin/ankyrin-B interaction is critical for recruitment of PP2A to the cardiac M-line. Together, these data provide the first evidence for the molecular basis of ankyrin-B and PP2A targeting and function at the cardiac M-line. Finally, we report that ankyrin-B R1788W is localized adjacent to the ankyrin-B obscurin-binding motif and increases binding activity for obscurin. In summary, our new findings demonstrate that ANK2 is subject to alternative splicing that gives rise to unique polypeptides with diverse roles in cardiac function. PMID:18782775
Nakashima, Hiroko; Hamaguchi, Yasuhito; Watanabe, Rei; Ishiura, Nobuko; Kuwano, Yoshihiro; Okochi, Hitoshi; Takahashi, Yoshimasa; Tamaki, Kunihiko; Sato, Shinichi; Tedder, Thomas F; Fujimoto, Manabu
2010-05-01
Although contact hypersensitivity (CHS) has been considered a prototype of T cell-mediated immune reactions, recently a significant contribution of regulatory B cell subsets in the suppression of CHS has been demonstrated. CD22, one of the sialic acid-binding immunoglobulin-like lectins, is a B cell-specific molecule that negatively regulates BCR signaling. To clarify the roles of B cells in CHS, CHS in CD22(-/-) mice was investigated. CD22(-/-) mice showed delayed recovery from CHS reactions compared with that of wild-type mice. Transfer of wild-type peritoneal B-1a cells reversed the prolonged CHS reaction seen in CD22(-/-) mice, and this was blocked by the simultaneous injection with IL-10 receptor Ab. Although CD22(-/-) peritoneal B-1a cells were capable of producing IL-10 at wild-type levels, i.p. injection of differentially labeled wild-type/CD22(-/-) B cells demonstrated that a smaller number of CD22(-/-) B cells resided in lymphoid organs 5 d after CHS elicitation, suggesting a defect in survival or retention in activated CD22(-/-) peritoneal B-1 cells. Thus, our study reveals a regulatory role for peritoneal B-1a cells in CHS. Two distinct regulatory B cell subsets cooperatively inhibit CHS responses. Although splenic CD1d(hi)CD5(+) B cells have a crucial role in suppressing the acute exacerbating phase of CHS, peritoneal B-1a cells are likely to suppress the late remission phase as "regulatory B cells." CD22 deficiency results in disturbed CHS remission by impaired retention or survival of peritoneal B-1a cells that migrate into lymphoid organs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takaoka, Yuki; Kawamoto, Seiji, E-mail: skawa@hiroshima-u.ac.jp; Katayama, Akiko
2013-02-08
Highlights: ► Anti-histone H1 autoantibody (anti-H1) acts on T cells to inhibit their activation. ► Anti-H1 suppresses T cell activation in Treg cell-dependent and -independent manners. ► Suboptimal dose of anti-H1 enhances suppressor function of Treg cells. ► High dose of anti-H1 directly inhibits T cell receptor signaling. -- Abstract: Induction of anti-nuclear antibodies against DNA or histones is a hallmark of autoimmune disorders, but their actual contribution to disease predisposition remains to be clarified. We have previously reported that autoantibodies against histone H1 work as a critical graft survival factor in a rat model of tolerogeneic liver transplantation. Heremore » we show that an immunosuppressive anti-histone H1 monoclonal antibody (anti-H1 mAb) acts directly on T cells to inhibit their activation in response to T cell receptor (TCR) ligation. Intriguingly, the T cell activation inhibitory activity of anti-H1 mAb under suboptimal dosages required regulatory T (Treg) cells, while high dose stimulation with anti-H1 mAb triggered a Treg cell-independent, direct negative regulation of T cell activation upon TCR cross-linking. In the Treg cell-dependent mode of immunosuppressive action, anti-H1 mAb did not induce the expansion of CD4{sup +}Foxp3{sup +} Treg cells, but rather potentiated their regulatory capacity. These results reveal a previously unappreciated T cell regulatory role of anti-H1 autoantibody, whose overproduction is generally thought to be pathogenic in the autoimmune settings.« less
Martínez-Núñez, Mario Alberto; Poot-Hernandez, Augusto Cesar; Rodríguez-Vázquez, Katya; Perez-Rueda, Ernesto
2013-01-01
In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected.
Martínez-Núñez, Mario Alberto; Poot-Hernandez, Augusto Cesar; Rodríguez-Vázquez, Katya; Perez-Rueda, Ernesto
2013-01-01
In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected. PMID:23922780
Dynamics and function of distal regulatory elements during neurogenesis and neuroplasticity
Thakurela, Sudhir; Sahu, Sanjeeb Kumar; Garding, Angela; Tiwari, Vijay K.
2015-01-01
Gene regulation in mammals involves a complex interplay between promoters and distal regulatory elements that function in concert to drive precise spatiotemporal gene expression programs. However, the dynamics of the distal gene regulatory landscape and its function in the transcriptional reprogramming that underlies neurogenesis and neuronal activity remain largely unknown. Here, we performed a combinatorial analysis of genome-wide data sets for chromatin accessibility (FAIRE-seq) and the enhancer mark H3K27ac, revealing the highly dynamic nature of distal gene regulation during neurogenesis, which gets progressively restricted to distinct genomic regions as neurons acquire a post-mitotic, terminally differentiated state. We further find that the distal accessible and active regions serve as target sites for distinct transcription factors that function in a stage-specific manner to contribute to the transcriptional program underlying neuronal commitment and maturation. Mature neurons respond to a sustained activity of NMDA receptors by epigenetic reprogramming at a large number of distal regulatory regions as well as dramatic reorganization of super-enhancers. Such massive remodeling of the distal regulatory landscape in turn results in a transcriptome that confers a transient loss of neuronal identity and gain of cellular plasticity. Furthermore, NMDA receptor activity also induces many novel prosurvival genes that function in neuroprotective pathways. Taken together, these findings reveal the dynamics of the distal regulatory landscape during neurogenesis and uncover novel regulatory elements that function in concert with epigenetic mechanisms and transcription factors to generate the transcriptome underlying neuronal development and activity. PMID:26170447
Genetic variation in MAOA modulates prefrontal cortical regulation of approach-avoidance reactions.
Ernst, Lena H; Lutz, Elisabeth; Ehlis, Ann-Christine; Fallgatter, Andreas J; Reif, Andreas; Plichta, Michael M
2013-01-01
Regulation of automatic approach and avoidance behavior requires affective and cognitive control, which are both influenced by a genetic variation in the gene encoding Monoamine Oxidase A (termed MAOA-uVNTR). The current study investigated MAOA genotype as a moderator of prefrontal cortical activation measured with functional near-infrared spectroscopy (fNIRS) in 37 healthy young adults during performance of the approach-avoidance task with positive and negative pictures. Carriers of the low- compared to the high-expressing genetic variant (MAOA-L vs. MAOA-H) showed increasing regulatory activity in the right dorsolateral prefrontal cortex (DLPFC) during incompatible conditions (approach negative, avoid positive). This might have been a compensatory mechanism for stronger emotional reactions as shown in previous studies and might have prevented any influence of incompatibility on behavior. In contrast, fewer errors but also lower activity in the right DLPFC during processing of negative compared to positive stimuli indicated MAOA-H carriers to have used other regulatory areas. This resulted in slower reaction times in incompatible conditions, but--in line with the known better cognitive regulation efficiency--allowed them to perform incompatible reactions without activating the DLPFC as the highest control instance. Carriers of one low- and one high-expressing allele lay as an intermediate group between the reactions of the low- and high-expressing groups. The relatively small sample size and restriction to fNIRS for assessment of cortical activity limit our findings. Nevertheless, these first results suggest monoam-inergic mechanisms to contribute to interindividual differences in the two basic behavioral principles of approach and avoidance and their neuronal correlates. Copyright © 2013 S. Karger AG, Basel.
Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-beta production.
Nistal-Villán, Estanislao; Gack, Michaela U; Martínez-Delgado, Gustavo; Maharaj, Natalya P; Inn, Kyung-Soo; Yang, Heyi; Wang, Rong; Aggarwal, Aneel K; Jung, Jae U; García-Sastre, Adolfo
2010-06-25
RIG-I (retinoic acid-inducible gene I) and TRIM25 (tripartite motif protein 25) have emerged as key regulatory factors to induce interferon (IFN)-mediated innate immune responses to limit viral replication. Upon recognition of viral RNA, TRIM25 E3 ligase binds the first caspase recruitment domain (CARD) of RIG-I and subsequently induces lysine 172 ubiquitination of the second CARD of RIG-I, which is essential for the interaction with downstream MAVS/IPS-1/CARDIF/VISA and, thereby, IFN-beta mRNA production. Although ubiquitination has emerged as a major factor involved in RIG-I activation, the potential contribution of other post-translational modifications, such as phosphorylation, to the regulation of RIG-I activity has not been addressed. Here, we report the identification of serine 8 phosphorylation at the first CARD of RIG-I as a negative regulatory mechanism of RIG-I-mediated IFN-beta production. Immunoblot analysis with a phosphospecific antibody showed that RIG-I serine 8 phosphorylation steady-state levels were decreased upon stimulation of cells with IFN-beta or virus infection. Substitution of serine 8 in the CARD RIG-I functional domain with phosphomimetic aspartate or glutamate results in decreased TRIM25 binding, RIG-I ubiquitination, MAVS binding, and downstream signaling. Finally, sequence comparison reveals that only primate species carry serine 8, whereas other animal species carry an asparagine, indicating that serine 8 phosphorylation may represent a primate-specific regulation of RIG-I activation. Collectively, these data suggest that the phosphorylation of RIG-I serine 8 operates as a negative switch of RIG-I activation by suppressing TRIM25 interaction, further underscoring the importance of RIG-I and TRIM25 connection in type I IFN signal transduction.
Jiang, Ding-Sheng; Liu, Yu; Zhou, Heng; Zhang, Yan; Zhang, Xiao-Dong; Zhang, Xiao-Fei; Chen, Ke; Gao, Lu; Peng, Juan; Gong, Hui; Chen, Yingjie; Yang, Qinglin; Liu, Peter P.; Fan, Guo-Chang; Zou, Yunzeng; Li, Hongliang
2017-01-01
Cardiac hypertrophy is a complex pathological process that involves multiple factors including inflammation and apoptosis. Interferon regulatory factor 7 (IRF7) is a multifunctional regulator that participates in immune regulation, cell differentiation, apoptosis, and oncogenesis. However, the role of IRF7 in cardiac hypertrophy remains unclear. We performed aortic banding in cardiac-specific IRF7 transgenic mice, IRF7 knockout mice, and the wild-type littermates of these mice. Our results demonstrated that IRF7 was downregulated in aortic banding–induced animal hearts and cardiomyocytes that had been treated with angiotensin II or phenylephrine for 48 hours. Accordingly, heart-specific overexpression of IRF7 significantly attenuated pressure overload–induced cardiac hypertrophy, fibrosis, and dysfunction, whereas loss of IRF7 led to opposite effects. Moreover, IRF7 protected against angiotensin II–induced cardiomyocyte hypertrophy in vitro. Mechanistically, we identified that IRF7-dependent cardioprotection was mediated through IRF7 binding to inhibitor of κB kinase-β, and subsequent nuclear factor-κB inactivation. In fact, blocking nuclear factor-κB signaling with cardiac-specific inhibitors of κBαS32A/S36A super-repressor transgene counteracted the adverse effect of IRF7 deficiency. Conversely, activation of nuclear factor-κB signaling via a cardiac-specific conditional inhibitor of κB kinase-βS177E/S181E (constitutively active) transgene negated the antihypertrophic effect of IRF7 overexpression. Our data demonstrate that IRF7 acts as a novel negative regulator of pathological cardiac hypertrophy by inhibiting nuclear factor-κB signaling and may constitute a potential therapeutic target for pathological cardiac hypertrophy. PMID:24396025
Long non-coding RNA GAS5 aggravates hypoxia injury in PC-12 cells via down-regulating miR-124.
Hu, Xiaoli; Liu, Juan; Zhao, Gang; Zheng, Jiaping; Qin, Xia
2018-05-08
One important feature of cerebral ischemia is hypoxia injury in nerve cells. Growth arrest-specific transcript 5 (GAS5) is widely reported as a tumor suppressor gene; however, the investigations about its role in cerebrovascular disease are relatively rare. This study was aimed to explore the impact of GAS5 on hypoxia response in nervous cells. PC-12 cells were incubated under anoxic condition to induce hypoxia injury. Regulatory effects of GAS5 on miR-124 and miR-124 on ICAM-1 expression were assessed by qRT-PCR and/or Western blot. Targeting effect of miR-124 on ICAM-1 3'-untranslated regions (UTR) was evaluated through dual luciferase activity assay. The potential regulatory mechanism on hypoxia injury in PC-12 cells was assessed by detecting key elements of NF-κB and Notch signaling pathways using Western blot. GAS5 ectopic expression accentuated hypoxia injury in PC-12 cells. miR-124 expression was negatively regulated by GAS5 expression. Cells with overexpressions of GAS5 and miR-124 alleviated hypoxia injury as in compassion with cells only with GAS5 overexpression. ICAM-1 expression was negatively regulated by miR-124 expression. ICAM-1 was a functional target of miR-124. ICAM-1 overexpression aggravated hypoxia injury, but inversely, ICAM-1 silence diminished hypoxia damage. Besides, ICAM-1 expression was negatively related with activation of NF-κB and Notch pathways. GAS5-miR-124-ICAM-1 axis could regulate hypoxia injury in PC-12 cells. GAS5 might aggravate hypoxia injury via down-regulating miR-124, then up-regulating ICAM-1, and further enhancing activations of NF-κB and Notch pathways. © 2018 Wiley Periodicals, Inc.
Perry, Nicole B; Calkins, Susan D; Nelson, Jackie A; Leerkes, Esther M; Marcovitch, Stuart
2012-07-01
The current study examined the moderating effect of children's cardiac vagal suppression on the association between maternal socialization of negative emotions (supportive and nonsupportive responses) and children's emotion regulation behaviors. One hundred and ninety-seven 4-year-olds and their mothers participated. Mothers reported on their reactions to children's negative emotions and children's regulatory behaviors. Observed distraction, an adaptive self-regulatory strategy, and vagal suppression were assessed during a laboratory task designed to elicit frustration. Results indicated that children's vagal suppression moderated the association between mothers' nonsupportive emotion socialization and children's emotion regulation behaviors such that nonsupportive reactions to negative emotions predicted lower observed distraction and lower reported emotion regulation behaviors when children displayed lower levels of vagal suppression. No interaction was found between supportive maternal emotion socialization and vagal suppression for children's emotion regulation behaviors. Results suggest physiological regulation may serve as a buffer against nonsupportive emotion socialization. Copyright © 2011 Wiley Periodicals, Inc.
Wang, Chuan; Kokkonen, Heidi; Sandling, Johanna K; Johansson, Martin; Seddighzadeh, Maria; Padyukov, Leonid; Rantapää-Dahlqvist, Solbritt; Syvänen, Ann-Christine
2011-10-01
Two interferon regulatory factor 5 (IRF5) gene variants were examined for association with rheumatoid arthritis (RA). A total of 2300 patients with RA and 1836 controls were recruited from 2 independent RA studies in Sweden. One insertion-deletion polymorphism (CGGGG indel) and one single-nucleotide polymorphism (rs10488631) in the IRF5 gene were genotyped and analyzed within RA subgroups stratified by rheumatoid factor (RF) and anticitrullinated peptide antibodies (ACPA). The CGGGG indel was preferentially associated with the RF-negative (OR 1.29, p = 7.9 × 10(-5)) and ACPA-negative (OR 1.27, p = 7.3 × 10(-5)) RA subgroups compared to the seropositive counterparts. rs10488631 was exclusively associated within the seronegative RA subgroups (RF-negative: OR 1.24, p = 0.016; ACPA-negative: OR 1.27, p = 4.1 × 10(-3)). Both the CGGGG indel and rs10488631 are relevant for RA susceptibility, especially for seronegative RA.
Seibt, Beate; Förster, Jens
2004-07-01
The authors hypothesized that activated self-stereotypes can influence the strategies of task solution by inducing regulatory foci. More specifically, positive self-stereotypes should induce a promotion focus state of eagerness, whereas negative stereotypes should induce a prevention focus state of vigilance. Study 1 showed that a negative ascribed stereotype with regard to task performance leads to better recall for avoidance-related statements whereas a positive stereotype leads to better recall for approach-related statements. In Studies 2 and 3, both an experimental manipulation of group performance expectation and the preexisting stereotype of better verbal skills in women than in men led to faster and less accurate performance in the positive as compared with the negative stereotype group. Studies 4 and 5 showed that positive in-group stereotypes led to more creative performance whereas negative stereotypes led to better analytical performance. These results point to a possible mechanism for stereotype-threat effects. Copyright 2004 American Psychological Association
Perry, Nicole B.; Calkins, Susan D.; Nelson, Jackie A.; Leerkes, Esther M.; Marcovitch, Stuart
2011-01-01
The current study examined the moderating effect of children’s cardiac vagal suppression on the association between maternal socialization of negative emotions (supportive and non-supportive responses) and children’s emotion regulation behaviors. One hundred and ninety-seven 4-year-olds and their mothers participated. Mothers reported on their reactions to children’s negative emotions and children’s regulatory behaviors. Observed distraction, an adaptive self-regulatory strategy, and vagal suppression were assessed during a laboratory task designed to elicit frustration. Results indicated that children’s vagal suppression moderated the association between mothers’ non-supportive emotion socialization and children’s emotion regulation behaviors such that non-supportive reactions to negative emotions predicted lower observed distraction and lower reported emotion regulation behaviors when children displayed lower levels of vagal suppression. No interaction was found between supportive maternal emotion socialization and vagal suppression for children’s emotion regulation behaviors. Results suggest physiological regulation may serve as a buffer against non-supportive emotion socialization. PMID:22072217
Assessing Regulatory Emotional Self-Efficacy in Three Countries
ERIC Educational Resources Information Center
Caprara, Gian Vittorio; Giunta, Laura Di; Eisenberg, Nancy; Gerbino, Maria; Pastorelli, Concetta; Tramontano, Carlo
2008-01-01
The Regulatory Emotional Self-Efficacy (RESE) scale was developed to assess perceived self-efficacy in managing negative (NEG) and in expressing positive (POS) affect (G. V. Caprara & M. Gerbino, 2001). In this study of young adults, the factorial structure of the RESE scale was found to be similar in Italy, the United States, and Bolivia: In…
ERIC Educational Resources Information Center
Corrigan, Jay R.
2011-01-01
This classroom game illustrates the strengths and weaknesses of various regulatory frameworks aimed at internalizing negative externalities from pollution. Specifically, the game divides students into three groups--a government regulatory agency and two polluting firms--and allows them to work through a system of uniform command-and-control…
Human Variation in Short Regions Predisposed to Deep Evolutionary Conservation
Loots, Gabriela G.; Ovcharenko, Ivan
2010-01-01
The landscape of the human genome consists of millions of short islands of conservation that are 100% conserved across multiple vertebrate genomes (termed “bricks”), the majority of which are located in noncoding regions. Several hundred thousand bricks are deeply conserved reaching the genomes of amphibians and fish. Deep phylogenetic conservation of noncoding DNA has been reported to be strongly associated with the presence of gene regulatory elements, introducing bricks as a proxy to the functional noncoding landscape of the human genome. Here, we report a significant overrepresentation of bricks in the promoters of transcription factors and developmental genes, where the high level of phylogenetic conservation correlates with an increase in brick overrepresentation. We also found that the presence of a brick dictates a predisposition to evolutionary constraint, with only 0.7% of the amniota brick central nucleotides being diverged within the primate lineage—an 11-fold reduction in the divergence rate compared with random expectation. Human single-nucleotide polymorphism (SNP) data explains only 3% of primate-specific variation in amniota bricks, thus arguing for a widespread fixation of brick mutations within the primate lineage and prior to human radiation. This variation, in turn, might have been utilized as a driving force for primate- and hominoid-specific adaptation. We also discovered a pronounced deviation from the evolutionary predisposition in the human lineage, with over 20-fold increase in the substitution rate at brick SNP sites over expected values. In addition, contrary to typical brick mutations, brick variation commonly encountered in the human population displays limited, if any, signatures of negative selection as measured by the minor allele frequency and population differentiation (F-statistical measure) measures. These observations argue for the plasticity of gene regulatory mechanisms in vertebrates—with evidence of strong purifying selection acting on the gene regulatory landscape of the human genome, where widespread advantageous mutations in putative regulatory elements are likely utilized in functional diversification and adaptation of species. PMID:20093432
Babkirk, Sarah; Luehring-Jones, Peter; Dennis-Tiwary, Tracy A
2016-12-01
The use of computer-mediated communication (CMC) as a form of social interaction has become increasingly prevalent, yet few studies examine individual differences that may shed light on implications of CMC for adjustment. The current study examined neurocognitive individual differences associated with preferences to use technology in relation to social-emotional outcomes. In Study 1 (N = 91), a self-report measure, the Social Media Communication Questionnaire (SMCQ), was evaluated as an assessment of preferences for communicating positive and negative emotions on a scale ranging from purely via CMC to purely face-to-face. In Study 2, SMCQ preferences were examined in relation to event-related potentials (ERPs) associated with early emotional attention capture and reactivity (the frontal N1) and later sustained emotional processing and regulation (the late positive potential (LPP)). Electroencephalography (EEG) was recorded while 22 participants passively viewed emotional and neutral pictures and completed an emotion regulation task with instructions to increase, decrease, or maintain their emotional responses. A greater preference for CMC was associated with reduced size of and satisfaction with social support, greater early (N1) attention capture by emotional stimuli, and reduced LPP amplitudes to unpleasant stimuli in the increase emotion regulatory task. These findings are discussed in the context of possible emotion- and social-regulatory functions of CMC.
Wang, Kai; Zhang, Qin; Li, Danan; Ching, Keith; Zhang, Cathy; Zheng, Xianxian; Ozeck, Mark; Shi, Stephanie; Li, Xiaorong; Wang, Hui; Rejto, Paul; Christensen, James; Olson, Peter
2015-03-15
To identify and characterize novel, activating mutations in Notch receptors in breast cancer and to determine response to the gamma secretase inhibitor (GSI) PF-03084014. We used several computational approaches, including novel algorithms, to analyze next-generation sequencing data and related omic datasets from The Cancer Genome Atlas (TCGA) breast cancer cohort. Patient-derived xenograft (PDX) models were sequenced, and Notch-mutant models were treated with PF-03084014. Gene-expression and functional analyses were performed to study the mechanism of activation through mutation and inhibition by PF-03084014. We identified mutations within and upstream of the PEST domains of NOTCH1, NOTCH2, and NOTCH3 in the TCGA dataset. Mutations occurred via several genetic mechanisms and compromised the function of the PEST domain, a negative regulatory domain commonly mutated in other cancers. Focal amplifications of NOTCH2 and NOTCH3 were also observed, as were heterodimerization or extracellular domain mutations at lower incidence. Mutations and amplifications often activated the Notch pathway as evidenced by increased expression of canonical Notch target genes, and functional mutations were significantly enriched in the triple-negative breast cancer subtype (TNBC). PDX models were also identified that harbored PEST domain mutations, and these models were highly sensitive to PF-03084014. This work suggests that Notch-altered breast cancer constitutes a bona fide oncogenic driver segment with the most common alteration being PEST domain mutations present in multiple Notch receptors. Importantly, functional studies suggest that this newly identified class can be targeted with Notch inhibitors, including GSIs. ©2015 American Association for Cancer Research.
Abend, Rany; Sar-El, Roy; Gonen, Tal; Jalon, Itamar; Vaisvaser, Sharon; Bar-Haim, Yair; Hendler, Talma
2018-05-09
Implicit regulation of emotions involves medial-prefrontal cortex (mPFC) regions exerting regulatory control over limbic structures. Diminished regulation relates to aberrant mPFC functionality and psychopathology. Establishing means of modulating mPFC functionality could benefit research on emotion and its dysregulation. Here, we tested the capacity of transcranial direct current stimulation (tDCS) targeting mPFC to modulate subjective emotional states by facilitating implicit emotion regulation. Stimulation was applied concurrently with functional magnetic resonance imaging to validate its neurobehavioral effect. Sixteen participants were each scanned twice, counterbalancing active and sham tDCS application, while undergoing negative mood induction (clips featuring negative vs. neutral contents). Effects of stimulation on emotional experience were assessed using subjective and neural measures. Subjectively, active stimulation led to significant reduction in reported intensity of experienced emotions to negatively valenced (p = 0.005) clips but not to neutral clips (p > 0.99). Active stimulation further mitigated a rise in stress levels from pre- to post-induction (sham: p = 0.004; active: p = 0.15). Neurally, stimulation increased activation in mPFC regions associated with implicit emotion regulation (ventromedial-prefrontal cortex; subgenual anterior-cingulate cortex, sgACC), and in ventral striatum, a core limbic structure (all ps < 0.05). Stimulation also altered functional connectivity (assessed using whole-brain psycho-physiological interaction) between these regions, and with additional limbic regions. Stimulation-induced sgACC activation correlated with reported emotion intensity and depressive symptoms (rs > 0.64, ps < 0.018), suggesting individual differences in stimulation responsivity. Results of this study indicate the potential capacity of tDCS to facilitate brain activation in mPFC regions underlying implicit regulation of emotion and accordingly modulate subjective emotional experiences. © 2018 International Neuromodulation Society.
HPK1 competes with ADAP for SLP-76 binding and via Rap1 negatively affects T-cell adhesion.
Patzak, Irene M; Königsberger, Sebastian; Suzuki, Akira; Mak, Tak W; Kiefer, Friedemann
2010-11-01
The hematopoietic progenitor kinase 1 (HPK1) signals into MAPK and NFκB pathways downstream of immunoreceptors, but enigmatically is a negative regulator of leukocytes. Here, we report a novel role for HPK1 in regulating the activation of the adhesion molecule leukocyte function-associated antigen-1 (LFA-1). Upon TCR stimulation, mediated by binding of adhesion and degranulation promoting adaptor protein (ADAP) to SLP-76, a ternary complex composed of ADAP/55-kDa src kinase associated phosphoprotein (SKAP-55) and RIAM translocates to the membrane and causes membrane recruitment of the active small GTPase Ras-related protein 1 (Rap1). Active Rap1, via its binding to RapL (regulator for cell adhesion and polarization enriched in lymphoid tissues), mediates LFA-1 integrin activation. We show here that HPK1, which also binds SLP-76, compete with ADAP for SLP-76 binding. In addition, HPK1 dampens Rap1 activation, resulting in decreased LFA-1 activity. Analysis of HPK1-deficient T cells revealed increased ADAP recruitment to SLP-76 and elevated Rap1 activation in those cells, leading to increased adhesion to ICAM-1 and cell spreading. Altogether, these results describe a novel function for HPK1 in linking TCR signaling to cell adhesion regulation and provide a mechanistic explanation for the negative regulatory role of HPK1 in T-cell biology.
Structural Analysis of the Hg(II)-Regulatory Protein Tn501 MerR from Pseudomonas aeruginosa
NASA Astrophysics Data System (ADS)
Wang, Dan; Huang, Shanqing; Liu, Pingying; Liu, Xichun; He, Yafeng; Chen, Weizhong; Hu, Qingyuan; Wei, Tianbiao; Gan, Jianhua; Ma, Jing; Chen, Hao
2016-09-01
The metalloprotein MerR is a mercury(II)-dependent transcriptional repressor-activator that responds to mercury(II) with extraordinary sensitivity and selectivity. It’s widely distributed in both Gram-negative and Gram-positive bacteria but with barely detectable sequence identities between the two sources. To provide structural basis for the considerable biochemical and biophysical experiments previously performed on Tn501 and Tn21 MerR from Gram-negative bacteria, we analyzed the crystal structure of mercury(II)-bound Tn501 MerR. The structure in the metal-binding domain provides Tn501 MerR with a high affinity for mercury(II) and the ability to distinguish mercury(II) from other metals with its unique planar trigonal coordination geometry, which is adopted by both Gram-negative and Gram-positive bacteria. The mercury(II) coordination state in the C-terminal metal-binding domain is transmitted through the allosteric network across the dimer interface to the N-terminal DNA-binding domain. Together with the previous mutagenesis analyses, the present data indicate that the residues in the allosteric pathway have a central role in maintaining the functions of Tn501 MerR. In addition, the complex structure exhibits significant differences in tertiary and quaternary structural arrangements compared to those of Bacillus MerR from Gram-positive bacteria, which probably enable them to function with specific promoter DNA with different spacers between -35 and -10 elements.
Sánchez-Vallet, Andrea; López, Gemma; Ramos, Brisa; Delgado-Cerezo, Magdalena; Riviere, Marie-Pierre; Llorente, Francisco; Fernández, Paula Virginia; Miedes, Eva; Estevez, José Manuel; Grant, Murray; Molina, Antonio
2012-01-01
Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi. PMID:23037505
Danger, Jessica L; Makthal, Nishanth; Kumaraswami, Muthiah; Sumby, Paul
2015-12-01
The group A Streptococcus (GAS; Streptococcus pyogenes) causes more than 700 million human infections each year. The success of this pathogen can be traced in part to the extensive arsenal of virulence factors that are available for expression in temporally and spatially specific manners. To modify the expression of these virulence factors, GAS use both protein- and RNA-based regulators, with the best-characterized RNA-based regulator being the small regulatory RNA (sRNA) FasX. FasX is a 205-nucleotide sRNA that contributes to GAS virulence by enhancing the expression of the thrombolytic secreted virulence factor streptokinase and by repressing the expression of the collagen-binding cell surface pili. Here, we have expanded the FasX regulon, showing that this sRNA also negatively regulates the expression of the adhesion- and internalization-promoting, fibronectin-binding proteins PrtF1 and PrtF2. FasX posttranscriptionally regulates the expression of PrtF1/2 through a mechanism that involves base pairing to the prtF1 and prtF2 mRNAs within their 5' untranslated regions, overlapping the mRNA ribosome-binding sites. Thus, duplex formation between FasX and the prtF1 and prtF2 mRNAs blocks ribosome access, leading to an inhibition of mRNA translation. Given that FasX positively regulates the expression of the spreading factor streptokinase and negatively regulates the expression of the collagen-binding pili and of the fibronectin-binding PrtF1/2, our data are consistent with FasX functioning as a molecular switch that governs the transition of GAS between the colonization and dissemination stages of infection. More than half a million deaths each year are a consequence of infections caused by GAS. Insights into how this pathogen regulates the production of proteins during infection may facilitate the development of novel therapeutic or preventative regimens aimed at inhibiting this activity. Here, we have expanded insight into the regulatory activity of the GAS small RNA FasX. In addition to identifying that FasX reduces the abundance of the cell surface-located fibronectin-binding proteins PrtF1/2, fibronectin is present in high abundance in human tissues, and we have determined the mechanism behind this regulation. Importantly, as FasX is the only mechanistically characterized regulatory RNA in GAS, it serves as a model RNA in this and related pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves
2014-01-01
The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. PMID:25549671
Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves
2014-12-01
The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. © 2014 American Society of Plant Biologists. All rights reserved.
The Association between Infants' Self-Regulatory Behavior and MAOA Gene Polymorphism
ERIC Educational Resources Information Center
Zhang, Minghao; Chen, Xinyin; Way, Niobe; Yoshikawa, Hirokazu; Deng, Huihua; Ke, Xiaoyan; Yu, Weiwei; Chen, Ping; He, Chuan; Chi, Xia; Lu, Zuhong
2011-01-01
Self-regulatory behavior in early childhood is an important characteristic that has considerable implications for the development of adaptive and maladaptive functioning. The present study investigated the relations between a functional polymorphism in the upstream region of monoamine oxidase A gene (MAOA) and self-regulatory behavior in a sample…
The β-galactoside-binding protein galectin-9 is critical in regulating the immune response, but the mechanism by which it functions remains unclear. We have demonstrated that galectin-9 is highly expressed by induced regulatory T cells (iTreg) and was crucial for the generation and function of iTreg cells, but not natural regulatory T (nTreg) cells. Galectin-9 expression
Blufensin1 Negatively Impacts Basal Defense in Response to Barley Powdery Mildew
USDA-ARS?s Scientific Manuscript database
Plants have evolved complex regulatory mechanisms to control the defense response against microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSIN1 (BLN1), a small peptide ...
Chertkova, Aleksandra A; Schiffman, Joshua S; Nuzhdin, Sergey V; Kozlov, Konstantin N; Samsonova, Maria G; Gursky, Vitaly V
2017-02-07
Cis-regulatory sequences are often composed of many low-affinity transcription factor binding sites (TFBSs). Determining the evolutionary and functional importance of regulatory sequence composition is impeded without a detailed knowledge of the genotype-phenotype map. We simulate the evolution of regulatory sequences involved in Drosophila melanogaster embryo segmentation during early development. Natural selection evaluates gene expression dynamics produced by a computational model of the developmental network. We observe a dramatic decrease in the total number of transcription factor binding sites through the course of evolution. Despite a decrease in average sequence binding energies through time, the regulatory sequences tend towards organisations containing increased high affinity transcription factor binding sites. Additionally, the binding energies of separate sequence segments demonstrate ubiquitous mutual correlations through time. Fewer than 10% of initial TFBSs are maintained throughout the entire simulation, deemed 'core' sites. These sites have increased functional importance as assessed under wild-type conditions and their binding energy distributions are highly conserved. Furthermore, TFBSs within close proximity of core sites exhibit increased longevity, reflecting functional regulatory interactions with core sites. In response to elevated mutational pressure, evolution tends to sample regulatory sequence organisations with fewer, albeit on average, stronger functional transcription factor binding sites. These organisations are also shaped by the regulatory interactions among core binding sites with sites in their local vicinity.
Ge, Xiaochun; Li, Guo-Jing; Wang, Sheng-Bing; Zhu, Huifen; Zhu, Tong; Wang, Xun; Xia, Yiji
2007-01-01
Plants have evolved complicated regulatory systems to control immune responses. Both positive and negative signaling pathways interplay to coordinate development of a resistance response with the appropriate amplitude and duration. AtNUDT7, a Nudix domain-containing protein in Arabidopsis (Arabidopsis thaliana) that hydrolyzes nucleotide derivatives, was found to be a negative regulator of the basal defense response, and its loss-of-function mutation results in enhanced resistance to infection by Pseudomonas syringae. The nudt7 mutation does not cause a strong constitutive disease resistance phenotype, but it leads to a heightened defense response, including accelerated activation of defense-related genes that can be triggered by pathogenic and nonpathogenic microorganisms. The nudt7 mutation enhances two distinct defense response pathways: one independent of and the other dependent on NPR1 and salicylic acid accumulation. In vitro enzymatic assays revealed that ADP-ribose and NADH are preferred substrates of NUDT7, and the hydrolysis activity of NUDT7 is essential for its biological function and is sensitive to inhibition by Ca2+. Further analyses indicate that ADP-ribose is not likely the physiological substrate of NUDT7. However, the nudt7 mutation leads to perturbation of cellular redox homeostasis and a higher level of NADH in pathogen-challenged leaves. The study suggests that the alteration in cellular antioxidant status caused by the nudt7 mutation primes the cells for the amplified defense response and NUDT7 functions to modulate the defense response to prevent excessive stimulation. PMID:17660350
Sun, Liping; Jin, Hao; Li, Hui
2016-07-05
There are many molecules that define regulatory T cells (Tregs) phenotypically and functionally. Glycoprotein A repetitions predominant (GARP) is a transmembrane protein containing leucine rich repeats. Recently, GARP is found to express highly on the surface of activated Tregs. The combination of GARP and other surface molecules isolates Tregs with higher purity. Besides, GARP is a cell surface molecule of Tregs that maintains their regulatory function and homeosatsis. GARP has also been proved to promote the activation and secretion of transforming growth factor β (TGF-β). Moreover, its potential value in cancer immunotherapy is also discussed in this work.
Sarvaria, Anushruti; Basar, Rafet; Mehta, Rohtesh S; Shaim, Hila; Muftuoglu, Muharrem; Khoder, Ahmad; Sekine, Takuye; Gokdemir, Elif; Kondo, Kayo; Marin, David; Daher, May; Alousi, Amin M; Alsuliman, Abdullah; Liu, Enli; Oran, Betul; Olson, Amanda; Jones, Roy B; Popat, Uday; Hosing, Chitra; Champlin, Richard; Shpall, Elizabeth J; Rezvani, Katayoun
2016-09-08
Cord blood (CB) offers a number of advantages over other sources of hematopoietic stem cells, including a lower rate of chronic graft-versus-host disease (cGVHD) in the presence of increased HLA disparity. Recent research in experimental models of autoimmunity and in patients with autoimmune or alloimmune disorders has identified a functional group of interleukin-10 (IL-10)-producing regulatory B cells (Bregs) that negatively regulate T-cell immune responses. At present, however, there is no consensus on the phenotypic signature of Bregs, and their prevalence and functional characteristics in CB remain unclear. Here, we demonstrate that CB contains an abundance of B cells with immunoregulatory function. Bregs were identified in both the naive and transitional B-cell compartments and suppressed T-cell proliferation and effector function through IL-10 production as well as cell-to-cell contact involving CTLA-4. We further show that the suppressive capacity of CB-derived Bregs can be potentiated through CD40L signaling, suggesting that inflammatory environments may induce their function. Finally, there was robust recovery of IL-10-producing Bregs in patients after CB transplantation, to higher frequencies and absolute numbers than seen in the peripheral blood of healthy donors or in patients before transplant. The reconstituting Bregs showed strong in vitro suppressive activity against allogeneic CD4(+) T cells, but were deficient in patients with cGVHD. Together, these findings identify a rich source of Bregs and suggest a protective role for CB-derived Bregs against cGVHD development in CB recipients. This advance could propel the development of Breg-based strategies to prevent or ameliorate this posttransplant complication. © 2016 by The American Society of Hematology.
Panayiotou, Richard; Miralles, Francesc; Pawlowski, Rafal; Diring, Jessica; Flynn, Helen R; Skehel, Mark; Treisman, Richard
2016-01-01
The myocardin-related transcription factors (MRTF-A and MRTF-B) regulate cytoskeletal genes through their partner transcription factor SRF. The MRTFs bind G-actin, and signal-regulated changes in cellular G-actin concentration control their nuclear accumulation. The MRTFs also undergo Rho- and ERK-dependent phosphorylation, but the function of MRTF phosphorylation, and the elements and signals involved in MRTF-A nuclear export are largely unexplored. We show that Rho-dependent MRTF-A phosphorylation reflects relief from an inhibitory function of nuclear actin. We map multiple sites of serum-induced phosphorylation, most of which are S/T-P motifs and show that S/T-P phosphorylation is required for transcriptional activation. ERK-mediated S98 phosphorylation inhibits assembly of G-actin complexes on the MRTF-A regulatory RPEL domain, promoting nuclear import. In contrast, S33 phosphorylation potentiates the activity of an autonomous Crm1-dependent N-terminal NES, which cooperates with five other NES elements to exclude MRTF-A from the nucleus. Phosphorylation thus plays positive and negative roles in the regulation of MRTF-A. DOI: http://dx.doi.org/10.7554/eLife.15460.001 PMID:27304076
Shao, Robin; Keuper, Kati; Geng, Xiujuan; Lee, Tatia M C
2016-08-01
Evidence indicates meditation facilitates affective regulation and reduces negative affect. It also influences resting-state functional connectivity between affective networks and the posterior cingulate (PCC)/precuneus, regions critically implicated in self-referential processing. However, no longitudinal study employing active control group has examined the effect of meditation training on affective processing, PCC/precuneus connectivity, and their association. Here, we report that eight-week meditation, but not relaxation, training 'neutralized' affective processing of positive and negative stimuli in healthy elderly participants. Additionally, meditation versus relaxation training increased the positive connectivity between the PCC/precuneus and the pons, the direction of which was largely directed from the pons to the PCC/precuneus, as revealed by dynamic causal modeling. Further, changes in connectivity between the PCC/precuneus and pons predicted changes in affective processing after meditation training. These findings indicate meditation promotes self-referential affective regulation based on increased regulatory influence of the pons on PCC/precuneus, which new affective-processing strategy is employed across both resting state and when evaluating affective stimuli. Such insights have clinical implications on interventions on elderly individuals with affective disorders. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, J.A.; Reynolds-Kohler, C.; Smith, B.A.
1987-11-01
To analyze the significance of inducible DNase I-hypersensitive sites occurring in the 5'-flanking sequence of the major immediate-early gene of human cytomegalovirus (HCMV), various deleted portions of the HCMV immediate-early promoter regulatory region were attached to the chloramphenicol acetyltransferase (CAT) gene and assayed for activity in transiently transfected undifferentiated and differentiated human teratocarcinoma cells, Tera-2. Assays of progressive deletions in the promoter regulatory region indicated that removal of a 395-base-pair portion of this element (nucleotides -750 to -1145) containing two inducible DNase I sites which correlate with gene expression resulted in a 7.5-fold increase in CAT activity in undifferentiated cells.more » However, in permissive differentiated Tera-2, human foreskin fibroblast, and HeLa cells, removal of this regulatory region resulted in decreased activity. In addition, attachment of this HCMV upstream element to a homologous or heterologous promoter increased activity three-to fivefold in permissive cells. Therefore, a cis regulatory element exists 5' to the enhancer of the major immediate-early gene of HCMV. This element negatively modulates expression in nonpermissive cells but positively influences expression in permissive cells.« less
Wang, S-C; Li, Y-H; Piao, H-L; Hong, X-W; Zhang, D; Xu, Y-Y; Tao, Y; Wang, Y; Yuan, M-M; Li, D-J; Du, M-R
2015-01-01
CD8+ T cells are critical in the balance between fetal tolerance and antiviral immunity. T-cell immunoglobulin mucin-3 (Tim-3) and programmed cell death-1 (PD-1) are important negative immune regulatory molecules involved in viral persistence and tumor metastasis. Here, we demonstrate that Tim-3+PD-1+CD8+ T cells from decidua greatly outnumbered those from peripheral blood during human early pregnancy. Co-culture of trophoblasts with CD8+ T cells upregulated PD-1+ and/or Tim-3+ immune cells. Furthermore, the population of CD8+ T cells co-expressing PD-1 and Tim-3 was enriched within the intermediate memory subset in decidua. This population exhibited high proliferative activity and Th2-type cytokine producing capacity. Blockade of Tim-3 and PD-1 resulted in decreased in vitro proliferation and Th2-type cytokine production while increased trophoblast killing and IFN-γ producing capacities of CD8+ T cells. Pregnant CBA/J females challenged with Tim-3 and/or PD-1 blocking antibodies were more susceptible to fetal loss, which was associated with CD8+ T-cell dysfunction. Importantly, the number and function of Tim-3+PD-1+CD8+ T cells in decidua were significantly impaired in miscarriage. These findings underline the important roles of Tim-3 and PD-1 pathways in regulating decidual CD8+ T-cell function and maintaining normal pregnancy. PMID:25950468
Nuclear Receptors in Bone Physiology and Diseases
Youn, Min-Young; Inoue, Kazuki; Takada, Ichiro; Kouzmenko, Alexander; Kato, Shigeaki
2013-01-01
During the last decade, our view on the skeleton as a mere solid physical support structure has been transformed, as bone emerged as a dynamic, constantly remodeling tissue with systemic regulatory functions including those of an endocrine organ. Reflecting this remarkable functional complexity, distinct classes of humoral and intracellular regulatory factors have been shown to control vital processes in the bone. Among these regulators, nuclear receptors (NRs) play fundamental roles in bone development, growth, and maintenance. NRs are DNA-binding transcription factors that act as intracellular transducers of the respective ligand signaling pathways through modulation of expression of specific sets of cognate target genes. Aberrant NR signaling caused by receptor or ligand deficiency may profoundly affect bone health and compromise skeletal functions. Ligand dependency of NR action underlies a major strategy of therapeutic intervention to correct aberrant NR signaling, and significant efforts have been made to design novel synthetic NR ligands with enhanced beneficial properties and reduced potential negative side effects. As an example, estrogen deficiency causes bone loss and leads to development of osteoporosis, the most prevalent skeletal disorder in postmenopausal women. Since administration of natural estrogens for the treatment of osteoporosis often associates with undesirable side effects, several synthetic estrogen receptor ligands have been developed with higher therapeutic efficacy and specificity. This review presents current progress in our understanding of the roles of various nuclear receptor-mediated signaling pathways in bone physiology and disease, and in development of advanced NR ligands for treatment of common skeletal disorders. PMID:23589826
Li, Xingxing; Huang, Shixin; Van de Meene, Allison M.L.; Tran, Mai L.; Killeavy, Erin; Mercure, Danielle; Burton, Rachel A.
2017-01-01
The secondary cell walls of tracheary elements and fibers are rich in cellulose microfibrils that are helically oriented and laterally aggregated. Support cells within the leaf midribs of mosses deposit cellulose-rich secondary cell walls, but their biosynthesis and microfibril organization have not been examined. Although the Cellulose Synthase (CESA) gene families of mosses and seed plants diversified independently, CESA knockout analysis in the moss Physcomitrella patens revealed parallels with Arabidopsis (Arabidopsis thaliana) in CESA functional specialization, with roles for both subfunctionalization and neofunctionalization. The similarities include regulatory uncoupling of the CESAs that synthesize primary and secondary cell walls, a requirement for two or more functionally distinct CESA isoforms for secondary cell wall synthesis, interchangeability of some primary and secondary CESAs, and some CESA redundancy. The cellulose-deficient midribs of ppcesa3/8 knockouts provided negative controls for the structural characterization of stereid secondary cell walls in wild type P. patens. Sum frequency generation spectra collected from midribs were consistent with cellulose microfibril aggregation, and polarization microscopy revealed helical microfibril orientation only in wild type leaves. Thus, stereid secondary walls are structurally distinct from primary cell walls, and they share structural characteristics with the secondary walls of tracheary elements and fibers. We propose a mechanism for the convergent evolution of secondary walls in which the deposition of aggregated and helically oriented microfibrils is coupled to rapid and highly localized cellulose synthesis enabled by regulatory uncoupling from primary wall synthesis. PMID:28768816
Team structure and regulatory focus: the impact of regulatory fit on team dynamic.
Dimotakis, Nikolaos; Davison, Robert B; Hollenbeck, John R
2012-03-01
We report a within-teams experiment testing the effects of fit between team structure and regulatory task demands on task performance and satisfaction through average team member positive affect and helping behaviors. We used a completely crossed repeated-observations design in which 21 teams enacted 2 tasks with different regulatory focus characteristics (prevention and promotion) in 2 organizational structures (functional and divisional), resulting in 84 observations. Results suggested that salient regulatory demands inherent in the task interacted with structure to determine objective and subjective team-level outcomes, such that functional structures were best suited to (i.e., had best fit with) tasks with a prevention regulatory focus and divisional structures were best suited to tasks with a promotion regulatory focus. This contingency finding integrates regulatory focus and structural contingency theories, and extends them to the team level with implications for models of performance, satisfaction, and team dynamics.
Code of Federal Regulations, 2012 CFR
2012-04-01
... COMMODITY EXCHANGE ACT Miscellaneous § 1.59 Activities of self-regulatory organization employees, governing...) Self-regulatory organization means “self-regulatory organization,” as defined in Commission regulation... governors of a self-regulatory organization. (3) Committee member means a member, or functional equivalent...
Code of Federal Regulations, 2011 CFR
2011-04-01
... COMMODITY EXCHANGE ACT Miscellaneous § 1.59 Activities of self-regulatory organization employees, governing...) Self-regulatory organization means “self-regulatory organization,” as defined in Commission regulation... governors of a self-regulatory organization. (3) Committee member means a member, or functional equivalent...
Code of Federal Regulations, 2010 CFR
2010-04-01
... COMMODITY EXCHANGE ACT Miscellaneous § 1.59 Activities of self-regulatory organization employees, governing...) Self-regulatory organization means “self-regulatory organization,” as defined in Commission regulation... governors of a self-regulatory organization. (3) Committee member means a member, or functional equivalent...
Hyytiäinen, H; Montesano, M; Palva, E T
2001-08-01
The production of the main virulence determinants, the extracellular plant cell wall-degrading enzymes, and hence virulence of Erwinia carotovora subsp. carotovora is controlled by a complex regulatory network. One of the global regulators, the response regulator ExpA, a GacA homolog, is required for transcriptional activation of the extracellular enzyme genes of this soft-rot pathogen. To elucidate the mechanism of ExpA control as well as interactions with other regulatory systems, we isolated second-site transposon mutants that would suppress the enzyme-negative phenotype of an expA (gacA) mutant. Inactivation of kdgR resulted in partial restoration of extracellular enzyme production and virulence to the expA mutant, suggesting an interaction between the two regulatory pathways. This interaction was mediated by the RsmA-rsmB system. Northern analysis was used to show that the regulatory rsmB RNA was under positive control of ExpA. Conversely, the expression of rsmA encoding a global repressor was under negative control of ExpA and positive control of KdgR. This study indicates a central role for the RsmA-rsmB regulatory system during pathogenesis, integrating signals from the ExpA (GacA) and KdgR global regulators of extracellular enzyme production in E. carotovora subsp. carotovora.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chengzhi; Wang, Liangyan; Li, Tao
2014-07-18
Highlights: • We report a novel PerR-like protein of Fur family in D. radiodurans that is not annotated in the current database. • drperR responses to H{sub 2}O{sub 2} and functions as a negative regulator of katE and dps. • We provided implications on how to utilize sequenced genome data and the importance of genome data mining. • This study adds knowledge to complicated regulatory network that responds to ROS stress in D. radiodurans. - Abstract: Response and defense systems against reactive oxygen species (ROS) contribute to the remarkable resistance of Deinococcus radiodurans to oxidative stress induced by oxidants ormore » radiation. However, mechanisms involved in ROS response and defense systems of D. radiodurans are not well understood. Fur family proteins are important in ROS response. Only a single Fur homolog is predicted by sequence similarity in the current D. radiodurans genome database. Our bioinformatics analysis demonstrated an additional guanine nucleotide in the genome of D. radiodurans that is not in the database, leading to the discovery of another Fur homolog DrPerR. Gene disruption mutant of DrPerR showed enhanced resistance to hydrogen peroxide (H{sub 2}O{sub 2}) and increased catalase activity in cell extracts. Real-time PCR results indicated that DrPerR functions as a repressor of the catalase gene katE. Meanwhile, derepression of dps (DNA-binding proteins from starved cells) gene under H{sub 2}O{sub 2} stress by DrPerR point to its regulatory role in metal ions hemostasis. Thus, DrPerR might function as a Fur homolog protein which is involved in ROS response and defense. These results help clarify the complicated regulatory network that responds to ROS stress in D. radiodurans.« less
Li, Ming; Xie, Zhongyu; Wang, Peng; Li, Jinteng; Liu, Wenjie; Tang, Su'an; Liu, Zhenhua; Wu, Xiaohua; Wu, Yanfeng; Shen, Huiyong
2018-05-10
Mesenchymal stem cells (MSCs) are important pluripotent stem cells and a major source of adipocytes in the body. However, the mechanism of adipogenic differentiation has not yet been completely elucidated. In this study, the long noncoding RNA GAS5 was found to be negatively correlated with MSC adipogenic differentiation. GAS5 overexpression negatively regulated adipocyte formation, whereas GAS5 knockdown had the opposite effect. Further mechanistic analyses using luciferase reporter assays revealed that GAS5 regulates the adipogenic differentiation of MSCs by acting as competing endogenous RNA (ceRNA) to sponge miR-18a, which promotes adipogenic differentiation. Mutation of the binding sites for GAS5 in miR-18a abolished the effect of the interaction. The miR-18a mimic and inhibitor reversed the negative regulatory effect of GAS5 on MSCs adipogenic differentiation. In addition, GAS5 inhibited miR-18a, which downregulates connective tissue growth factor (CTGF) expression, to negatively regulate the adipogenic differentiation of MSCs. Taken together, the results show that GAS5 serves as a sponge for miR-18a, inhibiting its capability to suppress CTGF protein translation and ultimately decreasing the adipogenic differentiation of MSCs. GAS5 is an important molecule involved in the adipogenic differentiation of MSCs and may contribute to the functional regulation and clinical applications of MSCs.
Nadjar-Boger, Elisabeth; Hinits, Yaniv; Funkenstein, Bruria
2012-09-25
Myostatin (MSTN) is a negative regulator of skeletal muscle growth. In contrast to mammals, fish possess at least two paralogs of MSTN: MSTN-1 and MSTN-2. In this study, we analyzed the structural-functional features of the four variants of Sparus aurata MSTN-2 5'-flanking region: saMSTN-2a, saMSTN-2as, saMSTN-2b and saMSTN-2c. In silico analysis revealed numerous putative cis regulatory elements including several E-boxes known as binding sites to myogenic transcription factors. Transient transfection experiments using non-muscle and muscle cell lines showed surprisingly high transcriptional activity in muscle cells, suggesting the presence of regulatory elements unique to differentiated myotubes. These observations were confirmed by in situ intramuscular injections of promoter DNA followed by reporter gene assays. Moreover, high promoter activity was found in differentiated neural cell, in agreement with MSTN-2 expression in brain. Progressive 5'-deletion analysis, using reporter gene assays, showed that the core promoter is located within the first -127 bp upstream of the ATG, and suggested the presence of regulatory elements that either repress or induce transcriptional activity. Transient transgenic zebrafish provided evidence for saMSTN-2 promoter ability to direct GFP expression to myofibers. Finally, our data shows that although no mature saMSTN-2 mRNA is observed in muscle; unspliced forms accumulate, confirming high level of transcription. In conclusion, our study shows for the first time that MSTN-2 promoter is a very robust promoter, especially in muscle cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Characterization and functional analysis of the Paralichthys olivaceus prdm1 gene promoter.
Li, Peizhen; Wang, Bo; Cao, Dandan; Liu, Yuezhong; Zhang, Quanqi; Wang, Xubo
2017-10-01
PR domain containing protein 1 (Prdm1) is a transcriptional repressor identified in various species and plays multiple important roles in immune response and embryonic development. However, little is known about the transcriptional regulation of the prdm1 gene. This study aims to characterize the promoter of Paralichthys olivaceus prdm1 (Po-prdm1) gene and determine the regulatory mechanism of Po-prdm1 expression. A 2000bp-long 5'-flanking region (translation initiation site designated as +1) of the Po-prdm1 gene was isolated and characterized. The regulatory elements in this fragment were then investigated and many putative transcription factor (TF) binding sites involved in immunity and multiple tissue development were identified. A 5'-deletion analysis was then conducted, and the ability of the deletion mutants to promote luciferase and green fluorescent protein (GFP) expression in a flounder gill cell line was examined. The results revealed that the minimal promoter is located in the region between -446 and -13bp, and the region between -1415 and -13bp enhanced the promoter activity. Site-directed mutation analysis was subsequently performed on the putative regulatory elements sites, and the results indicated that FOXP1, MSX and BCL6 binding sites play negative functional roles in the regulation of the Po-prdm1 expression in FG cells. In vivo analysis demonstrated that a GFP reporter gene containing 1.4kb-long promoter fragment (-1415/-13) was expressed in the head and trunk muscle fibres of transient transgenic zebrafish embryos. Our study provided the basic information for the exploration of Po-prdm1 regulation and expression. Copyright © 2017 Elsevier Inc. All rights reserved.
Adriaenssens, Alice; Lam, Brian Yee Hong; Billing, Lawrence; Skeffington, Katie; Sewing, Sabine
2015-01-01
The stomach epithelium contains a myriad of enteroendocrine cells that modulate a range of physiological functions, including postprandial secretion of regulatory peptides, gastric motility, and nutrient absorption. Somatostatin (SST)-producing D-cells are present in the oxyntic and pyloric regions of the stomach, and provide a tonic inhibitory tone that regulates activity of neighboring enteroendocrine cells and gastric acid secretion. Cellular mechanisms underlying the effects of regulatory factors on gastric D-cells are poorly defined due to problems in identifying primary D-cells, and uncertainty remains about which stimuli influence D-cells directly. In this study, we introduce a transgenic mouse line, SST-Cre, which upon crossing with Cre reporter strains, facilitates the identification and purification of gastric D-cells, or cell-specific expression of genetically encoded calcium indicators. Populations of D-cells from the gastric antrum and corpus were isolated and analyzed by RNA sequencing and quantitative RT-PCR. The expression of hormones, hormone receptors, neurotransmitter receptors, and nutrient receptors was quantified. Pyy, Gipr, Chrm4, Calcrl, Taar1, and Casr were identified as genes that are highly enriched in D-cells compared with SST-negative cells. Hormone secretion assays performed in mixed gastric epithelial cultures confirmed that SST secretion is regulated by incretin hormones, cholecystokinin, acetylcholine, vasoactive intestinal polypeptide, calcitonin gene-related polypeptide, oligopetides, and trace amines. Cholecystokinin and oligopeptides elicited increases in intracellular calcium in single-cell imaging experiments performed using cultured D-cells. Our data provide the first transcriptomic analysis and functional characterization of gastric D-cells, and identify regulatory pathways that underlie the direct detection of stimuli by this cell type. PMID:26241122
Wiendl, Heinz; Mitsdoerffer, Meike; Schneider, Dagmar; Chen, Lieping; Lochmüller, Hanns; Melms, Arthur; Weller, Michael
2003-10-01
B7-H1 is a novel B7 family protein attributed to costimulatory and immune regulatory functions. Here we report that human myoblasts cultured from control subjects and patients with inflammatory myopathies as well as TE671 muscle rhabdomyosarcoma cells express high levels of B7-H1 after stimulation with the inflammatory cytokine IFN-gamma. Coculture experiments of MHC class I/II-positive myoblasts with CD4 and CD8 T cells in the presence of antigen demonstrated the functional consequences of muscle-related B7-H1 expression: production of inflammatory cytokines, IFN-gamma and IL-2, by CD4 as well CD8 T cells was markedly enhanced in the presence of a neutralizing anti-B7-H1 antibody. This observation was paralleled by an augmented expression of the T cell activation markers CD25, ICOS, and CD69, thus showing B7-H1-mediated inhibition of T cell activation. Further, we investigated 23 muscle biopsy specimens from patients with polymyositis (PM), inclusion body myositis (IBM), dermatomyositis (DM), and nonmyopathic controls for B7-H1 expression by immunohistochemistry: B7-H1 was expressed in PM, IBM, and DM specimens but not in noninflammatory and nonmyopathic controls. Staining was predominantly localized to areas of strong inflammation and to muscle cells as well as mononuclear cells. These data highlight the immune regulatory properties of muscle cells and suggest that B7-H1 expression represents an inhibitory mechanism induced upon inflammatory stimuli and aimed at protecting muscle fibers from immune aggression.
Carden, Tony; Goode, Natassia; Read, Gemma J M; Salmon, Paul M
2017-03-15
Like most work systems, the domain of adventure activities has seen a series of serious incidents and subsequent calls to improve regulation. Safety regulation systems aim to promote safety and reduce accidents. However, there is scant evidence they have led to improved safety outcomes. In fact there is some evidence that the poor integration of regulatory system components has led to adverse safety outcomes in some contexts. Despite this, there is an absence of methods for evaluating regulatory and compliance systems. This article argues that sociotechnical systems theory and methods provide a suitable framework for evaluating regulatory systems. This is demonstrated through an analysis of a recently introduced set of adventure activity regulations. Work Domain Analysis (WDA) was used to describe the regulatory system in terms of its functional purposes, values and priority measures, purpose-related functions, object-related processes and cognitive objects. This allowed judgement to be made on the nature of the new regulatory system and on the constraints that may impact its efficacy following implementation. Importantly, the analysis suggests that the new system's functional purpose of ensuring safe activities is not fully supported in terms of the functions and objects available to fulfil them. Potential improvements to the design of the system are discussed along with the implications for regulatory system design and evaluation across the safety critical domains generally. Copyright © 2017 Elsevier Ltd. All rights reserved.
Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation.
Manteiga, Sara; Choi, Kyungoh; Jayaraman, Arul; Lee, Kyongbum
2013-01-01
Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.
Taylor, Sarah Y.; Dixon, Hannah M.; Yoganayagam, Shobana; Price, Natalie; Lang, Derek
2013-01-01
Folic acid enhances endothelial function and improves outcome in primary prevention of cardiovascular disease. The exact intracellular signalling mechanisms involved remain elusive and were therefore the subject of this study. Particular focus was placed on folic acid-induced changes in posttranslational modifications of endothelial nitric oxide synthase (eNOS). Cultured endothelial cells were exposed to folic acid in the absence or presence of phosphatidylinositol-3' kinase/Akt (PI3K/Akt) inhibitors. The phosphorylation status of eNOS was determined via western blotting. The activities of eNOS and PI3K/Akt were evaluated. The interaction of eNOS with caveolin-1, Heat-Shock Protein 90 and calmodulin was studied using co-immunoprecipitation. Intracellular localisation of eNOS was investigated using sucrose gradient centrifugation and confocal microscopy. Folic acid promoted eNOS dephosphorylation at negative regulatory sites, and increased phosphorylation at positive regulatory sites. Modulation of phosphorylation status was concomitant with increased cGMP concentrations, and PI3K/Akt activity. Inhibition of PI3K/Akt revealed specific roles for this kinase pathway in folic acid-mediated eNOS phosphorylation. Regulatory protein and eNOS protein associations were altered in favour of a positive regulatory effect in the absence of bulk changes in intracellular eNOS localisation. Folic acid-mediated eNOS activation involves the modulation of eNOS phosphorylation status at multiple residues and positive changes in important protein–protein interactions. Such intracellular mechanisms may in part explain improvements in clinical vascular outcome following folic acid treatment. PMID:23796957
ApoHRP-based assay to measure intracellular regulatory heme.
Atamna, Hani; Brahmbhatt, Marmik; Atamna, Wafa; Shanower, Gregory A; Dhahbi, Joseph M
2015-02-01
The majority of the heme-binding proteins possess a "heme-pocket" that stably binds to heme. Usually known as housekeeping heme-proteins, they participate in a variety of metabolic reactions (e.g., catalase). Heme also binds with lower affinity to the "Heme-Regulatory Motifs" (HRM) in specific regulatory proteins. This type of heme binding is known as exchangeable or regulatory heme (RH). Heme binding to HRM proteins regulates their function (e.g., Bach1). Although there are well-established methods for assaying total cellular heme (e.g., heme-proteins plus RH), currently there is no method available for measuring RH independent of the total heme (TH). The current study describes and validates a new method to measure intracellular RH. This method is based on the reconstitution of apo-horseradish peroxidase (apoHRP) with heme to form holoHRP. The resulting holoHRP activity is then measured with a colorimetric substrate. The results show that apoHRP specifically binds RH but not with heme from housekeeping heme-proteins. The RH assay detects intracellular RH. Furthermore, using conditions that create positive (hemin) or negative (N-methyl protoporphyrin IX) controls for heme in normal human fibroblasts (IMR90), the RH assay shows that RH is dynamic and independent of TH. We also demonstrated that short-term exposure to subcytotoxic concentrations of lead (Pb), mercury (Hg), or amyloid-β (Aβ) significantly alters intracellular RH with little effect on TH. In conclusion the RH assay is an effective assay to investigate intracellular RH concentration and demonstrates that RH represents ∼6% of total heme in IMR90 cells.
THE ROLES OF METAL IONS IN REGULATION BY RIBOSWITCHES
2012-01-01
Metal ions are required by all organisms in order to execute an array of essential molecular functions. They play a critical role in many catalytic mechanisms and structural properties. Proper homeostasis of ions is critical; levels that are aberrantly low or high are deleterious to cellular physiology. To maintain stable intracellular pools, metal ion-sensing regulatory (metalloregulatory) proteins couple metal ion concentration fluctuations with expression of genes encoding for cation transport or sequestration. However, these transcriptional-based regulatory strategies are not the only mechanisms by which organisms coordinate metal ions with gene expression. Intriguingly, a few classes of signal-responsive RNA elements have also been discovered to function as metalloregulatory agents. This suggests that RNA-based regulatory strategies can be precisely tuned to intracellular metal ion pools, functionally akin to metalloregulatory proteins. In addition to these metal-sensing regulatory RNAs, there is a yet broader role for metal ions in directly assisting the structural integrity of other signal-responsive regulatory RNA elements. In this chapter, we discuss how the intimate physicochemical relationship between metal ions and nucleic acids is important for the structure and function of metal ion- and metabolite-sensing regulatory RNAs. PMID:22010271
The adaptor protein SLP-76 regulates HIV-1 release and cell-to-cell transmission in T cells.
Nagaraja, Tirumuru; Anand, Appakkudal R; Zhao, Helong; Ganju, Ramesh K
2012-03-15
HIV-1 infection in T cells is regulated by TCR activation. However, the cellular proteins of the TCR pathway that regulate HIV-1 infection are poorly characterized. In this study, in HIV-1 infection, we observed a significant reduction of HIV-1 virus production in Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76)-deficient Jurkat T cells compared with wild-type and SLP-76-reconstituted Jurkat T cells. We further confirmed the role of SLP-76 in HIV-1 infection by small interfering RNA-mediated knockdown in MT4 cells and PBMCs. Structural-functional analysis revealed that the N-terminal domain of SLP-76 was important for regulating HIV-1 infection. Further mechanistic studies revealed that lack of SLP-76 impaired virus release, but did not affect viral entry, integration, and transcription. We also showed that SLP-76 plays a critical role in cell-to-cell transmission of HIV-1. Signaling studies revealed that SLP-76 associated with viral negative regulatory factor protein and multiple signaling molecules during HIV-1 infection. Furthermore, SLP-76 facilitated the association of negative regulatory factor and F-actin, suggesting that SLP-76 mediates the formation of a signaling complex that may regulate viral release via cytoskeletal changes. Taken together, our studies demonstrate a novel role for the adaptor molecule SLP-76 in regulating HIV-1 infection in T cells with the potential to develop innovative strategies against HIV-1.
Hoxb3 negatively regulates Hoxb1 expression in mouse hindbrain patterning.
Wong, Elaine Y M; Wang, Xing An; Mak, Siu Shan; Sae-Pang, Jearn Jang; Ling, Kam Wing; Fritzsch, Bernd; Sham, Mai Har
2011-04-15
The spatial regulation of combinatorial expression of Hox genes is critical for determining hindbrain rhombomere (r) identities. To address the cross-regulatory relationship between Hox genes in hindbrain neuronal specification, we have generated a gain-of-function transgenic mouse mutant Hoxb3(Tg) using the Hoxb2 r4-specific enhancer element. Interestingly, in r4 of the Hoxb3(Tg) mutant where Hoxb3 was ectopically expressed, the expression of Hoxb1 was specifically abolished. The hindbrain neuronal defects of the Hoxb3(Tg) mutant mice were similar to those of Hoxb1(-/-) mutants. Therefore, we hypothesized that Hoxb3 could directly suppress Hoxb1 expression. We first identified a novel Hoxb3 binding site S3 on the Hoxb1 locus and confirmed protein binding to this site by EMSA, and by in vivo ChIP analysis using P19 cells and hindbrain tissues from the Hoxb3(Tg) mutant. We further showed that Hoxb3 could suppress Hoxb1 transcriptional activity by chick in ovo luciferase reporter assay. Moreover, in E10.5 wildtype caudal hindbrain, where Hoxb1 is not expressed, we showed by in vivo ChIP that Hoxb3 was consistently bound to the S3 site on the Hoxb1 gene. This study reveals a novel negative regulatory mechanism by which Hoxb3 as a posterior gene serves to restrict Hoxb1 expression in r4 by direct transcriptional repression to maintain the rhombomere identity. Copyright © 2011 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-04-01
... COMMODITY EXCHANGE ACT Miscellaneous § 1.59 Activities of self-regulatory organization employees, governing...) Self-regulatory organization means “self-regulatory organization,” as defined in § 1.3(ee), and... member, or functional equivalent thereof, of the board of governors of a self-regulatory organization. (3...
Code of Federal Regulations, 2013 CFR
2013-04-01
... COMMODITY EXCHANGE ACT Miscellaneous § 1.59 Activities of self-regulatory organization employees, governing...) Self-regulatory organization means “self-regulatory organization,” as defined in § 1.3(ee), and... member, or functional equivalent thereof, of the board of governors of a self-regulatory organization. (3...
Sun, Hongliu; Nelms, Brian L; Sleiman, Sama F; Chamberlin, Helen M; Hanna-Rose, Wendy
2007-10-01
The previously reported negative regulatory activity of HIM-8 on the Sox protein EGL-13 is shared by the HIM-8-related ZIM proteins. Furthermore, mutation of HIM-8 can modulate the effects of substitution mutations in the DNA-binding domains of at least four other transcription factors, suggesting broad regulatory activity by HIM-8.
Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster
NASA Astrophysics Data System (ADS)
Aguilar-Hidalgo, D.; Lemos, M. C.; Córdoba, A.
2015-03-01
During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.
Zhang, Shulin; Liang, Meiling; Naqvi, Naweed I; Lin, Chaoxiang; Qian, Wanqiang; Zhang, Lian-Hui; Deng, Yi Zhen
2017-08-03
Magnaporthe oryzae, the ascomycete fungus that causes rice blast disease, initiates conidiation in response to light when grown on Prune-Agar medium containing both carbon and nitrogen sources. Macroautophagy/autophagy was shown to be essential for M. oryzae conidiation and induced specifically upon exposure to light but is undetectable in the dark. Therefore, it is inferred that autophagy is naturally induced by light, rather than by starvation during M. oryzae conidiation. However, the signaling pathway(s) involved in such phototropic induction of autophagy remains unknown. We identified an M. oryzae ortholog of GCN5 (MGG_03677), encoding a histone acetyltransferase (HAT) that negatively regulates light- and nitrogen-starvation-induced autophagy, by acetylating the autophagy protein Atg7. Furthermore, we unveiled novel regulatory mechanisms on Gcn5 at both transcriptional and post-translational levels, governing its function associated with the unique phototropic response of autophagy in this pathogenic fungus. Thus, our study depicts a signaling network and regulatory mechanism underlying the autophagy induction by important environmental clues such as light and nutrients.
Ortner, Catherine Nicole Marie; Briner, Esther Lydia; Marjanovic, Zdravko
2017-01-01
Research in emotion regulation has begun to examine various predictors of emotion regulation choices, including individual differences and contextual variables. However, scant attention has been paid to the extent to which people’s beliefs about the specific consequences of emotion regulation strategies for the components of an emotional response and long-term well-being predict their behavioral regulatory choices and, in turn, their subjective well-being. Participants completed measures to assess their beliefs about the consequences of functional and dysfunctional strategies, behavioral choices of emotion regulation strategies in negative scenarios, and subjective well-being. The model that fit the data indicated partial mediation whereby beliefs were associated with approximately 9% of the variance in choices. Emotion regulation choices were related to subjective well-being, with an additional direct effect between beliefs and well-being. This suggests beliefs play a role in people’s regulatory choices. Future research should explore how beliefs interact with individual differences and contextual variables to better understand why people regulate their emotions in different ways and, ultimately, to help individuals make healthy emotion regulation choices. PMID:28344675
Ortner, Catherine Nicole Marie; Briner, Esther Lydia; Marjanovic, Zdravko
2017-03-01
Research in emotion regulation has begun to examine various predictors of emotion regulation choices, including individual differences and contextual variables. However, scant attention has been paid to the extent to which people's beliefs about the specific consequences of emotion regulation strategies for the components of an emotional response and long-term well-being predict their behavioral regulatory choices and, in turn, their subjective well-being. Participants completed measures to assess their beliefs about the consequences of functional and dysfunctional strategies, behavioral choices of emotion regulation strategies in negative scenarios, and subjective well-being. The model that fit the data indicated partial mediation whereby beliefs were associated with approximately 9% of the variance in choices. Emotion regulation choices were related to subjective well-being, with an additional direct effect between beliefs and well-being. This suggests beliefs play a role in people's regulatory choices. Future research should explore how beliefs interact with individual differences and contextual variables to better understand why people regulate their emotions in different ways and, ultimately, to help individuals make healthy emotion regulation choices.
Identification of novel phosphatidic acid-binding proteins in the rat brain.
Park, ChiHu; Kang, Du-Seock; Shin, Geon-Hoon; Seo, Jeongkon; Kim, Hyein; Suh, Pann-Ghill; Bae, Chang-Dae; Shin, Joo-Ho
2015-05-19
Phosphatidic acid (PA) is an abundant negatively-charged phospholipid and has long been considered to be an important signaling molecule in diverse cellular events. Thus, the identification of proteins that specifically interact with PA is of considerable interest to understand the regulatory roles of PA. Herein, lipid-affinity purification and mass spectrometric analysis reveals 43 proteins, 19 known and 24 novel, as PA-binding proteins. A lipid-protein overlay assay confirmed that GDI1, PACSIN1, and DPYSL2 interact with not only with PA but also with other phospholipids. These results might be helpful for deciphering the functional effect of PA in the brain. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Bacillus subtilis 168 Contains Two Differentially Regulated Genes Encoding l-Asparaginase
Fisher, Susan H.; Wray, Lewis V.
2002-01-01
Expression of the two Bacillus subtilis genes encoding l-asparaginase is controlled by independent regulatory factors. The ansZ gene (formerly yccC) was shown by mutational analysis to encode a functional l-asparaginase, the expression of which is activated during nitrogen-limited growth by the TnrA transcription factor. Gel mobility shift and DNase I footprinting experiments indicate that TnrA regulates ansZ expression by binding to a DNA site located upstream of the ansZ promoter. The expression of the ansA gene, which encodes the second l-asparaginase, was found to be induced by asparagine. The ansA repressor, AnsR, was shown to negatively regulate its own expression. PMID:11914346
Bacillus subtilis 168 contains two differentially regulated genes encoding L-asparaginase.
Fisher, Susan H; Wray, Lewis V
2002-04-01
Expression of the two Bacillus subtilis genes encoding L-asparaginase is controlled by independent regulatory factors. The ansZ gene (formerly yccC) was shown by mutational analysis to encode a functional L-asparaginase, the expression of which is activated during nitrogen-limited growth by the TnrA transcription factor. Gel mobility shift and DNase I footprinting experiments indicate that TnrA regulates ansZ expression by binding to a DNA site located upstream of the ansZ promoter. The expression of the ansA gene, which encodes the second L-asparaginase, was found to be induced by asparagine. The ansA repressor, AnsR, was shown to negatively regulate its own expression.
Solana, Jordi; Irimia, Manuel; Ayoub, Salah; Orejuela, Marta Rodriguez; Zywitza, Vera; Jens, Marvin; Tapial, Javier; Ray, Debashish; Morris, Quaid; Hughes, Timothy R; Blencowe, Benjamin J; Rajewsky, Nikolaus
2016-01-01
In contrast to transcriptional regulation, the function of alternative splicing (AS) in stem cells is poorly understood. In mammals, MBNL proteins negatively regulate an exon program specific of embryonic stem cells; however, little is known about the in vivo significance of this regulation. We studied AS in a powerful in vivo model for stem cell biology, the planarian Schmidtea mediterranea. We discover a conserved AS program comprising hundreds of alternative exons, microexons and introns that is differentially regulated in planarian stem cells, and comprehensively identify its regulators. We show that functional antagonism between CELF and MBNL factors directly controls stem cell-specific AS in planarians, placing the origin of this regulatory mechanism at the base of Bilaterians. Knockdown of CELF or MBNL factors lead to abnormal regenerative capacities by affecting self-renewal and differentiation sets of genes, respectively. These results highlight the importance of AS interactions in stem cell regulation across metazoans. DOI: http://dx.doi.org/10.7554/eLife.16797.001 PMID:27502555
Xia, Wen-Fang; Tang, Fu-Lei; Xiong, Lei; Xiong, Shan; Jung, Ji-Ung; Lee, Dae-Hoon; Li, Xing-Sheng; Feng, Xu; Mei, Lin
2013-01-01
Receptor activator of NF-κB (RANK) plays a critical role in osteoclastogenesis, an essential process for the initiation of bone remodeling to maintain healthy bone mass and structure. Although the signaling and function of RANK have been investigated extensively, much less is known about the negative regulatory mechanisms of its signaling. We demonstrate in this paper that RANK trafficking, signaling, and function are regulated by VPS35, a major component of the retromer essential for selective endosome to Golgi retrieval of membrane proteins. VPS35 loss of function altered RANK ligand (RANKL)–induced RANK distribution, enhanced RANKL sensitivity, sustained RANKL signaling, and increased hyperresorptive osteoclast (OC) formation. Hemizygous deletion of the Vps35 gene in mice promoted hyperresorptive osteoclastogenesis, decreased bone formation, and caused a subsequent osteoporotic deficit, including decreased trabecular bone volumes and reduced trabecular thickness and density in long bones. These results indicate that VPS35 critically deregulates RANK signaling, thus restraining increased formation of hyperresorptive OCs and preventing osteoporotic deficits. PMID:23509071
Stereotype Threat Reinterpreted as a Regulatory Mismatch
Grimm, Lisa R.; Markman, Arthur B.; Maddox, W. Todd; Baldwin, Grant C.
2008-01-01
Research documents performance decrements resulting from the activation of a negative task-relevant stereotype. We combine a number of strands of work to identify causes of stereotype threat in a way that allows us to reverse the effects and improve the performance of individuals with negative task-relevant stereotypes. We draw on prior work suggesting that negative stereotypes induce a prevention focus, and other research suggesting that people exhibit greater flexibility when their regulatory focus matches the reward structure of the task. This work suggests that stereotype threat effects emerge from a prevention focus combined with tasks that have an explicit or implicit gains reward structure. We find flexible performance can be induced in individuals who have a negative task-relevant stereotype by using a losses reward structure. We demonstrate the interaction of stereotypes and the reward structure of the task using chronic stereotypes and GRE math problems (Experiment 1), and primed stereotypes and a category learning task (Experiments 2a and 2b). We discuss implications of this research for other work on stereotype threat. PMID:19159133
Reduced TCR signaling potential impairs negative selection but does not result in autoimmune disease
Hwang, SuJin; Song, Ki-Duk; Lesourne, Renaud; Lee, Jan; Pinkhasov, Julia; Li, LiQi; El-Khoury, Dalal
2012-01-01
Negative selection and regulatory T (T reg) cell development are two thymus-dependent processes necessary for the enforcement of self-tolerance, and both require high-affinity interactions between the T cell receptor (TCR) and self-ligands. However, it remains unclear if they are similarly impacted by alterations in TCR signaling potential. We generated a knock-in allele (6F) of the TCR ζ chain gene encoding a mutant protein lacking signaling capability whose expression is controlled by endogenous ζ regulatory sequences. Although negative selection was defective in 6F/6F mice, leading to the survival of autoreactive T cells, 6F/6F mice did not develop autoimmune disease. We found that 6F/6F mice generated increased numbers of thymus-derived T reg cells. We show that attenuation of TCR signaling potential selectively impacts downstream signaling responses and that this differential effect favors Foxp3 expression and T reg cell lineage commitment. These results identify a potential compensatory pathway for the enforcement of immune tolerance in response to defective negative selection caused by reduced TCR signaling capability. PMID:22945921
Acute aerobic exercise helps overcome emotion regulation deficits.
Bernstein, Emily E; McNally, Richard J
2017-06-01
Although colloquial wisdom and some studies suggest an association between regular aerobic exercise and emotional well-being, the nature of this link remains poorly understood. We hypothesised that aerobic exercise may change the way people respond to their emotions. Specifically, we tested whether individuals experiencing difficulties with emotion regulation would benefit from a previous session of exercise and show swifter recovery than their counterparts who did not exercise. Participants (N = 80) completed measures of emotion response tendencies, mood, and anxiety, and were randomly assigned to either stretch or jog for 30 minutes. All participants then underwent the same negative and positive mood inductions, and reported their emotional responses. Analyses showed that more perceived difficulty generating regulatory strategies and engaging in goal-directed behaviours after the negative mood induction predicted more intense and persistent negative affect in response to the stressor, as would be expected. Interactions revealed that aerobic exercise attenuated these effects. Moderate aerobic exercise may help attenuate negative emotions for participants initially experiencing regulatory difficulties. This study contributes to the literature on aerobic exercise's therapeutic effects with experimental data, specifically in the realm of emotional processing.
Yang, Li; Zhao, Xin; Yang, Fan; Fan, Di; Jiang, Yuanzhong; Luo, Keming
2016-01-28
WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY19 was expressed in all tissues tested, with highest expression in stems, especially in pith. PtrWRKY19 was located in the nucleus and functioned as a transcriptional repressor. Ectopic expression of PtrWRKY19 in an atwrky12 mutant successfully rescued the phenotype in pith cell walls caused by the defect of AtWRKY12, suggesting that PtrWRKY19 had conserved functions for homologous AtWRKY12. Overexpression of PtrWRKY19 in poplar plants led to a significant increase in the number of pith parenchyma cells. qRT-PCR analysis showed that lignin biosynthesis-related genes were repressed in transgenic plants. In transcient reporter assays, PtrWRKY19 was identified to repress transcription from the PtoC4H2 promoter containing the conserved W-box elements. These results indicated that PtrWRKY19 may function as a negative regulator of pith secondary wall formation in poplar.
Liu, Zhuqing; McMichael, Elizabeth L; Shayan, Gulidanna; Li, Jing; Chen, Kevin; Srivastava, Raghvendra M; Kane, Lawrence P; Lu, Binfeng; Ferris, Robert L
2018-04-30
Regulatory T (Treg) cells are important suppressive cells among tumor infiltrating lymphocytes (TIL). Treg express the well-known immune checkpoint receptor PD-1, which is reported to mark "exhausted" Treg with lower suppressive function. T cell immunoglobulin mucin (Tim)-3, a negative regulator of Th1 immunity, is expressed by a sizeable fraction of TIL Tregs, but the functional status of Tim-3+ Tregs remains unclear. CD4+CTLA-4+CD25high Treg were sorted from freshly excised head and neck squamous cell carcinoma (HNSCC) TIL based on Tim-3 expression. Functional and phenotypic features of these Tim-3+ and Tim-3- TIL Tregs were tested by in vitro suppression assays and multi-color flow cytometry. Gene expression profiling and NanoString analysis of Tim-3+ TIL Treg were performed. A murine HNSCC tumor model was used to test the effect of anti-PD-1 immunotherapy on Tim-3+ Treg. Results: Despite high PD-1 expression, Tim-3+ TIL Treg displayed a greater capacity to inhibit naïve T cell proliferation than Tim-3- Treg. Tim-3+ Treg from human HNSCC TIL also displayed an effector-like phenotype, with more robust expression of CTLA-4, PD-1, CD39 and IFN-γ receptor. Exogenous IFN-γ treatment could partially reverse the suppressive function of Tim-3+ TIL Treg. Anti-PD-1 immunotherapy downregulated Tim-3 expression on Tregs isolated from murine HNSCC tumors, and this treatment reversed the suppressive function of HNSCC TIL Tregs. Tim-3+ Treg are functionally and phenotypically distinct in HNSCC TIL, and are highly effective at inhibiting T cell proliferation despite high PD-1 expression. IFN-γ induced by anti-PD-1 immunotherapy may be beneficial by reversing Tim-3+ Treg suppression. Copyright ©2018, American Association for Cancer Research.
Mozduri, Z; Bakhtiarizadeh, M R; Salehi, A
2018-06-01
Negative energy balance (NEB) is an altered metabolic state in modern high-yielding dairy cows. This metabolic state occurs in the early postpartum period when energy demands for milk production and maintenance exceed that of energy intake. Negative energy balance or poor adaptation to this metabolic state has important effects on the liver and can lead to metabolic disorders and reduced fertility. The roles of regulatory factors, including transcription factors (TFs) and micro RNAs (miRNAs) have often been separately studied for evaluating of NEB. However, adaptive response to NEB is controlled by complex gene networks and still not fully understood. In this study, we aimed to discover the integrated gene regulatory networks involved in NEB development in liver tissue. We downloaded data sets including mRNA and miRNA expression profiles related to three and four cows with severe and moderate NEB, respectively. Our method integrated two independent types of information: module inference network by TFs, miRNAs and mRNA expression profiles (RNA-seq data) and computational target predictions. In total, 176 modules were predicted by using gene expression data and 64 miRNAs and 63 TFs were assigned to these modules. By using our integrated computational approach, we identified 13 TF-module and 19 miRNA-module interactions. Most of these modules were associated with liver metabolic processes as well as immune and stress responses, which might play crucial roles in NEB development. Literature survey results also showed that several regulators and gene targets have already been characterized as important factors in liver metabolic processes. These results provided novel insights into regulatory mechanisms at the TF and miRNA levels during NEB. In addition, the method described in this study seems to be applicable to construct integrated regulatory networks for different diseases or disorders.
Functional analysis of regulatory single-nucleotide polymorphisms.
Pampín, Sandra; Rodríguez-Rey, José C
2007-04-01
The identification of regulatory polymorphisms has become a key problem in human genetics. In the past few years there has been a conceptual change in the way in which regulatory single-nucleotide polymorphisms are studied. We revise the new approaches and discuss how gene expression studies can contribute to a better knowledge of the genetics of common diseases. New techniques for the association of single-nucleotide polymorphisms with changes in gene expression have been recently developed. This, together with a more comprehensive use of the old in-vitro methods, has produced a great amount of genetic information. When added to current databases, it will help to design better tools for the detection of regulatory single-nucleotide polymorphisms. The identification of functional regulatory single-nucleotide polymorphisms cannot be done by the simple inspection of DNA sequence. In-vivo techniques, based on primer-extension, and the more recently developed 'haploChIP' allow the association of gene variants to changes in gene expression. Gene expression analysis by conventional in-vitro techniques is the only way to identify the functional consequences of regulatory single-nucleotide polymorphisms. The amount of information produced in the last few years will help to refine the tools for the future analysis of regulatory gene variants.
Band, Vimla
2011-01-01
All higher eukaryotes utilize protein tyrosine kinases (PTKs) as molecular switches to control a variety of cellular signals. Notably, many PTKs have been identified as proto-oncogenes whose aberrant expression, mutations or co-option by pathogens can lead to human malignancies. Thus, it is obvious that PTK functions must be precisely regulated in order to maintain homeostasis of an organism. Investigations over the past fifteen years have revealed that members of the Cbl family proteins can serve as negative regulators of PTK signaling, and biochemical and cell biological studies have unraveled the mechanistic basis of this regulation. Yet, it is only recently that the field has begun to appreciate the real significance of this novel regulatory apparatus in shaping PTK-mediated signaling in organismic contexts and in human diseases. Here, we discuss recent progress in murine models that are beginning to provide insights into the critical roles of Cbl proteins in physiological pathways, with important implications in understanding how aberrations of Cbl proteins contribute to oncogenesis. PMID:21655429
MiR-218 Inhibits Invasion and Metastasis of Gastric Cancer by Targeting the Robo1 Receptor
Wu, Kaichun; Liu, Jie; Sun, Shiren; Guo, Xuegang; Wang, Biaoluo; Gang, Yi; Zhang, Yongguo; Li, Quanjiang; Qiao, Taidong; Zhao, Qingchuan; Nie, Yongzhan; Fan, Daiming
2010-01-01
MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC) metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis. PMID:20300657
An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway.
An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin
2018-02-01
Cold stress is an adverse stimulus that affects plant growth and development, and the C-repeat binding factor (CBF) cold-regulatory cascade has been regarded as a master regulator in the plant response to cold stress. Here, we showed that a NAC transcription factor modulated low-temperature tolerance. MdNAC029/MdNAP, an apple NAC gene was isolated and its role in regulating cold tolerance was investigated. MdNAC029 was responsive to low-temperature treatment, and over-expression of MdNAC029 reduced cold tolerance in apple calli and Arabidopsis. Furthermore, EMSA assays and transient expression assays demonstrated that MdNAC029 directly repressed the expression of MdCBF1 and MdCBF4 by binding to their promoters. Taken together, our data suggest that MdNAC029 functions as a negative regulator in regulating plant cold tolerance in a CBF-dependent manner, providing a deeper understanding of NAC transcription-factor-mediated cold tolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.
Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks.
Fogelmark, Karl; Peterson, Carsten; Troein, Carl
2016-01-01
Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks.
7 CFR 1700.32 - Program Accounting and Regulatory Analysis.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 11 2014-01-01 2014-01-01 false Program Accounting and Regulatory Analysis. 1700.32... SERVICE, DEPARTMENT OF AGRICULTURE GENERAL INFORMATION Agency Organization and Functions § 1700.32 Program Accounting and Regulatory Analysis. RUS, through Program Accounting and Regulatory Analysis, monitors and...
7 CFR 1700.32 - Program Accounting and Regulatory Analysis.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 11 2013-01-01 2013-01-01 false Program Accounting and Regulatory Analysis. 1700.32... SERVICE, DEPARTMENT OF AGRICULTURE GENERAL INFORMATION Agency Organization and Functions § 1700.32 Program Accounting and Regulatory Analysis. RUS, through Program Accounting and Regulatory Analysis, monitors and...
Viuda-Martos, M; Sanchez-Zapata, E; Sayas-Barberá, E; Sendra, E; Pérez-Álvarez, J A; Fernández-López, J
2014-01-01
During recent decades, the food industry, consumers, and regulatory authorities have developed a significant interest in functional foods because of their potential benefits for human health over and above their basic nutritional value. Tomato is the second most important vegetable crop in the world. The amount of the related wastes is estimated at up to 50,000 tons per year, representing a serious disposal problem with a consequent negative impact on the environment. Tomato byproducts contain a great variety of biologically active substances, principally lycopene, which have been demonstrated by in vitro and in vivo studies to possess antioxidant, hypolipidemic, and anticarcinogenic activities. The aim of this review is to present an overview of the functional and physiological properties of the principal bioactive compound present in tomato and tomato byproducts, lycopene, its addition to meat, and meat products.
Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‘Synoviolin'
Yamasaki, Satoshi; Yagishita, Naoko; Sasaki, Takeshi; Nakazawa, Minako; Kato, Yukihiro; Yamadera, Tadayuki; Bae, Eunkyung; Toriyama, Sayumi; Ikeda, Rie; Zhang, Lei; Fujitani, Kazuko; Yoo, Eunkyung; Tsuchimochi, Kaneyuki; Ohta, Tomohiko; Araya, Natsumi; Fujita, Hidetoshi; Aratani, Satoko; Eguchi, Katsumi; Komiya, Setsuro; Maruyama, Ikuro; Higashi, Nobuyo; Sato, Mitsuru; Senoo, Haruki; Ochi, Takahiro; Yokoyama, Shigeyuki; Amano, Tetsuya; Kim, Jaeseob; Gay, Steffen; Fukamizu, Akiyoshi; Nishioka, Kusuki; Tanaka, Keiji; Nakajima, Toshihiro
2007-01-01
Synoviolin, also called HRD1, is an E3 ubiquitin ligase and is implicated in endoplasmic reticulum -associated degradation. In mammals, Synoviolin plays crucial roles in various physiological and pathological processes, including embryogenesis and the pathogenesis of arthropathy. However, little is known about the molecular mechanisms of Synoviolin in these actions. To clarify these issues, we analyzed the profile of protein expression in synoviolin-null cells. Here, we report that Synoviolin targets tumor suppressor gene p53 for ubiquitination. Synoviolin sequestrated and metabolized p53 in the cytoplasm and negatively regulated its cellular level and biological functions, including transcription, cell cycle regulation and apoptosis. Furthermore, these p53 regulatory functions of Synoviolin were irrelevant to other E3 ubiquitin ligases for p53, such as MDM2, Pirh2 and Cop1, which form autoregulatory feedback loops. Our results provide novel insights into p53 signaling mediated by Synoviolin. PMID:17170702
Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase 'Synoviolin'.
Yamasaki, Satoshi; Yagishita, Naoko; Sasaki, Takeshi; Nakazawa, Minako; Kato, Yukihiro; Yamadera, Tadayuki; Bae, Eunkyung; Toriyama, Sayumi; Ikeda, Rie; Zhang, Lei; Fujitani, Kazuko; Yoo, Eunkyung; Tsuchimochi, Kaneyuki; Ohta, Tomohiko; Araya, Natsumi; Fujita, Hidetoshi; Aratani, Satoko; Eguchi, Katsumi; Komiya, Setsuro; Maruyama, Ikuro; Higashi, Nobuyo; Sato, Mitsuru; Senoo, Haruki; Ochi, Takahiro; Yokoyama, Shigeyuki; Amano, Tetsuya; Kim, Jaeseob; Gay, Steffen; Fukamizu, Akiyoshi; Nishioka, Kusuki; Tanaka, Keiji; Nakajima, Toshihiro
2007-01-10
Synoviolin, also called HRD1, is an E3 ubiquitin ligase and is implicated in endoplasmic reticulum -associated degradation. In mammals, Synoviolin plays crucial roles in various physiological and pathological processes, including embryogenesis and the pathogenesis of arthropathy. However, little is known about the molecular mechanisms of Synoviolin in these actions. To clarify these issues, we analyzed the profile of protein expression in synoviolin-null cells. Here, we report that Synoviolin targets tumor suppressor gene p53 for ubiquitination. Synoviolin sequestrated and metabolized p53 in the cytoplasm and negatively regulated its cellular level and biological functions, including transcription, cell cycle regulation and apoptosis. Furthermore, these p53 regulatory functions of Synoviolin were irrelevant to other E3 ubiquitin ligases for p53, such as MDM2, Pirh2 and Cop1, which form autoregulatory feedback loops. Our results provide novel insights into p53 signaling mediated by Synoviolin.
Pathway analysis from lists of microRNAs: common pitfalls and alternative strategy
Godard, Patrice; van Eyll, Jonathan
2015-01-01
MicroRNAs (miRNAs) are involved in the regulation of gene expression at a post-transcriptional level. As such, monitoring miRNA expression has been increasingly used to assess their role in regulatory mechanisms of biological processes. In large scale studies, once miRNAs of interest have been identified, the target genes they regulate are often inferred using algorithms or databases. A pathway analysis is then often performed in order to generate hypotheses about the relevant biological functions controlled by the miRNA signature. Here we show that the method widely used in scientific literature to identify these pathways is biased and leads to inaccurate results. In addition to describing the bias and its origin we present an alternative strategy to identify potential biological functions specifically impacted by a miRNA signature. More generally, our study exemplifies the crucial need of relevant negative controls when developing, and using, bioinformatics methods. PMID:25800743
Self-Regulatory Processes and Exercise Adherence in Older Adults
McAuley, Edward; Mullen, Sean P.; Szabo, Amanda N.; White, Siobhan M.; Wójcicki, Thomas R.; Mailey, Emily L.; Gothe, Neha P.; Olson, Erin A.; Voss, Michelle; Erickson, Kirk; Prakash, Ruchika; Kramer, Arthur F.
2011-01-01
Background Self-efficacy and the use of self-regulatory strategies are consistently associated with physical activity behavior. Similarly, behavioral inhibition and cognitive resource allocation, indices of executive control function, have also been associated with this health behavior. Purpose The purpose of this study was to examine the hypothesis that self-efficacy mediates the relationship between self-regulatory processes, such as executive function, and sustained exercise behavior. Methods Older adults (N = 177, mean age = 66.44 years) completed measures of executive function, self-reported use of self-regulatory strategies and self-efficacy prior to and during the first month of a 12-month exercise intervention. Percentage of exercise classes attended over the following 11 months was used to represent adherence. Data were collected from 2007 to 2010 and analyzed in 2010–2011. Structural equation models were tested examining the effect of executive function and strategy use on adherence via efficacy. Results As hypothesized, results showed significant direct effects of two elements of executive function and of strategy use on self-efficacy and of efficacy on adherence. In addition, there were significant indirect effects of strategy use and executive function on adherence via self-efficacy. Conclusions Higher levels of executive function and use of self-regulatory strategies at the start of an exercise program enhance beliefs in exercise capabilities, which in turn leads to greater adherence. PMID:21855742
Fedorova, Olga; Shuvalov, Oleg; Merkulov, Valeriy; Vasileva, Elena; Antonov, Alexey; Barlev, Nikolai A.
2016-01-01
The product of RCHY1 human gene, Pirh2, is a RING-finger containing E3 ligase that modifies p53 with ubiquitin residues resulting in its subsequent degradation in proteasomes. Transcription of RCHY1 is regulated by p53 itself thus forming a negative regulatory feedback loop. Functionally, by eliminating p53, Pirh2 facilitates tumorigenesis. However, the role of Pirh2 in cancer cells lacking p53 is yet not well understood. Therefore, we decided to elucidate the role of Pirh2 in p53-negative human non-small cell lung carcinoma cells, H1299. We found that ectopic expression of Pirh2 enhanced cell proliferation, resistance to doxorubicin, and increased migration potential. Ablation of Pirh2 by specific shRNA reversed these phenotypes. Mechanistically, Pirh2 increased mRNA and protein levels of the c-Myc oncogene. The bioinformatics data indicate that co-expression of both c-Myc and Pirh2 strongly correlated with poor survival of lung cancer patients. Collectively, our results suggest that Pirh2 can be considered as a potential pharmacological target for developing anticancer therapies to treat p53-negative cancers. PMID:28191284
Crystal, Sarah I.; Ahles, Joshua J.; Crowell, Sheila E.
2015-01-01
Polyvagal theory suggests that parasympathetic regulation of cardiac function, indexed by resting respiratory sinus arrhythmia (RSA), may be a marker of emotion regulatory capacity and associated with youth psychopathology. Contemporary models of psychopathology suggest that the effects of biological vulnerability may be moderated by developmental context. The aim of the present study was to examine whether parenting, particularly parental responses to youth’s negative emotions, moderated the effects of resting RSA on depressive symptoms among early adolescents. We examined resting RSA, depressive symptoms, and parental responses to youth negative emotions among 120 adolescents aged 11–14 years (M = 12.86, SD = .85; 52.5% female). Resting RSA and lack of supportive parenting interacted to predict youth depressive symptoms, such that low resting RSA predicted more depressive symptoms only in the context of low levels of supportive parental responses to youth’s negative emotions. By contrast, high resting RSA buffered the effects of low supportive parenting on youth depressive symptoms. These findings highlight the importance of understanding joint contributions of biological vulnerability and developmental context on youth depression outcomes. PMID:26290213
Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E; Sinnegger-Brauns, Martina J; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra
2011-12-09
An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Ca(v)1.3 L-type Ca(2+) channels (Ca(v)1.3(L)) is a major determinant of their voltage- and Ca(2+)-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Ca(v)1.3(42A) channels that activate at a more negative voltage range and exhibit more pronounced Ca(2+)-dependent inactivation. Here we describe the discovery of a novel short splice variant (Ca(v)1.3(43S)) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Ca(v)1.3(42A), still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Ca(v)1.3(43S) also activated at more negative voltages like Ca(v)1.3(42A) but Ca(2+)-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Ca(v)1.3(L). The presence of the proximal C terminus in Ca(v)1.3(43S) channels preserved their modulation by distal C terminus-containing Ca(v)1.3- and Ca(v)1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca(2+) influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Ca(v)1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca(2+) channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca(2+) accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca(2+)-induced neurodegenerative processes.
Zuscik, M J; Piascik, M T; Perez, D M
1999-12-01
The functionality of a 3422-base pair promoter fragment from the mouse alpha(1B)-adrenergic receptor (alpha(1B)AR) gene was examined. This fragment, cloned from a mouse genomic library, was found to have significant sequence homology to the known human and rat alpha(1B)AR promoters. However, the consensus motif of several key cis-acting elements is not conserved among the rat, human, and mouse genes, suggesting species specificity. Confirming fidelity of the murine promoter, robust in vitro expression of a chloramphenicol acetyltransferase (CAT) reporter was detected in known alpha(1B)AR-expressing BC(3)H1, NB41A3, and DDT(1)MF-2 cells transiently transfected with a promoter-CAT construct. Conversely, minimal CAT expression was detected in known alpha(1B)AR-negative RAT-1 and R3T3 cells. These findings were extended by transfecting the same promoter-CAT construct into various primary cell types. In support of the hypothesis that alpha(1)ARs are differentially expressed in the smooth muscle of the vasculature, primary cultures of superior mesenteric and renal artery vascular smooth muscle cells showed significantly stronger CAT expression than did vascular smooth muscle cells derived from pulmonary, femoral, and iliac arteries. Primary osteoblastic bone-forming cells, which are known to be alpha(1B)AR negative, showed minimal CAT expression. Indicating regulatory function through cis-acting elements, RAT-1, R3T3, NB41A3, BC(3)H1, and DDT(1)MF2 cells transfected with the promoter-CAT construct all showed increased CAT production when challenged with forskolin or hypoxic conditions. Additionally, tissue-specific regulation of the promoter was observed when cells were simultaneously challenged with both forskolin and hypoxia. These results collectively demonstrate that a 3.4-kb PvuII fragment of the murine alpha(1B)AR gene promoter can: 1) drive tissue-specific production of a CAT reporter in both clonal and primary cell lines; and 2) confer tissue-specific regulation of that CAT reporter when induced by challenge with forskolin and/or hypoxic conditions.
Structural Analysis of the Hg(II)-Regulatory Protein Tn501 MerR from Pseudomonas aeruginosa
Wang, Dan; Huang, Shanqing; Liu, Pingying; Liu, Xichun; He, Yafeng; Chen, Weizhong; Hu, Qingyuan; Wei, Tianbiao; Gan, Jianhua; Ma, Jing; Chen, Hao
2016-01-01
The metalloprotein MerR is a mercury(II)-dependent transcriptional repressor-activator that responds to mercury(II) with extraordinary sensitivity and selectivity. It’s widely distributed in both Gram-negative and Gram-positive bacteria but with barely detectable sequence identities between the two sources. To provide structural basis for the considerable biochemical and biophysical experiments previously performed on Tn501 and Tn21 MerR from Gram-negative bacteria, we analyzed the crystal structure of mercury(II)-bound Tn501 MerR. The structure in the metal-binding domain provides Tn501 MerR with a high affinity for mercury(II) and the ability to distinguish mercury(II) from other metals with its unique planar trigonal coordination geometry, which is adopted by both Gram-negative and Gram-positive bacteria. The mercury(II) coordination state in the C-terminal metal-binding domain is transmitted through the allosteric network across the dimer interface to the N-terminal DNA-binding domain. Together with the previous mutagenesis analyses, the present data indicate that the residues in the allosteric pathway have a central role in maintaining the functions of Tn501 MerR. In addition, the complex structure exhibits significant differences in tertiary and quaternary structural arrangements compared to those of Bacillus MerR from Gram-positive bacteria, which probably enable them to function with specific promoter DNA with different spacers between −35 and −10 elements. PMID:27641146
2013-01-01
Background Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Treatment options are limited and prophylactic agents are not available. We have previously demonstrated an essential role for CREB-regulating transcriptional coactivators (CRTCs) in HTLV-1 transcription. Results In this study we report on the negative regulatory role of LKB1 tumor suppressor and salt-inducible kinases (SIKs) in the activation of HTLV-1 long terminal repeats (LTR) by the oncoprotein Tax. Activation of LKB1 and SIKs effectively blunted Tax activity in a phosphorylation-dependent manner, whereas compromising these kinases, but not AMP-dependent protein kinases, augmented Tax function. Activated LKB1 and SIKs associated with Tax and suppressed Tax-induced LTR activation by counteracting CRTCs and CREB. Enforced expression of LKB1 or SIK1 in cells transfected with HTLV-1 molecular clone pX1MT repressed proviral transcription. On the contrary, depletion of LKB1 in pX1MT-transfected cells and in HTLV-1-transformed T cells boosted the expression of Tax. Treatment of HTLV-1 transformed cells with metformin led to LKB1/SIK1 activation, reduction in Tax expression, and inhibition of cell proliferation. Conclusions Our findings revealed a new function of LKB1 and SIKs as negative regulators of HTLV-1 transcription. Pharmaceutical activation of LKB1 and SIKs might be considered as a new strategy in anti-HTLV-1 and anti-ATL therapy. PMID:23577667
Choi, Seung-Chul; Hutchinson, Tarun E.; Titov, Anton A.; Seay, Howard R.; Li, Shiwu; Brusko, Todd M.; Croker, Byron P.; Salek-Ardakani, Shahram; Morel, Laurence
2016-01-01
Pbx1 controls chromatin accessibility to a large number of genes and is entirely conserved between mice and humans. The Pbx1-d dominant negative isoform is more frequent in the CD4+ T cells from lupus patients than from healthy controls. Pbx1-d is associated with the production of autoreactive T cells in mice carrying the Sle1a1 lupus susceptibility locus. Transgenic expression of Pbx1-d in CD4+ T cells reproduced the phenotypes of Sle1a1 mice, with increased inflammatory functions of CD4+ T cells and impaired regulatory T cell homeostasis. Pbx1-d Tg also expanded the number of follicular helper T cells in a cell-intrinsic and antigen-specific manner that was enhanced in recall responses, and resulted in TH1-biased antibodies. Moreover, Pbx1-d Tg CD4+ T cells upregulated the expression of miR-10a, miR-21 and miR-155, which have been implicated in Treg and TFH cell homeostasis. Our results suggest that Pbx1-d impacts lupus development by regulating effector T cell differentiation and promoting TFH cells at the expense of Treg cells. In addition, our results identify Pbx1 as a novel regulator of CD4+ T cell effector function. PMID:27296664
Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5).
Scalise, Mariafrancesca; Pochini, Lorena; Panni, Simona; Pingitore, Piero; Hedfalk, Kristina; Indiveri, Cesare
2014-11-01
The kinetic mechanism of the transport catalyzed by the human glutamine/neutral amino acid transporter hASCT2 over-expressed in P. pastoris was determined in proteoliposomes by pseudo-bi-substrate kinetic analysis of the Na(+)-glutamineex/glutaminein transport reaction. A random simultaneous mechanism resulted from the experimental analysis. Purified functional hASCT2 was chemically cross-linked to a stable dimeric form. The oligomeric structure correlated well with the kinetic mechanism of transport. Half-saturation constants (Km) of the transporter for the other substrates Ala, Ser, Asn and Thr were measured both on the external and internal side. External Km were much lower than the internal ones confirming the asymmetry of the transporter. The electric nature of the transport reaction was determined imposing a negative inside membrane potential generated by K(+) gradients in the presence of valinomycin. The transport reaction resulted to be electrogenic and the electrogenicity originated from external Na(+). Internal Na(+) exerted a stimulatory effect on the transport activity which could be explained by a regulatory, not a counter-transport, effect. Native and deglycosylated hASCT2 extracted from HeLa showed the same transport features demonstrating that the glycosyl moiety has no role in transport function. Both in vitro and in vivo interactions of hASCT2 with the scaffold protein PDZK1 were revealed.
A Web-Accessible Protein Structure Prediction Pipeline
2009-06-01
Abstract Proteins are the molecular basis of nearly all structural, catalytic, sensory, and regulatory functions in living organisms. The biological...sensory, and regulatory functions in living organisms. The structure of a protein is essential in understanding its function at the molecular level...Characterizing sequence-structure and structure-function relationships have been the goals of molecular biology for more than three decades
Florman, H M; First, N L
1988-08-01
The effects of accessory sex gland secretions on the zona pellucida-induced acrosome reaction of bovine spermatozoa were investigated. Soluble extracts of zonae pellucidae initiated exocytosis in ejaculated spermatozoa. This process had an ED50 of 20 ng/microliter zona pellucida protein and saturated at 50 ng/microliter (Florman and First, 1988. Dev. Biol. 128, 453-463). In epididymal sperm this dose-response relationship was shifted toward greater agonist concentrations by at least a factor of 10(3). Reconstitution of high potency agonist response was achieved in vitro by incubation of epididymal sperm with bovine seminal plasma. Reconstitution was dependent on the seminal plasma protein concentration. The ED50 of this process was 62 micrograms protein/10(8) sperm and saturation was observed with 124 micrograms protein/10(8) sperm. Agonist responses in reconstituted epididymal sperm and in ejaculated sperm were indistinguishable with regard to dependence on the zona pellucida protein concentration and the kinetics of induced acrosome reactions. Kinetic studies suggest that reconstitution is due to adsorption of regulatory factors from seminal plasma. In addition to the positive regulatory elements responsible for reconstituting activity, seminal plasma also contains negative regulatory elements which inhibit agonist response. These negative factors are inactivated during sperm capacitation, permitting the expression of positive regulators. Acting together, these regulatory elements could coordinate high affinity agonist response with the availability of eggs in vivo.
Keller, Johannes; Mayo, Ruth; Greifeneder, Rainer; Pfattheicher, Stefan
2015-01-01
The current research suggests that taking self-regulatory mechanisms into account provides insights regarding individuals' responses to threats in social interactions. In general, based on the notion that a prevention-focused orientation of self-regulation is associated with a need for security and a vigilant tendency to avoid losses and other types of negative events we advocate that a prevention-focused orientation, both as a disposition as well as a situationally induced state, lowers generalized trust, thus hindering cooperation within social interactions that entail threats. Specifically, we found that the more individuals' habitual self-regulatory orientation is dominated by a prevention focus, the less likely they are to score high on a self-report measure of generalized trust (Study 1), and to express trust in a trust game paradigm as manifested in lower sums of transferred money (Studies 2 and 3). Similar findings were found when prevention focus was situationally manipulated (Study 4). Finally, one possible factor underlying the impact of prevention-focused self-regulation on generalized trust was demonstrated as individuals with a special sensitivity to negative information were significantly affected by a subtle prevention focus manipulation (versus control condition) in that they reacted with reduced trust in the trust game (Study 5). In sum, the current findings document the crucial relevance of self-regulatory orientations as conceptualized in regulatory focus theory regarding generalized trust and responses to threats within a social interaction. The theoretical and applied implications of the findings are discussed.
2013-01-01
Background Pseudogenes are traditionally considered “dead” genes, therefore lacking biological functions. This view has however been challenged during the last decade. This is the case of the Protein phosphatase 1 regulatory subunit 2 (PPP1R2) or inhibitor-2 gene family, for which several incomplete copies exist scattered throughout the genome. Results In this study, the pseudogenization process of PPP1R2 was analyzed. Ten PPP1R2-related pseudogenes (PPP1R2P1-P10), highly similar to PPP1R2, were retrieved from the human genome assembly present in the databases. The phylogenetic analysis of mammalian PPP1R2 and related pseudogenes suggested that PPP1R2P7 and PPP1R2P9 retroposons appeared before the great mammalian radiation, while the remaining pseudogenes are primate-specific and retroposed at different times during Primate evolution. Although considered inactive, four of these pseudogenes seem to be transcribed and possibly possess biological functions. Given the role of PPP1R2 in sperm motility, the presence of these proteins was assessed in human sperm, and two PPP1R2-related proteins were detected, PPP1R2P3 and PPP1R2P9. Signatures of negative and positive selection were also detected in PPP1R2P9, further suggesting a role as a functional protein. Conclusions The results show that contrary to initial observations PPP1R2-related pseudogenes are not simple bystanders of the evolutionary process but may rather be at the origin of genes with novel functions. PMID:24195737
McAuley, Edward; Mullen, Sean P; Szabo, Amanda N; White, Siobhan M; Wójcicki, Thomas R; Mailey, Emily L; Gothe, Neha P; Olson, Erin A; Voss, Michelle; Erickson, Kirk; Prakash, Ruchika; Kramer, Arthur F
2011-09-01
Self-efficacy and the use of self-regulatory strategies are consistently associated with physical activity behavior. Similarly, behavioral inhibition and cognitive resource allocation-indices of executive control function-have also been associated with this health behavior. The purpose of this study was to examine the hypothesis that self-efficacy mediates the relationship between self-regulatory processes, such as executive function, and sustained exercise behavior. Older adults (N=177, mean age=66.44 years) completed measures of executive function, self-reported use of self-regulatory strategies, and self-efficacy prior to and during the first month of a 12-month exercise intervention. Percentage of exercise classes attended over the following 11 months was used to represent adherence. Data were collected from 2007 to 2010 and analyzed in 2010-2011. Structural equation models were tested examining the effect of executive function and strategy use on adherence via efficacy. As hypothesized, results showed significant direct effects of two elements of executive function and of strategy use on self-efficacy and of efficacy on adherence. In addition, there were significant indirect effects of strategy use and executive function on adherence via self-efficacy. Higher levels of executive function and use of self-regulatory strategies at the start of an exercise program enhance beliefs in exercise capabilities, which in turn leads to greater adherence. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
2004-11-01
contributes to the pathogenicity of B. mallei in vivo. Burkholderia mallei , the etiologic agent of glanders , is a Many gram-negative bacteria possess...A Transcriptional Regulatory System that Contributes to the Virulence of Burkholderia mallei and Burkholderia pseudomallei. Submission Information... Burkholderia mallei Ricky L. Ulrich,’* David DeShazer,1 Harry B. lines,2 and Jeffrey A. Jeddelohi* Bacteriology Division’ and ToxinoloSy/Aerobiology
Potvin, Eric; Beuret, Laurent; Cadrin-Girard, Jean-François; Carter, Marcelle; Roy, Sophie; Tremblay, Michel; Charron, Jean
2010-11-01
The precise expression of the N-myc proto-oncogene is essential for normal mammalian development, whereas altered N-myc gene regulation is known to be a determinant factor in tumor formation. Using transgenic mouse embryos, we show that N-myc sequences from kb -8.7 to kb +7.2 are sufficient to reproduce the N-myc embryonic expression profile in developing branchial arches and limb buds. These sequences encompass several regulatory elements dispersed throughout the N-myc locus, including an upstream limb bud enhancer, a downstream somite enhancer, a branchial arch enhancer in the second intron, and a negative regulatory element in the first intron. N-myc expression in the limb buds is under the dominant control of the limb bud enhancer. The expression in the branchial arches necessitates the interplay of three regulatory domains. The branchial arch enhancer cooperates with the somite enhancer region to prevent an inhibitory activity contained in the first intron. The characterization of the branchial arch enhancer has revealed a specific role of the transcription factor GATA3 in the regulation of N-myc expression. Together, these data demonstrate that correct N-myc developmental expression is achieved via cooperation of multiple positive and negative regulatory elements.
Johannessen, Mona; Walquist, Mari; Gerits, Nancy; Dragset, Marte; Spang, Anne; Moens, Ugo
2011-01-01
Background The human polyomavirus BK (BKV) infects humans worldwide and establishes a persistent infection in the kidney. The BK virus genome encodes three regulatory proteins, large and small tumor-antigen and the agnoprotein, as well as the capsid proteins VP1 to VP3. Agnoprotein is conserved among BKV, JC virus (JCV) and SV40, and agnoprotein-deficient mutants reveal reduced viral propagation. Studies with JCV and SV40 indicate that their agnoproteins may be involved in transcription, replication and/or nuclear and cellular release of the virus. However, the exact function(s) of agnoprotein of BK virus remains elusive. Principal Findings As a strategy of exploring the functions of BKV agnoprotein, we decided to look for cellular interaction partners for the viral protein. Several partners were identified by yeast two-hybrid assay, among them α-SNAP which is involved in disassembly of vesicles during secretion. BKV agnoprotein and α-SNAP were found to partially co-localize in cells, and a complex consisting of agnoprotein and α-SNAP could be co-immunoprecipitated from cells ectopically expressing the proteins as well as from BKV-transfected cells. The N-terminal part of the agnoprotein was sufficient for the interaction with α-SNAP. Finally, we could show that BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter suggesting that agnoprotein may modulate exocytosis. Conclusions We have identified the first cellular interaction partner for BKV agnoprotein. The most N-terminal part of BKV agnoprotein is involved in the interaction with α-SNAP. Presence of BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter. PMID:21931730
Shi, Huiyong; Yang, Xiangshan; Zhen, Yanan; Huo, Shoujun; Xiao, Ruixue; Xu, Zhongfa
2017-05-01
The aim of the present study was to investigate the molecular mechanism, including the potential regulatory and signaling pathways, of platelet‑derived growth factor receptor β (PDGFRB), which underlies the recurrence of early gastric cancer (EGC) following endoscopic submucosal dissection (ESD). Online microRNA (miRNA) target prediction tools were used, which identified PDGFRB as the candidate target gene of miR‑499a in gastric cancer cells, and PFGRBR was then confirmed as the direct gene using a luciferase reporter assay system. The Kaplan‑Meier method was used to plot recurrence‑free curves, which were compared between genotype groups. A negative regulatory association between miR‑499a and PDGFRB was established by investigating the relative luciferase activity at different concentrations of miR‑499a mimics. Furthermore, as the rs3746444 polymorphism has been previously reported to interfere with the expression of miR‑499a, the present study investigated the expression levels of different genotypes, including TT (n=20), TC (n=9) and CC (n=3), the results of which supported the hypothesis that the presence of the minor allele (C) of the rs3746444 polymorphism compromised the expression of miR‑499a. The present study also performed polymerase chain reaction and western blot analyses to examine the mRNA and protein expression levels of PFGRBR among different genotypes or cells treated with different concentrations of miR‑499a mimics/inhibitors, which indicated the negative regulatory association between miR‑499a and PDGFRB. The present study also investigated the relative viabilities of EGC cells transfected with miR‑499a mimics (50 and 100 nM) and miR‑499a inhibitors (100 nM), and confirmed that miR‑499a negatively interfered with the viability of the EGC cells. The miR‑499a rs3746444 polymorphism was also recognized as a biomarker to predict recurrence following ESD in patients with EGC via analyzing the recurrence‑free rates among patients with EGC with different genotypes. The results showed that PDGFRB was validated as a target of miR‑499a, and rs3746444 was identified as a potential biomarker to predict the recurrence of EGC following ESD.
The risks of risk aversion in drug regulation.
Eichler, Hans-Georg; Bloechl-Daum, Brigitte; Brasseur, Daniel; Breckenridge, Alasdair; Leufkens, Hubert; Raine, June; Salmonson, Tomas; Schneider, Christian K; Rasi, Guido
2013-12-01
Drugs are approved by regulatory agencies on the basis of their assessment of whether the available evidence indicates that the benefits of the drug outweigh its risks. In recent years, regulatory agencies have been criticized both for being overly tolerant of risks or being excessively risk-averse, which reflects the challenge in determining an appropriate balance between benefit and risk with the limited data that is typically available before drug approval. The negative consequences of regulatory tolerance in allowing drugs onto the market that turn out to be unsafe are obvious, but the potential for adverse effects on public health owing to the absence of new drugs because of regulatory risk-aversion is less apparent. Here, we discuss the consequences of regulatory risk-aversion for public health and suggest what might be done to best align acceptance of risk and uncertainty by regulators with the interests of public health.
Health Risks and Adverse Reactions to Functional Foods.
Ameratunga, Rohan; Crooks, Christine; Simmons, Greg; Woon, See-Tarn
2016-01-01
Functional foods have become increasingly popular with consumers anxious to mitigate the effects of an unhealthy lifestyle or aging. In spite of attractive health claims, these products do not have legal or regulatory status in most countries and are regulated through their health claims. Regulation of functional foods by health claims does not address health risks and adverse effects of these products. In this essay regulatory aspects of functional foods are reviewed along with adverse effects published in the peer-reviewed literature. We detail why the lack of an internationally accepted definition of functional foods places consumers at risk of adverse outcomes. Our review will assist regulatory agencies, manufacturers and consumer groups to assess the benefits and reduce the risks associated with these products.
Predictive computation of genomic logic processing functions in embryonic development
Peter, Isabelle S.; Faure, Emmanuel; Davidson, Eric H.
2012-01-01
Gene regulatory networks (GRNs) control the dynamic spatial patterns of regulatory gene expression in development. Thus, in principle, GRN models may provide system-level, causal explanations of developmental process. To test this assertion, we have transformed a relatively well-established GRN model into a predictive, dynamic Boolean computational model. This Boolean model computes spatial and temporal gene expression according to the regulatory logic and gene interactions specified in a GRN model for embryonic development in the sea urchin. Additional information input into the model included the progressive embryonic geometry and gene expression kinetics. The resulting model predicted gene expression patterns for a large number of individual regulatory genes each hour up to gastrulation (30 h) in four different spatial domains of the embryo. Direct comparison with experimental observations showed that the model predictively computed these patterns with remarkable spatial and temporal accuracy. In addition, we used this model to carry out in silico perturbations of regulatory functions and of embryonic spatial organization. The model computationally reproduced the altered developmental functions observed experimentally. Two major conclusions are that the starting GRN model contains sufficiently complete regulatory information to permit explanation of a complex developmental process of gene expression solely in terms of genomic regulatory code, and that the Boolean model provides a tool with which to test in silico regulatory circuitry and developmental perturbations. PMID:22927416
Cui, Yaya; Chatterjee, Asita; Yang, Hailian; Chatterjee, Arun K.
2008-01-01
Erwinia carotovora subsp. carotovora produces an array of extracellular proteins (i.e., exoproteins), including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Exoprotein genes are coregulated by the quorum-sensing signal, N-acyl homoserine lactone, plant signals, an assortment of transcriptional factors/regulators (GacS/A, ExpR1, ExpR2, KdgR, RpoS, HexA, and RsmC) and posttranscriptional regulators (RsmA, rsmB RNA). rsmB RNA production is positively regulated by GacS/A, a two-component system, and negatively regulated by HexA (PecT in Erwinia chrysanthemi; LrhA [LysR homolog A] in Escherichia coli) and RsmC, a putative transcriptional adaptor. While free RsmA, an RNA-binding protein, promotes decay of mRNAs of exoprotein genes, binding of RsmA with rsmB RNA neutralizes the RsmA effect. In the course of studies of GacA regulation, we discovered that a locus bearing strong homology to the flhDC operon of E. coli also controls extracellular enzyme production. A transposon insertion FlhDC− mutant produces very low levels of pectate lyase, polygalacturonase, cellulase, protease, and E. carotovora subsp. carotovora Harpin (HarpinEcc) and is severely attenuated in its plant virulence. The production of these exoproteins is restored in the mutant carrying an FlhDC+ plasmid. Sequence analysis and transcript assays disclosed that the flhD operon of E. carotovora subsp. carotovora, like those of other enterobacteria, consists of flhD and flhC. Complementation analysis revealed that the regulatory effect requires functions of both flhD and flhC products. The data presented here show that FlhDC positively regulates gacA, rsmC, and fliA and negatively regulates hexA (lrhA). Evidence shows that FlhDC controls extracellular protein production through cumulative effects on hexA and gacA. Reduced levels of GacA and elevated levels of HexA in the FlhDC− mutant are responsible for the inhibition of rsmB RNA production, a condition conducive to the accumulation of free RsmA. Indeed, studies with an RsmA− FlhDC− double mutant and multiple copies of rsmB+ DNA establish that the negative effect of FlhDC deficiency is exerted via RsmA. The FlhDC-mediated regulation of fliA has no bearing on exoprotein production in E. carotovora subsp. carotovora. Our observations for the first time establish a regulatory connection between FlhDC, HexA, GacA, and rsmB RNA in the context of the exoprotein production and virulence of E. carotovora subsp. carotovora. PMID:18441056
Cui, Yaya; Chatterjee, Asita; Yang, Hailian; Chatterjee, Arun K
2008-07-01
Erwinia carotovora subsp. carotovora produces an array of extracellular proteins (i.e., exoproteins), including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Exoprotein genes are coregulated by the quorum-sensing signal, N-acyl homoserine lactone, plant signals, an assortment of transcriptional factors/regulators (GacS/A, ExpR1, ExpR2, KdgR, RpoS, HexA, and RsmC) and posttranscriptional regulators (RsmA, rsmB RNA). rsmB RNA production is positively regulated by GacS/A, a two-component system, and negatively regulated by HexA (PecT in Erwinia chrysanthemi; LrhA [LysR homolog A] in Escherichia coli) and RsmC, a putative transcriptional adaptor. While free RsmA, an RNA-binding protein, promotes decay of mRNAs of exoprotein genes, binding of RsmA with rsmB RNA neutralizes the RsmA effect. In the course of studies of GacA regulation, we discovered that a locus bearing strong homology to the flhDC operon of E. coli also controls extracellular enzyme production. A transposon insertion FlhDC(-) mutant produces very low levels of pectate lyase, polygalacturonase, cellulase, protease, and E. carotovora subsp. carotovora Harpin (Harpin(Ecc)) and is severely attenuated in its plant virulence. The production of these exoproteins is restored in the mutant carrying an FlhDC(+) plasmid. Sequence analysis and transcript assays disclosed that the flhD operon of E. carotovora subsp. carotovora, like those of other enterobacteria, consists of flhD and flhC. Complementation analysis revealed that the regulatory effect requires functions of both flhD and flhC products. The data presented here show that FlhDC positively regulates gacA, rsmC, and fliA and negatively regulates hexA (lrhA). Evidence shows that FlhDC controls extracellular protein production through cumulative effects on hexA and gacA. Reduced levels of GacA and elevated levels of HexA in the FlhDC(-) mutant are responsible for the inhibition of rsmB RNA production, a condition conducive to the accumulation of free RsmA. Indeed, studies with an RsmA(-) FlhDC(-) double mutant and multiple copies of rsmB(+) DNA establish that the negative effect of FlhDC deficiency is exerted via RsmA. The FlhDC-mediated regulation of fliA has no bearing on exoprotein production in E. carotovora subsp. carotovora. Our observations for the first time establish a regulatory connection between FlhDC, HexA, GacA, and rsmB RNA in the context of the exoprotein production and virulence of E. carotovora subsp. carotovora.
Deacon, Samantha; Norman, Steve; Nicolette, Joseph; Reub, Gregory; Greene, Gretchen; Osborn, Rachel; Andrews, Paul
2015-02-01
The European regulatory system for the approval of pesticides includes a thorough evaluation of risks to the environment and is designed to be protective of ecosystems. However, a decision to ban an agrochemical could also potentially have a negative impact on the value of ecosystem services, if resulting changes in crop management are damaging to ecosystems or result in negative socio-economic impacts. To support regulatory decision-making, consideration of ecosystem services to identify best environmental management options could be a way forward. There is generally a growing trend for the consideration of ecosystem services in decision making. Ecosystems provide the conditions for growing food, regulate water and provide wildlife habitats; these, amongst others, are known as ecosystem services. The objectives of this case study were to bring a holistic approach to decision making by valuing the environmental, social and economic benefits derived from the use of chlorpyrifos in Valencian citrus production. Spanish growers harvest between 5 and 6 milliont of citrus annually, worth an estimated €5 to 7 billion in food markets throughout Europe. The approach highlighted the potential for unintended negative consequences of regulatory decisions if the full context is not considered. In this study, rather than a regulatory restriction, the best option was the continued use of chlorpyrifos together with vegetated conservation patches as refuges for non-target insects. The conservation patches offset potential insecticidal impacts to insects whilst maintaining citrus production, farm income and the amenity value of the citrus landscape of Valencia. This was an initial proof-of-concept study and illustrates the importance of a wider perspective; other cases may have different outcomes depending on policies, the pesticide, crop scenarios, farm economics and the region. Copyright © 2014 Elsevier B.V. All rights reserved.
Guo, Zhiqiang; Zhao, Chuncheng; Wang, Zheng
2014-09-26
To identify critical genes and biological pathways in acute lung injury (ALI), a comparative analysis of gene expression profiles of patients with ALI + sepsis compared with patients with sepsis alone were performed with bioinformatic tools. GSE10474 was downloaded from Gene Expression Omnibus, including a collective of 13 whole blood samples with ALI + sepsis and 21 whole blood samples with sepsis alone. After pre-treatment with robust multichip averaging (RMA) method, differential analysis was conducted using simpleaffy package based upon t-test and fold change. Hierarchical clustering was also performed using function hclust from package stats. Beisides, functional enrichment analysis was conducted using iGepros. Moreover, the gene regulatory network was constructed with information from Kyoto Encyclopedia of Genes and Genomes (KEGG) and then visualized by Cytoscape. A total of 128 differentially expressed genes (DEGs) were identified, including 47 up- and 81 down-regulated genes. The significantly enriched functions included negative regulation of cell proliferation, regulation of response to stimulus and cellular component morphogenesis. A total of 27 DEGs were significantly enriched in 16 KEGG pathways, such as protein digestion and absorption, fatty acid metabolism, amoebiasis, etc. Furthermore, the regulatory network of these 27 DEGs was constructed, which involved several key genes, including protein tyrosine kinase 2 (PTK2), v-src avian sarcoma (SRC) and Caveolin 2 (CAV2). PTK2, SRC and CAV2 may be potential markers for diagnosis and treatment of ALI. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5865162912987143.
Poorebrahim, Mansour; Salarian, Ali; Najafi, Saeideh; Abazari, Mohammad Foad; Aleagha, Maryam Nouri; Dadras, Mohammad Nasr; Jazayeri, Seyed Mohammad; Ataei, Atousa; Poortahmasebi, Vahdat
2017-05-01
Epstein-Barr virus (EBV) is the most common cause of infectious mononucleosis (IM) and establishes lifetime infection associated with a variety of cancers and autoimmune diseases. The aim of this study was to develop an integrative gene regulatory network (GRN) approach and overlying gene expression data to identify the representative subnetworks for IM and EBV latent infection (LI). After identifying differentially expressed genes (DEGs) in both IM and LI gene expression profiles, functional annotations were applied using gene ontology (GO) and BiNGO tools, and construction of GRNs, topological analysis and identification of modules were carried out using several plugins of Cytoscape. In parallel, a human-EBV GRN was generated using the Hu-Vir database for further analyses. Our analysis revealed that the majority of DEGs in both IM and LI were involved in cell-cycle and DNA repair processes. However, these genes showed a significant negative correlation in the IM and LI states. Furthermore, cyclin-dependent kinase 2 (CDK2) - a hub gene with the highest centrality score - appeared to be the key player in cell cycle regulation in IM disease. The most significant functional modules in the IM and LI states were involved in the regulation of the cell cycle and apoptosis, respectively. Human-EBV network analysis revealed several direct targets of EBV proteins during IM disease. Our study provides an important first report on the response to IM/LI EBV infection in humans. An important aspect of our data was the upregulation of genes associated with cell cycle progression and proliferation.
Tan, Ruoyun; He, Weichun; Lin, Xia; Kiss, Lawrence P; Liu, Youhua
2008-05-01
Smad ubiquitination regulatory factor-2 (Smurf2) is an E3 ubiqutin ligase that plays a pivotal role in regulating TGF-beta signaling via selectively targeting key components of the Smad pathway for degradation. In this study, we have investigated the regulation of Smurf2 expression, its target specificity, and the functional implication of its induction in the fibrotic kidney. Immunohistochemical staining revealed that Smurf2 was upregulated specifically in renal tubules of kidney biopsies from patients with various nephropathies. In vitro, Smurf2 mRNA and protein were induced in human proximal tubular epithelial cells (HKC-8) upon TGF-beta1 stimulation. Ectopic expression of Smurf2 was sufficient to reduce the steady-state levels of Smad2, but not Smad1, Smad3, Smad4, and Smad7, in HKC-8 cells. Interestingly, Smurf2 was also able to downregulate the Smad transcriptional corepressors Ski, SnoN, and TG-interacting factor. Inhibition of the proteasomal pathway prevented Smurf2-mediated downregulation of Smad2 and Smad corepressors. Functionally, overexpression of Smurf2 enhanced the transcription of the TGF-beta-responsive promoter and augmented TGF-beta1-mediated E-cadherin suppression, as well as fibronectin and type I collagen induction in HKC-8 cells. These results indicate that Smurf2 specifically targets both positive and negative Smad regulators for destruction in tubular epithelial cells, thereby providing a complex fine-tuning of TGF-beta signaling. It appears that dysregulation of Smurf2 could contribute to an aberrant TGF-beta/Smad signaling in the pathogenesis of kidney fibrosis.
Mechanisms of the HRSL3 tumor suppressor function in ovarian carcinoma cells.
Nazarenko, Irina; Schäfer, Reinhold; Sers, Christine
2007-04-15
HRSL3 (also known as H-REV107-1) belongs to a class II tumor suppressor gene family and is downregulated in several human tumors including ovarian carcinomas. To unravel the mechanism of HRSL3 tumor suppressor action, we performed a yeast two-hybrid screen and identified the alpha-isoform of the regulatory subunit A of protein phosphatase 2A (PR65alpha) as a new interaction partner of HRSL3. Interaction between HRSL3 and PR65alpha was confirmed in vitro and by co-immunoprecipitation in mammalian cells. We demonstrate that HRSL3 binds to the endogenous PR65alpha, thereby partially sequestering the catalytic subunit PR36 from the PR65 protein complex, and inhibiting PP2A catalytic activity. Furthermore, binding of HRSL3 to PR65 induces apoptosis in ovarian carcinoma cells in a caspase-dependent manner. Using several mutant HRSL3 constructs, we identified the N-terminal proline-rich region within the HRSL3 protein as the domain that is relevant for both binding of PR65alpha and induction of programmed cell death. This suggests that the negative impact of HRSL3 onto PP2A activity is important for the HRSL3 pro-apoptotic function and indicates a role of PP2A in survival of human ovarian carcinomas. The analysis of distinct PP2A target molecules revealed PKCzeta as being involved in HRSL3 action. These data implicate HRSL3 as a signaling regulatory molecule, which is functionally involved in the oncogenic network mediating growth and survival of ovarian cancer cells.
Short-lived non-coding transcripts (SLiTs): Clues to regulatory long non-coding RNA.
Tani, Hidenori
2017-03-22
Whole transcriptome analyses have revealed a large number of novel long non-coding RNAs (lncRNAs). Although the importance of lncRNAs has been documented in previous reports, the biological and physiological functions of lncRNAs remain largely unknown. The role of lncRNAs seems an elusive problem. Here, I propose a clue to the identification of regulatory lncRNAs. The key point is RNA half-life. RNAs with a long half-life (t 1/2 > 4 h) contain a significant proportion of ncRNAs, as well as mRNAs involved in housekeeping functions, whereas RNAs with a short half-life (t 1/2 < 4 h) include known regulatory ncRNAs and regulatory mRNAs. This novel class of ncRNAs with a short half-life can be categorized as Short-Lived non-coding Transcripts (SLiTs). I consider that SLiTs are likely to be rich in functionally uncharacterized regulatory RNAs. This review describes recent progress in research into SLiTs.
Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events
Llewellyn, Amy; Foey, Andrew
2017-01-01
There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology. PMID:29065562
Wang, Lixin; Brugge, Joan S; Janes, Kevin A
2011-10-04
Gene expression networks are complicated by the assortment of regulatory factors that bind DNA and modulate transcription combinatorially. Single-cell measurements can reveal biological mechanisms hidden by population averages, but their value has not been fully explored in the context of mRNA regulation. Here, we adapted a single-cell expression profiling technique to examine the gene expression program downstream of Forkhead box O (FOXO) transcription factors during 3D breast epithelial acinar morphogenesis. By analyzing patterns of mRNA fluctuations among individual matrix-attached epithelial cells, we found that a subset of FOXO target genes was jointly regulated by the transcription factor Runt-related transcription factor 1 (RUNX1). Knockdown of RUNX1 causes hyperproliferation and abnormal morphogenesis, both of which require normal FOXO function. Down-regulating RUNX1 and FOXOs simultaneously causes widespread oxidative stress, which arrests proliferation and restores normal acinar morphology. In hormone-negative breast cancers lacking human epidermal growth factor receptor 2 (HER2) amplification, we find that RUNX1 down-regulation is strongly associated with up-regulation of FOXO1, which may be required to support growth of RUNX1-negative tumors. The coordinate function of these two tumor suppressors may provide a failsafe mechanism that inhibits cancer progression.
Yu, Jing; Hirose-Yotsuya, Lisa; Take, Kazumi; Sun, Wei; Iwabu, Masato; Okada-Iwabu, Miki; Fujita, Takanori; Aoyama, Tomohisa; Tsutsumi, Shuichi; Ueki, Kohjiro; Kodama, Tatsuhiko; Sakai, Juro; Aburatani, Hiroyuki; Kadowaki, Takashi
2011-01-01
Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type–specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day 8 of differentiation) and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq). FAIRE peaks at the promoter were associated with active transcription and histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for, respectively, PPARγ and C/EBPα, the master regulators of adipocyte differentiation. Computational motif analyses of the adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI) transcription factors. Indeed, ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARγ binding sites near PPARγ, C/EBPα, and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA–mediated knockdown of NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a physiological function of these factors in the adipogenic program. Together, our study demonstrates the utility of FAIRE-seq in providing a global view of cell type–specific regulatory elements in the genome and in identifying transcriptional regulators of adipocyte differentiation. PMID:22028663
Piecing together cis-regulatory networks: insights from epigenomics studies in plants.
Huang, Shao-Shan C; Ecker, Joseph R
2018-05-01
5-Methylcytosine, a chemical modification of DNA, is a covalent modification found in the genomes of both plants and animals. Epigenetic inheritance of phenotypes mediated by DNA methylation is well established in plants. Most of the known mechanisms of establishing, maintaining and modifying DNA methylation have been worked out in the reference plant Arabidopsis thaliana. Major functions of DNA methylation in plants include regulation of gene expression and silencing of transposable elements (TEs) and repetitive sequences, both of which have parallels in mammalian biology, involve interaction with the transcriptional machinery, and may have profound effects on the regulatory networks in the cell. Methylome and transcriptome dynamics have been investigated in development and environmental responses in Arabidopsis and agriculturally and ecologically important plants, revealing the interdependent relationship among genomic context, methylation patterns, and expression of TE and protein coding genes. Analyses of methylome variation among plant natural populations and species have begun to quantify the extent of genetic control of methylome variation vs. true epimutation, and model the evolutionary forces driving methylome evolution in both short and long time scales. The ability of DNA methylation to positively or negatively modulate binding affinity of transcription factors (TFs) provides a natural link from genome sequence and methylation changes to transcription. Technologies that allow systematic determination of methylation sensitivities of TFs, in native genomic and methylation context without confounding factors such as histone modifications, will provide baseline datasets for building cell-type- and individual-specific regulatory networks that underlie the establishment and inheritance of complex traits. This article is categorized under: Laboratory Methods and Technologies > Genetic/Genomic Methods Biological Mechanisms > Regulatory Biology. © 2017 Wiley Periodicals, Inc.
Fanconi Anemia Core Complex Gene Promoters Harbor Conserved Transcription Regulatory Elements
Meier, Daniel; Schindler, Detlev
2011-01-01
The Fanconi anemia (FA) gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M) that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS). In the 5′ region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3′ regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs), and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters. PMID:21826217
Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements.
Meier, Daniel; Schindler, Detlev
2011-01-01
The Fanconi anemia (FA) gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M) that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS). In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs), and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.
Santiago, Teresa C; Mamoun, Choukri Ben
2003-10-03
In Saccharomyces cerevisiae, genes encoding phospholipid-synthesizing enzymes are regulated by inositol and choline (IC). The current model suggests that when these precursors become limiting, the transcriptional complex Ino2p-Ino4p activates the expression of these genes, whereas repression requires Opi1p and occurs when IC are available. In this study, microarray-based expression analysis was performed to assess the global transcriptional response to IC in a wild-type strain and in the opi1delta, ino2delta, and ino4delta null mutant strains. Fifty genes were either activated or repressed by IC in the wild-type strain, including three already known IC-repressed genes. We demonstrated that the IC response was not limited to genes involved in membrane biogenesis, but encompassed various metabolic pathways such as biotin synthesis, one-carbon compound metabolism, nitrogen-containing compound transport and degradation, cell wall organization and biogenesis, and acetyl-CoA metabolism. The expression of a large number of IC-regulated genes did not change in the opi1delta, ino2delta, and ino4delta strains, thus implicating new regulatory elements in the IC response. Our studies revealed that Opi1p, Ino2p, and Ino4p have dual regulatory activities, acting in both positive and negative transcriptional regulation of a large number of genes, most of which are not regulated by IC and only a subset of which is involved in membrane biogenesis. These data provide the first global response profile of yeast to IC and reveal novel regulatory mechanisms by these precursors.
Smith, Kent A.; Meisenburg, Brenna L.; Tam, Victor L.; Pagarigan, Robb R.; Wong, Raymond; Joea, Diljeet K.; Lantzy, Liz; Carrillo, Mayra A.; Gross, Todd M.; Malyankar, Uriel M.; Chiang, Chih-Sheng; Da Silva, Diane M.; Kündig, Thomas M.; Kast, W. Martin; Qiu, Zhiyong; Bot, Adrian
2009-01-01
Purpose The goal of this study was to investigate the therapeutic potential of a novel immunotherapy strategy resulting in immunity to localized or metastatic HPV 16-transformed murine tumors. Experimental design Animals bearing E7-expressing tumors were co-immunized by lymph node injection with E7 49-57 antigen and TLR3-ligand (synthetic dsRNA). Immune responses were measured by flow cytometry and anti-tumor efficacy was evaluated by tumor size and survival. In situ cytotoxicity assays and identification of tumor-infiltrating lymphocytes and T regulatory cells were used to assess the mechanisms of treatment resistance in bulky disease. Chemotherapy with cyclophosphamide was explored to augment immunotherapy in late-stage disease. Results In therapeutic and prophylactic settings, immunization resulted in a considerable expansion of E7 49-57 antigen-specific T lymphocytes in the range of 1/10 CD8+ T cells. The resulting immunity was effective in suppressing disease progression and mortality in a pulmonary metastatic disease model. Therapeutic immunization resulted in control of isolated tumors up to a certain volume, and correlated with anti-tumor immune responses measured in blood. In situ analysis showed that within bulky tumors, T cell function was affected by negative regulatory mechanisms linked to an increase in T regulatory cells and could be overcome by cyclophosphamide treatment in conjunction with immunization. Conclusions This study highlights a novel cancer immunotherapy platform with potential for translatability to the clinic and suggests its potential usefulness for controlling metastatic disease, solid tumors of limited size, or larger tumors when combined with cytotoxic agents that reduce the number of tumor-infiltrating T regulatory cells. PMID:19789304
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kihm, Steve; Satchwell, Andrew; Cappers, Peter
This technical brief identifies conditions under which utility regulators should consider implementing policy approaches that seek to mitigate negative outcomes due to an increase in interest rates. Interest rates are a key factor in determining a utility’s cost of equity and investors find value when returns exceed the cost of equity. Through historical observations of periods of rising and falling interest rates and application of a pro forma financial tool, we identify the key drivers of utility stock valuations and estimate the degree to which those valuations might be affected by increasing interest rates.3 We also analyze the efficacy ofmore » responses by utility regulators to mitigate potential negative financial impacts. We find that regulators have several possible approaches to mitigate a decline in value in an environment of increasing interest rates, though regulators must weigh the tradeoffs of improving investor value with potential increases in customer costs. Furthermore, the range of approaches reflects today’s many different electric utility regulatory models and regulatory responses to a decline in investor value will fit within state-specific models.« less
Chen, Yi-Tien; Lin, Chao-Fen; Chen, Young-Mao; Lo, Chih-En; Chen, Wan-Erh
2017-01-01
Myostatin is a negative regulator of myogenesis and has been suggested to be an important factor in the development of muscle wasting during viral infection. The objective of this study was to characterize the main regulatory element of the grouper myostatin promoter and to study changes in promoter activity due to viral stimulation. In vitro and in vivo experiments indicated that the E-box E6 is a positive cis-and trans-regulation motif, and an essential binding site for MyoD. In contrast, the E-box E5 is a dominant negative cis-regulatory. The characteristics of grouper myostatin promoter are similar in regulation of muscle growth to that of other species, but mainly through specific regulatory elements. According to these results, we conducted a study to investigate the effect of viral infection on myostatin promoter activity and its regulation. The nervous necrosis virus (NNV) treatment significantly induced myostatin promoter activity. The present study is the first report describing that specific myostatin motifs regulate promoter activity and response to viral infection. PMID:29036192
Chen, Yi-Tien; Lin, Chao-Fen; Chen, Young-Mao; Lo, Chih-En; Chen, Wan-Erh; Chen, Tzong-Yueh
2017-01-01
Myostatin is a negative regulator of myogenesis and has been suggested to be an important factor in the development of muscle wasting during viral infection. The objective of this study was to characterize the main regulatory element of the grouper myostatin promoter and to study changes in promoter activity due to viral stimulation. In vitro and in vivo experiments indicated that the E-box E6 is a positive cis-and trans-regulation motif, and an essential binding site for MyoD. In contrast, the E-box E5 is a dominant negative cis-regulatory. The characteristics of grouper myostatin promoter are similar in regulation of muscle growth to that of other species, but mainly through specific regulatory elements. According to these results, we conducted a study to investigate the effect of viral infection on myostatin promoter activity and its regulation. The nervous necrosis virus (NNV) treatment significantly induced myostatin promoter activity. The present study is the first report describing that specific myostatin motifs regulate promoter activity and response to viral infection.
Bartholow, Bruce D; Henry, Erika A; Lust, Sarah A; Saults, J Scott; Wood, Phillip K
2012-02-01
Alcohol is known to impair self-regulatory control of behavior, though mechanisms for this effect remain unclear. Here, we tested the hypothesis that alcohol's reduction of negative affect (NA) is a key mechanism for such impairment. This hypothesis was tested by measuring the amplitude of the error-related negativity (ERN), a component of the event-related brain potential (ERP) posited to reflect the extent to which behavioral control failures are experienced as distressing, while participants completed a laboratory task requiring self-regulatory control. Alcohol reduced both the ERN and error positivity (Pe) components of the ERP following errors and impaired typical posterror behavioral adjustment. Structural equation modeling indicated that effects of alcohol on both the ERN and posterror adjustment were significantly mediated by reductions in NA. Effects of alcohol on Pe amplitude were unrelated to posterror adjustment, however. These findings indicate a role for affect modulation in understanding alcohol's effects on self-regulatory impairment and more generally support theories linking the ERN with a distress-related response to control failures. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Probst-Kepper, M; Balling, R; Buer, J
2010-08-01
FOXP3 is essential for the development and function of regulatory CD4(+)CD25(hi) T (T(reg)) cells. However, recent evidence suggests that FOXP3 alone is not sufficient to completely explain the regulatory phenotype of these key players in autoimmunity and inflammation: after being activated, conventional human CD4(+) T cells transiently up-regulate FOXP3 without acquiring a regulatory function. Researchers have recently found that glycoprotein A repetitions predominant (GARP, or LRRC32) is a T(reg)-specific receptor that binds latent TGF-beta and dominantly controls FOXP3 and the regulatory phenotype via a positive feedback loop. This finding provides a missing link in our molecular understanding of FOXP3 in T(reg) cells. This viewpoint focuses on GARP as safeguard of FOXP3 and the regulatory phenotype.
Isolation of CD4+CD25+ regulatory T cells for clinical trials.
Hoffmann, Petra; Boeld, Tina J; Eder, Ruediger; Albrecht, Julia; Doser, Kristina; Piseshka, Biserka; Dada, Ashraf; Niemand, Claudia; Assenmacher, Mario; Orsó, Evelyn; Andreesen, Reinhard; Holler, Ernst; Edinger, Matthias
2006-03-01
The adoptive transfer of donor CD4+CD25+ regulatory T cells has been shown to protect from lethal graft-versus-host disease after allogeneic bone marrow transplantation in murine disease models. Efficient isolation strategies that comply with good manufacturing practice (GMP) guidelines are prerequisites for the clinical application of human CD4+CD25+ regulatory T cells. Here we describe the isolation of CD4+CD25+ T cells with regulatory function from standard leukapheresis products by using a 2-step magnetic cell-separation protocol performed under GMP conditions. The generated cell products contained on average 49.5% CD4+CD25high T cells that phenotypically and functionally represented natural CD4+CD25+ regulatory T cells and showed a suppressive activity comparable to that of CD4+CD25+ regulatory T-cell preparations purified by non-GMP-approved fluorescence-activated cell sorting.
miRNAtools: Advanced Training Using the miRNA Web of Knowledge.
Stępień, Ewa Ł; Costa, Marina C; Enguita, Francisco J
2018-02-16
Micro-RNAs (miRNAs) are small non-coding RNAs that act as negative regulators of the genomic output. Their intrinsic importance within cell biology and human disease is well known. Their mechanism of action based on the base pairing binding to their cognate targets have helped the development not only of many computer applications for the prediction of miRNA target recognition but also of specific applications for functional assessment and analysis. Learning about miRNA function requires practical training in the use of specific computer and web-based applications that are complementary to wet-lab studies. In order to guide the learning process about miRNAs, we have created miRNAtools (http://mirnatools.eu), a web repository of miRNA tools and tutorials. This article compiles tools with which miRNAs and their regulatory action can be analyzed and that function to collect and organize information dispersed on the web. The miRNAtools website contains a collection of tutorials that can be used by students and tutors engaged in advanced training courses. The tutorials engage in analyses of the functions of selected miRNAs, starting with their nomenclature and genomic localization and finishing with their involvement in specific cellular functions.
Immunotherapy using regulatory T cells in cancer suggests more flavors of hypersensitivity type IV.
Pakravan, Nafiseh; Hassan, Zuhair Mohammad
2018-03-01
Regulatory T cells (Tregs) profoundly affect tumor microenvironment and exert dominant suppression over antitumor immunity in response to self-antigen expressed by tumor. Immunotherapy targeting Tregs lead to a significant improvement in antitumor immunity. Intradermal injection of tumor antigen results in negative delayed-type hypersensitivity (DTH) type IV. However, anti-Tregs treatment/use of adjuvant along with tumor antigens turns DTH to positive. Considering Tregs as the earliest tumor sensor/responders, tumor can be regarded as Treg-mediated type IV hypersensitivity and negative DTH to tumor antigen is due to anti-inflammatory action of Tregs to tumor antigens at the injection site. Such a view would help us in basic and clinical situations to testify a candidate vaccine via dermal administration and evaluation of Treg proportion at injection site.
Cardiovascular regulatory response to lower body negative pressure following blood volume loss
NASA Technical Reports Server (NTRS)
Shimizu, M.; Ghista, D. N.; Sandler, H.
1979-01-01
An attempt is made to explain the cardiovascular regulatory responses to lower body negative pressure (LBNP) stress, both in the absence of and following blood or plasma volume loss, the latter being factors regularly observed with short- or long-term recumbency or weightlessness and associated with resulting cardiovascular deconditioning. Analytical expressions are derived for the responses of mean venous pressure and blood volume pooled in the lower body due to LBNP. An analysis is presented for determining the HR change due to LBNP stress following blood volume loss. It is concluded that the reduced orthostatic tolerance following long-term space flight or recumbency can be mainly attributed to blood volume loss, and that the associated cardiovascular responses characterizing this orthostatic intolerance is elicited by the associated central venous pressure response.
A fast, robust and tunable synthetic gene oscillator.
Stricker, Jesse; Cookson, Scott; Bennett, Matthew R; Mather, William H; Tsimring, Lev S; Hasty, Jeff
2008-11-27
One defining goal of synthetic biology is the development of engineering-based approaches that enable the construction of gene-regulatory networks according to 'design specifications' generated from computational modelling. This approach provides a systematic framework for exploring how a given regulatory network generates a particular phenotypic behaviour. Several fundamental gene circuits have been developed using this approach, including toggle switches and oscillators, and these have been applied in new contexts such as triggered biofilm development and cellular population control. Here we describe an engineered genetic oscillator in Escherichia coli that is fast, robust and persistent, with tunable oscillatory periods as fast as 13 min. The oscillator was designed using a previously modelled network architecture comprising linked positive and negative feedback loops. Using a microfluidic platform tailored for single-cell microscopy, we precisely control environmental conditions and monitor oscillations in individual cells through multiple cycles. Experiments reveal remarkable robustness and persistence of oscillations in the designed circuit; almost every cell exhibited large-amplitude fluorescence oscillations throughout observation runs. The oscillatory period can be tuned by altering inducer levels, temperature and the media source. Computational modelling demonstrates that the key design principle for constructing a robust oscillator is a time delay in the negative feedback loop, which can mechanistically arise from the cascade of cellular processes involved in forming a functional transcription factor. The positive feedback loop increases the robustness of the oscillations and allows for greater tunability. Examination of our refined model suggested the existence of a simplified oscillator design without positive feedback, and we construct an oscillator strain confirming this computational prediction.
Price, M D; Lai, Z
1999-04-01
Competence for cell fate determination and cellular differentiation is under tight control of regulatory genes. Yan, a nuclear target of receptor tyrosine kinase (RTK) signaling, is an E twenty six (ETS) DNA-binding protein that functions as a negative regulator of cell differentiation and proliferation in Drosophila. Most members of RTK signaling pathways are highly conserved through evolution, yet no yan orthologues have been identified to date in vertebrates. To investigate the degree of yan conservation during evolution, we have characterized a yan homologue from a sibling species of D. melanogaster, D. virilis. Our results show that the organization, primary structure and expression pattern of yan are highly conserved. Both genes span over 20 kb and contain four exons with introns at identical positions. The areas with highest amino acid similarity include the Pointed and ETS domain but there are other discrete regions with a high degree of similarity. Phylogenetic analysis reveals that yan's closest relative is the human tel gene, a negative regulator of differentiation in hematopoetic precursors. In both species, Yan is dynamically expressed beginning as early as stage 4/5 and persisting throughout embryogenesis. In third instar larvae, Yan is expressed in and behind the morphogenetic furrow of the eye imaginal disc as well as in the laminar precursor cells of the brain. Ovarian follicle cells also contain Yan protein. Conservation of the structure and expression patterns of yan genes strongly suggests that regulatory mechanisms for their expression are also conserved in these two species.
Gillen, K L; Hughes, K T
1991-01-01
The complex regulation of flagellin gene expression in Salmonella typhimurium was characterized in vivo by using lac transcriptional fusions to the two flagellin structural genes (fliC [H1] and fljB [H2]). Phase variation was measured as the rate of switching of flagellin gene expression. Switching frequencies varied from 1/500 per cell per generation to 1/10,000 per cell per generation depending on the particular insertion and the direction of switching. There is a 4- to 20-fold bias in favor of switching from the fljB(On) to the fljB(Off) orientation. Random Tn10dTc insertions were isolated which failed to express flagellin. While most of these insertions mapped to loci known to be required for flagellin expression, several new loci were identified. The presence of functional copies of all of the genes responsible for complete flagellar assembly, except the hook-associated proteins (flgK, flgL, and fliD gene products), were required for expression of the fliC or fljB flagellin genes. Two novel loci involved in negative regulation of fliC and fljB in fla mutant backgrounds were identified. One of these loci, designated the flgR locus, mapped to the flg operon at 23 min on the Salmonella linkage map. An flgR insertion mutation resulted in relief of repression of the fliC and fljB genes in all fla mutant backgrounds except for mutants in the positive regulatory loci (flhC, flhD, and fliA genes). PMID:1848842
New Transposon Tools Tailored for Metabolic Engineering of Gram-Negative Microbial Cell Factories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-García, Esteban; Aparicio, Tomás; Lorenzo, Víctor de
Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5-vectors, termed pBAMDs, for the delivery of gene(s) into the chromosome of Gram-negative bacteria and for generating saturated mutagenesismore » libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic-resistance markers (kanamycin, streptomycin, and gentamicin). After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate) (PHB) synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5-vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the structural genes.« less
Ivashkiv, Lionel B; Hu, Xiaoyu
2004-01-01
A variety of cytokines and growth factors use the Janus kinase (Jak)-STAT signaling pathway to transmit extracellular signals to the nucleus. STATs (signal transducers and activators of transcription) are latent cytoplasmic transcription factors. There are seven mammalian STATs and they have critical, nonredundant roles in mediating cellular transcriptional responses to cytokines. The physiological roles of STATs have been elucidated by analysis of mice rendered deficient in STAT genes. STAT activation is regulated and can be modulated in a positive or negative fashion; it can be reprogrammed to drive different cellular responses. Several auto-regulatory and signaling crosstalk mechanisms for regulating Jak-STAT signaling have been described. Understanding and manipulation of the function of STATs will help in the development of therapeutic strategies for diseases that are regulated by cytokines.
Phosphorylation of RACK1 in plants
Chen, Jay -Gui
2015-08-31
Receptor for Activated C Kinase 1 (RACK1) is a versatile scaffold protein that interacts with a large, diverse group of proteins to regulate various signaling cascades. RACK1 has been shown to regulate hormonal signaling, stress responses and multiple processes of growth and development in plants. However, little is known about the molecular mechanism underlying these regulations. Recently, it has been demonstrated that Arabidopsis RACK1 is phosphorylated by an atypical serine/threonine protein kinase, WITH NO LYSINE 8 (WNK8). Furthermore, RACK1 phosphorylation by WNK8 negatively regulates RACK1 function by influencing its protein stability. In conclusion, these findings promote a new regulatory systemmore » in which the action of RACK1 is controlled by phosphorylation and subsequent protein degradation.« less
Identification of the gene transcription repressor domain of Gli3.
Tsanev, Robert; Tiigimägi, Piret; Michelson, Piret; Metsis, Madis; Østerlund, Torben; Kogerman, Priit
2009-01-05
Gli transcription factors are downstream targets of the Hedgehog signaling pathway. Two of the three Gli proteins harbor gene transcription repressor function in the N-terminal half. We have analyzed the sequences and identified a potential repressor domain in Gli2 and Gli3 and have tested this experimentally. Overexpression studies confirm that the N-terminal parts harbor gene repression activity and we mapped the minimal repressor to residues 106 till 236 in Gli3. Unlike other mechanisms that inhibit Gli induced gene transcription, the repressor domain identified here does not utilize Histone deacetylases (HDACs) to achieve repression, as confirmed by HDAC inhibition studies and pull-down assays. This distinguishes the identified domain from other regulatory parts with negative influence on transcription.
Sun, Eric I; Leyn, Semen A; Kazanov, Marat D; Saier, Milton H; Novichkov, Pavel S; Rodionov, Dmitry A
2013-09-02
In silico comparative genomics approaches have been efficiently used for functional prediction and reconstruction of metabolic and regulatory networks. Riboswitches are metabolite-sensing structures often found in bacterial mRNA leaders controlling gene expression on transcriptional or translational levels.An increasing number of riboswitches and other cis-regulatory RNAs have been recently classified into numerous RNA families in the Rfam database. High conservation of these RNA motifs provides a unique advantage for their genomic identification and comparative analysis. A comparative genomics approach implemented in the RegPredict tool was used for reconstruction and functional annotation of regulons controlled by RNAs from 43 Rfam families in diverse taxonomic groups of Bacteria. The inferred regulons include ~5200 cis-regulatory RNAs and more than 12000 target genes in 255 microbial genomes. All predicted RNA-regulated genes were classified into specific and overall functional categories. Analysis of taxonomic distribution of these categories allowed us to establish major functional preferences for each analyzed cis-regulatory RNA motif family. Overall, most RNA motif regulons showed predictable functional content in accordance with their experimentally established effector ligands. Our results suggest that some RNA motifs (including thiamin pyrophosphate and cobalamin riboswitches that control the cofactor metabolism) are widespread and likely originated from the last common ancestor of all bacteria. However, many more analyzed RNA motifs are restricted to a narrow taxonomic group of bacteria and likely represent more recent evolutionary innovations. The reconstructed regulatory networks for major known RNA motifs substantially expand the existing knowledge of transcriptional regulation in bacteria. The inferred regulons can be used for genetic experiments, functional annotations of genes, metabolic reconstruction and evolutionary analysis. The obtained genome-wide collection of reference RNA motif regulons is available in the RegPrecise database (http://regprecise.lbl.gov/).
Ibarra-Arellano, Miguel A.; Campos-González, Adrián I.; Treviño-Quintanilla, Luis G.; Tauch, Andreas; Freyre-González, Julio A.
2016-01-01
The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy (Across-bacteria systems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing 3708 regulons and 1776 systems. All this brings together a large corpus of data that will surely inspire studies to generate hypothesis regarding the principles governing the evolution and organization of systems and the functional architectures controlling them. Database URL: http://abasy.ccg.unam.mx PMID:27242034
Self-Control, Daily Negative Affect and Blood Glucose Control in Adolescents with Type 1 Diabetes
Lansing, Amy Hughes; Berg, Cynthia A.; Butner, Jonathan; Wiebe, Deborah J.
2016-01-01
Objective For adolescents with type 1 diabetes, maintaining optimal daily blood glucose control is a complex self-regulatory process that likely requires self-control. This study examined whether higher self-control was associated with lower daily negative affect about diabetes and, in turn, better daily blood glucose control, i.e., lower mean daily blood glucose (MBG) and smaller standard deviations of daily blood glucose (SDBG), through two paths: 1) self-control maintaining lower mean level of negative affect and 2) self-control buffering the association of the number of daily diabetes problems with daily negative affect. Methods Adolescents (M age=12.87 years) with type 1 diabetes (n=180) completed an initial survey containing a self-report measure of self-control. Nightly electronic diaries were completed for 14 days where adolescents reported daily problems with and negative affect about diabetes, and used a study-provided blood glucose meter. Results Hypotheses were examined through multilevel modeling. Lower mean levels of daily negative affect partially mediated the relation between higher adolescent self-control and lower MBG. Adolescent self-control also buffered the association of the number of daily problems with daily negative affect, and smaller fluctuations in daily negative affect were associated with lower SDBG. Conclusions Adolescent self-control is associated with daily affect regulatory processes that may influence MBG. However, fluctuations in daily negative affect about diabetes may represent a unique within-person daily process associated with SDBG. These findings suggest that studies examining daily disease processes and interventions targeting daily affect regulation may be important to improving health in adolescents with type 1 diabetes. PMID:26914647
Gleich, Tobias; Deserno, Lorenz; Lorenz, Robert Christian; Boehme, Rebecca; Pankow, Anne; Buchert, Ralph; Kühn, Simone; Heinz, Andreas; Schlagenhauf, Florian; Gallinat, Jürgen
2015-07-01
Theoretical and animal work has proposed that prefrontal cortex (PFC) glutamate inhibits dopaminergic inputs to the ventral striatum (VS) indirectly, whereas direct VS glutamatergic afferents have been suggested to enhance dopaminergic inputs to the VS. In the present study, we aimed to investigate relationships of glutamate and dopamine measures in prefrontostriatal circuitries of healthy humans. We hypothesized that PFC and VS glutamate, as well as their balance, are differently associated with VS dopamine. Glutamate concentrations in the left lateral PFC and left striatum were assessed using 3-Tesla proton magnetic resonance spectroscopy. Striatal presynaptic dopamine synthesis capacity was measured by fluorine-18-l-dihydroxyphenylalanine (F-18-FDOPA) positron emission tomography. First, a negative relationship was observed between glutamate concentrations in lateral PFC and VS dopamine synthesis capacity (n = 28). Second, a positive relationship was revealed between striatal glutamate and VS dopamine synthesis capacity (n = 26). Additionally, the intraindividual difference between PFC and striatal glutamate concentrations correlated negatively with VS dopamine synthesis capacity (n = 24). The present results indicate an involvement of a balance in PFC and striatal glutamate in the regulation of VS dopamine synthesis capacity. This notion points toward a potential mechanism how VS presynaptic dopamine levels are kept in a fine-tuned range. A disruption of this mechanism may account for alterations in striatal dopamine turnover as observed in mental diseases (e.g., in schizophrenia). The present work demonstrates complementary relationships between prefrontal and striatal glutamate and ventral striatal presynaptic dopamine using human imaging measures: a negative correlation between prefrontal glutamate and presynaptic dopamine and a positive relationship between striatal glutamate and presynaptic dopamine are revealed. The results may reflect a regulatory role of prefrontal and striatal glutamate for ventral striatal presynaptic dopamine levels. Such glutamate-dopamine relationships improve our understanding of neurochemical interactions in prefrontostriatal circuits and have implications for the neurobiology of mental disease. Copyright © 2015 the authors 0270-6474/15/359615-07$15.00/0.
A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance.
Feng, Yongqiang; van der Veeken, Joris; Shugay, Mikhail; Putintseva, Ekaterina V; Osmanbeyoglu, Hatice U; Dikiy, Stanislav; Hoyos, Beatrice E; Moltedo, Bruno; Hemmers, Saskia; Treuting, Piper; Leslie, Christina S; Chudakov, Dmitriy M; Rudensky, Alexander Y
2015-12-03
T-cell receptor (TCR) signalling has a key role in determining T-cell fate. Precursor cells expressing TCRs within a certain low-affinity range for complexes of self-peptide and major histocompatibility complex (MHC) undergo positive selection and differentiate into naive T cells expressing a highly diverse self-MHC-restricted TCR repertoire. In contrast, precursors displaying TCRs with a high affinity for 'self' are either eliminated through TCR-agonist-induced apoptosis (negative selection) or restrained by regulatory T (Treg) cells, whose differentiation and function are controlled by the X-chromosome-encoded transcription factor Foxp3 (reviewed in ref. 2). Foxp3 is expressed in a fraction of self-reactive T cells that escape negative selection in response to agonist-driven TCR signals combined with interleukin 2 (IL-2) receptor signalling. In addition to Treg cells, TCR-agonist-driven selection results in the generation of several other specialized T-cell lineages such as natural killer T cells and innate mucosal-associated invariant T cells. Although the latter exhibit a restricted TCR repertoire, Treg cells display a highly diverse collection of TCRs. Here we explore in mice whether a specialized mechanism enables agonist-driven selection of Treg cells with a diverse TCR repertoire, and the importance this holds for self-tolerance. We show that the intronic Foxp3 enhancer conserved noncoding sequence 3 (CNS3) acts as an epigenetic switch that confers a poised state to the Foxp3 promoter in precursor cells to make Treg cell lineage commitment responsive to a broad range of TCR stimuli, particularly to suboptimal ones. CNS3-dependent expansion of the TCR repertoire enables Treg cells to control self-reactive T cells effectively, especially when thymic negative selection is genetically impaired. Our findings highlight the complementary roles of these two main mechanisms of self-tolerance.
Verbsky, James W; Chatila, Talal A
2013-12-01
To summarize recent progress in our understanding of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders. A number of Mendelian disorders of immune dysregulation and autoimmunity have been noted to result from defects in T regulatory cell, development and function. The best characterized of these is IPEX, resulting from mutations affecting FOXP3. A number of other gene defects that affect T regulatory cell function also give rise to IPEX-related phenotypes, including loss-of-function mutations in CD25, STAT5b and ITCH. Recent progress includes the identification of gain-of-function mutations in STAT1 as a cause of an IPEX-like disease, emerging FOXP3 genotype/phenotype relationships in IPEX, and the elucidation of a role for the microbiota in the immune dysregulation associated with regulatory T cell deficiency. An expanding spectrum of genetic defects that compromise T regulatory cell function underlies human disorders of immune dysregulation and autoimmunity. Collectively, these disorders offer novel insights into pathways of peripheral tolerance and their disruption in autoimmunity.
Functional characteristics of a double positive feedback loop coupled with autorepression
NASA Astrophysics Data System (ADS)
Banerjee, Subhasis; Bose, Indrani
2008-12-01
We study the functional characteristics of a two-gene motif consisting of a double positive feedback loop and an autoregulatory negative feedback loop. The motif appears in the gene regulatory network controlling the functional activity of pancreatic β-cells. The model exhibits bistability and hysteresis in appropriate parameter regions. The two stable steady states correspond to low (OFF state) and high (ON state) protein levels, respectively. Using a deterministic approach, we show that the region of bistability increases in extent when the copy number of one of the genes is reduced from 2 to 1. The negative feedback loop has the effect of reducing the size of the bistable region. Loss of a gene copy, brought about by mutations, hampers the normal functioning of the β-cells giving rise to the genetic disorder, maturity-onset diabetes of the young (MODY). The diabetic phenotype makes its appearance when a sizable fraction of the β-cells is in the OFF state. Using stochastic simulation techniques we show that, on reduction of the gene copy number, there is a transition from the monostable ON to the ON state in the bistable region of the parameter space. Fluctuations in the protein levels, arising due to the stochastic nature of gene expression, can give rise to transitions between the ON and OFF states. We show that as the strength of autorepression increases, the ON → OFF state transitions become less probable whereas the reverse transitions are more probable. The implications of the results in the context of the occurrence of MODY are pointed out.
Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks
Fogelmark, Karl; Peterson, Carsten; Troein, Carl
2016-01-01
Background Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. Methodology To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. Principal Findings We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks. PMID:26927540
Guo, Liyuan; Wang, Jing
2018-01-04
Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
2018-01-01
Abstract Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element–target gene pairs (E–G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. PMID:29140525
Rewriting the future? Biomedical advances and legal dilemmas.
Bennett, Belinda
2006-02-01
Developments in medical science have sparked public debate about the legal and ethical implications of new technologies. Within these debates a number of distinct discourses are evident, including discourses about the positive and negative implications of technological advances, the influence of globalisation on regulatory choice, and the challenges of articulating common values in a pluralistic society. This article argues that an understanding of these discourses is an essential part of understanding the nature of contemporary regulatory dilemmas.
Self-regulation of motor vehicle advertising: is it working in Australia?
Donovan, Robert J; Fielder, Lynda J; Ouschan, Robyn; Ewing, Michael
2011-05-01
There is growing concern that certain content within motor vehicle advertising may have a negative influence on driving attitudes and behaviours of viewers, particularly young people, and hence a negative impact on road safety. In response, many developed countries have adopted a self-regulatory approach to motor vehicle advertising. However, it appears that many motor vehicle advertisements in Australia and elsewhere are not compliant with self-regulatory codes. Using standard commercial advertising methods, we exposed three motor vehicle ads that had been the subject of complaints to the Australian Advertising Standards Board (ASB) to, N = 463, 14-55 year olds to assess the extent to which their perceptions of the content of the ads communicated themes that were contrary to the Australian self-regulatory code. All three ads were found to communicate messages contrary to the code (such as the vehicle's speed and acceleration capabilities). However, the ASB had upheld complaints about only one of the ads. Where motor vehicle advertising regulatory frameworks exist to guide motor vehicle advertisers as to what is and what is not acceptable in their advertising, greater efforts are needed to ensure compliance with these codes. One way may be to make it mandatory for advertisers to report consumer pre-testing of their advertising to ensure that undesirable messages are not being communicated to viewers. Copyright © 2010 Elsevier Ltd. All rights reserved.
Garey, Lorra; Bakhshaie, Jafar; Brandt, Charles P.; Langdon, Kirsten J.; Kauffman, Brooke Y.; Schmidt, Norman B.; Leventhal, Adam M.; Zvolensky, Michael J.
2017-01-01
Background and Objectives There is evidence that anxiety sensitivity (AS) plays a role in the maintenance of smoking, yet there is little understanding of how AS interplays with other affective symptomatology variables that are also related to smoking, such as dysphoria. Therefore, the current cross-sectional study evaluated the interactive effects of AS and dysphoria on emotion regulatory cognitions, including smoking negative affect reduction expectancies, perceived barriers for cessation, and smoking-specific experiential avoidance. Method A total of 448 adult treatment-seeking daily smokers, who responded to study advertisements, were recruited to participate in a smoking cessation treatment trial (47.8% female; Mage = 37.2, SD =13.5). The current study utilized self-report baseline data from trial participants. Results After accounting for covariates, simple slope analyses revealed that AS was positively related to negative affect reduction expectancies (β = .03, p =.01), perceived barriers to cessation (β =.22, p = .002), and smoking avoidance and inflexibility (β =.07, p = .04), among smokers with lower (versus higher) levels of dysphoria. Conclusions The current findings suggest that higher levels of dysphoria may mitigate the relation between AS and emotion regulatory cognitions of smoking. Scientific Significance The current findings highlight the unique and additive clinical relevance of AS and dysphoria regarding emotion regulatory smoking cognitions that may impede quit success. PMID:27122303
NASA Astrophysics Data System (ADS)
Tang, Shui-Yan; Li, Pansy Honying; Fryxell, Gerald E.; Lo, Carlos Wing-Hung
2015-09-01
This study examines the effects of internal motivations and external pressures on the integration of environmental management (EM) practices within manufacturing operations in China. The moderating role of perceptions toward the regulatory process is also considered along with comparisons between wholly Chinese-owned and foreign-owned enterprises. From a sample of 131 manufacturing companies in the Guangzhou area, it was found that the salience of fees and fines has a strong positive influence on perceptions toward the regulator (the local Environmental Protection Bureau, EPB). This also has a positive effect on perceptions toward regulations themselves for foreign-owned enterprises. Business-case motivations for EM positively shape enterprise perceptions toward regulations, whereas risk-reduction motivations have a negative effect on perceptions toward regulations in foreign-owned enterprises. Enterprise perceptions toward the regulatory process have direct effects on the integration of EM practices in wholly Chinese-owned enterprises, but in opposite directions. While positive perceptions toward regulations have positive influence, positive perceptions toward regulators (i.e., the EPB) negatively affect it. Overall, these results indicated that promoting the adoption of EM practices depends on convincing business leaders that EM practices contribute to profit making. The regulatory process can potentially promote these practices, but measures need to be taken to ensure that the regulator is not co-opted by the regulated, especially in wholly Chinese-owned enterprises.
Tang, Shui-Yan; Li, Pansy Honying; Fryxell, Gerald E; Lo, Carlos Wing-Hung
2015-09-01
This study examines the effects of internal motivations and external pressures on the integration of environmental management (EM) practices within manufacturing operations in China. The moderating role of perceptions toward the regulatory process is also considered along with comparisons between wholly Chinese-owned and foreign-owned enterprises. From a sample of 131 manufacturing companies in the Guangzhou area, it was found that the salience of fees and fines has a strong positive influence on perceptions toward the regulator (the local Environmental Protection Bureau, EPB). This also has a positive effect on perceptions toward regulations themselves for foreign-owned enterprises. Business-case motivations for EM positively shape enterprise perceptions toward regulations, whereas risk-reduction motivations have a negative effect on perceptions toward regulations in foreign-owned enterprises. Enterprise perceptions toward the regulatory process have direct effects on the integration of EM practices in wholly Chinese-owned enterprises, but in opposite directions. While positive perceptions toward regulations have positive influence, positive perceptions toward regulators (i.e., the EPB) negatively affect it. Overall, these results indicated that promoting the adoption of EM practices depends on convincing business leaders that EM practices contribute to profit making. The regulatory process can potentially promote these practices, but measures need to be taken to ensure that the regulator is not co-opted by the regulated, especially in wholly Chinese-owned enterprises.
Lin, Chien-Ru; Lee, Kuo-Wei; Chen, Chih-Yu; Hong, Ya-Fang; Chen, Jyh-Long; Lu, Chung-An; Chen, Ku-Ting; Ho, Tuan-Hua David; Yu, Su-May
2014-01-01
In plants, source-sink communication plays a pivotal role in crop productivity, yet the underlying regulatory mechanisms are largely unknown. The SnRK1A protein kinase and transcription factor MYBS1 regulate the sugar starvation signaling pathway during seedling growth in cereals. Here, we identified plant-specific SnRK1A-interacting negative regulators (SKINs). SKINs antagonize the function of SnRK1A, and the highly conserved GKSKSF domain is essential for SKINs to function as repressors. Overexpression of SKINs inhibits the expression of MYBS1 and hydrolases essential for mobilization of nutrient reserves in the endosperm, leading to inhibition of seedling growth. The expression of SKINs is highly inducible by drought and moderately by various stresses, which is likely related to the abscisic acid (ABA)–mediated repression of SnRK1A under stress. Overexpression of SKINs enhances ABA sensitivity for inhibition of seedling growth. ABA promotes the interaction between SnRK1A and SKINs and shifts the localization of SKINs from the nucleus to the cytoplasm, where it binds SnRK1A and prevents SnRK1A and MYBS1 from entering the nucleus. Our findings demonstrate that SnRK1A plays a key role regulating source-sink communication during seedling growth. Under abiotic stress, SKINs antagonize the function of SnRK1A, which is likely a key factor restricting seedling vigor. PMID:24569770
SNF5 Is an Essential Executor of Epigenetic Regulation during Differentiation
You, Jueng Soo; De Carvalho, Daniel D.; Dai, Chao; Liu, Minmin; Pandiyan, Kurinji; Zhou, Xianghong J.; Liang, Gangning; Jones, Peter A.
2013-01-01
Nucleosome occupancy controls the accessibility of the transcription machinery to DNA regulatory regions and serves an instructive role for gene expression. Chromatin remodelers, such as the BAF complexes, are responsible for establishing nucleosome occupancy patterns, which are key to epigenetic regulation along with DNA methylation and histone modifications. Some reports have assessed the roles of the BAF complex subunits and stemness in murine embryonic stem cells. However, the details of the relationships between remodelers and transcription factors in altering chromatin configuration, which ultimately affects gene expression during cell differentiation, remain unclear. Here for the first time we demonstrate that SNF5, a core subunit of the BAF complex, negatively regulates OCT4 levels in pluripotent cells and is essential for cell survival during differentiation. SNF5 is responsible for generating nucleosome-depleted regions (NDRs) at the regulatory sites of OCT4 repressed target genes such as PAX6 and NEUROG1, which are crucial for cell fate determination. Concurrently, SNF5 closes the NDRs at the regulatory regions of OCT4-activated target genes such as OCT4 itself and NANOG. Furthermore, using loss- and gain-of-function experiments followed by extensive genome-wide analyses including gene expression microarrays and ChIP-sequencing, we highlight that SNF5 plays dual roles during differentiation by antagonizing the expression of genes that were either activated or repressed by OCT4, respectively. Together, we demonstrate that SNF5 executes the switch between pluripotency and differentiation. PMID:23637628
SNF5 is an essential executor of epigenetic regulation during differentiation.
You, Jueng Soo; De Carvalho, Daniel D; Dai, Chao; Liu, Minmin; Pandiyan, Kurinji; Zhou, Xianghong J; Liang, Gangning; Jones, Peter A
2013-04-01
Nucleosome occupancy controls the accessibility of the transcription machinery to DNA regulatory regions and serves an instructive role for gene expression. Chromatin remodelers, such as the BAF complexes, are responsible for establishing nucleosome occupancy patterns, which are key to epigenetic regulation along with DNA methylation and histone modifications. Some reports have assessed the roles of the BAF complex subunits and stemness in murine embryonic stem cells. However, the details of the relationships between remodelers and transcription factors in altering chromatin configuration, which ultimately affects gene expression during cell differentiation, remain unclear. Here for the first time we demonstrate that SNF5, a core subunit of the BAF complex, negatively regulates OCT4 levels in pluripotent cells and is essential for cell survival during differentiation. SNF5 is responsible for generating nucleosome-depleted regions (NDRs) at the regulatory sites of OCT4 repressed target genes such as PAX6 and NEUROG1, which are crucial for cell fate determination. Concurrently, SNF5 closes the NDRs at the regulatory regions of OCT4-activated target genes such as OCT4 itself and NANOG. Furthermore, using loss- and gain-of-function experiments followed by extensive genome-wide analyses including gene expression microarrays and ChIP-sequencing, we highlight that SNF5 plays dual roles during differentiation by antagonizing the expression of genes that were either activated or repressed by OCT4, respectively. Together, we demonstrate that SNF5 executes the switch between pluripotency and differentiation.
Ares, Miguel A; Fernández-Vázquez, José L; Pacheco, Sabino; Martínez-Santos, Verónica I; Jarillo-Quijada, Ma Dolores; Torres, Javier; Alcántar-Curiel, María D; González-Y-Merchand, Jorge A; De la Cruz, Miguel A
2017-01-01
Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae.
Ares, Miguel A.; Fernández-Vázquez, José L.; Pacheco, Sabino; Martínez-Santos, Verónica I.; Jarillo-Quijada, Ma. Dolores; Torres, Javier; Alcántar-Curiel, María D.; González-y-Merchand, Jorge A.; De la Cruz, Miguel A.
2017-01-01
Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae. PMID:28278272
Sferrazza, Gianluca; Siviero, Paolo D; Nicotera, Giuseppe; Turella, Paola; Serafino, Annalucia; Blandizzi, Corrado; Pierimarchi, Pasquale
2017-09-01
Bioequivalence testing for locally acting gastrointestinal drugs is a challenging issue for both regulatory authorities and pharmaceutical industries. The international regulatory framework has been characterized by the lack of specific bioequivalence tests that has generated a negative impact on the market competition and drug use in clinical practice. Areas covered: This review article provides an overview of the European Union and United States regulatory frameworks on bioequivalence criteria for locally acting gastrointestinal drugs, also discussing the most prominent scientific issues and advances that has been made in this field. A focus on oral modified release mesalamine formulations will be also provided, with practical examples of the regulatory pathways followed by pharmaceutical companies to determine bioequivalence. Expert commentary: The development of a scientific rationale to demonstrate bioequivalence in this field has been complex and often associated with uncertainties related to scientific and regulatory aspects. Only in recent years, thanks to advanced knowledge in this field, the criteria for bioequivalence assessment are undergoing substantial changes. This new scenario will likely result in a significant impact on pharmaceutical companies, promoting more competition through a clearer regulatory approach, conceived for streamlining the demonstration of therapeutic equivalence for locally acting gastrointestinal drugs.
Chassaing, Nicolas; Vigouroux, Adeline; Calvas, Patrick
2009-06-01
Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (SOX2, OTX2, RAX, and CHX10) have been implicated in isolated micro/anophthalmia, but causative mutations of these genes explain less than a quarter of these developmental defects. A specifically conserved SOX2/OTX2-mediated RAX expression regulatory sequence has recently been identified. We postulated that mutations in this sequence could lead to micro/anophthalmia, and thus we performed molecular screening of this regulatory element in patients suffering from micro/anophthalmia. Fifty-one patients suffering from nonsyndromic microphthalmia (n = 40) or anophthalmia (n = 11) were included in this study after negative molecular screening for SOX2, OTX2, RAX, and CHX10 mutations. Mutation screening of the RAX regulatory sequence was performed by direct sequencing for these patients. No mutations were identified in the highly conserved RAX regulatory sequence in any of the 51 patients. Mutations in the newly identified RAX regulatory sequence do not represent a frequent cause of nonsyndromic micro/anophthalmia.
Cannabis regulatory science: risk-benefit considerations for mental disorders.
Borodovsky, Jacob T; Budney, Alan J
2018-05-29
The evolving legal cannabis landscape in the US continues to present novel regulatory challenges that necessitate the development of a Cannabis Regulatory Science. Two specific issues of concern within Cannabis Regulatory Science are (1) the impact that cannabis use has on the incidence, prevalence, and severity of mental disorders, and (2) how cannabis laws and regulations modify this impact. This paper first provides several conceptual points that are useful for evaluating the relationship between cannabis use and mental disorders. Second, it selectively reviews and comments on data relevant to the relationship between cannabis use and depression, several forms of anxiety, post-traumatic stress disorder, schizophrenia, and bipolar disorder. Next, regulatory and public health parallels between the nascent cannabis industry and the pharmaceutical, tobacco, and alcohol industries are discussed. The focus is on specific types of industry practices that may harm those with or at risk for mental disorders. Recommendations are then offered for legal cannabis regulations that could mitigate this harm. Last, future research goals are discussed for building the field of Cannabis Regulatory Science and addressing the potential negative impact of cannabis on those with mental disorders.
Le Buanec, Hélène; Gougeon, Marie-Lise; Mathian, Alexis; Lebon, Pierre; Dupont, Jean-Michel; Peltre, Gabriel; Hemon, Patrice; Schmid, Michel; Bizzini, Bernard; Künding, Thomas; Burny, Arsène; Bensussan, Armand; Amoura, Zahir; Gallo, Robert C.; Zagury, Daniel
2011-01-01
Immune suppressive activities exerted by regulatory T-cell subsets have several specific functions, including self-tolerance and regulation of adaptive immune reactions, and their dysfunction can lead to autoimmune diseases and contribute to AIDS and cancer. Two functionally distinct regulatory T-cell subsets are currently identified in peripheral tissues: thymus-developed natural T regulatory cells (nTregs) controlling self-tolerance and antiinflammatory IL-10–secreting type 1 regulatory T cells (Tr1) derived from Ag-stimulated T cells, which regulate inflammation-dependent adaptive immunity and minimize immunopathology. We establish herein that cell contact-mediated nTreg regulatory function is inhibited by inflammation, especially in the presence of the complement C3b receptor (CD46). Instead, as with other T-cell subsets, the latter inflammatory conditions of stimulation skew nTreg differentiation to Tr1 cells secreting IL-10, an effect potentiated by IFN-α. The clinical relevance of these findings was verified in a study of 152 lupus patients, in which we showed that lupus nTreg dysfunction is not due to intrinsic defects but is rather induced by C3b stimulation of CD46 and IFN-α and that these immune components of inflammation are directly associated with active lupus. These results provide a rationale for using anti–IFN-α Ab immunotherapy in lupus patients. PMID:22065791
Bringing the frame into focus: the influence of regulatory fit on processing fluency and persuasion.
Lee, Angela Y; Aaker, Jennifer L
2004-02-01
This research demonstrates that people's goals associated with regulatory focus moderate the effect of message framing on persuasion. The results of 6 experiments show that appeals presented in gain frames are more persuasive when the message is promotion focused, whereas loss-framed appeals are more persuasive when the message is prevention focused. These regulatory focus effects suggesting heightened vigilance against negative outcomes and heightened eagerness toward positive outcomes are replicated when perceived risk is manipulated. Enhanced processing fluency leading to more favorable evaluations in conditions of compatibility appears to underlie these effects. The findings underscore the regulatory fit principle that accounts for the persuasiveness of message framing effects and highlight how processing fluency may contribute to the "feeling right" experience when the strategy of goal pursuit matches one's goal.
Stok, F Marijn; De Vet, Emely; Wardle, Jane; Chu, Maria T; De Wit, John; De Ridder, Denise T D
2015-04-01
Living in an obesogenic environment may not affect all adolescents to the same extent, depending on their psychological sensitivity to the food environment and their self-regulatory competence. The purpose of the current study was to examine associations of these two factors with unhealthy snacking among adolescents. We also investigated whether self-regulatory competence could attenuate the negative effects of being sensitive to the food environment. A survey was completed by 11,392 European adolescents (10-17years old). The survey measured psychological sensitivity to the food environment, self-regulatory competence and self-reported unhealthy snack intake. Higher food environment sensitivity and lower self-regulatory competence were associated with more unhealthy snacking. The two factors also interacted, with self-regulatory competence attenuating the influence of high food environment sensitivity. Adolescents who are sensitive to the food environment reported higher unhealthy snack intake. More frequent use of self-regulation strategies on the other hand was associated with lower unhealthy snack intake. Moreover, self-regulatory competence was found to moderate the influence of psychological sensitivity to the food environment on unhealthy snacking, although the effect size was small. Fostering adolescents' self-regulatory competence can help enable them to better navigate the obesogenic environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brain regulation of food craving: relationships with weight status and eating behavior.
Dietrich, A; Hollmann, M; Mathar, D; Villringer, A; Horstmann, A
2016-06-01
Food craving is a driving force for overeating and obesity. However, the relationship between brain mechanisms involved in its regulation and weight status is still an open issue. Gaps in the studied body mass index (BMI) distributions and focusing on linear analyses might have contributed to this lack of knowledge. Here, we investigated brain mechanisms of craving regulation using functional magnetic resonance imaging in a balanced sample including normal-weight, overweight and obese participants. We investigated associations between characteristics of obesity, eating behavior and regulatory brain function focusing on nonlinear relationships. Forty-three hungry female volunteers (BMI: 19.4-38.8 kg m(-2), mean: 27.5±5.3 s.d.) were presented with visual food stimuli individually pre-rated according to tastiness and healthiness. The participants were instructed to either admit to the upcoming craving or regulate it. We analyzed the relationships between regulatory brain activity as well as functional connectivity and BMI or eating behavior (Three-Factor Eating Questionnaire, scales: Cognitive Restraint, Disinhibition). During regulation, BMI correlated with brain activity in the left putamen, amygdala and insula in an inverted U-shaped manner. Functional connectivity between the putamen and the dorsolateral prefrontal cortex (dlPFC) correlated positively with BMI, whereas that of amygdala with pallidum and lingual gyrus was nonlinearly (U-shaped) associated with BMI. Disinhibition correlated negatively with the strength of functional connectivity between amygdala and dorsomedial prefrontal (dmPFC) cortex as well as caudate. This study is the first to reveal quadratic relationships of food-related brain processes and BMI. Reported nonlinear associations indicate inverse relationships between regulation-related motivational processing in the range of normal weight/overweight compared with the obese range. Connectivity analyses suggest that the need for top-down (dlPFC) adjustment of striatal value representations increases with BMI, whereas the interplay of self-monitoring (dmPFC) or eating-related strategic action planning (caudate) and salience processing (amygdala) might be hampered with high Disinhibition.
Váraljai, Renáta; Islam, Abul B.M.M.K.; Beshiri, Michael L.; Rehman, Jalees; Lopez-Bigas, Nuria; Benevolenskaya, Elizaveta V.
2015-01-01
The retinoblastoma tumor suppressor protein pRb restricts cell growth through inhibition of cell cycle progression. Increasing evidence suggests that pRb also promotes differentiation, but the mechanisms are poorly understood, and the key question remains as to how differentiation in tumor cells can be enhanced in order to diminish their aggressive potential. Previously, we identified the histone demethylase KDM5A (lysine [K]-specific demethylase 5A), which demethylates histone H3 on Lys4 (H3K4), as a pRB-interacting protein counteracting pRB's role in promoting differentiation. Here we show that loss of Kdm5a restores differentiation through increasing mitochondrial respiration. This metabolic effect is both necessary and sufficient to induce the expression of a network of cell type-specific signaling and structural genes. Importantly, the regulatory functions of pRB in the cell cycle and differentiation are distinct because although restoring differentiation requires intact mitochondrial function, it does not necessitate cell cycle exit. Cells lacking Rb1 exhibit defective mitochondria and decreased oxygen consumption. Kdm5a is a direct repressor of metabolic regulatory genes, thus explaining the compensatory role of Kdm5a deletion in restoring mitochondrial function and differentiation. Significantly, activation of mitochondrial function by the mitochondrial biogenesis regulator Pgc-1α (peroxisome proliferator-activated receptor γ-coactivator 1α; also called PPARGC1A) a coactivator of the Kdm5a target genes, is sufficient to override the differentiation block. Overexpression of Pgc-1α, like KDM5A deletion, inhibits cell growth in RB-negative human cancer cell lines. The rescue of differentiation by loss of KDM5A or by activation of mitochondrial biogenesis reveals the switch to oxidative phosphorylation as an essential step in restoring differentiation and a less aggressive cancer phenotype. PMID:26314709
Cross-regulatory protein-protein interactions between Hox and Pax transcription factors.
Plaza, Serge; Prince, Frederic; Adachi, Yoshitsugu; Punzo, Claudio; Cribbs, David L; Gehring, Walter J
2008-09-09
Homeotic Hox selector genes encode highly conserved transcriptional regulators involved in the differentiation of multicellular organisms. Ectopic expression of the Antennapedia (ANTP) homeodomain protein in Drosophila imaginal discs induces distinct phenotypes, including an antenna-to-leg transformation and eye reduction. We have proposed that the eye loss phenotype is a consequence of a negative posttranslational control mechanism because of direct protein-protein interactions between ANTP and Eyeless (EY). In the present work, we analyzed the effect of various ANTP homeodomain mutations for their interaction with EY and for head development. Contrasting with the eye loss phenotype, we provide evidence that the antenna-to-leg transformation involves ANTP DNA-binding activity. In a complementary genetic screen performed in yeast, we isolated mutations located in the N terminus of the ANTP homeodomain that inhibit direct interactions with EY without abolishing DNA binding in vitro and in vivo. In a bimolecular fluorescence complementation assay, we detected the ANTP-EY interaction in vivo, these interactions occurring through the paired domain and/or the homeodomain of EY. These results demonstrate that the homeodomain supports multiple molecular regulatory functions in addition to protein-DNA and protein-RNA interactions; it is also involved in protein-protein interactions.
Cross-regulatory protein–protein interactions between Hox and Pax transcription factors
Plaza, Serge; Prince, Frederic; Adachi, Yoshitsugu; Punzo, Claudio; Cribbs, David L.; Gehring, Walter J.
2008-01-01
Homeotic Hox selector genes encode highly conserved transcriptional regulators involved in the differentiation of multicellular organisms. Ectopic expression of the Antennapedia (ANTP) homeodomain protein in Drosophila imaginal discs induces distinct phenotypes, including an antenna-to-leg transformation and eye reduction. We have proposed that the eye loss phenotype is a consequence of a negative posttranslational control mechanism because of direct protein–protein interactions between ANTP and Eyeless (EY). In the present work, we analyzed the effect of various ANTP homeodomain mutations for their interaction with EY and for head development. Contrasting with the eye loss phenotype, we provide evidence that the antenna-to-leg transformation involves ANTP DNA-binding activity. In a complementary genetic screen performed in yeast, we isolated mutations located in the N terminus of the ANTP homeodomain that inhibit direct interactions with EY without abolishing DNA binding in vitro and in vivo. In a bimolecular fluorescence complementation assay, we detected the ANTP–EY interaction in vivo, these interactions occurring through the paired domain and/or the homeodomain of EY. These results demonstrate that the homeodomain supports multiple molecular regulatory functions in addition to protein–DNA and protein–RNA interactions; it is also involved in protein–protein interactions. PMID:18755899
Yu, Xiao; Cai, Baowei; Wang, Mingjun; Tan, Peng; Ding, Xilai; Wu, Jian; Li, Jian; Li, Qingtian; Liu, Pinghua; Xing, Changsheng; Wang, Helen Y; Su, Xin-Zhuan; Wang, Rong-Fu
2016-11-15
Type I interferon (IFN) is critical for controlling pathogen infection; however, its regulatory mechanisms in plasmacytoid cells (pDCs) still remain unclear. Here, we have shown that nucleic acid sensors cGAS-, STING-, MDA5-, MAVS-, or transcription factor IRF3-deficient mice produced high amounts of type I IFN-α and IFN-β (IFN-α/β) in the serum and were resistant to lethal plasmodium yoelii YM infection. Robust IFN-α/β production was abolished when gene encoding nucleic acid sensor TLR7, signaling adaptor MyD88, or transcription factor IRF7 was ablated or pDCs were depleted. Further, we identified SOCS1 as a key negative regulator to inhibit MyD88-dependent type I IFN signaling in pDCs. Finally, we have demonstrated that pDCs, cDCs, and macrophages were required for generating IFN-α/β-induced subsequent protective immunity. Thus, our findings have identified a critical regulatory mechanism of type I IFN signaling in pDCs and stage-specific function of immune cells in generating potent immunity against lethal YM infection. Copyright © 2016 Elsevier Inc. All rights reserved.
Emotion (Dys)regulation and Links to Depressive Disorders
Kovacs, Maria; Joormann, Jutta; Gotlib, Ian H.
2010-01-01
Clinical depression is a significant mental health problem that is associated with personal suffering and impaired functioning. These effects underscore the continuing need for new approaches that can inform researchers and clinicians when designing interventions. We propose that individual differences in the self-regulation of sadness and distress provide an important link between stress, depressed mood, and the onset of depressive disorder, and that if we have a better understanding of the ways children successfully manage negative emotions, we can better prevent and treat pediatric depression. In this article, we therefore examine the normative development of responses that children use to attenuate sadness, and aspects of the neurobiological infrastructure that both enable and constrain such self-regulatory efforts. We also address the emerging literature on affect regulation among children at familial risk for depressive disorders. We conclude that problems with adaptively self-regulating sadness and distress represent one pathway that can lead to juvenile-onset depression. And we need integrated, developmental studies of the psychosocial and neurobiological aspects of self-regulatory responses to sadness and distress in order to better understand this process, and to design age-sensitive intervention strategies for pediatric depression. PMID:20721304
S. pombe Uba1-Ubc15 Structure Reveals a Novel Regulatory Mechanism of Ubiquitin E2 Activity.
Lv, Zongyang; Rickman, Kimberly A; Yuan, Lingmin; Williams, Katelyn; Selvam, Shanmugam Panneer; Woosley, Alec N; Howe, Philip H; Ogretmen, Besim; Smogorzewska, Agata; Olsen, Shaun K
2017-02-16
Ubiquitin (Ub) E1 initiates the Ub conjugation cascade by activating and transferring Ub to tens of different E2s. How Ub E1 cooperates with E2s that differ substantially in their predicted E1-interacting residues is unknown. Here, we report the structure of S. pombe Uba1 in complex with Ubc15, a Ub E2 with intrinsically low E1-E2 Ub thioester transfer activity. The structure reveals a distinct Ubc15 binding mode that substantially alters the network of interactions at the E1-E2 interface compared to the only other available Ub E1-E2 structure. Structure-function analysis reveals that the intrinsically low activity of Ubc15 largely results from the presence of an acidic residue at its N-terminal region. Notably, Ub E2 N termini are serine/threonine rich in many other Ub E2s, leading us to hypothesize that phosphorylation of these sites may serve as a novel negative regulatory mechanism of Ub E2 activity, which we demonstrate biochemically and in cell-based assays. Copyright © 2017 Elsevier Inc. All rights reserved.
miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila
Xiong, Xiao-Peng; Chang, Kung-Yen; Ren, Xingjie; Ni, Jian-Quan; Rana, Tariq M.; Zhou, Rui
2016-01-01
microRNAs are endogenous small regulatory RNAs that modulate myriad biological processes by repressing target gene expression in a sequence-specific manner. Here we show that the conserved miRNA miR-34 regulates innate immunity and ecdysone signaling in Drosophila. miR-34 over-expression activates antibacterial innate immunity signaling both in cultured cells and in vivo, and flies over-expressing miR-34 display improved survival and pathogen clearance upon Gram-negative bacterial infection; whereas miR-34 knockout animals are defective in antibacterial defense. In particular, miR-34 achieves its immune-stimulatory function, at least in part, by repressing the two novel target genes Dlg1 and Eip75B. In addition, our study reveals a mutual repression between miR-34 expression and ecdysone signaling, and identifies miR-34 as a node in the intricate interplay between ecdysone signaling and innate immunity. Lastly, we identify cis-regulatory genomic elements and trans-acting transcription factors required for optimal ecdysone-mediated repression of miR-34. Taken together, our study enriches the repertoire of immune-modulating miRNAs in animals, and provides new insights into the interplay between steroid hormone signaling and innate immunity. PMID:27893816
miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila.
Xiong, Xiao-Peng; Kurthkoti, Krishna; Chang, Kung-Yen; Li, Jian-Liang; Ren, Xingjie; Ni, Jian-Quan; Rana, Tariq M; Zhou, Rui
2016-11-01
microRNAs are endogenous small regulatory RNAs that modulate myriad biological processes by repressing target gene expression in a sequence-specific manner. Here we show that the conserved miRNA miR-34 regulates innate immunity and ecdysone signaling in Drosophila. miR-34 over-expression activates antibacterial innate immunity signaling both in cultured cells and in vivo, and flies over-expressing miR-34 display improved survival and pathogen clearance upon Gram-negative bacterial infection; whereas miR-34 knockout animals are defective in antibacterial defense. In particular, miR-34 achieves its immune-stimulatory function, at least in part, by repressing the two novel target genes Dlg1 and Eip75B. In addition, our study reveals a mutual repression between miR-34 expression and ecdysone signaling, and identifies miR-34 as a node in the intricate interplay between ecdysone signaling and innate immunity. Lastly, we identify cis-regulatory genomic elements and trans-acting transcription factors required for optimal ecdysone-mediated repression of miR-34. Taken together, our study enriches the repertoire of immune-modulating miRNAs in animals, and provides new insights into the interplay between steroid hormone signaling and innate immunity.
Does Experience of Failure Decrease Executive, Regulatory Abilities and Increase Aggression?
Pahlavan, Farzaneh; Mouchiroud, Christophe; Nemlaghi-Manis, Emna
2012-01-01
Recent advances in the study of affective-cognitive regulation of aggressive behavior suggest positive correlations between poor executive capacities (ECF) and dispositional negative reactivity (Posner & Rothbart, 2000). If the global assumption is correct what are the likely implications of predicted relation? The central issue in present research was to verify this assumption and examine how situational characteristics could alter executive performance in persons with Dysexecutive Syndrome (DES, Baddeley, 1998) and healthy adults (students, health workers) to explore some of the consequences of those modifications for aggressive tendencies. Precisely, we expected the positive correlations between poor executive performances and high aggressive tendencies at dispositional as well situational levels, except for health workers, given their professional duties. In order to assess cognitive capacities and dispositional as well as situational aggressive tendencies, during two studies (First study: N=60 students; Second study: N= 60 students, N= 24 patient with Dysexecutive Syndrome, N= 45 health care workers) right-handed French-speakers participants completed twice, during an initial phase of the study and one week after, a series of standard executive functions neuropsychological tests and aggression questionnaires. During second phase, participants executed a task introducing the experimental feedbacks (success, neutral, failure) before completion of neuropsychological tests and questionnaires. The results provided evidence of a dispositional relationship between poor executive functioning and aggressive tendencies, and extended it to situational level. For all participants, it showed that increases in impulsiveness (negative emotionality and aggressive choices) due to a negative feedback were concomitant with an inability to focus individuals’ attention on ongoing tasks. PMID:23121744
Hourd, Paul; Medcalf, Nicholas; Segal, Joel; Williams, David J
2015-01-01
Computer-aided 3D printing approaches to the industrial production of customized 3D functional living constructs for restoration of tissue and organ function face significant regulatory challenges. Using the manufacture of a customized, 3D-bioprinted nasal implant as a well-informed but hypothetical exemplar, we examine how these products might be regulated. Existing EU and USA regulatory frameworks do not account for the differences between 3D printing and conventional manufacturing methods or the ability to create individual customized products using mechanized rather than craft approaches. Already subject to extensive regulatory control, issues related to control of the computer-aided design to manufacture process and the associated software system chain present additional scientific and regulatory challenges for manufacturers of these complex 3D-bioprinted advanced combination products.
Enhancer scanning to locate regulatory regions in genomic loci
Buckley, Melissa; Gjyshi, Anxhela; Mendoza-Fandiño, Gustavo; Baskin, Rebekah; Carvalho, Renato S.; Carvalho, Marcelo A.; Woods, Nicholas T.; Monteiro, Alvaro N.A.
2016-01-01
The present protocol provides a rapid, streamlined and scalable strategy to systematically scan genomic regions for the presence of transcriptional regulatory regions active in a specific cell type. It creates genomic tiles spanning a region of interest that are subsequently cloned by recombination into a luciferase reporter vector containing the Simian Virus 40 promoter. Tiling clones are transfected into specific cell types to test for the presence of transcriptional regulatory regions. The protocol includes testing of different SNP (single nucleotide polymorphism) alleles to determine their effect on regulatory activity. This procedure provides a systematic framework to identify candidate functional SNPs within a locus during functional analysis of genome-wide association studies. This protocol adapts and combines previous well-established molecular biology methods to provide a streamlined strategy, based on automated primer design and recombinational cloning to rapidly go from a genomic locus to a set of candidate functional SNPs in eight weeks. PMID:26658467
Tang, Guiying; Xu, Pingli; Liu, Wei; Liu, Zhanji; Shan, Lei
2015-01-01
LEAFY COTYLEDON1 (LEC1) is a B subunit of Nuclear Factor Y (NF-YB) transcription factor that mainly accumulates during embryo development. We cloned the 5′ flanking regulatory sequence of AhLEC1B gene, a homolog of Arabidopsis LEC1, and analyzed its regulatory elements using online software. To identify the crucial regulatory region, we generated a series of GUS expression frameworks driven by different length promoters with 5′ terminal and/or 3′ terminal deletion. We further characterized the GUS expression patterns in the transgenic Arabidopsis lines. Our results show that both the 65bp proximal promoter region and the 52bp 5′ UTR of AhLEC1B contain the key motifs required for the essential promoting activity. Moreover, AhLEC1B is preferentially expressed in the embryo and is co-regulated by binding of its upstream genes with both positive and negative corresponding cis-regulatory elements. PMID:26426444
Behdani, Elham; Bakhtiarizadeh, Mohammad Reza
2017-10-01
The immune system is an important biological system that is negatively impacted by stress. This study constructed an integrated regulatory network to enhance our understanding of the regulatory gene network used in the stress-related immune system. Module inference was used to construct modules of co-expressed genes with bovine leukocyte RNA-Seq data. Transcription factors (TFs) were then assigned to these modules using Lemon-Tree algorithms. In addition, the TFs assigned to each module were confirmed using the promoter analysis and protein-protein interactions data. Therefore, our integrated method identified three TFs which include one TF that is previously known to be involved in immune response (MYBL2) and two TFs (E2F8 and FOXS1) that had not been recognized previously and were identified for the first time in this study as novel regulatory candidates in immune response. This study provides valuable insights on the regulatory programs of genes involved in the stress-related immune system.
Receptor Tyrosine Kinase ErbB2 Translocates into Mitochondria and Regulates Cellular Metabolism
Ding, Yan; Liu, Zixing; Desai, Shruti; Zhao, Yuhua; Liu, Hao; Pannell, Lewis K; Yi, Hong; Wright, Elizabeth R; Owen, Laurie B; Dean-Colomb, Windy; Fodstad, Oystein; Lu, Jianrong; LeDoux, Susan P; Wilson, Glenn L; Tan, Ming
2012-01-01
It is well known that ErbB2, a receptor tyrosine kinase, localizes on the plasma membrane. Here we describe a novel observation that ErbB2 also localizes in mitochondria of cancer cells and patient samples. We found that ErbB2 translocates into mitochondria through the association with mtHSP70. Additionally, mitochondrial ErbB2 (mtErbB2) negatively regulates mitochondrial respiratory functions. Oxygen consumption and activities of complexes of the mitochondrial electron transport chain were decreased in mtErbB2-overexpressing cells. Mitochondrial membrane potential and the cellular ATP level also were decreased. In contrast, mtErbB2 enhanced cellular glycolysis. The translocation of ErbB2 and its impact on mitochondrial function are kinase dependent. Interestingly, cancer cells with higher levels of mtErbB2 were more resistant to ErbB2 targeting antibody trastuzumab. Our study provides a novel perspective on the metabolic regulatory function of ErbB2 and reveals that mtErbB2 plays an important role in the regulation of cellular metabolism and cancer cell resistance to therapeutics. PMID:23232401
Native KCC2 interactome reveals PACSIN1 as a critical regulator of synaptic inhibition.
Mahadevan, Vivek; Khademullah, C Sahara; Dargaei, Zahra; Chevrier, Jonah; Uvarov, Pavel; Kwan, Julian; Bagshaw, Richard D; Pawson, Tony; Emili, Andrew; De Koninck, Yves; Anggono, Victor; Airaksinen, Matti; Woodin, Melanie A
2017-10-13
KCC2 is a neuron-specific K + -Cl - cotransporter essential for establishing the Cl - gradient required for hyperpolarizing inhibition in the central nervous system (CNS). KCC2 is highly localized to excitatory synapses where it regulates spine morphogenesis and AMPA receptor confinement. Aberrant KCC2 function contributes to human neurological disorders including epilepsy and neuropathic pain. Using functional proteomics, we identified the KCC2-interactome in the mouse brain to determine KCC2-protein interactions that regulate KCC2 function. Our analysis revealed that KCC2 interacts with diverse proteins, and its most predominant interactors play important roles in postsynaptic receptor recycling. The most abundant KCC2 interactor is a neuronal endocytic regulatory protein termed PACSIN1 (SYNDAPIN1). We verified the PACSIN1-KCC2 interaction biochemically and demonstrated that shRNA knockdown of PACSIN1 in hippocampal neurons increases KCC2 expression and hyperpolarizes the reversal potential for Cl - . Overall, our global native-KCC2 interactome and subsequent characterization revealed PACSIN1 as a novel and potent negative regulator of KCC2.
Native KCC2 interactome reveals PACSIN1 as a critical regulator of synaptic inhibition
Mahadevan, Vivek; Chevrier, Jonah; Uvarov, Pavel; Kwan, Julian; Bagshaw, Richard D; Pawson, Tony; Emili, Andrew; De Koninck, Yves; Anggono, Victor; Airaksinen, Matti
2017-01-01
KCC2 is a neuron-specific K+-Cl– cotransporter essential for establishing the Cl- gradient required for hyperpolarizing inhibition in the central nervous system (CNS). KCC2 is highly localized to excitatory synapses where it regulates spine morphogenesis and AMPA receptor confinement. Aberrant KCC2 function contributes to human neurological disorders including epilepsy and neuropathic pain. Using functional proteomics, we identified the KCC2-interactome in the mouse brain to determine KCC2-protein interactions that regulate KCC2 function. Our analysis revealed that KCC2 interacts with diverse proteins, and its most predominant interactors play important roles in postsynaptic receptor recycling. The most abundant KCC2 interactor is a neuronal endocytic regulatory protein termed PACSIN1 (SYNDAPIN1). We verified the PACSIN1-KCC2 interaction biochemically and demonstrated that shRNA knockdown of PACSIN1 in hippocampal neurons increases KCC2 expression and hyperpolarizes the reversal potential for Cl-. Overall, our global native-KCC2 interactome and subsequent characterization revealed PACSIN1 as a novel and potent negative regulator of KCC2. PMID:29028184
Functional Implications of Novel Human Acid Sphingomyelinase Splice Variants
Rhein, Cosima; Tripal, Philipp; Seebahn, Angela; Konrad, Alice; Kramer, Marcel; Nagel, Christine; Kemper, Jonas; Bode, Jens; Mühle, Christiane; Gulbins, Erich; Reichel, Martin; Becker, Cord-Michael; Kornhuber, Johannes
2012-01-01
Background Acid sphingomyelinase (ASM) hydrolyses sphingomyelin and generates the lipid messenger ceramide, which mediates a variety of stress-related cellular processes. The pathological effects of dysregulated ASM activity are evident in several human diseases and indicate an important functional role for ASM regulation. We investigated alternative splicing as a possible mechanism for regulating cellular ASM activity. Methodology/Principal Findings We identified three novel ASM splice variants in human cells, termed ASM-5, -6 and -7, which lack portions of the catalytic- and/or carboxy-terminal domains in comparison to full-length ASM-1. Differential expression patterns in primary blood cells indicated that ASM splicing might be subject to regulatory processes. The newly identified ASM splice variants were catalytically inactive in biochemical in vitro assays, but they decreased the relative cellular ceramide content in overexpression studies and exerted a dominant-negative effect on ASM activity in physiological cell models. Conclusions/Significance These findings indicate that alternative splicing of ASM is of functional significance for the cellular stress response, possibly representing a mechanism for maintaining constant levels of cellular ASM enzyme activity. PMID:22558155
Candy or apple? How self-control resources and motives impact dietary healthiness in women.
Sproesser, Gudrun; Strohbach, Stefanie; Schupp, Harald; Renner, Britta
2011-06-01
People can choose between a virtually endless array of food items rising the question, which factors determine healthy or unhealthy food choice. The present study examines the impact of two contrasting motives for food choice (affect regulation and body weight control) and self-regulatory competences on healthy eating within a sample of women (N=761). The data show that a relative lack of self-regulatory resources combined with a high tendency to regulate negative affect through comfort eating was associated with an unfavorable dietary pattern. Accordingly, a healthy dietary pattern requires not only self-regulatory capacities but also a facilitating motive structure. Copyright © 2011 Elsevier Ltd. All rights reserved.
On the Concept of Cis-regulatory Information: From Sequence Motifs to Logic Functions
NASA Astrophysics Data System (ADS)
Tarpine, Ryan; Istrail, Sorin
The regulatory genome is about the “system level organization of the core genomic regulatory apparatus, and how this is the locus of causality underlying the twin phenomena of animal development and animal evolution” (E.H. Davidson. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution, Academic Press, 2006). Information processing in the regulatory genome is done through regulatory states, defined as sets of transcription factors (sequence-specific DNA binding proteins which determine gene expression) that are expressed and active at the same time. The core information processing machinery consists of modular DNA sequence elements, called cis-modules, that interact with transcription factors. The cis-modules “read” the information contained in the regulatory state of the cell through transcription factor binding, “process” it, and directly or indirectly communicate with the basal transcription apparatus to determine gene expression. This endowment of each gene with the information-receiving capacity through their cis-regulatory modules is essential for the response to every possible regulatory state to which it might be exposed during all phases of the life cycle and in all cell types. We present here a set of challenges addressed by our CYRENE research project aimed at studying the cis-regulatory code of the regulatory genome. The CYRENE Project is devoted to (1) the construction of a database, the cis-Lexicon, containing comprehensive information across species about experimentally validated cis-regulatory modules; and (2) the software development of a next-generation genome browser, the cis-Browser, specialized for the regulatory genome. The presentation is anchored on three main computational challenges: the Gene Naming Problem, the Consensus Sequence Bottleneck Problem, and the Logic Function Inference Problem.
Hovingh, Elise S.; de Maat, Steven; Cloherty, Alexandra P. M.; Johnson, Steven; Pinelli, Elena; Maas, Coen; Jongerius, Ilse
2018-01-01
Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Whooping cough is currently re-emerging worldwide and, therefore, still poses a continuous global health threat. B. pertussis expresses several virulence factors that play a role in evading the human immune response. One of these virulence factors is virulence associated gene 8 (Vag8). Vag8 is a complement evasion molecule that mediates its effects by binding to the complement regulator C1 inhibitor (C1-INH). This regulatory protein is a fluid phase serine protease that controls proenzyme activation and enzyme activity of not only the complement system but also the contact system. Activation of the contact system results in the generation of bradykinin, a pro-inflammatory peptide. Here, the activation of the contact system by B. pertussis was explored. We demonstrate that recombinant as well as endogenous Vag8 enhanced contact system activity by binding C1-INH and attenuating its inhibitory function. Moreover, we show that B. pertussis itself is able to activate the contact system. This activation was dependent on Vag8 production as a Vag8 knockout B. pertussis strain was unable to activate the contact system. These findings show a previously overlooked interaction between the contact system and the respiratory pathogen B. pertussis. Activation of the contact system by B. pertussis may contribute to its pathogenicity and virulence. PMID:29915576
Potter, Ross M; Maestas, Diane C; Cimino, Daniel F; Prossnitz, Eric R
2006-05-01
Adaptation, defined as the diminution of receptor signaling in the presence of continued or repeated stimulation, is critical to cellular function. G protein-coupled receptors (GPCRs) undergo multiple adaptive processes, including desensitization and internalization, through phosphorylation of cytoplasmic serine and threonine residues. However, the relative importance of individual and combined serine and threonine residues to these processes is not well understood. We examined this mechanism in the context of the N-formyl peptide receptor (FPR), a well-characterized member of the chemoattractant/chemokine family of GPCRs critical to neutrophil function. To evaluate the contributions of individual and combinatorial serine and threonine residues to internalization, desensitization, and arrestin2 binding, 30 mutant forms of the FPR, expressed in the human promyelocytic U937 cell line, were characterized. We found that residues Ser(328), Ser(332), and Ser(338) are individually critical, and indeed sufficient, for internalization, desensitization, and arrestin2 binding, but that the presence of neighboring threonine residues can inhibit these processes. Additionally, we observed no absolute correlation between arrestin binding and either internalization or desensitization, suggesting the existence of arrestin-independent mechanisms for these processes. Our results suggest C-terminal serine and threonine residues of the FPR represent a combinatorial code, capable of both positively and negatively regulating signaling and trafficking. This study is among the first detailed analyses of a complex regulatory site in a GPCR, and provides insight into GPCR regulatory mechanisms.
Kang, Yeon Hee; Kirik, Victor; Hulskamp, Martin; Nam, Kyoung Hee; Hagely, Katherine; Lee, Myeong Min; Schiefelbein, John
2009-01-01
The specification of cell fates during development requires precise regulatory mechanisms to ensure robust cell type patterns. Theoretical models of pattern formation suggest that a combination of negative and positive feedback mechanisms are necessary for efficient specification of distinct fates in a field of differentiating cells. Here, we examine the role of the R2R3-MYB transcription factor gene, AtMYB23 (MYB23), in the establishment of the root epidermal cell type pattern in Arabidopsis thaliana. MYB23 is closely related to, and is positively regulated by, the WEREWOLF (WER) MYB gene during root epidermis development. Furthermore, MYB23 is able to substitute for the function of WER and to induce its own expression when controlled by WER regulatory sequences. We also show that the MYB23 protein binds to its own promoter, suggesting a MYB23 positive feedback loop. The localization of MYB23 transcripts and MYB23-green fluorescent protein (GFP) fusion protein, as well as the effect of a chimeric MYB23-SRDX repressor construct, links MYB23 function to the developing non-hair cell type. Using mutational analyses, we find that MYB23 is necessary for precise establishment of the root epidermal pattern, particularly under conditions that compromise the cell specification process. These results suggest that MYB23 participates in a positive feedback loop to reinforce cell fate decisions and ensure robust establishment of the cell type pattern in the Arabidopsis root epidermis. PMID:19395683
Kang, Yeon Hee; Kirik, Victor; Hulskamp, Martin; Nam, Kyoung Hee; Hagely, Katherine; Lee, Myeong Min; Schiefelbein, John
2009-04-01
The specification of cell fates during development requires precise regulatory mechanisms to ensure robust cell type patterns. Theoretical models of pattern formation suggest that a combination of negative and positive feedback mechanisms are necessary for efficient specification of distinct fates in a field of differentiating cells. Here, we examine the role of the R2R3-MYB transcription factor gene, AtMYB23 (MYB23), in the establishment of the root epidermal cell type pattern in Arabidopsis thaliana. MYB23 is closely related to, and is positively regulated by, the WEREWOLF (WER) MYB gene during root epidermis development. Furthermore, MYB23 is able to substitute for the function of WER and to induce its own expression when controlled by WER regulatory sequences. We also show that the MYB23 protein binds to its own promoter, suggesting a MYB23 positive feedback loop. The localization of MYB23 transcripts and MYB23-green fluorescent protein (GFP) fusion protein, as well as the effect of a chimeric MYB23-SRDX repressor construct, links MYB23 function to the developing non-hair cell type. Using mutational analyses, we find that MYB23 is necessary for precise establishment of the root epidermal pattern, particularly under conditions that compromise the cell specification process. These results suggest that MYB23 participates in a positive feedback loop to reinforce cell fate decisions and ensure robust establishment of the cell type pattern in the Arabidopsis root epidermis.
De la Cruz, Miguel A; Ruiz-Tagle, Alejandro; Ares, Miguel A; Pacheco, Sabino; Yáñez, Jorge A; Cedillo, Lilia; Torres, Javier; Girón, Jorge A
2017-05-01
Enterotoxigenic Escherichia coli produces a long type 4 pilus called Longus. The regulatory elements and the environmental signals controlling the expression of Longus-encoding genes are unknown. We identified two genes lngR and lngS in the Longus operon, whose predicted products share homology with transcriptional regulators. Isogenic lngR and lngS mutants were considerably affected in transcription of lngA pilin gene. The expression of lngA, lngR and lngS genes was optimally expressed at 37°C at pH 7.5. The presence of glucose and sodium chloride had a positive effect on Longus expression. The presence of divalent ions, particularly calcium, appears to be an important stimulus for Longus production. In addition, we studied H-NS, CpxR and CRP global regulators, on Longus expression. The response regulator CpxR appears to function as a positive regulator of lng genes as the cpxR mutant showed reduced levels of lngRSA expression. In contrast, H-NS and CRP function as negative regulators since expression of lngA was up-regulated in isogenic hns and crp mutants. H-NS and CRP were required for salt- and glucose-mediated regulation of Longus. Our data suggest the existence of a complex regulatory network controlling Longus expression, involving both local and global regulators in response to different environmental signals. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Gyllenhammer, Lauren E; Lam, Jonathan; Alderete, Tanya L; Allayee, Hooman; Akbari, Omid; Katkhouda, Namir; Goran, Michael I
2016-06-01
T-lymphocytes are potential initiators and regulators of adipose tissue (AT) inflammation, but there is limited human data on omental AT. The aim of this study was to assess the relationship between T cells, particularly Foxp3+ regulatory T (Treg) cells, in human subcutaneous (subQ) and omental AT and type 2 diabetes risk. SubQ and deep subQ (DsubQ) abdominal and omental AT biopsies were collected from 44 patients (body mass index, BMI ≥25) undergoing elective abdominal surgery. Flow cytometry was used to quantify CD4+ T cell (T effector and Treg) and macrophages (M1 and M2), and systemic inflammation was measured in fasting blood. Tregs were significantly lower in omental versus subQ and DsubQ AT, and M1 cell counts were significantly higher in the omental and DsubQ depot relative to the subQ. Only omental AT Tregs were negatively associated with fasting glucose and MCP-1 and positively associated with homeostasis model assessment (HOMA)-β. M1 and M2 cell counts across multiple depots had significant relationships with HOMA-insulin resistance, tumor necrosis factor-α, insulin, and HOMA-β. All relationships were consistent across ethnicities. Tregs were significantly lower in omental versus both subQ adipose depots. Fewer omental Tregs may have metabolic implications based on depot-specific relationships with higher fasting glucose and lower β-cell function. © 2016 The Obesity Society.
Mao, Yujia; Yin, Shanshan; Zhang, Jianmin; Hu, Yu; Huang, Bo; Cui, Lianxian; Kang, Ning; He, Wei
2016-03-01
Interleukin 4 (IL-4) has a variety of immune functions, including helper T-cell (Th-cell) differentiation and innate immune-response processes. However, the impact of IL-4 on gamma delta (γδ) T cells remains unclear. In this study, we investigate the effects of IL-4 on the activation and proliferation of γδ T cells and the balance between variable delta 1 (Vδ1) and Vδ2 T cells in humans. The results show that IL-4 inhibits the activation of γδ T cells in the presence of γδ T-cell receptor (TCR) stimulation in a STAT6-dependent manner. IL-4 promoted the growth of activated γδ T cells and increased the levels of Vδ1 T cells, which in turn inhibited Vδ2 T-cell growth via significant IL-10 secretion. Vδ1 T cells secreted significantly less interferon gamma (IFNγ) and more IL-10 relative to Vδ2. Furthermore, Vδ1 T cells showed relatively low levels of Natural Killer Group 2D (NKG2D) expression in the presence of IL-4, suggesting that Vδ1 T cells weaken the γδ T cell-mediated anti-tumor immune response. For the first time, our findings demonstrate a negative regulatory role of IL-4 in γδ T cell-mediated anti-tumor immunity.
Hovingh, Elise S; de Maat, Steven; Cloherty, Alexandra P M; Johnson, Steven; Pinelli, Elena; Maas, Coen; Jongerius, Ilse
2018-01-01
Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Whooping cough is currently re-emerging worldwide and, therefore, still poses a continuous global health threat. B. pertussis expresses several virulence factors that play a role in evading the human immune response. One of these virulence factors is virulence associated gene 8 (Vag8). Vag8 is a complement evasion molecule that mediates its effects by binding to the complement regulator C1 inhibitor (C1-INH). This regulatory protein is a fluid phase serine protease that controls proenzyme activation and enzyme activity of not only the complement system but also the contact system. Activation of the contact system results in the generation of bradykinin, a pro-inflammatory peptide. Here, the activation of the contact system by B. pertussis was explored. We demonstrate that recombinant as well as endogenous Vag8 enhanced contact system activity by binding C1-INH and attenuating its inhibitory function. Moreover, we show that B. pertussis itself is able to activate the contact system. This activation was dependent on Vag8 production as a Vag8 knockout B. pertussis strain was unable to activate the contact system. These findings show a previously overlooked interaction between the contact system and the respiratory pathogen B. pertussis . Activation of the contact system by B. pertussis may contribute to its pathogenicity and virulence.
Functional characterization of the human phosphodiesterase 7A1 promoter.
Torras-Llort, Mònica; Azorín, Fernando
2003-01-01
In this paper, the human phosphodiesterase 7A1 (h PDE7A1 ) promoter region was identified and functionally characterized. Transient transfection experiments indicated that a 2.9 kb fragment of the h PDE7A1 5'-flanking region, to position -2907, has strong promoter activity in Jurkat T-cells. Deletion analysis showed that the proximal region, up to position -988, contains major cis -regulatory elements of the h PDE7A1 promoter. This minimal promoter region contains a regulatory CpG island which is essential for promoter activity. The CpG island contains three potential cAMP-response-element-binding protein (CREB)-binding sites that, as judged by in vivo dimethyl sulphate (DMS) footprinting, are occupied in Jurkat T-cells. Moreover, over-expression of CREB results in increased promoter activity, but, on the other hand, promoter activity decreases when a dominant-negative form of CREB (KCREB) is over-expressed. In vivo DMS footprinting strongly indicates that other transcription factors, such Ets-2, nuclear factor of activated T-cells 1 (NFAT-1) and nuclear factor kappaB (NF-kappaB), might also contribute to the regulation of h PDE7A1 promoter. Finally, h PDE7A1 promoter was found to be induced by treatment with PMA, but not by treatment with dibutyryl cAMP or forskolin. These results provide insights into the factors and mechanisms that regulate expression of the h PDE7A gene. PMID:12737631
Weil, Robert; Laplantine, Emmanuel; Génin, Pierre
2016-06-01
The innate immune system has evolved to detect and neutralize viral invasions. Triggering of this defense mechanism relies on the production and secretion of soluble factors that stimulate intracellular antiviral defense mechanisms. The Tank Binding Kinase 1 (TBK1) is a serine/threonine kinase in the innate immune signaling pathways including the antiviral response and the host defense against cytosolic infection by bacteries. Given the critical roles of TBK1, important regulatory mechanisms are required to regulate its activity. Among these, Optineurin (Optn) was shown to negatively regulate the interferon response, in addition to its important role in membrane trafficking, protein secretion, autophagy and cell division. As Optn does not carry any enzymatic activity, its functions depend on its precise subcellular localization and its interaction with other proteins, especially with components of the innate immune pathway. This review highlights advances in our understanding of Optn mechanisms of action with focus on the relationships between Optn and TBK1 and their implication in host defense against pathogens. Specifically, how the antiviral immune system is controlled during the cell cycle by the Optn/TBK1 axis and the physiological consequences of this regulatory mechanism are described. This review may serve to a better understanding of the relationships between the different functions of Optn, including those related to immune responses and its associated pathologies such as primary open-angle glaucoma, amyotrophic lateral sclerosis and Paget's disease of bone. Copyright © 2016 Elsevier Ltd. All rights reserved.
Identification and role of regulatory non-coding RNAs in Listeria monocytogenes.
Izar, Benjamin; Mraheil, Mobarak Abu; Hain, Torsten
2011-01-01
Bacterial regulatory non-coding RNAs control numerous mRNA targets that direct a plethora of biological processes, such as the adaption to environmental changes, growth and virulence. Recently developed high-throughput techniques, such as genomic tiling arrays and RNA-Seq have allowed investigating prokaryotic cis- and trans-acting regulatory RNAs, including sRNAs, asRNAs, untranslated regions (UTR) and riboswitches. As a result, we obtained a more comprehensive view on the complexity and plasticity of the prokaryotic genome biology. Listeria monocytogenes was utilized as a model system for intracellular pathogenic bacteria in several studies, which revealed the presence of about 180 regulatory RNAs in the listerial genome. A regulatory role of non-coding RNAs in survival, virulence and adaptation mechanisms of L. monocytogenes was confirmed in subsequent experiments, thus, providing insight into a multifaceted modulatory function of RNA/mRNA interference. In this review, we discuss the identification of regulatory RNAs by high-throughput techniques and in their functional role in L. monocytogenes.
Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells
Camp, J. Gray; Weiser, Matthew; Cocchiaro, Jordan L.; Kingsley, David M.; Furey, Terrence S.; Sheikh, Shehzad Z.; Rawls, John F.
2017-01-01
The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs) in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS) found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development and physiology. PMID:28850571
BCAS2 interacts with HSF4 and negatively regulates its protein stability via ubiquitination.
Liao, Shengjie; Du, Rong; Wang, Lei; Qu, Zhen; Cui, Xiukun; Li, Chang; Liu, Fei; Huang, Mi; Wang, Jiuxiang; Chen, Jiaxiang; Gao, Meng; Yu, Shanshan; Tang, Zhaohui; Li, David Wan-Cheng; Jiang, Tao; Liu, Mugen
2015-11-01
Heat shock factor 4 (HSF4) is an important transcriptional factor that plays a vital role in lens development and differentiation, but the mechanism underlying the regulation of HSF4 is ambiguous. BCAS2 was reported to be an essential subunit of pre-mRNA splicing complex. Here, we identified BCAS2 as a novel HSF4 interacting partner. High expression of BCAS2 in the lens epithelium cells and the bow region of mouse lens was detected by immunohistochemistry. In human lens epithelial cells, BCAS2 negatively regulates HSF4 protein level and transcriptional activity, whereas in BCAS2 knockdown cells, HSF4 protein stability was increased significantly. We further demonstrated that the prolonged protein half-time of HSF4 in BCAS2 knockdown cells was due to reduced ubiquitination. Moreover, we have identified the lysine 206 of HSF4 as the key residue for ubiquitination. The HSF4-K206R mutant blocked the impact of BCAS2 on HSF4 protein stability. Taken together, we identified a pathway for HSF4 degradation through the ubiquitin-proteasome system, and a novel function for BCAS2 that may act as a negative regulatory factor for modulating HSF4 protein homeostasis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Does Looking at the Positive Mean Feeling Good? Age and Individual Differences Matter.
Isaacowitz, Derek M; Noh, Soo Rim
2011-08-01
In this paper, we link age differences in gaze patterns toward emotional stimuli to later mood outcomes. While one might think that looking at more positive emotional material leads to better moods, and looking at more negative material leads to worse moods, it turns out that links between emotional looking and mood depend on age as well as individual differences. Though older people can feel good by looking more at positive material, in some cases young adults actually feel better by engaging visually with the negative. These age effects are further moderated by attentional abilities. Such findings suggest that different age groups may use looking differently, and this may reflect their preferences for using distinct emotion regulatory strategies. This work also serves as a reminder that regulatory efforts are not always successful at improving mood.
Wang, Xiaoqin; Zhang, Yue; Hui, Zhaozhao; Bai, Wanyue; Terry, Paul D; Ma, Mei; Li, Yang; Cheng, Li; Gu, Wei; Wang, Mingxu
2018-05-15
School bullying is negatively associated with self-esteem, but psychological mediators of bullying have yet to be clarified. We examined regulatory emotional self-efficacy (RESE) as a possible mediator in the association between self-esteem and school bullying. A cross-sectional study of 995 adolescents was conducted in two middle schools of Xi'an. All of the participants completed the Chinese version of the School Bullying Experience Questionnaire (C-SBEQ), Self-Esteem Scale (SES), and Regulatory Emotional Self-Efficacy Scale (RESE). Descriptive statistics analysis, the bias corrected percentile Bootstrap CI method, and structural equation modelling were used to analyze the data. The results showed that 418 students (42.0%) reported that they were involved in school bullying in the past year. Self-esteem was negatively associated with school bullying (total effect: β = -0.275, 95% CI = -0.381⁻-0.034), and RESE mediated the association between self-esteem and school bullying (indirect effect: β = -0.136, 95% CI = -0.245⁻-0.037). Furthermore, self-esteem had an indirect effect through perceived self-efficacy in managing negative affect, while self-esteem had no indirect effect through self-efficacy in the expression of positive affect. The present study suggests that school authorities and the related education departments should not only focus on improving students' self-esteem, but should also pay more attention to students' RESE, in order to mitigate, and potentially reduce, the occurrence of bullying.
The development of regulatory functions from birth to 5 years: insights from premature infants.
Feldman, Ruth
2009-01-01
This study examined physiological, emotional, and attentional regulatory functions as predictors of self-regulation in 125 infants followed 7 times from birth to 5 years. Physiological regulation was assessed by neonatal vagal tone and sleep-wake cyclicity; emotion regulation by response to stress at 3, 6, and 12 months; and attention regulation by focused attention and delayed response in the 2nd year. Executive functions, behavior adaptation, and self-restraint were measured at 5 years. Regulatory functions showed stability across time, measures, and levels. Structural modeling demonstrated both mediated paths from physiological to self-regulation through emotional and attentional processes and direct continuity between vagal tone and each level of regulation. Results support the coherence of the regulation construct and are consistent with neurobiological models on self and consciousness.
Mental Contrasting of a Negative Future with a Positive Reality Regulates State Anxiety
Brodersen, Gunnar; Oettingen, Gabriele
2017-01-01
Mental contrasting of a desired future with impeding reality is a self-regulatory strategy fostering goal pursuit. However, there is little research on mental contrasting of a negative future with a positive reality. We conducted two experiments, each with four experimental conditions, investigating the effects of mental contrasting a negative future with a positive reality on state anxiety: participants who mentally contrasted a negative future regarding a bacterial epidemic (Study 1, N = 199) or an idiosyncratic negative event (Study 2, N = 206) showed less state anxiety than participants who imagined the negative future only or who reverse contrasted; participants who mentally elaborated on the positive reality also showed less state anxiety. Our findings suggest that mental contrasting of a negative future helps people reduce disproportional anxiety regarding a negative future. PMID:28979223
Gordon, Kacy L.; Arthur, Robert K.; Ruvinsky, Ilya
2015-01-01
Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. PMID:26020930
On the psychology of time in action: regulatory mode orientations and procrastination.
Pierro, Antonio; Giacomantonio, Mauro; Pica, Gennaro; Kruglanski, Arie W; Higgins, E Tory
2011-12-01
Six studies explored the relations of the regulatory modes of locomotion and assessment to individuals' tendency toward procrastination. Across academic and organizational contexts, and a variety of ways of assessing procrastination, the authors found assessment to be positively related to procrastination and locomotion to be negatively related to procrastination. Discussion considered implications of these findings to task environments that may instill the tendencies toward locomotion or assessment and to task requirements where timeliness and punctuality are (or are not) prioritized.
Purification and Crystallization of Murine Myostatin: A Negative Regulator of Muscle Mass
NASA Technical Reports Server (NTRS)
Hong, Young S.; Adamek, Daniel; Bridge, Kristi; Malone, Christine C.; Young, Ronald B.; Miller, Teresa; Karr, Laurel
2004-01-01
Myostatin (MSTN) has been crystallized and its preliminary X-ray diffraction data were collected. MSTN is a negative regulator of muscle growt/differentiation and suppressor of fat accumulation. It is a member of TGF-b family of proteins. Like other members of this family, the regulation of MSTN is critically tied to its process of maturation. This process involves the formation of a homodimer followed by two proteolytic steps. The first proteolytic cleavage produces a species where the n-terminal portion of the dimer is covalently separated from, but remains non-covalently bound to, the c-terminal, functional, portion of the protein. The protein is activated upon removal of the n-terminal "pro-segment" by a second n-terminal proteolytic cut by BMP-1 in vivo, or by acid treatment in vitro. Understanding the structural nature and physical interactions involved in these regulatory processes is the objective of our studies. Murine MSTN was purified from culture media of genetically engineered Chinese Hamster Ovary cells by multicolumn purification process and crystallized using the vapor diffusion method.
β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses.
Moriyama, Saya; Brestoff, Jonathan R; Flamar, Anne-Laure; Moeller, Jesper B; Klose, Christoph S N; Rankin, Lucille C; Yudanin, Naomi A; Monticelli, Laurel A; Putzel, Gregory Garbès; Rodewald, Hans-Reimer; Artis, David
2018-03-02
The type 2 inflammatory response is induced by various environmental and infectious stimuli. Although recent studies identified group 2 innate lymphoid cells (ILC2s) as potent sources of type 2 cytokines, the molecular pathways controlling ILC2 responses are incompletely defined. Here we demonstrate that murine ILC2s express the β 2 -adrenergic receptor (β 2 AR) and colocalize with adrenergic neurons in the intestine. β 2 AR deficiency resulted in exaggerated ILC2 responses and type 2 inflammation in intestinal and lung tissues. Conversely, β 2 AR agonist treatment was associated with impaired ILC2 responses and reduced inflammation in vivo. Mechanistically, we demonstrate that the β 2 AR pathway is a cell-intrinsic negative regulator of ILC2 responses through inhibition of cell proliferation and effector function. Collectively, these data provide the first evidence of a neuronal-derived regulatory circuit that limits ILC2-dependent type 2 inflammation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells.
Johannessen, Liv; Sundberg, Thomas B; O'Connell, Daniel J; Kolde, Raivo; Berstler, James; Billings, Katelyn J; Khor, Bernard; Seashore-Ludlow, Brinton; Fassl, Anne; Russell, Caitlin N; Latorre, Isabel J; Jiang, Baishan; Graham, Daniel B; Perez, Jose R; Sicinski, Piotr; Phillips, Andrew J; Schreiber, Stuart L; Gray, Nathanael S; Shamji, Alykhan F; Xavier, Ramnik J
2017-10-01
Enhancing production of the anti-inflammatory cytokine interleukin-10 (IL-10) is a promising strategy to suppress pathogenic inflammation. To identify new mechanisms regulating IL-10 production, we conducted a phenotypic screen for small molecules that enhance IL-10 secretion from activated dendritic cells. Mechanism-of-action studies using a prioritized hit from the screen, BRD6989, identified the Mediator-associated kinase CDK8, and its paralog CDK19, as negative regulators of IL-10 production during innate immune activation. The ability of BRD6989 to upregulate IL-10 is recapitulated by multiple, structurally differentiated CDK8 and CDK19 inhibitors and requires an intact cyclin C-CDK8 complex. Using a highly parallel pathway reporter assay, we identified a role for enhanced AP-1 activity in IL-10 potentiation following CDK8 and CDK19 inhibition, an effect associated with reduced phosphorylation of a negative regulatory site on c-Jun. These findings identify a function for CDK8 and CDK19 in regulating innate immune activation and suggest that these kinases may warrant consideration as therapeutic targets for inflammatory disorders.
Dictyostelium LvsB has a regulatory role in endosomal vesicle fusion
Falkenstein, Kristin; De Lozanne, Arturo
2014-01-01
ABSTRACT Defects in human lysosomal-trafficking regulator (Lyst) are associated with the lysosomal disorder Chediak–Higashi syndrome. The absence of Lyst results in the formation of enlarged lysosome-related compartments, but the mechanism for how these compartments arise is not well established. Two opposing models have been proposed to explain Lyst function. The fission model describes Lyst as a positive regulator of fission from lysosomal compartments, whereas the fusion model identifies Lyst as a negative regulator of fusion between lysosomal vesicles. Here, we used assays that can distinguish between defects in vesicle fusion versus fission. We compared the phenotype of Dictyostelium discoideum cells defective in LvsB, the ortholog of Lyst, with that of two known fission defect mutants (μ3- and WASH-null mutants). We found that the temporal localization characteristics of the post-lysosomal marker vacuolin, as well as vesicular acidity and the fusion dynamics of LvsB-null cells are distinct from those of both μ3- and WASH-null fission defect mutants. These distinctions are predicted by the fusion defect model and implicate LvsB as a negative regulator of vesicle fusion. PMID:25086066
Roumaud, Pauline; Martin, Luc J
2015-10-01
The increase in obesity rate is a major public health issue associated with increased pathological conditions such as type 2 diabetes or cardiovascular diseases. Obesity also contributes to decreased testosterone levels in men. Indeed, the adipose tissue is an endocrine organ which produces hormones such as leptin, adiponectin and resistin. Obesity results in pathological accumulations of leptin and resistin, whereas adiponectin plasma levels are markedly reduced, all having a negative impact on testosterone synthesis. This review focuses on current knowledge related to transcriptional regulation of Leydig cells' steroidogenesis by leptin, adiponectin and resistin. We show that there are crosstalks between the regulatory mechanisms of these hormones and androgen production which may result in a dramatic negative influence on testosterone plasma levels. Indeed leptin, adiponectin and resistin can impact expression of different steroidogenic genes such as Star, Cyp11a1 or Sf1. Further investigations will be required to better define the implications of adipose derived hormones on regulation of steroidogenic genes expression within Leydig cells under physiological as well as pathological conditions.
NASA Astrophysics Data System (ADS)
Karyakin, Alexey; Vasenev, Ivan; Karyakina, Svetlana
2015-04-01
Regional environmental bodies' ability to understand, model and predict their soil cover environmental functions are especially important in case of landfill reclamation. The special attention has to be done to landfills with industrial wastes created earlier in frame of big city - comparatively closed to their residential areas. Dominated in Ryazan region sandy loam gray forest soils with not so high soil organic matter content and soil exchange capacity determine additional problems with landfill biological reclamation and continuous sustainable vegetation cover development. The modern environmental monitoring system has been developed in the big landfill with tanning industrial wastes from the biggest in Europe tannery to develop recommendation on the environmentally friendly reclamation technologies adapted to concrete landscape conditions and functional features of 2 m fresh soil-ground coating the landfill surface. More detailed monitoring system has to be developed to assess the regulatory environmental functions of the regenerated soil cover to minimize the reclamated landfill' negative impacts on the urban ecosystem air, surface and ground water quality. Obtained result will be useful for similar landfills with tanning industrial wastes environmental impact assessment and smart design.
Lévi-Meyrueis, Corinne; Monteil, Véronique; Sismeiro, Odile; Dillies, Marie-Agnès; Monot, Marc; Jagla, Bernd; Coppée, Jean-Yves; Dupuy, Bruno; Norel, Françoise
2014-01-01
The RpoS/σS sigma subunit of RNA polymerase (RNAP) controls a global adaptive response that allows many Gram-negative bacteria to survive starvation and various stresses. σS also contributes to biofilm formation and virulence of the food-borne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). In this study, we used directional RNA-sequencing and complementary assays to explore the σS-dependent transcriptome of S. Typhimurium during late stationary phase in rich medium. This study confirms the large regulatory scope of σS and provides insights into the physiological functions of σS in Salmonella. Extensive regulation by σS of genes involved in metabolism and membrane composition, and down-regulation of the respiratory chain functions, were important features of the σS effects on gene transcription that might confer fitness advantages to bacterial cells and/or populations under starving conditions. As an example, we show that arginine catabolism confers a competitive fitness advantage in stationary phase. This study also provides a firm basis for future studies to address molecular mechanisms of indirect regulation of gene expression by σS. Importantly, the σS-controlled downstream network includes small RNAs that might endow σS with post-transcriptional regulatory functions. Of these, four (RyhB-1/RyhB-2, SdsR, SraL) were known to be controlled by σS and deletion of the sdsR locus had a competitive fitness cost in stationary phase. The σS-dependent control of seven additional sRNAs was confirmed in Northern experiments. These findings will inspire future studies to investigate molecular mechanisms and the physiological impact of post-transcriptional regulation by σS. PMID:24810289
Atypical Role for PhoU in Mutagenic Break Repair under Stress in Escherichia coli
Aponyi, Ildiko; Vera Cruz, Diana; Ray, Mellanie P.; Rosenberg, Susan M.
2015-01-01
Mechanisms of mutagenesis activated by stress responses drive pathogen/host adaptation, antibiotic and anti-fungal-drug resistance, and perhaps much of evolution generally. In Escherichia coli, repair of double-strand breaks (DSBs) by homologous recombination is high fidelity in unstressed cells, but switches to a mutagenic mode using error-prone DNA polymerases when the both the SOS and general (σS) stress responses are activated. Additionally, the σE response promotes spontaneous DNA breakage that leads to mutagenic break repair (MBR). We identified the regulatory protein PhoU in a genetic screen for functions required for MBR. PhoU negatively regulates the phosphate-transport and utilization (Pho) regulon when phosphate is in excess, including the PstB and PstC subunits of the phosphate-specific ABC transporter PstSCAB. Here, we characterize the PhoU mutation-promoting role. First, some mutations that affect phosphate transport and Pho transcriptional regulation decrease mutagenesis. Second, the mutagenesis and regulon-expression phenotypes do not correspond, revealing an apparent new function(s) for PhoU. Third, the PhoU mutagenic role is not via activation of the σS, SOS or σE responses, because mutations (or DSBs) that restore mutagenesis to cells defective in these stress responses do not restore mutagenesis to phoU cells. Fourth, the mutagenesis defect in phoU-mutant cells is partially restored by deletion of arcA, a gene normally repressed by PhoU, implying that a gene(s) repressed by ArcA promotes mutagenic break repair. The data show a new role for PhoU in regulation, and a new regulatory branch of the stress-response signaling web that activates mutagenic break repair in E. coli. PMID:25961709
The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence.
Ren, Jun; Prescott, John F
2004-11-15
An 81 kb virulence plasmid containing a pathogenicity island (PI) plays a crucial role in the pathogenesis of Rhodococcus equi pneumonia in foals but its specific function in virulence and regulation of plasmid-encoded virulence genes is unclear. Using a LacZ selection marker developed for R. equi in this study, in combination with an apramycin resistance gene, an efficient two-stage homologous recombination targeted gene mutation procedure was used to mutate three virulence plasmid genes, a LysR regulatory gene homologue (ORF4), a ResD-like two-component response regulator homologue (ORF8), and a gene (ORF10) of unknown function that is highly expressed by R. equi inside macrophages, as well as the chromosomal gene operon, phoPR. Virulence testing by liver clearance after intravenous injection in mice showed that the ORF4 and ORF8 mutants were fully attenuated, that the phoPR mutant was hypervirulent, and that virulence of the ORF10 mutant remained unchanged. A virulence plasmid DNA microarray was used to compare the plasmid gene expression profile of each of the four gene-targeted mutants against the parental R. equi strain. Changes were limited to PI genes and gene induction was observed for all mutants, suggesting that expression of virulence plasmid genes is dominated by a negative regulatory network. The finding of attenuation of ORF4 and ORF8 mutants despite enhanced transcription of vapA suggests that factors other than VapA are important for full expression of virulence. ORF1, a putative Lsr antigen gene, was strongly and similarly induced in all mutants, implying a common regulatory pathway affecting this gene for all four mutated genes. ORF8 is apparently the centre of this common pathway. Two distinct highly correlated gene induction patterns were observed, that of the ORF4 and ORF8 mutants, and that of the ORF10 and phoPR mutants. The gene induction pattern distinguishing these two groups paralleled their virulence in mice.
NF-κB–YY1–miR-29 Regulatory Circuitry in Skeletal Myogenesis and Rhabdomyosarcoma
Wang, Huating; Garzon, Ramiro; Sun, Hao; Ladner, Katherine J.; Singh, Ravi; Dahlman, Jason; Cheng, Alfred; Hall, Brett M.; Qualman, Stephen J.; Chandler, Dawn S.; Croce, Carlo M.; Guttridge, Denis C.
2008-01-01
SUMMARY Studies support the importance of microRNAs in physiological and pathological processes. Here we describe the regulation and function of miR-29 in myogenesis and Rhabdomyosarcoma (RMS). Results demonstrate that in myoblasts miR-29 is repressed by NF-κB acting through YY1 and the Polycomb. During myogenesis, NF-κB and YY1 downregulation causes derepression of miR-29, which in turn accelerates differentiation by targeting its repressor YY1. However, in RMS cells and primary tumors that possess impaired differentiation, miR-29 is epigenetically silenced by an activated NF-κB-YY1 pathway. Reconstitution of miR-29 in RMS in mice inhibits tumor growth and stimulates differentiation, suggesting that miR-29 acts as a tumor suppressor through its pro-myogenic function. Together, results identify a NF-κB–YY1–miR-29 regulatory circuit whose disruption may contribute to RMS. SIGNIFICANCE MicroRNAs regulate skeletal myogenesis, but their impact in muscle diseases is not well understood. Here we describe miR-29 as an enhancer of myogenic differentiation and a suppressor of RMS. We find that miR-29 exists in a regulatory circuit involving NF-κB and YY1. In myoblasts NF-B acts through YY1 to epigenetically suppress miR-29, while during differentiation miR-29 is induced to facilitate myogenesis by a negative feedback on YY1. Significantly, RMS tumors lose miR-29 due to an elevation in NF-B and YY1, and readjustment of miR-29 levels in RMS stimulates differentiation. Thus, myogenesis is dependent on NF-κB–YY1–miR-29 circuitry whose dysfunction may contribute to RMS pathogenesis. Such findings offer potential avenues for the diagnosis and treatment of muscle relevant cancers. PMID:18977326
Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jeongsik; Kim, Jin Hee; Woo, Hye Ryun; Hyeon, Changbong; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee
2018-05-22
Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a "NAC troika," govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NAC s, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. Copyright © 2018 the Author(s). Published by PNAS.
Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jin Hee; Woo, Hye Ryun; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee
2018-01-01
Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a “NAC troika,” govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NACs, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. PMID:29735710
Bone marrow-resident NK cells prime monocytes for regulatory function during infection
Askenase, Michael H.; Han, Seong-Ji; Byrd, Allyson L.; da Fonseca, Denise Morais; Bouladoux, Nicolas; Wilhelm, Christoph; Konkel, Joanne E.; Hand, Timothy W.; Lacerda-Queiroz, Norinne; Su, Xin-Zhuan; Trinchieri, Giorgio; Grainger, John R.; Belkaid, Yasmine
2015-01-01
SUMMARY Tissue-infiltrating Ly6Chi monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DC) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals following tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function. PMID:26070484
Biosynthesis and function of chondroitin sulfate.
Mikami, Tadahisa; Kitagawa, Hiroshi
2013-10-01
Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions. Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo. Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes. Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders. Copyright © 2013 Elsevier B.V. All rights reserved.
T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function
Li, Ming O.; Rudensky, Alexander Y.
2016-01-01
Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074
Kyeong, Sunghyon; Kim, Eunjoo; Park, Hae-Jeong; Hwang, Dong-Uk
2014-08-05
Novelty seeking (NS) and harm avoidance (HA) are two major dimensions of temperament in Cloninger׳s neurobiological model of personality. Previous neurofunctional and biological studies on temperament dimensions of HA and NS suggested that the temperamental traits have significant correlations with cortical and subcortical brain regions. However, no study to date has investigated the functional network modular organization as a function of the temperament dimension. The temperament dimensions were originally proposed to be independent of one another. However, a meta-analysis based on 16 published articles found a significant negative correlation between HA and NS (Miettunen et al., 2008). Based on this negative correlation, the current study revealed the whole-brain connectivity modular architecture for two contrasting temperament groups. The k-means clustering algorithm, with the temperamental traits of HA and NS as an input, was applied to divide the 40 subjects into two temperament groups: 'high HA and low NS' versus 'low HA and high NS'. Using the graph theoretical framework, we found a functional segregation of whole brain network architectures derived from resting-state functional MRI. In the 'high HA and low NS' group, the regulatory brain regions, such as the prefrontal cortex (PFC), are clustered together with the limbic system. In the 'low HA and high NS' group, however, brain regions lying on the dopaminergic pathways, such as the PFC and basal ganglia, are partitioned together. These findings suggest that the neural basis of inhibited, passive, and inactive behaviors in the 'high HA and low NS' group was derived from the increased network associations between the PFC and limbic clusters. In addition, supporting evidence of topological differences between the two temperament groups was found by analyzing the functional connectivity density and gray matter volume, and by computing the relationships between the morphometry and function of the brain. Copyright © 2014 Elsevier B.V. All rights reserved.
The rested relationship: Sleep benefits marital evaluations.
Maranges, Heather M; McNulty, James K
2017-02-01
Remaining satisfied with a relationship often requires thinking in ways that use self-regulatory resources-satisfied couples discount undesirable experiences when forming global evaluations of the relationship. Nevertheless, recent work indicates that the self-regulatory resources required to engage in these processes are limited. Although consuming new energy may be one way to replenish these limited resources, sleep is another. The current study used a daily diary study of 68 newlywed couples to examine the implications of sleep for daily marital evaluations. Every day for up to 7 days, both members of the couples reported their evaluations of their interpersonal specific experiences, global relationship satisfaction, and amount of sleep. Multilevel analysis revealed that spouses were more satisfied on days after which they had slept for a longer period of time. Furthermore, sleep also buffered husbands', but not wives', marital satisfaction against the implications of negative specific evaluations-husbands were better able to remain more globally satisfied despite negative evaluations of specific aspects of the relationship on days following more sleep. These findings suggest that sleep may offer self-regulatory benefits and should thus be incorporated into existing interpersonal models that highlight the importance of self-regulation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Effects of delay and noise in a negative feedback regulatory motif
NASA Astrophysics Data System (ADS)
Palassini, Matteo; Dies, Marta
2009-03-01
The small copy number of the molecules involved in gene regulation can induce nontrivial stochastic phenomena such as noise-induced oscillations. An often neglected aspect of regulation dynamics are the delays involved in transcription and translation. Delays introduce analytical and computational complications because the dynamics is non-Markovian. We study the interplay of noise and delays in a negative feedback model of the p53 core regulatory network. Recent experiments have found pronounced oscillations in the concentrations of proteins p53 and Mdm2 in individual cells subjected to DNA damage. Similar oscillations occur in the Hes-1 and NK-kB systems, and in circadian rhythms. Several mechanisms have been proposed to explain this oscillatory behaviour, such as deterministic limit cycles, with and without delay, or noise-induced excursions in excitable models. We consider a generic delayed Master Equation incorporating the activation of Mdm2 by p53 and the Mdm2-promoted degradation of p53. In the deterministic limit and for large delays, the model shows a Hopf bifurcation. Via exact stochastic simulations, we find strong noise-induced oscillations well outside the limit-cycle region. We propose that this may be a generic mechanism for oscillations in gene regulatory systems.
Impact of Leishmania metalloprotease GP63 on macrophage signaling
Isnard, Amandine; Shio, Marina T.; Olivier, Martin
2012-01-01
The intramacrophage protozoan parasites of Leishmania genus have developed sophisticated ways to subvert the innate immune response permitting their infection and propagation within the macrophages of the mammalian host. Several Leishmania virulence factors have been identified and found to be of importance for the development of leishmaniasis. However, recent findings are now further reinforcing the critical role played by the zinc-metalloprotease GP63 as a virulence factor that greatly influence host cell signaling mechanisms and related functions. GP63 has been found to be involved not only in the cleavage and degradation of various kinases and transcription factors, but also to be the major molecule modulating host negative regulatory mechanisms involving for instance protein tyrosine phosphatases (PTPs). Those latter being well recognized for their pivotal role in the regulation of a great number of signaling pathways. In this review article, we are providing a complete overview about the role of Leishmania GP63 in the mechanisms underlying the subversion of macrophage signaling and functions. PMID:22919663
Impact of Leishmania metalloprotease GP63 on macrophage signaling.
Isnard, Amandine; Shio, Marina T; Olivier, Martin
2012-01-01
The intramacrophage protozoan parasites of Leishmania genus have developed sophisticated ways to subvert the innate immune response permitting their infection and propagation within the macrophages of the mammalian host. Several Leishmania virulence factors have been identified and found to be of importance for the development of leishmaniasis. However, recent findings are now further reinforcing the critical role played by the zinc-metalloprotease GP63 as a virulence factor that greatly influence host cell signaling mechanisms and related functions. GP63 has been found to be involved not only in the cleavage and degradation of various kinases and transcription factors, but also to be the major molecule modulating host negative regulatory mechanisms involving for instance protein tyrosine phosphatases (PTPs). Those latter being well recognized for their pivotal role in the regulation of a great number of signaling pathways. In this review article, we are providing a complete overview about the role of Leishmania GP63 in the mechanisms underlying the subversion of macrophage signaling and functions.
Four Mechanistic Models of Peer Influence on Adolescent Cannabis Use.
Caouette, Justin D; Feldstein Ewing, Sarah W
2017-06-01
Most adolescents begin exploring cannabis in peer contexts, but the neural mechanisms that underlie peer influence on adolescent cannabis use are still unknown. This theoretical overview elucidates the intersecting roles of neural function and peer factors in cannabis use in adolescents. Novel paradigms using functional magnetic resonance imaging (fMRI) in adolescents have identified distinct neural mechanisms of risk decision-making and incentive processing in peer contexts, centered on reward-motivation and affect regulatory neural networks; these findings inform a theoretical model of peer-driven cannabis use decisions in adolescents. We propose four "mechanistic profiles" of social facilitation of cannabis use in adolescents: (1) peer influence as the primary driver of use; (2) cannabis exploration as the primary driver, which may be enhanced in peer contexts; (3) social anxiety; and (4) negative peer experiences. Identification of "neural targets" involved in motivating cannabis use may inform clinicians about which treatment strategies work best in adolescents with cannabis use problems, and via which social and neurocognitive processes.
UBXD Proteins: A Family of Proteins with Diverse Functions in Cancer.
Rezvani, Khosrow
2016-10-14
The UBXD family is a diverse group of UBX (ubiquitin-regulatory X) domain-containing proteins in mammalian cells. Members of this family contain a UBX domain typically located at the carboxyl-terminal of the protein. In contrast to the UBX domain shared by all members of UBXD family, the amino-terminal domains are diverse and appear to carry out different roles in a subcellular localization-dependent manner. UBXD proteins are principally associated with the endoplasmic reticulum (ER), where they positively or negatively regulate the ER-associated degradation machinery (ERAD). The distinct protein interaction networks of UBXD proteins allow them to have specific functions independent of the ERAD pathway in a cell type- and tissue context-dependent manner. Recent reports have illustrated that a number of mammalian members of the UBXD family play critical roles in several proliferation and apoptosis pathways dysregulated in selected types of cancer. This review covers recent advances that elucidate the therapeutic potential of selected members of the UBXD family that can contribute to tumor growth.
A portable expression resource for engineering cross-species genetic circuits and pathways
Kushwaha, Manish; Salis, Howard M.
2015-01-01
Genetic circuits and metabolic pathways can be reengineered to allow organisms to process signals and manufacture useful chemicals. However, their functions currently rely on organism-specific regulatory parts, fragmenting synthetic biology and metabolic engineering into host-specific domains. To unify efforts, here we have engineered a cross-species expression resource that enables circuits and pathways to reuse the same genetic parts, while functioning similarly across diverse organisms. Our engineered system combines mixed feedback control loops and cross-species translation signals to autonomously self-regulate expression of an orthogonal polymerase without host-specific promoters, achieving nontoxic and tuneable gene expression in diverse Gram-positive and Gram-negative bacteria. Combining 50 characterized system variants with mechanistic modelling, we show how the cross-species expression resource's dynamics, capacity and toxicity are controlled by the control loops' architecture and feedback strengths. We also demonstrate one application of the resource by reusing the same genetic parts to express a biosynthesis pathway in both model and non-model hosts. PMID:26184393
Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis
Tian, Hua; Biehs, Brian; Chiu, Cecilia; Siebel, Chris; Wu, Yan; Costa, Mike; de Sauvage, Frederic J.; Klein, Ophir D.
2015-01-01
Summary Proper organ homeostasis requires tight control of adult stem cells and differentiation through integration of multiple inputs. In the mouse small intestine, Notch and Wnt signaling are required both for stem cell maintenance and for a proper balance of differentiation between secretory and absorptive cell lineages. In the absence of Notch signaling, stem cells preferentially generate secretory cells at the expense of absorptive cells. Here, we use function-blocking antibodies against Notch receptors to demonstrate that Notch blockade perturbs intestinal stem cell function by causing a de-repression of the Wnt signaling pathway, leading to mis-expression of prosecretory genes. Importantly, attenuation of the Wnt pathway rescued the phenotype associated with Notch blockade. These studies bring to light a negative regulatory mechanism that maintains stem cell activity and balanced differentiation, and we propose that the interaction between Wnt and Notch signaling described here represents a common theme in adult stem cell biology. PMID:25818302
Biological, physiological, and pharmacological aspects of ghrelin.
Hosoda, Hiroshi; Kojima, Masayasu; Kangawa, Kenji
2006-01-01
Ghrelin, identified as an endogenous ligand for the growth hormone secretagogue receptor, functions as a somatotrophic and orexigenic signal from the stomach. Ghrelin has a unique post-translational modification: the hydroxyl group of the third amino acid, usually a serine but in some species a threonine, is esterified by octanoic acid and is essential for ghrelin's biological activities. The secretion of ghrelin increases under conditions of negative energy-balance, such as starvation, cachexia, and anorexia nervosa, whereas its expression decreases under conditions of positive energy-balance such as feeding, hyperglycemia, and obesity. In addition to having a powerful effect on the secretion of growth hormone, ghrelin stimulates food intake and transduces signals to hypothalamic regulatory nuclei that control energy homeostasis. Thus, it is interesting to note that the stomach may play an important role in not only digestion but also pituitary growth hormone release and central feeding regulation. We summarized recent findings on the integration of ghrelin into neuroendocrine networks that regulate food intake, energy balance, gastrointestinal function and growth.
Retrograde Signaling as a Mechanism of Yeast Adaptation to Unfavorable Factors.
Trendeleva, T A; Zvyagilskaya, R A
2018-02-01
Mitochondria perform many essential functions in eukaryotic cells. Being the main producers of ATP and the site of many catabolic and anabolic reactions, they participate in intracellular signaling, proliferation, aging, and formation of reactive oxygen species. Mitochondrial dysfunction is the cause of many diseases and even cell death. The functioning of mitochondria in vivo is impossible without interaction with other cellular compartments. Mitochondrial retrograde signaling is a signaling pathway connecting mitochondria and the nucleus. The major signal transducers in the yeast retrograde response are Rtg1p, Rtg2p, and Rtg3p proteins, as well as four additional negative regulatory factors - Mks1p, Lst8p, and two 14-3-3 proteins (Bmh1/2p). In this review, we analyze current information on the retrograde signaling in yeast that is regarded as a stress or homeostatic response mechanism to changes in various metabolic and biosynthetic activities that occur upon mitochondrial dysfunction. We also discuss relations between retrograde signaling and other signaling pathways in the cell.
Radiation and the regulatory landscape of neo2-Darwinism.
Rollo, C David
2006-05-11
Several recently revealed features of eukaryotic genomes were not predicted by earlier evolutionary paradigms, including the relatively small number of genes, the very large amounts of non-functional code and its quarantine in heterochromatin, the remarkable conservation of many functionally important genes across relatively enormous phylogenetic distances, and the prevalence of extra-genomic information associated with chromatin structure and histone proteins. All of these emphasize a paramount role for regulatory evolution, which is further reinforced by recent perspectives highlighting even higher-order regulation governing epigenetics and development (EVO-DEVO). Modern neo2-Darwinism, with its emphasis on regulatory mechanisms and regulatory evolution provides new vision for understanding radiation biology, particularly because free radicals and redox states are central to many regulatory mechanisms and free radicals generated by radiation mimic and amplify endogenous signalling. This paper explores some of these aspects and their implications for low-dose radiation biology.
Disentangling the many layers of eukaryotic transcriptional regulation.
Lelli, Katherine M; Slattery, Matthew; Mann, Richard S
2012-01-01
Regulation of gene expression in eukaryotes is an extremely complex process. In this review, we break down several critical steps, emphasizing new data and techniques that have expanded current gene regulatory models. We begin at the level of DNA sequence where cis-regulatory modules (CRMs) provide important regulatory information in the form of transcription factor (TF) binding sites. In this respect, CRMs function as instructional platforms for the assembly of gene regulatory complexes. We discuss multiple mechanisms controlling complex assembly, including cooperative DNA binding, combinatorial codes, and CRM architecture. The second section of this review places CRM assembly in the context of nucleosomes and condensed chromatin. We discuss how DNA accessibility and histone modifications contribute to TF function. Lastly, new advances in chromosomal mapping techniques have provided increased understanding of intra- and interchromosomal interactions. We discuss how these topological maps influence gene regulatory models.
Abundant raw material for cis-regulatory evolution in humans
NASA Technical Reports Server (NTRS)
Rockman, Matthew V.; Wray, Gregory A.
2002-01-01
Changes in gene expression and regulation--due in particular to the evolution of cis-regulatory DNA sequences--may underlie many evolutionary changes in phenotypes, yet little is known about the distribution of such variation in populations. We present in this study the first survey of experimentally validated functional cis-regulatory polymorphism. These data are derived from more than 140 polymorphisms involved in the regulation of 107 genes in Homo sapiens, the eukaryote species with the most available data. We find that functional cis-regulatory variation is widespread in the human genome and that the consequent variation in gene expression is twofold or greater for 63% of the genes surveyed. Transcription factor-DNA interactions are highly polymorphic, and regulatory interactions have been gained and lost within human populations. On average, humans are heterozygous at more functional cis-regulatory sites (>16,000) than at amino acid positions (<13,000), in part because of an overrepresentation among the former in multiallelic tandem repeat variation, especially (AC)(n) dinucleotide microsatellites. The role of microsatellites in gene expression variation may provide a larger store of heritable phenotypic variation, and a more rapid mutational input of such variation, than has been realized. Finally, we outline the distinctive consequences of cis-regulatory variation for the genotype-phenotype relationship, including ubiquitous epistasis and genotype-by-environment interactions, as well as underappreciated modes of pleiotropy and overdominance. Ordinary small-scale mutations contribute to pervasive variation in transcription rates and consequently to patterns of human phenotypic variation.
Ibarra-Arellano, Miguel A; Campos-González, Adrián I; Treviño-Quintanilla, Luis G; Tauch, Andreas; Freyre-González, Julio A
2016-01-01
The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy ( A: cross- BA: cteria SY: stems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing 3708 regulons and 1776 systems. All this brings together a large corpus of data that will surely inspire studies to generate hypothesis regarding the principles governing the evolution and organization of systems and the functional architectures controlling them.Database URL: http://abasy.ccg.unam.mx. © The Author(s) 2016. Published by Oxford University Press.
Ahnert, S E; Fink, T M A
2016-07-01
Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the 'function' of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. © 2016 The Authors.
Marinić, Igor; Gagro, Alenka; Rabatić, Sabina
2006-12-01
Regulatory T-cells are a subset of T cells that have beene extensively studied in modern immunology. They are important for the maintenance of peripheral tolerance, and have an important role in various clinical conditions such as allergy, autoimmune disorders, tumors, infections, and in transplant medicine. Basically, this population has a suppressive effect on the neighboring immune cells, thus contributing to the local modulation and control of immune response. There are two main populations of regulatory T cells - natural regulatory T cells, which form a distinct cellular lineage, develop in thymus and perform their modulatory action through direct intercellular contact, along with the secreted cytokines; and inducible regulatory T cells, which develop in the periphery after contact with the antigen that is presented on the antigen presenting cell, and their primary mode of action is through the interleukin 10 (IL-10) and transforming growth factor beta (TGF-alpha) cytokines. Natural regulatory T cells are activated through T cell receptor after contact with specific antigen and inhibit proliferation of other T cells in an antigen independent manner. One of the major difficulties in the research of regulatory T cells is the lack of specific molecular markers that would identify these cells. Natural regulatory T cells constitutively express surface molecule CD25, but many other surface and intracellular molecules (HLA-DR, CD122, CD45RO, CD62, CTLA-4, GITR, PD-1, Notch, FOXP3, etc.) are being investigated for further phenotypic characterization of these cells. Because regulatory T cells have an important role in establishing peripheral tolerance, their importance is manifested in a number of clinical conditions. In the IPEX syndrome (immunodysregulation, polyendocrinopathy and enteropathy, X-linked), which is caused by mutation in Foxp3 gene that influences the development and function of regulatory T cells, patients develop severe autoimmune reactions that involve autoimmune endocrine disorders (type 1 diabetes, thyroiditis), respiratory and nutritive allergy, eczema and severe infections. In different types of allergy (pollen allergy, dust mite, nutritive allergens, contact hypersensitivity, etc.) and autoimmune diseases (such as rheumatoid arthritis, multiple sclerosis and type 1 diabetes) a lower number or decreased functional capability of regulatory T cells have been described. In inflammatory conditions and infections, this cell population has an important task in restricting immune response and protecting the host from excessive damage. This ability of regulatory T cells can be used by some pathogens (Epstein Barr virus, Mycobacterium tuberculosis, Leishmania major, etc.) and tumor cells to avoid host response and therefore contribute to the development of some pathological conditions. The knowledge gained on the phenotype and function of regulatory T cells could be useful in many medical conditions. In allergy, autoimmune diseases and in transplant procedures in medicine it would be desirable to increase their function, thus to partially suppress the immune system activity. On the other hand, in some infections and tumors, it would be preferable to decrease the activity of regulatory T cells and boost the function of effector T cells. Regulatory T cells comprise a very active field of immunology, therefore monitoring and modulating of their activity is of great potential significance in a broad spectrum of clinical conditions. By developing and standardizing methods for their monitoring, it would be possible to follow additional parameters of certain clinical conditions and possibly utilize them in therapy.
Sidor, Anna; Fischer, Cristina; Cierpka, Manfred
2017-01-01
Difficult conditions during childhood can limit an individual's development in many ways. Factors such as being raised in an at-risk family, child temperamental traits or maternal traits can potentially influence a child's later behaviour. The present study investigated the extent of regulatory problems in 6-month-old infants and their link to temperamental traits and impact on externalizing and internalizing problems at 36 months. Moderating effects of maternal distress and maternal depressive symptoms were tested as well. In a quasi-experimental, longitudinal study, a sample of 185 mother-infant dyads at psychosocial risk was investigated at 6 months with SFS (infants' regulatory problems) and at 3 years with CBCL (children's behavioural problems), EAS (children's temperament), ADS (maternal depressive symptoms) and PSI-SF (maternal stress). A hierarchical regression analysis yielded a significant association between infants' regulatory problems and both externalizing and internalizing behaviour problems at age 3 (accounting for 16% and 14% variance), with both externalizing and internalizing problems being linked to current maternal depressive symptoms (12 and 9% of the variance). Externalizing and internalizing problems were found to be related also to children's temperamental difficulty (18 and 13% of variance) and their negative emotionality. With temperamental traits having been taken into account, only feeding problems at 6 months contributed near-significant to internalizing problems at 3 years. Our results underscore the crucial role of temperament in the path between early regulatory problems and subsequent behavioural difficulties. Children's unfavourable temperamental predispositions such as negative emotionality and generally "difficult temperament" contributed substantially to both externalizing and internalizing behavioural problems in the high-risk sample. The decreased predictive power of regulatory problems following the inclusion of temperamental variables indicates a mediation effect of temperamental traits in the path between early regulatory problems and subsequent behavioural problems. Our results support the main effects of a child's temperament, and to some degree maternal depressive symptoms, rather than the diathesis stress model of interaction between risky environment and temperamental traits. Trial registration D10025651 (NZFH).
Shields, A; Ryan, R M; Cicchetti, D
2001-05-01
This study examined whether maltreated children were more likely than nonmaltreated children to develop poor-quality representations of caregivers and whether these representations predicted children's rejection by peers. A narrative task assessing representations of mothers and fathers was administered to 76 maltreated and 45 nonmaltreated boys and girls (8-12 years old). Maltreated children's representations were more negative/constricted and less positive/coherent than those of nonmaltreated children. Maladaptive representations were associated with emotion dysregulation, aggression, and peer rejection, whereas positive/coherent representations were related to prosocial behavior and peer preference. Representations mediated maltreatment's effects on peer rejection in part by undermining emotion regulation. Findings suggest that representations of caregivers serve an important regulatory function in the peer relationships of at-risk children.
Ivashkiv, Lionel B; Hu, Xiaoyu
2004-01-01
A variety of cytokines and growth factors use the Janus kinase (Jak)–STAT signaling pathway to transmit extracellular signals to the nucleus. STATs (signal transducers and activators of transcription) are latent cytoplasmic transcription factors. There are seven mammalian STATs and they have critical, nonredundant roles in mediating cellular transcriptional responses to cytokines. The physiological roles of STATs have been elucidated by analysis of mice rendered deficient in STAT genes. STAT activation is regulated and can be modulated in a positive or negative fashion; it can be reprogrammed to drive different cellular responses. Several auto-regulatory and signaling crosstalk mechanisms for regulating Jak–STAT signaling have been described. Understanding and manipulation of the function of STATs will help in the development of therapeutic strategies for diseases that are regulated by cytokines. PMID:15225360
Discrepancy-based and anticipated emotions in behavioral self-regulation.
Brown, Christina M; McConnell, Allen R
2011-10-01
Discrepancies between one's current and desired states evoke negative emotions, which presumably guide self-regulation. In the current work we evaluated the function of discrepancy-based emotions in behavioral self-regulation. Contrary to classic theories of self-regulation, discrepancy-based emotions did not predict the degree to which people engaged in self-regulatory behavior. Instead, expectations about how future self-discrepancies would make one feel (i.e., anticipated emotions) predicted self-regulation. However, anticipated emotions were influenced by previous discrepancy-based emotional experiences, suggesting that the latter do not directly motivate self-regulation but rather guide expectations. These findings are consistent with the perspective that emotions do not necessarily direct immediate behavior, but rather have an indirect effect by guiding expectations, which in turn predict goal-directed action.
Mechanisms to Control Rereplication and Implications for Cancer
Hook, Sara S.; Lin, Jie Jessie; Dutta, Anindya
2007-01-01
Recent advances in the replication field have highlighted how the replication initiator proteins are negatively regulated by inhibitor proteins and ubiquitin-mediated degradation in mammalian cells to prevent rereplication. When these regulatory pathways go awry, uncontrolled rereplication ensues and a G2/M checkpoint is evoked to prevent cellular death. Many components of the checkpoints activated by rereplicaton are important for cancer prevention by facilitating DNA damage repair processes. The pathways that prevent rereplication themselves have also recently been implicated in preventing tumorigenesis. Studies from patient tumors, genetically altered mice, and mammalian cell culture suggest that deregulation of replication licensing proteins results in an increase in aneuploidy, chromosomal fusions, and DNA breaks. These studies provide a framework to address how regulators of replication function to maintain genomic stability. PMID:18053699
Cytokinins in Symbiotic Nodulation: When, Where, What For?
Gamas, Pascal; Brault, Mathias; Jardinaud, Marie-Françoise; Frugier, Florian
2017-09-01
Substantial progress has been made in the understanding of early stages of the symbiotic interaction between legume plants and rhizobium bacteria. Those include the specific recognition of symbiotic partners, the initiation of bacterial infection in root hair cells, and the inception of a specific organ in the root cortex, the nodule. Increasingly complex regulatory networks have been uncovered in which cytokinin (CK) phytohormones play essential roles in different aspects of early symbiotic stages. Intriguingly, these roles can be either positive or negative, cell autonomous or non-cell autonomous, and vary, depending on time, root tissues, and possibly legume species. Recent developments on CK symbiotic functions and interconnections with other signaling pathways during nodule initiation are the focus of this review. Copyright © 2017 Elsevier Ltd. All rights reserved.
A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yuen; Wang, Yuan; Feng, Jinyan
2015-04-03
The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within itsmore » 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro.« less
Serneels, Joke; Tournu, Hélène; Van Dijck, Patrick
2012-01-01
The ability to form hyphae in the human pathogenic fungus Candida albicans is a prerequisite for virulence. It contributes to tissue infection, biofilm formation, as well as escape from phagocytes. Cell elongation triggered by human body temperature involves the essential heat shock protein Hsp90, which negatively governs a filamentation program dependent upon the Ras-protein kinase A (PKA) pathway. Tight regulation of Hsp90 function is required to ensure fast appropriate response and maintenance of a wide range of regulatory and signaling proteins. Client protein activation by Hsp90 relies on a conformational change of the chaperone, whose ATPase activity is competitively inhibited by geldanamycin. We demonstrate a novel regulatory mechanism of heat- and Hsp90-dependent induced morphogenesis, whereby the nonreducing disaccharide trehalose acts as a negative regulator of Hsp90 release. By means of a mutant strain deleted for Gpr1, the G protein-coupled receptor upstream of PKA, we demonstrate that elevated trehalose content in that strain, resulting from misregulation of enzymatic activities involved in trehalose metabolism, disrupts the filamentation program in response to heat. Addition of geldanamycin does not result in hyphal extensions at 30 °C in the gpr1Δ/gpr1Δ mutant as it does in wild type cells. In addition, validamycin, a specific inhibitor of trehalase, the trehalose-degrading enzyme, inhibits cell elongation in response to heat and geldanamycin. These results place Gpr1 as a regulator of trehalose metabolism in C. albicans and illustrate that trehalose modulates Hsp90-dependent activation of client proteins and signaling pathways leading to filamentation in the human fungal pathogen. PMID:22952228
Zhou, Angela X; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya
2013-05-15
The role of surface-bound TGF-β on regulatory T cells (Tregs) and the mechanisms that mediate its functions are not well defined. We recently identified a cell-surface molecule called Glycoprotein A Repetitions Predominant (GARP), which is expressed specifically on activated Tregs and was found to bind latent TGF-β and mediate a portion of Treg suppressive activity in vitro. In this article, we address the role of GARP in regulating Treg and conventional T cell development and immune suppression in vivo using a transgenic mouse expressing GARP on all T cells. We found that, despite forced expression of GARP on all T cells, stimulation through the TCR was required for efficient localization of GARP to the cell surface. In addition, IL-2 signals enhanced GARP cell surface expression specifically on Tregs. GARP-transgenic CD4(+) T cells and Tregs, especially those expressing higher levels of GARP, were significantly reduced in the periphery. Mature Tregs, but not conventional CD4(+) T cells, were also reduced in the thymus. CD4(+) T cell reduction was more pronounced within the effector/memory subset, especially as the mouse aged. In addition, GARP-overexpressing CD4(+) T cells stimulated through the TCR displayed reduced proliferative capacity, which was restored by inhibiting TGF-β signaling. Furthermore, inhibiting TGF-β signals greatly enhanced surface expression of GARP on Tregs and blocked the induction of Foxp3 in activated CD4(+) T cells overexpressing GARP. These findings suggest a role for GARP in natural and induced Treg development through activation of bound latent TGF-β and signaling, which negatively regulates GARP expression on Tregs.
Acid Sphingomyelinase (ASM) is a Negative Regulator of Regulatory T Cell (Treg) Development.
Zhou, Yuetao; Salker, Madhuri S; Walker, Britta; Münzer, Patrick; Borst, Oliver; Gawaz, Meinrad; Gulbins, Erich; Singh, Yogesh; Lang, Florian
2016-01-01
Regulatory T cell (Treg) is required for the maintenance of tolerance to various tissue antigens and to protect the host from autoimmune disorders. However, Treg may, indirectly, support cancer progression and bacterial infections. Therefore, a balance of Treg function is pivotal for adequate immune responses. Acid sphingomyelinase (ASM) is a rate limiting enzyme involved in the production of ceramide by breaking down sphingomyelin. Previous studies in T-cells have suggested that ASM is involved in CD28 signalling, T lymphocyte granule secretion, degranulation, and vesicle shedding similar to the formation of phosphatidylserine-exposing microparticles from glial cells. However, whether ASM affects the development of Treg has not yet been described. Splenocytes, isolated Naive T lymphocytes and cultured T cells were characterized for various immune T cell markers by flow cytometery. Cell proliferation was measured by Carboxyfluorescein succinimidyl ester (CFSE) dye, cell cycle analysis by Propidium Iodide (PI), mRNA transcripts by q-RT PCR and protein expression by Western Blotting respectively. ASM deficient mice have higher number of Treg compared with littermate control mice. In vitro induction of ASM deficient T cells in the presence of TGF-β and IL-2 lead to a significantly higher number of Foxp3+ induced Treg (iTreg) compared with control T-cells. Further, ASM deficient iTreg has less AKT (serine 473) phosphorylation and Rictor levels compared with control iTreg. Ceramide C6 led to significant reduction of iTreg in both ASM deficient and WT mice. The reduction in iTreg leads to induction of IL-1β, IL-6 and IL-17 but not IFN-γ mRNA levels. ASM is a negative regulator of natural and iTreg. © 2016 The Author(s) Published by S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E Nistal-Villan; M Gack; G Martinez-Delgado
RIG-I (retinoic acid-inducible gene I) and TRIM25 (tripartite motif protein 25) have emerged as key regulatory factors to induce interferon (IFN)-mediated innate immune responses to limit viral replication. Upon recognition of viral RNA, TRIM25 E3 ligase binds the first caspase recruitment domain (CARD) of RIG-I and subsequently induces lysine 172 ubiquitination of the second CARD of RIG-I, which is essential for the interaction with downstream MAVS/IPS-1/CARDIF/VISA and, thereby, IFN-beta mRNA production. Although ubiquitination has emerged as a major factor involved in RIG-I activation, the potential contribution of other post-translational modifications, such as phosphorylation, to the regulation of RIG-I activity hasmore » not been addressed. Here, we report the identification of serine 8 phosphorylation at the first CARD of RIG-I as a negative regulatory mechanism of RIG-I-mediated IFN-beta production. Immunoblot analysis with a phosphospecific antibody showed that RIG-I serine 8 phosphorylation steady-state levels were decreased upon stimulation of cells with IFN-beta or virus infection. Substitution of serine 8 in the CARD RIG-I functional domain with phosphomimetic aspartate or glutamate results in decreased TRIM25 binding, RIG-I ubiquitination, MAVS binding, and downstream signaling. Finally, sequence comparison reveals that only primate species carry serine 8, whereas other animal species carry an asparagine, indicating that serine 8 phosphorylation may represent a primate-specific regulation of RIG-I activation. Collectively, these data suggest that the phosphorylation of RIG-I serine 8 operates as a negative switch of RIG-I activation by suppressing TRIM25 interaction, further underscoring the importance of RIG-I and TRIM25 connection in type I IFN signal transduction.« less
Sim, Chan Kyu; Cho, Yeon Sook; Kim, Byung Soo; Baek, In-Jeoung; Kim, Young-Joon; Lee, Myeong Sup
2016-06-01
Type I interferon (IFN-I) plays a critical role in antiviral and antitumor defense. In our previous studies, we showed that IFN-I-inducible 2'-5' oligoadenylate synthetase-like 1 (OASL1) negatively regulates IFN-I production upon viral infection by specifically inhibiting translation of the IFN-I-regulating master transcription factor, interferon regulatory factor 7 (IRF7). In this study, we investigated whether OASL1 plays a negative role in the anti-tumor immune response by using OASL1-deficient (Oasl1 (-/-)) mice and transplantable syngeneic tumor cell models. We found that Oasl1 (-/-) mice demonstrate enhanced resistance to lung metastatic tumors and subcutaneously implanted tumors compared to wild-type (WT) mice. Additionally, we found that cytotoxic effector cells such as CD8(+) T cells (including tumor antigen-specific CD8(+) T cells) and NK cells as well as CD8α(+) DCs (the major antigen cross-presenting cells) were much more frequent (>fivefold) in the Oasl1 (-/-) mouse tumors. Furthermore, the cytotoxic effector cells in Oasl1 (-/-) mouse tumors seemed to be more functionally active. However, the proportion of immunosuppressive myeloid-derived suppressor cells within hematopoietic cells and of regulatory T cells within CD4(+) T cells in Oasl1 (-/-) mouse tumors did not differ significantly from that of WT mice. Tumor-challenged Oasl1 (-/-) mice expressed increased levels of IFN-I and IRF7 protein in the growing tumor, indicating that the enhanced antitumor immune response observed in Oasl1 (-/-) mice was caused by higher IFN-I production in Oasl1 (-/-) mice. Collectively, these results show that OASL1 deficiency promotes the antitumor immune response, and thus, OASL1 could be a good therapeutic target for treating tumors.
George, P S; McCrimmon, R J
2016-09-01
To test the hypothesis that dipeptidyl peptidase-4 inhibition in C-peptide negative Type 1 diabetes would reduce glucose variability and exposure to hypoglycaemia and therefore may indirectly enhance counter-regulatory responses to subsequent hypoglycaemia. We conducted a 12-week double-blind, randomized, placebo-controlled crossover study. The study was conducted in a tertiary hospital outpatient clinic, with additional studies performed in a clinical research centre. After obtaining informed consent, we recruited 14 subjects with moderately well controlled Type 1 diabetes (HbA1c 64 ± 2 mmol/mol) of long duration (20.5 ± 2.7 years). The subjects received 12 weeks' therapy with oral saxagliptin (5 mg) or placebo. Glucose variability, assessed via continuous glucose monitoring, together with frequency of hypoglycaemia, hypoglycaemia awareness and symptomatic, cognitive and counter-regulatory hormone responses to experimental hypoglycaemia, were assessed. Additional outcome measures included HbA1c level, weight, total daily insulin dose and adverse events. Saxagliptin co-therapy did not reduce glucose variability (low blood glucose index, average daily risk range), hypoglycaemia frequency or awareness and did not improve counter-regulatory hormonal responses during experimental hypoglycaemia (area under the curve for adrenaline 25 775 vs. 24 454, for placebo vs saxagliptin, respectively; P = 0.76). No additional benefit of dipeptidyl peptidase-4 inhibition co-therapy with saxagliptin in the management of Type 1 diabetes was observed. © 2015 Diabetes UK.
Role of Creativity in the Effectiveness of Cognitive Reappraisal
Wu, Xiaofei; Guo, Tingting; Tang, Tengteng; Shi, Baoguo; Luo, Jing
2017-01-01
As a well-recognized and widely adopted emotional regulation strategy, cognitive reappraisal has generally been proven to be efficient. However, the cognitive mechanism underlying regulatory efficiency, particularly the role of creativity, in cognitive reappraisal is unclear. Although previous studies have evaluated the relationship between creativity and reappraisal from the perspectives of generation (i.e., generating cognitive reappraisals and generating creative ideas involve similar cognitive neural networks) and individual differences (i.e., the ability to generate different cognitive reappraisals can be predicted by scores on creativity-related tests), how cognitive reappraisal’s efficiency can be related to creativity is still unknown. In this research, we assessed the relationship between cognitive reappraisal’s creativity and its effectiveness in regulating negative emotion. In Study 1, participants were asked to generate reappraisals of negative stimuli and then evaluate the creativity and regulatory effectiveness of these reappraisals. The results indicated positive correlation between creativity rating and regulatory effectiveness, but we found that it was difficult for the participants to generate highly creative reappraisals on their own. Therefore, in Study 2, we showed participants well-prepared reappraisal materials that varied in their creativity and asked them to evaluate their regulatory effectiveness and creativity. The results suggested that creativity and appropriateness were significant predictors of the regulating effects of the reappraisal and that creativity was the most dominant predictor. In summary, both experiments found a positive correlation between reappraisal’s creativity and effectiveness, thus implying that creativity plays an important role in reappraisal. PMID:28966603
Smith, Robin P; Riesenfeld, Samantha J; Holloway, Alisha K; Li, Qiang; Murphy, Karl K; Feliciano, Natalie M; Orecchia, Lorenzo; Oksenberg, Nir; Pollard, Katherine S; Ahituv, Nadav
2013-07-18
Large-scale annotation efforts have improved our ability to coarsely predict regulatory elements throughout vertebrate genomes. However, it is unclear how complex spatiotemporal patterns of gene expression driven by these elements emerge from the activity of short, transcription factor binding sequences. We describe a comprehensive promoter extension assay in which the regulatory potential of all 6 base-pair (bp) sequences was tested in the context of a minimal promoter. To enable this large-scale screen, we developed algorithms that use a reverse-complement aware decomposition of the de Bruijn graph to design a library of DNA oligomers incorporating every 6-bp sequence exactly once. Our library multiplexes all 4,096 unique 6-mers into 184 double-stranded 15-bp oligomers, which is sufficiently compact for in vivo testing. We injected each multiplexed construct into zebrafish embryos and scored GFP expression in 15 tissues at two developmental time points. Twenty-seven constructs produced consistent expression patterns, with the majority doing so in only one tissue. Functional sequences are enriched near biologically relevant genes, match motifs for developmental transcription factors, and are required for enhancer activity. By concatenating tissue-specific functional sequences, we generated completely synthetic enhancers for the notochord, epidermis, spinal cord, forebrain and otic lateral line, and show that short regulatory sequences do not always function modularly. This work introduces a unique in vivo catalog of short, functional regulatory sequences and demonstrates several important principles of regulatory element organization. Furthermore, we provide resources for designing compact, reverse-complement aware k-mer libraries.
How mood challenges emotional memory formation: an fMRI investigation.
Fitzgerald, Daniel A; Arnold, Jennifer F; Becker, Eni S; Speckens, Anne E M; Rinck, Mike; Rijpkema, Mark; Fernández, Guillén; Tendolkar, Indira
2011-06-01
Experimental mood manipulations and functional magnetic resonance imaging (fMRI) provide a unique opportunity for examining the neural correlates of mood-congruent memory formation. While prior studies in mood-disorder patients point to the medial temporal lobe in the genesis of mood-congruent memory (MCM) bias, the interaction between mood and emotional memory formation has not been investigated in healthy participants. In particular it remains unclear how regulatory structures in the pre-frontal cortex may be involved in mediating this phenomenon. In this study, event-related fMRI was performed on 20 healthy participants using a full-factorial, within-subjects repeated-measures design to examine how happy and sad moods impact memory for valenced stimuli (positive, negative and neutral words). Main effects of mood, stimulus valence and memory were examined as was activity related to successful memory formation during congruent and in-congruent moods. Behavioral results confirm an MCM bias while imaging results show amygdala and hippocampal engagement in a global mood and successful recall, respectively. MCM formation was characterized by increased activity during mood-congruent encoding of negative words in the orbito-frontal cortex (OFC) and for mood-incongruent processing of negative words in medial- and inferior-frontal gyri (MFG/IFG). These findings indicate that different pre-frontal regions facilitate mood-congruent and incongruent encoding of successfully recalled negative words at the time of learning, with OFC enhancing congruency and the left IFG and MFG helping overcome semantic incongruities between mood and stimulus valence. Copyright © 2011 Elsevier Inc. All rights reserved.
Modulating inflammation through the negative regulation of NF-κB signaling.
Rothschild, Daniel E; McDaniel, Dylan K; Ringel-Scaia, Veronica M; Allen, Irving C
2018-02-01
Immune system activation is essential to thwart the invasion of pathogens and respond appropriately to tissue damage. However, uncontrolled inflammation can result in extensive collateral damage underlying a diverse range of auto-inflammatory, hyper-inflammatory, and neoplastic diseases. The NF-κB signaling pathway lies at the heart of the immune system and functions as a master regulator of gene transcription. Thus, this signaling cascade is heavily targeted by mechanisms designed to attenuate overzealous inflammation and promote resolution. Mechanisms associated with the negative regulation of NF-κB signaling are currently under intense investigation and have yet to be fully elucidated. Here, we provide an overview of mechanisms that negatively regulate NF-κB signaling through either attenuation of signal transduction, inhibition of posttranscriptional signaling, or interference with posttranslational modifications of key pathway components. While the regulators discussed for each group are far from comprehensive, they exemplify common mechanistic approaches that inhibit this critical biochemical signaling cascade. Despite their diversity, a commonality among these regulators is their selection of specific targets at key inflection points in the pathway, such as TNF-receptor-associated factor family members or essential kinases. A better understanding of these negative regulatory mechanisms will be essential to gain greater insight related to the maintenance of immune system homeostasis and inflammation resolution. These processes are vital elements of disease pathology and have important implications for targeted therapeutic strategies. ©2018 Society for Leukocyte Biology.
Human glutathione S-transferase P1-1 functions as an estrogen receptor α signaling modulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiyuan; An, Byoung Ha; Kim, Min Jung
2014-09-26
Highlights: • GSTP induces the classical ERα signaling event. • The functional GSTP is a prerequisite for GSTP-induced ERα transcription activity. • The expression of RIP140, a transcription cofactor, was inhibited by GSTP protein. • We propose the novel non-enzymatic role of GSTP. - Abstract: Estrogen receptor α (ERα) plays a crucial role in estrogen-mediated signaling pathways and exerts its action as a nuclear transcription factor. Binding of the ligand-activated ERα to the estrogen response element (ERE) is a central part of ERα-associated signal transduction pathways and its aberrant modulation is associated with many disease conditions. Human glutathione S-transferase P1-1more » (GSTP) functions as an enzyme in conjugation reactions in drug metabolism and as a regulator of kinase signaling pathways. It is overexpressed in tumors following chemotherapy and has been associated with a poor prognosis in breast cancer. In this study, a novel regulatory function of GSTP has been proposed in which GSTP modulates ERE-mediated ERα signaling events. Ectopic expression of GSTP was able to induce the ERα and ERE-mediated transcriptional activities in ERα-positive but GSTP-negative MCF7 human breast cancer cells. This inductive effect of GSTP on the ERE-transcription activity was diminished when the cells express a mutated form of the enzyme or are treated with a GSTP-specific chemical inhibitor. It was found that GSTP inhibited the expression of the receptor interacting protein 140 (RIP140), a negative regulator of ERα transcription, at both mRNA and protein levels. Our study suggests a novel non-enzymatic role of GSTP which plays a significant role in regulating the classical ERα signaling pathways via modification of transcription cofactors such as RIP140.« less
Liu, Chibo; Pan, Chunqin; Cai, Yanqun; Wang, Haibao
2017-08-01
In our previous study, we found long noncoding RNA ZEB1-AS1 is upregulated and functions as an oncogene in osteosarcoma. MiR-200 family (miR-200s) functions as tumor suppressor via directly targeting ZEB1 in various cancers. In this study, we further investigate the potential interplay between ZEB1-AS1, miR-200s, and ZEB1 in osteosarcoma. Our results showed that ZEB1-AS1 functions as a molecular sponge for miR-200s and relieves the inhibition of ZEB1 caused by miR-200s. ZEB1-AS1 and miR-200s reciprocally negatively regulate each other. MiR-200s are downregulated in osteosarcoma tissues, and negatively correlated with ZEB1-AS1 and ZEB1 expression levels in osteosarcoma. Functional experiments showed that consistent with ZEB1-AS1 depletion, miR-200s overexpression and ZEB1 depletion both inhibit osteosarcoma cell proliferation and migration. Overexpression of miR-200s partially abolished the effects of ZEB1-AS1 on osteosarcoma cell proliferation and migration. Moreover, the combination of ZEB1-AS1 depletion and miR-200s overexpression significantly inhibits osteosarcoma cell proliferation and migration. In conclusion, this study revealed a novel regulatory mechanism between ZEB1-AS1, miR-200s, and ZEB1. The interplay between ZEB1-AS1 and miR-200s contributes to osteosarcoma cell proliferation and migration, and targeting this interplay could be a promising strategy for osteosarcoma treatment. J. Cell. Biochem. 118: 2250-2260, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Suzuki, Harukazu; Forrest, Alistair R R; van Nimwegen, Erik; Daub, Carsten O; Balwierz, Piotr J; Irvine, Katharine M; Lassmann, Timo; Ravasi, Timothy; Hasegawa, Yuki; de Hoon, Michiel J L; Katayama, Shintaro; Schroder, Kate; Carninci, Piero; Tomaru, Yasuhiro; Kanamori-Katayama, Mutsumi; Kubosaki, Atsutaka; Akalin, Altuna; Ando, Yoshinari; Arner, Erik; Asada, Maki; Asahara, Hiroshi; Bailey, Timothy; Bajic, Vladimir B; Bauer, Denis; Beckhouse, Anthony G; Bertin, Nicolas; Björkegren, Johan; Brombacher, Frank; Bulger, Erika; Chalk, Alistair M; Chiba, Joe; Cloonan, Nicole; Dawe, Adam; Dostie, Josee; Engström, Pär G; Essack, Magbubah; Faulkner, Geoffrey J; Fink, J Lynn; Fredman, David; Fujimori, Ko; Furuno, Masaaki; Gojobori, Takashi; Gough, Julian; Grimmond, Sean M; Gustafsson, Mika; Hashimoto, Megumi; Hashimoto, Takehiro; Hatakeyama, Mariko; Heinzel, Susanne; Hide, Winston; Hofmann, Oliver; Hörnquist, Michael; Huminiecki, Lukasz; Ikeo, Kazuho; Imamoto, Naoko; Inoue, Satoshi; Inoue, Yusuke; Ishihara, Ryoko; Iwayanagi, Takao; Jacobsen, Anders; Kaur, Mandeep; Kawaji, Hideya; Kerr, Markus C; Kimura, Ryuichiro; Kimura, Syuhei; Kimura, Yasumasa; Kitano, Hiroaki; Koga, Hisashi; Kojima, Toshio; Kondo, Shinji; Konno, Takeshi; Krogh, Anders; Kruger, Adele; Kumar, Ajit; Lenhard, Boris; Lennartsson, Andreas; Lindow, Morten; Lizio, Marina; Macpherson, Cameron; Maeda, Norihiro; Maher, Christopher A; Maqungo, Monique; Mar, Jessica; Matigian, Nicholas A; Matsuda, Hideo; Mattick, John S; Meier, Stuart; Miyamoto, Sei; Miyamoto-Sato, Etsuko; Nakabayashi, Kazuhiko; Nakachi, Yutaka; Nakano, Mika; Nygaard, Sanne; Okayama, Toshitsugu; Okazaki, Yasushi; Okuda-Yabukami, Haruka; Orlando, Valerio; Otomo, Jun; Pachkov, Mikhail; Petrovsky, Nikolai; Plessy, Charles; Quackenbush, John; Radovanovic, Aleksandar; Rehli, Michael; Saito, Rintaro; Sandelin, Albin; Schmeier, Sebastian; Schönbach, Christian; Schwartz, Ariel S; Semple, Colin A; Sera, Miho; Severin, Jessica; Shirahige, Katsuhiko; Simons, Cas; St Laurent, George; Suzuki, Masanori; Suzuki, Takahiro; Sweet, Matthew J; Taft, Ryan J; Takeda, Shizu; Takenaka, Yoichi; Tan, Kai; Taylor, Martin S; Teasdale, Rohan D; Tegnér, Jesper; Teichmann, Sarah; Valen, Eivind; Wahlestedt, Claes; Waki, Kazunori; Waterhouse, Andrew; Wells, Christine A; Winther, Ole; Wu, Linda; Yamaguchi, Kazumi; Yanagawa, Hiroshi; Yasuda, Jun; Zavolan, Mihaela; Hume, David A; Arakawa, Takahiro; Fukuda, Shiro; Imamura, Kengo; Kai, Chikatoshi; Kaiho, Ai; Kawashima, Tsugumi; Kawazu, Chika; Kitazume, Yayoi; Kojima, Miki; Miura, Hisashi; Murakami, Kayoko; Murata, Mitsuyoshi; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Ogawa, Chihiro; Sano, Takuma; Simon, Christophe; Tagami, Michihira; Takahashi, Yukari; Kawai, Jun; Hayashizaki, Yoshihide
2009-05-01
Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites, we identified the key transcription regulators, their time-dependent activities and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the regulatory network. Our results indicate that cellular states are constrained by complex networks involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process.
PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants.
Jin, Jinpu; Tian, Feng; Yang, De-Chang; Meng, Yu-Qi; Kong, Lei; Luo, Jingchu; Gao, Ge
2017-01-04
With the goal of providing a comprehensive, high-quality resource for both plant transcription factors (TFs) and their regulatory interactions with target genes, we upgraded plant TF database PlantTFDB to version 4.0 (http://planttfdb.cbi.pku.edu.cn/). In the new version, we identified 320 370 TFs from 165 species, presenting a more comprehensive genomic TF repertoires of green plants. Besides updating the pre-existing abundant functional and evolutionary annotation for identified TFs, we generated three new types of annotation which provide more directly clues to investigate functional mechanisms underlying: (i) a set of high-quality, non-redundant TF binding motifs derived from experiments; (ii) multiple types of regulatory elements identified from high-throughput sequencing data; (iii) regulatory interactions curated from literature and inferred by combining TF binding motifs and regulatory elements. In addition, we upgraded previous TF prediction server, and set up four novel tools for regulation prediction and functional enrichment analyses. Finally, we set up a novel companion portal PlantRegMap (http://plantregmap.cbi.pku.edu.cn) for users to access the regulation resource and analysis tools conveniently. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Regulatory RNAs derived from transfer RNA?
Pederson, Thoru
2010-10-01
Four recent studies suggest that cleavages of transfer RNAs generate products with microRNA-like features, with some evidence of function. If their regulatory functions were to be confirmed, these newly revealed RNAs would add to the expanding repertoire of small noncoding RNAs and would also provide new perspectives on the coevolution of transfer RNA and messenger RNA.
The Development of Regulatory Functions from Birth to 5 Years: Insights from Premature Infants
ERIC Educational Resources Information Center
Feldman, Ruth
2009-01-01
This study examined physiological, emotional, and attentional regulatory functions as predictors of self-regulation in 125 infants followed 7 times from birth to 5 years. Physiological regulation was assessed by neonatal vagal tone and sleep-wake cyclicity; emotion regulation by response to stress at 3, 6, and 12 months; and attention regulation…
Assessing regulatory emotional self-efficacy in three countries.
Caprara, Gian Vittorio; Di Giunta, Laura; Eisenberg, Nancy; Gerbino, Maria; Pastorelli, Concetta; Tramontano, Carlo
2008-09-01
The Regulatory Emotional Self-Efficacy (RESE) scale was developed to assess perceived self-efficacy in managing negative (NEG) and in expressing positive (POS) affect (G. V. Caprara & M. Gerbino, 2001). In this study of young adults, the factorial structure of the RESE scale was found to be similar in Italy, the United States, and Bolivia. In addition to a factor for POS, NEG was represented by a second-order factor of 2 different negative affects: despondency-distress (DES) and anger-irritation (ANG). Overall, there was partial invariance at both metric and scalar levels across gender and countries. Discriminant and convergent validity of the RESE scale was further examined in the Italian sample. Stronger patterns of association of POS with prosocial behavior, of ANG with low aggressive behavior problems and irritability, and of DES with low anxiety/depressive problems and shyness and high self-esteem were found. (c) 2008 APA, all rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-62515; File No. SR-EDGX-2010-02] Self-Regulatory Organizations; EDGX Exchange, Inc; Order Approving a Proposed Rule Change Relating to Direct Edge... DE Holdings, and DE Holdings will be the sole stockholder of DEI. The self-regulatory functions of...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-62514; File No. SR-EDGA-2010-02] Self-Regulatory Organizations; EDGA Exchange, Inc.; Order Approving a Proposed Rule Change Relating to Direct Edge... Holdings will be the sole stockholder of DEI. The self-regulatory functions of the Exchange will remain...