Sample records for negatively charged loop

  1. Negative Charge Neutralization in the Loops and Turns of Outer Membrane Phospholipase A Impacts Folding Hysteresis at Neutral pH.

    PubMed

    McDonald, Sarah K; Fleming, Karen G

    2016-11-08

    Hysteresis in equilibrium protein folding titrations is an experimental barrier that must be overcome to extract meaningful thermodynamic quantities. Traditional approaches to solving this problem involve testing a spectrum of solution conditions to find ones that achieve path independence. Through this procedure, a specific pH of 3.8 was required to achieve path independence for the water-to-bilayer equilibrium folding of outer membrane protein OmpLA. We hypothesized that the neutralization of negatively charged side chains (Asp and Glu) at pH 3.8 could be the physical basis for path-independent folding at this pH. To test this idea, we engineered variants of OmpLA with Asp → Asn and Glu → Gln mutations to neutralize the negative charges within various regions of the protein and tested for reversible folding at neutral pH. Although not fully resolved, our results show that these mutations in the periplasmic turns and extracellular loops are responsible for 60% of the hysteresis in wild-type folding. Overall, our study suggests that negative charges impact the folding hysteresis in outer membrane proteins and their neutralization may aid in protein engineering applications.

  2. Neutral and charged scalar mesons, pseudoscalar mesons, and diquarks in magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Wang, Xinyang; Yu, Lang; Huang, Mei

    2018-04-01

    We investigate both (pseudo)scalar mesons and diquarks in the presence of external magnetic field in the framework of the two-flavored Nambu-Jona-Lasinio (NJL) model, where mesons and diquarks are constructed by infinite sum of quark-loop chains by using random phase approximation. The polarization function of the quark-loop is calculated to the leading order of 1 /Nc expansion by taking the quark propagator in the Landau level representation. We systematically investigate the masses behaviors of scalar σ meson, neutral and charged pions as well as the scalar diquarks, with respect to the magnetic field strength at finite temperature and chemical potential. It is shown that the numerical results of both neutral and charged pions are consistent with the lattice QCD simulations. The mass of the charge neutral pion keeps almost a constant under the magnetic field, which is preserved by the remnant symmetry of QCD ×QED in the vacuum. The mass of the charge neutral scalar σ is around two times quark mass and increases with the magnetic field due to the magnetic catalysis effect, which is an typical example showing that the polarized internal quark structure cannot be neglected when we consider the meson properties under magnetic field. For the charged particles, the one quark-antiquark loop contribution to the charged π± increases essentially with the increase of magnetic fields due to the magnetic catalysis of the polarized quarks. However, the one quark-quark loop contribution to the scalar diquark mass is negative comparing with the point-particle result and the loop effect is small.

  3. Analysis of spacecraft battery charger systems

    NASA Astrophysics Data System (ADS)

    Kim, Seong J.; Cho, Bo H.

    In spacecraft battery charger systems, switching regulators are widely used for bus voltage regulation, charge current regulation, and peak power tracking. Small-signal dynamic characteristics of the battery charging subsystem of direct energy transfer (DET) and peak power tracking (PPT) systems are analyzed to facilitate design of the control loop for optimum performance and stability. Control loop designs of the charger in various modes of operation are discussed. Analyses are verified through simulations. It is shown that when the charger operates in the bus voltage regulation mode, the control-to-voltage transfer function has a negative DC gain and two LHP zeros in both the DET and PPT systems. The control-to-inductor current transfer function also has a negative DC gain and a RHP zero. Thus, in the current-mode control, the current loop can no longer be used to stabilize the system. When the system operates in the charge current regulation mode, the charger operates with a fixed duty cycle which is determined by the regulated bus voltage and the battery voltage. Without an input filter, the converter becomes a first-order system. When the peak power tracker is inactive, the operating point of the solar array output moves to the voltage source region. Thus, the solar array behaves as a stiff voltage source to a constant power load.

  4. Trans-kingdom mimicry underlies ribosome customization by a poxvirus kinase.

    PubMed

    Jha, Sujata; Rollins, Madeline G; Fuchs, Gabriele; Procter, Dean J; Hall, Elizabeth A; Cozzolino, Kira; Sarnow, Peter; Savas, Jeffrey N; Walsh, Derek

    2017-06-29

    Ribosomes have the capacity to selectively control translation through changes in their composition that enable recognition of specific RNA elements. However, beyond differential subunit expression during development, evidence for regulated ribosome specification within individual cells has remained elusive. Here we report that a poxvirus kinase phosphorylates serine/threonine residues in the human small ribosomal subunit protein, receptor for activated C kinase (RACK1), that are not phosphorylated in uninfected cells or cells infected by other viruses. These modified residues cluster in an extended loop in RACK1, phosphorylation of which selects for translation of viral or reporter mRNAs with 5' untranslated regions that contain adenosine repeats, so-called polyA-leaders. Structural and phylogenetic analyses revealed that although RACK1 is highly conserved, this loop is variable and contains negatively charged amino acids in plants, in which these leaders act as translational enhancers. Phosphomimetics and inter-species chimaeras have shown that negative charge in the RACK1 loop dictates ribosome selectivity towards viral RNAs. By converting human RACK1 to a charged, plant-like state, poxviruses remodel host ribosomes so that adenosine repeats erroneously generated by slippage of the viral RNA polymerase confer a translational advantage. Our findings provide insight into ribosome customization through trans-kingdom mimicry and the mechanics of species-specific leader activity that underlie poxvirus polyA-leaders.

  5. Trans-kingdom mimicry underlies ribosome customization by a poxvirus kinase

    PubMed Central

    Jha, Sujata; Rollins, Madeline G.; Fuchs, Gabriele; Procter, Dean J.; Hall, Elizabeth A.; Cozzolino, Kira; Sarnow, Peter; Savas, Jeffrey N.; Walsh, Derek

    2017-01-01

    Ribosomes have the capacity to selectively control translation through changes in their composition that enable recognition of specific RNA elements1. However, beyond differential subunit expression during development2,3, evidence for regulated ribosome specification within individual cells has remained elusive1. Here, we report that a poxvirus kinase phosphorylates serine/threonine residues in the small ribosomal subunit protein, Receptor for Activated C Kinase (RACK1) that are not phosphorylated in uninfected cells or cells infected by other viruses. These modified residues cluster in an extended loop in RACK1, phosphorylation of which selects for translation of viral or reporter mRNAs whose 5’ untranslated regions (UTRs) contain adenosine repeats, so-called polyA-leaders. Structural and phylogenetic analysis revealed that although RACK1 is highly conserved, this loop is variable and contains negatively charged amino acids in plants, where these leaders act as translational enhancers for poorly understood reasons. Phosphomimetics and inter-species chimeras demonstrated that negative charge in the RACK1 loop dictates ribosome selectivity towards viral RNAs. By converting human RACK1 to a charged, plant-like state, poxviruses remodel host ribosomes so that adenosine repeats erroneously generated by slippage of the viral RNA polymerase4 confer a translational advantage. Our findings uncover ribosome customization through a novel trans-kingdom mimicry and the mechanics of species-specific leader activity that underlie the enigmatic poxvirus polyA-leaders4. PMID:28636603

  6. Initial Binding of Ions to the Interhelical Loops of Divalent Ion Transporter CorA: Replica Exchange Molecular Dynamics Simulation Study

    PubMed Central

    Zhang, Tong; Mu, Yuguang

    2012-01-01

    Crystal structures of Thermotoga maritima magnesium transporter CorA, reported in 2006, revealed its homo-pentameric constructions. However, the structure of the highly conserved extracellular interhelical loops remains unsolved, due to its high flexibility. We have explored the configurations of the loops through extensive replica exchange molecular dynamics simulations in explicit solvent model with the presence of either Co(III) Hexamine ions or Mg2+ ions. We found that there are multiple binding sites available on the interhelical loops in which the negatively charged residues, E316 and E320, are located notably close to the positively charged ions during the simulations. Our simulations resolved the distinct binding patterns of the two kinds of ions: Co(III) Hexamine ions were found to bind stronger with the loop than Mg2+ ions with binding free energy −7.3 kJ/mol lower, which is nicely consistent with the previous data. Our study provides an atomic basis description of the initial binding process of Mg2+ ions on the extracellular interhelical loops of CorA and the detailed inhibition mechanism of Co(III) Hexamine ions on CorA ions transportation. PMID:22952795

  7. Spatial-temporal evolution of self-organized loop-patterns on a water surface and a diffuse discharge in the gap

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Geng, Jinling; Jia, Pengying; Zhang, Panpan; Zhang, Qi; Li, Yaru

    2017-11-01

    Excited by an alternating current voltage, a patterned discharge and a diffuse discharge are generated in a needle to liquid configuration. Using an intensified charge-coupled device (ICCD), temporal evolution of the discharge between the two electrodes is investigated for the diffuse mode and the patterned mode, respectively. For the diffuse mode, the positive discharge is in a glow regime, and the negative discharge is in a Townsend discharge regime. For the patterned mode, the discharge always belongs to the Townsend discharge regime. Moreover, in the patterned mode, various patterns including the single loop, single loop with the surrounding corona, triple loops, and concentric loops with a central spot are observed on the water surface with the increasing positive peak-value of the applied voltage (Upp). Temporally resolved images of the loop-patterns are captured on the water surface. From the electrical measurements and the ICCD imaging, it is found that the loop pattern emerges after the discharge bridges the two electrodes. Then, it begins to evolve and finally degenerates with the decrease in the discharge current. The pattern does not disappear until the discharge quenches. Formation of the loop-patterns is attributed to the role of negative ions.

  8. Charge and Geometry of Residues in the Loop 2 β Hairpin Differentially Affect Agonist and Ethanol Sensitivity in Glycine Receptors

    PubMed Central

    Perkins, Daya I.; Trudell, James R.; Asatryan, Liana; Alkana, Ronald L.

    2012-01-01

    Recent studies highlighted the importance of loop 2 of α1 glycine receptors (GlyRs) in the propagation of ligand-binding energy to the channel gate. Mutations that changed polarity at position 52 in the β hairpin of loop 2 significantly affected sensitivity to ethanol. The present study extends the investigation to charged residues. We found that substituting alanine with the negative glutamate at position 52 (A52E) significantly left-shifted the glycine concentration response curve and increased sensitivity to ethanol, whereas the negative aspartate substitution (A52D) significantly right-shifted the glycine EC50 but did not affect ethanol sensitivity. It is noteworthy that the uncharged glutamine at position 52 (A52Q) caused only a small right shift of the glycine EC50 while increasing ethanol sensitivity as much as A52E. In contrast, the shorter uncharged asparagine (A52N) caused the greatest right shift of glycine EC50 and reduced ethanol sensitivity to half of wild type. Collectively, these findings suggest that charge interactions determined by the specific geometry of the amino acid at position 52 (e.g., the 1-Å chain length difference between aspartate and glutamate) play differential roles in receptor sensitivity to agonist and ethanol. We interpret these results in terms of a new homology model of GlyR based on a prokaryotic ion channel and propose that these mutations form salt bridges to residues across the β hairpin (A52E-R59 and A52N-D57). We hypothesize that these electrostatic interactions distort loop 2, thereby changing agonist activation and ethanol modulation. This knowledge will help to define the key physical-chemical parameters that cause the actions of ethanol in GlyRs. PMID:22357974

  9. Ionic interaction of myosin loop 2 with residues located beyond the N-terminal part of actin probed by chemical cross-linking.

    PubMed

    Pliszka, Barbara; Martin, Brian M; Karczewska, Emilia

    2008-02-01

    To probe ionic contacts of skeletal muscle myosin with negatively charged residues located beyond the N-terminal part of actin, myosin subfragment 1 (S1) and actin split by ECP32 protease (ECP-actin) were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). We have found that unmodified S1 can be cross-linked not only to the N-terminal part, but also to the C-terminal 36 kDa fragment of ECP-actin. Subsequent experiments performed on S1 cleaved by elastase or trypsin indicate that the cross-linking site in S1 is located within loop 2. This site is composed of Lys-636 and Lys-637 and can interact with negatively charged residues of the 36 kDa actin fragment, most probably with Glu-99 and Glu-100. Cross-links are formed both in the absence and presence of MgATP.P(i) analog, although the addition of nucleotide decreases the efficiency of the cross-linking reaction.

  10. Charged string loops in Reissner-Nordström black hole background

    NASA Astrophysics Data System (ADS)

    Oteev, Tursinbay; Kološ, Martin; Stuchlík, Zdeněk

    2018-03-01

    We study the motion of current carrying charged string loops in the Reissner-Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string loop makes the string loop equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string loop trajectories using effective potential approach, and we compare the innermost stable string loop positions with loci of the charged particle innermost stable orbits. We examine string loop small oscillations around minima of the string loop effective potential, and we plot radial profiles of the string loop oscillation frequencies for both the radial and vertical modes. We construct charged string loop quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string loops along the vertical axis and the string loop ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.

  11. Hypervelocity gun. [using both electric and chemical energy for projectile propulsion

    NASA Technical Reports Server (NTRS)

    Ford, F. C.; Biehl, A. J. (Inventor)

    1965-01-01

    A velocity amplifier system which uses both electric and chemical energy for projectile propulsion is provided in a compact hypervelocity gun suitable for laboratory use. A relatively heavy layer of a tamping material such as concrete encloses a loop of an electrically conductive material. An explosive charge at least partially surrounding the loop is adapted to collapse the loop upon detonation of the charge. A source of electricity charges the loop through two leads, and an electric switch which is activated by the charge explosive charge, disconnects the leads from the source of electricity and short circuits them. An opening in the tamping material extends to the loop and forms a barrel. The loop, necked down in the opening, forms the sabot on which the projectile is located. When the loop is electrically charged and the explosive detonated, the loop is short circuited and collapsed thus building up a magnetic field which acts as a sabot catcher. The sabot is detached from the loop and the sabot and projectile are accelerated to hypervelocity.

  12. Mapping the receptor site for alpha-scorpion toxins on a Na+ channel voltage sensor.

    PubMed

    Wang, Jinti; Yarov-Yarovoy, Vladimir; Kahn, Roy; Gordon, Dalia; Gurevitz, Michael; Scheuer, Todd; Catterall, William A

    2011-09-13

    The α-scorpions toxins bind to the resting state of Na(+) channels and inhibit fast inactivation by interaction with a receptor site formed by domains I and IV. Mutants T1560A, F1610A, and E1613A in domain IV had lower affinities for Leiurus quinquestriatus hebraeus toxin II (LqhII), and mutant E1613R had ~73-fold lower affinity. Toxin dissociation was accelerated by depolarization and increased by these mutations, whereas association rates at negative membrane potentials were not changed. These results indicate that Thr1560 in the S1-S2 loop, Phe1610 in the S3 segment, and Glu1613 in the S3-S4 loop in domain IV participate in toxin binding. T393A in the SS2-S6 loop in domain I also had lower affinity for LqhII, indicating that this extracellular loop may form a secondary component of the receptor site. Analysis with the Rosetta-Membrane algorithm resulted in a model of LqhII binding to the voltage sensor in a resting state, in which amino acid residues in an extracellular cleft formed by the S1-S2 and S3-S4 loops in domain IV interact with two faces of the wedge-shaped LqhII molecule. The conserved gating charges in the S4 segment are in an inward position and form ion pairs with negatively charged amino acid residues in the S2 and S3 segments of the voltage sensor. This model defines the structure of the resting state of a voltage sensor of Na(+) channels and reveals its mode of interaction with a gating modifier toxin.

  13. Portable battery-free charger for radiation dosimeters

    DOEpatents

    Manning, Frank W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter.

  14. Martian Atmospheric Pressure Static Charge Elimination Tool

    NASA Technical Reports Server (NTRS)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  15. Analysis of the mechanism of nucleosome survival during transcription

    PubMed Central

    Chang, Han-Wen; Kulaeva, Olga I.; Shaytan, Alexey K.; Kibanov, Mikhail; Kuznedelov, Konstantin; Severinov, Konstantin V.; Kirpichnikov, Mikhail P.; Clark, David J.; Studitsky, Vasily M.

    2014-01-01

    Maintenance of nucleosomal structure in the cell nuclei is essential for cell viability, regulation of gene expression and normal aging. Our previous data identified a key intermediate (a small intranucleosomal DNA loop, Ø-loop) that is likely required for nucleosome survival during transcription by RNA polymerase II (Pol II) through chromatin, and suggested that strong nucleosomal pausing guarantees efficient nucleosome survival. To evaluate these predictions, we analysed transcription through a nucleosome by different, structurally related RNA polymerases and mutant yeast Pol II having different histone-interacting surfaces that presumably stabilize the Ø-loop. The height of the nucleosomal barrier to transcription and efficiency of nucleosome survival correlate with the net negative charges of the histone-interacting surfaces. Molecular modeling and analysis of Pol II-nucleosome intermediates by DNase I footprinting suggest that efficient Ø-loop formation and nucleosome survival are mediated by electrostatic interactions between the largest subunit of Pol II and core histones. PMID:24234452

  16. Inverse spin Hall effect in a closed loop circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omori, Y.; Auvray, F.; Wakamura, T.

    We present measurements of inverse spin Hall effects (ISHEs), in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.

  17. Measurement and control of electrostatic charges on solids in a gaseous suspension

    NASA Astrophysics Data System (ADS)

    Nieh, S.; Nguyen, T.

    1985-10-01

    Measurements of mean particle charges and charge distributions on Medium Volatile Bituminous (MVB) coals and Lignite A (LIGA) coals in a 51 mm ID grounded copper pipe loop have been made with the upgraded Faraday cage system. Both negative and positive charges were found for coals in all experiments. The dual polarities of charges are believed to be due to the nonuniform materials and chemical composition contained in coals. As expected, increasing velocity or decreasing air humidity has a significant effect to increase the mean particle charge and the standard deviation of distribution. Charge elimination by the addition of coal fines has been explored. Effective suppression of particle charges was achieved by adding 0.1% by mass of minus 1 micron coal dust into the pipe flow. A neutralization mechanism was proposed to interpret the measured results. The results of charge control obtained to date has been significant and encouraging. More work is needed to validate the proposed mechanism.

  18. Loop electrostatics modulates the intersubunit interactions in ferritin.

    PubMed

    Bernacchioni, Caterina; Ghini, Veronica; Pozzi, Cecilia; Di Pisa, Flavio; Theil, Elizabeth C; Turano, Paola

    2014-11-21

    Functional ferritins are 24-mer nanocages that self-assemble with extended contacts between pairs of 4-helix bundle subunits coupled in an antiparallel fashion along the C2 axes. The largest intersubunit interaction surface in the ferritin nanocage involves helices, but contacts also occur between groups of three residues midway in the long, solvent-exposed L-loops of facing subunits. The anchor points between intersubunit L-loop pairs are the salt bridges between the symmetry-related, conserved residues Asp80 and Lys82. The resulting quaternary structure of the cage is highly soluble and thermostable. Substitution of negatively charged Asp80 with a positively charged Lys in homopolymeric M ferritin introduces electrostatic repulsions that inhibit the oligomerization of the ferritin subunits. D80K ferritin was present in inclusion bodies under standard overexpressing conditions in E. coli, contrasting with the wild type protein. Small amounts of fully functional D80K nanocages formed when expression was slowed. The more positively charged surface results in a different solubility profile and D80K crystallized in a crystal form with a low density packing. The 3D structure of D80K variant is the same as wild type except for the side chain orientations of Lys80 and facing Lys82. When three contiguous Lys groups are introduced in D80KI81K ferritin variant the nanocage assembly is further inhibited leading to lower solubility and reduced thermal stability. Here, we demonstrate that the electrostatic pairing at the center of the L-loops has a specific kinetic role in the self-assembly of ferritin nanocages.

  19. String loops in the field of braneworld spherically symmetric black holes and naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuchlík, Z.; Kološ, M., E-mail: zdenek.stuchlik@fpf.slu.cz, E-mail: martin.kolos@fpf.slu.cz

    We study motion of current-carrying string loops in the field of braneworld spherically symmetric black holes and naked singularities. The spacetime is described by the Reissner-Nordström geometry with tidal charge b reflecting the non-local tidal effects coming from the external dimension; both positive and negative values of the spacetime parameter b are considered. We restrict attention to the axisymmetric motion of string loops when the motion can be fully governed by an appropriately defined effective potential related to the energy and angular momentum of the string loops. In dependence on these two constants of the motion, the string loops canmore » be captured, trapped, or can escape to infinity. In close vicinity of stable equilibrium points at the centre of trapped states the motion is regular. We describe how it is transformed to chaotic motion with growing energy of the string loop. In the field of naked singularities the trapped states located off the equatorial plane of the system exist and trajectories unable to cross the equatorial plane occur, contrary to the trajectories in the field of black holes where crossing the equatorial plane is always admitted. We concentrate our attention to the so called transmutation effect when the string loops are accelerated in the deep gravitational field near the black hole or naked singularity by transforming the oscillatory energy to the energy of the transitional motion. We demonstrate that the influence of the tidal charge can be substantial especially in the naked singularity spacetimes with b > 1 where the acceleration to ultrarelativistic velocities with Lorentz factor γ ∼ 100 can be reached, being more than one order higher in comparison with those obtained in the black hole spacetimes.« less

  20. Three-dimensional studies of pathogenic peptides from the c-terminal of Trypanosoma cruzi ribosomal P proteins and their interaction with a monoclonal antibody structural model

    PubMed Central

    Martín, Osvaldo A; Villegas, Myriam E; Aguilar, Carlos F

    2009-01-01

    The acidic C-terminal peptides from Trypanosoma cruzi ribosomal P proteins are the major target of the antibody response in patients suffering Chagas chronic heart disease. It has been proposed that the disease is triggered by the cross-reaction of these antibodies with the second extra cellular loop of the β1-adrenoreceptor, brought about by the molecular mimicry between the acidic C-terminal peptides and the receptor's loop. To improve the understanding of the structural basis of the autoimmune response against heart receptors, the 3-dimensional structure of the C-terminal peptides of Trypanosoma cruzi ribosomal proteins P0 (EDDDDDFGMGALF) and P2β (EEEDDDMGFGLFD) were solved using the Electrostaticaly Driven MonteCarlo method. Their structures were compared with the second extra-cellular loop of our homology model of human rhodopsin and the existing experimental NMR structures of the C-terminal peptides from human P0 (EESDDDMGFGLFD) and from Leishmania braziliensis P0 (EEADDDMGFGLFD). Docking of Trypanosoma cruzi peptides P0, P2β and human rhodopsin loop into our anti-P2β monoclonal antibody homology model allowed to explore their interactions. The solution structure of peptides P0 and P2β can be briefly described as a bend. Although the global conformations of the peptides are not identical they shared a common region of four residues (3 to 6) that have a similar structure. The structural alignment of the five peptides also showed a surprising conformational similarity for the same residues. The antibody model and docking studies revealed a most remarkable feature in the active site, a positively charged, narrow and deep cavity where the acidic residues 3 to 6 were accommodated. These results suggest that the most important elements in the molecular peptide recognition by the antibody may be the shape of the loop and the presence of negative charges in positions 3–5 (P0, P2β) or a negative charge in position 4 (rhodopsin loop). This work describes clearly the interactions of the structural elements involved in the autoimmune mechanism of anti-P auto-antibodies cross-reaction and stimulation of the β1-adrenoreceptor and the visual pigment rhodopsin. Results from this study could lead eventually to the development of treatments to abolish receptor mediated symptoms in Chagas. PACS code: 87.15.-v PMID:19473527

  1. The Electromotive Force in Different Reference Frames

    ERIC Educational Resources Information Center

    Adler, Charles L.

    2018-01-01

    The electromotive force (EMF) is the work per unit charge around a wire loop caused by a time-varying magnetic flux threading the loop. It is due to a force moving the charges around the loop. This is true whether the change in flux is due to the wire loop being stationary and the field changing in time, or the loop moving through a spatially…

  2. Effect of surface charge alteration on stability of L-asparaginase II from Escherichia sp.

    PubMed

    Vidya, Jalaja; Ushasree, Mrudula Vasudevan; Pandey, Ashok

    2014-03-05

    Escherichia coli L-asparaginases have great significance in the treatment of leukemia. Consequently, there is considerable interest in engineering this enzyme for improving its stability. In this work, the effect of surface charge on the stability of the enzyme l-asparaginase II was studied by site-directed mutagenesis of the cloned ansB gene from Escherichia sp. Replacement of two positively charged residues (K139 and K207) on the surface loops with neutral and reverse charges resulted in altered thermo stability in designed variants. Neutral charge substitutions (K139A and K207A) retained greater tolerance and stability followed by negative charge substitutions (K139D and K207D) compared to control mutant K139R and wild enzyme. From the results, it was concluded that the optimization of surface charge contributed much to the thermal properties of proteins without affecting the structure. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Combining Charge Couple Devices and Rate Sensors for the Feedforward Control System of a Charge Coupled Device Tracking Loop.

    PubMed

    Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu

    2016-06-25

    A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.

  4. The Electromotive Force in Different Reference Frames

    NASA Astrophysics Data System (ADS)

    Adler, Charles L.

    2018-05-01

    The electromotive force (EMF) is the work per unit charge around a wire loop caused by a time-varying magnetic flux threading the loop. It is due to a force moving the charges around the loop. This is true whether the change in flux is due to the wire loop being stationary and the field changing in time, or the loop moving through a spatially varying field. In the first case, we say that the time-varying magnetic field induces an electric field that provides the force; in the second, we say that the force is due to the magnetic field acting on the charges in the moving loop. The theory of relativity states that both viewpoints must be equivalent, but it is sometimes difficult to harmonize them.

  5. Cheshire charge in (3+1)-dimensional topological phases

    NASA Astrophysics Data System (ADS)

    Else, Dominic V.; Nayak, Chetan

    2017-07-01

    We show that (3 +1 ) -dimensional topological phases of matter generically support loop excitations with topological degeneracy. The loops carry "Cheshire charge": topological charge that is not the integral of a locally defined topological charge density. Cheshire charge has previously been discussed in non-Abelian gauge theories, but we show that it is a generic feature of all (3+1)-D topological phases (even those constructed from an Abelian gauge group). Indeed, Cheshire charge is closely related to nontrivial three-loop braiding. We use a dimensional reduction argument to compute the topological degeneracy of loop excitations in the (3 +1 ) -dimensional topological phases associated with Dijkgraaf-Witten gauge theories. We explicitly construct membrane operators associated with such excitations in soluble microscopic lattice models in Z2×Z2 Dijkgraaf-Witten phases and generalize this construction to arbitrary membrane-net models. We explain why these loop excitations are the objects in the braided fusion 2-category Z (2 VectGω) , thereby supporting the hypothesis that 2-categories are the correct mathematical framework for (3 +1 ) -dimensional topological phases.

  6. Non-equilibrium character of resistive switching and negative differential resistance in Ga-doped Cr2O3 system

    NASA Astrophysics Data System (ADS)

    Bhowmik, R. N.; Siva, K. Venkata

    2018-07-01

    The samples of Ga-doped Cr2O3 system in rhombohedral crystal structure with space group R 3 bar C were prepared by chemical co-precipitation route and annealing at 800 °C. The current-voltage (I-V) curves exhibited many unique non-linear properties, e.g., hysteresis loop, resistive switching, and negative differential resistance (NDR). In this work, we report non-equilibrium properties of resistive switching and NDR phenomena. The non-equilibrium I-V characteristics were confirmed by repetiting measurement and time relaxation of current. The charge conduction process was understood by analysing the I-V curves using electrode-limited and bulk-limited charge conduction mechanisms, which were proposed for metal electrode/metal oxide/metal electrode structure. The I-V curves in the NDR regime and at higher bias voltage regime in our samples did not obey Fowler-Nordheim equation, which was proposed for charge tunneling mechanism in many thin film junctions. The non-equilibrium I-V phenomena were explained by considering the competitions between the injection of charge carriers from metal electrode to metal oxide, the charge flow through bulk material mediated by trapping/de-trapping and recombination of charge carriers at the defect sites of ions, the space charge effects at the junctions of electrodes and metal oxides, and finally, the out flow of electrons from metal oxide to metal electrode.

  7. Interfacial charge-induced polarization switching in Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} bi-layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yu Jin; Park, Min Hyuk; Jeon, Woojin

    2015-12-14

    Detailed polarization switching behavior of an Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} (AO/PZT) structure is examined by comparing the phenomenological thermodynamic model to the experimental polarization–voltage (P-V) results. Amorphous AO films with various thicknesses (2–10 nm) were deposited on the polycrystalline 150-nm-thick PZT film. The thermodynamic calculation showed that the transition from the ferroelectric-like state to the paraelectric-like state with increasing AO thickness occurs at ∼3 nm thickness. This paraelectric-like state should have exhibited a negative capacitance effect without permanent polarization switching if no other adverse effects are involved. However, experiments showed typical ferroelectric-like hysteresis loops where the coercive voltage increased with the increasingmore » AO thickness, which could be explained by the carrier injection through the thin AO layer and trapping of the carriers at the AO/PZT interface. The fitting of the experimental P-V loops using the thermodynamic model considering the depolarization energy effect showed that trapped charge density was ∼±0.1 Cm{sup −2} and critical electric field at the Pt electrode/AO interface, at which the carrier transport occurs, was ∼±10 MV/cm irrespective of the AO thickness. Energy band model at each electrostatic state along the P-V loop was provided to elucidate correlation between macroscopic polarization and internal charge state of the stacked films.« less

  8. Characterization of N-Succinylation of L-Lysylphosphatidylglycerol in Bacillus subtilis Using Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Atila, Metin; Katselis, George; Chumala, Paulos; Luo, Yu

    2016-10-01

    Phospholipids generally dominate in bacterial lipids. The negatively charged nature of phospholipids renders bacteria susceptible to cationic antibiotic peptides. In comparison with Gram-negative bacteria, Gram-positive bacteria in general have much less zwitterionic phosphatidylethanolamine. However, they are known for producing aminoacylated phosphatidylglycerol (PG), especially positively charged l-lysyl-PG, which is catalyzed by lysyl-PG synthase MprF, which appears to have a broad range of specificity for l-aminoacyl transfer RNAs. In addition, many Gram-positive bacteria also have a dlt-gene-coded d-alanylation pathway for lipoteichoic acids and wall teichoic acids covalently attached to a glycolipid or peptidoglycan. d-Alanylation also masks the dominant negative charge of the phosphate-rich polymers of teichoic acids. Using mass spectrometry, we have recently observed that precursor scans in negative mode for deprotonated amino acid fragments were most sensitive for ester-linked amino acids. Such a scan for precursors generating an m/ z 145 lysyl anion revealed lysyl-PG as well as an additional species 100 m/ z units greater than lysyl-PG. This unexpected species corresponded precisely to the expected mass of N-succinylated lysyl-PG. Tandem mass spectrometry revealed a precise match to the fragmentation pattern of this putative new species. PG, lysyl-PG, and N-succinyl-lysyl-PG may form a complete loop of charge reversal from -1 to +1 and then back to -1. Analogous charge reversal by N-succinylation of lysine residues in the bacterial as well as eukaryotic proteomes has been recently discovered as a major posttranslational modification. Such modification in bacterial lipids is possibly catalyzed by an enzyme homologous to the enzymes that modify lysine residues in proteins.

  9. An area and power-efficient analog li-ion battery charger circuit.

    PubMed

    Do Valle, Bruno; Wentz, Christian T; Sarpeshkar, Rahul

    2011-04-01

    The demand for greater battery life in low-power consumer electronics and implantable medical devices presents a need for improved energy efficiency in the management of small rechargeable cells. This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger with high energy efficiency. The charger presented here utilizes the tanh basis function of a subthreshold operational transconductance amplifier to smoothly transition between constant-current and constant-voltage charging regimes without the need for additional area- and power-consuming control circuitry. Current-domain circuitry for end-of-charge detection negates the need for precision-sense resistors in either the charging path or control loop. We show theoretically and experimentally that the low-frequency pole-zero nature of most battery impedances leads to inherent stability of the analog control loop. The circuit was fabricated in an AMI 0.5-μm complementary metal-oxide semiconductor process, and achieves 89.7% average power efficiency and an end voltage accuracy of 99.9% relative to the desired target 4.2 V, while consuming 0.16 mm(2) of chip area. To date and to the best of our knowledge, this design represents the most area-efficient and most energy-efficient battery charger circuit reported in the literature.

  10. Effect of lysine to arginine mutagenesis in the V3 loop of HIV-1 gp120 on viral entry efficiency and neutralization.

    PubMed

    Schwalbe, Birco; Schreiber, Michael

    2015-01-01

    HIV-1 infection is characterized by an ongoing replication leading to T-lymphocyte decline which is paralleled by the switch from CCR5 to CXCR4 coreceptor usage. To predict coreceptor usage, several computer algorithms using gp120 V3 loop sequence data have been developed. In these algorithms an occupation of the V3 positions 11 and 25, by one of the amino acids lysine (K) or arginine (R), is an indicator for CXCR4 usage. Amino acids R and K dominate at these two positions, but can also be identified at positions 9 and 10. Generally, CXCR4-viruses possess V3 sequences, with an overall positive charge higher than the V3 sequences of R5-viruses. The net charge is calculated by subtracting the number of negatively charged amino acids (D, aspartic acid and E, glutamic acid) from the number of positively charged ones (K and R). In contrast to D and E, which are very similar in their polar and acidic properties, the characteristics of the R guanidinium group differ significantly from the K ammonium group. However, in coreceptor predictive computer algorithms R and K are both equally rated. The study was conducted to analyze differences in infectivity and coreceptor usage because of R-to-K mutations at the V3 positions 9, 10 and 11. V3 loop mutants with all possible RRR-to-KKK triplets were constructed and analyzed for coreceptor usage, infectivity and neutralization by SDF-1α and RANTES. Virus mutants R9R10R11 showed the highest infectivity rates, and were inhibited more efficiently in contrast to the K9K10K11 viruses. They also showed higher efficiency in a virus-gp120 paired infection assay. Especially V3 loop position 9 was relevant for a switch to higher infectivity when occupied by R. Thus, K-to-R exchanges play a role for enhanced viral entry efficiency and should therefore be considered when the viral phenotype is predicted based on V3 sequence data.

  11. Effect of Lysine to Arginine Mutagenesis in the V3 Loop of HIV-1 gp120 on Viral Entry Efficiency and Neutralization

    PubMed Central

    Schwalbe, Birco; Schreiber, Michael

    2015-01-01

    HIV-1 infection is characterized by an ongoing replication leading to T-lymphocyte decline which is paralleled by the switch from CCR5 to CXCR4 coreceptor usage. To predict coreceptor usage, several computer algorithms using gp120 V3 loop sequence data have been developed. In these algorithms an occupation of the V3 positions 11 and 25, by one of the amino acids lysine (K) or arginine (R), is an indicator for CXCR4 usage. Amino acids R and K dominate at these two positions, but can also be identified at positions 9 and 10. Generally, CXCR4-viruses possess V3 sequences, with an overall positive charge higher than the V3 sequences of R5-viruses. The net charge is calculated by subtracting the number of negatively charged amino acids (D, aspartic acid and E, glutamic acid) from the number of positively charged ones (K and R). In contrast to D and E, which are very similar in their polar and acidic properties, the characteristics of the R guanidinium group differ significantly from the K ammonium group. However, in coreceptor predictive computer algorithms R and K are both equally rated. The study was conducted to analyze differences in infectivity and coreceptor usage because of R-to-K mutations at the V3 positions 9, 10 and 11. V3 loop mutants with all possible RRR-to-KKK triplets were constructed and analyzed for coreceptor usage, infectivity and neutralization by SDF-1α and RANTES. Virus mutants R9R10R11 showed the highest infectivity rates, and were inhibited more efficiently in contrast to the K9K10K11 viruses. They also showed higher efficiency in a virus-gp120 paired infection assay. Especially V3 loop position 9 was relevant for a switch to higher infectivity when occupied by R. Thus, K-to-R exchanges play a role for enhanced viral entry efficiency and should therefore be considered when the viral phenotype is predicted based on V3 sequence data. PMID:25785610

  12. Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions

    NASA Astrophysics Data System (ADS)

    Netz, R. R.; Orland, H.

    2000-02-01

    We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level.

  13. D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function

    PubMed Central

    Burtscher, Laura; Hajdu, Dorottya; Muñoz, Alberto; Gáspári, Zoltán; Read, Nick D.; Batta, Gyula; Marx, Florentine

    2017-01-01

    The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF. PMID:28072824

  14. Model simulations of the adsorption of statherin to solid surfaces: Effects of surface charge and hydrophobicity

    NASA Astrophysics Data System (ADS)

    Skepö, M.

    2008-11-01

    The structural properties of the salivary protein statherin upon adsorption have been examined using a coarse-grained model and Monte Carlo simulation. A simple model system with focus on electrostatic interactions and short-ranged attractions among the uncharged amino acids has been used. To mimic hydrophobically modified surfaces, an extra short-ranged interaction was implemented between the amino acids and the surface. It has been shown that the adsorption and the thickness of the adsorbed layer are determined by (i) the affinity for the surface, i.e., denser layer with an extrashort-ranged potential, and (ii) the distribution of the charges along the chain. If all the amino acids have a high affinity for the surface, the protein adsorbs in a train conformation, if the surface is negatively charged the protein adsorbs in a tail-train conformation, whereas if the surface is positively charged the protein adsorbs in a loop conformation. The latter gives rise to a more confined adsorbed layer.

  15. Charged plate in asymmetric electrolytes: One-loop renormalization of surface charge density and Debye length due to ionic correlations.

    PubMed

    Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun

    2016-10-01

    Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.

  16. Protein thermal stabilization by charged compatible solutes: Computational studies in rubredoxin from Desulfovibrio gigas.

    PubMed

    Micaelo, Nuno M; Victor, Bruno L; Soares, Cláudio M

    2008-08-01

    Molecular dynamics simulation studies of rubredoxin from Desulfovibrio gigas (RDG) were used to characterize the molecular mechanism of thermal stabilization by the compatible solute (CS) diglycerol-phospate (DGP). DGP is a negatively charged CS that accumulates under salt stress in Archaeoglobus fulgidus. Experimental results show that a 100 mM DGP solution exerts a strong protection effect in the half-life of RDG at 363 K (Lamosa et al., Appl Environ Microbiol 2000;66:1974-1979). RDG was simulated in four aqueous solutions at 300 and 363 K: pure aqueous media, 100 mM DGP, 100 mM NaCl, and 500 mM DGP. Our work shows that the 100 mM DGP solution is able to maintain the average protein structure when the temperature is increased, preventing the occurrence of large-scale deviation of a mobile loop involved in the first steps of RDG unfolding. The molecular mechanism of thermal denaturation protection by DGP seems to involve the direct interaction between the protein and the CS by hydrogen bond interactions near the mobile loop. Several clusters of DGP molecules are formed and preferentially localized at neutral electrostatic regions of the surface. The increase of DGP concentration to 500 mM did not yield better stabilization of the protein suggesting that the thermal protective role of this charged CS is achieved at low concentrations, as shown experimentally. (c) 2008 Wiley-Liss, Inc.

  17. Short communication: evidence of HIV type 1 clade C env clones containing low V3 loop charge obtained from an AIDS patient in India that uses CXCR6 and CCR8 for entry in addition to CCR5.

    PubMed

    Gharu, Lavina; Ringe, Rajesh; Satyakumar, Anupindi; Patil, Ajit; Bhattacharya, Jayanta

    2011-02-01

    Abstract HIV-1 clade C is the major subtype circulating in India and preferentially uses CCR5 during the entire disease course. We have recently shown that env clones from an Indian patient; NARI-VB105 uses multiple coreceptors for entry and was presented with an unusual V3 loop sequence giving rise to high net V3 loop positive charges. Here we show that env clones belonging to subtype C obtained from an AIDS patient, NARI-VB52, use CXCR6 and CCR8 in addition to CCR5 for entry. However, unlike the NARI-105 patient, the env clones contained a low V3 loop net charge of +3 with a conserved GPGQ motif typical of CCR5 using subtype C strains, indicating that residues outside the V3 loop contributed to extended coreceptor use in this particular patient.

  18. DC conductivity and magnetic properties of piezoelectric-piezomagnetic composite system

    NASA Astrophysics Data System (ADS)

    Hemeda, O. M.; Tawfik, A.; A-Al-Sharif; Amer, M. A.; Kamal, B. M.; El Refaay, D. E.; Bououdina, M.

    2012-11-01

    A series of composites (1-x) (Ni0.8Zn0.2Fe2O4)+x (BaTiO3), where x=0%, 20%, 40%, 60%, 80% and 100% BT content, have been prepared by the standard ceramic technique, then sintered at 1200 °C for 8 h. X-ray diffraction analysis shows that the prepared composites consist of two phases, ferrimagnetic and ferroelectric. DC electrical resistivity, thermoelectric power, charge carriers concentration and charge carrier mobility have been studied at different temperatures. It was found that the DC electrical conductivity increases with increasing BT content. The values of the thermoelectric power were positive and negative for the composites indicating that there are two conduction mechanisms, hopping and band conduction, respectively. Using the values of DC electrical conductivity and thermoelectric power, the values of charge carrier mobility and the charge carrier concentration were calculated. Magnetic measurements (hysteresis loop and magnetic permeability) show that the magnetization decreases by increasing BT content. M-H loop of pure Ni0.6 Zn0.4 Fe2O4 composite indicates that it is paramagnetic at room temperature and that the magnetization is diluted by increasing the BT content in the composite system. The value of magnetoelectric coefficient for the composites decreases by increasing BT content for all the compositions except for 40% BT content, which may be due to the low resistivity of magnetic phase compared with the BT phase that causes a leakage of induced charges on the piezoelectric phase. Since both ferroelectric and magnetic phases preserve their basic properties in the bulk composite, the present BT-NZF composite are potential candidates for applications as pollution sensors and electromagnetic waves.

  19. Identification of a Novel EF-Loop in the N-terminus of TRPM2 Channel Involved in Calcium Sensitivity

    PubMed Central

    Luo, Yuhuan; Yu, Xiafei; Ma, Cheng; Luo, Jianhong; Yang, Wei

    2018-01-01

    As an oxidative stress sensor, transient receptor potential melastatin 2 (TRPM2) channel is involved in many physiological and pathological processes including warmth sensing, ischemia injury, inflammatory diseases and diabetes. Intracellular calcium is critical for TRPM2 channel activation and the IQ-like motif in the N-terminus has been shown to be important by mediating calmodulin binding. Sequence analysis predicted two potential EF-loops in the N-terminus of TRPM2. Site-directed mutagenesis combining with functional assay showed that substitution with alanine of several residues, most of which are conserved in the typical EF-loop, including D267, D278, D288, and E298 dramatically reduced TRPM2 channel currents. By further changing the charges or side chain length of these conserved residues, our results indicate that the negative charge of D267 and the side chain length of D278 are critical for calcium-induced TRPM2 channel activation. G272I mutation also dramatically reduced the channel currents, suggesting that this site is critical for calcium-induced TRPM2 channel activation. Furthermore, D267A mutant dramatically reduced the currents induced by calcium alone compared with that by ADPR, indicating that D267 residue in D267–D278 motif is the most important site for calcium sensitivity of TRPM2. In addition, inside-out recordings showed that mutations at D267, G272, D278, and E298 had no effect on single-channel conductance. Taken together, our data indicate that D267–D278 motif in the N-terminus as a novel EF-loop is critical for calcium-induced TRPM2 channel activation.

  20. Multiple functional roles of the accessory I-domain of bacteriophage P22 coat protein revealed by NMR structure and cryoEM modeling

    PubMed Central

    Rizzo, Alessandro A.; Suhanovsky, Margaret M.; Baker, Matthew L.; Fraser, LaTasha C.R.; Jones, Lisa M.; Rempel, Don L.; Gross, Michael L.; Chiu, Wah; Alexandrescu, Andrei T.; Teschke, Carolyn M.

    2014-01-01

    SUMMARY Some capsid proteins built on the ubiquitous HK97-fold have accessory domains that impart specific functions. Bacteriophage P22 coat protein has a unique inserted I-domain. Two prior I-domain models from sub-nanometer cryoEM reconstructions differed substantially. Therefore, the NMR structure of the I-domain was determined, which also was used to improve cryoEM models of coat protein. The I-domain has an anti-parallel 6-stranded β-barrel fold, previously not observed in HK97-fold accessory domains. The D-loop, which is dynamic both in the isolated I-domain and intact monomeric coat protein, forms stabilizing salt bridges between adjacent capsomers in procapsids. A newly described S-loop is important for capsid size determination, likely through intra-subunit interactions. Ten of eighteen coat protein temperature-sensitive-folding substitutions are in the I-domain, indicating its importance in folding and stability. Several are found on a positively charged face of the β-barrel that anchors the I-domain to a negatively charged surface of the coat protein HK97-core. PMID:24836025

  1. Multiple functional roles of the accessory I-domain of bacteriophage P22 coat protein revealed by NMR structure and CryoEM modeling.

    PubMed

    Rizzo, Alessandro A; Suhanovsky, Margaret M; Baker, Matthew L; Fraser, LaTasha C R; Jones, Lisa M; Rempel, Don L; Gross, Michael L; Chiu, Wah; Alexandrescu, Andrei T; Teschke, Carolyn M

    2014-06-10

    Some capsid proteins built on the ubiquitous HK97-fold have accessory domains imparting specific functions. Bacteriophage P22 coat protein has a unique insertion domain (I-domain). Two prior I-domain models from subnanometer cryoelectron microscopy (cryoEM) reconstructions differed substantially. Therefore, the I-domain's nuclear magnetic resonance structure was determined and also used to improve cryoEM models of coat protein. The I-domain has an antiparallel six-stranded β-barrel fold, not previously observed in HK97-fold accessory domains. The D-loop, which is dynamic in the isolated I-domain and intact monomeric coat protein, forms stabilizing salt bridges between adjacent capsomers in procapsids. The S-loop is important for capsid size determination, likely through intrasubunit interactions. Ten of 18 coat protein temperature-sensitive-folding substitutions are in the I-domain, indicating its importance in folding and stability. Several are found on a positively charged face of the β-barrel that anchors the I-domain to a negatively charged surface of the coat protein HK97-core. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Structure of calmodulin complexed with an olfactory CNG channel fragment and role of the central linker: residual dipolar couplings to evaluate calmodulin binding modes outside the kinase family.

    PubMed

    Contessa, Gian Marco; Orsale, Maria; Melino, Sonia; Torre, Vincent; Paci, Maurizio; Desideri, Alessandro; Cicero, Daniel O

    2005-03-01

    The NMR high-resolution structure of calmodulin complexed with a fragment of the olfactory cyclic-nucleotide gated channel is described. This structure shows features that are unique for this complex, including an active role of the linker connecting the N- and C-lobes of calmodulin upon binding of the peptide. Such linker is not only involved in the formation of an hydrophobic pocket to accommodate a bulky peptide residue, but it also provides a positively charged region complementary to a negative charge of the target. This complex of calmodulin with a target not belonging to the kinase family was used to test the residual dipolar coupling (RDC) approach for the determination of calmodulin binding modes to peptides. Although the complex here characterized belongs to the (1--14) family, high Q values were obtained with all the 1:1 complexes for which crystalline structures are available. Reduction of the RDC data set used for the correlation analysis to structured regions of the complex allowed a clear identification of the binding mode. Excluded regions comprise calcium binding loops and loops connecting the EF-hand motifs.

  3. Active control of one or more EGR loops

    DOEpatents

    Ruth, Michael J.; Cunningham, Michael J.; Henry, Cary A.

    2017-08-08

    Active control of one or more exhaust gas recirculation loops is provided to manage and EGR fraction in the charge flow to produce desired operating conditions and/or provide diagnostics in response to at least one of an oxygen concentration and a NOx concentration in the charge flow and in the exhaust flow.

  4. Initial conditions in high-energy collisions

    NASA Astrophysics Data System (ADS)

    Petreska, Elena

    This thesis is focused on the initial stages of high-energy collisions in the saturation regime. We start by extending the McLerran-Venugopalan distribution of color sources in the initial wave-function of nuclei in heavy-ion collisions. We derive a fourth-order operator in the action and discuss its relevance for the description of color charge distributions in protons in high-energy experiments. We calculate the dipole scattering amplitude in proton-proton collisions with the quartic action and find an agreement with experimental data. We also obtain a modification to the fluctuation parameter of the negative binomial distribution of particle multiplicities in proton-proton experiments. The result implies an advancement of the fourth-order action towards Gaussian when the energy is increased. Finally, we calculate perturbatively the expectation value of the magnetic Wilson loop operator in the first moments of heavy-ion collisions. For the magnetic flux we obtain a first non-trivial term that is proportional to the square of the area of the loop. The result is close to numerical calculations for small area loops.

  5. Vehicle to wireless power transfer coupling coil alignment sensor

    DOEpatents

    Miller, John M.; Chambon, Paul H.; Jones, Perry T.; White, Clifford P.

    2016-02-16

    A non-contacting position sensing apparatus includes at least one vehicle-mounted receiver coil that is configured to detect a net flux null when the vehicle is optimally aligned relative to the primary coil in the charging device. Each of the at least one vehicle-mounted receiver coil includes a clockwise winding loop and a counterclockwise winding loop that are substantially symmetrically configured and serially connected to each other. When the non-contacting position sensing apparatus is located directly above the primary coil of the charging device, the electromotive forces from the clockwise winding loop and the counterclockwise region cancel out to provide a zero electromotive force, i.e., a zero voltage reading across the coil that includes the clockwise winding loop and the counterclockwise winding loop.

  6. Quantum loop corrections of a charged de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Naji, J.

    2018-03-01

    A charged black hole in de Sitter (dS) space is considered and logarithmic corrected entropy used to study its thermodynamics. Logarithmic corrections of entropy come from thermal fluctuations, which play a role of quantum loop correction. In that case we are able to study the effect of quantum loop on black hole thermodynamics and statistics. As a black hole is a gravitational object, it helps to obtain some information about the quantum gravity. The first and second laws of thermodynamics are investigated for the logarithmic corrected case and we find that it is only valid for the charged dS black hole. We show that the black hole phase transition disappears in the presence of logarithmic correction.

  7. Structural basis for membrane targeting by the MVB12-associated [beta]-prism domain of the human ESCRT-I MVB12 subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boura, Evzen; Hurley, James H.

    2012-03-15

    MVB12-associated {beta}-prism (MABP) domains are predicted to occur in a diverse set of membrane-associated bacterial and eukaryotic proteins, but their existence, structure, and biochemical properties have not been characterized experimentally. Here, we find that the MABP domains of the MVB12A and B subunits of ESCRT-I are functional modules that bind in vitro to liposomes containing acidic lipids depending on negative charge density. The MABP domain is capable of autonomously localizing to subcellular puncta and to the plasma membrane. The 1.3-{angstrom} atomic resolution crystal structure of the MVB12B MABP domain reveals a {beta}-prism fold, a hydrophobic membrane-anchoring loop, and an electropositivemore » phosphoinositide-binding patch. The basic patch is open, which explains how it senses negative charge density but lacks stereoselectivity. These observations show how ESCRT-I could act as a coincidence detector for acidic phospholipids and protein ligands, enabling it to function both in protein transport at endosomes and in cytokinesis and viral budding at the plasma membrane.« less

  8. The role of charge and multiple faces of the CD8 alpha/alpha homodimer in binding to major histocompatibility complex class I molecules: support for a bivalent model.

    PubMed

    Giblin, P A; Leahy, D J; Mennone, J; Kavathas, P B

    1994-03-01

    The CD8 dimer interacts with the alpha 3 domain of major histocompatibility complex class I molecules through two immunoglobulin variable-like domains. In this study a crystal structure-informed mutational analysis has been performed to identify amino acids in the CD8 alpha/alpha homodimer that are likely to be involved in binding to class I. Several key residues are situated on the top face of the dimer within loops analogous to the complementarity-determining regions (CDRs) of immunoglobulin. In addition, other important amino acids are located in the A and B beta-strands on the sides of the dimer. The potential involvement of amino acids on both the top and the side faces of the molecule is consistent with a bivalent model for the interaction between a single CD8 alpha/alpha homodimer and two class I molecules and may have important implications for signal transduction in class I-expressing cells. This study also demonstrates a role for the positive surface potential of CD8 in class I binding and complements previous work demonstrating the importance of a negatively charged loop on the alpha 3 domain of class I for CD8 alpha/alpha-class I interaction. We propose a model whereby residues located on the CDR-like loops of the CD8 homodimer interact with the alpha 3 domain of MHC class I while amino acids on the side of the molecule containing the A and B beta-strands contact the alpha 2 domain of class I.

  9. Two-loop mass splittings in electroweak multiplets: Winos and minimal dark matter

    NASA Astrophysics Data System (ADS)

    McKay, James; Scott, Pat

    2018-03-01

    The radiatively-induced splitting of masses in electroweak multiplets is relevant for both collider phenomenology and dark matter. Precision two-loop corrections of O (MeV ) to the triplet mass splitting in the wino limit of the minimal supersymmetric standard model can affect particle lifetimes by up to 40%. We improve on previous two-loop self-energy calculations for the wino model by obtaining consistent input parameters to the calculation via two-loop renormalization-group running, and including the effect of finite light quark masses. We also present the first two-loop calculation of the mass splitting in an electroweak fermionic quintuplet, corresponding to the viable form of minimal dark matter (MDM). We place significant constraints on the lifetimes of the charged and doubly-charged fermions in this model. We find that the two-loop mass splittings in the MDM quintuplet are not constant in the large-mass limit, as might naively be expected from the triplet calculation. This is due to the influence of the additional heavy fermions in loop corrections to the gauge boson propagators.

  10. Relaxation oscillations and hierarchy of feedbacks in MAPK signaling

    NASA Astrophysics Data System (ADS)

    Kochańczyk, Marek; Kocieniewski, Paweł; Kozłowska, Emilia; Jaruszewicz-Błońska, Joanna; Sparta, Breanne; Pargett, Michael; Albeck, John G.; Hlavacek, William S.; Lipniacki, Tomasz

    2017-01-01

    We formulated a computational model for a MAPK signaling cascade downstream of the EGF receptor to investigate how interlinked positive and negative feedback loops process EGF signals into ERK pulses of constant amplitude but dose-dependent duration and frequency. A positive feedback loop involving RAS and SOS, which leads to bistability and allows for switch-like responses to inputs, is nested within a negative feedback loop that encompasses RAS and RAF, MEK, and ERK that inhibits SOS via phosphorylation. This negative feedback, operating on a longer time scale, changes switch-like behavior into oscillations having a period of 1 hour or longer. Two auxiliary negative feedback loops, from ERK to MEK and RAF, placed downstream of the positive feedback, shape the temporal ERK activity profile but are dispensable for oscillations. Thus, the positive feedback introduces a hierarchy among negative feedback loops, such that the effect of a negative feedback depends on its position with respect to the positive feedback loop. Furthermore, a combination of the fast positive feedback involving slow-diffusing membrane components with slower negative feedbacks involving faster diffusing cytoplasmic components leads to local excitation/global inhibition dynamics, which allows the MAPK cascade to transmit paracrine EGF signals into spatially non-uniform ERK activity pulses.

  11. Like-charge attraction and opposite-charge decomplexation between polymers and DNA molecules

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin

    2017-02-01

    We scrutinize the effect of polyvalent ions on polymer-DNA interactions. We extend a recently developed test-charge theory [S. Buyukdagli et al., Phys. Rev. E 94, 042502 (2016), 10.1103/PhysRevE.94.042502] to the case of a stiff polymer interacting with a DNA molecule in an electrolyte mixture. The theory accounts for one-loop level electrostatic correlation effects such as the ionic cloud deformation around the strongly charged DNA molecule as well as image-charge forces induced by the low DNA permittivity. Our model can reproduce and explain various characteristics of the experimental phase diagrams for polymer solutions. First, the addition of polyvalent cations to the electrolyte solution results in the attraction of the negatively charged polymer by the DNA molecule. The glue of the like-charge attraction is the enhanced shielding of the polymer charges by the dense counterion layer at the DNA surface. Second, through the shielding of the DNA-induced electrostatic potential, mono- and polyvalent cations of large concentration both suppress the like-charge attraction. Within the same formalism, we also predict a new opposite-charge repulsion effect between the DNA molecule and a positively charged polymer. In the presence of polyvalent anions such as sulfate or phosphate, their repulsion by the DNA charges leads to the charge screening deficiency of the region around the DNA molecule. This translates into a repulsive force that results in the decomplexation of the polymer from DNA. This opposite-charge repulsion phenomenon can be verified by current experiments and the underlying mechanism can be beneficial to gene therapeutic applications where the control over polymer-DNA interactions is the key factor.

  12. Photoresponse of polyaniline-functionalized graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Lai, Sin Ki; Luk, Chi Man; Tang, Libin; Teng, Kar Seng; Lau, Shu Ping

    2015-03-01

    Polyaniline-functionalized graphene quantum dots (PANI-GQD) and pristine graphene quantum dots (GQDs) were utilized for optoelectronic devices. The PANI-GQD based photodetector exhibited higher responsivity which is about an order of magnitude at 405 nm and 7 folds at 532 nm as compared to GQD-based photodetectors. The improved photoresponse is attributed to the enhanced interconnection of GQD by island-like polymer matrices, which facilitate carrier transport within the polymer matrices. The optically tunable current-voltage (I-V) hysteresis of PANI-GQD was also demonstrated. The hysteresis magnifies progressively with light intensity at a scan range of +/-1 V. Both GQD and PANI-GQD devices change from positive to negative photocurrent when the bias reaches 4 V. Photogenerated carriers are excited to the trapping states in GQDs with increased bias. The trapped charges interact with charges injected from the electrodes which results in a net decrease of free charge carriers and a negative photocurrent. The photocurrent switching phenomenon in GQD and PANI-GQD devices may open up novel applications in optoelectronics.Polyaniline-functionalized graphene quantum dots (PANI-GQD) and pristine graphene quantum dots (GQDs) were utilized for optoelectronic devices. The PANI-GQD based photodetector exhibited higher responsivity which is about an order of magnitude at 405 nm and 7 folds at 532 nm as compared to GQD-based photodetectors. The improved photoresponse is attributed to the enhanced interconnection of GQD by island-like polymer matrices, which facilitate carrier transport within the polymer matrices. The optically tunable current-voltage (I-V) hysteresis of PANI-GQD was also demonstrated. The hysteresis magnifies progressively with light intensity at a scan range of +/-1 V. Both GQD and PANI-GQD devices change from positive to negative photocurrent when the bias reaches 4 V. Photogenerated carriers are excited to the trapping states in GQDs with increased bias. The trapped charges interact with charges injected from the electrodes which results in a net decrease of free charge carriers and a negative photocurrent. The photocurrent switching phenomenon in GQD and PANI-GQD devices may open up novel applications in optoelectronics. Electronic supplementary information (ESI) available: Raman spectrum of PANI-GQD, TGA, Red-shift of PL peak with the amounts of aniline, excitation dependent PL of PANI-GQD, area of hysteretic loop for different voltage scan ranges, photocurrent at 1 V under prolonged illumination. See DOI: 10.1039/c4nr07565j

  13. Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems

    NASA Astrophysics Data System (ADS)

    Bzdušek, Tomáš; Sigrist, Manfred

    2017-10-01

    Weyl points in three spatial dimensions are characterized by a Z -valued charge—the Chern number—which makes them stable against a wide range of perturbations. A set of Weyl points can mutually annihilate only if their net charge vanishes, a property we refer to as robustness. While nodal loops are usually not robust in this sense, it has recently been shown using homotopy arguments that in the centrosymmetric extension of the AI symmetry class they nevertheless develop a Z2 charge analogous to the Chern number. Nodal loops carrying a nontrivial value of this Z2 charge are robust, i.e., they can be gapped out only by a pairwise annihilation and not on their own. As this is an additional charge independent of the Berry π -phase flowing along the band degeneracy, such nodal loops are, in fact, doubly charged. In this manuscript, we generalize the homotopy discussion to the centrosymmetric extensions of all Atland-Zirnbauer classes. We develop a tailored mathematical framework dubbed the AZ +I classification and show that in three spatial dimensions such robust and multiply charged nodes appear in four of such centrosymmetric extensions, namely, AZ +I classes CI and AI lead to doubly charged nodal lines, while D and BDI support doubly charged nodal surfaces. We remark that no further crystalline symmetries apart from the spatial inversion are necessary for their stability. We provide a description of the corresponding topological charges, and develop simple tight-binding models of various semimetallic and superconducting phases that exhibit these nodes. We also indicate how the concept of robust and multiply charged nodes generalizes to other spatial dimensions.

  14. Entropic and Electrostatic Effects on the Folding Free Energy of a Surface-Attached Biomolecule: An Experimental and Theoretical Study

    PubMed Central

    Watkins, Herschel M.; Vallée-Bélisle, Alexis; Ricci, Francesco; Makarov, Dmitrii E.; Plaxco, Kevin W.

    2012-01-01

    Surface-tethered biomolecules play key roles in many biological processes and biotechnologies. However, while the physical consequences of such surface attachment have seen significant theoretical study, to date this issue has seen relatively little experimental investigation. In response we present here a quantitative experimental and theoretical study of the extent to which attachment to a charged –but otherwise apparently inert– surface alters the folding free energy of a simple biomolecule. Specifically, we have measured the folding free energy of a DNA stem loop both in solution and when site-specifically attached to a negatively charged, hydroxyl-alkane-coated gold surface. We find that, whereas surface attachment is destabilizing at low ionic strength it becomes stabilizing at ionic strengths above ~130 mM. This behavior presumably reflects two competing mechanisms: excluded volume effects, which stabilize the folded conformation by reducing the entropy of the unfolded state, and electrostatics, which, at lower ionic strengths, destabilizes the more compact folded state via repulsion from the negatively charged surface. To test this hypothesis we have employed existing theories of the electrostatics of surface-bound polyelectrolytes and the entropy of surface-bound polymers to model both effects. Despite lacking any fitted parameters, these theoretical models quantitatively fit our experimental results, suggesting that, for this system, current knowledge of both surface electrostatics and excluded volume effects is reasonably complete and accurate. PMID:22239220

  15. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe1.64Ga0.36O3 oxide

    NASA Astrophysics Data System (ADS)

    Bhowmik, R. N.; Vijayasri, G.

    2015-06-01

    We have studied current-voltage (I-V) characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (˜500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  16. Structural Basis for Translocation of a Biofilm-supporting Exopolysaccharide across the Bacterial Outer Membrane.

    PubMed

    Wang, Yan; Andole Pannuri, Archana; Ni, Dongchun; Zhou, Haizhen; Cao, Xiou; Lu, Xiaomei; Romeo, Tony; Huang, Yihua

    2016-05-06

    The partially de-N-acetylated poly-β-1,6-N-acetyl-d-glucosamine (dPNAG) polymer serves as an intercellular biofilm adhesin that plays an essential role for the development and maintenance of integrity of biofilms of diverse bacterial species. Translocation of dPNAG across the bacterial outer membrane is mediated by a tetratricopeptide repeat-containing outer membrane protein, PgaA. To understand the molecular basis of dPNAG translocation, we determined the crystal structure of the C-terminal transmembrane domain of PgaA (residues 513-807). The structure reveals that PgaA forms a 16-strand transmembrane β-barrel, closed by four loops on the extracellular surface. Half of the interior surface of the barrel that lies parallel to the translocation pathway is electronegative, suggesting that the corresponding negatively charged residues may assist the secretion of the positively charged dPNAG polymer. In vivo complementation assays in a pgaA deletion bacterial strain showed that a cluster of negatively charged residues proximal to the periplasm is necessary for biofilm formation. Biochemical analyses further revealed that the tetratricopeptide repeat domain of PgaA binds directly to the N-deacetylase PgaB and is critical for biofilm formation. Our studies support a model in which the positively charged PgaB-bound dPNAG polymer is delivered to PgaA through the PgaA-PgaB interaction and is further targeted to the β-barrel lumen of PgaA potentially via a charge complementarity mechanism, thus priming the translocation of dPNAG across the bacterial outer membrane. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A minimal mathematical model combining several regulatory cycles from the budding yeast cell cycle.

    PubMed

    Sriram, K; Bernot, G; Képès, F

    2007-11-01

    A novel topology of regulatory networks abstracted from the budding yeast cell cycle is studied by constructing a simple nonlinear model. A ternary positive feedback loop with only positive regulations is constructed with elements that activates the subsequent element in a clockwise fashion. A ternary negative feedback loop with only negative regulations is constructed with the elements that inhibit the subsequent element in an anticlockwise fashion. Positive feedback loop exhibits bistability, whereas the negative feedback loop exhibits limit cycle oscillations. The novelty of the topology is that the corresponding elements in these two homogeneous feedback loops are linked by the binary positive feedback loops with only positive regulations. This results in the emergence of mixed feedback loops in the network that displays complex behaviour like the coexistence of multiple steady states, relaxation oscillations and chaos. Importantly, the arrangement of the feedback loops brings in the notion of checkpoint in the model. The model also exhibits domino-like behaviour, where the limit cycle oscillations take place in a stepwise fashion. As the aforementioned topology is abstracted from the budding yeast cell cycle, the events that govern the cell cycle are considered for the present study. In budding yeast, the sequential activation of the transcription factors, cyclins and their inhibitors form mixed feedback loops. The transcription factors that involve in the positive regulation in a clockwise orientation generates ternary positive feedback loop, while the cyclins and their inhibitors that involve in the negative regulation in an anticlockwise orientation generates ternary negative feedback loop. The mutual regulation between the corresponding elements in the transcription factors and the cyclins and their inhibitors generates binary positive feedback loops. The bifurcation diagram constructed for the whole system can be related to the different events of the cell cycle in terms of dynamical system theory. The checkpoint mechanism that plays an important role in different phases of the cell cycle are accounted for by silencing appropriate feedback loops in the model.

  18. Positive And Negative Feedback Loops Coupled By Common Transcription Activator And Repressor

    NASA Astrophysics Data System (ADS)

    Sielewiesiuk, Jan; Łopaciuk, Agata

    2015-03-01

    Dynamical systems consisting of two interlocked loops with negative and positive feedback have been studied using the linear analysis of stability and numerical solutions. Conditions for saddle-node bifurcation were formulated in a general form. Conditions for Hopf bifurcations were found in a few symmetrical cases. Auto-oscillations, when they exist, are generated by the negative feedback repressive loop. This loop determines the frequency and amplitude of oscillations. The positive feedback loop of activation slightly modifies the oscillations. Oscillations are possible when the difference between Hilll's coefficients of the repression and activation is sufficiently high. The highly cooperative activation loop with a fast turnover slows down or even makes the oscillations impossible. The system under consideration can constitute a component of epigenetic or enzymatic regulation network.

  19. The β subunit of the high-conductance calcium-activated potassium channel contributes to the high-affinity receptor for charybdotoxin

    PubMed Central

    Hanner, Markus; Schmalhofer, William A.; Munujos, Petraki; Knaus, Hans-Günther; Kaczorowski, Gregory J.; Garcia, Maria L.

    1997-01-01

    Transient expression of either α or α+β subunits of the high-conductance Ca2+-activated K+ (maxi-K) channel has been achieved in COS-1 cells. Expression has been studied using charybdotoxin (ChTX), a peptidyl inhibitor that binds in the pore on the α subunit. Although some properties of monoiodotyrosine-ChTX (125I-ChTX) binding to membranes derived from each type of transfected cells appear to be identical, other parameters of the binding reaction are markedly different. Under low ionic strength conditions, the affinity constant for 125I-ChTX measured under equilibrium binding conditions is increased ca. 50-fold in the presence of the β subunit. The rate constant for 125I-ChTX association is enhanced ca. 5-fold, whereas the dissociation rate constant is decreased more than 7-fold when the β subunit is present. These data indicate that functional coassembly of maxi-K channel subunits can be obtained in a transient expression system, and that the β subunit has profound effects on 125I-ChTX binding. We postulate that certain negatively charged residues in the large extracellular loop of β attract the positively charged 125I-ChTX to its binding site on α through electrostatic interactions, and account for effects observed on ligand association kinetics. Moreover, another residue(s) in the loop of β must contribute to stabilization of the toxin-bound state, either by a direct interaction with toxin, or through an allosteric effect on the α subunit. Certain regions in the extracellular loop of the β subunit may be in close proximity to the pore of the channel, and could play an important role in maxi-K channel function. PMID:9096310

  20. Nuclear axial currents in chiral effective field theory

    DOE PAGES

    Baroni, Alessandro; Girlanda, Luca; Pastore, Saori; ...

    2016-01-11

    Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory and accounts for cancellations between the contributions of irreducible diagrams and the contributions owing to nonstatic corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. As a result, a complete set of contact terms for the axial charge up to the relevant order in the power countingmore » is constructed.« less

  1. The role of RNA structure in the interaction of U1A protein with U1 hairpin II RNA

    PubMed Central

    Law, Michael J.; Rice, Andrew J.; Lin, Patti; Laird-Offringa, Ite A.

    2006-01-01

    The N-terminal RNA Recognition Motif (RRM1) of the spliceosomal protein U1A interacting with its target U1 hairpin II (U1hpII) has been used as a paradigm for RRM-containing proteins interacting with their RNA targets. U1A binds to U1hpII via direct interactions with a 7-nucleotide (nt) consensus binding sequence at the 5′ end of a 10-nt loop, and via hydrogen bonds with the closing C–G base pair at the top of the RNA stem. Using surface plasmon resonance (Biacore), we have examined the role of structural features of U1hpII in binding to U1A RRM1. Mutational analysis of the closing base pair suggests it plays a minor role in binding and mainly prevents “breathing” of the loop. Lengthening the stem and nontarget part of the loop suggests that the increased negative charge of the RNA might slightly aid association. However, this is offset by an increase in dissociation, which may be caused by attraction of the RRM to nontarget parts of the RNA. Studies of a single stranded target and RNAs with untethered loops indicate that structure is not very relevant for association but is important for complex stability. In particular, breaking the link between the stem and the 5′ side of the loop greatly increases complex dissociation, presumably by hindering simultaneous contacts between the RRM and stem and loop nucleotides. While binding of U1A to a single stranded target is much weaker than to U1hpII, it occurs with nanomolar affinity, supporting recent evidence that binding of unstructured RNA by U1A has physiological significance. PMID:16738410

  2. The role of RNA structure in the interaction of U1A protein with U1 hairpin II RNA.

    PubMed

    Law, Michael J; Rice, Andrew J; Lin, Patti; Laird-Offringa, Ite A

    2006-07-01

    The N-terminal RNA Recognition Motif (RRM1) of the spliceosomal protein U1A interacting with its target U1 hairpin II (U1hpII) has been used as a paradigm for RRM-containing proteins interacting with their RNA targets. U1A binds to U1hpII via direct interactions with a 7-nucleotide (nt) consensus binding sequence at the 5' end of a 10-nt loop, and via hydrogen bonds with the closing C-G base pair at the top of the RNA stem. Using surface plasmon resonance (Biacore), we have examined the role of structural features of U1hpII in binding to U1A RRM1. Mutational analysis of the closing base pair suggests it plays a minor role in binding and mainly prevents "breathing" of the loop. Lengthening the stem and nontarget part of the loop suggests that the increased negative charge of the RNA might slightly aid association. However, this is offset by an increase in dissociation, which may be caused by attraction of the RRM to nontarget parts of the RNA. Studies of a single stranded target and RNAs with untethered loops indicate that structure is not very relevant for association but is important for complex stability. In particular, breaking the link between the stem and the 5' side of the loop greatly increases complex dissociation, presumably by hindering simultaneous contacts between the RRM and stem and loop nucleotides. While binding of U1A to a single stranded target is much weaker than to U1hpII, it occurs with nanomolar affinity, supporting recent evidence that binding of unstructured RNA by U1A has physiological significance.

  3. Polarization switching in undoped and La-doped TlInS2 ferroelectric-semiconductors

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Mikailzade, Faik A.; Suleymanov, Rauf A.; Aliyeva, Vafa B.; Mammadov, Tofig G.; Sharifov, Galib M.

    2017-12-01

    Dielectric hysteresis loops of pure and lanthanum doped TlInS2 ferroelectric-semiconductors were studied at the frequency 50 Hz for different temperatures below the Curie temperature (Tc). It has been revealed that, without any poling procedure, pure TlInS2 exhibits normal single hysteresis loops at T < Tc. After electric field-cooled treatment of TlInS2 the shape of hysteresis loops was strongly affected by corresponding charged deep level defects which were previously activated during the poling process. As a result, an additional defect polarization state from space charges accumulated on the intrinsic deep level defects has been revealed in pure TlInS2 at the temperatures below Tc. Besides, unusual multiple hysteresis loops were observed in La doped TlInS2 at T < Tc after application of different external perturbations (electric field, exposition and memory effect) to the sample. Measurements of the hysteresis loops in TlInS2:La revealed the slim single, double and even triple polarization-electric field (P-E) hysteresis loops. This intriguing phenomenon is attributed to the domain pinning by photo- and electrically active La-impurity centers. The temperature variation of double-hysteresis loop was also investigated. Due to the heat elimination of the random local defect polar moments, the double-hysteresis loops were transformed into a normal single hysteresis loops on increasing the temperature.

  4. Role of Electrostatics in Protein-RNA Binding: The Global vs the Local Energy Landscape.

    PubMed

    Ghaemi, Zhaleh; Guzman, Irisbel; Gnutt, David; Luthey-Schulten, Zaida; Gruebele, Martin

    2017-09-14

    U1A protein-stem loop 2 RNA association is a basic step in the assembly of the spliceosomal U1 small nuclear ribonucleoprotein. Long-range electrostatic interactions due to the positive charge of U1A are thought to provide high binding affinity for the negatively charged RNA. Short range interactions, such as hydrogen bonds and contacts between RNA bases and protein side chains, favor a specific binding site. Here, we propose that electrostatic interactions are as important as local contacts in biasing the protein-RNA energy landscape toward a specific binding site. We show by using molecular dynamics simulations that deletion of two long-range electrostatic interactions (K22Q and K50Q) leads to mutant-specific alternative RNA bound states. One of these states preserves short-range interactions with aromatic residues in the original binding site, while the other one does not. We test the computational prediction with experimental temperature-jump kinetics using a tryptophan probe in the U1A-RNA binding site. The two mutants show the distinct predicted kinetic behaviors. Thus, the stem loop 2 RNA has multiple binding sites on a rough RNA-protein binding landscape. We speculate that the rough protein-RNA binding landscape, when biased to different local minima by electrostatics, could be one way that protein-RNA interactions evolve toward new binding sites and novel function.

  5. Intersecting solitons, amoeba, and tropical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimori, Toshiaki; Nitta, Muneto; Ohta, Kazutoshi

    2008-11-15

    We study the generic intersection (or web) of vortices with instantons inside, which is a 1/4 Bogomol'nyi-Prasad-Sommerfield state in the Higgs phase of five-dimensional N=1 supersymmetric U(N{sub C}) gauge theory on R{sub t}x(C*){sup 2}{approx_equal}R{sup 2,1}xT{sup 2} with N{sub F}=N{sub C} Higgs scalars in the fundamental representation. In the case of the Abelian-Higgs model (N{sub F}=N{sub C}=1), the intersecting vortex sheets can be beautifully understood in a mathematical framework of amoeba and tropical geometry, and we propose a dictionary relating solitons and gauge theory to amoeba and tropical geometry. A projective shape of vortex sheets is described by the amoeba. Vortexmore » charge density is uniformly distributed among vortex sheets, and negative contribution to instanton charge density is understood as the complex Monge-Ampere measure with respect to a plurisubharmonic function on (C*){sup 2}. The Wilson loops in T{sup 2} are related with derivatives of the Ronkin function. The general form of the Kaehler potential and the asymptotic metric of the moduli space of a vortex loop are obtained as a by-product. Our discussion works generally in non-Abelian gauge theories, which suggests a non-Abelian generalization of the amoeba and tropical geometry.« less

  6. Proteins with Novel Structure, Function and Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2014-01-01

    Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.

  7. Structural Insights into the Transport Mechanism of the Human Sodium-dependent Lysophosphatidylcholine Transporter MFSD2A*♦

    PubMed Central

    Quek, Debra Q. Y.; Nguyen, Long N.; Fan, Hao; Silver, David L.

    2016-01-01

    Major facilitator superfamily domain containing 2A (MFSD2A) was recently characterized as a sodium-dependent lysophosphatidylcholine transporter expressed at the blood-brain barrier endothelium. It is the primary route for importation of docosohexaenoic acid and other long-chain fatty acids into fetal and adult brain and is essential for mouse and human brain growth and function. Remarkably, MFSD2A is the first identified major facilitator superfamily member that uniquely transports lipids, implying that MFSD2A harbors unique structural features and transport mechanism. Here, we present three three-dimensional structural models of human MFSD2A derived by homology modeling using MelB- and LacY-based crystal structures and refined by biochemical analysis. All models revealed 12 transmembrane helices and connecting loops and represented the partially outward-open, outward-partially occluded, and inward-open states of the transport cycle. In addition to a conserved sodium-binding site, three unique structural features were identified as follows: a phosphate headgroup binding site, a hydrophobic cleft to accommodate a hydrophobic hydrocarbon tail, and three sets of ionic locks that stabilize the outward-open conformation. Ligand docking studies and biochemical assays identified Lys-436 as a key residue for transport. It is seen forming a salt bridge with the negative charge on the phosphate headgroup. Importantly, MFSD2A transported structurally related acylcarnitines but not a lysolipid without a negative charge, demonstrating the necessity of a negatively charged headgroup interaction with Lys-436 for transport. These findings support a novel transport mechanism by which lysophosphatidylcholines are “flipped” within the transporter cavity by pivoting about Lys-436 leading to net transport from the outer to the inner leaflet of the plasma membrane. PMID:26945070

  8. New class of two-loop neutrino mass models with distinguishable phenomenology

    NASA Astrophysics Data System (ADS)

    Cao, Qing-Hong; Chen, Shao-Long; Ma, Ernest; Yan, Bin; Zhang, Dong-Ming

    2018-04-01

    We discuss a new class of neutrino mass models generated in two loops, and explore specifically three new physics scenarios: (A) doubly charged scalar, (B) dark matter, and (C) leptoquark and diquark, which are verifiable at the 14 TeV LHC Run-II. We point out how the different Higgs insertions will distinguish our two-loop topology with others if the new particles in the loop are in the simplest representations of the SM gauge group.

  9. Open and closed loop manipulation of charged microchiplets in an electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, J. P., E-mail: jplu@parc.com; Thompson, J. D.; Whiting, G. L.

    We demonstrate the ability to orient, position, and transport microchips (“chiplets”) with electric fields. In an open-loop approach, modified four phase traveling wave potential patterns manipulate chiplets in a dielectric solution using dynamic template agitation techniques. Repeatable parallel assembly of chiplets is demonstrated to a positional accuracy of 6.5 μm using electrodes of 200 μm pitch. Chiplets with dipole surface charge patterns are used to show that orientation can be controlled by adding unique charge patterns on the chiplets. Chip path routing is also demonstrated. With a closed-loop control system approach using video feedback, dielectric, and electrophoretic forces are used to achievemore » positioning accuracy of better than 1 μm with 1 mm pitch driving electrodes. These chip assembly techniques have the potential to enable future printer systems where inputs are electronic chiplets and the output is a functional electronic system.« less

  10. Robustness of the Rotary Catalysis Mechanism of F1-ATPase*

    PubMed Central

    Watanabe, Rikiya; Matsukage, Yuki; Yukawa, Ayako; Tabata, Kazuhito V.; Noji, Hiroyuki

    2014-01-01

    F1-ATPase (F1) is the rotary motor protein fueled by ATP hydrolysis. Previous studies have suggested that three charged residues are indispensable for catalysis of F1 as follows: the P-loop lysine in the phosphate-binding loop, GXXXXGK(T/S); a glutamic acid that activates water molecules for nucleophilic attack on the γ-phosphate of ATP (general base); and an arginine directly contacting the γ-phosphate (arginine finger). These residues are well conserved among P-loop NTPases. In this study, we investigated the role of these charged residues in catalysis and torque generation by analyzing alanine-substituted mutants in the single-molecule rotation assay. Surprisingly, all mutants continuously drove rotary motion, even though the rotational velocity was at least 100,000 times slower than that of wild type. Thus, although these charged residues contribute to highly efficient catalysis, they are not indispensable to chemo-mechanical energy coupling, and the rotary catalysis mechanism of F1 is far more robust than previously thought. PMID:24876384

  11. Microstructure evolution of recrystallized Zircaloy-4 under charged particles irradiation

    NASA Astrophysics Data System (ADS)

    Gaumé, M.; Onimus, F.; Dupuy, L.; Tissot, O.; Bachelet, C.; Mompiou, F.

    2017-11-01

    Recrystallized zirconium alloys are used as nuclear fuel cladding tubes of Pressurized Water Reactors. During operation, these alloys are submitted to fast neutron irradiation which leads to their in-reactor deformation and to a change of their mechanical properties. These phenomena are directly related to the microstructure evolution under irradiation and especially to the formation of -type dislocation loops. In the present work, the radiation damage evolution in recrystallized Zircaloy-4 has been studied using charged particles irradiation. The loop nucleation and growth kinetics, and also the helical climb of linear dislocations, were observed in-situ using a High Voltage Electron Microscope (HVEM) under 1 MeV electron irradiation at 673 and 723 K. In addition, 600 keV Zr+ ion irradiations were conducted at the same temperature. Transmission Electron Microscopy (TEM) characterizations have been performed after both types of irradiations, and show dislocation loops with a Burgers vector belonging to planes close to { 10 1 bar 0 } first order prismatic planes. The nature of the loops has been characterized. Only interstitial dislocation loops have been observed after ion irradiation at 723 K. However, after electron irradiation conducted at 673 and 723 K, both interstitial and vacancy loops were observed, the proportion of interstitial loops increasing as the temperature is increased. The loop growth kinetics analysis shows that as the temperature increases, the loop number density decreases and the loop growth rate tends to increase. An increase of the flux leads to an increase of the loop number density and a decrease of the loop growth rate. The results are compared to previous works and discussed in the light of point defects diffusion.

  12. Cell design for lithium alloy/metal sulfide battery

    DOEpatents

    Kaun, Thomas D.

    1985-01-01

    The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

  13. Improved cell design for lithium alloy/metal sulfide battery

    DOEpatents

    Kaun, T.D.

    1984-03-30

    The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

  14. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3} oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhowmik, R. N., E-mail: rnbhowmik.phy@pondiuni.edu.in; Vijayasri, G.

    2015-06-15

    We have studied current-voltage (I-V) characteristics of α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3}, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling.more » The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔV{sub P}) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.« less

  15. Nonlinear antiferroelectric-like capacitance-voltage curves in ferroelectric BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Jiang, A. Q.; Zhang, D. W.; Tang, T. A.

    2013-07-01

    The ferroelectric capacitance is usually nonlinear against increasing/decreasing voltage in sweeping time longer than 1 s and achieves a maximum value at around a coercive voltage within each loop. With the improved short-pulse measurements, we estimated the differential capacitance of ferroelectric Au/BiFeO3/LaNiO3/SrTiO3 thin-film capacitors from a nanosecond discharging current induced by a delta voltage after a stressing voltage pulse with widths of 500 ns-50 ms. With the shortening of the voltage sweeping time, we clearly observed two capacitance maxima from each branch of a capacitance-voltage (C-V) loop, reminiscent of an antiferroelectric behavior. After transformation of nanosecond domain switching current transients under pulses into polarization-voltage hysteresis loops, we further measured time dependent polarization retention as well as imprint in the range of 100 ns-1 s. Both positive and negative polarizations decay exponentially at characteristic times of 2.25 and 198 μs, suggesting the coexistence of preferred domains pointing to top and bottom electrodes in most epitaxial films. This exponential time dependence is similar to the dielectric degradation under a dc voltage, and the polarization retention can be improved through long-time opposite voltage stressing. With this improvement, the additional antiferroelectric-like dielectric maximum within each branch of a C-V loop disappears. This experiment provides the strong evidence of the effect of time-dependent charge injection on polarization retention and dielectric degradation.

  16. Protein-mediated looping of DNA under tension requires supercoiling

    PubMed Central

    Yan, Yan; Leng, Fenfei; Finzi, Laura; Dunlap, David

    2018-01-01

    Abstract Protein-mediated DNA looping is ubiquitous in chromatin organization and gene regulation, but to what extent supercoiling or nucleoid associated proteins promote looping is poorly understood. Using the lac repressor (LacI), a paradigmatic loop-mediating protein, we measured LacI-induced looping as a function of either supercoiling or the concentration of the HU protein, an abundant nucleoid protein in Escherichia coli. Negative supercoiling to physiological levels with magnetic tweezers easily drove the looping probability from 0 to 100% in single DNA molecules under slight tension that likely exists in vivo. In contrast, even saturating (micromolar) concentrations of HU could not raise the looping probability above 30% in similarly stretched DNA or 80% in DNA without tension. Negative supercoiling is required to induce significant looping of DNA under any appreciable tension. PMID:29365152

  17. Design of Accumulators and Liquid/Gas Charging of Single Phase Mechanically Pumped Fluid Loop Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Dudik, Brenda; Birur, Gajanana; Karlmann, Paul; Bame, David; Mastropietro, A. J.

    2012-01-01

    For single phase mechanically pumped fluid loops used for thermal control of spacecraft, a gas charged accumulator is typically used to modulate pressures within the loop. This is needed to accommodate changes in the working fluid volume due to changes in the operating temperatures as the spacecraft encounters varying thermal environments during its mission. Overall, the three key requirements on the accumulator to maintain an appropriate pressure range throughout the mission are: accommodation of the volume change of the fluid due to temperature changes, avoidance of pump cavitation and prevention of boiling in the liquid. The sizing and design of such an accumulator requires very careful and accurate accounting of temperature distribution within each element of the working fluid for the entire range of conditions expected, accurate knowledge of volume of each fluid element, assessment of corresponding pressures needed to avoid boiling in the liquid, as well as the pressures needed to avoid cavitation in the pump. The appropriate liquid and accumulator strokes required to accommodate the liquid volume change, as well as the appropriate gas volumes, require proper sizing to ensure that the correct pressure range is maintained during the mission. Additionally, a very careful assessment of the process for charging both the gas side and the liquid side of the accumulator is required to properly position the bellows and pressurize the system to a level commensurate with requirements. To achieve the accurate sizing of the accumulator and the charging of the system, sophisticated EXCEL based spreadsheets were developed to rapidly come up with an accumulator design and the corresponding charging parameters. These spreadsheets have proven to be computationally fast and accurate tools for this purpose. This paper will describe the entire process of designing and charging the system, using a case study of the Mars Science Laboratory (MSL) fluid loops, which is en route to Mars for an August 2012 landing.

  18. Varietal Loops

    NASA Image and Video Library

    2016-09-15

    A series of active regions stretched along the right side of the sun exhibited a wide variety of loops cascading above them (Sept. 12-14, 2016). The active region near the center has tightly coiled loops, while the region rotating over the right edge has some elongated and some very stretched loops above it. The loops are actually charged particles spiraling along magnetic field lines, observed here in a wavelength of extreme ultraviolet light. Near the middle of the video the Earth quickly passes in front of a portion of the sun as viewed by SDO. http://photojournal.jpl.nasa.gov/catalog/PIA16997

  19. Molecular mechanisms for the regulation of histone mRNA stem-loop–binding protein by phosphorylation

    PubMed Central

    Zhang, Jun; Tan, Dazhi; DeRose, Eugene F.; Perera, Lalith; Dominski, Zbigniew; Marzluff, William F.; Tong, Liang; Hall, Traci M. Tanaka

    2014-01-01

    Replication-dependent histone mRNAs end with a conserved stem loop that is recognized by stem-loop–binding protein (SLBP). The minimal RNA-processing domain of SLBP is phosphorylated at an internal threonine, and Drosophila SLBP (dSLBP) also is phosphorylated at four serines in its 18-aa C-terminal tail. We show that phosphorylation of dSLBP increases RNA-binding affinity dramatically, and we use structural and biophysical analyses of dSLBP and a crystal structure of human SLBP phosphorylated on the internal threonine to understand the striking improvement in RNA binding. Together these results suggest that, although the C-terminal tail of dSLBP does not contact the RNA, phosphorylation of the tail promotes SLBP conformations competent for RNA binding and thereby appears to reduce the entropic penalty for the association. Increased negative charge in this C-terminal tail balances positively charged residues, allowing a more compact ensemble of structures in the absence of RNA. PMID:25002523

  20. Sensitive immobilization-free electrochemical DNA sensor based on isothermal circular strand displacement polymerization reaction.

    PubMed

    Xuan, Feng; Luo, Xiaoteng; Hsing, I-Ming

    2012-05-15

    A highly sensitive electrochemical DNA sensor that requires no probe immobilization has been developed based on a target recycling mechanism utilizing a DNA polymerase with a strand displacement activity. The electrochemical detection is realized by taking advantage of the difference in diffusivity between a free ferrocene-labeled peptide nucleic acid (Fc-PNA) and a Fc-PNA hybridized with a complementary DNA, while the DNA polymerase-assisted target recycling leads to signal generation and amplification. The hybridization of the target DNA opens up a stem-loop template DNA with the Fc-PNA hybridized to its extruded 5' end and allows a DNA primer to anneal and be extended by the DNA polymerase, which results in sequential displacement of the target DNA and the Fc-PNA from the template DNA. The displaced target DNA will hybridize with another template DNA, triggering another round of primer extension and strand displacement. The released Fc-PNA, due to its neutral backbone, has much higher diffusivity towards a negatively charged electrode, compared to that when it is hybridized with a negatively charged DNA. Therefore, a significantly enhanced signal of Fc can be observed. The outstanding sensitivity and simplicity make this approach a promising candidate for next-generation electrochemical DNA sensing technologies. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. System and method for conditioning intake air to an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellnau, Mark C.

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. Themore » valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.« less

  2. Asymmetric Fuzzy Control of a Positive and Negative Pneumatic Pressure Servo System

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Du, Jing-Min; Fu, Xiao-Yun; Li, Bao-Ren

    2017-11-01

    The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mechanisms employing the error and change in error of the controlled variable as input parameters, the current chamber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the proposed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consistent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.

  3. Feedback Augmented Sub-Ranging (FASR) Quantizer

    NASA Technical Reports Server (NTRS)

    Guilligan, Gerard

    2012-01-01

    This innovation is intended to reduce the size, power, and complexity of pipeline analog-to-digital converters (ADCs) that require high resolution and speed along with low power. Digitizers are important components in any application where analog signals (such as light, sound, temperature, etc.) need to be digitally processed. The innovation implements amplification of a sampled residual voltage in a switched capacitor amplifier stage that does not depend on charge redistribution. The result is less sensitive to capacitor mismatches that cause gain errors, which are the main limitation of such amplifiers in pipeline ADCs. The residual errors due to mismatch are reduced by at least a factor of 16, which is equivalent to at least 4 bits of improvement. The settling time is also faster because of a higher feedback factor. In traditional switched capacitor residue amplifiers, closed-loop amplification of a sampled and held residue signal is achieved by redistributing sampled charge onto a feedback capacitor around a high-gain transconductance amplifier. The residual charge that was sampled during the acquisition or sampling phase is stored on two or more capacitors, often equal in value or integral multiples of each other. During the hold or amplification phase, all of the charge is redistributed onto one capacitor in the feedback loop of the amplifier to produce an amplified voltage. The key error source is the non-ideal ratios of feedback and input capacitors caused by manufacturing tolerances, called mismatches. The mismatches cause non-ideal closed-loop gain, leading to higher differential non-linearity. Traditional solutions to the mismatch errors are to use larger capacitor values (than dictated by thermal noise requirements) and/or complex calibration schemes, both of which increase the die size and power dissipation. The key features of this innovation are (1) the elimination of the need for charge redistribution to achieve an accurate closed-loop gain of two, (2) a higher feedback factor in the amplifier stage giving a higher closed-loop bandwidth compared to the prior art, and (3) reduced requirement for calibration. The accuracy of the new amplifier is mainly limited by the sampling networks parasitic capacitances, which should be minimized in relation to the sampling capacitors.

  4. Possible Charge-Exchange X-Ray Emission in the Cygnus Loop Detected with Suzaku

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Kosugi, Hiroko; Kimura, Masashi; Nakajima, Hiroshi; Takakura, Satoru; Petre, Robert; Hewitt. John W.; hide

    2011-01-01

    X-ray spectroscopic measurements of the Cygnus Loop supernova remnant indicate that metal abundances throughout most of the remnant s rim are depleted to approx.0.2 times the solar value. However, recent X-ray studies have revealed in some narrow regions along the outermost rim anomalously "enhanced" abundances (up to approx. 1 solar). The reason for these anomalous abundances is not understood. Here, we examine X-ray spectra in annular sectors covering nearly the entire rim of the Cygnus Loop using Suzaku (21 pointings) and XMM-Newton (1 pointing). We find that spectra in the "enhanced" abundance regions commonly show a strong emission feature at approx.0.7 keV. This feature is likely a complex of He-like O K(gamma + delta + epsilon), although other possibilities cannot be fully excluded. The intensity of this emission relative to He-like O K(alpha) appears to be too high to be explained as thermal emission. This fact, as well as the spatial concentration of the anomalous abundances in the outermost rim, leads us to propose an origin from charge-exchange processes between neutrals and H-like O. We show that the presence of charge-exchange emission could lead to the inference of apparently "enhanced" metal abundances using pure thermal emission models. Accounting for charge-exchange emission, the actual abundances could be uniformly low throughout the rim. The overall abundance depletion remains an open question. Subject headings: ISM: abundances ISM: individual objects (Cygnus Loop) ISM: supernova remnants X-rays: ISM atomic processes

  5. Polarity and charge of the periplasmic loop determine the YidC and sec translocase requirement for the M13 procoat lep protein.

    PubMed

    Soman, Raunak; Yuan, Jijun; Kuhn, Andreas; Dalbey, Ross E

    2014-01-10

    During membrane biogenesis, the M13 procoat protein is inserted into the lipid bilayer in a strictly YidC-dependent manner with both the hydrophobic signal sequence and the membrane anchor sequence promoting translocation of the periplasmic loop via a hairpin mechanism. Here, we find that the translocase requirements can be altered for PClep in a predictable manner by changing the polarity and charge of the peptide region that is translocated across the membrane. When the polarity of the translocated peptide region is lowered and the charged residues in this region are removed, translocation of this loop region occurs largely by a YidC- and Sec-independent mechanism. When the polarity is increased to that of the wild-type procoat protein, the YidC insertase is essential for translocation. Further increasing the polarity, by adding charged residues, switches the insertion pathway to a YidC/Sec mechanism. Conversely, we find that increasing the hydrophobicity of the transmembrane segments of PClep can decrease the translocase requirement for translocation of the peptide chain. This study provides a framework to understand why the YidC and Sec machineries exist in parallel and demonstrates that the YidC insertase has a limited capacity to translocate a peptide chain on its own.

  6. Wrinkles, loops, and topological defects in twisted ribbons

    NASA Astrophysics Data System (ADS)

    Chopin, Julien

    Nature abounds with elastic ribbon like shapes including double-stranded semiflexible polymers, graphene and metal oxide nanoribbons which are examples of elongated elastic structures with a strongly anisotropic cross-section. Due to this specific geometry, it is far from trivial to anticipate if a ribbon should be considered as a flat flexible filament or a narrow thin plate. We thus perform an experiment in which a thin elastic ribbon is loaded using a twisting and traction device coupled with a micro X-ray computed tomography machine allowing a full 3D shape reconstruction. A wealth of morphological behaviors can be observed including wrinkled helicoids, curled and looped configurations, and faceted ribbons. In this talk, I will show that most morphologies can be understood using a far-from-threshold approach and simple scaling arguments. Further, we find that the various shapes can be organized in a phase diagram using the twist, the tension, and the geometry of the ribbon as control parameters. Finally, I will discuss the spontaneous formation of topological defects with negatively-signed Gaussian charge at large twist and small but finite stretch.

  7. Second-order electron self-energy loop-after-loop correction for low- Z hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    Goidenko, Igor; Labzowsky, Leonti; Plunien, Günter; Soff, Gerhard

    2005-07-01

    The second-order electron self-energy loop-after-loop correction is investigated for hydrogen-like ions in the region of low nuclear charge numbers Z. Both irreducible and reducible parts of this correction are evaluated for the 1s1/2-state within the Fried-Yennie gauge. We confirm the result obtained first by Mallampalli and Sapirstein. The reducible part of this correction is evaluated numerically for the first time and it is consistent with the corresponding analytical αZ-expansion.

  8. Penetration and release studies of positively and negatively charged nanoemulsions--is there a benefit of the positive charge?

    PubMed

    Baspinar, Yücel; Borchert, Hans-Hubert

    2012-07-01

    The surface of all tissues, including the stratum corneum, carries a negative charge. Following that fact it is assumed that a positively charged topical formulation could lead to an enhanced penetration because of an increased interaction with the negative charge of the membrane. The intention of this study is to prove an enhanced penetration of a positively charged nanoemulsion compared to a negatively charged nanoemulsion, both containing prednicarbate. The release and penetration of these nanoemulsions, produced with the high pressure homogenization method, were investigated. Regarding these results reveals that the release of the negatively charged formulation is higher compared to the positively charged nanoemulsion, while the penetration of the positively charged nanoemulsion is enhanced compared to the negatively charged formulation. The results of the investigated positively charged nanoemulsion containing prednicarbate show that its topical use could be advantageous for the therapy of atopic dermatitis, especially regarding phytosphingosine, which was responsible for the positive charge. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Sweeping Arches and Loops [video

    NASA Image and Video Library

    2014-07-10

    Two active regions with their intense magnetic fields produced towering arches and spiraling coils of solar loops above them (June 29 - July 1, 2014) as they rotated into view. When viewed in extreme ultraviolet light, magnetic field lines are revealed by charged particles that travel along them. These active regions appear as dark sunspots when viewed in filtered light. Note the small blast in the upper of the two major active regions, followed by more coils of loops as the region reorganizes itself. The still was taken on June 30 at 10:33 UT. Credit: NASA/Solar Dynamics Observatory Two active regions with their intense magnetic fields produced towering arches and spiraling coils of solar loops above them (June 29 - July 1, 2014) as they rotated into view. When viewed in extreme ultraviolet light, magnetic field lines are revealed by charged particles that travel along them. These active regions appear as dark sunspots when viewed in filtered light. Note the small blast in the upper of the two major active regions, followed by more coils of loops as the region reorganizes itself. The still was taken on June 30 at 10:33 UT. Credit: Solar Dynamics Observatory/NASA.

  10. Transient performance and temperature field of a natural convection air dehumidifier loop

    NASA Astrophysics Data System (ADS)

    Fazilati, Mohammad Ali; Sedaghat, Ahmad; Alemrajabi, Ali-Akbar

    2017-07-01

    In this paper, transient performance of the previously introduced natural convection heat and mass transfer loop is investigated for an air dehumidifier system. The performance of the loop is studied in different conditions of heat source/heat sink temperature and different startup desiccant concentrations. Unlike conventional loops, it is observed that natural convection of the fluid originates from the heat sink towards the heat source. The proper operation of the cycle is highly dependent on the heat sink/heat source temperatures. To reduce the time constant of the system, a proper desiccant concentration should be adopted for charge of the loop.

  11. Helicity charging and eruption of magnetic flux from the Sun

    NASA Technical Reports Server (NTRS)

    Rust, David M.; Kumar, A.

    1994-01-01

    The ejection of helical toroidal fields from the solar atmosphere and their detection in interplanetary space are described. The discovery that solar magnetic fields are twisted and that they are segregated by hemisphere according to their chirality has important implications for the escape process. The roles played by erupting prominences, coronal mass ejections (CME's) and active region (AR) loops in expressing the escape of magnetic flux and helicity are discussed. Sporadic flux escape associated with filament eruptions accounts for less than one-tenth the flux loss. Azimuthal flux loss by CME's could account for more, but the major contributor to flux escape may be AR loop expansion. It is shown how the transfer of magnetic helicity from the sun's interior into emerged loops ('helicity charging') could be the effective driver of solar eruptions and of flux loss from the sun.

  12. Motor Control and Regulation for a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara; Lyons, Valerie

    2003-01-01

    This talk will focus on the motor control algorithms used to regulate the flywheel system at the NASA Glenn Research Center. First a discussion of the inner loop torque control technique will be given. It is based on the principle of field orientation and is implemented without a position or speed sensor (sensorless control). Then the outer loop charge and discharge algorithm will be presented. This algorithm controls the acceleration of the flywheel during charging and the deceleration while discharging. The algorithm also allows the flywheel system to regulate the DC bus voltage during the discharge cycle.

  13. Space Weather Influence on Relative Motion Control using the Touchless Electrostatic Tractor

    NASA Astrophysics Data System (ADS)

    Hogan, Erik A.; Schaub, Hanspeter

    2016-09-01

    With recent interest in the use of electrostatic forces for contactless tugging and attitude control of noncooperative objects for orbital servicing and active debris mitigation, the need for a method of remote charge control arises. In this paper, the use of a directed electron beam for remote charge control is considered in conjunction with the relative motion control. A tug vehicle emits an electron beam onto a deputy object, charging it negatively. At the same time, the tug is charged positively due to beam emission, resulting in an attractive electrostatic force. The relative position feedback control between the tug and the passive debris object is studied subject to the charging being created through an electron beam. Employing the nominal variations of the GEO space weather conditions across longitude slots, two electrostatic tugging strategies are considered. First, the electron beam current is adjusted throughout the orbit in order to maximize this resulting electrostatic force. This open-loop control strategy compensates for changes in the nominally expected local space weather environment in the GEO region to adjust for fluctuations in the local plasma return currents. Second, the performance impact of using a fixed electron beam current on the electrostatic tractor is studied if the same natural space weather variations are assumed. The fixed electron beam current shows a minor performance penalty (<5 %) while providing a much simpler implementation that does not require any knowledge of local space weather conditions.

  14. 22. EASTERN END OF LOGAN LOOP, NORTH SIDE (Buildings No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. EASTERN END OF LOGAN LOOP, NORTH SIDE (Buildings No. 10, 9) (Copy negative made from National Archives negative No. 92-F-61A-5) - Fort Sheridan, 25 miles Northeast of Chicago, on Lake Michigan, Lake Forest, Lake County, IL

  15. Fabrication techniques for superconducting readout loops

    NASA Technical Reports Server (NTRS)

    Payne, J. E.

    1982-01-01

    Procedures for the fabrication of superconducting readout loops out of niobium on glass substrates were developed. A computer program for an existing fabrication system was developed. Both positive and negative resist procedures for the production of the readout loops were investigated. Methods used to produce satisfactory loops are described and the various parameters affecting the performance of the loops are analyzed.

  16. Mean field analysis of a spatial stochastic model of a gene regulatory network.

    PubMed

    Sturrock, M; Murray, P J; Matzavinos, A; Chaplain, M A J

    2015-10-01

    A gene regulatory network may be defined as a collection of DNA segments which interact with each other indirectly through their RNA and protein products. Such a network is said to contain a negative feedback loop if its products inhibit gene transcription, and a positive feedback loop if a gene product promotes its own production. Negative feedback loops can create oscillations in mRNA and protein levels while positive feedback loops are primarily responsible for signal amplification. It is often the case in real biological systems that both negative and positive feedback loops operate in parameter regimes that result in low copy numbers of gene products. In this paper we investigate the spatio-temporal dynamics of a single feedback loop in a eukaryotic cell. We first develop a simplified spatial stochastic model of a canonical feedback system (either positive or negative). Using a Gillespie's algorithm, we compute sample trajectories and analyse their corresponding statistics. We then derive a system of equations that describe the spatio-temporal evolution of the stochastic means. Subsequently, we examine the spatially homogeneous case and compare the results of numerical simulations with the spatially explicit case. Finally, using a combination of steady-state analysis and data clustering techniques, we explore model behaviour across a subregion of the parameter space that is difficult to access experimentally and compare the parameter landscape of our spatio-temporal and spatially-homogeneous models.

  17. Role of protein surface charge in monellin sweetness.

    PubMed

    Xue, Wei-Feng; Szczepankiewicz, Olga; Thulin, Eva; Linse, Sara; Carey, Jannette

    2009-03-01

    A small number of proteins have the unusual property of tasting intensely sweet. Despite many studies aimed at identifying their sweet taste determinants, the molecular basis of protein sweetness is not fully understood. Recent mutational studies of monellin have implicated positively charged residues in sweetness. In the present work, the effect of overall net charge was investigated using the complementary approach of negative charge alterations. Multiple substitutions of Asp/Asn and Glu/Gln residues radically altered the surface charge of single-chain monellin by removing six negative charges or adding four negative charges. Biophysical characterization using circular dichroism, fluorescence, and two-dimensional NMR demonstrates that the native fold of monellin is preserved in the variant proteins under physiological solution conditions although their stability toward chemical denaturation is altered. A human taste test was employed to determine the sweetness detection threshold of the variants. Removal of negative charges preserves monellin sweetness, whereas added negative charge has a large negative impact on sweetness. Meta-analysis of published charge variants of monellin and other sweet proteins reveals a general trend toward increasing sweetness with increasing positive net charge. Structural mapping of monellin variants identifies a hydrophobic surface predicted to face the receptor where introduced positive or negative charge reduces sweetness, and a polar surface where charges modulate long-range electrostatic complementarity.

  18. Closed-loop conductance scanning tunneling spectroscopy: demonstrating the equivalence to the open-loop alternative.

    PubMed

    Hellenthal, Chris; Sotthewes, Kai; Siekman, Martin H; Kooij, E Stefan; Zandvliet, Harold J W

    2015-01-01

    We demonstrate the validity of using closed-loop z(V) conductance scanning tunneling spectroscopy (STS) measurements for the determination of the effective tunneling barrier by comparing them to more conventional open-loop I(z) measurements. Through the development of a numerical model, the individual contributions to the effective tunneling barrier present in these experiments, such as the work function and the presence of an image charge, are determined quantitatively. This opens up the possibility of determining tunneling barriers of both vacuum and molecular systems in an alternative and more detailed manner.

  19. Predictive models of radiative neutrino masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julio, J., E-mail: julio@lipi.go.id

    2016-06-21

    We discuss two models of radiative neutrino mass generation. The first model features one–loop Zee model with Z{sub 4} symmetry. The second model is the two–loop neutrino mass model with singly- and doubly-charged scalars. These two models fit neutrino oscillation data well and predict some interesting rates for lepton flavor violation processes.

  20. Positive exchange-bias and giant vertical hysteretic shift in La0.3Sr0.7FeO3/SrRuO3 bilayers

    PubMed Central

    Rana, Rakesh; Pandey, Parul; Singh, R. P.; Rana, D. S.

    2014-01-01

    The exchange-bias effects in the mosaic epitaxial bilayers of the itinerant ferromagnet (FM) SrRuO3 and the antiferromagnetic (AFM) charge-ordered La0.3Sr0.7FeO3 were investigated. An uncharacteristic low-field positive exchange bias, a cooling-field driven reversal of positive to negative exchange-bias and a layer thickness optimised unusual vertical magnetization shift were all novel facets of exchange bias realized for the first time in magnetic oxides. The successive magnetic training induces a transition from positive to negative exchange bias regime with changes in domain configurations. These observations are well corroborated by the hysteretic loop asymmetries which display the modifications in the AFM spin correlations. These exotic features emphasize the key role of i) mosaic disorder induced subtle interplay of competing AFM-superexchange and FM double exchange at the exchange biased interface and, ii) training induced irrecoverable alterations in the AFM spin structure. PMID:24569516

  1. An analysis of five negative sprite-parent discharges and their associated thunderstorm charge structures

    NASA Astrophysics Data System (ADS)

    Boggs, Levi D.; Liu, Ningyu; Splitt, Michael; Lazarus, Steven; Glenn, Chad; Rassoul, Hamid; Cummer, Steven A.

    2016-01-01

    In this study we analyze the discharge morphologies of five confirmed negative sprite-parent discharges and the associated charge structures of the thunderstorms that produced them. The negative sprite-parent lightning took place in two thunderstorms that were associated with a tropical disturbance in east central and south Florida. The first thunderstorm, which moved onshore in east central Florida, produced four of the five negative sprite-parent discharges within a period of 17 min, as it made landfall from the Atlantic Ocean. These negative sprite-parents were composed of bolt-from-the-blue (BFB), hybrid intracloud-negative cloud-to-ground (IC-NCG), and multicell IC-NCGs discharges. The second thunderstorm, which occurred inland over south Florida, produced a negative sprite-parent that was a probable hybrid IC-NCG discharge and two negative gigantic jets (GJs). Weakened upper positive charge with very large midlevel negative charge was inferred for both convective cells that initiated the negative-sprite-parent discharges. Our study suggests tall, intense convective systems with high wind shear at the middle to upper regions of the cloud accompanied by low cloud-to-ground (CG) flash rates promote these charge structures. The excess amount of midlevel negative charge results in these CG discharges transferring much more charge to ground than typical negative CG discharges. We find that BFB discharges prefer an asymmetrical charge structure that brings the negative leader exiting the upper positive charge region closer to the lateral positive screening charge layer. This may be the main factor in determining whether a negative leader exiting the upper positive region of the thundercloud forms a BFB or GJ.

  2. An Analysis of Two Thunderstorms Producing Five Negative Sprites on 12 September 2014

    NASA Astrophysics Data System (ADS)

    Boggs, L.; Liu, N.; Splitt, M. E.; Lazarus, S. M.; Cummer, S. A.; Rassoul, H.

    2015-12-01

    We present a detailed analysis of the thunderstorms and the parent lightning discharge morphologies of five confirmed negative sprites taking place in two different thunderstorms. These two thunderstorms took place in east-central and south Florida on 12 September 2014. We utilized several lightning location networks, remote magnetic field measurements, dual polarization radar, and balloon borne soundings in our analysis. Each parent discharge was immediately preceded by intra-cloud (IC) discharges between the mid-level negative and upper positive charge regions. This either allowed a second upward negative leader to escape the upper positive charge region, or encouraged a downward negative leader to be initiated and connect with ground. The discharges found in this study support the findings of Lu et al., 2012 [JGR,117, D04212, 2012] that negative sprite-parent lightning consists primarily of hybrid intra-cloud negative cloud-to-ground (IC-NCG) and bolt-from-the-blue (BFB) lightning. Our work finds these unique discharges form in thunderstorms that have an excess of mid-level negative charge and weakened upper positive charge. Due to this charge structure, these unusual discharges transfer more charge to the ground than typical negative cloud-to-ground discharges. Our study suggests that the key difference separating bolt-from-the-blue and gigantic jet discharges is an asymmetric charge structure. This acts to bring the negative leader exiting the thundercloud closer to the lateral positive screening layer, encouraging the negative leader to turn towards ground. This investigation reveals IC discharges that involve multiple convective cells and come to ground as a negative CG discharge, a breed of hybrid IC-NCG discharges, also transfer more negative charge to ground than typical negative CG discharges and are able to initiate negative sprites. From this work, the charge structures mentioned above resulted from tall, intense convective cells with low CG flash rates with high wind shear in the mid to upper regions of the cloud. This acted to create a large reservoir of mid-level negative charge and create a general asymmetry to the charge structure. The wind shear in the upper regions also acted to weaken the upper positive charge by turbulent mixing with the upper negative screening charge layer.

  3. The influence of charge and the distribution of charge in the polar region of phospholipids on the activity of UDP-glucuronosyltransferase.

    PubMed

    Zakim, D; Eibl, H

    1992-07-05

    Studies of the mechanism of lipid-induced regulation of the microsomal enzyme UDP-glucuronosyltransferase have been extended by examining the influence of charge within the polar region on the ability of lipids to activate delipidated pure enzyme. The effects of net negative charge, of charge separation in phosphocholine, and of the distribution of charge in the polar region of lipids were studied using the GT2p isoform isolated from pig liver. Prior experiments have shown that lipids with net negative charge inhibit the enzyme (Zakim, D., Cantor, M., and Eibl, H. (1988) J. Biol. Chem. 263, 5164-5169). The current experiments show that the extent of inhibition on a molar basis increases as the net negative charge increases from -1 to -2. The inhibitory effect of negatively charged lipids is on the functional state of the enzyme and is not due to electrostatic repulsion of negatively charged substrates of the enzyme. Although the inhibitory effect of net negative charge is removed when negative charge is balanced by a positive charge due to a quaternary nitrogen, neutrality of the polar region is not a sufficient condition for activation of the enzyme. In addition to a balance of charge between Pi and the quaternary nitrogen, the distance between the negative and positive charges and the orientation of the dipole created by them are critical for activation of GT2p. The negative and positive charges must be separated by the equivalent of three -CH2- groups for optimal activation by a lipid. Shortening this distance by one -CH2- unit leads to a lipid that is ineffective in activating the enzyme. Reversal of the orientation of the dipole in which the negative charge is on the polymethylene side of the lipid-water interface and the positive charge extends into water also produces a lipid that is not effective for activating GT2p. On the other hand, lipids with phosphoserine as the polar region, which has the "normal" P-N distance but carries a net negative charge, do not inhibit GT2p. This result again illustrates the importance of the dipole of phosphocholine for modulating the functional state of GT2p.

  4. Two-loop self-energy in the Lamb shift of the ground and excited states of hydrogenlike ions

    NASA Astrophysics Data System (ADS)

    Yerokhin, V. A.

    2018-05-01

    The two-loop self-energy correction to the Lamb shift of hydrogenlike ions is calculated for the 1 s , 2 s , and 2 p1 /2 states and nuclear charge numbers Z =30 -100 . The calculation is performed to all orders in the nuclear binding strength parameter Z α . As compared to previous calculations of this correction, numerical accuracy is improved by an order of magnitude and the region of the nuclear charges is extended. An analysis of the Z dependence of the obtained results demonstrates their consistency with the known Z α -expansion coefficients.

  5. Nonlinear space charge dynamics in mixed ionic-electronic conductors: Resistive switching and ferroelectric-like hysteresis of electromechanical response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozovska, Anna N.; Morozovsky, Nicholas V.; Eliseev, Eugene A.

    We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear couplingmore » between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.« less

  6. The Minimum M3-M4 Loop Length of Neurotransmitter-activated Pentameric Receptors Is Critical for the Structural Integrity of Cytoplasmic Portals*

    PubMed Central

    Baptista-Hon, Daniel T.; Deeb, Tarek Z.; Lambert, Jeremy J.; Peters, John A.; Hales, Tim G.

    2013-01-01

    The 5-HT3A receptor homology model, based on the partial structure of the nicotinic acetylcholine receptor from Torpedo marmorata, reveals an asymmetric ion channel with five portals framed by adjacent helical amphipathic (HA) stretches within the 114-residue loop between the M3 and M4 membrane-spanning domains. The positive charge of Arg-436, located within the HA stretch, is a rate-limiting determinant of single channel conductance (γ). Further analysis reveals that positive charge and volume of residue 436 are determinants of 5-HT3A receptor inward rectification, exposing an additional role for portals. A structurally unresolved stretch of 85 residues constitutes the bulk of the M3-M4 loop, leaving a >45-Å gap in the model between M3 and the HA stretch. There are no additional structural data for this loop, which is vestigial in bacterial pentameric ligand-gated ion channels and was largely removed for crystallization of the Caenorhabditis elegans glutamate-activated pentameric ligand-gated ion channels. We created 5-HT3A subunit loop truncation mutants, in which sequences framing the putative portals were retained, to determine the minimum number of residues required to maintain their functional integrity. Truncation to between 90 and 75 amino acids produced 5-HT3A receptors with unaltered rectification. Truncation to 70 residues abolished rectification and increased γ. These findings reveal a critical M3-M4 loop length required for functions attributable to cytoplasmic portals. Examination of all 44 subunits of the human neurotransmitter-activated Cys-loop receptors reveals that, despite considerable variability in their sequences and lengths, all M3-M4 loops exceed 70 residues, suggesting a fundamental requirement for portal integrity. PMID:23740249

  7. Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Achim, C. V.; Ala-Nissila, T.

    2012-09-01

    Electrostatic correlation effects in inhomogeneous symmetric electrolytes are investigated within a previously developed electrostatic self-consistent theory [R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003)], 10.1140/epje/i2002-10159-0. To this aim, we introduce two computational approaches that allow to solve the self-consistent equations beyond the loop expansion. The first method is based on a perturbative Green's function technique, and the second one is an extension of a previously introduced semiclassical approximation for single dielectric interfaces to the case of slit nanopores. Both approaches can handle the case of dielectrically discontinuous boundaries where the one-loop theory is known to fail. By comparing the theoretical results obtained from these schemes with the results of the Monte Carlo simulations that we ran for ions at neutral single dielectric interfaces, we first show that the weak coupling Debye-Huckel theory remains quantitatively accurate up to the bulk ion density ρb ≃ 0.01 M, whereas the self-consistent theory exhibits a good quantitative accuracy up to ρb ≃ 0.2 M, thus improving the accuracy of the Debye-Huckel theory by one order of magnitude in ionic strength. Furthermore, we compare the predictions of the self-consistent theory with previous Monte Carlo simulation data for charged dielectric interfaces and show that the proposed approaches can also accurately handle the correlation effects induced by the surface charge in a parameter regime where the mean-field result significantly deviates from the Monte Carlo data. Then, we derive from the perturbative self-consistent scheme the one-loop theory of asymmetrically partitioned salt systems around a dielectrically homogeneous charged surface. It is shown that correlation effects originate in these systems from a competition between the salt screening loss at the interface driving the ions to the bulk region, and the interfacial counterion screening excess attracting them towards the surface. This competition can be quantified in terms of the characteristic surface charge σ _s^*=√{2ρ _b/(π ℓ _B)}, where ℓB = 7 Å is the Bjerrum length. In the case of weak surface charges σ _s≪ σ _s^* where counterions form a diffuse layer, the interfacial salt screening loss is the dominant effect. As a result, correlation effects decrease the mean-field density of both coions and counterions. With an increase of the surface charge towards σ _s^*, the surface-attractive counterion screening excess starts to dominate, and correlation effects amplify in this regime the mean-field density of both type of ions. However, in the regime σ _s>σ _s^*, the same counterion screening excess also results in a significant decrease of the electrostatic mean-field potential. This reduces in turn the mean-field counterion density far from the charged surface. We also show that for σ _s≫ σ _s^*, electrostatic correlations result in a charge inversion effect. However, the electrostatic coupling regime where this phenomenon takes place should be verified with Monte Carlo simulations since this parameter regime is located beyond the validity range of the one-loop theory.

  8. Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion.

    PubMed

    Buyukdagli, Sahin; Achim, C V; Ala-Nissila, T

    2012-09-14

    Electrostatic correlation effects in inhomogeneous symmetric electrolytes are investigated within a previously developed electrostatic self-consistent theory [R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003)]. To this aim, we introduce two computational approaches that allow to solve the self-consistent equations beyond the loop expansion. The first method is based on a perturbative Green's function technique, and the second one is an extension of a previously introduced semiclassical approximation for single dielectric interfaces to the case of slit nanopores. Both approaches can handle the case of dielectrically discontinuous boundaries where the one-loop theory is known to fail. By comparing the theoretical results obtained from these schemes with the results of the Monte Carlo simulations that we ran for ions at neutral single dielectric interfaces, we first show that the weak coupling Debye-Huckel theory remains quantitatively accurate up to the bulk ion density ρ(b) ≃ 0.01 M, whereas the self-consistent theory exhibits a good quantitative accuracy up to ρ(b) ≃ 0.2 M, thus improving the accuracy of the Debye-Huckel theory by one order of magnitude in ionic strength. Furthermore, we compare the predictions of the self-consistent theory with previous Monte Carlo simulation data for charged dielectric interfaces and show that the proposed approaches can also accurately handle the correlation effects induced by the surface charge in a parameter regime where the mean-field result significantly deviates from the Monte Carlo data. Then, we derive from the perturbative self-consistent scheme the one-loop theory of asymmetrically partitioned salt systems around a dielectrically homogeneous charged surface. It is shown that correlation effects originate in these systems from a competition between the salt screening loss at the interface driving the ions to the bulk region, and the interfacial counterion screening excess attracting them towards the surface. This competition can be quantified in terms of the characteristic surface charge σ(s)*=√(2ρ(b)/(πl(B)), where l(B) = 7 Å is the Bjerrum length. In the case of weak surface charges σ(s)≪σ(s)* where counterions form a diffuse layer, the interfacial salt screening loss is the dominant effect. As a result, correlation effects decrease the mean-field density of both coions and counterions. With an increase of the surface charge towards σ(s)*, the surface-attractive counterion screening excess starts to dominate, and correlation effects amplify in this regime the mean-field density of both type of ions. However, in the regime σ(s)>σ(s)*, the same counterion screening excess also results in a significant decrease of the electrostatic mean-field potential. This reduces in turn the mean-field counterion density far from the charged surface. We also show that for σ(s)≫σ(s)*, electrostatic correlations result in a charge inversion effect. However, the electrostatic coupling regime where this phenomenon takes place should be verified with Monte Carlo simulations since this parameter regime is located beyond the validity range of the one-loop theory.

  9. Semi-quantitative visual detection of loop mediated isothermal amplification (LAMP)-generated DNA by distance-based measurement on a paper device.

    PubMed

    Hongwarittorrn, Irin; Chaichanawongsaroj, Nuntaree; Laiwattanapaisal, Wanida

    2017-12-01

    A distance-based paper analytical device (dPAD) for loop mediated isothermal amplification (LAMP) detection based on distance measurement was proposed. This approach relied on visual detection by the length of colour developed on the dPAD with reference to semi-quantitative determination of the initial amount of genomic DNA. In this communication, E. coli DNA was chosen as a template DNA for LAMP reaction. In accordance with the principle, the dPAD was immobilized by polyethylenimine (PEI), which is a strong cationic polymer, in the hydrophilic channel of the paper device. Hydroxynaphthol blue (HNB), a colourimetric indicator for monitoring the change of magnesium ion concentration in the LAMP reaction, was used to react with the immobilized PEI. The positive charges of PEI react with the negative charges of free HNB in the LAMP reaction, producing a blue colour deposit on the paper device. Consequently, the apparently visual distance appeared within 5min and length of distance correlated to the amount of DNA in the sample. The distance-based PAD for the visual detection of the LAMP reaction could quantify the initial concentration of genomic DNA as low as 4.14 × 10 3 copiesµL -1 . This distance-based visual semi-quantitative platform is suitable for choice of LAMP detection method, particular in resource-limited settings because of the advantages of low cost, simple fabrication and operation, disposability and portable detection of the dPAD device. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Functional anticodon architecture of human tRNALys3 includes disruption of intraloop hydrogen bonding by the naturally occurring amino acid modification, t6A.

    PubMed

    Stuart, J W; Gdaniec, Z; Guenther, R; Marszalek, M; Sochacka, E; Malkiewicz, A; Agris, P F

    2000-11-07

    The structure of the human tRNA(Lys3) anticodon stem and loop domain (ASL(Lys3)) provides evidence of the physicochemical contributions of N6-threonylcarbamoyladenosine (t(6)A(37)) to tRNA(Lys3) functions. The t(6)A(37)-modified anticodon stem and loop domain of tRNA(Lys3)(UUU) (ASL(Lys3)(UUU)- t(6)A(37)) with a UUU anticodon is bound by the appropriately programmed ribosomes, but the unmodified ASL(Lys3)(UUU) is not [Yarian, C., Marszalek, M., Sochacka, E., Malkiewicz, A., Guenther, R., Miskiewicz, A., and Agris, P. F., Biochemistry 39, 13390-13395]. The structure, determined to an average rmsd of 1.57 +/- 0.33 A (relative to the mean structure) by NMR spectroscopy and restrained molecular dynamics, is the first reported of an RNA in which a naturally occurring hypermodified nucleoside was introduced by automated chemical synthesis. The ASL(Lys3)(UUU)-t(6)A(37) loop is significantly different than that of the unmodified ASL(Lys3)(UUU), although the five canonical base pairs of both ASL(Lys3)(UUU) stems are in the standard A-form of helical RNA. t(6)A(37), 3'-adjacent to the anticodon, adopts the form of a tricyclic nucleoside with an intraresidue H-bond and enhances base stacking on the 3'-side of the anticodon loop. Critically important to ribosome binding, incorporation of the modification negates formation of an intraloop U(33).A(37) base pair that is observed in the unmodified ASL(Lys3)(UUU). The anticodon wobble position U(34) nucleobase in ASL(Lys3)(UUU)-t(6)A(37) is significantly displaced from its position in the unmodified ASL and directed away from the codon-binding face of the loop resulting in only two anticodon bases for codon binding. This conformation is one explanation for ASL(Lys3)(UUU) tendency to prematurely terminate translation and -1 frame shift. At the pH 5.6 conditions of our structure determination, A(38) is protonated and positively charged in ASL(Lys3)(UUU)-t(6)A(37) and the unmodified ASL(Lys3)(UUU). The ionized carboxylic acid moiety of t(6)A(37) possibly neutralizes the positive charge of A(+)(38). The protonated A(+)(38) can base pair with C(32), but t(6)A(37) may weaken the interaction through steric interference. From these results, we conclude that ribosome binding cannot simply be an induced fit of the anticodon stem and loop, otherwise the unmodified ASL(Lys3)(UUU) would bind as well as ASL(Lys3)(UUU)-t(6)A(37). t(6)A(37) and other position 37 modifications produce the open, structured loop required for ribosomal binding.

  11. Measuring electrically charged particle fluxes in space using a fiber optic loop sensor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of this program was to demonstrate the potential of a fiber optic loop sensor for the measurement of electrically charged particle fluxes in space. The key elements of the sensor are a multiple turn loop of low birefringence, single mode fiber, with a laser diode light source, and a low noise optical receiver. The optical receiver is designed to be shot noise limited, with this being the limiting sensitivity factor for the sensor. The sensing element is the fiber optic loop. Under a magnetic field from an electric current flowing along the axis of the loop, there is a non-vanishing line integral along the fiber optic loop. This causes a net birefringence producing two states of polarization whose phase difference is correlated to magnetic field strength and thus, current in the optical receiver electronic processing. The objectives in this program were to develop a prototype laser diode powered fiber optic sensor. The performance specification of a minimum detectable current density of 1 (mu)amp/sq m-(radical)Hz, should be at the shot noise limit of the detection electronics. OPTRA has successfully built and tested a 3.2 m diameter loop with 137 turns of low birefringence optical fiber and achieved a minimum detectable current density of 5.4 x 10(exp-5) amps/(radical)Hz. If laboratory space considerations were not an issue, with the length of optical fiber available to us, we would have achieved a minimum detectable current density of 4 x 10(exp -7) amps/(radical)Hz.

  12. Identification of the HIV-1 Vif and Human APOBEC3G Protein Interface.

    PubMed

    Letko, Michael; Booiman, Thijs; Kootstra, Neeltje; Simon, Viviana; Ooms, Marcel

    2015-12-01

    Human cells express natural antiviral proteins, such as APOBEC3G (A3G), that potently restrict HIV replication. As a counter-defense, HIV encodes the accessory protein Vif, which binds A3G and mediates its proteasomal degradation. Our structural knowledge on how Vif and A3G interact is limited, because a co-structure is not available. We identified specific points of contact between Vif and A3G by using functional assays with full-length A3G, patient-derived Vif variants, and HIV forced evolution. These anchor points were used to model and validate the Vif-A3G interface. The resultant co-structure model shows that the negatively charged β4-α4 A3G loop, which contains primate-specific variation, is the core Vif binding site and forms extensive interactions with a positively charged pocket in HIV Vif. Our data present a functional map of this viral-host interface and open avenues for targeted approaches to block HIV replication by obstructing the Vif-A3G interaction. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor

    PubMed Central

    Shah, Neel H; Wang, Qi; Yan, Qingrong; Karandur, Deepti; Kadlecek, Theresa A; Fallahee, Ian R; Russ, William P; Ranganathan, Rama; Weiss, Arthur; Kuriyan, John

    2016-01-01

    The sequence of events that initiates T cell signaling is dictated by the specificities and order of activation of the tyrosine kinases that signal downstream of the T cell receptor. Using a platform that combines exhaustive point-mutagenesis of peptide substrates, bacterial surface-display, cell sorting, and deep sequencing, we have defined the specificities of the first two kinases in this pathway, Lck and ZAP-70, for the T cell receptor ζ chain and the scaffold proteins LAT and SLP-76. We find that ZAP-70 selects its substrates by utilizing an electrostatic mechanism that excludes substrates with positively-charged residues and favors LAT and SLP-76 phosphosites that are surrounded by negatively-charged residues. This mechanism prevents ZAP-70 from phosphorylating its own activation loop, thereby enforcing its strict dependence on Lck for activation. The sequence features in ZAP-70, LAT, and SLP-76 that underlie electrostatic selectivity likely contribute to the specific response of T cells to foreign antigens. DOI: http://dx.doi.org/10.7554/eLife.20105.001 PMID:27700984

  14. Conformal correlation functions in the Brownian loop soup

    NASA Astrophysics Data System (ADS)

    Camia, Federico; Gandolfi, Alberto; Kleban, Matthew

    2016-01-01

    We define and study a set of operators that compute statistical properties of the Brownian loop soup, a conformally invariant gas of random Brownian loops (Brownian paths constrained to begin and end at the same point) in two dimensions. We prove that the correlation functions of these operators have many of the properties of conformal primaries in a conformal field theory, and compute their conformal dimension. The dimensions are real and positive, but have the novel feature that they vary continuously as a periodic function of a real parameter. We comment on the relation of the Brownian loop soup to the free field, and use this relation to establish that the central charge of the loop soup is twice its intensity.

  15. Feedback loop compensates for rectifier nonlinearity

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  16. Refinement of the conformation of a critical region of charge-charge interaction between cholecystokinin and its receptor.

    PubMed

    Ding, Xi-Qin; Pinon, Delia I; Furse, Kristina E; Lybrand, Terry P; Miller, Laurence J

    2002-05-01

    Insight into the molecular basis of cholecystokinin (CCK) binding to its receptor has come from receptor mutagenesis and photoaffinity labeling studies, with both contributing to the current hypothesis that the acidic Tyr-sulfate-27 residue within the peptide is situated adjacent to basic Arg(197) in the second loop of the receptor. Here, we refine our understanding of this region of interaction by examining a structure-activity series of these positions within both ligand and receptor and by performing three-dimensional molecular modeling of key pairs of modified ligand and receptor constructs. The important roles of Arg(197) and Tyr-sulfate-27 were supported by the marked negative impact on binding and biological response with their natural partner molecule when the receptor residue was replaced by acidic Asp or Glu and when the peptide residue was replaced by basic Arg, Lys, p-amino-Phe, p-guanidino-Phe, or p-methylamino-Phe. Complementary ligand-receptor charge-exchange experiments were unable to regain the lost function. This was supported by the molecular modeling, which demonstrated that the charge-reversed double mutants could not form a good interaction without extensive rearrangement of receptor conformation. The models further predicted that R197D and R197E mutations would lead to conformational changes in the extracellular domain, and this was experimentally supported by data showing that these mutations decreased peptide agonist and antagonist binding and increased nonpeptidyl antagonist binding. These receptor constructs also had increased susceptibility to trypsin degradation relative to the wild-type receptor. In contrast, the relatively conservative R197K mutation had modest negative impact on peptide agonist binding, again consistent with the modeling demonstration of loss of a series of stabilizing inter- and intramolecular bonds. The strong correlation between predicted and experimental results support the reported refinement in the three-dimensional structure of the CCK-occupied receptor.

  17. No need to be HAMLET or BAMLET to interact with histones: binding of monomeric alpha-lactalbumin to histones and basic poly-amino acids.

    PubMed

    Permyakov, Serge E; Pershikova, Irina V; Khokhlova, Tatyana I; Uversky, Vladimir N; Permyakov, Eugene A

    2004-05-18

    The ability of a specific complex of human alpha-lactalbumin with oleic acid (HAMLET) to induce cell death with selectivity for tumor and undifferentiated cells was shown recently to be mediated by interaction of HAMLET with histone proteins irreversibly disrupting chromatin structure [Duringer, C., et al. (2003) J. Biol. Chem. 278, 42131-42135]. Here we show that monomeric alpha-lactalbumin (alpha-LA) in the absence of fatty acids is also able to bind efficiently to the primary target of HAMLET, histone HIII, regardless of Ca(2+) content. Thus, the modification of alpha-LA by oleic acid is not required for binding to histones. We suggest that interaction of negatively charged alpha-LA with the basic histone stabilizes apo-alpha-LA and destabilizes the Ca(2+)-bound protein due to compensation for excess negative charge of alpha-LA's Ca(2+)-binding loop by positively charged residues of the histone. Spectrofluorimetric curves of titration of alpha-LA by histone H3 were well approximated by a scheme of cooperative binding of four alpha-LA molecules per molecule of histone, with an equilibrium dissociation constant of 1.0 microM. Such a stoichiometry of binding implies that the binding process is not site-specific with respect to histone and likely is driven by just electrostatic interactions. Co-incubation of positively charged poly-amino acids (poly-Lys and poly-Arg) with alpha-LA resulted in effects which were similar to those caused by histone HIII, confirming the electrostatic nature of the alpha-LA-histone interaction. In all cases that were studied, the binding was accompanied by aggregation. The data indicate that alpha-lactalbumin can be used as a basis for the design of antitumor agents, acting through disorganization of chromatin structure due to interaction between alpha-LA and histone proteins.

  18. Non-Native Metal Ion Reveals the Role of Electrostatics in Synaptotagmin 1-Membrane Interactions.

    PubMed

    Katti, Sachin; Nyenhuis, Sarah B; Her, Bin; Srivastava, Atul K; Taylor, Alexander B; Hart, P John; Cafiso, David S; Igumenova, Tatyana I

    2017-06-27

    C2 domains are independently folded modules that often target their host proteins to anionic membranes in a Ca 2+ -dependent manner. In these cases, membrane association is triggered by Ca 2+ binding to the negatively charged loop region of the C2 domain. Here, we used a non-native metal ion, Cd 2+ , in lieu of Ca 2+ to gain insight into the contributions made by long-range Coulombic interactions and direct metal ion-lipid bridging to membrane binding. Using X-ray crystallography, NMR, Förster resonance energy transfer, and vesicle cosedimentation assays, we demonstrate that, although Cd 2+ binds to the loop region of C2A/B domains of synaptotagmin 1 with high affinity, long-range Coulombic interactions are too weak to support membrane binding of individual domains. We attribute this behavior to two factors: the stoichiometry of Cd 2+ binding to the loop regions of the C2A and C2B domains and the impaired ability of Cd 2+ to directly coordinate the lipids. In contrast, electron paramagnetic resonance experiments revealed that Cd 2+ does support membrane binding of the C2 domains in full-length synaptotagmin 1, where the high local lipid concentrations that result from membrane tethering can partially compensate for lack of a full complement of divalent metal ions and specific lipid coordination in Cd 2+ -complexed C2A/B domains. Our data suggest that long-range Coulombic interactions alone can drive the initial association of C2A/B with anionic membranes and that Ca 2+ further augments membrane binding by the formation of metal ion-lipid coordination bonds and additional Ca 2+ ion binding to the C2 domain loop regions.

  19. REVIEWS OF TOPICAL PROBLEMS: Coronal magnetic loops

    NASA Astrophysics Data System (ADS)

    Zaitsev, Valerii V.; Stepanov, Alexander V.

    2008-11-01

    The goal of this review is to outline some new ideas in the physics of coronal magnetic loops, the fundamental structural elements of the atmospheres of the Sun and flaring stars, which are involved in phenomena such as stellar coronal heating, flare energy release, charged particle acceleration, and the modulation of optical, radio, and X-ray emissions. The Alfvén-Carlqvist view of a coronal loop as an equivalent electric circuit allows a good physical understanding of loop processes. Describing coronal loops as MHD-resonators explains various ways in which flaring emissions from the Sun and stars are modulated, whereas modeling them by magnetic mirror traps allows one to describe the dynamics and emission of high-energy particles. Based on these approaches, loop plasma and fast particle parameters are obtained and models for flare energy release and stellar corona heating are developed.

  20. Loop Electrostatics Asymmetry Modulates the Preexisting Conformational Equilibrium in Thrombin.

    PubMed

    Pozzi, Nicola; Zerbetto, Mirco; Acquasaliente, Laura; Tescari, Simone; Frezzato, Diego; Polimeno, Antonino; Gohara, David W; Di Cera, Enrico; De Filippis, Vincenzo

    2016-07-19

    Thrombin exists as an ensemble of active (E) and inactive (E*) conformations that differ in their accessibility to the active site. Here we show that redistribution of the E*-E equilibrium can be achieved by perturbing the electrostatic properties of the enzyme. Removal of the negative charge of the catalytic Asp102 or Asp189 in the primary specificity site destabilizes the E form and causes a shift in the 215-217 segment that compromises substrate entrance. Solution studies and existing structures of D102N document stabilization of the E* form. A new high-resolution structure of D189A also reveals the mutant in the collapsed E* form. These findings establish a new paradigm for the control of the E*-E equilibrium in the trypsin fold.

  1. Recovery curves of the surface electric field after lightning discharges occurring between the positive charge pocket and negative charge centre in a thundercloud

    NASA Astrophysics Data System (ADS)

    Pawar, S. D.; Kamra, A. K.

    2002-12-01

    Surface observations of the electric field recovery curves of the lightning discharges occurring between the positive charge pocket and negative main charge centre in an overhead thundercloud are reported. Such recovery curves are observed to have an additional step of very slow field-change observed at an after-discharge value of electric field equal to 5-6 kV m-1. The behavior of recovery curves is explained in terms of the coronae charge and the relative efficiencies of the charge generating processes responsible for growth of positive charge pocket and main negative charge centre in the thundercloud. The charging currents responsible for the growth of charge in positive charge pockets is computed to be 2-4 times larger than that for the growth of the main negative charge. However, the charge destroyed in such a discharge is found to be comparable to that in a discharge between the main charge centres of the thundercloud.

  2. Spring control of wire harness loops

    NASA Technical Reports Server (NTRS)

    Curcio, P. J.

    1979-01-01

    Negator spring control guides wire harness between movable and fixed structure. It prevents electrical wire harness loop from jamming or being severed as wire moves in response to changes in position of aircraft rudder. Spring-loaded coiled cable controls wire loop regardless of rudder movement.

  3. Is the negative glow plasma of a direct current glow discharge negatively charged?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, E. A.; Saifutdinov, A. I.; Demidov, V. I., E-mail: Vladimir.Demidov@mail.wvu.edu

    A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculationmore » of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge.« less

  4. Gonococcal Resistance to β-Lactams and Tetracycline Involves Mutation in Loop 3 of the Porin Encoded at the penB Locus

    PubMed Central

    Gill, M. J.; Simjee, S.; Al-Hattawi, K.; Robertson, B. D.; Easmon, C. S. F.; Ison, C. A.

    1998-01-01

    penB is a chromosomal mutation that confers resistance to β-lactams and tetracyclines and reduced susceptibility to quinolones in Neisseria gonorrhoeae. It is linked to the porin gene (por) and requires the increased expression of an efflux pump due to mtr. Transformation of a susceptible gonococcus (strain H1) with chromosomal DNA from strain FA140 (penA mtr penB; porin serovar IB1) and conjugal transfer of a β-lactamase-expressing plasmid was used to produce isogenic strains for determination of equilibrium periplasmic penicillin concentrations by the method of Zimmermann and Rosselet (W. Zimmermann and A. Rosselet, Antimicrob. Agents Chemother. 12:368–372, 1977). In transformants with the Mtr and PenB phenotypes, equilibrium concentrations of penicillin were reduced. DNA sequence analysis of por from isogenic penB and penB+ transformants revealed 14 sequence differences; nine of these differences resulted in amino acid changes. Three amino acid changes were found in the putative gonococcal equivalent of the pore-constricting loop 3 of Escherichia coli OmpF. Two of these changes (Gly-101–Ala-102→Asp-Asp) result in an increased negative charge at this position in por loop 3. PCR products comprising the complete por gene from strain FA140 were transformed into strain H1-2 (penA mtr; porin serovar IB-3), with the resulting transformants having the antibiotic susceptibility phenotype associated with penB. penB-like mutations were found in loop 3 of clinical isolates of gonococci with chromosomally mediated resistance to penicillin. We conclude that penB is a mutation in loop 3 of por that reduces porin permeability to hydrophilic antibiotics and plays an important role in the development of chromosomally mediated resistance to penicillin and tetracycline in gonococci. PMID:9797206

  5. Closed-loop fiber optic gyroscope with homodyne detection

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Qin, BingKun; Chen, Shufen

    1996-09-01

    Interferometric fiber optic gyroscope (IFOG) has been analyzed with autocontrol theory in this paper. An open-loop IFOG system is not able to restrain the bias drift, but a closed-loop IFOG system can do it very well using negative feedback in order to suppress zero drift. The result of our theoretic analysis and computer simulation indicate that the bias drift of a closed-loop system is smaller than an open- loop one.

  6. Modulation of dynamic modes by interplay between positive and negative feedback loops in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Wang, Liu-Suo; Li, Ning-Xi; Chen, Jing-Jia; Zhang, Xiao-Peng; Liu, Feng; Wang, Wei

    2018-04-01

    A positive and a negative feedback loop can induce bistability and oscillation, respectively, in biological networks. Nevertheless, they are frequently interlinked to perform more elaborate functions in many gene regulatory networks. Coupled positive and negative feedback loops may exhibit either oscillation or bistability depending on the intensity of the stimulus in some particular networks. It is less understood how the transition between the two dynamic modes is modulated by the positive and negative feedback loops. We developed an abstract model of such systems, largely based on the core p53 pathway, to explore the mechanism for the transformation of dynamic behaviors. Our results show that enhancing the positive feedback may promote or suppress oscillations depending on the strength of both feedback loops. We found that the system oscillates with low amplitudes in response to a moderate stimulus and switches to the on state upon a strong stimulus. When the positive feedback is activated much later than the negative one in response to a strong stimulus, the system exhibits long-term oscillations before switching to the on state. We explain this intriguing phenomenon using quasistatic approximation. Moreover, early switching to the on state may occur when the system starts from a steady state in the absence of stimuli. The interplay between the positive and negative feedback plays a key role in the transitions between oscillation and bistability. Of note, our conclusions should be applicable only to some specific gene regulatory networks, especially the p53 network, in which both oscillation and bistability exist in response to a certain type of stimulus. Our work also underscores the significance of transient dynamics in determining cellular outcome.

  7. Stretched Loops

    NASA Image and Video Library

    2017-03-16

    When an active region rotated over to the edge of the sun, it presented us with a nice profile view of its elongated loops stretching and swaying above it (Mar. 8-9, 2017). These loops are actually charged particles (made visible in extreme ultraviolet light) swirling along the magnetic field lines of the active region. The video covers about 30 hours of activity. Also of note is a darker twisting mass of plasma to the left of the active region being pulled and spun about by magnetic forces. Video is available at http://photojournal.jpl.nasa.gov/catalog/PIA21562

  8. Thunderstorm Charge Structures Producing Negative Gigantic Jets

    NASA Astrophysics Data System (ADS)

    Boggs, L.; Liu, N.; Riousset, J. A.; Shi, F.; Rassoul, H.

    2016-12-01

    Here we present observational and modeling results that provide insight into thunderstorm charge structures that produce gigantic jet discharges. The observational results include data from four different thunderstorms producing 9 negative gigantic jets from 2010 to 2014. We used radar, very high frequency (VHF) and low frequency (LF) lightning data to analyze the storm characteristics, charge structures, and lightning activity when the gigantic jets emerged from the parent thunderstorms. A detailed investigation of the evolution of one of the charge structures by analyzing the VHF data is also presented. The newly found charge structure obtained from the observations was analyzed with fractal modeling and compared with previous fractal modeling studies [Krehbiel et al., Nat. Geosci., 1, 233-237, 2008; Riousset et al., JGR, 115, A00E10, 2010] of gigantic jet discharges. Our work finds that for normal polarity thunderstorms, gigantic jet charge structures feature a narrow upper positive charge region over a wide middle negative charge region. There also likely exists a `ring' of negative screening charge located around the perimeter of the upper positive charge. This is different from previously thought charge structures of the storms producing gigantic jets, which had a very wide upper positive charge region over a wide middle negative charge region, with a very small negative screening layer covering the cloud top. The newly found charge structure results in leader discharge trees in the fractal simulations that closely match the parent flashes of gigantic jets inside and outside the thundercloud. The previously used charge structures, while vital to the understanding of gigantic jet initiation and the role of charge imbalances inside the cloud, do not produce leader discharge trees that agree with observed gigantic jet discharges.Finally, the newly discovered gigantic jet charge structures are formed near the end of a convective pulse [Meyer et al., JGR, 118, 2013; Lazarus et al., JGR, 120, 8469-8490, 2015] that pushes the negative screening charge radially outward and causes mixing around the updraft.

  9. Organic memory capacitor device fabricated with Ag nanoparticles.

    PubMed

    Kim, Yo-Han; Jung, Sung Mok; Hu, Quanli; Kim, Yong-Sang; Yoon, Tae-Sik; Lee, Hyun Ho

    2011-07-01

    In this study, it is demonstrated that an organic memory structure using pentacene and citrate-stabilized silver nanoparticles (Ag NPs) as charge storage elements on dielectric SiO2 layer and silicon substrate. The Ag NPs were synthesized by thermal reduction method of silver trifluoroacetate with oleic acid. The synthesized Ag NPs were analyzed with high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) for their crystalline structure. The capacitance versus voltage (C-V) curves obtained for the Ag NPs embedded capacitor exhibited flat-band voltage shifts, which demonstrated the presence of charge storages. The citrate-capping of the Ag NPs was confirmed by ultraviolet-visible (UV-VIS) and Fourier transformed infrared (FTIR) spectroscopy. With voltage sweeping of +/-7 V, a hysteresis loop having flatband voltage shift of 7.1 V was obtained. The hysteresis loop showed a counter-clockwise direction. In addition, electrical performance test for charge storage showed more than 10,000 second charge retention time. The device with Ag NPs can be applied to an organic memory device for flexible electronics.

  10. PBF Reactor Building (PER620). Cubicle 10. Camera facing southeast. Loop ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Cubicle 10. Camera facing southeast. Loop pressurizer on right. Other equipment includes loop strained, control valves, loop piping, pressurizer interchanger, and cleanup system cooler. High-density shielding brick walls. Photographer: Kirsh. Date: November 2, 1970. INEEL negative no. 70-4908 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  11. Genetics Home Reference: SLC4A1-associated distal renal tubular acidosis

    MedlinePlus

    ... exchanger 1 (AE1) protein, which transports negatively charged atoms (anions) across cell membranes. Specifically, AE1 exchanges negatively charged atoms of chlorine (chloride ions) for negatively charged bicarbonate ...

  12. Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem

    NASA Astrophysics Data System (ADS)

    Webb, William

    2013-04-01

    Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!

  13. Renormalization of the Higgs sector in the triplet model

    NASA Astrophysics Data System (ADS)

    Aoki, Mayumi; Kanemura, Shinya; Kikuchi, Mariko; Yagyu, Kei

    2012-08-01

    We study radiative corrections to the mass spectrum and the triple Higgs boson coupling in the model with an additional Y = 1 triplet field. In this model, the vacuum expectation value for the triplet field is strongly constrained from the electroweak precision data, under which characteristic mass spectrum appear at the tree level; i.e., mH++2 - mH+2 ≃ mH+2 - mA2 and mA2 ≃ mH2, where the CP-even (H), the CP-odd (A) and the doubly-charged (H±±) as well as the singly-charged (H±) Higgs bosons are the triplet-like. We evaluate how the tree-level formulae are modified at the one-loop level. The hhh coupling for the standard model-like Higgs boson (h) is also calculated at the one-loop level. One-loop corrections to these quantities can be large enough for identification of the model by future precision data at the LHC or the International Linear Collider.

  14. Space-charge-mediated anomalous ferroelectric switching in P(VDF-TrEE) polymer films.

    PubMed

    Hu, Weijin; Wang, Zhihong; Du, Yuanmin; Zhang, Xi-Xiang; Wu, Tom

    2014-11-12

    We report on the switching dynamics of P(VDF-TrEE) copolymer devices and the realization of additional substable ferroelectric states via modulation of the coupling between polarizations and space charges. The space-charge-limited current is revealed to be the dominant leakage mechanism in such organic ferroelectric devices, and electrostatic interactions due to space charges lead to the emergence of anomalous ferroelectric loops. The reliable control of ferroelectric switching in P(VDF-TrEE) copolymers opens doors toward engineering advanced organic memories with tailored switching characteristics.

  15. Assembly of purple membranes on polyelectrolyte films.

    PubMed

    Saab, Marie-belle; Estephan, Elias; Cloitre, Thierry; Legros, René; Cuisinier, Frédéric J G; Zimányi, László; Gergely, Csilla

    2009-05-05

    The membrane protein bacteriorhodopsin in its native membrane bound form (purple membrane) was adsorbed and incorporated into polyelectrolyte multilayered films, and adsorption was in situ monitored by optical waveguide light-mode spectroscopy. The formation of a single layer or a double layer of purple membranes was observed when adsorbed on negatively or positively charged surfaces, respectively. The purple membrane patches adsorbed on the polyelectrolyte multilayers were also evidenced by atomic force microscopy images. The driving forces of the adsorption process were evaluated by varying the ionic strength of the solution as well as the purple membrane concentration. At high purple membrane concentration, interpenetrating polyelectrolyte loops might provide new binding sites for the adsorption of a second layer of purple membranes, whereas at lower concentrations only a single layer is formed. Negative surfaces do not promote a second protein layer adsorption. Driving forces other than just electrostatic ones, such as hydrophobic forces, should play a role in the polyelectrolyte/purple membrane layering. The subtle interplay of all these factors determines the formation of the polyelectrolyte/purple membrane matrix with a presumably high degree of orientation for the incorporated purple membranes, with their cytoplasmic, or extracellular side toward the bulk on negatively or positively charged polyelectrolyte, respectively. The structural stability of bacteriorhodopsin during adsorption onto the surface and incorporation into the polyelectrolyte multilayers was investigated by Fourier transform infrared spectroscopy in attenuated total reflection mode. Adsorption and incorporation of purple membranes within polyelectrolyte multilayers does not disturb the conformational majority of membrane-embedded alpha-helix structures of the protein, but may slightly alter the structure of the extramembraneous segments or their interaction with the environment. This high stability is different from the lower stability of the predominantly beta-sheet structures of numerous globular proteins when adsorbed onto surfaces.

  16. Amino acid substitutions in subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Sequence analysis of a series of revertants of an oli1 mit- mutant carrying an amino acid substitution in the hydrophilic loop of subunit 9.

    PubMed

    Willson, T A; Nagley, P

    1987-09-01

    This work concerns a biochemical genetic study of subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Subunit 9, encoded by the mitochondrial oli1 gene, contains a hydrophilic loop connecting two transmembrane stems. In one particular oli1 mit- mutant 2422, the substitution of a positively charged amino acid in this loop (Arg39----Met) renders the ATPase complex non-functional. A series of 20 revertants, selected for their ability to grow on nonfermentable substrates, has been isolated from mutant 2422. The results of DNA sequence analysis of the oli1 gene in each revertant have led to the recognition of three groups of revertants. Class I revertants have undergone a same-site reversion event: the mutant Met39 is replaced either by arginine (as in wild-type) or lysine. Class II revertants maintain the mutant Met39 residue, but have undergone a second-site reversion event (Asn35----Lys). Two revertants showing an oligomycin-resistant phenotype carry this same second-site reversion in the loop region together with a further amino acid substitution in either of the two membrane-spanning segments of subunit 9 (either Gly23----Ser or Leu53----Phe). Class III revertants contain subunit 9 with the original mutant 2422 sequence, and additionally carry a recessive nuclear suppressor, demonstrated to represent a single gene. The results on the revertants in classes I and II indicate that there is a strict requirement for a positively charged residue in the hydrophilic loop close to the boundary of the lipid bilayer. The precise location of this positive charge is less stringent; in functional ATPase complexes it can be found at either residue 39 or 35. This charged residue is possibly required to interact with some other component of the mitochondrial ATPase complex. These findings, together with hydropathy plots of subunit 9 polypeptides from normal, mutant and revertant strains, led to the conclusion that the hydrophilic loop in normal subunit 9 extends further than previously suggested, with the boundary of the N-terminal membrane-embedded stem lying at residue 34. The possibility is raised that the observed suppression of the 2422 mutant phenotype in class III revertants is manifested through an accommodating change in a nuclear-encoded subunit of the ATPase complex.

  17. Charge transfer in TATB and HMX under extreme conditions.

    PubMed

    Zhang, Chaoyang; Ma, Yu; Jiang, Daojian

    2012-11-01

    Charge transfer is usually accompanied by structural changes in materials under different conditions. However, the charge transfer in energetic materials that are subjected to extreme conditions has seldom been explored by researchers. In the work described here, the charge transfer in single molecules and unit cells of the explosives TATB and HMX under high temperatures and high pressures was investigated by performing static and dynamic calculations using three DFT methods, including the PWC functional of LDA, and the BLYP and PBE functionals of GGA. The results showed that negative charge is transferred from the nitro groups of molecular or crystalline TATB and HMX when they are heated. All DFT calculations for the compressed TATB unit cell indicate that, generally, negative charge transfer occurs to its nitro groups as the compression increases. PWC and PBE calculations for crystalline HMX show that negative charge is first transferred to the nitro groups but, as the compression increases, the negative charge is transferred from the nitro groups. However, the BLYP calculations indicated that there was gradual negative charge transfer to the nitro groups of HMX, similar to the case for TATB. The unrelaxed state of the uniformly compressed TATB causes negative charge to be transferred from its nitro groups, in contrast to what is seen in the relaxed state. Charge transfer in TATB is predicted to occur much more easily than in HMX.

  18. A theory of circular organization and negative feedback: defining life in a cybernetic context.

    PubMed

    Tsokolov, Sergey

    2010-12-01

    All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.

  19. A Theory of Circular Organization and Negative Feedback: Defining Life in a Cybernetic Context

    NASA Astrophysics Data System (ADS)

    Tsokolov, Sergey

    2010-12-01

    All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.

  20. Effect of PDGF-B aptamer on PDGFRβ/PDGF-B interaction: Molecular dynamics study.

    PubMed

    Vu, Cong Quang; Rotkrua, Pichayanoot; Soontornworajit, Boonchoy; Tantirungrotechai, Yuthana

    2018-06-01

    PDGFRβ/PDGF-B interaction plays a role in angiogenesis, and is mandatory in wound healing and cancer treatment. It has been reported that the PDGF-B aptamer was able to bind to PDGF-B, thus regulating the angiogenesis. However, the binding interaction between the aptamer and the growth factor, including the binding sites, has not been well investigated. This study applied a molecular dynamics (MD) simulation to investigate the aptamer-growth factor interaction in the presence or absence of a receptor (PDGFRβ). Characterization of the structure of an aptamer-growth factor complex revealed binding sites from each section in the complex. Upon the complex formation, PDGF-B and its aptamer exhibited less flexibility in their molecular movement, as indicated by the minimum values of RMSD, RMSF, loop-to-loop distance, and the summation of PCA eigenvalues. Our study of residue pairwise interaction demonstrated that the binding interaction was mainly contributed by electrostatic interaction between the positively-charged amino acid and the negatively-charged phosphate backbone. The role of the PDGF-B aptamer in PDGFRβ/PDGF-B interaction was also investigated. We demonstrated that the stability of the Apt-PDGF-B complex could prevent the presence of a competitor, of PDGFRβ, interrupting the binding process. Because the aptamer was capable of binding with PDGF-B, and blocking the growth factor from the PDGFRβ, it could down regulate the consequent signaling pathway. We provide evidence that the PDGF-BB aptamer is a promising molecule for regulation of angiogenesis. The MD study provides a molecular understanding to modification of the aptamer binding interaction, which could be used in a number of medical applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Differential transimpedance amplifier circuit for correlated differential amplification

    DOEpatents

    Gresham, Christopher A [Albuquerque, NM; Denton, M Bonner [Tucson, AZ; Sperline, Roger P [Tucson, AZ

    2008-07-22

    A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.

  2. Neutrino catalyzed diphoton excess

    DOE PAGES

    Chao, Wei

    2016-08-16

    In this paper we explain the 750 GeV diphoton resonance observed at the run-2 LHC as a scalar singlet S, that plays a key role in generating tiny but nonzero Majorana neutrino masses. The model contains four electroweak singlets: two leptoquarks, a singly charged scalar and a neutral scalar S. Majorana neutrino masses might be generated at the two-loop level as S gets nonzero vacuum expectation value. S can be produced at the LHC through the gluon fusion and decays into diphoton with charged scalars running in the loop. The model fits perfectly with a narrow width of the resonance.more » Finally, constraints on the model are investigated, which shows a negligible mixing between the resonance and the standard model Higgs boson.« less

  3. Asymptotic 3-loop heavy flavor corrections to the charged current structure functions FLW+-W-(x ,Q2) and F2W+-W-(x ,Q2)

    NASA Astrophysics Data System (ADS)

    Behring, A.; Blümlein, J.; Falcioni, G.; De Freitas, A.; von Manteuffel, A.; Schneider, C.

    2016-12-01

    We derive the massive Wilson coefficients for the heavy flavor contributions to the nonsinglet charged current deep-inelastic scattering structure functions FLW+(x ,Q2)-FLW-(x ,Q2) and F2W+(x ,Q2)-F2W-(x ,Q2) in the asymptotic region Q2≫m2 to 3-loop order in quantum chromodynamics at general values of the Mellin variable N and the momentum fraction x . Besides the heavy quark pair production, also the single heavy flavor excitation s →c contributes. Numerical results are presented for the charm quark contributions, and consequences on the unpolarized Bjorken sum rule and Adler sum rule are discussed.

  4. Surface adsorption of oppositely charged C14TAB-PAMPS mixtures at the air/water interface and the impact on foam film stability.

    PubMed

    Fauser, Heiko; von Klitzing, Regine; Campbell, Richard A

    2015-01-08

    We have studied the oppositely charged polyelectrolyte/surfactant mixture of poly(acrylamidomethylpropanesulfonate) sodium salt (PAMPS) and tetradecyl trimethylammonium bromide (C14TAB) using a combination of neutron reflectivity and ellipsometry measurements. The interfacial composition was determined using three different analysis methods involving the two techniques for the first time. The bulk surfactant concentration was fixed at a modest value while the bulk polyelectrolyte concentration was varied over a wide range. We reveal complex changes in the surface adsorption behavior. Mixtures with low bulk PAMPS concentrations result in the components interacting synergistically in charge neutral layers at the air/water interface. At the bulk composition where PAMPS and C14TAB are mixed in an equimolar charge ratio in the bulk, we observe a dramatic drop in the surfactant surface excess to leave a large excess of polyelectrolyte at the interface, which we infer to have loops in its interfacial structure. Further increase of the bulk PAMPS concentration leads to a more pronounced depletion of material from the surface. Mixtures containing a large excess of PAMPS in the bulk showed enhanced adsorption, which is attributed to the large increase in total ionic strength of the system and screening of the surfactant headgroup charges. The data are compared to our former results on PAMPS/C14TAB mixtures [Kristen et al. J. Phys. Chem. B, 2009, 23, 7986]. A peak in the surface tension is rationalized in terms of the changing surface adsorption and, unlike in more concentrated systems, is unrelated to bulk precipitation. Also, a comparison between the determined interfacial composition with zeta potential and foam film stability data shows that the highest film stability occurs when there is enhanced synergistic adsorption of both components at the interface due to charge screening when the total ionic strength of the system is highest. The additional contribution to the foam stability of the negatively charged polyelectrolyte within the film bulk is also discussed.

  5. Observation and analysis of electrical structure change and diversity in thunderstorms on the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Li, Yajun; Zhang, Guangshu; Wang, Yanhui; Wu, Bin; Li, Jing

    2017-09-01

    A comprehensive observation on thunderstorms was conducted in the Qinghai area by using a very high frequency three-dimensional lightning mapping system and Doppler radar. The spatio-temporal evolution of the charge structure of the isolated thunderstorm was analyzed according to the developing process of thunderstorm, and the reasons for the change in charge structure diversity were studied. During the initial developing and mature stages of the thunderstorm, the charge structure was a steady negative dipole polarity, i.e., the negative charge region was above the positive charge region. Furthermore, the total number of flashes was lower during these two stages. During the thunderstorm's dissipation stage, the charge structure was varied and complicated, with a positive dipole, negative dipole, and a tripole charge structure changing and coexisting during this stage. This charge structure diversity was primarily caused by the collision and merging of two local thunderstorm cells, leading to a charge rearrangement and distribution and the formation of a new charge structure. The frequency of the negative cloud-to-ground and intracloud flashes increased sharply in the dissipation stage, reaching a maximum value. The increase in frequency of negative cloud-to-ground was mainly caused by the lower positive charge weakening during the dissipation stage. In addition, the relationship between charging regions and temperature layers was analyzed by combining sounding temperature data with the theory of a non-inductive charging mechanism.

  6. FINE STRUCTURES AND OVERLYING LOOPS OF CONFINED SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn

    2014-10-01

    Using the Hα observations from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we focus on the fine structures of three confined flares and the issue why all the three flares are confined instead of eruptive. All the three confined flares take place successively at the same location and have similar morphologies, so can be termed homologous confined flares. In the simultaneous images obtained by the Solar Dynamics Observatory, many large-scale coronal loops above the confined flares are clearly observed in multi-wavelengths. At the pre-flare stage, two dipoles emerge near the negative sunspot, and the dipolar patches aremore » connected by small loops appearing as arch-shaped Hα fibrils. There exists a reconnection between the small loops, and thus the Hα fibrils change their configuration. The reconnection also occurs between a set of emerging Hα fibrils and a set of pre-existing large loops, which are rooted in the negative sunspot, a nearby positive patch, and some remote positive faculae, forming a typical three-legged structure. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive.« less

  7. Photon-Z mixing the Weinberg-Salam model: Effective charges and the a = -3 gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baulieu, L.; Coquereaux, R.

    1982-04-15

    We study some properties of the Weinberg-Salam model connected with the photon-Z mixing. We solve the linear Dyson-Schwinger equations between full and 1PI boson propagators. The task is made easier, by the two-point function Ward identities that we derive to all orders and in any gauge. Some aspects of the renormalization of the model are also discussed. We display the exact mass-dependent one-loop two-point functions involving the photon and Z field in any linear xi-gauge. The special gauge a = xi/sup -1/ = -3 is shown to play a peculiar role. In this gauge, the Z field is multiplicatively renormalizablemore » (at the one-loop level), and one can construct both electric and weak effective charges of the theory from the photon and Z propagators, with a very simple expression similar to that of the QED Petermann, Stueckelberg, Gell-Mann and Low charge.« less

  8. Affine q-deformed symmetry and the classical Yang-Baxter σ-model

    NASA Astrophysics Data System (ADS)

    Delduc, F.; Kameyama, T.; Magro, M.; Vicedo, B.

    2017-03-01

    The Yang-Baxter σ-model is an integrable deformation of the principal chiral model on a Lie group G. The deformation breaks the G × G symmetry to U(1)rank( G) × G. It is known that there exist non-local conserved charges which, together with the unbroken U(1)rank( G) local charges, form a Poisson algebra [InlineMediaObject not available: see fulltext.], which is the semiclassical limit of the quantum group {U}_q(g) , with g the Lie algebra of G. For a general Lie group G with rank( G) > 1, we extend the previous result by constructing local and non-local conserved charges satisfying all the defining relations of the infinite-dimensional Poisson algebra [InlineMediaObject not available: see fulltext.], the classical analogue of the quantum loop algebra {U}_q(Lg) , where Lg is the loop algebra of g. Quite unexpectedly, these defining relations are proved without encountering any ambiguity related to the non-ultralocality of this integrable σ-model.

  9. Connecting dark matter annihilation to the vertex functions of Standard Model fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Jason; Light, Christopher, E-mail: jkumar@hawaii.edu, E-mail: lightc@hawaii.edu

    We consider scenarios in which dark matter is a Majorana fermion which couples to Standard Model fermions through the exchange of charged mediating particles. The matrix elements for various dark matter annihilation processes are then related to one-loop corrections to the fermion-photon vertex, where dark matter and the charged mediators run in the loop. In particular, in the limit where Standard Model fermion helicity mixing is suppressed, the cross section for dark matter annihilation to various final states is related to corrections to the Standard Model fermion charge form factor. These corrections can be extracted in a gauge-invariant manner frommore » collider cross sections. Although current measurements from colliders are not precise enough to provide useful constraints on dark matter annihilation, improved measurements at future experiments, such as the International Linear Collider, could improve these constraints by several orders of magnitude, allowing them to surpass the limits obtainable by direct observation.« less

  10. Noncommutative Jackiw-Pi model: One-loop renormalization

    NASA Astrophysics Data System (ADS)

    Bufalo, R.; Ghasemkhani, M.; Alipour, M.

    2018-06-01

    In this paper, we study the quantum behavior of the noncommutative Jackiw-Pi model. After establishing the Becchi-Rouet-Store-Tyutin (BRST) invariant action, the perturbative renormalizability is discussed, allowing us to introduce the renormalized mass and gauge coupling. We then proceed to compute the one-loop correction to the basic 1PI functions, necessary to determine the renormalized parameters (mass and charge), next we discuss the physical behavior of these parameters.

  11. Intermetallic negative electrodes for non-aqueous lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Johnson, Christopher S.; Fransson, Linda M.; Edstrom, Ester Kristina; Henriksen, Gary

    2004-05-04

    A method of operating an electrochemical cell is disclosed. The cell has an intermetallic negative electrode of Cu.sub.6-x M.sub.x Sn.sub.5, wherein x is .ltoreq.3 and M is one or more metals including Si and a positive electrode containing Li in which Li is shuttled between the positive electrode and the negative electrode during charge and discharge to form a lithiated intermetallic negative electrode during charge. The voltage of the electrochemical cell is controlled during the charge portion of the charge-discharge cycles so that the potential of the lithiated intermetallic negative electrode in the fully charged electrochemical cell is less than 0.2 V but greater than 0 V versus metallic lithium.

  12. Optimal spacecraft formation establishment and reconfiguration propelled by the geomagnetic Lorentz force

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang

    2014-12-01

    The Lorentz force acting on an electrostatically charged spacecraft as it moves through the planetary magnetic field could be utilized as propellantless electromagnetic propulsion for orbital maneuvering, such as spacecraft formation establishment and formation reconfiguration. By assuming that the Earth's magnetic field could be modeled as a tilted dipole located at the center of Earth that corotates with Earth, a dynamical model that describes the relative orbital motion of Lorentz spacecraft is developed. Based on the proposed dynamical model, the energy-optimal open-loop trajectories of control inputs, namely, the required specific charges of Lorentz spacecraft, for Lorentz-propelled spacecraft formation establishment or reconfiguration problems with both fixed and free final conditions constraints are derived via Gauss pseudospectral method. The effect of the magnetic dipole tilt angle on the optimal control inputs and the relative transfer trajectories for formation establishment or reconfiguration is also investigated by comparisons with the results derived from a nontilted dipole model. Furthermore, a closed-loop integral sliding mode controller is designed to guarantee the trajectory tracking in the presence of external disturbances and modeling errors. The stability of the closed-loop system is proved by a Lyapunov-based approach. Numerical simulations are presented to verify the validity of the proposed open-loop control methods and demonstrate the performance of the closed-loop controller. Also, the results indicate the dipole tilt angle should be considered when designing control strategies for Lorentz-propelled spacecraft formation establishment or reconfiguration.

  13. Polarization spectroscopy of positive and negative trions in an InAs quantum dot

    NASA Astrophysics Data System (ADS)

    Ware, Morgan E.; Bracker, Allan S.; Stinaff, Eric; Gammon, Daniel; Gershoni, David; Korenev, Vladimir L.

    2005-02-01

    Using polarization-sensitive photoluminescence and photoluminescence excitation spectroscopy, we study single InAs/GaAs self-assembled quantum dots. The dots were embedded in an n-type, Schottky diode structure allowing for control of the charge state. We present here the exciton, singly charged exciton (positive and negative trions), and the twice negatively charged exciton. For non-resonant excitation below the wetting layer, we observed a large degree of polarization memory from the radiative recombination of both the positive and negative trions. In excitation spectra, through the p-shell, we have found several sharp resonances in the emission from the s-shell recombination of the dot in all charged states. Some of these excitation resonances exhibit strong coulomb shifts upon addition of charges into the quantum dot. One particular resonance of the negatively charged trion was found to exhibit a fine structure doublet under circular polarization. This observation is explained in terms of resonant absorption into the triplet states of the negative trion.

  14. Charged fixed point in the Ginzburg-Landau superconductor and the role of the Ginzburg parameter /κ

    NASA Astrophysics Data System (ADS)

    Kleinert, Hagen; Nogueira, Flavio S.

    2003-02-01

    We present a semi-perturbative approach which yields an infrared-stable fixed point in the Ginzburg-Landau for N=2, where N/2 is the number of complex components. The calculations are done in d=3 dimensions and below Tc, where the renormalization group functions can be expressed directly as functions of the Ginzburg parameter κ which is the ratio between the two fundamental scales of the problem, the penetration depth λ and the correlation length ξ. We find a charged fixed point for κ>1/ 2, that is, in the type II regime, where Δκ≡κ-1/ 2 is shown to be a natural expansion parameter. This parameter controls a momentum space instability in the two-point correlation function of the order field. This instability appears at a non-zero wave-vector p0 whose magnitude scales like ˜ Δκ β¯, with a critical exponent β¯=1/2 in the one-loop approximation, a behavior known from magnetic systems with a Lifshitz point in the phase diagram. This momentum space instability is argued to be the origin of the negative η-exponent of the order field.

  15. Josephson Parametric Amplifer Based on a Cavity-Embedded Cooper Pair Transistor

    NASA Astrophysics Data System (ADS)

    Li, Juliang; Rimberg, A. J.

    In this experiment a cavity-embedded Cooper-pair transistor (cCPT) is used as a Josephson parametric amplifier. The cCPT consists of a Cooper pair transistor placed at the voltage antinode of a 5.7 GHz shorted quarter-wave resonator so that the CPT provides a galvanic connection between the cavity's central conductor and ground plane, which forms a SQUID loop. Both the flux threading the loop as well as the gate charge can be modulated, and each can provide the parametric pumping. The reflected signal from the cCPT is further amplified by both SLUG and HEMT amplifiers for characterizing the parametric amplification. A first application of the parametric amplification is to improve the charge sensitivity of a single electron charge detector. This can be done either by pumping on a side band or by shifting the charge state of the cCPT near a bifurcation point. Stimulated emission has been also observed when the cCPT is pumped at twice the resonant frequency in the absence of an input signal. This could allow investigation of the dynamic Casimir effect as well as generation of non-classical photon states. Supported by Grants ARO W911NF-13-10377 and NSF DMR 1507400.

  16. Proton redistribution and pseudoantiferroelectricity in H+ implanted Pb(Zr,Ti)O3 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Jiang, A. Q.; Tang, T. A.

    2009-05-01

    Hydrogen ions were implanted into 500-nm-thick Pb(Zr,Ti)O3 ferroelectric thin films with different doses and energies. An antiferroelectric behavior was confirmed in the implanted thin films with proper H+ injection energies from independent measurements of polarization-electric hysteresis loops and capacitance-voltage curves. With the increase in the H+ doping concentration and implanting energy up to 25 keV, the characteristic pseudoantiferroelectric behavior becomes more evident in the films along with the concomitant reduction in the remnant polarization. However, the above antiferroelectricity is weakened for the restoration of a preferred ferroelectric state, once the implanting energy is higher than 35 eV. The consequent "Trim94" simulation of the H+ distribution as well as the induced oxygen vacancies (VOṡṡ) indicates the almost linear shift in the depth for the maximum charge density within the film with the enhanced implanting energy until the depth moves out of the film thickness above 40 keV. Beyond the antiferroelectric dependence on the implanting energy in thin films, the previous ferroelectric state can also be rejuvenated under a bipolar-field stressing through the redistribution of the H+ and VOṡṡ concentrations. The rejuvenation process is accelerated upon heating due to the increased charge mobility. The doping charges are immobile during short-time domain switching but movable under a long-time negative/positive field with the estimated activation energy of 0.23/0.29 eV. This study implies the potential application of high-density charge storage of the implanted ferroelectric capacitor with the property comparable to a genuine antiferroelectric capacitor.

  17. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    NASA Astrophysics Data System (ADS)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  18. Method of adhesion between an oxide layer and a metal layer

    DOEpatents

    Jennison, Dwight R.; Bogicevic, Alexander; Kelber, Jeffry A.; Chambers, Scott A.

    2004-09-14

    A method of controlling the wetting characteristics and increasing the adhesion between a metal and an oxide layer. By introducing a negatively-charged species to the surface of an oxide layer, layer-by-layer growth of metal deposited onto the oxide surface is promoted, increasing the adhesion strength of the metal-oxide interface. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species. The deposited metal adatoms can thereby bond laterally to the negatively-charged species as well as vertically to the oxide surface as well as react with the negatively charged species, be oxidized, and incorporated on or into the surface of the oxide.

  19. Room temperature exchange bias in multiferroic BiFeO3 nano- and microcrystals with antiferromagnetic core and two-dimensional diluted antiferromagnetic shell

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Wang, Shou Yu; Liu, Wei Fang; Xu, Xun Ling; Li, Xiu; Zhang, Hong; Gao, Ju; Li, De Jun

    2017-05-01

    Exchange bias (EB) of multiferroics presents many potential opportunities for magnetic devices. However, instead of using low-temperature field cooling in the hysteresis loop measurement, which usually shows an effective approach to obtain obvious EB phenomenon, there are few room temperature EB. In this article, extensive studies on room temperature EB without field cooling were observed in BiFeO3 nano- and microcrystals. Moreover, with increasing size the hysteresis loops shift from horizontal negative exchange bias (NEB) to positive exchange bias (PEB). In order to explain the tunable EB behaviors with size dependence, a phenomenological qualitative model based on the framework of antiferromagnetic (AFM) core-two-dimensional diluted antiferromagnet in a field (2D-DAFF) shell structure was proposed. The training effect (TE) ascertained the validity of model and the presence of unstable magnetic structure using Binek's model. Experimental results show that the tunable EB effect can be explained by the competition of ferromagnetic (FM) exchange coupling and AFM exchange coupling interaction between AFM core and 2D-DAFF shell. Additionally, the local distortion of lattice fringes was observed in hexagonal-shaped BiFeO3 nanocrystals with well-dispersed behavior. The electrical conduction properties agreed well with the space charge-limited conduction mechanism.

  20. Toward one-loop tunneling rates of near-extremal magnetic black hole pair production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, P.

    Pair production of magnetic Reissner-Nordstroem black holes (of charges [plus minus][ital q]) was recently studied in the leading WKB approximation. Here we consider generic quantum fluctuations in the corresponding instanton geometry given by the Euclidean Ernst metric, in order to simulate the behavior of the one-loop tunneling rate. A detailed study of the Ernst metric suggests that for a sufficiently weak field [ital B], the problem can be reduced to that of quantum fluctuations around a single near-extremal Euclidean black hole in thermal equilibrium with a heat bath of finite size. After appropriate renormalization procedures, typical one-loop contributions to themore » WKB exponent are shown to be inversely proportional to [ital B], as [ital B][r arrow]0, indicating that the leading Schwinger term is corrected by a small fraction [similar to][h bar]/[ital q][sup 2]. We demonstrate that this correction to the Schwinger term is actually due to a semiclassical shift of the black hole mass-to-charge ratio that persists even in the extremal limit. Finally we discuss a few loose ends.« less

  1. Charged lepton flavor violation in a class of radiative neutrino mass generation models

    NASA Astrophysics Data System (ADS)

    Chowdhury, Talal Ahmed; Nasri, Salah

    2018-04-01

    We investigate the charged lepton flavor violating processes μ →e γ , μ →e e e ¯, and μ -e conversion in nuclei for a class of three-loop radiative neutrino mass generation models with electroweak multiplets of increasing order. We find that, because of certain cancellations among various one-loop diagrams which give the dipole and nondipole contributions in an effective μ e γ vertex and a Z-penguin contribution in an effective μ e Z vertex, the flavor violating processes μ →e γ and μ -e conversion in nuclei become highly suppressed compared to μ →e e e ¯ process. Therefore, the observation of such a pattern in LFV processes may reveal the radiative mechanism behind neutrino mass generation.

  2. Retrieval of charge mobility from apparent charge packet movements in LDPE thin films

    NASA Astrophysics Data System (ADS)

    Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian

    2017-03-01

    The charge packet phenomenon observed in polyethylene materials has been reported extensively during the last decades. To explain its movement, Negative Differential Mobility (NDM) theory is a competitive model among several proposed mechanisms. However, as a key concept of this theory, a sufficiently acute relationship between charge mobility and electric field has never been reported until now, which makes it hard to precisely describe the migration of charge packets with this theory. Based on the substantial negative-charge packet observations with a sufficiently by wide electric field range from 15 kV/mm to 50 kV/mm, the present contribution successfully retrieved the negative-charge mobility from the apparent charge packet movements, which reveals a much closer relationship between the NDM theory and charge packet migrations. Back simulations of charge packets with the retrieved charge mobility offer a good agreement with the experimental data.

  3. Active charge trapping control in dielectrics under ionizing radiation

    NASA Astrophysics Data System (ADS)

    Dominguez-Pumar, M.; Bheesayagari, C.; Gorreta, S.; Pons-Nin, J.

    2017-12-01

    Charge trapping is is a design and reliability factor in plasma sensors. Examples can be found in microchannel plate detectors in plasma analyzers, where multiple layers have been devised to ensure filled trapped electrons for enhanced secondary emission [1]. Charge trap mapping is used to recover distortion in telescope CCDs [2]. Specific technologies are designed to mitigate the effect of ionizing radiation in monolithic Active Pixel Sensors [3]. We report in this paper a control loop designed to control charge in Metal-Oxide-Semiconductor capacitors. We find that the net trapped charge in the device can be set within some limits to arbitrary values that can be changed with time. The control loop periodically senses the net trapped charge by detecting shifts in the capacitance vs voltage characteristic, and generates adequate waveform sequences to keep the trapped charge at the desired level [4]. The waveforms continuously applied have been chosen to provide different levels of charge injection into the dielectric. The control generates the adequate average charge injection to reach and maintain the desired level of trapped charge, compensating external disturbances. We also report that this control can compensate charge generated by ionizing radiation. Experiments will be shown in which this compensation is obtained with X-rays and gamma radiation. The presented results open the possibility of applying active compensation techniques for the first time in a wide number of devices such as radiation sensors, MOS transistors and other devices. The continuous drive towards integration may allow the implementation of this type of controls in devices needing to reject external disturbances, or needing to optimize their response to radiation or ion fluxes. References: [1] patent US 2009/0212680 A1. [2] A&A 534, A20 (2011). [3] Hemperek, Nucl. Instr. and Meth. in Phys. Res. Sect. A.796, pp 8-12, 2015. [4] Dominguez, IEEE Trans. Ind. Electr, 64 (4), 3023-3029, 2017.

  4. Closed-loop pulsed helium ionization detector

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  5. Optimization of microelectrophoresis to select highly negatively charged sperm.

    PubMed

    Simon, Luke; Murphy, Kristin; Aston, Kenneth I; Emery, Benjamin R; Hotaling, James M; Carrell, Douglas T

    2016-06-01

    The sperm membrane undergoes extensive surface remodeling as it matures in the epididymis. During this process, the sperm is encapsulated in an extensive glycocalyx layer, which provides the membrane with its characteristic negative electrostatic charge. In this study, we develop a method of microelectrophoresis and standardize the protocol to isolate sperm with high negative membrane charge. Under an electric field, the percentage of positively charged sperm (PCS), negatively charged sperm (NCS), and neutrally charged sperm was determined for each ejaculate prior to and following density gradient centrifugation (DGC), and evaluated for sperm DNA damage, and histone retention. Subsequently, PCS, NCS, and neutrally charged sperm were selected using an ICSI needle and directly analyzed for DNA damage. When raw semen was analyzed using microelectrophoresis, 94 % were NCS. In contrast, DGC completely or partially stripped the negative membrane charge from sperm resulting PCS and neutrally charged sperm, while the charged sperm populations are increased with an increase in electrophoretic current. Following DGC, high sperm DNA damage and abnormal histone retention were inversely correlated with percentage NCS and directly correlated with percentage PCS. NCS exhibited significantly lower DNA damage when compared with control (P < 0.05) and PCS (P < 0.05). When the charged sperm population was corrected for neutrally charged sperm, sperm DNA damage was strongly associated with NCS at a lower electrophoretic current. The results suggest that selection of NCS at lower current may be an important biomarker to select healthy sperm for assisted reproductive treatment.

  6. Charging of dust grains in a plasma with negative ions

    NASA Astrophysics Data System (ADS)

    Kim, Su-Hyun; Merlino, Robert L.

    2006-05-01

    The effect of negative ions on the charging of dust particles in a plasma is investigated experimentally. A plasma containing a very low percentage of electrons is formed in a single-ended SF6 is admitted into the vacuum system. The relatively cold (Te≈0.2eV ) readily attach to SF6 molecules to form SF6- negative ions. Calculations of the dust charge indicate that for electrons, negative ions, and positive ions of comparable temperatures, the charge (or surface potential) of the dust can be positive if the positive ion mass is smaller than the negative ion mass and if ɛ, the ratio of the electron to positive ion density, is sufficiently small. The K+ positive ions (mass 39amu) and SF6- negative ions (mass 146amu), and also utilizes a rotating cylinder to dispense dust into the plasma column. Analysis of the current-voltage characteristics of a Langmuir probe in the dusty plasma shows evidence for the reduction in the (magnitude) of the negative dust charge and the transition to positively charged dust as the relative concentration of the residual electrons is reduced. Some remarks are offered concerning experiments that could become possible in a dusty plasma with positive grains.

  7. Theoretical nuclear physics

    NASA Astrophysics Data System (ADS)

    Rost, E.; Shephard, J. R.

    1992-08-01

    This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self-consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the (triangle)-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to (bar p)p yields (bar lambda)lambda reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field.

  8. Loop suppressed light fermion masses with U (1 )R gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2017-07-01

    We propose a model with a two-Higgs doublet, where quark and charged-lepton masses in the first and second families are induced at one-loop level, and neutrino masses are induced at the two-loop level. In our model, we introduce an extra U (1 )R gauge symmetry that plays a crucial role in achieving desired terms in no conflict with anomaly cancellation. We show the mechanism to generate fermion masses, the resultant mass matrices, and Yukawa interactions in mass eigenstates, and we discuss several interesting phenomenologies such as the muon anomalous magnetic dipole moment and the dark matter candidate that arise from this model.

  9. Series Connected Converter for Control of Multi-Bus Spacecraft Power Utility

    NASA Technical Reports Server (NTRS)

    Beach, Raymond F. (Inventor); Brush, Andy (Inventor)

    1997-01-01

    The invention provides a power system using series connected regulators. Power from a source, such as a solar array, is processed through the regulators and provided to corresponding buses used to charge a battery and supply loads. The regulators employ a bypass loop around a DC-DC converter. The bypass loop connects a hot input of the converter to a return output, preferably though an inductor. Part of the current from the source passes through the bypass loop to the power bus. The converter bucks or boosts the voltage from the source to maintain the desired voltage at the bus. Thus, only part of the power is processed through the converter. The converter can also be used without the bypass loop to provide isolation. All of the converters can be substantially identical.

  10. Devices that can identify positive vs. negative charge

    NASA Astrophysics Data System (ADS)

    Lincoln, James

    2017-10-01

    When your clothes come out of the dryer, covered with static, do you know whether they are positively or negatively charged? In this article, I discuss a variety of devices that can determine sign of the charge on an insulator or conductor. Purposefully, none of these methods utilize comparison with a known charge. Some of these ideas have been previously published, and I am extending them, but many are original. These demonstrations provide students and teachers with an opportunity to contrast the actual flow of charge with conventional current and to compare the behavior of positive and negative charges with what we expect from protons and electrons.

  11. Lightning Channels of Cloud-to-Ground Flashes Neutralizing Multiple Charge Regions Inside Winter Thunderclouds

    NASA Astrophysics Data System (ADS)

    Akita, Manabu; Yoshida, Satoru; Nakamura, Yoshitaka; Morimoto, Takeshi; Ushio, Tomoo; Kawasaki, Zen-Ichiro; Wang, Daohong

    Lightning Research Group of Osaka University (LRG-OU) has been developing and improving the VHF broadband digital interferometer (DITF) for thunderstorm observations. It enables us to locate the impulsive VHF radiation sources caused by lightning discharges with extremely high resolutions. As a result of the VHF observations during the 2007-2008 winter season in the Japan Sea coastal area, cloud-to-ground (CG) flashes that neutralize multiple charge regions inside thunderclouds are visualized by the VHF broadband DITF. The first flash is the positive CG flash that neutralizes multiple positive charge regions in a flash. The second flash is the bipolar lightning flash that neutralizes both positive and negative charge inside thunderclouds. In the case of bipolar lightning flashes, some tens millisecond after the return strokes, the subsequent negative breakdowns initiate from the proximities of the initiation points of the preceding negative stepped leaders. It was also found that the altitudes of negative charge regions are lower than 2km. The bipolar lightning flashes observed in this campaign neutralize positive charge after lowering the negative charge to the ground.

  12. The Psychological Costs of Knowledge Specialization in Groups: Unique Expertise Leaves You out of the Loop

    ERIC Educational Resources Information Center

    Jones, Eric E.; Kelly, Janice R.

    2013-01-01

    Knowledge specialization, such as that present in cross-functional teams, produces both positive and negative outcomes. Our research investigated how unique expertise can lead to feelings of ostracism in the form of being out of the loop. Compared to group members with shared expertise, members with unique expertise felt out of the loop and…

  13. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teyssedre, G., E-mail: gilbert.teyssedre@laplace.univ-tlse.fr; Laurent, C.; CNRS, LAPLACE, F-31062 Toulouse

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are modelmore » of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.« less

  14. Adsorption of surfactants and polymers at interfaces

    NASA Astrophysics Data System (ADS)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge density. In practical systems the adsorption phenomena were found to be far more complex. Electrostatic and hydrogen bonding interactions play a major role in the adsorption of cationic polyelectrolytes on cellulosic substrates. Cationic and underivatized guar gum macromolecules form complexes with fines and dissolved and colloidal carbohydrates which are then retained on the cellulose fibers. The extent of the adsorption and association depends on the charge and nature of all the components present in pulp suspensions.

  15. [The mass-spectrometry studies of the interaction of polyhexamethyleneguanidine with lipids].

    PubMed

    Lysytsia, A V; Rebriiev, A V

    2014-01-01

    In this work the integral components of the cytoplasmic membrane, lecithin and cholesterol were used for mass spectrometry analysis carried out on polyhexamethyleneguanidine (PHMG) mixtures with lipids. The study was performed by mass-spectrometry methods of the MALDI-TOF MS. Our results showed that despite the common use of PHGM polymer derivatives as disinfectants the persistent intermolecular complexes of PHMG oligomers with lipids were not formed. The binding of polycation PHMG with the membrane has been explained by the model proposed. According to this model PHGM can adhere to negatively charged plasma membrane of bacterial cell due to electrostatic interaction and the formation of loop-like structures. Similar stereochemistry mechanism makes the adsorption of the investigated polycation to membrane robust. The mechanism described together with additional destructive factors provides a reasonable explanation for the PHMG induced damage of bacterial cell plasma membrane and the biocide action of disinfectants prepared on the basis of the PHMG salts.

  16. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions.

    PubMed

    Majeed, Hamid; Liu, Fei; Hategekimana, Joseph; Sharif, Hafiz Rizwan; Qi, Jing; Ali, Barkat; Bian, Yuan-Yuan; Ma, Jianguo; Yokoyama, Wallace; Zhong, Fang

    2016-04-15

    Clove oil (CO) anionic nanoemulsions were prepared with varying ratios of CO to canola oil (CA), emulsified and stabilized with purity gum ultra (PGU), a newly developed succinylated waxy maize starch. Interfacial tension measurements showed that CO acted as a co-surfactant and there was a gradual decrease in interfacial tension which favored the formation of small droplet sizes on homogenization until a critical limit (5:5% v/v CO:CA) was reached. Antimicrobial activity of the negatively charged CO nanoemulsion was determined against Gram positive GPB (Listeria monocytogenes and Staphylococcus aureus) and Gram negative GNB (Escherichia coli) bacterial strains using minimum inhibitory concentration (MIC) and a time kill dynamic method. Negatively charged PGU emulsified CO nanoemulsion showed prolonged antibacterial activities against Gram positive bacterial strains. We concluded that negatively charged CO nanoemulsion droplets self-assemble with GPB cell membrane, and facilitated interaction with cellular components of bacteria. Moreover, no electrostatic interaction existed between negatively charged droplets and the GPB membrane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Boundary layer friction of solvate ionic liquids as a function of potential.

    PubMed

    Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob

    2017-07-01

    Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.

  18. Analysis of aggregation of platelets in thrombosis

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    Platelets are key players in thrombus formation by first rolling over collagen bound von Willebrand factor followed by formation of a stable interaction with collagen. The first adhered platelets bind additional platelets until the whole injury is sealed off by a platelet aggregate. The coagulation system stabilizes the formed platelet plug by creating a tight fibrin network, and then wound contraction takes place because of morphological changes in platelets. Coagulation takes place by platelet activation and aggregation mainly through fibrinogen polymerization into fibrin fibers. The process includes multiple factors, such as thrombin, plasmin, and local shear-rate which regulate and control the process. Coagulation can be divided into two pathways: the intrinsic pathway and the extrinsic pathway. The intrinsic pathway is initiated by the exposure of a negatively charged. It is able to activate factor XII, using a complex reaction that includes prekallikrein and high-molecular-weight kininogen as cofactors.. Thrombin is the final enzyme that is needed to convert fibrinogen into fibrin. The extrinsic pathway starts with the exposure of tissue factor to the circulating blood, which is the major initiator of coagulation. There are several feedback loops that reinforce the coagulation cascade, resulting in large amounts of thrombin. It is dependent on the presence of pro-coagulant surfaces of cells expressing negatively charged phospholipids--which include phosphatidylserine (PS)--on their outer membrane. PS-bearing surfaces are able to increase the efficiency of the reactions by concentrating and co-localizing coagulation factors.. Aggregation of platelets are analyzed and compared to adhesion of platelet to erythrocyte and to endothelial cells. This abstract is replacing MAR16-2015-020003.

  19. Studies of the TLR4-associated protein MD-2 using yeast-display and mutational analyses

    PubMed Central

    Mattis, Daiva M.; Chervin, Adam; Ranoa, Diana; Kelley, Stacy; Tapping, Richard; Kranz, David M.

    2015-01-01

    Bacterial lipopolysaccharide (LPS) activates the innate immune system by forming a complex with myeloid differentiation factor 2 (MD-2) and Toll-like receptor 4 (TLR4), which is present on antigen presenting cells. MD-2 plays an essential role in this activation of the innate immune system as a member of the ternary complex, TLR4:MD-2:LPS. With the goal of further understanding the molecular details of the interaction of MD-2 with LPS and TLR4, and possibly toward engineering dominant negative regulators of the MD-2 protein, here we subjected MD-2 to a mutational analysis using yeast display. The approach included generation of site-directed alanine mutants, and ligand-driven selections of MD-2 mutant libraries. Our findings showed that: 1) proline mutations in the F119-K132 loop that binds LPS were strongly selected for enhanced yeast surface stability, 2) there was a preference for positive-charged side chains (R/K) at residue 120 for LPS binding, and negative-charged side chains (D/E) for TLR4 binding, 3) aromatic residues were strongly preferred at F119 and F121 for LPS binding, and 4) an MD-2 mutant (T84N/D101A/S118A/S120D/K122P) exhibited increased binding to TLR4 but decreased binding to LPS. These studies revealed the impact of specific residues and regions of MD-2 on the binding of LPS and TLR4, and they provide a framework for further directed evolution of the MD-2 protein. PMID:26320630

  20. It's positive to be negative: Achilles tendon work loops during human locomotion.

    PubMed

    Zelik, Karl E; Franz, Jason R

    2017-01-01

    Ultrasound imaging is increasingly used with motion and force data to quantify tendon dynamics during human movement. Frequently, tendon dynamics are estimated indirectly from muscle fascicle kinematics (by subtracting muscle from muscle-tendon unit length), but there is mounting evidence that this Indirect approach yields implausible tendon work loops. Since tendons are passive viscoelastic structures, when they undergo a loading-unloading cycle they must exhibit a negative work loop (i.e., perform net negative work). However, prior studies using this Indirect approach report large positive work loops, often estimating that tendons return 2-5 J of elastic energy for every 1 J of energy stored. More direct ultrasound estimates of tendon kinematics have emerged that quantify tendon elongations by tracking either the muscle-tendon junction or localized tendon tissue. However, it is unclear if these yield more plausible estimates of tendon dynamics. Our objective was to compute tendon work loops and hysteresis losses using these two Direct tendon kinematics estimates during human walking. We found that Direct estimates generally resulted in negative work loops, with average tendon hysteresis losses of 2-11% at 1.25 m/s and 33-49% at 0.75 m/s (N = 8), alluding to 0.51-0.98 J of tendon energy returned for every 1 J stored. We interpret this finding to suggest that Direct approaches provide more plausible estimates than the Indirect approach, and may be preferable for understanding tendon energy storage and return. However, the Direct approaches did exhibit speed-dependent trends that are not consistent with isolated, in vitro tendon hysteresis losses of about 5-10%. These trends suggest that Direct estimates also contain some level of error, albeit much smaller than Indirect estimates. Overall, this study serves to highlight the complexity and difficulty of estimating tendon dynamics non-invasively, and the care that must be taken to interpret biological function from current ultrasound-based estimates.

  1. Head-to-cervix force: an important physiological variable in labour. 1. The temporal relation between head-to-cervix force and intrauterine pressure during labour.

    PubMed

    Allman, A C; Genevier, E S; Johnson, M R; Steer, P J

    1996-08-01

    To investigate the relation between the rise in intrauterine pressure and rise in fetal head to cervix force in normal, slow and induced labour. Prospective observational study. The labour ward of a London teaching hospital. Forty patients were recruited from the antenatal clinic and labour ward of a West London Hospital. Five had normal onset and progression of labour, 14 had slow progression of labour and 21 had induced onset of labour. Intrauterine pressure and head-to-cervix force was measured simultaneously using an intrauterine pressure catheter and a specially designed four sensor head-to-cervix force probe. For each contraction of each labour, scattergrams of force by pressure were plotted. Three patterns were observed. When the rise in pressure preceded the rise in force, a positive 'loop' was generated. When the rise in pressure and force occurred simultaneously a linear pattern was generated (a neutral 'loop'). When the rise in pressure lags the rise in force, a negative 'loop' was generated. In normally progressive labour the distribution of loops was 29.1%, 22.6% and 48.3%, respectively, in slow labour the distribution was 26.1%, 14.1% and 59.8% and in induced labour the distribution was 33.8%, 14.4% and 51.8%. These distributions were not statistically different. However, a higher proportion of negative loops was observed in labours augmented with oxytocin compared to those receiving no oxytocin (MW-U = 87, P = 0.036). No differences were observed comparing parity, use of PGE2, epidural analgesia, or mode of delivery. Contraction frequency (number/10 minutes) was inversely correlated to the percentage of negative loops (rs = -0.34, P = 0.033) and positively correlated with percentage of positive loops (rs = 0.36, P = 0.027). This is the first report of the temporal relation between intrauterine pressure and head-to-cervix force in labour. The most common pattern is that the rise in pressure lags the rise in force, suggesting that a seal has to be created between the fetal head and cervix before a rise in pressure can occur. When oxytocin is given in labour, a higher proportion of loops are negative indicating that there is poor application of the fetal head and cervix in a greater proportion of contractions.

  2. Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications

    PubMed Central

    Abdulrazzaq, Bilal I.; Ibrahim, Omar J.; Kawahito, Shoji; Sidek, Roslina M.; Shafie, Suhaidi; Yunus, Nurul Amziah Md.; Lee, Lini; Halin, Izhal Abdul

    2016-01-01

    A Delay-Locked Loop (DLL) with a modified charge pump circuit is proposed for generating high-resolution linear delay steps with sub-picosecond jitter performance and adjustable delay range. The small-signal model of the modified charge pump circuit is analyzed to bring forth the relationship between the DLL’s internal control voltage and output time delay. Circuit post-layout simulation shows that a 0.97 ps delay step within a 69 ps delay range with 0.26 ps Root-Mean Square (RMS) jitter performance is achievable using a standard 0.13 µm Complementary Metal-Oxide Semiconductor (CMOS) process. The post-layout simulation results show that the power consumption of the proposed DLL architecture’s circuit is 0.1 mW when the DLL is operated at 2 GHz. PMID:27690040

  3. Critical Exponents, Scaling Law, Universality and Renormalization Group Flow in Strong Coupling QED

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi

    The critical behavior of strongly coupled QED with a chiral-invariant four-fermion interaction (gauged Nambu-Jona-Lasinio model) is investigated through the unquenched Schwinger-Dyson equation including the fermion loop effect at the one-loop level. It is shown that the critical exponents satisfy the (hyper)scaling relations as in the quenched case. However, the respective critical exponent takes the classical mean-field value, and consequently unquenched QED belongs to the same universality class as the zero-charge model. On the other hand, it is pointed out that quenched QED violates not only universality but also weak universality, due to continuously varying critical exponents. Furthermore, the renormalization group flow of constant renormalized charge is given. All the results are consistent with triviality of QED and the gauged Nambu-Jona-Lasinio model in the unquenched case.

  4. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    PubMed

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-10-14

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  5. From the 750 GeV diphoton resonance to multilepton excesses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Kyu Jung; Chen, Chuan-Ren; Hamaguchi, Koichi

    2016-07-01

    Weakly coupled models for the 750 GeV diphoton resonance often invoke new particles carrying both color and/or electric charges to mediate loop-induced couplings of the resonance to two gluons and two photons. The new colored particles may not be stable and could decay into final states containing standard model particles. We consider an electroweak doublet of vectorlike quarks (VLQs) carrying electric charges of 5/3 and 2/3, respectively, which mediate the loop-induced couplings of the 750 GeV resonance. If the VLQ has a mass at around 1 TeV, it naturally gives rise to the observed diphoton signal strength while all couplingsmore » remain perturbative up to a high scale. At the same time, if the charge-5/3 VLQ decays into final states containing top quark and W boson, it would contribute to the multilepton excesses observed in both run 1 and run 2 data. It is also possible to incorporate a dark matter candidate in the decay final states to explain the observed relic density.« less

  6. Fully Integrated Low-Noise Readout Circuit with Automatic Offset Cancellation Loop for Capacitive Microsensors

    PubMed Central

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-il Dan; Ko, Hyoungho

    2015-01-01

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms. PMID:26473877

  7. Biochemical Study of Anti-Inflammatory Proteins vCCI and vMIP-II

    DTIC Science & Technology

    2014-07-17

    protein ), where we showed that vCCI is able to bind so many different chemokines due to its general negatively charged surface , allowing it to bind...sample of these competition curves. Our conclusion from the data in Table 1 and Figure 1 is that the negatively charged surface of vCCI allows it to...Similar to our mutagenesis results, the overall data indicate that vCCI uses a negatively charged surface to bind positive charges on the chemokine

  8. A switchable polymer layer: Chain folding in end-charged polymer brushes

    NASA Astrophysics Data System (ADS)

    Heine, David; Wu, David T.

    2001-03-01

    We use a self-consistent field approximation to model the configurations of end-charged homopolymer and block copolymer brushes in response to an external electric field due to charges on the grafting surface. By varying the charge density on the grafting surface, we can cause the chains either to extend outward, greatly increasing the brush height, or to loop back to the grafting surface. We show that such a copolymer brush can present one block at the exposed surface in the extended state and present the other block in the retracted state. This occurs for both a solvated brush and a dry brush. We also compare these results to those of a modified Alexander-de Gennes model for the end-charged homopolymer brush.

  9. Host-guest chemistry of dendrimer-drug complexes. 2. Effects of molecular properties of guests and surface functionalities of dendrimers.

    PubMed

    Hu, Jingjing; Cheng, Yiyun; Wu, Qinglin; Zhao, Libo; Xu, Tongwen

    2009-08-06

    The host-guest chemistry of dendrimer-drug complexes is investigated by NMR techniques, including (1)H NMR and 2D-NOESY studies. The effects of molecular properties of drug molecules (protonation ability and spatial steric hindrance of charged groups) and surface functionalities of dendrimers (positively charged amine groups and negatively charged carboxylate groups) on the host-guest interactions are discussed. Different interaction mechanisms between dendrimers and drug molecules are proposed on the basis of NMR results. Primary amine- and secondary amine-containing drugs preferentially bind to negatively charged dendrimers by strong electrostatic interactions, whereas tertiary amine and quaternary ammonium-containing drugs have weak binding ability with dendrimers due to relatively low protonation ability of the tertiary amine group and serious steric hindrance of the quaternary ammonium group. Positively charged drugs locate only on the surface of negatively charged dendrimers, whereas negatively charged drugs locate both on the surface and in the interior cavities of positively charged dendrimers. The host-guest chemistry of dendrimer-drug complexes is promising for the development of new drug delivery systems.

  10. Nanotribological Properties of Positively and Negatively charged nanodiamonds as additives to solutions

    NASA Astrophysics Data System (ADS)

    Liu, Zijian; Corley, Steven; Shenderova, Olga; Brenner, Donald; Krim, Jacqueline

    2013-03-01

    Nano-diamond (ND) particles are known to be beneficial for wear and friction reduction when used as additives in liquids, but the fundamental origins of the improvement in tribological properties has not been established. In order to explore this issue, we have investigated the nanotribological properties of ND coated with self-assembled monolayers (SAM) as additives to solutions, employing gold/chrome coated quartz crystal microbalances (QCM). Measurements were performed with the QCM initially immersed in deionized water. ND particles with positively and negatively charged SAM end groups were then added to the water, while the frequency and amplitude of the QCM were monitored. Negative shifts in both the QCM frequency and amplitude were observed when ND with positively charged SAM end groups were added, while positive shifts in both the QCM frequency and amplitude were observed when ND with negatively charged ND end groups were added. The results are consistent with a lubricating effect for the negatively charged ND, but were only observed for sufficiently small negative ND particle size. Experiments on QCM surfaces with differing textures and roughness are in progress, to determine the separate contributing effects of surface roughness charge-water interactions. Funding provided by NSF DMR.

  11. SILHIL Replication of Electric Aircraft Powertrain Dynamics and Inner-Loop Control for V&V of System Health Management Routines

    NASA Technical Reports Server (NTRS)

    Bole, Brian; Teubert, Christopher Allen; Cuong Chi, Quach; Hogge, Edward; Vazquez, Sixto; Goebel, Kai; George, Vachtsevanos

    2013-01-01

    Software-in-the-loop and Hardware-in-the-loop testing of failure prognostics and decision making tools for aircraft systems will facilitate more comprehensive and cost-effective testing than what is practical to conduct with flight tests. A framework is described for the offline recreation of dynamic loads on simulated or physical aircraft powertrain components based on a real-time simulation of airframe dynamics running on a flight simulator, an inner-loop flight control policy executed by either an autopilot routine or a human pilot, and a supervisory fault management control policy. The creation of an offline framework for verifying and validating supervisory failure prognostics and decision making routines is described for the example of battery charge depletion failure scenarios onboard a prototype electric unmanned aerial vehicle.

  12. Conformal blocks from Wilson lines with loop corrections

    NASA Astrophysics Data System (ADS)

    Hikida, Yasuaki; Uetoko, Takahiro

    2018-04-01

    We compute the conformal blocks of the Virasoro minimal model or its WN extension with large central charge from Wilson line networks in a Chern-Simons theory including loop corrections. In our previous work, we offered a prescription to regularize divergences from loops attached to Wilson lines. In this paper, we generalize our method with the prescription by dealing with more general operators for N =3 and apply it to the identity W3 block. We further compute general light-light blocks and heavy-light correlators for N =2 with the Wilson line method and compare the results with known ones obtained using a different prescription. We briefly discuss general W3 blocks.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Nai-Wei; Gao, Yong; Schill, Megan S.

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirusencoded protein vCCI, a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes, and may represent a potent method to stop inflammation. Previously, our structure of the vCCI:MIP-1β complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1βN-terminus, 20’s region and 40’s loop. However, the interactionsmore » between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), another CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI:MIP-1βcomplex, and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin. Compared to wild-type eotaxin, single, double, or triple mutations at these critical charged residues weaken the binding. One exception is the K47A mutation that exhibits increased affinity for vCCI, which can be explained structurally. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1, MIP-1β and RANTES, were determined as 1.09 nM, 1.16 nM, and 0.22 nM, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and different CC chemokines.« less

  14. Antiferroelectric Nature of CH3NH3PbI3-xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Sewvandi, Galhenage A.; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi

    2016-07-01

    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3-xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3-xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation.

  15. Antiferroelectric Nature of CH3NH3PbI3-xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells.

    PubMed

    Sewvandi, Galhenage A; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi

    2016-07-29

    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3-xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3-xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation.

  16. Joint Services Electronics Program

    NASA Astrophysics Data System (ADS)

    Tinkham, Michael

    1989-07-01

    Topics addressed include: Electronic Theory of Semiconductor Alloys and Superlattices; Pressure Dependence of Photo Luminescence Excitation in GaAs/Al(x)Ga(1-x)As Multi-Quantum Wells; X Ray Surface Characterization; High Temperature Superconductivity; Quantum and Charging Phenomena in Mesoscopic Josephson Junctions; Nonlinear Dynamics of Electronic Neural Networks; Structural and Electronic Studies of Semiconductor Interfaces and Surfaces; Interaction of Ultrashort Laser Pulses with Semiconductor Surfaces; Multiphoton Vibrational Excitation of Molecules; Analytical and Numerical Determination of the Fields of Antennas near an Interface Between Two Half-Spaces with Significantly Different Wave Numbers; Theoretical Study of Lateral-Wave Propagation in Horizontally-Layered Media; Lateral Electromagnetic Waves from a Horizontal Antenna for Remote Sensing in the Ocean; Lateral Electromagnetic Pulses Generated by Horizontal and Vertical Dipoles on the Boundary Between Two Dielectrics; Theoretical Study of Isolated and Coupled Strip Antennas; Theoretical Study of Electromagnetic Pulses with a Slow Rate of Decay; Experimental Study of Electromagnetic Pulses with a Slow Rate of Decay; Properties of Closed Loops of Pseudodipoles; Asymptotic Solution for the Charge and Current Near the Open End of a Linear Tubular Antenna; Closed Loops of Parallel Coplanar Dipoles - Electrically Short Elements; Harmonic Generation in High-Temperature Superconductors and Resonant Closed Loops of Dipoles.

  17. Conformational energy landscape of the acyl pocket loop in acetylcholinesterase: a Monte Carlo-generalized Born model study.

    PubMed

    Carlacci, Louis; Millard, Charles B; Olson, Mark A

    2004-10-01

    The X-ray crystal structure of the reaction product of acetylcholinesterase (AChE) with the inhibitor diisopropylphosphorofluoridate (DFP) showed significant structural displacement in a loop segment of residues 287-290. To understand this conformational selection, a Monte Carlo (MC) simulation study was performed of the energy landscape for the loop segment. A computational strategy was applied by using a combined simulated annealing and room temperature Metropolis sampling approach with solvent polarization modeled by a generalized Born (GB) approximation. Results from thermal annealing reveal a landscape topology of broader basin opening and greater distribution of energies for the displaced loop conformation, while the ensemble average of conformations at 298 K favored a shift in populations toward the native by a free-energy difference in good agreement with the estimated experimental value. Residue motions along a reaction profile of loop conformational reorganization are proposed where Arg-289 is critical in determining electrostatic effects of solvent interaction versus Coulombic charging.

  18. Beam current sensor

    DOEpatents

    Kuchnir, M.; Mills, F.E.

    1984-09-28

    A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

  19. Beam current sensor

    DOEpatents

    Kuchnir, Moyses; Mills, Frederick E.

    1987-01-01

    A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

  20. Aberration of a negative ion beam caused by space charge effect.

    PubMed

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  1. Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine.

    PubMed

    Riedl, Sabrina; Leber, Regina; Rinner, Beate; Schaider, Helmut; Lohner, Karl; Zweytick, Dagmar

    2015-11-01

    Host defense-derived peptides have emerged as a novel strategy for the development of alternative anticancer therapies. In this study we report on characteristic features of human lactoferricin (hLFcin) derivatives which facilitate specific killing of cancer cells of melanoma, glioblastoma and rhabdomyosarcoma compared with non-specific derivatives and the synthetic peptide RW-AH. Changes in amino acid sequence of hLFcin providing 9-11 amino acids stretched derivatives LF11-316, -318 and -322 only yielded low antitumor activity. However, the addition of the repeat (di-peptide) and the retro-repeat (di-retro-peptide) sequences highly improved cancer cell toxicity up to 100% at 20 μM peptide concentration. Compared to the complete parent sequence hLFcin the derivatives showed toxicity on the melanoma cell line A375 increased by 10-fold and on the glioblastoma cell line U-87mg by 2-3-fold. Reduced killing velocity, apoptotic blebbing, activation of caspase 3/7 and formation of apoptotic DNA fragments proved that the active and cancer selective peptides, e.g. R-DIM-P-LF11-322, trigger apoptosis, whereas highly active, though non-selective peptides, such as DIM-LF11-318 and RW-AH seem to kill rapidly via necrosis inducing membrane lyses. Structural studies revealed specific toxicity on cancer cells by peptide derivatives with loop structures, whereas non-specific peptides comprised α-helical structures without loop. Model studies with the cancer membrane mimic phosphatidylserine (PS) gave strong evidence that PS only exposed by cancer cells is an important target for specific hLFcin derivatives. Other negatively charged membrane exposed molecules as sialic acid, heparan and chondroitin sulfate were shown to have minor impact on peptide activity. Copyright © 2015. Published by Elsevier B.V.

  2. Thermal Control and Enhancement of Heat Transport Capacity of Two-Phase Loops With Electrohydrodynamic Conduction Pumping

    NASA Technical Reports Server (NTRS)

    Seyed-Yagoobi, J.; Didion, J.; Ochterbeck, J. M.; Allen, J.

    2000-01-01

    There are three kinds of electrohydrodynamics (EHD) pumping based on Coulomb force: induction pumping, ion-drag pumping, and pure conduction pumping. EHD induction pumping relies on the generation of induced charges. This charge induction in the presence of an electric field takes place due to a non-uniformity in the electrical conductivity of the fluid which can be caused by a non-uniform temperature distribution and/or an inhomogeneity of the fluid (e.g. a two-phase fluid). Therefore, induction pumping cannot be utilized in an isothermal homogeneous liquid. In order to generate Coulomb force, a space charge must be generated. There are two main mechanisms for generating a space charge in an isothermal liquid. The first one is associated with the ion injection at a metal/liquid interface and the related pumping is referred to as ion-drag pumping. Ion-drag pumping is not desirable because it can deteriorate the electrical properties of the working fluid. The second space charge generation mechanism is associated with the heterocharge layers of finite thickness in the vicinity of the electrodes. Heterocharge layers result from dissociation of the neutral electrolytic species and recombination of the generated ions. This type of pumping is referred to as pure conduction pumping. This project investigates the EHD pumping through pure conduction phenomenon. Very limited work has been conducted in this field and the majority of the published papers in this area have mistakenly assumed that the electrostriction force was responsible for the net flow generated in an isothermal liquid. The main motivation behind this study is to investigate an EHD conduction pump for a two-phase loop to be operated in the microgravity environment. The pump is installed in the liquid return passage (isothermal liquid) from the condenser section to the evaporator section. Unique high voltage and ground electrodes have been designed that generate sufficient pressure heads with very low electric power requirements making the EHD conduction pumping attractive to applications such as two-phase systems (e.g. capillary pumped loops and heat pipes). Currently, the EHD conduction pump performance is being tested on a two-phase loop under various operating conditions in the laboratory environment. The simple non-mechanical and lightweight design of the EHD pump combined with the rapid control of performance by varying the applied electric field, low power consumption, and reliability offer significant advantages over other pumping mechanisms; particularly in reduced gravity applications.

  3. Photogravimagnetic assists of light sails: a mixed blessing for Breakthrough Starshot?

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan H.; Heller, René; Hippke, Michael

    2018-03-01

    Upon entering a star system, light sails are subject to both gravitational forces and radiation pressure, and can use both in concert to modify their trajectory. Moreover, stars possess significant magnetic fields, and if the sail is in any way charged, it will feel the Lorentz force also. We investigate the dynamics of so-called `photogravimagnetic assists' of sailcraft around α Centauri A, a potential first destination en route to Proxima Centauri (the goal of the Breakthrough Starshot programme). We find that a 10-m2 sail with a charge-to-mass ratio of around 10 μC g-1 or higher will need to take account of magnetic field effects during orbital manoeuvres. The magnetic field can provide an extra source of deceleration and deflection, and allow capture on to closer orbits around a target star. However, flipping the sign of the sailcraft's charge can radically change resulting trajectories, resulting in complex loop-de-loops around magnetic field lines and essentially random ejection from the star system. Even on well-behaved trajectories, the field can generate off-axis deflections at α Centauri that, while minor, can result in very poor targeting of the final destination (Proxima) post-assist. Fortunately for Breakthrough Starshot, nanosails are less prone to charging en route than their heavier counterparts, but can still accrue relatively high charge at both the origin and destination, when travelling at low speeds. Photogravimagnetic assists are highly non-trivial, and require careful course correction to mitigate against unwanted changes in trajectory.

  4. Recombination energy for negatively charged excitons inside type-II core/shell spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Chafai, A.; Essaoudi, I.; Ainane, A.; Dujardin, F.; Ahuja, R.

    2018-07-01

    The recombination energy of isolated neutral exciton and that of isolated negatively charged exciton inside a type-II core/shell spherical quantum dot are studied. Our investigation considers the charge-carriers effective mass discontinuity at the surface contact between the core and shell materials. Although our model omits the effect of the surface polarization, the dielectric-constant mismatch at the nanodot boundaries was taken into account. In order to achieve the exciton and negative trion energies, we proceed by a variational calculation in the framework of the envelope approximation. Our results reveal a strong correlation between the nanodot morphology and the energy spectrum of the neutral and negatively charged exciton.

  5. Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude

    NASA Astrophysics Data System (ADS)

    Reece, Matthew

    2013-04-01

    The recently discovered 125 GeV boson appears very similar to a Standard Model (SM) Higgs, but with data favoring an enhanced h → γγ rate. A number of groups have found that fits would allow (or, less so after the latest updates, prefer) that the ht\\bar {t} coupling have the opposite sign. This can be given meaning in the context of an electroweak chiral Lagrangian, but it might also be interpreted to mean that a new colored and charged particle runs in loops and reinforces the W-loop contribution to hFF, while also producing the opposite-sign hGG amplitude to that generated by integrating out the top. Due to a correlation in sign of the new physics amplitudes, when the SM hFF coupling is enhanced the hGG coupling is decreased. Thus, in order to not suppress the rate of h → WW and h → ZZ, which appear to be approximately SM-like, one would need the loop to ‘overshoot’, not only canceling the top contribution but producing an opposite-sign hGG vertex of about the same magnitude as that in the SM. We argue that most such explanations have severe problems with fine-tuning and, more importantly, vacuum stability. In particular, the case of stop loops producing an opposite-sign hGG vertex of the same size as the SM one is ruled out by a combination of vacuum decay bounds and Large Electron-Positron Collider (LEP) constraints. We also show that scenarios with a sign flip from loops of color octet charged scalars or new fermionic states are highly constrained.

  6. Controlling Two-dimensional Tethered Vesicle Motion Using an Electric Field

    PubMed Central

    Yoshina-Ishii, Chiaki; Boxer, Steven G.

    2008-01-01

    We recently introduced methods to tether phospholipid vesicles or proteoliposomes onto a fluid supported lipid bilayer using DNA hybridization. These intact tethered vesicles diffuse in two dimensions parallel to the supporting membrane surface. In this paper, we report the dynamic response of individual tethered vesicles to an electric field applied parallel to the bilayer surface. Vesicles respond to the field by moving in the direction of electro-osmotic flow, and this can be used to reversibly concentrate tethered vesicles against a barrier. By adding increasing amounts of negatively charged phosphatidylserine to the supporting bilayer to increase electro-osmosis, the electrophoretic mobility of the tethered vesicles can be increased. The electro-osmotic contribution can be modeled well by a sphere connected to a cylindrical anchor in a viscous membrane with charged head groups. The electrophoretic force on the negatively charged tethered vesicles opposes the electro-osmotic force. By increasing the amount of negative charge on the tethered vesicle, drift in the direction of electro-osmotic flow can be slowed; at high negative charge on the tethered vesicle, motion can be forced in the direction of electrophoresis. The balance between these forces can be visualized on a patterned supporting bilayer containing negatively charged lipids which themselves reorganize in an externally applied electric field to create a gradient of charge within a corralled region. The charge gradient at the surface creates a gradient of electro-osmotic flow, and vesicles carrying similar amounts of negative charge can be focused to a region perpendicular to the applied field where electrophoresis is balanced by electro-osmosis, away from the corral boundary. Electric fields are effective tools to direct tethered vesicles, concentrate them and to measure the tethered vesicle’s electrostatic properties. PMID:16489833

  7. Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.

    PubMed

    Lopes, Jose L S; Beltramini, Leila M; Wallace, Bonnie A; Araujo, Ana P U

    2015-01-01

    Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.

  8. Gas-Phase Stability of Negatively Charged Organophosphate Metabolites Produced by Electrospray Ionization and Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Asakawa, Daiki; Mizuno, Hajime; Toyo'oka, Toshimasa

    2017-12-01

    The formation mechanisms of singly and multiply charged organophosphate metabolites by electrospray ionization (ESI) and their gas phase stabilities were investigated. Metabolites containing multiple phosphate groups, such as adenosine 5'-diphosphate (ADP), adenosine 5'-triphosphate (ATP), and D- myo-inositol-1,4,5-triphosphate (IP3) were observed as doubly deprotonated ions by negative-ion ESI mass spectrometry. Organophosphates with multiple negative charges were found to be unstable and often underwent loss of PO3 -, although singly deprotonated analytes were stable. The presence of fragments due to the loss of PO3 - in the negative-ion ESI mass spectra could result in the misinterpretation of analytical results. In contrast to ESI, matrix-assisted laser desorption ionization (MALDI) produced singly charged organophosphate metabolites with no associated fragmentation, since the singly charged anions are stable. The stability of an organophosphate metabolite in the gas phase strongly depends on its charge state. The fragmentations of multiply charged organophosphates were also investigated in detail through density functional theory calculations. [Figure not available: see fulltext.

  9. Thermal Control Utilizing an Thermal Control Utilizing an Two-Phase Loop with High Heat Flux Source

    NASA Technical Reports Server (NTRS)

    Jeong, Seong-Il; Didion, Jeffrey

    2004-01-01

    The electric field applied in dielectric fluids causes an imbalance in the dissociation-recombination reaction generated free space charges. The generated charges are redistributed by the applied electric field resulting in the heterocharge layers in the Vicinity of the electrodes. Proper design of the electrodes generates net axial flow motion pumping the fluid. The electrohydrodynamic (EHD) conduction pump is a new device that pumps dielectric fluids utilizing heterocharge layers formed by imposition of electrostatic fields. This paper evaluates the experimental performance of a two-phase breadboard thermal control loop consisting of an EHD conduction pump, condenser, pre-heater, high heat flux evaporator (HE), transport lines, and reservoir (accumulator). The generated pressure head and the maximum applicable heat flux are experimentally determined at various applied voltages and sink temperatures. Recovery from dryout condition by increasing the applied voltage to the pump is also demonstrated.

  10. Charge mobility retrieval approach from apparent charge packet movements based on the negative differential resistance theory.

    PubMed

    Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian

    2018-04-12

    Space charge migration characteristics play an important role in the evaluation of polymer insulation performance. However, an accurate description of charge carrier mobility in several typical insulating polymers such as polyethylene, polypropylene is currently not available. Recently, with the observation of a series of negative charge packet movements associated with the negative differential resistance characteristic of charge mobility in LDPE films, the extraction of charge mobility from the apparent charge packet movement has been attempted using appropriate methods. Based on the previous report of the successful derivation of charge mobility from experimental results using numerical methods, the present research improves the derivation accuracy and describes the details of the charge mobility derivation procedure. Back simulation results under several typical polarizing fields using the derived charge mobility are exhibited. The results indicate that both the NDR theory and the simulation models for the polyethylene materials are reasonable. A significant migration velocity difference between the charge carrier and the charge packet is observed. Back simulations of the charge packet under several typical polarizing fields using the obtained E-v curve show good agreement with the experimental results. The charge packet shapes during the migrations were also found to vary with the polarizing field.

  11. ESI-MS of Cucurbituril Complexes Under Negative Polarity.

    PubMed

    Rodrigues, Maria A A; Mendes, Débora C; Ramamurthy, Vaidhyanathan; Da Silva, José P

    2017-11-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool to study host-guest supramolecular interactions. ESI-MS can be used for detailed gas-phase reactivity studies, to clarify the structure, or simply to verify the formation of complexes. Depending on the structure of the host and of the guest, negative and/or positive ESI are used. Here we report the unexpected formation of host-guest complexes between cucurbit[n]urils (n = 7, 8, CB[n]) and amine, styryl pyridine, and styryl pyridine dimer cations, under negative ESI. Non-complexed CB[n] form double charged halide (Br - , Cl - , F - ) adducts. Under negative ESI, halide ions interact with CB[n] outer surface hydrogen atoms. One to one host-guest complexes (1:1) of CB[n] with positive charged guests were also observed as single and double charged ions under negative ESI. The positive charge of guests is neutralized by ion-pairing with halide anions. Depending on the number of positive charges guests retain in the gas phase, one or two additional halide ions are required for neutralization. Complexes 1:2 of CB[8] with styryl pyridines retain two halide ions in the gas phase, one per guest. Styryl pyridine dimers form 1:1 complexes possessing a single extra halide ion and therefore a single positive charge. Negative ESI is sensitive to small structural differences between complexes, distinguishing between 1:2 complexes of styryl pyridine-CB[8] and corresponding 1:1 complexes with the dimer. Negative ESI gives simpler spectra than positive ESI and allows the determination of guest charge state of CB[n] complexes in the gas phase. Graphical Abstract ᅟ.

  12. Oblique Interaction of Dust-ion Acoustic Solitons with Superthermal Electrons in a Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa

    2018-01-01

    The oblique interaction between two dust-ion acoustic (DIA) solitons travelling in the opposite direction, in a collisionless magnetized plasma composed of dynamic ions, static dust (positive/negative) charged particles and interialess kappa distributed electrons is investigated. By employing extended Poincaré-Lighthill-Kuo (PLK) method, Korteweg-de Vries (KdV) equations are derived for the right and left moving low amplitude DIA solitons. Their trajectories and corresponding phase shifts before and after their interaction are also obtained. It is found that in negatively charged dusty plasma above the critical dust charged to ion density ratio the positive polarity pulse is formed, while below the critical dust charged density ratio the negative polarity pulse of DIA soliton exist. However it is found that only positive polarity pulse of DIA solitons exist for the positively charged dust particles case in a magnetized nonthermal plasma. The nonlinearity coefficient in the KdV equation vanishes for the negatively charged dusty plasma case for a particular set of parameters. Therefore, at critical plasma density composition for negatively charged dust particles case, the modified Korteweg-de Vries (mKdV) equations having cubic nonlinearity coefficient of the DIA solitons, and their corresponding phase shifts are derived for the left and right moving solitons. The effects of the system parameters including the obliqueness of solitons propagation with respect to magnetic field direction, superthermality of electrons and concentration of positively/negatively static dust charged particles on the phase shifts of the colliding solitons are also discussed and presented numerically. The results are applicable to space magnetized dusty plasma regimes.

  13. Adhesion of osteoblasts to a nanorough titanium implant surface

    PubMed Central

    Gongadze, Ekaterina; Kabaso, Doron; Bauer, Sebastian; Slivnik, Tomaž; Schmuki, Patrik; van Rienen, Ursula; Iglič, Aleš

    2011-01-01

    This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts. PMID:21931478

  14. New two-loop contributions to hadronic EDMs in the MSSM

    NASA Astrophysics Data System (ADS)

    Hisano, Junji; Nagai, Minoru; Paradisi, Paride

    2006-11-01

    Flavor-changing terms with CP-violating phases in the quark sector may contribute to the hadronic electric dipole moments (EDMs). However, within the Standard Model (SM), the source of CP violation comes from the unique CKM phase, and it turns out that the EDMs are strongly suppressed. This implies that the EDMs are very sensitive to non-minimal flavor violation structures of theories beyond the SM. In this Letter, we discuss the quark EDMs and CEDMs (chromoelectric dipole moments) in the MSSM with general flavor-changing terms in the squark mass matrices. In particular, the charged-Higgs mediated contributions to the down-quark EDM and CEDM are evaluated at two-loop level. We point out that these two-loop contributions may dominate over the one-loop induced gluino or higgsino contributions even when the squark and gluino masses are around few TeV and tanβ is moderate.

  15. Influence of the Amino Acid Sequence on Protein-Mineral Interactions in Soil

    NASA Astrophysics Data System (ADS)

    Chacon, S. S.; Reardon, P. N.; Purvine, S.; Lipton, M. S.; Washton, N.; Kleber, M.

    2017-12-01

    The intimate associations between protein and mineral surfaces have profound impacts on nutrient cycling in soil. Proteins are an important source of organic C and N, and a subset of proteins, extracellular enzymes (EE), can catalyze the depolymerization of soil organic matter (SOM). Our goal was to determine how variation in the amino acid sequence could influence a protein's susceptibility to become chemically altered by mineral surfaces to infer the fate of adsorbed EE function in soil. We hypothesized that (1) addition of charged amino acids would enhance the adsorption onto oppositely charged mineral surfaces (2) addition of aromatic amino acids would increase adsorption onto zero charged surfaces (3) Increase adsorption of modified proteins would enhance their susceptibility to alterations by redox active minerals. To test these hypotheses, we generated three engineered proxies of a model protein Gb1 (IEP 4.0, 6.2 kDA) by inserting either negatively charged, positively charged or aromatic amino acids in the second loop. These modified proteins were allowed to interact with functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnessite) at pH 5 and 7. We used LC-MS/MS and solution-state Heteronuclear Single Quantum Coherence Spectroscopy NMR to observe modifications on engineered proteins as a consequence to mineral interactions. Preliminary results indicate that addition of any amino acids to a protein increase its susceptibility to fragmentation and oxidation by redox active mineral surfaces, and alter adsorption to the other mineral surfaces. This suggest that not all mineral surfaces in soil may act as sorbents for EEs and chemical modification of their structure should also be considered as an explanation for decrease in EE activity. Fragmentation of proteins by minerals can bypass the need to produce proteases, but microbial acquisition of other nutrients that require enzymes such as cellulases, ligninases or phosphatases may be hampered by mineral association.

  16. Pulsed field sample neutralization

    DOEpatents

    Appelhans, Anthony D.; Dahl, David A.; Delmore, James E.

    1990-01-01

    An apparatus and method for alternating voltage and for varying the rate of extraction during the extraction of secondary particles, resulting in periods when either positive ions, or negative ions and electrons are extracted at varying rates. Using voltage with alternating charge during successive periods to extract particles from materials which accumulate charge opposite that being extracted causes accumulation of surface charge of opposite sign. Charge accumulation can then be adjusted to a ratio which maintains a balance of positive and negative charge emission, thus maintaining the charge neutrality of the sample.

  17. Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases.

    PubMed

    Jacques, Benoit; Coinçon, Mathieu; Sygusch, Jurgen

    2018-03-28

    Crystal structures of two bacterial metal (Zn) dependent D-fructose 1,6-bisphosphate (FBP) aldolases in complex with substrate, analogues, and triose-P reaction products were determined to 1.5-2.0 Å resolution. The ligand complexes cryotrapped in native or mutant H. pylori aldolase crystals enabled a novel mechanistic description of FBP C 3 -C 4 bond cleavage. The reaction mechanism uses active site remodelling during the catalytic cycle implicating relocation of the Zn cofactor that is mediated by conformational changes of active site loops. Substrate binding initiates conformational changes, triggered upon P 1 -phosphate binding, which liberates the Zn chelating His180, allowing it to act as a general base for the proton abstraction at the FBP C 4 -hydroxyl group. A second zinc chelating His83 hydrogen bonds the substrate C 4 - hydroxyl group and assists cleavage by stabilizing the developing negative charge during proton abstraction. Cleavage is concerted with relocation of the metal cofactor from an interior to a surface exposed site, thereby stabilizing the nascent enediolate form. Conserved residue Glu142 is essential for protonation of the enediolate form, prior to product release. A D-tagatose 1,6-bisphosphate enzymatic complex reveals how His180 mediated proton abstraction controls stereospecificity of the cleavage reaction. Recognition and discrimination of the reaction products, dihydroxyacetone-P and D-glyceraldehyde-3-P, occurs via charged hydrogen bonds between hydroxyl groups of the triose-Ps and conserved residues, Asp82 and Asp255, respectively, and are crucial aspects of the enzyme's role in gluconeogenesis. Conformational changes in mobile loops β5-α7 and β6-α8 (containing catalytic residues Glu142 and His180, respectively) drive active site remodelling enabling the relocation of the metal cofactor. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Structure of the F–actin–tropomyosin complex

    PubMed Central

    von der Ecken, Julian; Müller, Mirco; Lehman, William; Manstein, Dietmar J.; Penczek, Pawel A.; Raunser, Stefan

    2015-01-01

    Filamentous actin (F-actin) is the major protein of muscle thin filaments, and actin microfilaments are the main component of the eukaryotic cytoskeleton. Mutations in different actin isoforms lead to early-onset autosomal dominant non-syndromic hearing loss1, familial thoracic aortic aneurysms and dissections2, and multiple variations of myopathies3. In striated muscle fibres, the binding of myosin motors to actin filaments is mainly regulated by tropomyosin and troponin4,5. Tropomyosin also binds to F-actin in smooth muscle and in non-muscle cells and stabilizes and regulates the filaments there in the absence of troponin6. Although crystal structures for monomeric actin (G-actin) are available7, a high-resolution structure of F-actin is still missing, hampering our understanding of how disease-causing mutations affect the function of thin muscle filaments and microfilaments. Here we report the three-dimensional structure of F-actin at a resolution of 3.7 ångstroms in complex with tropomyosin at a resolution of 6.5ångstroms, determined by electron cryomicroscopy. The structure reveals that the D-loop is ordered and acts as a central region for hydrophobic and electrostatic interactions that stabilize the F-actin filament. We clearly identify the density corresponding to ADP and Mg2+ and explain the possible effect of prominent disease-causing mutants. A comparison of F-actin with G-actin reveals the conformational changes during filament formation and identifies the D-loop as their key mediator. We also confirm that negatively charged tropomyosin interacts with a positively charged groove on F-actin. Comparison of the position of tropomyosin in F-actin–tropomyosin with its position in our previously determined actin–tropomyosin–myosin structure8 reveals a myosin-induced transition of tropomyosin. Our results allow us to understand the role of individual mutations in the genesis of actin- and tropomyosin-related diseases and will serve as a strong foundation for the targeted development of drugs. PMID:25470062

  19. Mobile charge, soft breakdown, and self-healing in hydrogen silsesquioxane based intermetal dielectric

    NASA Astrophysics Data System (ADS)

    Devine, R. A. B.

    2002-09-01

    The electrical characteristics of hydrogen silsesquioxane based flowable oxide (FOxregistered) films proposed for interconnect isolation applications have been studied. It is demonstrated that negative and positive charges exist in the as-made, cured films with densities of 0.95 x1012 and 1.5 x1012 cm-2, respectively for thicknesses of 114 nm. The negative charges can be removed from the films by application of modest electric fields (positive or negative, approx1.75 MV cm-1). The positive charge can be similarly displaced but not removed from the film; this results in time dependent relaxation and redistribution of the positive charge if the films are left unbiased. Time dependent irreversible evolution of the leakage current under positive and negative bias (approx3 MV cm-1) shows a slow breakdown phenomena. An unusual self-healing effect is evidenced in these films.

  20. The Role of Hydrophobicity in the Cellular Uptake of Negatively Charged Macromolecules.

    PubMed

    Abou Matar, Tamara; Karam, Pierre

    2018-02-01

    It is generally accepted that positively charged molecules are the gold standard to by-pass the negatively charged cell membrane. Here, it is shown that cellular uptake is also possible for polymers with negatively charged side chains and hydrophobic backbones. Specifically, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene], a conjugated polyelectrolyte with sulfonate, as water-soluble functional groups, is shown to accumulate in the intracellular region. When the polymer hydrophobic backbone is dissolved using polyvinylpyrrolidone, an amphiphilic macromolecule, the cellular uptake is dramatically reduced. The report sheds light on the fine balance between negatively charged side groups and the hydrophobicity of polymers to either enhance or reduce cellular uptake. As a result, these findings will have important ramifications on the future design of targeted cellular delivery nanocarriers for imaging and therapeutic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Stabilized thallium bromide radiation detectors and methods of making the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leao, Cedric Rocha; Lordi, Vincenzo

    According to one embodiment, a crystal includes thallium bromide (TlBr), one or more positively charged dopants, and one or more negatively charged dopants. According to another embodiment, a system includes a monolithic crystal including thallium bromide (TlBr), one or more positively charged dopants, and one or more negatively charged dopants; and a detector configured to detect a signal response of the crystal.

  2. Influence of liposome charge on the association of liposomes with Kupffer cells in vitro. Effects of divalent cations and competition with latex particles.

    PubMed

    Dijkstra, J; van Galen, M; Scherphof, G

    1985-03-14

    We studied the interaction of large unilamellar liposomes carrying different surface charges with rat Kupffer cells in maintenance culture. In addition to 14C-labeled phosphatidylcholine, all liposome preparations contained either 3H-labeled inulin or 125I-labeled bovine serum albumin as a non-degradable or a degradable aqueous space marker, respectively. With vesicles carrying no net charge, intracellular processing of internalized liposomes caused nearly complete release of protein label into the medium in acid-soluble form, while phospholipid label was predominantly retained by the cells, only about one third being released. The presence of the lysosomotropic agent, ammonia, inhibited the release of both labels from the cells. At 4 degrees C, the association and degradation of the vesicles were strongly reduced. These results are very similar to what we reported on negatively charged liposomes (Dijkstra, J., Van Galen, W.J.M., Hulstaert, C.E., Kalicharan, D., Roerdink, F.H. and Scherphof, G.L. (1984) Exp. Cell Res. 150, 161-176). The interaction of both types of vesicles apparently proceeds by adsorption to the cell surface followed by virtually complete internalization by endocytosis. Similar experiments with positively charged vesicles indicated that only about half of the liposomes were taken up by the endocytic route, the other half remaining adsorbed to the cell-surface. Attachment of all types of liposomes to the cells was strongly dependent on the presence of divalent cations; Ca2+ appeared to be required for optimal binding. Neutral liposomes only slightly competed with the uptake of negatively charged vesicles, both at 4 degrees and 37 degrees C, whereas negatively charged small unilamellar vesicles and negatively charged latex beads were found to compete very effectively with the large negatively charged liposomes. Neutral vesicles competed effectively for uptake with positively charged ones. These results suggest that neutral and positively charged liposomes are largely bound by the same cell-surface binding sites, while negatively charged vesicles attach mainly to other binding sites.

  3. Formation of stable inverse sheath in ion–ion plasma by strong negative ion emission

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Wu, Bang; Yang, Shali; Zhang, Ya; Chen, Dezhi; Fan, Mingwu; Jiang, Wei

    2018-06-01

    The effect of strong charged particle emission on plasma–wall interactions is a classical, yet unresolved question in plasma physics. Previous studies on secondary electron emission have shown that with different emission coefficients, there are classical, space-charge-limited, and inverse sheaths. In this letter, we demonstrate that a stable ion–ion inverse sheath and ion–ion plasma are formed with strong surface emission of negative ions. The continuous space-charge-limited to inverse ion–ion sheath transition is observed, and the plasma near the surface consequently transforms into pure ion–ion plasma. The results may explain the long-puzzled experimental observation that the density of negative ions depends on only charge not mass in negative ion sources.

  4. Electrostatic plasma lens for focusing negatively charged particle beams.

    PubMed

    Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M

    2012-02-01

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  5. The influence of space charge shielding on dielectric multipactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.; Liu, G. Z.; Tang, C. X.

    2009-05-15

    A model of space charge influenced by multipactor electrons and plasma has been established. The positive space charge potential/field for vacuum dielectric multipactor is analytically studied. After considering the plasma, the positive space charge field is further shielded, and multipactor saturates at higher surface accumulated field, compared with that for only considering multipactor electrons. The negative space charge potential/field for dielectric breakdown at high pressure is analyzed. It is found that the negative potential can be nonmonotonously varied, forming a minimum potential well.

  6. Nuclear chiral axial currents and applications to few-nucleon systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baroni, Alessandro

    This Thesis is divided into three main parts. The first part discusses basic aspects of chiral effective field theory and the formalism, based on time ordered perturbation theory, used to to derive the nuclear potentials and currents from the chiral Lagrangians. The second part deals with the actual derivation, up to one loop, of the two-nucleon potential and one- and two-nucleon weak axial charge and current. In both derivations ultraviolet divergences generated by loop corrections are isolated using dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. A completemore » set of contact terms for the axial charge up to the relevant order in the power counting is constructed. The third part of this Thesis discusses two applications: (i) the calculation of the Gamow-Teller matrix element of tritium, used to constrain the single low-energy constant entering the axial current; (ii) the calculation of neutrino-deuteron inclusive cross sections at low energies. These results have confirmed previous predictions obtained in phenomenological approaches. These latter studies have played an important role in the analysis and interpretation of experiments at the Sudbury Neutrino Observatory.« less

  7. Physico-chemical studies on the interaction of dendrimers with lipid bilayers. 1. Effect of dendrimer generation and liposome surface charge.

    PubMed

    Roy, Biplab; Panda, Amiya Kumar; Parimi, Srinivas; Ametov, Igor; Barnes, Timothy; Prestidge, Clive A

    2014-01-01

    Studies on the interaction of different generation poly (amido amine) (PAMAM) dendrimers (2G, 4G and 6G) and liposomes of different compositions were carried out by a combined turbidity, dynamic light scattering and atomic force microscopic measurements. Liposomes comprising soy lecithin (SLC, negative surface charge), 1, 2-palmitoyl-sn-glycero-3-phosphatidylcholine (DPPC, mildly positive surface charge), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol (DPPG, negatively charged) and a biologically simulated mixture of DPPC + DPPG (7:3, M/M, negatively charged) were used as model bilayers. 30 wt% cholesterol was used in each combination as it is known to control the fluidity of membrane bilayers. Silica was used as a negatively charged hard sphere model with an aim to compare the results. Both the turbidity and hydrodynamic diameter values of all the liposomes, except DPPC, passed through maxima upon the progressive addition of PAMAM; the effect was insignificant in case of DPPC. Formation of dendriosome, a complex formed between dendrimer and liposome, resulted in the charge reversal of the negatively charged liposomes. Interaction between PAMAM and liposome was found to be governed by electrostatic as well as hydrogen bonding. Generation dependent PAMAM activity followed the order: 6G >4G>2G in terms of overall dendrimer concentration. However, interestingly, the order was reverse when PAMAM activity was considered in terms of total end group concentrations. AFM studies reveal the rupture of bilayer structure upon addition of dendrimer.

  8. Oil well flow assurance through static electric potential: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Hashmi, Muhammad Ihtsham Asmat

    Flow assurance technology deals with the deposition of organic and inorganic solids in the oil flow path, which results in constriction of the production tubing and surface flow lines and drastically reduces the kinetic energy of the fluid. The major contributors to this flow restriction are inorganic scales, asphaltene, wax and gas hydrates, in addition to minor contribution from formation fines and corrosion products. Some of these materials (particularly asphaltene and inorganic scales) carry surface charges on their nuclei and seen to be attracted by electrode having opposite charge. The focus of the present research is to find the possibilities of inhibiting the deposition of asphaltene and inorganic scales in the production tubing by applying static electrical potential. With this objective, two flow set ups were made; one for asphaltene and the other for scale deposition studies, attached with precision pumps, pressure recording system and DC power supply. In each set up there were two flow loops, one was converted as Anode and the other as Cathode. A series of flow studies were conducted using the flow set ups, in which oil-dilution ratio, temperature and most importantly DC potential difference was varied and the deposition behavior of the asphaltene aggregates and calcium carbonate scale to the walls of the test loops were observed through rise of differential pressure across the loop due to possible deposition and constriction of the flow path. Two different sets of flow studies; one without oil dilution and other with the diluted oil (with n-heptane), were performed. Both experiments were investigated under the influence of static potential applied across the two test loops. Experimental results indicated that asphaltene deposition in the cathode can be retarded or stopped by applying a suitable negative potential; an increase in the static potential resulted in enhanced control over the asphaltene aggregation and hence the deposition. In the second study, scale deposition and retardation through static potential is studied through a series of flow experiments. Under the influence of static potential, scale deposition at the room temperature showed an increase in the deposition rates, whereas, at the elevated temperatures, scale deposition rates were observed to be retarded and delayed. Beyond a certain value of the static potential, this decreasing trend in deposition rates become directly proportional to the applied static potential. Results showed that the scale deposition may be controlled if not completely stopped, in the anode, if a suitable positive potential can be applied to it. The overall conclusion of this study is as follows: • Asphaltene deposition can be arrested almost completely by converting the production well into a cathode. • Scale deposition can be retarded or deposition rate can be much delayed by converting the production well into an anode.

  9. Active control and synchronization chaotic satellite via the geomagnetic Lorentz force

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Yehia

    2016-07-01

    The use of geomagnetic Lorentz force is considered in this paper for the purpose of satellite attitude control. A satellite with an electrostatic charge will interact with the Earth's magnetic field and experience the Lorentz force. An analytical attitude control and synchronization two identical chaotic satellite systems with different initial condition Master/ Slave are proposed to allows a charged satellite remains near the desired attitude. Asymptotic stability for the closed-loop system are investigated by means of Lyapunov stability theorem. The control feasibility depend on the charge requirement. Given a significantly and sufficiently accurate insertion, a charged satellite could maintains the desired attitude orientation without propellant. Simulations is performed to prove the efficacy of the proposed method.

  10. Charged Particles on Surfaces: Coexistence of Dilute Phases and Periodic Structures at Interfaces

    NASA Astrophysics Data System (ADS)

    Loverde, Sharon M.; Solis, Francisco J.; Olvera de La Cruz, Monica

    2007-06-01

    We consider a mixture of two immiscible oppositely charged molecules strongly adsorbed to an interface, with a neutral nonselective molecular background. We determine the coexistence between a high density ionic periodic phase and a dilute isotropic ionic phase. We use a strong segregation approach for the periodic phase and determine the one-loop free energy for the dilute phase. Lamellar and hexagonal patterns are calculated for different charge stoichiometries of the mixture. Molecular dynamics simulations exhibit the predicted phase behavior. The periodic length scale of the solid phase is found to scale as ɛ/(lBψ3/2), where ψ is the effective charge density, lB is the Bjerrum length, and ɛ is the cohesive energy.

  11. Excitation of Kelvin Helmholtz instability by an ion beam in a plasma with negatively charged dust grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Kavita; Sharma, Suresh C.

    2015-02-15

    An ion beam propagating through a magnetized dusty plasma drives Kelvin Helmholtz Instability (KHI) via Cerenkov interaction. The frequency of the unstable wave increases with the relative density of negatively charged dust grains. It is observed that the beam has stabilizing effect on the growth rate of KHI for low shear parameter, but for high shear parameter, the instability is destabilized with relative density of negatively charged dust grains.

  12. Algorithms for Disconnected Diagrams in Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambhir, Arjun Singh; Stathopoulos, Andreas; Orginos, Konstantinos

    2016-11-01

    Computing disconnected diagrams in Lattice QCD (operator insertion in a quark loop) entails the computationally demanding problem of taking the trace of the all to all quark propagator. We first outline the basic algorithm used to compute a quark loop as well as improvements to this method. Then, we motivate and introduce an algorithm based on the synergy between hierarchical probing and singular value deflation. We present results for the chiral condensate using a 2+1-flavor clover ensemble and compare estimates of the nucleon charges with the basic algorithm.

  13. Bright Loops at 171

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STEREO was able to capture bright loops in exquisite detail as they were arcing above an active region (May 26, 2007) over an 18 hour period. What we are actually seeing are charged particles spinning along magnetic field lines that extend above the Sun's surface. Active regions are areas of intense magnetic activity and often the source of solar storms. In fact, the clip ends with a flourish in which a small coronal mass ejection (CME) blows out into space. This is from the STEREO Ahead spacecraft at the 171 Angstroms wavelength in extreme ultraviolet light.

  14. Neutrino mass in flavor dependent gauged lepton model

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-03-01

    We study a neutrino model introducing an additional nontrivial gauged lepton symmetry where the neutrino masses are induced at two-loop level, while the first and second charged-leptons of the standard model are done at one-loop level. As a result of the model structure, we can predict one massless active neutrino, and there is a dark matter candidate. Then we discuss the neutrino mass matrix, muon anomalous magnetic moment, lepton flavor violations, oblique parameters, and relic density of dark matter, taking into account the experimental constraints.

  15. Tribological Properties of Nanodiamonds in Aqueous Suspensions: Effect of the Surface Charge

    NASA Astrophysics Data System (ADS)

    Krim, J.; Liu, Zijian; Leininger, D. A.; Kooviland, A.; Smirnov, A. I.; Shendarova, O.; Brenner, D. W.

    The presence of granular nanoparticulates, be they wear particles created naturally by frictional rubbing at a geological fault line or products introduced as lubricant additives, can dramatically alter friction at solid-liquid interfaces. Given the complexity of such systems, understanding system properties at a fundamental level is particularly challenging. The Quartz Crystal Microbalance (QCM) is an ideal tool for studies of material-liquid-nanoparticulate interfaces. We have employed it here to study the uptake and nanotribological properties of positively and negatively charged 5-15 nm diameter nanodiamonds dispersed in water[1] in the both the presence and absence of a macroscopic contact with the QCM electrode. The nanodiamonds were found to impact tribological performance at both nanometer and macroscopic scales. The tribological effects were highly sensitive to the sign of the charge: negatively (positively) charged particles were more weakly (strongly) bound and reduced (increased) frictional drag at the solid-liquid interface. For the macroscopic contacts, negatively charged nanodiamonds appeared to be displaced from the contact, while the positively charged ones were not. Overall, the negatively charged nanodiamonds were more stable in an aqueous dispersion for extended time periods. Work supported by NSF and DOE.

  16. Effects of adhesions of amorphous Fe and Al hydroxides on surface charge and adsorption of K+ and Cd2+ on rice roots.

    PubMed

    Liu, Zhao-Dong; Wang, Hai-Cui; Zhou, Qin; Xu, Ren-Kou

    2017-11-01

    Iron (Fe) and aluminum (Al) hydroxides in variable charge soils attached to rice roots may affect surface-charge properties and subsequently the adsorption and uptake of nutrients and toxic metals by the roots. Adhesion of amorphous Fe and Al hydroxides onto rice roots and their effects on zeta potential of roots and adsorption of potassium (K + ) and cadmium (Cd 2+ ) by roots were investigated. Rice roots adsorbed more Al hydroxide than Fe hydroxide because of the greater positive charge on Al hydroxide. Adhesion of Fe and Al hydroxides decreased the negative charge on rice roots, and a greater effect of the Al hydroxide. Consequently, adhesion of Fe and Al hydroxides reduced the K + and Cd 2+ adsorption by rice roots. The results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and desorption of K + and Cd 2+ from rice roots indicated that physical masking by Fe and Al hydroxides and diffuse-layer overlapping between the positively-charged hydroxides and negatively-charged roots were responsible for the reduction of negative charge on roots induced by adhesion of the hydroxides. Therefore, the interaction between Fe and Al hydroxides and rice roots reduced negative charge on roots and thus inhibited their adsorption of nutrient and toxic cations. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Positive zeta potential of a negatively charged semi-permeable plasma membrane

    NASA Astrophysics Data System (ADS)

    Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha

    2017-08-01

    The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.

  18. Effect of incorporation of nitrogen atoms in Al2O3 gate dielectric of wide-bandgap-semiconductor MOSFET on gate leakage current and negative fixed charge

    NASA Astrophysics Data System (ADS)

    Kojima, Eiji; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Hosoi, Takuji; Watanabe, Heiji; Shiraishi, Kenji

    2018-06-01

    We performed first-principle calculations to investigate the effect of incorporation of N atoms into Al2O3 gate dielectrics. Our calculations show that the defect levels generated by VO in Al2O3 are the origin of the stress-induced gate leakage current and that VOVAl complexes in Al2O3 cause negative fixed charge. We revealed that the incorporation of N atoms into Al2O3 eliminates the VO defect levels, reducing the stress-induced gate leakage current. Moreover, this suppresses the formation of negatively charged VOVAl complexes. Therefore, AlON can reduce both stress-induced gate leakage current and negative fixed charge in wide-bandgap-semiconductor MOSFETs.

  19. 2:1 for naturalness at the LHC?

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Nima; Blum, Kfir; D'Agnolo, Raffaele Tito; Fan, JiJi

    2013-01-01

    A large enhancement of a factor of 1.5 - 2 in Higgs production and decay in the diphoton channel, with little deviation in the ZZ channel, can only plausibly arise from a loop of new charged particles with large couplings to the Higgs. We show that, allowing only new fermions with marginal interactions at the weak scale, the required Yukawa couplings for a factor of 2 enhancement are so large that the Higgs quartic coupling is pushed to large negative values in the UV, triggering an unacceptable vacuum instability far beneath the 10 TeV scale. An enhancement by a factor of 1.5 can be accommodated if the charged particles are lighter than 150 GeV, within reach of discovery in almost all cases in the 8 TeV run at the LHC, and in even the most difficult cases at 14 TeV. Thus if the diphoton enhancement survives further scrutiny, and no charged particles beneath 150 GeV are found, there must be new bosons far beneath the 10 TeV scale. This would unambiguously rule out a large class of fine-tuned theories for physics beyond the Standard Model, including split SUSY and many of its variants, and provide strong circumstantial evidence for a natural theory of electroweak symmetry breaking at the TeV scale. Alternately, theories with only a single fine-tuned Higgs and new fermions at the weak scale, with no additional scalars or gauge bosons up to a cutoff much larger than the 10 TeV scale, unambiguously predict that the hints for a large diphoton enhancement in the current data will disappear.

  20. Positive and negative feedback loops in nutrient phytoplankton interactions related to climate dynamics factors in a shallow temperate estuary (Vistula Lagoon, southern Baltic)

    NASA Astrophysics Data System (ADS)

    Kruk, Marek; Kobos, Justyna; Nawrocka, Lidia; Parszuto, Katarzyna

    2018-04-01

    This study aims to demonstrate that factors associated with climate dynamics, such as temperature and wind, affect the ecosystem of the shallow Vistula Lagoon in the southern Baltic and cause nutrient forms phytoplankton interactions: the growth of biomass and constraints of it. This occurs through a network of direct and indirect relationships between environmental and phytoplankton factors, including interactions of positive and negative feedback loops. Path analysis supported by structural equation modeling (SEM) was used to test hypotheses regarding the impact of climate factors on algal assemblages. Increased phytoplankton biomass was affected directly by water temperature and salinity, while the wind speed effect was indirect as it resulted in increased concentrations of suspended solids (SS) in the water column. Simultaneously, the concentration of SS in the water was positively correlated with particulate organic carbon (POC), particulate nitrogen (PN), and particulate phosphorus (PP), and was negatively correlated with the total nitrogen to phosphorus (N:P) ratio. Particulate forms of C, N, and phosphorus (P), concentrations of soluble reactive phosphorus (SRP) and nitrate and nitrite nitrogen (NO3-N + NO2-N), and ratios of the total N:P and DIN:SRP, all indirectly effected Cyanobacteria C concentrations. These processes influence other phytoplankton groups (Chlorophyta, Bacillariophyceae and the picophytoplankton fraction). Increased levels of SRP associated with organic matter (POC), which stemmed from reduced DIN:SRP ratios, contributed to increased Cyanoprokaryota and picophytoplankton C concentrations, which created a positive feedback loop. However, a simultaneous reduction in the total N:P ratio could have inhibited increases in the biomass of these assemblages by limiting N, which likely formed a negative feedback loop. The study indicates that the nutrients-phytoplankton feedback loop phenomenon can intensify eutrophication in a temperate lagoon, including increases of the biomass of Cyanobacteria and picophytoplankton. However, it can also constrain this increase.

  1. Antiferroelectric Nature of CH3NH3PbI3−xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells

    PubMed Central

    Sewvandi, Galhenage A.; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi

    2016-01-01

    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3−xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3−xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation. PMID:27468802

  2. Network efficient power control for wireless communication systems.

    PubMed

    Campos-Delgado, Daniel U; Luna-Rivera, Jose Martin; Martinez-Sánchez, C J; Gutierrez, Carlos A; Tecpanecatl-Xihuitl, J L

    2014-01-01

    We introduce a two-loop power control that allows an efficient use of the overall power resources for commercial wireless networks based on cross-layer optimization. This approach maximizes the network's utility in the outer-loop as a function of the averaged signal to interference-plus-noise ratio (SINR) by considering adaptively the changes in the network characteristics. For this purpose, the concavity property of the utility function was verified with respect to the SINR, and an iterative search was proposed with guaranteed convergence. In addition, the outer-loop is in charge of selecting the detector that minimizes the overall power consumption (transmission and detection). Next the inner-loop implements a feedback power control in order to achieve the optimal SINR in the transmissions despite channel variations and roundtrip delays. In our proposal, the utility maximization process and detector selection and feedback power control are decoupled problems, and as a result, these strategies are implemented at two different time scales in the two-loop framework. Simulation results show that substantial utility gains may be achieved by improving the power management in the wireless network.

  3. Network Efficient Power Control for Wireless Communication Systems

    PubMed Central

    Campos-Delgado, Daniel U.; Luna-Rivera, Jose Martin; Martinez-Sánchez, C. J.; Gutierrez, Carlos A.; Tecpanecatl-Xihuitl, J. L.

    2014-01-01

    We introduce a two-loop power control that allows an efficient use of the overall power resources for commercial wireless networks based on cross-layer optimization. This approach maximizes the network's utility in the outer-loop as a function of the averaged signal to interference-plus-noise ratio (SINR) by considering adaptively the changes in the network characteristics. For this purpose, the concavity property of the utility function was verified with respect to the SINR, and an iterative search was proposed with guaranteed convergence. In addition, the outer-loop is in charge of selecting the detector that minimizes the overall power consumption (transmission and detection). Next the inner-loop implements a feedback power control in order to achieve the optimal SINR in the transmissions despite channel variations and roundtrip delays. In our proposal, the utility maximization process and detector selection and feedback power control are decoupled problems, and as a result, these strategies are implemented at two different time scales in the two-loop framework. Simulation results show that substantial utility gains may be achieved by improving the power management in the wireless network. PMID:24683350

  4. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots

    DOE PAGES

    Wu, Kaifeng; Lim, Jaehoon; Klimov, Victor I.

    2017-07-19

    Application of colloidal semiconductor quantum dots (QDs) in optical and optoelectronic devices is often complicated by unintentional generation of extra charges, which opens fast nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the extra carrier(s) and ultimately dissipated as heat. Previous studies of Auger recombination have primarily focused on neutral and, more recently, negatively charged multicarrier states. Auger dynamics of positively charged species remains more poorly explored due to difficulties in creating, stabilizing, and detecting excess holes in the QDs. Here we apply photochemical doping to prepare both negatively and positively charged CdSe/CdSmore » QDs with two distinct core/shell interfacial profiles (“sharp” versus “smooth”). Using neutral and charged QD samples we evaluate Auger lifetimes of biexcitons, negative and positive trions (an exciton with an extra electron or a hole, respectively), and multiply negatively charged excitons. Using these measurements, we demonstrate that Auger decay of both neutral and charged multicarrier states can be presented as a superposition of independent elementary three-particle Auger events. As one of the manifestations of the superposition principle, we observe that the biexciton Auger decay rate can be presented as a sum of the Auger rates for independent negative and positive trion pathways. Furthermore, by comparing the measurements on the QDs with the “sharp” versus “smooth” interfaces, we also find that while affecting the absolute values of Auger lifetimes, manipulation of the shape of the confinement potential does not lead to violation of the superposition principle, which still allows us to accurately predict the biexciton Auger lifetimes based on the measured negative and positive trion dynamics. Our findings indicate considerable robustness of the superposition principle as applied to Auger decay of charged and neutral multicarrier states, suggesting its generality to quantum-confined nanocrystals of arbitrary compositions and complexities.« less

  5. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots.

    PubMed

    Wu, Kaifeng; Lim, Jaehoon; Klimov, Victor I

    2017-08-22

    Application of colloidal semiconductor quantum dots (QDs) in optical and optoelectronic devices is often complicated by unintentional generation of extra charges, which opens fast nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the extra carrier(s) and ultimately dissipated as heat. Previous studies of Auger recombination have primarily focused on neutral and, more recently, negatively charged multicarrier states. Auger dynamics of positively charged species remains more poorly explored due to difficulties in creating, stabilizing, and detecting excess holes in the QDs. Here we apply photochemical doping to prepare both negatively and positively charged CdSe/CdS QDs with two distinct core/shell interfacial profiles ("sharp" versus "smooth"). Using neutral and charged QD samples we evaluate Auger lifetimes of biexcitons, negative and positive trions (an exciton with an extra electron or a hole, respectively), and multiply negatively charged excitons. Using these measurements, we demonstrate that Auger decay of both neutral and charged multicarrier states can be presented as a superposition of independent elementary three-particle Auger events. As one of the manifestations of the superposition principle, we observe that the biexciton Auger decay rate can be presented as a sum of the Auger rates for independent negative and positive trion pathways. By comparing the measurements on the QDs with the "sharp" versus "smooth" interfaces, we also find that while affecting the absolute values of Auger lifetimes, manipulation of the shape of the confinement potential does not lead to violation of the superposition principle, which still allows us to accurately predict the biexciton Auger lifetimes based on the measured negative and positive trion dynamics. These findings indicate considerable robustness of the superposition principle as applied to Auger decay of charged and neutral multicarrier states, suggesting its generality to quantum-confined nanocrystals of arbitrary compositions and complexities.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Jinqi; Cook, Aaron A.; Bergmeier, Wolfgang

    The dynamic regulation of ERK1 and -2 (ERK1/2) is required for precise signal transduction controlling cell proliferation, differentiation, and survival. However, the underlying mechanisms regulating the activation of ERK1/2 are not completely understood. In this study, we show that phosphorylation of RasGRP2, a guanine nucleotide exchange factor (GEF), inhibits its ability to activate the small GTPase Rap1 that ultimately leads to decreased activation of ERK1/2 in cells. ERK2 phosphorylates RasGRP2 at Ser394 located in the linker region implicated in its autoinhibition. These studies identify RasGRP2 as a novel substrate of ERK1/2 and define a negative-feedback loop that regulates the BRaf–MEK–ERKmore » signaling cascade. This negative-feedback loop determines the amplitude and duration of active ERK1/2. -- Highlights: •ERK2 phosphorylates the guanine nucleotide exchange factor RasGRP2 at Ser394. •Phosphorylated RasGRP2 has decreased capacity to active Rap1b in vitro and in cells. •Phosphorylation of RasGRP2 by ERK1/2 introduces a negative-feedback loop into the BRaf-MEK-ERK pathway.« less

  7. Comment on 'The effect of liquid water on thunderstorm charging' by C.P.R. Saunders et al

    NASA Technical Reports Server (NTRS)

    Williams, Earle; Zhang, Renyi

    1993-01-01

    This paper is a comment on the claims made in the paper by Saunders et al. (1991), which reports on a laboratory simulation of ice particle charging in thunderstorms, concerning the microphysical condition of riming ice particles and the conditions for sublimation and negative charging in thunderclouds. It is argued that the interpretation of Saunders is contrary to the findings of Williams et al. (1991), which support the hypothesis that sublimating graupel charge negatively (in collision with smaller ice particles) and graupel in deposition charge positively. Based on microphysical calculations as well as observations in thunderclouds, it is concluded that, while sublimation of the rimer surface and negative charging do not appear to account for the laboratory observations reported by Saunders et al., these authors do not have sufficient evidence for rejecting the sublimation hypothesis presented by Williams et al. (1991) for thunderstorms.

  8. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other systems. The negatively charged lunar soil would also be neutralized mitigating some of the adverse effects resulting from lunar dust.

  9. QCD phase diagram using PNJL model with eight-quark interactions

    NASA Astrophysics Data System (ADS)

    Deb, Paramita; Bhattacharyya, Abhijit; Ghosh, Sanjay K.; Ray, Rajarshi; Lahiri, Anirban

    2011-07-01

    We present the phase diagram and the fluctuations of different conserved charges like quark number, charge and strangeness at vanishing chemical potential for the 2+1 flavor Polyakov Loop extended Nambu-Jona-Lasinio model with eight-quark interaction terms using three-momentum cutoff regularisation. The main effect of the higher order interaction term is to shift the critical end point to the lower value of the chemical potential and higher value of the temperature. The fluctuations show good qualitative agreement with the lattice data.

  10. Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, Donald D.; Piper, Mary E.; Gerrard, Sonja R.

    2010-07-13

    Rift Valley fever virus (RVFV) is a negative-sense RNA virus (genus Phlebovirus, family Bunyaviridae) that infects livestock and humans and is endemic to sub-Saharan Africa. Like all negative-sense viruses, the segmented RNA genome of RVFV is encapsidated by a nucleocapsid protein (N). The 1.93-{angstrom} crystal structure of RVFV N and electron micrographs of ribonucleoprotein (RNP) reveal an encapsidated genome of substantially different organization than in other negative-sense RNA virus families. The RNP polymer, viewed in electron micrographs of both virus RNP and RNP reconstituted from purified N with a defined RNA, has an extended structure without helical symmetry. N-RNA speciesmore » of {approx}100-kDa apparent molecular weight and heterogeneous composition were obtained by exhaustive ribonuclease treatment of virus RNP, by recombinant expression of N, and by reconstitution from purified N and an RNA oligomer. RNA-free N, obtained by denaturation and refolding, has a novel all-helical fold that is compact and well ordered at both the N and C termini. Unlike N of other negative-sense RNA viruses, RVFV N has no positively charged surface cleft for RNA binding and no protruding termini or loops to stabilize a defined N-RNA oligomer or RNP helix. A potential protein interaction site was identified in a conserved hydrophobic pocket. The nonhelical appearance of phlebovirus RNP, the heterogeneous {approx}100-kDa N-RNA multimer, and the N fold differ substantially from the RNP and N of other negative-sense RNA virus families and provide valuable insights into the structure of the encapsidated phlebovirus genome.« less

  11. Protein charge distribution in proteomes and its impact on translation

    PubMed Central

    Requião, Rodrigo D.; Fernandes, Luiza; de Souza, Henrique José Araujo; Rossetto, Silvana; Domitrovic, Tatiana

    2017-01-01

    As proteins are synthesized, the nascent polypeptide must pass through a negatively charged exit tunnel. During this stage, positively charged stretches can interact with the ribosome walls and slow the translation. Therefore, charged polypeptides may be important factors that affect protein expression. To determine the frequency and distribution of positively and negatively charged stretches in different proteomes, the net charge was calculated for every 30 consecutive amino acid residues, which corresponds to the length of the ribosome exit tunnel. The following annotated and reviewed proteins in the UniProt database (Swiss-Prot) were analyzed: 551,705 proteins from different organisms and a total of 180 million protein segments. We observed that there were more negative than positive stretches and that super-charged positive sequences (i.e., net charges ≥ 14) were underrepresented in the proteomes. Overall, the proteins were more positively charged at their N-termini and C-termini, and this feature was present in most organisms and subcellular localizations. To investigate whether the N-terminal charges affect the elongation rates, previously published ribosomal profiling data obtained from S. cerevisiae, without translation-interfering drugs, were analyzed. We observed a nonlinear effect of the charge on the ribosome occupancy in which values ≥ +5 and ≤ -6 showed increased and reduced ribosome densities, respectively. These groups also showed different distributions across 80S monosomes and polysomes. Basic polypeptides are more common within short proteins that are translated by monosomes, whereas negative stretches are more abundant in polysome-translated proteins. These findings suggest that the nascent peptide charge impacts translation and can be one of the factors that regulate translation efficiency and protein expression. PMID:28531225

  12. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    PubMed

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.

  13. Positive and negative feedback regulatory loops of thiol-oxidative stress response mediated by an unstable isoform of sigmaR in actinomycetes.

    PubMed

    Kim, Min-Sik; Hahn, Mi-Young; Cho, Yoobok; Cho, Sang-Nae; Roe, Jung-Hye

    2009-09-01

    Alternate sigma factors provide an effective way of diversifying bacterial gene expression in response to environmental changes. In Streptomyces coelicolor where more than 65 sigma factors are predicted, sigma(R) is the major regulator for response to thiol-oxidative stresses. sigma(R) becomes available when its bound anti-sigma factor RsrA is oxidized at sensitive cysteine thiols to form disulphide bonds. sigma(R) regulon includes genes for itself and multiple thiol-reducing systems, which constitute positive and negative feedback loops respectively. We found that the positive amplification loop involves an isoform of sigma(R) (sigma(R')) with an N-terminal extension of 55 amino acids, produced from an upstream start codon. A major difference between constitutive sigma(R) and inducible sigma(R') is that the latter is markedly unstable (t(1/2) approximately 10 min) compared with the former (> 70 min). The rapid turnover of sigma(R') is partly due to induced ClpP1/P2 proteases from the sigma(R) regulon. This represents a novel way of elaborating positive and negative feedback loops in a control circuit. Similar phenomenon may occur in other actinomycetes that harbour multiple start codons in the sigR homologous gene. We observed that sigH gene, the sigR orthologue in Mycobacterium smegmatis, produces an unstable larger isoform of sigma(H) upon induction by thiol-oxidative stress.

  14. Capacitors, Water Bottles, and Kirchoff's Loop Rule.

    ERIC Educational Resources Information Center

    Newburgh, R. G.

    1993-01-01

    Presents an analogy between electrical potential and potential energy per unit mass. The analogy is used to solve the problem of calculating the final charges of two capacitors after they are connected and to help students understand the concept of electrical potential. (MDH)

  15. On charging of snow particles in blizzard

    NASA Technical Reports Server (NTRS)

    Shio, Hisashi

    1991-01-01

    The causes of the charge polarity on the blizzard, which consisted of fractured snow crystals and ice particles, were investigated. As a result, the charging phenomena showed that the characteristics of the blizzard are as follows: (1) In the case of the blizzard with snowfall, the fractured snow particles drifting near the surface of snow field (lower area: height 0.3 m) had positive charge, while those drifting at higher area (height 2 m) from the surface of snow field had negative charge. However, during the series of blizzards two kinds of particles positively and negatively charged were collected in equal amounts in a Faraday Cage. It may be considered that snow crystals with electrically neutral properties were separated into two kinds of snow flakes (charged positively and negatively) by destruction of the snow crystals. (2) In the case of the blizzard which consisted of irregularly formed ice drops (generated by peeling off the hardened snow field), the charge polarity of these ice drops salting over the snow field was particularly controlled by the crystallographic characteristics of the surface of the snow field hardened by the powerful wind pressure.

  16. Crystal structure of the cysteine protease inhibitor 2 from Entamoeba histolytica: Functional convergence of a common protein fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casados-Vázquez, Luz E.; Lara-González, Samuel; Brieb, Luis G.

    Cysteine proteases (CP) are key pathogenesis and virulence determinants of protozoan parasites. Entamoeba histolytica contains at least 50 cysteine proteases; however, only three (EhCP1, EhCP2 and EhCP5) are responsible for approximately 90% of the cysteine protease activity in this parasite. CPs are expressed as inactive zymogens. Because the processed proteases are potentially cytotoxic, protozoan parasites have developed mechanisms to regulate their activity. Inhibitors of cysteine proteases (ICP) of the chagasin-like inhibitor family (MEROPS family I42) were recently identified in bacteria and protozoan parasites. E. histolytica contains two ICP-encoding genes of the chagasin-like inhibitor family. EhICP1 localizes to the cytosol, whereasmore » EhICP2 is targeted to phagosomes. Herein, we report two crystal structures of EhICP2. The overall structure of EhICP2 consists of eight {beta}-strands and closely resembles the immunoglobulin fold. A comparison between the two crystal forms of EhICP2 indicates that the conserved BC, DE and FG loops form a flexible wedge that may block the active site of CPs. The positively charged surface of the wedge-forming loops in EhICP2 contrasts with the neutral surface of the wedge-forming loops in chagasin. We postulate that the flexibility and positive charge observed in the DE and FG loops of EhICP2 may be important to facilitate the initial binding of this inhibitor to the battery of CPs present in E. histolytica.« less

  17. A Negative-Feedback Loop between the Detoxification/Antioxidant Response Factor SKN-1 and Its Repressor WDR-23 Matches Organism Needs with Environmental Conditions

    PubMed Central

    Leung, Chi K.; Wang, Ying; Deonarine, Andrew; Tang, Lanlan; Prasse, Stephanie

    2013-01-01

    Negative-feedback loops between transcription factors and repressors in responses to xenobiotics, oxidants, heat, hypoxia, DNA damage, and infection have been described. Although common, the function of feedback is largely unstudied. Here, we define a negative-feedback loop between the Caenorhabditis elegans detoxification/antioxidant response factor SKN-1/Nrf and its repressor wdr-23 and investigate its function in vivo. Although SKN-1 promotes stress resistance and longevity, we find that tight regulation by WDR-23 is essential for growth and reproduction. By disabling SKN-1 transactivation of wdr-23, we reveal that feedback is required to set the balance between growth/reproduction and stress resistance/longevity. We also find that feedback is required to set the sensitivity of a core SKN-1 target gene to an electrophile. Interestingly, the effect of feedback on target gene induction is greatly reduced when the stress response is strongly activated, presumably to ensure maximum activation of cytoprotective genes during potentially fatal conditions. Our work provides a framework for understanding the function of negative feedback in inducible stress responses and demonstrates that manipulation of feedback alone can shift the balance of competing animal processes toward cell protection, health, and longevity. PMID:23836880

  18. NOVA SCIENCE UNIT 15, FUNDAMENTAL PARTICLES 4.

    ERIC Educational Resources Information Center

    1964

    THE PRINCIPLES OF ATOMIC STRUCTURE WHICH ARE STRESSED ARE THAT ATOMS ARE MADE UP OF A NUCLEUS WITH A POSITIVE CHARGE, SURROUNDED BY ELECTRONS WITH A NEGATIVE CHARGE, AND THAT THERE IS NO CHANGE IN THE ATOM WHEN THE POSITIVE AND NEGATIVE CHARGES ARE EQUAL. EXPERIMENTS ILLUSTRATE THAT CURRENT ELECTRICITY IS ACTUALLY ELECTRONS IN MOTION, THAT THERE…

  19. Combined line-of-sight error and angular position to generate feedforward control for a charge-coupled device-based tracking loop

    NASA Astrophysics Data System (ADS)

    Tang, Tao; Cai, Huaxiang; Huang, Yongmei; Ren, Ge

    2015-10-01

    A feedforward control based on data fusion is proposed to enhance closed-loop performance. The target trajectory as the observed value of a Kalman filter is recovered by synthesizing line-of-sight error and angular position from the encoder. A Kalman filter based on a Singer acceleration model is employed to estimate the target velocity. In this control scheme, the control stability is influenced by the bandwidth of the Kalman filter and time misalignment. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability, which shows that the Kalman filter is the major factor that affects the control stability. The feedforward control proposed here is verified through simulations and experiments.

  20. Negative Selection Algorithm for Aircraft Fault Detection

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    We investigated a real-valued Negative Selection Algorithm (NSA) for fault detection in man-in-the-loop aircraft operation. The detection algorithm uses body-axes angular rate sensory data exhibiting the normal flight behavior patterns, to generate probabilistically a set of fault detectors that can detect any abnormalities (including faults and damages) in the behavior pattern of the aircraft flight. We performed experiments with datasets (collected under normal and various simulated failure conditions) using the NASA Ames man-in-the-loop high-fidelity C-17 flight simulator. The paper provides results of experiments with different datasets representing various failure conditions.

  1. The Search for Perpetual Motion: Fatigue, Friction, and Drag in Quality Improvement.

    PubMed

    Cumbler, Ethan; Pierce, Read

    Most people who have worked on continuous quality improvement (QI) with teams in the clinical microsystem have experienced "change fatigue." Application of the "Limit-to-Growth" system archetype to QI teams within health care can be used to understand negative feedback loops generated by successful QI that can limit future progress. Awareness of these factors can result in actions designed to reduce drag on forward momentum. Leaders in health care QI can anticipate and minimize negative feedback loops that accumulate to slow subsequent progress of highly functioning improvement teams within clinical microsystems.

  2. Selective mode of action of guanidine-containing non-peptides at human NPFF receptors.

    PubMed

    Findeisen, Maria; Würker, Cäcilia; Rathmann, Daniel; Meier, René; Meiler, Jens; Olsson, Roger; Beck-Sickinger, Annette G

    2012-07-12

    The binding pocket of both NPFF receptors was investigated, focusing on subtype-selective behavior. By use of four nonpeptidic compounds and the peptide mimetics RF9 and BIBP3226, agonistic and antagonistic properties were characterized. A set of Ala receptor mutants was generated. The binding pocket was narrowed down to the upper part of transmembrane helices V, VI, VII and the extracellular loop 2. Positions 5.27 and 6.59 have been shown to have a strong impact on receptor activation and were suggested to form an acidic, negatively charged binding pocket in both NPFF receptor subtypes. Additionally, position 7.35 was identified to play an important role in functional selectivity. According to docking experiments, the aryl group of AC-216 interacts with position 7.35 in the NPFF(1) but not in the NPFF(2) receptor. These results provide distinct insights into the receptor specific binding pockets, which is necessary for the development of drugs to address the NPFF system.

  3. Selective mode of action of guanidine-containing non-peptides at human NPFF receptors

    PubMed Central

    Findeisen, Maria; Würker, Cäcilia; Rathmann, Daniel; Meier, René; Meiler, Jens; Olsson, Roger; Beck-Sickinger, Annette G.

    2012-01-01

    The binding pocket of both NPFF receptors was investigated, focusing on subtype-selective behavior. By using four non-peptidic compounds and the peptide mimetics RF9 and BIBP3226 agonistic and antagonistic properties were characterized. A set of Ala receptor mutants was generated, the binding pocket was narrowed down to the upper part of transmembrane helices V, VI, VII, and the extracellular loop 2. Positions 5.27 and 6.59 have been shown to have a strong impact on receptor activation and were suggested to form an acidic, negatively charged binding pocket in both NPFF receptor subtypes. Additionally, position 7.35 was identified to play an important role in functional selectivity. According to docking experiments, the aryl group of AC-216 interacts with position 7.35 in the NPFF1 but not in the NPFF2 receptor. These results provide distinct insights into the receptor specific binding pockets, which is necessary for the development of drugs to address the NPFF system. PMID:22708927

  4. Analysis of Protein Thermostability Enhancing Factors in Industrially Important Thermus Bacteria Species

    PubMed Central

    Kumwenda, Benjamin; Litthauer, Derek; Bishop, Özlem Tastan; Reva, Oleg

    2013-01-01

    Elucidation of evolutionary factors that enhance protein thermostability is a critical problem and was the focus of this work on Thermus species. Pairs of orthologous sequences of T. scotoductus SA-01 and T. thermophilus HB27, with the largest negative minimum folding energy (MFE) as predicted by the UNAFold algorithm, were statistically analyzed. Favored substitutions of amino acids residues and their properties were determined. Substitutions were analyzed in modeled protein structures to determine their locations and contribution to energy differences using PyMOL and FoldX programs respectively. Dominant trends in amino acid substitutions consistent with differences in thermostability between orthologous sequences were observed. T. thermophilus thermophilic proteins showed an increase in non-polar, tiny, and charged amino acids. An abundance of alanine substituted by serine and threonine, as well as arginine substituted by glutamine and lysine was observed in T. thermophilus HB27. Structural comparison showed that stabilizing mutations occurred on surfaces and loops in protein structures. PMID:24023508

  5. Tests of positive ion beams from a microwave ion source for AMS

    NASA Astrophysics Data System (ADS)

    Schneider, R. J.; von Reden, K. F.; Hayes, J. M.; Wills, J. S. C.; Kern, W. G. E.; Kim, S.-W.

    2000-10-01

    A test facility has been constructed to evaluate high-current positive ion beams from small gaseous samples for AMS applications. The major components include a compact permanent magnet microwave ion source built at the AECL Chalk River Laboratory and now on loan from the University of Toronto, and a double-focusing spectrometer magnet on loan from Argonne National Laboratory. Samples are introduced by means of a silica capillary injection system. Loop injection into a carrier gas provides a stable feed for the microwave driven plasma. The magnetic analysis system is utilized to isolate carbon ions derived from CO 2 samples from other products of the plasma discharge, including argon ions of the carrier gas. With a smaller discharge chamber, we hope to exceed a conversion efficiency of 14% for carbon ions produced per atom, which we reported at AMS-7. The next step will be to construct an efficient charge-exchange cell, to produce negative ions for injection into the WHOI recombinator injector.

  6. The surface charge of trypanosomatids.

    PubMed

    Souto-Padrón, Thaïs

    2002-12-01

    The surface charge of trypanosomatids was evaluated by means of the binding of cationic particles, as visualized by electron microscopy and by direct measurements of the electrophoretic mobility of cells. The results obtained indicate that most of the trypanosomatids exhibit a negatively charged surface whose value is species specific and varies according to the developmental stages. Sialic acids associated with glycoproteins, glycolipids and phosphate groups are the major components responsible for the net negative surface charge of the trypanosomatids.

  7. Borophene as a Promising Material for Charge-Modulated Switchable CO2 Capture.

    PubMed

    Tan, Xin; Tahini, Hassan A; Smith, Sean C

    2017-06-14

    Ideal carbon dioxide (CO 2 ) capture materials for practical applications should bind CO 2 molecules neither too weakly to limit good loading kinetics nor too strongly to limit facile release. Although charge-modulated switchable CO 2 capture has been proposed to be a controllable, highly selective, and reversible CO 2 capture strategy, the development of a practical gas-adsorbent material remains a great challenge. In this study, by means of density functional theory (DFT) calculations, we have examined the possibility of conductive borophene nanosheets as promising sorbent materials for charge-modulated switchable CO 2 capture. Our results reveal that the binding strength of CO 2 molecules on negatively charged borophene can be significantly enhanced by injecting extra electrons into the adsorbent. At saturation CO 2 capture coverage, the negatively charged borophene achieves CO 2 capture capacities up to 6.73 × 10 14 cm -2 . In contrast to the other CO 2 capture methods, the CO 2 capture/release processes on negatively charged borophene are reversible with fast kinetics and can be easily controlled via switching on/off the charges carried by borophene nanosheets. Moreover, these negatively charged borophene nanosheets are highly selective for separating CO 2 from mixtures with CH 4 , H 2 , and/or N 2 . This theoretical exploration will provide helpful guidance for identifying experimentally feasible, controllable, highly selective, and high-capacity CO 2 capture materials with ideal thermodynamics and reversibility.

  8. Mechanisms of Polyelectrolyte Enhanced Surfactant Adsorption at the Air-Water Interface

    PubMed Central

    Stenger, Patrick C.; Palazoglu, Omer A.; Zasadzinski, Joseph A.

    2009-01-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids. PMID:19366599

  9. Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface.

    PubMed

    Stenger, Patrick C; Palazoglu, Omer A; Zasadzinski, Joseph A

    2009-05-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.

  10. Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces.

    PubMed

    Burgo, Thiago A L; Ducati, Telma R D; Francisco, Kelly R; Clinckspoor, Karl J; Galembeck, Fernando; Galembeck, Sergio E

    2012-05-15

    Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.

  11. Coarse-grained modeling of proline rich protein 1 (PRP-1) in bulk solution and adsorbed to a negatively charged surface.

    PubMed

    Skepö, Marie; Linse, Per; Arnebrant, Thomas

    2006-06-22

    Structural properties of the acidic proline rich protein PRP-1 of salivary origin in bulk solution and adsorbed onto a negatively charged surface have been studied by Monte Carlo simulations. A simple model system with focus on electrostatic interactions and short-ranged attractions among the uncharged amino acids has been used. In addition to PRP-1, some mutants were considered to assess the role of the interactions in the systems. Contrary to polyelectrolytes, the protein has a compact structure in salt-free bulk solutions, whereas at high salt concentration the protein becomes more extended. The protein adsorbs to a negatively charged surface, although its net charge is negative. The adsorbed protein displays an extended structure, which becomes more compact upon addition of salt. Hence, the conformational response upon salt addition in the adsorbed state is the opposite as compared to that in bulk solution. The conformational behavior of PRP-1 in bulk solution and at charged surfaces as well as its propensity to adsorb to surfaces with the same net charge are rationalized by the block polyampholytic character of the protein. The presence of a triad of positively charged amino acids in the C-terminal was found to be important for the adsorption of the protein.

  12. Herpes Simplex Virus Glycoprotein B Associates with Target Membranes via Its Fusion Loops▿

    PubMed Central

    Hannah, Brian P.; Cairns, Tina M.; Bender, Florent C.; Whitbeck, J. Charles; Lou, Huan; Eisenberg, Roselyn J.; Cohen, Gary H.

    2009-01-01

    Herpes simplex virus (HSV) glycoproteins gB, gD, and gH/gL are necessary and sufficient for virus entry into cells. Structural features of gB are similar to those of vesicular stomatitis virus G and baculovirus gp64, and together they define the new class III group of fusion proteins. Previously, we used mutagenesis to show that three hydrophobic residues (W174, Y179, and A261) within the putative gB fusion loops are integral to gB function. Here we expanded our analysis, using site-directed mutagenesis of each residue in both gB fusion loops. Mutation of most of the nonpolar or hydrophobic amino acids (W174, F175, G176, Y179, and A261) had severe effects on gB function in cell-cell fusion and null virus complementation assays. Of the six charged amino acids, mutation of H263 or R264 also negatively affected gB function. To further analyze the mutants, we cloned the ectodomains of the W174R, Y179S, H263A, and R264A mutants into a baculovirus expression system and compared them with the wild-type (WT) form, gB730t. As shown previously, gB730t blocks virus entry into cells, suggesting that gB730t competes with virion gB for a cell receptor. All four mutant proteins retained this function, implying that fusion loop activity is separate from gB-receptor binding. However, unlike WT gB730t, the mutant proteins displayed reduced binding to cells and were either impaired or unable to bind naked, cholesterol-enriched liposomes, suggesting that it may be gB-lipid binding that is disrupted by the mutations. Furthermore, monoclonal antibodies with epitopes proximal to the fusion loops abrogated gB-liposome binding. Taken together, our data suggest that gB associates with lipid membranes via a fusion domain of key hydrophobic and hydrophilic residues and that this domain associates with lipid membranes during fusion. PMID:19369321

  13. VHF lightning mapping observations of a triggered lightning flash

    NASA Astrophysics Data System (ADS)

    Edens, H. E.; Eack, K. B.; Eastvedt, E. M.; Trueblood, J. J.; Winn, W. P.; Krehbiel, P. R.; Aulich, G. D.; Hunyady, S. J.; Murray, W. C.; Rison, W.; Behnke, S. A.; Thomas, R. J.

    2012-10-01

    On 3 August 2010 an extensive lightning flash was triggered over Langmuir Laboratory in New Mexico. The upward positive leader propagated into the storm's midlevel negative charge region, extending over a horizontal area of 13 × 13 km and 7.5 km altitude. The storm had a normal-polarity tripolar charge structure with upper positive charge over midlevel negative charge. Lightning Mapping Array (LMA) observations were used to estimate positive leader velocities along various branches, which were in the range of 1-3 × 104 m s-1, slower than in other studies. The upward positive leader initiated at 3.4 km altitude, but was mapped only above 4.0 km altitude after the onset of retrograde negative breakdown, indicating a change in leader propagation and VHF emissions. The observations suggest that both positive and negative breakdown produce VHF emissions that can be located by time-of-arrival systems, and that not all VHF emissions occurring along positive leader channels are associated with retrograde negative breakdown.

  14. Mutations reducing replication from R-loops suppress the defects of growth, chromosome segregation and DNA supercoiling in cells lacking topoisomerase I and RNase HI activity.

    PubMed

    Usongo, Valentine; Martel, Makisha; Balleydier, Aurélien; Drolet, Marc

    2016-04-01

    R-loop formation occurs when the nascent RNA hybridizes with the template DNA strand behind the RNA polymerase. R-loops affect a wide range of cellular processes and their use as origins of replication was the first function attributed to them. In Escherichia coli, R-loop formation is promoted by the ATP-dependent negative supercoiling activity of gyrase (gyrA and gyrB) and is inhibited by topoisomerase (topo) I (topA) relaxing transcription-induced negative supercoiling. RNase HI (rnhA) degrades the RNA moiety of R-loops. The depletion of RNase HI activity in topA null mutants was previously shown to lead to extensive DNA relaxation, due to DNA gyrase inhibition, and to severe growth and chromosome segregation defects that were partially corrected by overproducing topo III (topB). Here, DNA gyrase assays in crude cell extracts showed that the ATP-dependent activity (supercoiling) of gyrase but not its ATP-independent activity (relaxation) was inhibited in topA null cells lacking RNase HI. To characterize the cellular event(s) triggered by the absence of RNase HI, we performed a genetic screen for suppressors of the growth defect of topA rnhA null cells. Suppressors affecting genes in replication (holC2::aph and dnaT18::aph) nucleotide metabolism (dcd49::aph), RNA degradation (rne59::aph) and fimbriae synthesis (fimD22::aph) were found to reduce replication from R-loops and to restore supercoiling, thus pointing to a correlation between R-loop-dependent replication in topA rnhA mutants and the inhibition of gyrase activity and growth. Interestingly, the position of fimD on the E. coli chromosome corresponds to the site of one of the five main putative origins of replication from R-loops in rnhA null cells recently identified by next-generation sequencing, thus suggesting that the fimD22::aph mutation inactivated one of these origins. Furthermore, we show that topo III overproduction is unable to complement the growth defect of topA rnhA null mutants at low temperatures that stabilizes hyper-negatively supercoiled DNA. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Size of the Internal Loop in DNA Hairpins Influences Their Targeting with Partially Complementary Strands

    PubMed Central

    2015-01-01

    Targeting of noncanonical DNA structures, such as hairpin loops, may have significant diagnostic and therapeutic potential. Oligonucleotides can be used for binding to mRNA, forming a DNA/RNA hybrid duplex that inhibits translation. This kind of modulation of gene expression is called the antisense approach. In order to determine the best strategy to target a common structural motif in mRNA, we have designed a set of stem-loop DNA molecules with sequence: d(GCGCTnGTAAT5GTTACTnGCGC), where n = 1, 3, or 5, “T5” is an end loop of five thymines. We used a combination of calorimetric and spectroscopy techniques to determine the thermodynamics for the reaction of a set of hairpins containing internal loops with their respective partially complementary strands. Our aim was to determine if internal- and end-loops are promising regions for targeting with their corresponding complementary strands. Indeed, all targeting reactions were accompanied by negative changes in free energy, indicating that reactions proceed spontaneously. Further investigation showed that these negative free energy terms result from a net balance of unfavorable entropy and favorable enthalpy contributions. In particular, unfolding of hairpins and duplexes is accompanied by positive changes in heat capacity, which may be a result of exposure of hydrophobic groups to the solvent. This study provides a new method for the targeting of mRNA in order to control gene expression. PMID:25486129

  16. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells

    PubMed Central

    Chen, Liang; Mccrate, Joseph M.; Lee, James C-M.; Li, Hao

    2011-01-01

    The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles surface charge was varied by the surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FTIR) confirmed the adsorption and binding of the carboxylic acids on HAP nanoparticle surface; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate cell membrane due to the larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of the HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles shows strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular uptake of HAP nanoparticles and the different uptake also influence the behavior of cells. These in-vitro results may also provide useful information for investigations of HAP nanoparticles applications in the gene delivery and intracellular drug delivery. PMID:21289408

  17. Singlet scalar top partners from accidental supersymmetry

    NASA Astrophysics Data System (ADS)

    Cheng, Hsin-Chia; Li, Lingfeng; Salvioni, Ennio; Verhaaren, Christopher B.

    2018-05-01

    We present a model wherein the Higgs mass is protected from the quadratic one-loop top quark corrections by scalar particles that are complete singlets under the Standard Model (SM) gauge group. While bearing some similarity to Folded Supersymmetry, the construction is purely four dimensional and enjoys more parametric freedom, allowing electroweak symmetry breaking to occur easily. The cancelation of the top loop quadratic divergence is ensured by a Z 3 symmetry that relates the SM top sector and two hidden top sectors, each charged under its own hidden color group. In addition to the singlet scalars, the hidden sectors contain electroweak-charged supermultiplets below the TeV scale, which provide the main access to this model at colliders. The phenomenology presents both differences and similarities with respect to other realizations of neutral naturalness. Generally, the glueballs of hidden color have longer decay lengths. The production of hidden sector particles results in quirk or squirk bound states, which later annihilate. We survey the possible signatures and corresponding experimental constraints.

  18. In situ measurements and radar observations of a severe storm - Electricity, kinematics, and precipitation

    NASA Technical Reports Server (NTRS)

    Byrne, G. J.; Few, A. A.; Stewart, M. F.; Conrad, A. C.; Torczon, R. L.

    1987-01-01

    Electric field measurements made inside a multicell severe storm in Oklahoma in 1983 with a balloon-borne instrument are presented. The properties of the electric charge regions, such as altitude, thickness, and charge concentrations, are studied. These measurements are analzyed with meteorological measurements of temperature and humidity, and balloon tracking and radar observations. The relation between the electric charge structure and the precipitation and kinematic features of the storm is examined. The data reveal that the cell exhibits a bipolar charge structure with negative charge below positive charge. The average charge concentrations of the two regions are estimated as -1.2 and 0.15 nC/cu m, respectively; the upper positive charge is about 6 km in vertical extent, and the lower negative charge is less than 1 km in vertical extent.

  19. Positively versus negatively charged moral emotion expectancies in adolescence: the role of situational context and the developing moral self.

    PubMed

    Krettenauer, Tobias; Johnston, Megan

    2011-09-01

    The study analyses adolescents' positively charged versus negatively charged moral emotion expectancies. Two hundred and five students (M= 14.83 years, SD= 2.21) participated in an interview depicting various situations in which a moral norm was either regarded or transgressed. Emotion expectancies were assessed for specific emotions (pride, guilt) as well as for overall strength and valence. In addition, self-importance of moral values was measured by a questionnaire. Results revealed that positively charged emotion expectancies were more pronounced in contexts of prosocial action than in the context of moral transgressions, whereas the opposite was true for negatively charged emotions. At the same time, expectations of guilt and pride were substantially related to the self-importance of moral values. ©2010 The British Psychological Society.

  20. Charge rearrangement deduced from nearby electric field measurements of an intracloud flash with K‒changes

    NASA Astrophysics Data System (ADS)

    Hager, William W.; Feng, Wei

    2013-09-01

    An intracloud flash near Langmuir Laboratory is analyzed to determine the net rearrangement of charge. The analysis employed data from a balloon borne electric field sensor, or Esonde, that was within a few hundred meters of the lightning channel, data from a similar Esonde on a mountain about 6.4 km from the balloon, and data from the New Mexico Institute of Mining and Technology Lightning Mapping Array (LMA). The recovery of the charge transport required the solution of Poisson's equation over the mountainous terrain surrounding Langmuir Laboratory and the solution of a vastly under‒determined system of equations. The charge movement is analyzed using a new smooth charge transport model that incorporates constraints in the least squares fitting process through the use of penalty terms to smooth the charge movement and prevent data overfitting. The electric field measurements were consistent with about 26% of the negative charge being transported to the end of the channel, 36% deposited along the channel in the positive region, 8% deposited near the start of the channel in the positive region, and 30% deposited in another positive region several kilometers beneath the main channel. The transport of negative charge to a lower positive region occurred during the K‒processes when some negative charge was also deposited along the main channel in the upper positive region. Hence, the charge transport process during the K‒processes amounted to a tripolar charge rearrangement where the charge from the negative region was transported to two distinct positive regions, the positive region along the main channel and a lower positive region beneath the main channel. High altitude, widely scattered LMA sources beyond the end of the main channel could indicate the existence of streamers which transported the end‒of‒channel charge into the surrounding volume. Although the LMA showed the development of two upper channels, the charge transport analysis showed that measurable charge transport only occurred on one of the channels. The channel that did not transport charge was missing the high altitude, widely scattered LMA sources seen at the end of the channel that carried charge.

  1. Suprathermal Electrons in the Solar Corona: Can Nonlocal Transport Explain Heliospheric Charge States?

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2014-08-01

    There have been several ideas proposed to explain how the Sun's corona is heated and how the solar wind is accelerated. Some models assume that open magnetic field lines are heated by Alfvén waves driven by photospheric motions and dissipated after undergoing a turbulent cascade. Other models posit that much of the solar wind's mass and energy is injected via magnetic reconnection from closed coronal loops. The latter idea is motivated by observations of reconnecting jets and also by similarities of ion composition between closed loops and the slow wind. Wave/turbulence models have also succeeded in reproducing observed trends in ion composition signatures versus wind speed. However, the absolute values of the charge-state ratios predicted by those models tended to be too low in comparison with observations. This Letter refines these predictions by taking better account of weak Coulomb collisions for coronal electrons, whose thermodynamic properties determine the ion charge states in the low corona. A perturbative description of nonlocal electron transport is applied to an existing set of wave/turbulence models. The resulting electron velocity distributions in the low corona exhibit mild suprathermal tails characterized by "kappa" exponents between 10 and 25. These suprathermal electrons are found to be sufficiently energetic to enhance the charge states of oxygen ions, while maintaining the same relative trend with wind speed that was found when the distribution was assumed to be Maxwellian. The updated wave/turbulence models are in excellent agreement with solar wind ion composition measurements.

  2. Characteristic study of head-on collision of dust-ion acoustic solitons of opposite polarity with kappa distributed electrons

    NASA Astrophysics Data System (ADS)

    Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa

    2016-09-01

    The head on collision between two dust ion acoustic (DIA) solitary waves, propagating in opposite directions, is studied in an unmagnetized plasma constituting adiabatic ions, static dust charged (positively/negatively) grains, and non-inertial kappa distributed electrons. In the linear limit, the dispersion relation of the dust ion acoustic (DIA) solitary wave is obtained using the Fourier analysis. For studying characteristic head-on collision of DIA solitons, the extended Poincaré-Lighthill-Kuo method is employed to obtain Korteweg-de Vries (KdV) equations with quadratic nonlinearities and investigated the phase shifts in their trajectories after the interaction. It is revealed that only compressive solitary waves can exist for the positive dust charged concentrations while for negative dust charge concentrations both the compressive and rarefactive solitons can propagate in such dusty plasma. It is found that for specific sets of plasma parameters, the coefficient of nonlinearity disappears in the KdV equation for the negative dust charged grains. Therefore, the modified Korteweg-de Vries (mKdV) equations with cubic nonlinearity coefficient, and their corresponding phase shift and trajectories, are also derived for negative dust charged grains plasma at critical composition. The effects of different plasma parameters such as superthermality, concentration of positively/negatively static dust charged grains, and ion to electron temperature ratio on the colliding soliton profiles and their corresponding phase shifts are parametrically examined.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kaifeng; Lim, Jaehoon; Klimov, Victor I.

    Application of colloidal semiconductor quantum dots (QDs) in optical and optoelectronic devices is often complicated by unintentional generation of extra charges, which opens fast nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the extra carrier(s) and ultimately dissipated as heat. Previous studies of Auger recombination have primarily focused on neutral and, more recently, negatively charged multicarrier states. Auger dynamics of positively charged species remains more poorly explored due to difficulties in creating, stabilizing, and detecting excess holes in the QDs. Here we apply photochemical doping to prepare both negatively and positively charged CdSe/CdSmore » QDs with two distinct core/shell interfacial profiles (“sharp” versus “smooth”). Using neutral and charged QD samples we evaluate Auger lifetimes of biexcitons, negative and positive trions (an exciton with an extra electron or a hole, respectively), and multiply negatively charged excitons. Using these measurements, we demonstrate that Auger decay of both neutral and charged multicarrier states can be presented as a superposition of independent elementary three-particle Auger events. As one of the manifestations of the superposition principle, we observe that the biexciton Auger decay rate can be presented as a sum of the Auger rates for independent negative and positive trion pathways. Furthermore, by comparing the measurements on the QDs with the “sharp” versus “smooth” interfaces, we also find that while affecting the absolute values of Auger lifetimes, manipulation of the shape of the confinement potential does not lead to violation of the superposition principle, which still allows us to accurately predict the biexciton Auger lifetimes based on the measured negative and positive trion dynamics. Our findings indicate considerable robustness of the superposition principle as applied to Auger decay of charged and neutral multicarrier states, suggesting its generality to quantum-confined nanocrystals of arbitrary compositions and complexities.« less

  4. Radiation signatures from a locally energized flaring loop

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.; Vlahos, L.

    1980-01-01

    The radiation signatures from a locally energized solar flare loop based on the physical properties of the energy release mechanisms were consistent with hard X-ray, microwave, and EUV observations for plausible source parameters. It was found that a suprathermal tail of high energy electrons is produced by the primary energy release, and that the number of energetic charged particles ejected into the interplanetary medium in the model is consistent with observations. The radiation signature model predicts that the intrinsic polarization of the hard X-ray burst should increase over the photon energy range of 20 to 100 keV.

  5. A Unified Model of Cloud-to-Ground Lightning Stroke

    NASA Astrophysics Data System (ADS)

    Nag, A.; Rakov, V. A.

    2014-12-01

    The first stroke in a cloud-to-ground lightning discharge is thought to follow (or be initiated by) the preliminary breakdown process which often produces a train of relatively large microsecond-scale electric field pulses. This process is poorly understood and rarely modeled. Each lightning stroke is composed of a downward leader process and an upward return-stroke process, which are usually modeled separately. We present a unified engineering model for computing the electric field produced by a sequence of preliminary breakdown, stepped leader, and return stroke processes, serving to transport negative charge to ground. We assume that a negatively-charged channel extends downward in a stepped fashion through the relatively-high-field region between the main negative and lower positive charge centers and then through the relatively-low-field region below the lower positive charge center. A relatively-high-field region is also assumed to exist near ground. The preliminary breakdown pulse train is assumed to be generated when the negatively-charged channel interacts with the lower positive charge region. At each step, an equivalent current source is activated at the lower extremity of the channel, resulting in a step current wave that propagates upward along the channel. The leader deposits net negative charge onto the channel. Once the stepped leader attaches to ground (upward connecting leader is presently neglected), an upward-propagating return stroke is initiated, which neutralizes the charge deposited by the leader along the channel. We examine the effect of various model parameters, such as step length and current propagation speed, on model-predicted electric fields. We also compare the computed fields with pertinent measurements available in the literature.

  6. Carbon nanotubes' surface chemistry determines their potency as vaccine nanocarriers in vitro and in vivo

    PubMed Central

    Hassan, Hatem A.F.M.; Smyth, Lesley; Rubio, Noelia; Ratnasothy, Kulachelvy; Wang, Julie T.-W.; Bansal, Sukhvinder S.; Summers, Huw D.; Diebold, Sandra S.; Lombardi, Giovanna; Al-Jamal, Khuloud T.

    2016-01-01

    Carbon nanotubes (CNTs) have shown marked capabilities in enhancing antigen delivery to antigen presenting cells. However, proper understanding of how altering the physical properties of CNTs may influence antigen uptake by antigen presenting cells, such as dendritic cells (DCs), has not been established yet. We hypothesized that altering the physical properties of multi-walled CNTs (MWNTs)-antigen conjugates, e.g. length and surface charge, can affect the internalization of MWNT-antigen by DCs, hence the induced immune response potency. For this purpose, pristine MWNTs (p-MWNTs) were exposed to various chemical reactions to modify their physical properties then conjugated to ovalbumin (OVA), a model antigen. The yielded MWNTs-OVA conjugates were long MWNT-OVA (~ 386 nm), bearing net positive charge (5.8 mV), or short MWNTs-OVA (~ 122 nm) of increasing negative charges (− 23.4, − 35.8 or − 39 mV). Compared to the short MWNTs-OVA bearing high negative charges, short MWNT-OVA with the lowest negative charge demonstrated better cellular uptake and OVA-specific immune response both in vitro and in vivo. However, long positively-charged MWNT-OVA showed limited cellular uptake and OVA specific immune response in contrast to short MWNT-OVA displaying the least negative charge. We suggest that reduction in charge negativity of MWNT-antigen conjugate enhances cellular uptake and thus the elicited immune response intensity. Nevertheless, length of MWNT-antigen conjugate might also affect the cellular uptake and immune response potency; highlighting the importance of physical properties as a consideration in designing a MWNT-based vaccine delivery system. PMID:26802552

  7. Interactions of microbicide nanoparticles with a simulated vaginal fluid.

    PubMed

    das Neves, José; Rocha, Cristina M R; Gonçalves, Maria Pilar; Carrier, Rebecca L; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2012-11-05

    The interaction with cervicovaginal mucus presents the potential to impact the performance of drug nanocarriers. These systems must migrate through this biological fluid in order to deliver their drug payload to the underlying mucosal surface. We studied the ability of dapivirine-loaded polycaprolactone (PCL)-based nanoparticles (NPs) to interact with a simulated vaginal fluid (SVF) incorporating mucin. Different surface modifiers were used to produce NPs with either negative (poloxamer 338 NF and sodium lauryl sulfate) or positive (cetyltrimethylammonium bromide) surface charge. Studies were performed using the mucin particle method, rheological measurements, and real-time multiple particle tracking. Results showed that SVF presented rheological properties similar to those of human cervicovaginal mucus. Analysis of NP transport indicated mild interactions with mucin and low adhesive potential. In general, negatively charged NPs underwent subdiffusive transport in SVF, i.e., hindered as compared to their diffusion in water, but faster than for positively charged NPs. These differences were increased when the pH of SVF was changed from 4.2 to 7.0. Diffusivity was 50- and 172-fold lower in SVF at pH 4.2 than in water for negatively charged and positively charged NPs, respectively. At pH 7.0, this decrease was around 20- and 385-fold, respectively. The estimated times required to cross a layer of SVF were equal to or lower than 1.7 h for negatively charged NPs, while for positively charged NPs these values were equal to or higher than 7 h. Overall, our results suggest that negatively charged PCL NPs may be suitable to be used as carriers in order to deliver dapivirine and potentially other antiretroviral drugs to the cervicovaginal mucosal lining. Also, they further reinforce the importance in characterizing the interactions of nanosystems with mucus fluids or surrogates when considering mucosal drug delivery.

  8. Orthorhombic lysozyme crystallization at acidic pH values driven by phosphate binding.

    PubMed

    Plaza-Garrido, Marina; Salinas-Garcia, M Carmen; Camara-Artigas, Ana

    2018-05-01

    The structure of orthorhombic lysozyme has been obtained at 298 K and pH 4.5 using sodium chloride as the precipitant and in the presence of sodium phosphate at a concentration as low as 5 mM. Crystals belonging to space group P2 1 2 1 2 1 (unit-cell parameters a = 30, b = 56, c = 73 Å, α = β = γ = 90.00°) diffracted to a resolution higher than 1 Å, and the high quality of these crystals permitted the identification of a phosphate ion bound to Arg14 and His15. The binding of this ion produces long-range conformational changes affecting the loop containing Ser60-Asn74. The negatively charged phosphate ion shields the electrostatic repulsion of the positively charged arginine and histidine residues, resulting in higher stability of the phosphate-bound lysozyme. Additionally, a low-humidity orthorhombic variant was obtained at pH 4.5, and comparison with those previously obtained at pH 6.5 and 9.5 shows a 1.5 Å displacement of the fifth α-helix towards the active-site cavity, which might be relevant to protein function. Since lysozyme is broadly used as a model protein in studies related to protein crystallization and amyloid formation, these results indicate that the interaction of some anions must be considered when analysing experiments performed at acidic pH values.

  9. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  10. Itinerant electrons in the Coulomb phase

    NASA Astrophysics Data System (ADS)

    Jaubert, L. D. C.; Piatecki, Swann; Haque, Masudul; Moessner, R.

    2012-02-01

    We study the interplay between magnetic frustration and itinerant electrons. For example, how does the coupling to mobile charges modify the properties of a spin liquid, and does the underlying frustration favor insulating or conducting states? Supported by Monte Carlo simulations, our goal is in particular to provide an analytical picture of the mechanisms involved. The models under consideration exhibit Coulomb phases in two and three dimensions, where the itinerant electrons are coupled to the localized spins via double exchange interactions. Because of the Hund coupling, magnetic loops naturally emerge from the Coulomb phase and serve as conducting channels for the mobile electrons, leading to doping-dependent rearrangements of the loop ensemble in order to minimize the electronic kinetic energy. At low electron density ρ, the double exchange coupling mainly tends to segment the very long loops winding around the system into smaller ones while it gradually lifts the extensive degeneracy of the Coulomb phase with increasing ρ. For higher doping, the results are strongly lattice dependent, displaying loop crystals with a given loop length for some specific values of ρ. By varying ρ, they can melt into different mixtures of these loop crystals, recovering extensive degeneracy in the process. Finally, we contrast this to the qualitatively different behavior of analogous models on kagome or triangular lattices.

  11. Intracellular sorting of differently charged chitosan derivatives and chitosan-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Zubareva, A. A.; Shcherbinina, T. S.; Varlamov, V. P.; Svirshchevskaya, E. V.

    2015-04-01

    Chitosan (Chi) is a biodegradable nontoxic polycation with multiple reactive groups that is easily used to obtain derivatives with a desired charge and hydrophobic properties. The aim of this work was to study the intracellular traffic of positively charged hexanoyl-chitosan (HC) or HC-based nanoparticles (HCNPs) and negatively charged succinoyl-chitosan (SC) and SCNPs in epithelial and macrophage cell lines. By using flow cytometry we demonstrated that positively charged HC adhered to cell membranes quicker and more efficiently than negatively charged SC or NPs. However confocal studies showed that SC and SCNPs penetrated cells much more efficiently than HC while HCNPs did not enter the epithelial cells. Macrophages also phagocyted better negatively charged material but were able to engulf both HC and HCNPs. Upon entering the cells, SC and SCNPs were co-localized with endosomes and lysosomes while HC was found in mitochondria and, to a lesser extent, in lysosomes of epithelial cells. Macrophages, RAW264.7, more efficiently transported all Chi samples to the lysosomal compartment while some positively charged material was still found in mitochondria. Incubation of Chi derivatives and ChiNPs at pH specific to mitochondria (8.0) and lysosomes (4.5) demonstrated the neutralization of Chi charge. We concluded that epithelial cells and, to a lesser extent, macrophages sort charged material to the organelles neutralizing Chi charge.

  12. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions.

    PubMed

    Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J

    2018-06-04

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

  13. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions

    NASA Astrophysics Data System (ADS)

    Williams, Peggy E.; Marshall, David L.; Poad, Berwyck L. J.; Narreddula, Venkateswara R.; Kirk, Benjamin B.; Trevitt, Adam J.; Blanksby, Stephen J.

    2018-06-01

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions.

  14. Detecting negative ions on board small satellites

    NASA Astrophysics Data System (ADS)

    Lepri, S. T.; Raines, J. M.; Gilbert, J. A.; Cutler, J.; Panning, M.; Zurbuchen, T. H.

    2017-04-01

    Recent measurements near comets, planets, and their satellites have shown that heavy ions, energetic neutral atoms, molecular ions, and charged dust contain a wealth of information about the origin, evolution, and interaction of celestial bodies with their space environment. Using highly sensitive plasma instruments, positively charged heavy ions have been used to trace exospheric and surface composition of comets, planets, and satellites as well as the composition of interplanetary and interstellar dust. While positive ions dominate throughout the heliosphere, negative ions are also produced from surface interactions. In fact, laboratory experiments have shown that oxygen released from rocky surfaces is mostly negatively charged. Negative ions and negatively charged nanograins have been detected with plasma electron analyzers in several different environments (e.g., by Cassini and Rosetta), though more extensive studies have been challenging without instrumentation dedicated to negative ions. We discuss an adaptation of the Fast Imaging Plasma Spectrometer (FIPS) flown on MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) for the measurement of negatively charged particles. MESSENGER/FIPS successfully measured the plasma environment of Mercury from 2011 until 2015, when the mission ended, and has been used to map multiple ion species (H+ through Na+ and beyond) throughout Mercury's space environment. Modifications to the existing instrument design fits within a 3U CubeSat volume and would provide a low mass, low power instrument, ideal for future CubeSat or distributed sensor missions seeking, for the first time, to characterize the contribution of negative particles in the heliospheric plasmas near the planets, moons, comets, and other sources.

  15. Domain switching kinetics in ferroelectric-resistive BiFeO3 thin film memories

    NASA Astrophysics Data System (ADS)

    Meng, Jianwei; Jiang, Jun; Geng, Wenping; Chen, Zhihui; Zhang, Wei; Jiang, Anquan

    2015-02-01

    We fabricated (00l) BiFeO3 (BFO) thin films in different growth modes on SrRuO3/SrTiO3 substrates using a pulsed laser deposition technique. X-ray diffraction patterns show an out-of-plane lattice constant of 4.03 Å and ferroelectric polarization of 82 µC/cm2 for the BFO thin film in a layer-by-layer growth mode (2D-BFO), larger than 3.96 Å and 51 µC/cm2 for the thin film in the 3D-island formation growth mode (3D-BFO). The 2D-BFO thin film at 300 K shows switchable on/off diode currents upon polarization flipping near a negative coercive voltage, which is nevertheless absent from the above 3D-BFO thin film. From a positive-up-negative-down pulse characterization technique, we measured domain switching current transients as well as polarization-voltage (Pf-Vf) hysteresis loops in both semiconducting thin films. Pf-Vf hysteresis loops after 1 µs-retention time show the preferred domain orientation pointing to bottom electrodes in a 3D-BFO thin film. The poor retention of the domains pointing to top electrodes can be improved considerably in a 2D-BFO thin film. From these measurements, we extracted domain switching time dependence of coercive voltage at temperatures of 78-300 K. From these dependences, we found coercive voltages in semiconducting ferroelectric thin films much higher than those in insulating thin films, disobeying the traditional Merz equation. Finally, an equivalent resistance model in description of free-carrier compensation of the front domain boundary charge is developed to interpret this difference. This equivalent resistance can be coincidently extracted either from domain switching time dependence of coercive voltage or from applied voltage dependence of domain switching current, which drops almost linearly with the temperature until down to 0 in a ferroelectric insulator at 78 K.

  16. Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters.

    PubMed

    Grunseich, Christopher; Wang, Isabel X; Watts, Jason A; Burdick, Joshua T; Guber, Robert D; Zhu, Zhengwei; Bruzel, Alan; Lanman, Tyler; Chen, Kelian; Schindler, Alice B; Edwards, Nancy; Ray-Chaudhury, Abhik; Yao, Jianhua; Lehky, Tanya; Piszczek, Grzegorz; Crain, Barbara; Fischbeck, Kenneth H; Cheung, Vivian G

    2018-02-01

    R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor β (TGF-β), is reduced; that then leads to the activation of the TGF-β pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Modulating the line shape of magnetoconductance by varying the charge injection in polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chitraningrum, Nidya; Chu, Ting-Yi; Huang, Ping-Tsung; Wen, Ten-Chin; Guo, Tzung-Fang

    2018-02-01

    We fabricate the phenyl-substituted poly(p-phenylene vinylene) copolymer (super yellow, SY-PPV)-based polymer light-emitting diodes (PLEDs) with different device architectures to modulate the injection of opposite charge carriers and investigate the corresponding magnetoconductance (MC) responses. At the first glance, we find that all PLEDs exhibit the positive MC responses. By applying the mathematical analysis to fit the curves with two empirical equations of a non-Lorentzian and a Lorentzian function, we are able to extract the hidden negative MC component from the positive MC curve. We attribute the growth of the negative MC component to the reduced interaction of the triplet excitons with charges to generate the free charge carriers as modulated by the applied magnetic field, known as the triplet exciton-charge reaction, by analyzing MC responses for PLEDs of the charge-unbalanced and hole-blocking device configurations. The negative MC component causes the broadening of the line shape in MC curves.

  18. Geoscience Laser Altimeter System (GLAS) Instrument: Flight Loop Heat Pipe (LHP) Acceptance Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Butler, Dan; Ku, Jentung; Grob, Eric; Swanson, Ted; Nikitkin, Michael; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Two loop heat pipes (LHPs) are to be used for tight thermal control of the Geoscience Laser Altimeter System (GLAS) instrument, planned for flight in late 2001. The LHPs are charged with Propylene as a working fluid. One LHP will be used to transport 110 W from a laser to a radiator, the other will transport 160 W from electronic boxes to a separate radiator. The application includes a large amount of thermal mass in each LHP system and low initial startup powers. The initial design had some non-ideal flight design compromises, resulted in a less than ideal charge level for this design concept with a symmetrical secondary wick. This less than ideal charge was identified as the source of inadequate performance of the flight LHPs during the flight thermal vacuum test in October of 2000. We modified the compensation chamber design, re-built and charged the LHPs for a final LHP acceptance thermal vacuum test. This test performed March of 2001 was 100% successful. This is the last testing to be performed on the LHPs prior to instrument thermal vacuum test. This sensitivity to charge level was shown through varying the charge on a Development Model Loop Heat Pipe (DM LHP) and evaluating performance at various fill levels. At lower fills similar to the original charge in the flight units, the same poor performance was observed. When the flight units were re-designed and filled to the levels similar to the initial successful DM LHP test, the flight units also successfully fulfilled all requirements. This final flight Acceptance test assessed performance with respect to startup, low power operation, conductance, and control heater power, and steady state control. The results of the testing showed that both LHPs operated within specification. Startup on one of the LHPs was better than the other LHP because of the starter heater placement and a difference in evaporator design. These differences resulted in a variation in the achieved superheat prior to startup. The LHP with the lower superheat was sensitive to the thermal environment around the compensation chamber, while the LHP with the higher superheat (similar in design to DM LHP) was not. In response to the test results the placement of the starter heater will be optimized for the flight instrument testing for higher achieved superheat. This presentation discusses startup behavior, overall conductance of a radiator system, low power operation, high power operation, temperature control stability, and control heater power requirements as measured during this acceptance thermal vacuum test. A brief summary of 'lessons learned' will be included.

  19. Negative charge emission due to excimer laser bombardment of sodium trisilicate glass

    NASA Astrophysics Data System (ADS)

    Langford, S. C.; Jensen, L. C.; Dickinson, J. T.; Pederson, L. R.

    1990-10-01

    We describe measurements of negative charge emission accompanying irradiation of sodium trisilicate glass (Na2Oṡ3SiO2) with 248-nm excimer laser light at fluences on the order of 2 J/cm2 per pulse, i.e., at the threshold for ablative etching of the glass surface. The negative charge emission consists of a very prompt photoelectron burst coincident with the laser pulse, followed by a much slower plume of electrons and negative ions traveling with a high density cloud of positive ions, previously identified as primarily Na+. Using combinations of E and B fields in conjunction with time-of-flight methods, the negative ions were successfully separated from the plume and tentatively identified as O-, Si-, NaO-, and perhaps NaSi-. These negative species are probably formed by gas phase collisions in the near-surface region which result in electron attachment.

  20. Negatively Charged Lipid Membranes Promote a Disorder-Order Transition in the Yersinia YscU Protein

    PubMed Central

    Weise, Christoph F.; Login, Frédéric H.; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2014-01-01

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia. PMID:25418176

  1. Negatively charged lipid membranes promote a disorder-order transition in the Yersinia YscU protein.

    PubMed

    Weise, Christoph F; Login, Frédéric H; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2014-10-21

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia.

  2. Dark matter, muon g -2 , electric dipole moments, and Z →ℓi+ℓj- in a one-loop induced neutrino model

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Okada, Hiroshi; Senaha, Eibun

    2017-07-01

    We study a simple one-loop induced neutrino mass model that contains both bosonic and fermionic dark matter candidates and has the capacity to explain the muon anomalous magnetic moment anomaly. We perform a comprehensive analysis by taking into account the relevant constraints of charged lepton flavor violation, electric dipole moments, and neutrino oscillation data. We examine the constraints from lepton flavor-changing Z boson decays at the one-loop level, particularly when the involved couplings contribute to the muon g -2 . It is found that BR (Z →μ τ )≃(10-7- 10-6) while BR (τ →μ γ )≲10-11 in the fermionic dark matter scenario. The former can be probed by the precision measurement of the Z boson at future lepton colliders.

  3. Changes in regional and temporal patterns of activity associated with aging during the performance of a lexical set-shifting task.

    PubMed

    Martins, Ruben; Simard, France; Provost, Jean-Sebastien; Monchi, Oury

    2012-06-01

    Some older individuals seem to use compensatory mechanisms to maintain high-level performance when submitted to cognitive tasks. However, whether and how these mechanisms affect fronto-striatal activity has never been explored. The purpose of this study was to investigate how aging affects brain patterns during the performance of a lexical analog of the Wisconsin Card Sorting Task, which has been shown to strongly depend on fronto-striatal activity. In the present study, both younger and older individuals revealed significant fronto-striatal loop activity associated with planning and execution of set-shifts, though age-related striatal activity reduction was observed. Most importantly, while the younger group showed the involvement of a "cognitive loop" during the receiving negative feedback period (which indicates that a set-shift will be required to perform the following trial) and the involvement of a "motor loop" during the matching after negative feedback period (when the set-shift must be performed), older participants showed significant activation of both loops during the matching after negative feedback period only. These findings are in agreement with the "load-shift" model postulated by Velanova et al. (Velanova K, Lustig C, Jacoby LL, Buckner RL. 2007. Evidence for frontally mediated controlled processing differences in older adults. Cereb Cortex. 17:1033-1046.) and indicate that the model is not limited to memory retrieval but also applies to executive processes relying on fronto-striatal regions.

  4. Chiral extrapolation of nucleon axial charge gA in effective field theory

    NASA Astrophysics Data System (ADS)

    Li, Hong-na; Wang, P.

    2016-12-01

    The extrapolation of nucleon axial charge gA is investigated within the framework of heavy baryon chiral effective field theory. The intermediate octet and decuplet baryons are included in the one loop calculation. Finite range regularization is applied to improve the convergence in the quark-mass expansion. The lattice data from three different groups are used for the extrapolation. At physical pion mass, the extrapolated gA are all smaller than the experimental value. Supported by National Natural Science Foundation of China (11475186) and Sino-German CRC 110 (NSFC 11621131001)

  5. Efficient Filtration of Effluent Organic Matter by Polycation-Clay Composite Sorbents: Effect of Polycation Configuration on Pharmaceutical Removal.

    PubMed

    Shabtai, Itamar A; Mishael, Yael G

    2016-08-02

    Hybrid polycation-clay composites, based on methylated poly vinylpyridinium, were optimized as sorbents for secondary effluent organic matter (EfOM) including emerging micropollutants. Composite structure was tuned by solution ionic strength and characterized by zeta potential, FTIR, X-ray diffraction, and thermal gravimetric analyses. An increase in ionic strength induced a transition from a train to a loops and tails configuration, accompanied by greater polycation adsorption. Composite charge reversal (zeta potential -18 to 45 mV) increased the adsorption of EfOM and humic acid (HA), moderately and sharply, respectively, suggesting electrostatic and also nonspecific interactions with EfOM. Filtration of EfOM by columns of positively charged composites was superior to that of granular activated carbon (GAC). The overall removal of EfOM was most efficient by the composite with a train configuration. Whereas a composite with a loops and tails configuration was beneficial for the removal of the anionic micropollutants diclofenac, gemfibrozil and ibuprofen from EfOM. These new findings suggest that the loops and tails may offer unique binding sites for small micropollutants which are overseen by the bulk EfOM. Furthermore, they may explain our previous observations that in the presence of dissolved organic matter, micropollutant filtration by GAC columns was reduced, while their filtration by composite columns remained high.

  6. Protein Charge and Mass Contribute to the Spatio-temporal Dynamics of Protein-Protein Interactions in a Minimal Proteome

    PubMed Central

    Xu, Yu; Wang, Hong; Nussinov, Ruth; Ma, Buyong

    2013-01-01

    We constructed and simulated a ‘minimal proteome’ model using Langevin dynamics. It contains 206 essential protein types which were compiled from the literature. For comparison, we generated six proteomes with randomized concentrations. We found that the net charges and molecular weights of the proteins in the minimal genome are not random. The net charge of a protein decreases linearly with molecular weight, with small proteins being mostly positively charged and large proteins negatively charged. The protein copy numbers in the minimal genome have the tendency to maximize the number of protein-protein interactions in the network. Negatively charged proteins which tend to have larger sizes can provide large collision cross-section allowing them to interact with other proteins; on the other hand, the smaller positively charged proteins could have higher diffusion speed and are more likely to collide with other proteins. Proteomes with random charge/mass populations form less stable clusters than those with experimental protein copy numbers. Our study suggests that ‘proper’ populations of negatively and positively charged proteins are important for maintaining a protein-protein interaction network in a proteome. It is interesting to note that the minimal genome model based on the charge and mass of E. Coli may have a larger protein-protein interaction network than that based on the lower organism M. pneumoniae. PMID:23420643

  7. An analytic expression for the sheath criterion in magnetized plasmas with multi-charged ion species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatami, M. M., E-mail: m-hatami@kntu.ac.ir

    2015-04-15

    The generalized Bohm criterion in magnetized multi-component plasmas consisting of multi-charged positive and negative ion species and electrons is analytically investigated by using the hydrodynamic model. It is assumed that the electrons and negative ion density distributions are the Boltzmann distribution with different temperatures and the positive ions enter into the sheath region obliquely. Our results show that the positive and negative ion temperatures, the orientation of the applied magnetic field and the charge number of positive and negative ions strongly affect the Bohm criterion in these multi-component plasmas. To determine the validity of our derived generalized Bohm criterion, itmore » reduced to some familiar physical condition and it is shown that monotonically reduction of the positive ion density distribution leading to the sheath formation occurs only when entrance velocity of ion into the sheath satisfies the obtained Bohm criterion. Also, as a practical application of the obtained Bohm criterion, effects of the ionic temperature and concentration as well as magnetic field on the behavior of the charged particle density distributions and so the sheath thickness of a magnetized plasma consisting of electrons and singly charged positive and negative ion species are studied numerically.« less

  8. A multi-port power electronics interface for battery powered electric vehicles: Application of inductively coupled wireless power transfer and hybrid energy storage system

    NASA Astrophysics Data System (ADS)

    McDonough, Matthew Kelly

    Climate change, pollution, and geopolitical conflicts arising from the extreme wealth concentrations caused by fossil fuel deposits are just a few of the side-effects of the way that we fuel our society. A new method to power our civilization is becoming more and more necessary. Research for new, more sustainable fuel sources is already underway due to research in wind, solar, geothermal, and hydro power. However this focus is mainly on stationary applications. A large portion of fossil fuel usage comes from transportation. Unfortunately, the transition to cleaner transportation fuels is being stunted by the inability to store adequate amounts of energy in electro-chemical batteries. The idea of charging while driving has been proposed by many researchers, however several challenges still exist. In this work some of these challenges are addressed. Specifically, the ability to route power from multiple sources/loads is investigated. Special attention is paid to adjusting the time constant of particular converters, namely the battery and ultra-capacitor converters to reduce the high frequency and high magnitude current components applied to the battery terminals. This is done by developing a closed loop model of the entire multi-port converter, including the state of charge of the ultra-capacitors. The development of closed loop models and two experimental testbeds for use as stationary vehicle charging platforms with their unique set of sources/loads are presented along-side an on-board charger to demonstrate the similarities and differences between stationary charging and mobile charging. Experimental results from each are given showing that it is not only possible, but feasible to utilize Inductively Coupled Wireless Power Transfer (ICWPT) to charge a battery powered electric vehicle while driving and still protect the life-span of the batteries under the new, harsher conditions generated by the ICWPT system.

  9. Dominant-negative mutants of platelet-derived growth factor revert the transformed phenotype of human astrocytoma cells.

    PubMed Central

    Shamah, S M; Stiles, C D; Guha, A

    1993-01-01

    Malignant astrocytoma is the most common primary human brain tumor. Most astrocytomas express a combination of platelet-derived growth factor (PDGF) and PDGF receptor which could close an autocrine loop. It is not known whether these autocrine loops contribute to the transformed phenotype of astrocytoma cells or are incidental to that phenotype. Here we show that dominant-negative mutants of the PDGF ligand break the autocrine loop and revert the phenotype of BALB/c 3T3 cells transformed by the PDGF-A or PDGF-B (c-sis) gene. Then, we show that these mutants are selective in that they do not alter the phenotype of 3T3 cells transformed by an activated Ha-ras or v-src gene or by simian virus 40. Finally, we show that these mutants revert the transformed phenotype of two independent human astrocytoma cell lines. They have no effect on the growth of human medulloblastoma, bladder carcinoma, or colon carcinoma cell lines. These observations are consistent with the view that PDGF autocrine loops contribute to the transformed phenotype of at least some human astrocytomas. Images PMID:8246942

  10. Structural insights into the interaction between a potent anti-inflammatory protein, viral CC chemokine inhibitor (vCCI), and the human CC chemokine, Eotaxin-1.

    PubMed

    Kuo, Nai-Wei; Gao, Yong-Guang; Schill, Megan S; Isern, Nancy; Dupureur, Cynthia M; Liwang, Patricia J

    2014-03-07

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirus-encoded protein viral CC chemokine inhibitor (vCCI), a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes and may represent a potent method to stop inflammation. Previously, our structure of the vCCI·MIP-1β (macrophage inflammatory protein-1β) complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1β N terminus, 20s region and 40s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), a CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI·MIP-1β complex and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin-1. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1 (monocyte chemoattractant protein-1), MIP-1β, and RANTES (regulated on activation normal T cell expressed and secreted), were determined as 1.1, 1.2, and 0.22 nm, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and multiple CC chemokines.

  11. Structural Insights into the Interaction between a Potent Anti-inflammatory Protein, Viral CC Chemokine Inhibitor (vCCI), and the Human CC Chemokine, Eotaxin-1*

    PubMed Central

    Kuo, Nai-Wei; Gao, Yong-Guang; Schill, Megan S.; Isern, Nancy; Dupureur, Cynthia M.; LiWang, Patricia J.

    2014-01-01

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirus-encoded protein viral CC chemokine inhibitor (vCCI), a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes and may represent a potent method to stop inflammation. Previously, our structure of the vCCI·MIP-1β (macrophage inflammatory protein-1β) complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1β N terminus, 20s region and 40s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), a CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI·MIP-1β complex and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin-1. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1 (monocyte chemoattractant protein-1), MIP-1β, and RANTES (regulated on activation normal T cell expressed and secreted), were determined as 1.1, 1.2, and 0.22 nm, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and multiple CC chemokines. PMID:24482230

  12. Analysis of Loss-of-Offsite-Power Events 1997-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Nancy Ellen; Schroeder, John Alton

    2016-07-01

    Loss of offsite power (LOOP) can have a major negative impact on a power plant’s ability to achieve and maintain safe shutdown conditions. LOOP event frequencies and times required for subsequent restoration of offsite power are important inputs to plant probabilistic risk assessments. This report presents a statistical and engineering analysis of LOOP frequencies and durations at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience during calendar years 1997 through 2015. LOOP events during critical operation that do not result in a reactor trip, are not included. Frequencies and durations weremore » determined for four event categories: plant-centered, switchyard-centered, grid-related, and weather-related. Emergency diesel generator reliability is also considered (failure to start, failure to load and run, and failure to run more than 1 hour). There is an adverse trend in LOOP durations. The previously reported adverse trend in LOOP frequency was not statistically significant for 2006-2015. Grid-related LOOPs happen predominantly in the summer. Switchyard-centered LOOPs happen predominantly in winter and spring. Plant-centered and weather-related LOOPs do not show statistically significant seasonality. The engineering analysis of LOOP data shows that human errors have been much less frequent since 1997 than in the 1986 -1996 time period.« less

  13. Pressure wave charged repetitively pulsed gas laser

    DOEpatents

    Kulkarny, Vijay A.

    1982-01-01

    A repetitively pulsed gas laser in which a system of mechanical shutters bracketing the laser cavity manipulate pressure waves resulting from residual energy in the cavity gas following a lasing event so as to draw fresh gas into the cavity and effectively pump spent gas in a dynamic closed loop.

  14. Alternating-Current Motor Drive for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  15. Fractionation and characterization of natural organic matter from certain rivers and soils by free-flow electrophoresis

    USGS Publications Warehouse

    Leenheer, J.A.; Malcolm, R.L.

    1973-01-01

    Soluble river organic matter and soil fulvic acids from a variety of environments were compared by examining the free-flow electrophoretic fractionation curves of organic carbon, color, and polysaccharides. Significant amounts of virtually colorless organic material were found in both the soil and the river preparations. Polysaccharides comprised 20-75 percent of the colorless material in the soil fulvic acids but only 3.2-7.0 percent of the colorless material in the river preparations. A significant amount of polysaccharides was complexed with organic materials having negative charges. Amounts of polysaccharides were greater in the Fairbanks soil from Alaska than in the soils from North Carolina or Iowa, and they were greater in the Tahquamenon River in Michigan than in the two rivers in Florida; this suggests that polysaccharide degradation is slower in cooler environments. For all of the organic preparations which were fractionated, the intensity of the yellow color increased as the charge on the organic anion increased. Highly colored, negatively charged organic material was found to be present in greater amounts in the subsurface spodic soil horizon of the Lakewood and Fairbanks soils than in the surface mollic horizon of the Macksburg soil. Infrared spectroscopy and elemental analysis of four pooled fractions of the Fairbanks fulvic acid indicated increasing aromatic character with increasing negative charge. An increase in the carboxyl content with negative charge suggests the carboxyl group as the primary source of the negative charge.

  16. Cationic cell-penetrating peptide binds to planar lipid bilayers containing negatively charged lipids but does not induce conductive pores.

    PubMed

    Gurnev, Philip A; Yang, Sung-Tae; Melikov, Kamran C; Chernomordik, Leonid V; Bezrukov, Sergey M

    2013-05-07

    Using a cation-selective gramicidin A channel as a sensor of the membrane surface charge, we studied interactions of oligoarginine peptide R9C, a prototype cationic cell-penetrating peptide (CPP), with planar lipid membranes. We have found that R9C sorption to the membrane depends strongly on its lipid composition from virtually nonexistent for membranes made of uncharged lipids to very pronounced for membranes containing negatively charged lipids, with charge overcompensation at R9C concentrations exceeding 1 μM. The sorption was reversible as it was removed by addition of polyanionic dextran sulfate to the membrane bathing solution. No membrane poration activity of R9C (as would be manifested by increased bilayer conductance) was detected in the charged or neutral membranes, including those with asymmetric negative/neutral and negative/positive lipid leaflets. We conclude that interaction of R9C with planar lipid bilayers does not involve pore formation in all studied lipid combinations up to 20 μM peptide concentration. However, R9C induces leakage of negatively charged but not neutral liposomes in a process that involves lipid mixing between liposomes. Our findings suggest that direct traversing of CPPs through the uncharged outer leaflet of the plasma membrane bilayer is unlikely and that permeabilization necessarily involves both anionic lipids and CPP-dependent fusion between opposing membranes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Modeling gene regulatory network motifs using statecharts

    PubMed Central

    2012-01-01

    Background Gene regulatory networks are widely used by biologists to describe the interactions among genes, proteins and other components at the intra-cellular level. Recently, a great effort has been devoted to give gene regulatory networks a formal semantics based on existing computational frameworks. For this purpose, we consider Statecharts, which are a modular, hierarchical and executable formal model widely used to represent software systems. We use Statecharts for modeling small and recurring patterns of interactions in gene regulatory networks, called motifs. Results We present an improved method for modeling gene regulatory network motifs using Statecharts and we describe the successful modeling of several motifs, including those which could not be modeled or whose models could not be distinguished using the method of a previous proposal. We model motifs in an easy and intuitive way by taking advantage of the visual features of Statecharts. Our modeling approach is able to simulate some interesting temporal properties of gene regulatory network motifs: the delay in the activation and the deactivation of the "output" gene in the coherent type-1 feedforward loop, the pulse in the incoherent type-1 feedforward loop, the bistability nature of double positive and double negative feedback loops, the oscillatory behavior of the negative feedback loop, and the "lock-in" effect of positive autoregulation. Conclusions We present a Statecharts-based approach for the modeling of gene regulatory network motifs in biological systems. The basic motifs used to build more complex networks (that is, simple regulation, reciprocal regulation, feedback loop, feedforward loop, and autoregulation) can be faithfully described and their temporal dynamics can be analyzed. PMID:22536967

  18. Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.

    2017-08-01

    In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.

  19. Interaction of monomeric Ebola VP40 protein with a plasma membrane: A coarse-grained molecular dynamics (CGMD) simulation study.

    PubMed

    Mohamad Yusoff, Mohamad Ariff; Abdul Hamid, Azzmer Azzar; Mohammad Bunori, Noraslinda; Abd Halim, Khairul Bariyyah

    2018-06-01

    Ebola virus is a lipid-enveloped filamentous virus that affects human and non-human primates and consists of several types of protein: nucleoprotein, VP30, VP35, L protein, VP40, VP24, and transmembrane glycoprotein. Among the Ebola virus proteins, its matrix protein VP40 is abundantly expressed during infection and plays a number of critical roles in oligomerization, budding and egress from the host cell. VP40 exists predominantly as a monomer at the inner leaflet of the plasma membrane, and has been suggested to interact with negatively charged lipids such as phosphatidylinositol 4,5-bisphosphate (PIP 2 ) and phosphatidylserine (PS) via its cationic patch. The hydrophobic loop at the C-terminal domain has also been shown to be important in the interaction between the VP40 and the membrane. However, details of the molecular mechanisms underpinning their interactions are not fully understood. This study aimed at investigating the effects of mutation in the cationic patch and hydrophobic loop on the interaction between the VP40 monomer and the plasma membrane using coarse-grained molecular dynamics simulation (CGMD). Our simulations revealed that the interaction between VP40 and the plasma membrane is mediated by the cationic patch residues. This led to the clustering of PIP 2 around the protein in the inner leaflet as a result of interactions between some cationic residues including R52, K127, K221, K224, K225, K256, K270, K274, K275 and K279 and PIP 2 lipids via electrostatic interactions. Mutation of the cationic patch or hydrophobic loop amino acids caused the protein to bind at the inner leaflet of the plasma membrane in a different orientation, where no significant clustering of PIP 2 was observed around the mutated protein. This study provides basic understanding of the interaction of the VP40 monomer and its mutants with the plasma membrane. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Synthetic Polymer Affinity Ligand for Bacillus thuringiensis ( Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein-Insect Receptor Binding Mechanism.

    PubMed

    Liu, Mingming; Huang, Rong; Weisman, Adam; Yu, Xiaoyang; Lee, Shih-Hui; Chen, Yalu; Huang, Chao; Hu, Senhua; Chen, Xiuhua; Tan, Wenfeng; Liu, Fan; Chen, Hao; Shea, Kenneth J

    2018-05-24

    We report a novel strategy for creating abiotic Bacillus thuringiensis ( Bt) protein affinity ligands by biomimicry of the recognition process that takes place between Bt Cry1Ab/Ac proteins and insect receptor cadherin-like Bt-R 1 proteins. Guided by this strategy, a library of synthetic polymer nanoparticles (NPs) was prepared and screened for binding to three epitopes 280 FRGSAQGIEGS 290 , 368 RRPFNIGINNQQ 379 and 436 FRSGFSNSSVSIIR 449 located in loop α8, loop 2 and loop 3 of domain II of Bt Cry1Ab/Ac proteins. A negatively charged and hydrophilic nanoparticle (NP12) was found to have high affinity to one of the epitopes, 368 RRPFNIGINNQQ 379 . This same NP also had specific binding ability to both Bt Cry1Ab and Bt Cry1Ac, proteins that share the same epitope, but very low affinity to Bt Cry2A, Bt Cry1C and Bt Cry1F closely related proteins that lack epitope homology. To locate possible NP- Bt Cry1Ab/Ac interaction sites, NP12 was used as a competitive inhibitor to block the binding of 865 NITIHITDTNNK 876 , a specific recognition site in insect receptor Bt-R 1 , to 368 RRPFNIGINNQQ 379 . The inhibition by NP12 reached as high as 84%, indicating that NP12 binds to Bt Cry1Ab/Ac proteins mainly via 368 RRPFNIGINNQQ 379 . This epitope region was then utilized as a "target" or "bait" for the separation and concentration of Bt Cry1Ac protein from the extract of transgenic Bt cotton leaves by NP12. This strategy, based on the antigen-receptor recognition mechanism, can be extended to other biotoxins and pathogen proteins when designing biomimic alternatives to natural protein affinity ligands.

  1. Kinetics of interior loop formation in semiflexible chains.

    PubMed

    Hyeon, Changbong; Thirumalai, D

    2006-03-14

    Loop formation between monomers in the interior of semiflexible chains describes elementary events in biomolecular folding and DNA bending. We calculate analytically the interior distance distribution function for semiflexible chains using a mean field approach. Using the potential of mean force derived from the distance distribution function we present a simple expression for the kinetics of interior looping by adopting Kramers theory. For the parameters, that are appropriate for DNA, the theoretical predictions in comparison with the case are in excellent agreement with explicit Brownian dynamics simulations of wormlike chain (WLC) model. The interior looping times (tauIC) can be greatly altered in the cases when the stiffness of the loop differs from that of the dangling ends. If the dangling end is stiffer than the loop then tauIC increases for the case of the WLC with uniform persistence length. In contrast, attachment of flexible dangling ends enhances rate of interior loop formation. The theory also shows that if the monomers are charged and interact via screened Coulomb potential then both the cyclization (tauc) and interior looping (tauIC) times greatly increase at low ionic concentration. Because both tauc and tauIC are determined essentially by the effective persistence length [lp(R)] we computed lp(R) by varying the range of the repulsive interaction between the monomers. For short range interactions lp(R) nearly coincides with the bare persistence length which is determined largely by the backbone chain connectivity. This finding rationalizes the efficacy of describing a number of experimental observations (response of biopolymers to force and cyclization kinetics) in biomolecules using WLC model with an effective persistence length.

  2. Bacterial attachment to RO membranes surface-modified by concentration-polarization-enhanced graft polymerization.

    PubMed

    Bernstein, Roy; Belfer, Sofia; Freger, Viatcheslav

    2011-07-15

    Concentration polarization-enhanced radical graft polymerization, a facile surface modification technique, was examined as an approach to reduce bacterial deposition onto RO membranes and thus contribute to mitigation of biofouling. For this purpose an RO membrane ESPA-1 was surface-grafted with a zwitterionic and negatively and positively charged monomers. The low monomer concentrations and low degrees of grafting employed in modifications moderately reduced flux (by 20-40%) and did not affect salt rejection, yet produced substantial changes in surface chemistry, charge and hydrophilicity. The propensity to bacterial attachment of original and modified membranes was assessed using bacterial deposition tests carried out in a parallel plate flow setup using a fluorescent strain of Pseudomonas fluorescens. Compared to unmodified ESPA-1 the deposition (mass transfer) coefficient was significantly increased for modification with the positively charged monomer. On the other hand, a substantial reduction in bacterial deposition rates was observed for membranes modified with zwitterionic monomer and, still more, with very hydrophilic negatively charged monomers. This trend is well explained by the effects of surface charge (as measured by ζ-potential) and hydrophilicity (contact angle). It also well correlated with force distance measurements by AFM using surrogate spherical probes with a negative surface charge mimicking the bacterial surface. The positively charged surface showed a strong hysteresis with a large adhesion force, which was weaker for unmodified ESPA-1 and still weaker for zwitterionic surface, while negatively charged surface showed a long-range repulsion and negligible hysteresis. These results demonstrate the potential of using the proposed surface- modification approach for varying surface characteristics, charge and hydrophilicity, and thus minimizing bacterial deposition and potentially reducing propensity biofouling.

  3. Dynamic nucleoplasmic and nucleolar localization of mammalian RNase H1 in response to RNAP I transcriptional R-loops

    PubMed Central

    Sun, Hong; De Hoyos, Cheryl L.; Bailey, Jeffrey K.; Liang, Xue-hai; Crooke, Stanley T.

    2017-01-01

    Abstract An R-loop is a DNA:RNA hybrid formed during transcription when a DNA duplex is invaded by a nascent RNA transcript. R-loops accumulate in nucleoli during RNA polymerase I (RNAP I) transcription. Here, we report that mammalian RNase H1 enriches in nucleoli and co-localizes with R-loops in cultured human cells. Co-migration of RNase H1 and R-loops from nucleoli to perinucleolar ring structures was observed upon inhibition of RNAP I transcription. Treatment with camptothecin which transiently stabilized nucleolar R-loops recruited RNase H1 to the nucleoli. It has been reported that the absence of Topoisomerase and RNase H activity in Escherichia coli or Saccharomyces cerevisiae caused R-loop accumulation along rDNA. We found that the distribution of RNase H1 and Top1 along rDNA coincided at sites where R-loops accumulated in mammalian cells. Loss of either RNase H1 or Top1 caused R-loop accumulation, and the accumulation of R-loops was exacerbated when both proteins were depleted. Importantly, we observed that protein levels of Top1 were negatively correlated with the abundance of RNase H1. We conclude that Top1 and RNase H1 are partially functionally redundant in mammalian cells to suppress RNAP I transcription-associate R-loops. PMID:28977560

  4. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks.

    PubMed

    Neves, Susana R; Tsokas, Panayiotis; Sarkar, Anamika; Grace, Elizabeth A; Rangamani, Padmini; Taubenfeld, Stephen M; Alberini, Cristina M; Schaff, James C; Blitzer, Robert D; Moraru, Ion I; Iyengar, Ravi

    2008-05-16

    The role of cell size and shape in controlling local intracellular signaling reactions, and how this spatial information originates and is propagated, is not well understood. We have used partial differential equations to model the flow of spatial information from the beta-adrenergic receptor to MAPK1,2 through the cAMP/PKA/B-Raf/MAPK1,2 network in neurons using real geometries. The numerical simulations indicated that cell shape controls the dynamics of local biochemical activity of signal-modulated negative regulators, such as phosphodiesterases and protein phosphatases within regulatory loops to determine the size of microdomains of activated signaling components. The model prediction that negative regulators control the flow of spatial information to downstream components was verified experimentally in rat hippocampal slices. These results suggest a mechanism by which cellular geometry, the presence of regulatory loops with negative regulators, and key reaction rates all together control spatial information transfer and microdomain characteristics within cells.

  5. Concurrent application of charge using a novel circuit prevents heat-related coagulum formation during radiofrequency ablation.

    PubMed

    Lim, Bernard; Venkatachalam, Kalpathi L; Jahangir, Arshad; Johnson, Susan B; Asirvatham, Samuel J

    2008-08-01

    Thromboembolism resulting from coagulum formation on the catheter and electrode surfaces is a serious complication with radiofrequency ablation procedures for heart rhythm disorders. Why coagulum occurs despite therapeutic heparinization is unclear. In this report, we demonstrate a novel approach to minimize coagulum formation based on the electromolecular characteristics of fibrinogen. Atomic force microscopy was used to establish that fibrinogen deposited on surfaces underwent conformational changes that resulted in spontaneous clot formation. We then immersed ablation catheters that were uncharged, negatively, or positively charged in heparinized blood for 30 minutes and noted the extent of clot formation. In separate experiments, ablation catheters were sutured to the ventricle of an excised porcine heart immersed in whole, heparinized blood and radiofrequency ablation performed for 5 minutes with and without charge delivered to the catheter tips. Electron microscopy of the catheter tips showed surface coverage of fibrin clot of the catheter to be 33.8% for negatively charged catheters, compared with 84.7% (P = 0.01) in noncharged catheters. There was no significant difference in surface coverage of fibrin clot between positively charged catheters (93.8%) and noncharged catheters (84.7%, P = ns). In contrast, the thickness of surface clot coverage for positively charged catheters was 87.5%, compared with 28.45% (P= 0.03) for noncharged catheters and 11.25% (P = 0.03) for negatively charged catheters, compared with noncharged catheters. We describe a novel method of placing negative charge on electrodes during ablation that reduced coagulum formation. This may decrease thromboembolism-related complications with radiofrequency ablation procedures.

  6. Effect of electrical polarization of hydroxyapatite ceramics on new bone formation.

    PubMed

    Itoh, S; Nakamura, S; Kobayashi, T; Shinomiya, K; Yamashita, K; Itoh, S

    2006-03-01

    Large surface charges can be induced on hydroxyapatite (HAp) ceramics by proton transport polarization, but this does not affect beta-tricalcium phosphate (TCP) because of its low polarizability. We wished to examine differences in osteogenic cell activity and new bone growth between positively or negatively surface-charged HAp and HAp/TCP plates using a calvarial bone defect model. In the first group of rats, test pieces were placed with their positively charged surfaces face down on the dura mater. In the second group, test pieces were placed with their negatively charged surfaces face down on the dura mater. A third group received noncharged test pieces. Histological examination, including enzymatic staining for osteoblasts and osteoclasts, was carried out. While no bone formation was observed at the pericranium, direct bone formation on the cranial bone debris and new bone growth expanded from the margins of the sites of injury to bridge across both the positively and negatively charged surfaces of HAp and HAp/TCP plates occurred. Electrical polarization of implanted plates, including positive charge, led to enhanced osteoblast activity, though decreased osteoclast activity was seen on the positively charged plate surface. Thus, polarization of HAp ceramics may modulate new bone formation and resorption.

  7. Rational Design of Multilayer Collagen Nanosheets with Compositional and Structural Control.

    PubMed

    Jiang, Tao; Vail, Owen A; Jiang, Zhigang; Zuo, Xiaobing; Conticello, Vincent P

    2015-06-24

    Two collagen-mimetic peptides, CP(+) and CP(-), are reported in which the sequences comprise a multiblock architecture having positively charged N-terminal (Pro-Arg-Gly)3 and negatively charged C-terminal (Glu-Hyp-Gly)3 triad extensions, respectively. CP(+) rapidly self-associates into positively charged nanosheets based on a monolayer structure. In contrast, CP(-) self-assembles to form negatively charged monolayer nanosheets at a much slower rate, which can be accelerated in the presence of calcium(II) ion. A 2:1 mixture of unassociated CP(-) peptide with preformed CP(+) nanosheets generates structurally defined triple-layer nanosheets in which two CP(-) monolayers have formed on the identical surfaces of the CP(+) nanosheet template. Experimental data from electrostatic force microscopy (EFM) image analysis, zeta potential measurements, and charged nanoparticle binding assays support a negative surface charge state for the triple-layer nanosheets, which is the reverse of the positive surface charge state observed for the CP(+) monolayer nanosheets. The electrostatic complementarity between the CP(+) and CP(-) triple helical cohesive ends at the layer interfaces promotes a (CP(-)/CP(+)/CP(-)) compositional gradient along the z-direction of the nanosheet. This structurally informed approach represents an attractive strategy for the fabrication of two-dimensional nanostructures with compositional control.

  8. Electrical structure in two thunderstorm anvil clouds

    NASA Technical Reports Server (NTRS)

    Marshall, Thomas C.; Rust, W. David; Winn, William P.; Gilbert, Kenneth E.

    1989-01-01

    Electrical structures in two thunderstorm anvil clouds (or 'anvils'), one in New Mexico, the other in Oklahoma, were investigated, using measurements of electric field by balloon-carried instruments and a one-dimensional model to calculate the time and spatial variations of electrical parameters in the clear air below the anvil. The electric field soundings through the two thunderstorm anvils showed similar charge structures; namely, negatively charged screening layers on the top and the bottom surfaces, a layer of positive charge in the interior, and one or two layers of zero charge. It is suggested that the positive charge originated in the main positive charge region normally found at high altitudes in the core of thunderclouds, and the negatively charged layers probably formed as screening layers, resulting from the discontinuity in the electrical conductivity at the cloud boundaries.

  9. The effect of surface charge, negative and bipolar ionization on the deposition of airborne bacteria.

    PubMed

    Meschke, S; Smith, B D; Yost, M; Miksch, R R; Gefter, P; Gehlke, S; Halpin, H A

    2009-04-01

    A series of experiments were conducted to evaluate the effect of surface charge and air ionization on the deposition of airborne bacteria. The interaction between surface electrostatic potential and the deposition of airborne bacteria in an indoor environment was investigated using settle plates charged with electric potentials of 0, +/-2.5kV and +/-5kV. Results showed that bacterial deposition on the plates increased proportionally with increased potential to over twice the gravitational sedimentation rate at +5kV. Experiments were repeated under similar conditions in the presence of either negative or bipolar air ionization. Bipolar air ionization resulted in reduction of bacterial deposition onto the charged surfaces to levels nearly equal to gravitational sedimentation. In contrast, diffusion charging appears to have occurred during negative air ionization, resulting in an even greater deposition onto the oppositely charged surface than observed without ionization. Static charges on fomitic surfaces may attract bacteria resulting in deposition in excess of that expected by gravitational sedimentation or simple diffusion. Implementation of bipolar ionization may result in reduction of bacterial deposition. Fomitic surfaces are important vehicles for the transmission of infectious organisms. This study has demonstrated a simple strategy for minimizing charge related deposition of bacteria on surfaces.

  10. Influence of natural organic matter on equilibrium adsorption of neutral and charged pharmaceuticals onto activated carbon.

    PubMed

    de Ridder, D J; Verliefde, A R D; Heijman, S G J; Verberk, J Q J C; Rietveld, L C; van der Aa, L T J; Amy, G L; van Dijk, J C

    2011-01-01

    Natural organic matter (NOM) can influence pharmaceutical adsorption onto granular activated carbon (GAC) by direct adsorption competition and pore blocking. However, in the literature there is limited information on which of these mechanisms is more important and how this is related to NOM and pharmaceutical properties. Adsorption batch experiments were carried out in ultrapure, waste- and surface water and fresh and NOM preloaded GAC was used. Twenty-one pharmaceuticals were selected with varying hydrophobicity and with neutral, negative or positive charge. The influence of NOM competition and pore blocking could not be separated. However, while reduction in surface area was similar for both preloaded GACs, up to 50% lower pharmaceutical removal was observed on wastewater preloaded GAC. This was attributed to higher hydrophobicity of wastewater NOM, indicating that NOM competition may influence pharmaceutical removal more than pore blocking. Preloaded GAC was negatively charged, which influenced removal of charged pharmaceuticals significantly. At a GAC dose of 6.7 mg/L, negatively charged pharmaceuticals were removed for 0-58%, while removal of positively charged pharmaceuticals was between 32-98%. Charge effects were more pronounced in ultrapure water, as it contained no ions to shield the surface charge. Solutes with higher log D could compete better with NOM, resulting in higher removal.

  11. SUPRATHERMAL ELECTRONS IN THE SOLAR CORONA: CAN NONLOCAL TRANSPORT EXPLAIN HELIOSPHERIC CHARGE STATES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cranmer, Steven R., E-mail: scranmer@cfa.harvard.edu

    There have been several ideas proposed to explain how the Sun's corona is heated and how the solar wind is accelerated. Some models assume that open magnetic field lines are heated by Alfvén waves driven by photospheric motions and dissipated after undergoing a turbulent cascade. Other models posit that much of the solar wind's mass and energy is injected via magnetic reconnection from closed coronal loops. The latter idea is motivated by observations of reconnecting jets and also by similarities of ion composition between closed loops and the slow wind. Wave/turbulence models have also succeeded in reproducing observed trends inmore » ion composition signatures versus wind speed. However, the absolute values of the charge-state ratios predicted by those models tended to be too low in comparison with observations. This Letter refines these predictions by taking better account of weak Coulomb collisions for coronal electrons, whose thermodynamic properties determine the ion charge states in the low corona. A perturbative description of nonlocal electron transport is applied to an existing set of wave/turbulence models. The resulting electron velocity distributions in the low corona exhibit mild suprathermal tails characterized by ''kappa'' exponents between 10 and 25. These suprathermal electrons are found to be sufficiently energetic to enhance the charge states of oxygen ions, while maintaining the same relative trend with wind speed that was found when the distribution was assumed to be Maxwellian. The updated wave/turbulence models are in excellent agreement with solar wind ion composition measurements.« less

  12. Presence of negative charge on the basal planes of New York talc.

    PubMed

    Burdukova, E; Becker, M; Bradshaw, D J; Laskowski, J S

    2007-11-01

    Potentiometric titration measurements as well as rheological measurements of talc aqueous suspensions indicate that the behavior of the New York talc particles is consistent with the presence of a negative charge on their basal planes. The possibility of the presence of a negative electrical charge on the basal planes of talc particles is analyzed in this paper. Samples of New York talc were studied using electron microprobe analysis and dehydration techniques and the exact chemical formula of New York talc was determined. It was found that there exists a deficiency of protons in the tetrahedral layers of talc, resulting from substitution of Si(4+) ions with Al(3+) and Ti(3+) ions. The comparison of the level of substitution of Si(4+) ions with ions of a lower valency was found to be of a similar order of magnitude as that found in other talc deposits. This strongly points to the presence of a negative charge on the talc basal planes.

  13. Electrochemical energy storage devices comprising self-compensating polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody

    The disclosed technology relates generally to devices comprising conductive polymers and more particularly to electrochemical devices comprising self-compensating conductive polymers. In one aspect, electrochemical energy storage device comprises a negative electrode comprising an active material including a redox-active polymer. The device additionally comprises a positive electrode comprising an active material including a redox-active polymer. The device further comprises an electrolyte material interposed between the negative electrode and positive electrode and configured to conduct mobile counterions therethrough between the negative electrode and positive electrode. At least one of the negative electrode redox-active polymer and the positive electrode redox-active polymer comprises amore » zwitterionic polymer unit configured to reversibly switch between a zwitterionic state in which the zwitterionic polymer unit has first and second charge centers having opposite charge states that compensate each other, and a non-zwitterionic state in which the zwitterionic polymer unit has one of the first and second charge centers whose charge state is compensated by mobile counterions.« less

  14. Effects of O 2 and N 2/H 2 plasma treatments on the neuronal cell growth on single-walled carbon nanotube paper scaffolds

    NASA Astrophysics Data System (ADS)

    Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung

    2011-08-01

    The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.

  15. Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Ho; Hsu, Chun-Tsung; Hu, Chi-Chang; Hardwick, Laurence J.

    2013-11-01

    This study discusses and demonstrates how the open-circuit potential and charges stored in the working potential window on positive and negative electrodes affect the cell voltage of carbon-based electrical double-layer capacitors (EDLCs) in aqueous electrolytes. An EDLC consisting of two activated carbon electrodes is employed as the model system for identifying these key parameters although the potential window of water decomposition can be simply determined by voltammetric methods. First, the capacitive performances of an EDLC with the same charge on positive and negative electrodes are evaluated by cyclic voltammetric, charge-discharge, electrochemical impedance spectroscopic (EIS) analyses, and inductance-capacitance-resistance meter (LCR meter). The principles for obtaining the highest acceptable cell voltage of such symmetric ECs with excellent reversibility and capacitor-like behaviour are proposed. Aqueous charge-balanced EDLCs can be operated as high as 2.0 V with high energy efficiency (about 90%) and only 4% capacitance loss after the 600-cycle stability checking. The necessity of charge balance (but not capacitance balance) for positive and negative electrodes is substantiated from the lower acceptable cell voltage of charge-unbalanced EDLCs.

  16. Hindered Diffusion in Polymeric Solutions Studied by Fluorescence Correlation Spectroscopy

    PubMed Central

    Zustiak, Silviya P.; Nossal, Ralph; Sackett, Dan L.

    2011-01-01

    Diffusion of molecules in the crowded and charged interior of the cell has long been of interest for understanding cellular processes. Here, we introduce a model system of hindered diffusion that includes both crowding and binding. In particular, we obtained the diffusivity of the positively charged protein, ribonuclease A (RNase), in solutions of dextrans of various charges (binding) and concentrations (crowding), as well as combinations of both, in a buffer of physiological ionic strength. Using fluorescence correlation spectroscopy, we observed that the diffusivity of RNase was unaffected by the presence of positively charged or neutral dextrans in the dilute regime but was affected by crowding at higher polymer concentrations. Conversely, protein diffusivity was significantly reduced by negatively charged dextrans, even at 0.4 μM (0.02% w/v) dextran. The diffusivity of RNase decreased with increasing concentrations of negative dextran, and the amount of bound RNase increased until it reached a plateau of ∼80% bound RNase. High salt concentrations were used to establish the electrostatic nature of the binding. Binding of RNase to the negatively charged dextrans was further confirmed by ultrafiltration. PMID:21723836

  17. Proton transfer to charged platinum electrodes. A molecular dynamics trajectory study.

    PubMed

    Wilhelm, Florian; Schmickler, Wolfgang; Spohr, Eckhard

    2010-05-05

    A recently developed empirical valence bond (EVB) model for proton transfer on Pt(111) electrodes (Wilhelm et al 2008 J. Phys. Chem. C 112 10814) has been applied in molecular dynamics (MD) simulations of a water film in contact with a charged Pt surface. A total of seven negative surface charge densities σ between -7.5 and -18.9 µC cm(-2) were investigated. For each value of σ, between 30 and 84 initial conditions of a solvated proton within a water slab were sampled, and the trajectories were integrated until discharge of a proton occurred on the charged surfaces. We have calculated the mean rates for discharge and for adsorption of solvated protons within the adsorbed water layer in contact with the metal electrode as a function of surface charge density. For the less negative values of σ we observe a Tafel-like exponential increase of discharge rate with decreasing σ. At the more negative values this exponential increase levels off and the discharge process is apparently transport limited. Mechanistically, the Tafel regime corresponds to a stepwise proton transfer: first, a proton is transferred from the bulk into the contact water layer, which is followed by transfer of a proton to the charged surface and concomitant discharge. At the more negative surface charge densities the proton transfer into the contact water layer and the transfer of another proton to the surface and its discharge occur almost simultaneously.

  18. Differential effects of DEAE negative mode chromatography and gel-filtration chromatography on the charge status of Helicobacter pylori neutrophil-activating protein

    PubMed Central

    Pan, Timothy; Tzeng, Huey-Fen

    2017-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification. PMID:28328957

  19. Differential effects of DEAE negative mode chromatography and gel-filtration chromatography on the charge status of Helicobacter pylori neutrophil-activating protein.

    PubMed

    Hong, Zhi-Wei; Yang, Yu-Chi; Pan, Timothy; Tzeng, Huey-Fen; Fu, Hua-Wen

    2017-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification.

  20. Polyelectrolyte-assisted preparation of gold nanocluster-doped silica particles with high incorporation efficiency and improved stability

    NASA Astrophysics Data System (ADS)

    Wang, Haonan; Huang, Zhenzhen; Guo, Zilong; Yang, Wensheng

    2017-07-01

    In this paper, we reported an approach for efficient incorporation of glutathione-capped gold nanoclusters (GSH-Au NCs) into silica particles with the assistance of a polyelectrolyte, poly-diallyldimethyl-ammoniumchloride (PDDA). In this approach, the negatively charged GSH-Au NCs were firstly mixed with the positively charged PDDA to form PDDA-Au NC complexes. Then, the complexes were added into a pre-hydrolyzed Stöber system to get the Au NCs-doped silica particles. With increased ratio of PDDA in the complexes, the negative charges on surface of the Au NCs were neutralized gradually and finally reversed to positive in presence of excess PDDA, which facilitated the incorporation of the Au NCs into the negatively charged silica matrix. Under the optimal amount of PDDA in the complexes, the incorporation efficiency of Au NCs could be as high as 88%. After being incorporated into the silica matrix, the Au NCs become much robust against pH and heavy metal ions attributed to the protection effect of silica and PDDA. This approach was also extendable to highly efficient incorporation of other negatively charged metal nanoclusters, such as bovine serum albumin-capped Cu nanoclusters, into silica matrix.

  1. Functionalized nanoparticle interactions with polymeric membranes

    PubMed Central

    Ladner, D.A.; Steele, M.; Weir, A.; Hristovski, K.; Westerhoff, P.

    2011-01-01

    A series of experiments was performed to measure the retention of a class of functionalized nanoparticles (NPs) onporous (microfiltration and ultrafiltration) membranes. The findings impact engineered water and wastewater treatment using membrane technology, characterization and analytical schemes for NP detection, and the use of NPs in waste treatment scenarios. The NPs studied were composed of silver, titanium dioxide, and gold; had organic coatings to yield either positive or negative surface charge; and were between 2 and 10 nm in diameter. NP solutions were applied to polymeric membranes composed of different materials and pore sizes (ranging from ~2 nm [3 kDa molecular weight cutoff] to 0.2 μm). Greater than 99% rejection was observed of positively charged NPs by negatively charged membranes even though pore diameters were up to 20 times the NP diameter; thus, sorption caused rejection. Negatively charged NPs were less well rejected, but behavior was dependant not only on surface functionality but on NP core material (Ag, TiO2, or Au). NP rejection depended more upon NP properties than membrane properties; all of the negatively charged polymeric membranes behaved similarly. The NP-membrane interaction behavior fell into four categories, which are defined and described here. PMID:22177020

  2. Increasing binding density of yeast cells by control of surface charge with allylamine grafting to ion modified polymer surfaces.

    PubMed

    Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R

    2014-10-01

    Plasma immersion ion implantation (PIII) treatment of polymers creates a biointerface capable of direct covalent immobilization of biomolecules. The immobilization of protein molecules is achieved by covalent bonds formed between embedded radicals on the treated surface and amino acid side chains and cells can be immobilized through cell-wall proteins. The attachment density of negatively charged entities on a PIII treated surface is inhibited by its negative surface charge at neutral pH. To reduce the negative charge of PIII treated surfaces in phosphate buffer (pH 7.4, 11mM), we develop an effective approach of grafting allylamine monomers onto the treated surface. The results reveal reactions between allylamine and radicals on the PIII treated surface. One of these triggers polymerization, increasing the number of amine groups grafted. As a consequence, the PIII treated polystyrene surface after allylamine exposure becomes more hydrophobic and less negatively charged in phosphate buffer. Using yeast cells as an example, we have shown a significant improvement (6-15 times) of cell density immobilized on the PIII treated surface after exposure to allylamine. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. High-energy e- /e+ spectrometer via coherent interaction in a bent crystal

    NASA Astrophysics Data System (ADS)

    Bagli, Enrico; Guidi, Vincenzo; Howard, Alexander

    2018-01-01

    We propose a novel spectrometer based on the crystal channeling effect capable of discriminating between positive and negative particles well beyond the TeV energy scale. The atomic order of a crystalline structure generates an electrostatic field built up by all the atoms in the crystals, which confines charged particle trajectories between neighbouring atomic planes. Through such an interaction in a tiny curved crystal, the same dynamical action on the highest energy particles as that of a huge superconducting magnet is achieved. Depending on the charge sign, points of equilibrium of the oscillatory motion under channeling lie between or on atomic planes for positive and negative particles, respectively, forcing positive particles to stably oscillate far from the planes, while negative ones repeatedly cross them. The different interaction rate with atomic planes causes a tremendous discrepancy between the deflection efficiency of positive and negative particles under channeling. We suggest the use of interactions between charged particles and oriented bent crystals as a novel non-cryogenic passive charge spectrometer to aid the search for dark matter in the Universe in satellite-borne experiment. The limited angular acceptance makes this technique particularly suited for directional local sources of energetic charged particles.

  4. Microelectrophoretic study of calcium oxalate monohydrate in macromolecular solutions

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.

    1987-01-01

    Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopolysaccharides have greater affinity for the COM surface than the proteins. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.

  5. Better Bet-Hedging with coupled positive and negative feedback loops

    NASA Astrophysics Data System (ADS)

    Narula, Jatin; Igoshin, Oleg

    2011-03-01

    Bacteria use the phenotypic heterogeneity associated with bistable switches to distribute the risk of activating stress response strategies like sporulation and persistence. However bistable switches offer little control over the timing of phenotype switching and first passage times (FPT) for individual cells are found to be exponentially distributed. We show that a genetic circuit consisting of interlinked positive and negative feedback loops allows cells to control the timing of phenotypic switching. Using a mathematical model we find that in this system a stable high expression state and stable low expression limit cycle coexist and the FPT distribution for stochastic transitions between them shows multiple peaks at regular intervals. A multimodal FPT distribution allows cells to detect the persistence of stress and control the rate of phenotype transition of the population. We further show that extracellular signals from cell-cell communication that change the strength of the feedback loops can modulate the FPT distribution and allow cells even greater control in a bet-hedging strategy.

  6. A dynamically reconfigurable multi-functional PLL for SRAM-based FPGA in 65nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Yang, Mingqian; Chen, Lei; Li, Xuewu; Zhang, Yanlong

    2018-04-01

    Phase-locked loops (PLL) have been widely utilized in FPGA as an important module for clock management. PLL with dynamic reconfiguration capability is always welcomed in FPGA design as it is able to decrease power consumption and simultaneously improve flexibility. In this paper, a multi-functional PLL with dynamic reconfiguration capability for 65nm SRAM-based FPGA is proposed. Firstly, configurable charge pump and loop filter are utilized to optimize the loop bandwidth. Secondly, the PLL incorporates a VCO with dual control voltages to accelerate the adjustment of oscillation frequency. Thirdly, three configurable dividers are presented for flexible frequency synthesis. Lastly, a configuration block with dynamic reconfiguration function is proposed. Simulation results demonstrate that the proposed multi-functional PLL can output clocks with configurable division ratio, phase shift and duty cycle. The PLL can also be dynamically reconfigured without affecting other parts' running or halting the FPGA device.

  7. Speckle interferometry using fiber optic phase stepping

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1989-01-01

    A system employing closed-loop phase-stepping is used to measure the out-of-plane deformation of a diffusely reflecting object. Optical fibers are used to provide reference and object beam illumination for a standard two-beam speckle interferometer, providing set-up flexibility and ease of alignment. Piezoelectric fiber-stretchers and a phase-measurement/servo system are used to provide highly accurate phase steps. Intensity data is captured with a charge-injection-device camera, and is converted into a phase map using a desktop computer. The closed-loop phase-stepping system provides 90 deg phase steps which are accurate to 0.02 deg, greatly improving this system relative to open-loop interferometers. The system is demonstrated on a speckle interferometer, measuring the rigid-body translation of a diffusely reflecting object with an accuracy + or - 10 deg, or roughly + or - 15 nanometers. This accuracy is achieved without the use of a pneumatically mounted optics table.

  8. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    NASA Technical Reports Server (NTRS)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  9. Stepped electrophoresis for movement and concentration of DNA

    DOEpatents

    Miles, Robin R.; Wang, Amy Wei-Yun; Mariella, Jr., Raymond P.

    2005-03-15

    A fluidic channel patterned with a series of thin-film electrodes makes it possible to move and concentrate DNA in a fluid passing through the fluidic channel. The DNA has an inherent negative charge and by applying a voltage between adjacent electrodes the DNA is caused to move. By using a series of electrodes, when one electrode voltage or charge is made negative with respect to adjacent electrodes, the DNA is repelled away from this electrode and attached to a positive charged electrode of the series. By sequentially making the next electrode of the series negative, the DNA can be moved to and concentrated over the remaining positive electrodes.

  10. Neutralization by a Corona Discharge Ionizer in Nitrogen Atmosphere

    NASA Astrophysics Data System (ADS)

    Ikeuchi, Toru; Takahashi, Kazunori; Ohkubo, Takahiro; Fujiwara, Tamiya

    An electrostatic neutralization of multilayer-loading silicon wafers is demonstrated using a corona discharge ionizer in nitrogen atmosphere, where ac and dc voltages are applied to two needle electrodes for generation of the negative- and positive-charged particles, respectively. We observe a surface potential of the silicon wafer decreases from ±1kV to ±20V within three seconds. Moreover, the density profiles of the charged particles generated by the electrodes are experimentally and theoretically investigated in nitrogen and air atmospheres. Our results show the possibility that the negative-charged particles contributing to the electrostatic neutralization are electrons and negative ions in nitrogen and air atmospheres, respectively.

  11. Experimental evidence for circular inference in schizophrenia

    PubMed Central

    Jardri, Renaud; Duverne, Sandrine; Litvinova, Alexandra S; Denève, Sophie

    2017-01-01

    Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls (CTLs) report their level of confidence on a forced-choice task that manipulated the strength of sensory evidence and prior information. Neither group's responses can be explained by simple Bayesian inference. Rather, individual responses are best captured by a model with different degrees of circular inference. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading us to ‘see what we expect' (through descending loops), to ‘expect what we see' (through ascending loops) or both. Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive symptoms. Descending loops correlate with the severity of negative symptoms. Both loops correlate with disorganized symptoms. The findings suggest that circular inference might mediate the clinical manifestations of SCZ. PMID:28139642

  12. Experimental evidence for circular inference in schizophrenia.

    PubMed

    Jardri, Renaud; Duverne, Sandrine; Litvinova, Alexandra S; Denève, Sophie

    2017-01-31

    Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls (CTLs) report their level of confidence on a forced-choice task that manipulated the strength of sensory evidence and prior information. Neither group's responses can be explained by simple Bayesian inference. Rather, individual responses are best captured by a model with different degrees of circular inference. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading us to 'see what we expect' (through descending loops), to 'expect what we see' (through ascending loops) or both. Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive symptoms. Descending loops correlate with the severity of negative symptoms. Both loops correlate with disorganized symptoms. The findings suggest that circular inference might mediate the clinical manifestations of SCZ.

  13. Experimental evidence for circular inference in schizophrenia

    NASA Astrophysics Data System (ADS)

    Jardri, Renaud; Duverne, Sandrine; Litvinova, Alexandra S.; Denève, Sophie

    2017-01-01

    Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls (CTLs) report their level of confidence on a forced-choice task that manipulated the strength of sensory evidence and prior information. Neither group's responses can be explained by simple Bayesian inference. Rather, individual responses are best captured by a model with different degrees of circular inference. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading us to `see what we expect' (through descending loops), to `expect what we see' (through ascending loops) or both. Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive symptoms. Descending loops correlate with the severity of negative symptoms. Both loops correlate with disorganized symptoms. The findings suggest that circular inference might mediate the clinical manifestations of SCZ.

  14. Adhesion signals of phospholipid vesicles at an electrified interface.

    PubMed

    DeNardis, Nadica Ivošević; Žutić, Vera; Svetličić, Vesna; Frkanec, Ruža

    2012-09-01

    General adhesion behavior of phospholipid vesicles was examined in a wide range of potentials at the mercury electrode by recording time-resolved adhesion signals. It was demonstrated that adhesion-based detection is sensitive to polar headgroups in phospholipid vesicles. We identified a narrow potential window around the point of zero charge of the electrode where the interaction of polar headgroups of phosphatidylcholine vesicles with the substrate is manifested in the form of bidirectional signals. The bidirectional signal is composed of the charge flow due to the nonspecific interaction of vesicle adhesion and spreading and of the charge flow due to a specific interaction of the negatively charged electrode and the most exposed positively charged choline headgroups. These signals are expected to appear only when the electrode surface charge density is less than the surface charge density of the choline groups at the contact interface. In comparison, for the negatively charged phosphatidylserine vesicles, we identified the potential window at the mercury electrode where charge compensation takes place, and bidirectional signals were not detected.

  15. Maintenance of coat protein N-terminal net charge and not primary sequence is essential for zucchini yellow mosaic virus systemic infectivity.

    PubMed

    Kimalov, Boaz; Gal-On, Amit; Stav, Ran; Belausov, Eduard; Arazi, Tzahi

    2004-11-01

    Zucchini yellow mosaic virus (ZYMV) surface exposed coat protein (CP) N-terminal domain (Nt) is 43 aa long and contains an equal number of positively and negatively charged amino acid residues (CP-Nt net charge = 0). A ZYMV-AGII truncation mutant lacking the first 20 aa of its CP-Nt (AGII-CP Delta 20; CP-Nt net charge = +2) was found to be systemically non-infectious even though AGII mutants harbouring larger CP-Nt deletions were previously demonstrated to be fully infectious. Nevertheless, AGII-CP Delta 20 infectivity was restored by fusion to its CP-Nt two Asp residues or a negatively charged Myc peptide, both predicted to neutralize CP-Nt net positive charge. To evaluate further the significance of CP-Nt net charge for AGII infectivity, a series of CP-Nt net charge mutants was generated and analysed for systemic infectivity of squash plants. AGII-CP(KKK) harbouring a CP-Nt amino fusion of three Lys residues (CP-Nt net charge = +3) was not systemically infectious. Addition of up to four Asp residues to CP-Nt did not abolish virus infectivity, although certain mutants were genetically unstable and had delayed infectivity. Addition of five negatively charged residues abolished infectivity (AGII-CP(DDDDD); CP-Nt net charge = -5) even though a recombinant CP(DDDDD) could assemble into potyviral-like particle in bacteria. Neutralization of CP-Nt net charge by fusing Asp or Lys residues recovered infectivity of AGII-CP(KKK) and AGII-CP(DDDDD). GFP-tagging of these mutants has demonstrated that both viruses have defective cell-to-cell movement. Together, these findings suggest that maintenance of CP-Nt net charge and not primary sequence is essential for ZYMV infectivity.

  16. Negative charge emission due to excimer laser bombardment of sodium trisilicate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langford, S.C.; Jensen, L.C.; Dickinson, J.T.

    We describe measurements of negative charge emission accompanying irradiation of sodium trisilicate glass (Na{sub 2}O{center dot}3SiO{sub 2}) with 248-nm excimer laser light at fluences on the order of 2 J/cm{sup 2} per pulse, i.e., at the threshold for ablative etching of the glass surface. The negative charge emission consists of a very prompt photoelectron burst coincident with the laser pulse, followed by a much slower plume of electrons and negative ions traveling with a high density cloud of positive ions, previously identified as primarily Na{sup +}. Using combinations of {bold E} and {bold B} fields in conjunction with time-of-flight methods,more » the negative ions were successfully separated from the plume and tentatively identified as O{sup {minus}}, Si{sup {minus}}, NaO{sup {minus}}, and perhaps NaSi{sup {minus}}. These negative species are probably formed by gas phase collisions in the near-surface region which result in electron attachment.« less

  17. Double peak searches for scalar and pseudoscalar resonances at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carena, Marcela; Huang, Peisi; Ismail, Ahmed

    2016-12-01

    Many new physics models contain a neutral scalar resonance that can be predominantly produced via gluon fusion through loops. In such a case, there could be important effects of additional particles, that in turn may hadronize before decaying and form bound states. This interesting possibility may lead to novel signatures with double peaks that can be searched for at the LHC. We study the phenomenology of double peak searches in diboson final states from loop induced production and decay of a new neutral spin-0 resonance at the LHC. The loop-induced couplings should be mediated by particles carrying color and electroweak charge that after forming bound states will induce a second peak in the diboson invariant mass spectrum near twice their mass. As a result, a second peak could be present via loop-induced couplings intomore » $gg$ (dijet), $$\\gamma\\gamma$$ and $$Z\\gamma$$ final states as well as in the $WW$ and $ZZ$ channels for the case of a pseudo-scalar resonance or for scalars with suppressed tree-level coupling to gauge bosons.« less

  18. TEM characterization of irradiated microstructure of Fe-9%Cr ODS and ferritic-martensitic alloys

    NASA Astrophysics Data System (ADS)

    Swenson, M. J.; Wharry, J. P.

    2018-04-01

    The objective of this study is to evaluate the effects of irradiation dose and dose rate on defect cluster (i.e. dislocation loops and voids) evolution in a model Fe-9%Cr oxide dispersion strengthened steel and commercial ferritic-martensitic steels HCM12A and HT9. Complimentary irradiations using Fe2+ ions, protons, or neutrons to doses ranging from 1 to 100 displacements per atom (dpa) at 500 °C are conducted on each alloy. The irradiated microstructures are characterized using transmission electron microscopy (TEM). Dislocation loops exhibit limited growth after 1 dpa upon Fe2+ and proton irradiation, while any voids observed are small and sparse. The average size and number density of loops are statistically invariant between Fe2+, proton, and neutron irradiated specimens at otherwise fixed irradiation conditions of ∼3 dpa, 500 °C. Therefore, we conclude that higher dose rate charged particle irradiations can reproduce the neutron irradiated loop microstructure with temperature shift governed by the invariance theory; this temperature shift is ∼0 °C for the high sink strength alloys studied herein.

  19. Enhanced electrohydrodynamic force generation in a two-stroke cycle dielectric-barrier-discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Sato, Shintaro; Takahashi, Masayuki; Ohnishi, Naofumi

    2017-05-01

    An approach for electrohydrodynamic (EHD) force production is proposed with a focus on a charge cycle on a dielectric surface. The cycle, consisting of positive-charging and neutralizing strokes, is completely different from the conventional methodology, which involves a negative-charging stroke, in that the dielectric surface charge is constantly positive. The two-stroke charge cycle is realized by applying a DC voltage combined with repetitive pulses. Simulation results indicate that the negative pulse eliminates the surface charge accumulated during constant voltage phase, resulting in repetitive EHD force generation. The time-averaged EHD force increases almost linearly with increasing repetitive pulse frequency and becomes one order of magnitude larger than that driven by the sinusoidal voltage, which has the same peak-to-peak voltage.

  20. Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots.

    PubMed

    Bracker, A S; Stinaff, E A; Gammon, D; Ware, M E; Tischler, J G; Shabaev, A; Efros, Al L; Park, D; Gershoni, D; Korenev, V L; Merkulov, I A

    2005-02-04

    We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.

  1. Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots

    NASA Astrophysics Data System (ADS)

    Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.

    2005-02-01

    We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.

  2. Plasmids as stochastic model systems

    NASA Astrophysics Data System (ADS)

    Paulsson, Johan

    2003-05-01

    Plasmids are self-replicating gene clusters present in on average 2-100 copies per bacterial cell. To reduce random fluctuations and thereby avoid extinction, they ubiquitously autoregulate their own synthesis using negative feedback loops. Here I use van Kampen's Ω-expansion for a two-dimensional model of negative feedback including plasmids and ther replication inhibitors. This analytically summarizes the standard perspective on replication control -- including the effects of sensitivity amplification, exponential time-delays and noisy signaling. I further review the two most common molecular sensitivity mechanisms: multistep control and cooperativity. Finally, I discuss more controversial sensitivity schemes, such as noise-enhanced sensitivity, the exploitation of small-number combinatorics and double-layered feedback loops to suppress noise in disordered environments.

  3. Ni-MH battery charger with a compensator for electric vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H.W.; Han, C.S.; Kim, C.S.

    1996-09-01

    The development of a high-performance battery and safe and reliable charging methods are two important factors for commercialization of the Electric Vehicles (EV). Hyundai and Ovonic together spent many years in the research on optimum charging method for Ni-MH battery. This paper presents in detail the results of intensive experimental analysis, performed by Hyundai in collaboration with Ovonic. An on-board Ni-MH battery charger and its controller which are designed to use as a standard home electricity supply are described. In addition, a 3 step constant current recharger with the temperature and the battery aging compensator is proposed. This has amore » multi-loop algorithm function to detect its 80% and fully charged state, and carry out equalization charging control. The algorithm is focused on safety, reliability, efficiency, charging speed and thermal management (maintaining uniform temperatures within a battery pack). It is also designed to minimize the necessity for user input.« less

  4. Dynamic processes in regulation and some implications for biofeedback and biobehavioral interventions.

    PubMed

    Lehrer, Paul; Eddie, David

    2013-06-01

    Systems theory has long been used in psychology, biology, and sociology. This paper applies newer methods of control systems modeling for assessing system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning.

  5. SH3-like motif-containing C-terminal domain of staphylococcal teichoic acid transporter suggests possible function.

    PubMed

    Ko, Tzu-Ping; Tseng, Shih-Ting; Lai, Shu-Jung; Chen, Sheng-Chia; Guan, Hong-Hsiang; Shin Yang, Chia; Jung Chen, Chun; Chen, Yeh

    2016-09-01

    The negatively charged bacterial polysaccharides-wall teichoic acids (WTAs) are synthesized intracellularly and exported by a two-component transporter, TagGH, comprising a transmembrane subunit TagG and an ATPase subunit TagH. We determined the crystal structure of the C-terminal domain of TagH (TagH-C) to investigate its function. The structure shows an N-terminal SH3-like subdomain wrapped by a C-terminal subdomain with an anti-parallel β-sheet and an outer shell of α-helices. A stretch of positively charged surface across the subdomain interface is flanked by two negatively charged regions, suggesting a potential binding site for negatively charged polymers, such as WTAs or acidic peptide chains. Proteins 2016; 84:1328-1332. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Negative space charge effects in photon-enhanced thermionic emission solar converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segev, G.; Weisman, D.; Rosenwaks, Y.

    2015-07-06

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionicmore » converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.« less

  7. Thermal stability of charged rotating quantum black holes

    NASA Astrophysics Data System (ADS)

    Sinha, Aloke Kumar; Majumdar, Parthasarathi

    2017-12-01

    Criteria for thermal stability of charged rotating black holes of any dimension are derived for horizon areas that are large relative to the Planck area (in these dimensions). The derivation is based on generic assumptions of quantum geometry, supported by some results of loop quantum gravity, and equilibrium statistical mechanics of the Grand Canonical ensemble. There is no explicit use of classical spacetime geometry in this analysis. The only assumption is that the mass of the black hole is a function of its horizon area, charge and angular momentum. Our stability criteria are then tested in detail against specific classical black holes in spacetime dimensions 4 and 5, whose metrics provide us with explicit relations for the dependence of the mass on the charge and angular momentum of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.

  8. Roderick MacKinnon and Ion Channels - Potassium Channels and Sodium

    Science.gov Websites

    very first potassium channel structure, which revealed the way that positively charged potassium ions explain how a fundamental feedback loop worked. Now, with the structure of the voltage-dependent ion channel, based on research carried out at The Rockefeller University, the National Synchrotron Light

  9. Ways to suppress click and pop for class D amplifiers

    NASA Astrophysics Data System (ADS)

    Haishi, Wang; Bo, Zhang; Jiang, Sun

    2012-08-01

    Undesirable audio click and pop may be generated in a speaker or headphone. Compared to linear (class A/B/AB) amplifiers, class D amplifiers that comprise of an input stage and a modulation stage are more prone to producing click and pop. This article analyzes sources that generate click and pop in class D amplifiers, and corresponding ways to suppress them. For a class D amplifier with a single-ended input, click and pop is likely to be due to two factors. One is from a voltage difference (VDIF) between the voltage of an input capacitance (VCIN) and a reference voltage (VREF) of the input stage, and the other one is from the non-linear switching during the setting up of the bias and feedback voltages/currents (BFVC) of the modulation stage. In this article, a fast charging loop is introduced into the input stage to charge VCIN to roughly near VREF. Then a correction loop further charges or discharges VCIN, substantially equalizing it with VREF. Dummy switches are introduced into the modulation stage to provide switching signals for setting up BFVC, and the power switches are disabled until the BFVC are set up successfully. A two channel single-ended class D amplifier with the above features is fabricated with 0.5 μm Bi-CMOS process. Road test and fast Fourier transform analysis indicate that there is no noticeable click and pop.

  10. An Anomalous Composition in Slow Solar Wind as a Signature of Magnetic Reconnection in its Source Region

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Landi, E.; Lepri, S. T.; Kocher, M.; Zurbuchen, T. H.; Fisk, L. A.; Raines, J. M.

    2017-01-01

    In this paper, we study a subset of slow solar winds characterized by an anomalous charge state composition and ion temperatures compared to average solar wind distributions, and thus referred to as an “Outlier” wind. We find that although this wind is slower and denser than normal slow wind, it is accelerated from the same source regions (active regions and quiet-Sun regions) as the latter and its occurrence rate depends on the solar cycle. The defining property of the Outlier wind is that its charge state composition is the same as that of normal slow wind, with the only exception being a very large decrease in the abundance of fully charged species (He2+, C6+, N7+, O8+, Mg12+), resulting in a significant depletion of the He and C element abundances. Based on these observations, we suggest three possible scenarios for the origin of this wind: (1) local magnetic waves preferentially accelerating non-fully stripped ions over fully stripped ions from a loop opened by reconnection; (2) depleted fully stripped ions already contained in the corona magnetic loops before they are opened up by reconnection; or (3) fully stripped ions depleted by Coulomb collision after magnetic reconnection in the solar corona. If any one of these three scenarios is confirmed, the Outlier wind represents a direct signature of slow wind release through magnetic reconnection.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L.; Landi, E.; Lepri, S. T.

    In this paper, we study a subset of slow solar winds characterized by an anomalous charge state composition and ion temperatures compared to average solar wind distributions, and thus referred to as an “Outlier” wind. We find that although this wind is slower and denser than normal slow wind, it is accelerated from the same source regions (active regions and quiet-Sun regions) as the latter and its occurrence rate depends on the solar cycle. The defining property of the Outlier wind is that its charge state composition is the same as that of normal slow wind, with the only exceptionmore » being a very large decrease in the abundance of fully charged species (He{sup 2+}, C{sup 6+}, N{sup 7+}, O{sup 8+}, Mg{sup 12+}), resulting in a significant depletion of the He and C element abundances. Based on these observations, we suggest three possible scenarios for the origin of this wind: (1) local magnetic waves preferentially accelerating non-fully stripped ions over fully stripped ions from a loop opened by reconnection; (2) depleted fully stripped ions already contained in the corona magnetic loops before they are opened up by reconnection; or (3) fully stripped ions depleted by Coulomb collision after magnetic reconnection in the solar corona. If any one of these three scenarios is confirmed, the Outlier wind represents a direct signature of slow wind release through magnetic reconnection.« less

  12. Current and surface charge modified hysteresis loops in ferroelectric thin films

    DOE PAGES

    Balke Wisinger, Nina; Jesse, Stephen; Maksymovych, Petro; ...

    2015-08-19

    Polarization domains in ferroelectric materials and the ability to orient them with an external electric field lead to the development of a variety of applications from information storage to actuation. The development of piezoresponse force microscopy (PFM) has enabled researchers to investigate ferroelectric domains and ferroelectric domain switching on the nanoscale, which offers a pathway to study structure-function relationships in this important material class. Due to its commercial availability and ease of use, PFM has become a widely used research tool. However, measurement artifacts, i.e., alternative signal origins besides the piezoelectric effect are barely discussed or considered. This becomes especiallymore » important for materials with a small piezoelectric coefficient or materials with unknown ferroelectric properties, including non-ferroelectric materials. Here, the role of surface charges and current flow during PFM measurements on classical ferroelectrics are discussed and it will be shown how they alter the PFM hysteresis loop shape. This will help to better address alternative signal origins in PFM-type experiments and offer a pathway to study additional phenomena besides ferroelectricity.« less

  13. Phase-locked loop design with fast-digital-calibration charge pump

    NASA Astrophysics Data System (ADS)

    Wang, San-Fu; Hwang, Tsuen-Shiau; Wang, Jhen-Ji

    2016-02-01

    A fast-digital-calibration technique is proposed for reducing current mismatch in the charge pump (CP) of a phase-locked loop (PLL). The current mismatch in the CP generates fluctuations, which is transferred to the input of voltage-controlled oscillator (VCO). Therefore, the current mismatch increases the reference spur in the PLL. Improving current match of CP will reduce the reference spur and decrease the static phase offset of PLLs. Moreover, the settling time, ripple and power consumption of the PLL are also improved by the proposed technique. This study evaluated a 2.27-2.88 GHz frequency synthesiser fabricated in TSMC 0.18 μm CMOS 1.8 V process. The tuning range of proposed VCO is about 26%. By using the fast-digital-calibration technique, current mismatch is reduced to lower than 0.97%, and the operation range of the proposed CP is between 0.2 and 1.6 V. The proposed PLL has a total power consumption of 22.57 mW and a settling time of 10 μs or less.

  14. Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator.

    PubMed

    Gupta, Manoj Kumar; Lee, Ju-Hyuck; Lee, Keun Young; Kim, Sang-Woo

    2013-10-22

    Here, we report the synthesis of lead-free single-crystalline two-dimensional (2D) vanadium(V)-doped ZnO nanosheets (NSs) and their application for high-performance flexible direct current (DC) power piezoelectric nanogenerators (NGs). The vertically aligned ZnO nanorods (NRs) converted to NS networks by V doping. Piezoresponse force microscopy studies reveal that vertical V-doped ZnO NS exhibit typical ferroelectricity with clear phase loops, butterfly, and well-defined hysteresis loops with a piezoelectric charge coefficient of up to 4 pm/V, even in 2D nanostructures. From pristine ZnO NR-based NGs, alternating current (AC)-type output current was observed, while from V-doped ZnO NS-based NGs, a DC-type output current density of up to 1.0 μAcm(-2) was surprisingly obtained under the same vertical compressive force. The growth mechanism, ferroelectric behavior, charge inverted phenomena, and high piezoelectric output performance observed from the V-doped ZnO NS are discussed in terms of the formation of an ionic layer of [V(OH)4(-)], permanent electric dipole, and the doping-induced resistive behavior of ZnO NS.

  15. Enhancing biocompatibility of D-oligopeptide hydrogels by negative charges.

    PubMed

    Hyland, Laura L; Twomey, Julianne D; Vogel, Savannah; Hsieh, Adam H; Yu, Y Bruce

    2013-02-11

    Oligopeptide hydrogels are emerging as useful matrices for cell culture with commercial products on the market, but L-oligopeptides are labile to proteases. An obvious solution is to create D-oligopeptide hydrogels, which lack enzymatic recognition. However, D-oligopeptide matrices do not support cell growth as well as L-oligopeptide matrices. In addition to chiral interactions, many cellular activities are strongly governed by charge-charge interactions. In this work, the effects of chirality and charge on human mesenchymal stem cell (hMSC) behavior were studied using hydrogels assembled from oppositely charged oligopeptides. It was found that negative charges significantly improved hMSC viability and proliferation in D-oligopeptide gels but had little effect on their interactions with L-oligopeptide gels. This result points to the possibility of using charge and other factors to engineer biomaterials whose chirality is distinct from that of natural biomaterials, but whose performance is close to that of natural biomaterials.

  16. R1 in the Shaker S4 occupies the gating charge transfer center in the resting state

    PubMed Central

    Lin, Meng-chin A.; Hsieh, Jui-Yi; Mock, Allan F.

    2011-01-01

    During voltage-dependent activation in Shaker channels, four arginine residues in the S4 segment (R1–R4) cross the transmembrane electric field. It has been proposed that R1–R4 movement is facilitated by a “gating charge transfer center” comprising a phenylalanine (F290) in S2 plus two acidic residues, one each in S2 and S3. According to this proposal, R1 occupies the charge transfer center in the resting state, defined as the conformation in which S4 is maximally retracted toward the cytoplasm. However, other evidence suggests that R1 is located extracellular to the charge transfer center, near I287 in S2, in the resting state. To investigate the resting position of R1, we mutated I287 to histidine (I287H), paired it with histidine mutations of key voltage sensor residues, and determined the effect of extracellular Zn2+ on channel activity. In I287H+R1H, Zn2+ generated a slow component of activation with a maximum amplitude (Aslow,max) of ∼56%, indicating that only a fraction of voltage sensors can bind Zn2+ at a holding potential of −80 mV. Aslow,max decreased after applying either depolarizing or hyperpolarizing prepulses from −80 mV. The decline of Aslow,max after negative prepulses indicates that R1 moves inward to abolish ion binding, going beyond the point where reorientation of the I287H and R1H side chains would reestablish a binding site. These data support the proposal that R1 occupies the charge transfer center upon hyperpolarization. Consistent with this, pairing I287H with A359H in the S3–S4 loop generated a Zn2+-binding site. At saturating concentrations, Aslow,max reached 100%, indicating that Zn2+ traps the I287H+A359H voltage sensor in an absorbing conformation. Transferring I287H+A359H into a mutant background that stabilizes the resting state significantly enhanced Zn2+ binding at −80 mV. Our results strongly support the conclusion that R1 occupies the gating charge transfer center in the resting conformation. PMID:21788609

  17. Influence of humic acid concentration on nTiO2 attachment to quartz sand and Fe-coated quartz sand

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Wu, Y.

    2016-12-01

    The transport of nano-scale or micro-scale titanium dioxide particles (nTiO2) in subsurface environments are strongly influenced by nTiO2 attachment to sediment grains. The objective of this study is to investigate the role of humic acid (HA) in the attachment of nTiO2 to sand at low HA concentrations that are relevant to typical groundwater conditions, so that mechanisms that control nTiO2 immobilization and transport in groundwater can be elucidated. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the transport of negatively-charged colloids, may influence nTiO2 in different manners. Attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand are experimentally measured under a range of HA concentrations at fixed pH. Experimental results show that at pH 5, negatively-charged HA strongly adsorbs to positively-charged nTiO2 and Fe oxyhydroxide, which, at low HA concentrations, partially neutralizes the positive charges on nTiO2 and Fe oxyhydroxide, and therefore decreases the repulsive electrostatic forces between the surfaces, resulting in relatively high nTiO2 attachment. At high HA concentrations, adsorbed HA reverses the surface charges of nTiO2 and Fe oxyhydroxide, and makes nTiO2 and Fe oxyhydroxide strongly negatively charged, resulting in low nTiO2 attachment. At pH 9, HA, nTiO2, and Fe oxyhydroxide are all negatively charged, and HA adsorption is low and does not have a strong impact on the attachment of nTiO2. This study demonstrates that the changes in surface charges of nTiO2 and Fe oxyhydroxide coating caused by HA adsorption could be a key factor that controls the attachment of nTiO2 to sediment grains.

  18. Role of the Pepino mosaic virus 3'-untranslated region elements in negative-strand RNA synthesis in vitro.

    PubMed

    Osman, Toba A M; Olsthoorn, René C L; Livieratos, Ioannis C

    2014-09-22

    Pepino mosaic virus (PepMV) is a mechanically-transmitted positive-strand RNA potexvirus, with a 6410 nt long single-stranded (ss) RNA genome flanked by a 5'-methylguanosine cap and a 3' poly-A tail. Computer-assisted folding of the 64 nt long PepMV 3'-untranslated region (UTR) resulted in the prediction of three stem-loop structures (hp1, hp2, and hp3 in the 3'-5' direction). The importance of these structures and/or sequences for promotion of negative-strand RNA synthesis and binding to the RNA dependent RNA polymerase (RdRp) was tested in vitro using a specific RdRp assay. Hp1, which is highly variable among different PepMV isolates, appeared dispensable for negative-strand synthesis. Hp2, which is characterized by a large U-rich loop, tolerated base-pair changes in its stem as long as they maintained the stem integrity but was very sensitive to changes in the U-rich loop. Hp3, which harbours the conserved potexvirus ACUUAA hexamer motif, was essential for template activity. Template-RNA polymerase binding competition experiments showed that the ACUUAA sequence represents a high-affinity RdRp binding element. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Are mutagenic non D-loop direct repeat motifs in mitochondrial DNA under a negative selection pressure?

    PubMed Central

    Lakshmanan, Lakshmi Narayanan; Gruber, Jan; Halliwell, Barry; Gunawan, Rudiyanto

    2015-01-01

    Non D-loop direct repeats (DRs) in mitochondrial DNA (mtDNA) have been commonly implicated in the mutagenesis of mtDNA deletions associated with neuromuscular disease and ageing. Further, these DRs have been hypothesized to put a constraint on the lifespan of mammals and are under a negative selection pressure. Using a compendium of 294 mammalian mtDNA, we re-examined the relationship between species lifespan and the mutagenicity of such DRs. Contradicting the prevailing hypotheses, we found no significant evidence that long-lived mammals possess fewer mutagenic DRs than short-lived mammals. By comparing DR counts in human mtDNA with those in selectively randomized sequences, we also showed that the number of DRs in human mtDNA is primarily determined by global mtDNA properties, such as the bias in synonymous codon usage (SCU) and nucleotide composition. We found that SCU bias in mtDNA positively correlates with DR counts, where repeated usage of a subset of codons leads to more frequent DR occurrences. While bias in SCU and nucleotide composition has been attributed to nucleotide mutational bias, mammalian mtDNA still exhibit higher SCU bias and DR counts than expected from such mutational bias, suggesting a lack of negative selection against non D-loop DRs. PMID:25855815

  20. Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays

    PubMed Central

    Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.

    2016-01-01

    Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer. PMID:26876008

  1. Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.

    2016-02-01

    Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer.

  2. Loss of a single N-linked glycan allows CD4-independent human immunodeficiency virus type 1 infection by altering the position of the gp120 V1/V2 variable loops.

    PubMed

    Kolchinsky, P; Kiprilov, E; Bartley, P; Rubinstein, R; Sodroski, J

    2001-04-01

    The gp120 envelope glycoprotein of primary human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and the CCR5 chemokine receptor on the target cell. Previously, we adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for CD4-independent replication were limited to the V2 loop-V1/V2 stem. Here we show that elimination of a single glycosylation site at asparagine 197 in the V1/V2 stem is sufficient for CD4-independent gp120 binding to CCR5 and for HIV-1 entry into CD4-negative cells expressing CCR5. Deletion of the V1/V2 loops also allowed CD4-independent viral entry and gp120 binding to CCR5. The binding of the wild-type ADA gp120 to CCR5 was less dependent upon CD4 at 4 degrees C than at 37 degrees C. In the absence of the V1/V2 loops, neither removal of the N-linked carbohydrate at asparagine 197 nor lowering of the temperature increased the CD4-independent phenotypes. A CCR5-binding conformation of gp120, achieved by CD4 interaction or by modification of temperature, glycosylation, or variable loops, was preferentially recognized by the monoclonal antibody 48d. These results suggest that the CCR5-binding region of gp120 is occluded by the V1/V2 variable loops, the position of which can be modulated by temperature, CD4 binding, or an N-linked glycan in the V1/V2 stem.

  3. Effects of different blasting materials on charge generation and decay on titanium surface after sandblasting.

    PubMed

    Guo, Cecilia Yan; Hong Tang, Alexander Tin; Hon Tsoi, James Kit; Matinlinna, Jukka Pekka

    2014-04-01

    It has been reported that sandblasting titanium with alumina (Al2O3) powder could generate a negative electric charge on titanium surface. This has been proven to promote osteoblast activities and possibly osseointegration. The purpose of this pilot study was to investigate the effects of different blasting materials, in terms of the grit sizes and electro-negativity, on the generation of a negative charge on the titanium surface. The aim was also to make use of these results to deduct the underlying mechanism of charge generation by sandblasting. Together 60 c.p. 2 titanium plates were machine-cut and polished for sandblasting, and divided into 6 groups with 10 plates in each. Every plate in the study groups was sandblasted with one of the following 6 powder materials: 110µm Al2O3 grits, 50µm Al2O3 grits, 150-300µm glass beads, 45-75µm glass beads, 250µm Al powder and 44µm Al powder. The static voltage on the surface of every titanium plate was measured immediately after sandblasting. The static voltages of the titanium plates were recorded and processed using statistical analysis. The results suggested that only sandblasting with 45-75µm glass beads generated a positive charge on titanium, while using all other blasting materials lead to a negative charge. Furthermore, blasting grits of the same powder material but of different sizes might lead to different amount and polarity of the charges. This triboelectric effect is likely to be the main mechanism for charge generation through sandblasting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Lipids and topological rules of membrane protein assembly: balance between long and short range lipid-protein interactions.

    PubMed

    Vitrac, Heidi; Bogdanov, Mikhail; Heacock, Phil; Dowhan, William

    2011-04-29

    The N-terminal six-transmembrane domain (TM) bundle of lactose permease of Escherichia coli is uniformly inverted when assembled in membranes lacking phosphatidylethanolamine (PE). Inversion is dependent on the net charge of cytoplasmically exposed protein domains containing positive and negative residues, net charge of the membrane surface, and low hydrophobicity of TM VII acting as a molecular hinge between the two halves of lactose permease (Bogdanov, M., Xie, J., Heacock, P., and Dowhan, W. (2008) J. Cell Biol. 182, 925-935). Net neutral lipids suppress the membrane translocation potential of negatively charged amino acids, thus increasing the cytoplasmic retention potential of positively charged amino acids. Herein, TM organization of sucrose permease (CscB) and phenylalanine permease (PheP) as a function of membrane lipid composition was investigated to extend these principles to other proteins. For CscB, topological dependence on PE only becomes evident after a significant increase in the net negative charge of the cytoplasmic surface of the N-terminal TM bundle. High negative charge is required to overcome the thermodynamic block to inversion due to the high hydrophobicity of TM VII. Increasing the positive charge of the cytoplasmic surface of the N-terminal TM hairpin of PheP, which is misoriented in PE-lacking cells, favors native orientation in the absence of PE. PheP and CscB also display co-existing dual topologies dependent on changes in the charge balance between protein domains and the membrane lipids. Therefore, the topology of both permeases is dependent on PE. However, CscB topology is governed by thermodynamic balance between opposing lipid-dependent electrostatic and hydrophobic interactions.

  5. Plug-in module acceleration feedback control for fast steering mirror-based beam stabilization systems

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge

    2017-08-01

    A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.

  6. Structural characterization of the H-NS protein from Xylella fastidiosa and its interaction with DNA.

    PubMed

    Rosselli-Murai, Luciana K; Sforça, Maurício L; Sassonia, Rogério C; Azzoni, Adriano R; Murai, Marcelo J; de Souza, Anete P; Zeri, Ana C

    2012-10-01

    The nucleoid-associated protein H-NS is a major component of the bacterial nucleoid involved in DNA compaction and transcription regulation. The NMR solution structure of the Xylella fastidiosa H-NS C-terminal domain (residues 56-134) is presented here and consists of two beta-strands and two alpha helices, with one loop connecting the two beta-strands and a second loop connecting the second beta strand and the first helix. The amide (1)H and (15)N chemical shift signals for a sample of XfH-NS(56-134) were monitored in the course of a titration series with a 14-bp DNA duplex. Most of the residues involved in contacts to DNA are located around the first and second loops and in the first helix at a positively charged side of the protein surface. The overall structure of the Xylella H-NS C-terminal domain differ significantly from Escherichia coli and Salmonella enterica H-NS proteins, even though the DNA binding motif in loop 2 adopt similar conformation, as well as β-strand 2 and loop 1. Interestingly, we have also found that the DNA binding site is expanded to include helix 1, which is not seen in the other structures. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Determinants in the β and δ subunit cytoplasmic loop regulate Golgi trafficking and surface expression of the muscle acetylcholine receptor.

    PubMed

    Rudell, Jolene Chang; Borges, Lucia S; Rudell, John B; Beck, Kenneth A; Ferns, Michael J

    2014-01-03

    The molecular determinants that govern nicotinic acetylcholine receptor (AChR) assembly and trafficking are poorly defined, and those identified operate largely during initial receptor biogenesis in the endoplasmic reticulum. To identify determinants that regulate later trafficking steps, we performed an unbiased screen using chimeric proteins consisting of CD4 fused to the muscle AChR subunit cytoplasmic loops. In C2 mouse muscle cells, we found that CD4-β and δ subunit loops were expressed at very low levels on the cell surface, whereas the other subunit loops were robustly expressed on the plasma membrane. The low surface expression of CD4-β and δ loops was due to their pronounced retention in the Golgi apparatus and also to their rapid internalization from the plasma membrane. Both retention and recovery were mediated by the proximal 25-28 amino acids in each loop and were dependent on an ordered sequence of charged and hydrophobic residues. Indeed, βK353L and δK351L mutations increased surface trafficking of the CD4-subunit loops by >6-fold and also decreased their internalization from the plasma membrane. Similarly, combined βK353L and δK351L mutations increased the surface levels of assembled AChR expressed in HEK cells to 138% of wild-type levels. This was due to increased trafficking to the plasma membrane and not decreased AChR turnover. These findings identify novel Golgi retention signals in the β and δ subunit loops that regulate surface trafficking of assembled AChR and may help prevent surface expression of unassembled subunits. Together, these results define molecular determinants that govern a Golgi-based regulatory step in nicotinic AChR trafficking.

  8. Electronic polarization stabilizes tertiary structure prediction of HP-36.

    PubMed

    Duan, Li L; Zhu, Tong; Zhang, Qing G; Tang, Bo; Zhang, John Z H

    2014-04-01

    Molecular dynamic (MD) simulations with both implicit and explicit solvent models have been carried out to study the folding dynamics of HP-36 protein. Starting from the extended conformation, the secondary structure of all three helices in HP-36 was formed in about 50 ns and remained stable in the remaining simulation. However, the formation of the tertiary structure was difficult. Although some intermediates were close to the native structure, the overall conformation was not stable. Further analysis revealed that the large structure fluctuation of loop and hydrophobic core regions was devoted mostly to the instability of the structure during MD simulation. The backbone root-mean-square deviation (RMSD) of the loop and hydrophobic core regions showed strong correlation with the backbone RMSD of the whole protein. The free energy landscape indicated that the distribution of main chain torsions in loop and turn regions was far away from the native state. Starting from an intermediate structure extracted from the initial AMBER simulation, HP-36 was found to generally fold to the native state under the dynamically adjusted polarized protein-specific charge (DPPC) simulation, while the peptide did not fold into the native structure when AMBER force filed was used. The two best folded structures were extracted and taken into further simulations in water employing AMBER03 charge and DPPC for 25 ns. Result showed that introducing polarization effect into interacting potential could stabilize the near-native protein structure.

  9. CUL4B impedes stress-induced cellular senescence by dampening a p53-reactive oxygen species positive feedback loop.

    PubMed

    Wei, Zhao; Guo, Haiyang; Liu, Zhaojian; Zhang, Xiyu; Liu, Qiao; Qian, Yanyan; Gong, Yaoqin; Shao, Changshun

    2015-02-01

    Tumor suppressor p53 is known to regulate the level of intracellular reactive oxygen species (ROS). It can either alleviate oxidative stress under physiological and mildly stressed conditions or exacerbate oxidative stress under highly stressed conditions. We here report that a p53-ROS positive feedback loop drives a senescence program in normal human fibroblasts (NHFs) and this senescence-driving loop is negatively regulated by CUL4B. CUL4B, which can assemble various ubiquitin E3 ligases, was found to be downregulated in stress-induced senescent cells, but not in replicative senescent cells. We observed that p53-dependent ROS production was significantly augmented and stress-induced senescence was greatly enhanced when CUL4B was absent or depleted. Ectopic expression of CUL4B, on the other hand, blunted p53 activation, reduced ROS production, and attenuated cellular senescence in cells treated with H2O2. CUL4B was shown to promote p53 ubiquitination and proteosomal degradation in NHFs exposed to oxidative stress, thus dampening the p53-dependent cellular senescence. Together, our results established a critical role of CUL4B in negatively regulating the p53-ROS positive feedback loop that drives cellular senescence. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The electrokinetic behavior of calcium oxalate monohydrate in macromolecular solutions

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.

    1988-01-01

    Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chrondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for chemical adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopopolysacchrides have greater affinity for the COM surface than the proteins. The amount of proteins that can chemically adsorb appears to be limited to approximately one monomolecular layer. When the surface charge is high, an insufficient number of proteins can chemically adsorb to neutralize or reverse the surface charge. The remaining surface charge is balanced by proteins held near the surface by longer range electrostatic forces only. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.

  11. Structures of Human Golgi-resident Glutaminyl Cyclase and Its Complexes with Inhibitors Reveal a Large Loop Movement upon Inhibitor Binding*

    PubMed Central

    Huang, Kai-Fa; Liaw, Su-Sen; Huang, Wei-Lin; Chia, Cho-Yun; Lo, Yan-Chung; Chen, Yi-Ling; Wang, Andrew H.-J.

    2011-01-01

    Aberrant pyroglutamate formation at the N terminus of certain peptides and proteins, catalyzed by glutaminyl cyclases (QCs), is linked to some pathological conditions, such as Alzheimer disease. Recently, a glutaminyl cyclase (QC) inhibitor, PBD150, was shown to be able to reduce the deposition of pyroglutamate-modified amyloid-β peptides in brain of transgenic mouse models of Alzheimer disease, leading to a significant improvement of learning and memory in those transgenic animals. Here, we report the 1.05–1.40 Å resolution structures, solved by the sulfur single-wavelength anomalous dispersion phasing method, of the Golgi-luminal catalytic domain of the recently identified Golgi-resident QC (gQC) and its complex with PBD150. We also describe the high-resolution structures of secretory QC (sQC)-PBD150 complex and two other gQC-inhibitor complexes. gQC structure has a scaffold similar to that of sQC but with a relatively wider and negatively charged active site, suggesting a distinct substrate specificity from sQC. Upon binding to PBD150, a large loop movement in gQC allows the inhibitor to be tightly held in its active site primarily by hydrophobic interactions. Further comparisons of the inhibitor-bound structures revealed distinct interactions of the inhibitors with gQC and sQC, which are consistent with the results from our inhibitor assays reported here. Because gQC and sQC may play different biological roles in vivo, the different inhibitor binding modes allow the design of specific inhibitors toward gQC and sQC. PMID:21288892

  12. Structures of human Golgi-resident glutaminyl cyclase and its complexes with inhibitors reveal a large loop movement upon inhibitor binding.

    PubMed

    Huang, Kai-Fa; Liaw, Su-Sen; Huang, Wei-Lin; Chia, Cho-Yun; Lo, Yan-Chung; Chen, Yi-Ling; Wang, Andrew H-J

    2011-04-08

    Aberrant pyroglutamate formation at the N terminus of certain peptides and proteins, catalyzed by glutaminyl cyclases (QCs), is linked to some pathological conditions, such as Alzheimer disease. Recently, a glutaminyl cyclase (QC) inhibitor, PBD150, was shown to be able to reduce the deposition of pyroglutamate-modified amyloid-β peptides in brain of transgenic mouse models of Alzheimer disease, leading to a significant improvement of learning and memory in those transgenic animals. Here, we report the 1.05-1.40 Å resolution structures, solved by the sulfur single-wavelength anomalous dispersion phasing method, of the Golgi-luminal catalytic domain of the recently identified Golgi-resident QC (gQC) and its complex with PBD150. We also describe the high-resolution structures of secretory QC (sQC)-PBD150 complex and two other gQC-inhibitor complexes. gQC structure has a scaffold similar to that of sQC but with a relatively wider and negatively charged active site, suggesting a distinct substrate specificity from sQC. Upon binding to PBD150, a large loop movement in gQC allows the inhibitor to be tightly held in its active site primarily by hydrophobic interactions. Further comparisons of the inhibitor-bound structures revealed distinct interactions of the inhibitors with gQC and sQC, which are consistent with the results from our inhibitor assays reported here. Because gQC and sQC may play different biological roles in vivo, the different inhibitor binding modes allow the design of specific inhibitors toward gQC and sQC.

  13. Analysis of microscopic parameters of surface charging in polymer caused by defocused electron beam irradiation.

    PubMed

    Liu, Jing; Zhang, Hai-Bo

    2014-12-01

    The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Charge Segregation and Low Hydrophobicity Are Key Features of Ribosomal Proteins from Different Organisms*

    PubMed Central

    Fedyukina, Daria V.; Jennaro, Theodore S.; Cavagnero, Silvia

    2014-01-01

    Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge. PMID:24398678

  15. Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome

    PubMed Central

    Zentner, Gabriel E.; Layman, Wanda S.; Martin, Donna M.; Scacheri, Peter C.

    2010-01-01

    CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth and/or development, Genital and/or urinary abnormalities, and Ear abnormalities (including deafness) is a genetic disorder characterized by a specific and a recognizable pattern of anomalies. De novo mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7) are the major cause of CHARGE syndrome. Here, we review the clinical features of 379 CHARGE patients who tested positive or negative for mutations in CHD7. We found that CHARGE individuals with CHD7 mutations more commonly have ocular colobomas, temporal bone anomalies (semicircular canal hypoplasia/dysplasia), and facial nerve paralysis compared with mutation negative individuals. We also highlight recent genetic and genomic studies that have provided functional insights into CHD7 and the pathogenesis of CHARGE syndrome. PMID:20186815

  16. Effect of Fe{sub 3}O{sub 4} nanoparticles on space charge distribution in propylene carbonate under impulse voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sima, Wenxia, E-mail: cqsmwx@cqu.edu.cn; Song, He; Yang, Qing

    2015-12-15

    Addition of nanoparticles of the ferromagnetic material Fe{sub 3}O{sub 4} can increase the positive impulse breakdown voltage of propylene carbonate by 11.65%. To further investigate the effect of ferromagnetic nanoparticles on the space charge distribution in the discharge process, the present work set up a Kerr electro-optic field mapping measurement system using an array photodetector to carry out time-continuous measurement of the electric field and space charge distribution in propylene carbonate before and after modification. Test results show that fast electrons can be captured by Fe{sub 3}O{sub 4} nanoparticles and converted into relatively slow, negatively charged particles, inhibiting the generationmore » and transportation of the space charge, especially the negative space charge.« less

  17. Battery charging and discharging research based on the interactive technology of smart grid and electric vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Mingyang

    2018-06-01

    To further study the bidirectional flow problem of V2G (Vehicle to Grid) charge and discharge motor, the mathematical model of AC/DC converter and bi-directional DC/DC converter was established. Then, lithium battery was chosen as the battery of electric vehicle and its mathematical model was established. In order to improve the service life of lithium battery, bidirectional DC/DC converter adopted constant current and constant voltage control strategy. In the initial stage of charging, constant current charging was adopted with current single closed loop control. After reaching a certain value, voltage was switched to constant voltage charging controlled by voltage and current. Subsequently, the V2G system simulation model was built in MATLAB/Simulink. The simulation results verified the correctness of the control strategy and showed that when charging, constant current and constant voltage charging was achieved, the grid side voltage and current were in the same phase, and the power factor was about 1. When discharging, the constant current discharge was applied, and the grid voltage and current phase difference was r. To sum up, the simulation results are correct and helpful.

  18. EURAMET.M.P-S9: comparison in the negative gauge pressure range -950 to 0 hPa

    NASA Astrophysics Data System (ADS)

    Saxholm, S.; Otal, P.; AltintaS, A.; Bermanec, L. G.; Durgut, Y.; Hanrahan, R.; Kocas, I.; Lefkopoulos, A.; Pražák, D.; Sandu, I.; Åetina, J.; Spohr, I.; Steindl, D.; Tammik, K.; Testa, N.

    2016-01-01

    A comparison in the negative gauge pressure range was arranged in the period 2011 - 2012. A total of 14 laboratories participated in this comparison: BEV (Austria), CMI (Czech Republic), DANIAmet-FORCE (Denmark), EIM (Greece), HMI/FSB-LPM (Croatia), INM (Romania), IPQ (Portugal), LNE (France), MCCAA (Malta), METROSERT (Estonia), MIKES (Finland), MIRS/IMT/LMT (Slovenia), NSAI (Ireland) and UME (Turkey). The project was divided into two loops: Loop1, piloted by MIKES, and Loop2, piloted by LNE. The results of the two loops are reported separately: Loop1 results are presented in this paper. The transfer standard was Beamex MC5 no. 25516865 with internal pressure module INT1C, resolution 0.01 hPa. The nominal pressure range of the INT1C is -1000 hPa to +1000 hPa. The nominal pressure points for the comparison were 0 hPa, -200 hPa, -400 hPa, -600 hPa, -800 hPa and -950 hPa. The reference values and their uncertainties as well as the difference uncertainty between the laboratory results and the reference values were determined from the measurement data by Monte Carlo simulations. Stability uncertainty of the transfer standard was included in the final difference uncertainty. Degrees of equivalences and mutual equivalences between the laboratories were calculated. Each laboratory reported results for all twelve measurement points, which means that there were 168 reported values in total. Some 163 of the 168 values (97 %) agree with the reference values within the expanded uncertainties, with a coverage factor k = 2. Among the laboratories, four different methods were used to determine negative gauge pressure. It is concluded that special attention must be paid to the measurements and methods when measuring negative gauge pressures. There might be a need for a technical guide or a workshop that provides information about details and practices related to the measurements of negative gauge pressure, as well as differences between the different methods. The comparison is registered as EURAMET project no. 1170 and as a supplementary comparison EURAMET.M.P-S9 in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  19. Fundamental characteristics of the expressed immunoglobulin VH and VL repertoire in different canine breeds in comparison with those of humans and mice.

    PubMed

    Steiniger, Sebastian C J; Dunkle, William E; Bammert, Gary F; Wilson, Thomas L; Krishnan, Abhiram; Dunham, Steven A; Ippolito, Gregory C; Bainbridge, Graeme

    2014-05-01

    Complementarity determining regions (CDR) are responsible for binding antigen and provide substantial diversity to the antibody repertoire, with VH CDR3 of the immunoglobulin variable heavy (VH) domain playing a dominant role. In this study, we examined 1200 unique canine VH and 500 unique variable light (VL) sequences of large and small canine breeds derived from peripheral B cells. Unlike the human and murine repertoire, the canine repertoire is heavily dominated by the Canis lupus familiaris IGHV1 subgroup, evolutionarily closest to the human IGHV3 subgroup. Our studies clearly show that the productive canine repertoire of all analyzed breeds shows similarities to both human and mouse; however, there are distinct differences in terms of VH CDR3 length and amino acid paratope composition. In comparison with the human and murine antibody repertoire, canine VH CDR3 regions are shorter in length than the human counterparts, but longer than the murine VH CDR3. Similar to corresponding human and mouse VH CDR3, the amino acids at the base of the VH CDR3 loop are strictly conserved. For identical CDR positions, there were significant changes in chemical paratope composition. Similar to human and mouse repertoires, the neutral amino acids tyrosine, glycine and serine dominate the canine VH CDR3 interval (comprising 35%) although the interval is nonetheless relatively depleted of tyrosine when compared to human and mouse. Furthermore, canine VH CDR3 displays an overrepresentation of the neutral amino acid threonine and the negatively charged aspartic acid while proline content is similar to that in the human repertoire. In general, the canine repertoire shows a bias towards small, negatively charged amino acids. Overall, this analysis suggests that functional canine therapeutic antibodies can be obtained from human and mouse sequences by methods of speciation and affinity maturation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Structural basis for Mep2 ammonium transceptor activation by phosphorylation

    PubMed Central

    van den Berg, Bert; Chembath, Anupama; Jefferies, Damien; Basle, Arnaud; Khalid, Syma; Rutherford, Julian C.

    2016-01-01

    Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the transporters are not phosphorylated and present in closed, inactive conformations. Relative to the open bacterial ammonium transporters, non-phosphorylated Mep2 exhibits shifts in cytoplasmic loops and the C-terminal region (CTR) to occlude the cytoplasmic exit of the channel and to interact with His2 of the twin-His motif. The phosphorylation site in the CTR is solvent accessible and located in a negatively charged pocket ∼30 Å away from the channel exit. The crystal structure of phosphorylation-mimicking Mep2 variants from C. albicans show large conformational changes in a conserved and functionally important region of the CTR. The results allow us to propose a model for regulation of eukaryotic ammonium transport by phosphorylation. PMID:27088325

  1. Synthesis and characterization of indium doped La{sub 3}Co{sub 4}Sn{sub 13} skutterudite superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neha, P.; Srivastava, P.; Shruti,

    2016-05-06

    We report the synthesis and characterization of a novel superconductor La{sub 3}Co{sub 4}Sn{sub 12.35}In{sub 0.65} by Indium doping at Tin site in parent compound La{sub 3}Co{sub 4}Sn{sub 13}. We observe enhanced T{sub c} along with improved superconducting properties as onset compared to parent compound. By transport measurements we get superconducting transition with T{sub c}{sup onset} = 4.7 K and T{sub c}{sup zero} = 3.2 K. In magnetization measurements (ZFC-FC) superconducting transition is observed at 5.1 K. Upper critical field (H{sub c2}) and lower critical field (H{sub c1}) calculated by magneto resistance and M-H loop measurement are found to be 1.65more » T and 0.0026 T respectively. Hall measurement shows the majority charge carrier as electrons with carrier density of the order of 10{sup 19} cm{sup −3}. TEP measurement also support the Hall data as the Seebeck coefficient is negative over whole temperature range of measurement.« less

  2. Analytical study of robustness of a negative feedback oscillator by multiparameter sensitivity

    PubMed Central

    2014-01-01

    Background One of the distinctive features of biological oscillators such as circadian clocks and cell cycles is robustness which is the ability to resume reliable operation in the face of different types of perturbations. In the previous study, we proposed multiparameter sensitivity (MPS) as an intelligible measure for robustness to fluctuations in kinetic parameters. Analytical solutions directly connect the mechanisms and kinetic parameters to dynamic properties such as period, amplitude and their associated MPSs. Although negative feedback loops are known as common structures to biological oscillators, the analytical solutions have not been presented for a general model of negative feedback oscillators. Results We present the analytical expressions for the period, amplitude and their associated MPSs for a general model of negative feedback oscillators. The analytical solutions are validated by comparing them with numerical solutions. The analytical solutions explicitly show how the dynamic properties depend on the kinetic parameters. The ratio of a threshold to the amplitude has a strong impact on the period MPS. As the ratio approaches to one, the MPS increases, indicating that the period becomes more sensitive to changes in kinetic parameters. We present the first mathematical proof that the distributed time-delay mechanism contributes to making the oscillation period robust to parameter fluctuations. The MPS decreases with an increase in the feedback loop length (i.e., the number of molecular species constituting the feedback loop). Conclusions Since a general model of negative feedback oscillators was employed, the results shown in this paper are expected to be true for many of biological oscillators. This study strongly supports that the hypothesis that phosphorylations of clock proteins contribute to the robustness of circadian rhythms. The analytical solutions give synthetic biologists some clues to design gene oscillators with robust and desired period. PMID:25605374

  3. {rho}-{omega} mixing and spin dependent charge-symmetry violating potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Subhrajyoti; Roy, Pradip; Dutt-Mazumder, Abhee K.

    2008-10-15

    We construct the charge symmetry violating (CSV) nucleon-nucleon potential induced by the {rho}{sup 0}-{omega} mixing due to the neutron-proton mass difference driven by the NN loop. Analytical expression for the two-body CSV potential is presented containing both the central and noncentral NN interaction. We show that the {rho}NN tensor interaction can significantly enhance the charge symmetry violating NN interaction even if the momentum dependent off-shell {rho}{sup 0}-{omega} mixing amplitude is considered. It is also shown that the inclusion of form factors removes the divergence arising out of the contact interaction. Consequently, we see that the precise size of the computedmore » scattering length difference depends on how the short-range aspects of the CSV potential are treated.« less

  4. The voltage-dependent anion channel as a biological transistor: theoretical considerations.

    PubMed

    Lemeshko, V V; Lemeshko, S V

    2004-07-01

    The voltage-dependent anion channel (VDAC) is a porin of the mitochondrial outer membrane with a bell-shaped permeability-voltage characteristic. This porin restricts the flow of negatively charged metabolites at certain non-zero voltages, and thus might regulate their flux across the mitochondrial outer membrane. Here, we have developed a mathematical model illustrating the possibility of interaction between two steady-state fluxes of negatively charged metabolites circulating across the VDAC in a membrane. The fluxes interact by contributing to generation of the membrane electrical potential with subsequent closure of the VDAC. The model predicts that the VDAC might function as a single-molecule biological transistor and amplifier, because according to the obtained calculations a small change in the flux of one pair of different negatively charged metabolites causes a significant modulation of a more powerful flux of another pair of negatively charged metabolites circulating across the same membrane with the VDAC. Such transistor-like behavior of the VDAC in the mitochondrial outer membrane might be an important principle of the cell energy metabolism regulation under some physiological conditions.

  5. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery

    NASA Astrophysics Data System (ADS)

    Saravanan, M.; Ganesan, M.; Ambalavanan, S.

    2014-04-01

    In this work, we report an in situ generated carbon from sugar as additive in the Negative Active Mass (NAM) which enhances the charge-discharge characteristics of the lead-acid cells. In situ formed sugar derived carbon (SDC) with leady oxide (LO) provides a conductive network and excellent protection against NAM irreversible lead sulfation. The effect of SDC and carbon black (CB) added negative plates are characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), galvanostatic charge-discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The results show that subtle changes in the addition of carbon to NAM led to subsequent changes on the performance during partial-state-of-charge (PSoC) operations in lead-acid cells. Furthermore, SDC added cells exhibit remarkable improvement in the rate capability, active material utilization, cycle performance and charge acceptance compared to that of the conventional CB added cells. The impact of SDC with LO at various synthesis conditions on the electrochemical performance of the negative plate is studied systematically.

  6. Functionalized nanoparticle interactions with polymeric membranes.

    PubMed

    Ladner, D A; Steele, M; Weir, A; Hristovski, K; Westerhoff, P

    2012-04-15

    A series of experiments was performed to measure the retention of a class of functionalized nanoparticles (NPs) on porous (microfiltration and ultrafiltration) membranes. The findings impact engineered water and wastewater treatment using membrane technology, characterization and analytical schemes for NP detection, and the use of NPs in waste treatment scenarios. The NPs studied were composed of silver, titanium dioxide, and gold; had organic coatings to yield either positive or negative surface charge; and were between 2 and 10nm in diameter. NP solutions were applied to polymeric membranes composed of different materials and pore sizes (ranging from ≈ 2 nm [3 kDa molecular weight cutoff] to 0.2 μm). Greater than 99% rejection was observed of positively charged NPs by negatively charged membranes even though pore diameters were up to 20 times the NP diameter; thus, sorption caused rejection. Negatively charged NPs were less well rejected, but behavior was dependent not only on surface functionality but on NP core material (Ag, TiO(2), or Au). NP rejection depended more upon NP properties than membrane properties; all of the negatively charged polymeric membranes behaved similarly. The NP-membrane interaction behavior fell into four categories, which are defined and described here. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Surface charge accumulation of solid insulator under nanosecond pulse in vacuum: 3D distribution features and mechanism

    NASA Astrophysics Data System (ADS)

    Qi, Bo; Gao, Chunjia; Sun, Zelai; Li, Chengrong

    2017-11-01

    Surface charge accumulation can incur changes in electric field distribution, involved in the electron propagation process, and result in a significant decrease in the surface flashover voltage. The existing 2D surface charge measurement fails to meet the actual needs in real engineering applications that usually adopt the 45° conical frustum insulators. The present research developed a novel 3D measurement platform to capture surface charge distribution on solid insulation under nanosecond pulse in a vacuum. The results indicate that all surface charges are positive under a positive pulse and negative under a negative pulse. Surface charges tend to accumulate more near the upper electrode. Surface charge density increases significantly with the increase in pulse counts and amplitudes. Accumulation of surface charge results in a certain decrease of flashover voltage. Taking consideration of the secondary electron emission for the surface charge accumulation, four materials were obtained to demonstrate the effects on surface charge. Combining the effect incurred by secondary electron emission and the weighty action taken by surface charge accumulation on the flashover phenomena, the discharge mechanism along the insulator surface under nanosecond pulse voltage was proposed.

  8. Modeling the Lac repressor-operator assembly: The influence of DNA looping on Lac repressor conformation

    PubMed Central

    Swigon, David; Coleman, Bernard D.; Olson, Wilma K.

    2006-01-01

    Repression of transcription of the Escherichia coli Lac operon by the Lac repressor (LacR) is accompanied by the simultaneous binding of LacR to two operators and the formation of a DNA loop. A recently developed theory of sequence-dependent DNA elasticity enables one to relate the fine structure of the LacR–DNA complex to a wide range of heretofore-unconnected experimental observations. Here, that theory is used to calculate the configuration and free energy of the DNA loop as a function of its length and base-pair sequence, its linking number, and the end conditions imposed by the LacR tetramer. The tetramer can assume two types of conformations. Whereas a rigid V-shaped structure is observed in the crystal, EM images show extended forms in which two dimer subunits are flexibly joined. Upon comparing our computed loop configurations with published experimental observations of permanganate sensitivities, DNase I cutting patterns, and loop stabilities, we conclude that linear DNA segments of short-to-medium chain length (50–180 bp) give rise to loops with the extended form of LacR and that loops formed within negatively supercoiled plasmids induce the V-shaped structure. PMID:16785444

  9. The Trade-Off Mechanism in Mammalian Circadian Clock Model with Two Time Delays

    NASA Astrophysics Data System (ADS)

    Yan, Jie; Kang, Xiaxia; Yang, Ling

    Circadian clock is an autonomous oscillator which orchestrates the daily rhythms of physiology and behaviors. This study is devoted to explore how a positive feedback loop affects the dynamics of mammalian circadian clock. We simplify an experimentally validated mathematical model in our previous work, to a nonlinear differential equation with two time delays. This simplified mathematical model incorporates the pacemaker of mammalian circadian clock, a negative primary feedback loop, and a critical positive auxiliary feedback loop, Rev-erbα/Cry1 loop. We perform analytical studies of the system. Delay-dependent conditions for the asymptotic stability of the nontrivial positive steady state of the model are investigated. We also prove the existence of Hopf bifurcation, which leads to self-sustained oscillation of mammalian circadian clock. Our theoretical analyses show that the oscillatory regime is reduced upon the participation of the delayed positive auxiliary loop. However, further simulations reveal that the auxiliary loop can enable the circadian clock gain widely adjustable amplitudes and robust period. Thus, the positive auxiliary feedback loop may provide a trade-off mechanism, to use the small loss in the robustness of oscillation in exchange for adaptable flexibility in mammalian circadian clock. The results obtained from the model may gain new insights into the dynamics of biological oscillators with interlocked feedback loops.

  10. Lightning Activity Relative to the Microphysical and Kinematic Structure of Storms during a Thunder-Snow Episode on 29-30 November 2006

    NASA Astrophysics Data System (ADS)

    Emersic, C.; Macgorman, D.; Schuur, T.; Lund, N.; Payne, C.; Bruning, E.

    2007-12-01

    We have examined lightning activity relative to the microphysical and kinematic structure of a winter thunderstorm complex (a thunder-snow episode) observed east of Norman, Oklahoma during the evening of 29-30 November 2006. Polarimetric radar provided information about the type of particles present in various regions of the storms. The Lightning Mapping Array (LMA) recorded VHF signals produced by developing lightning channels. The times of arrival of these lightning signals across the array were then used to reconstruct the location and structure of lightning, and these reconstructions were overlaid with radar data to examine the relationship between lightning properties and storm particle types. Four storms in this winter complex have been examined. It was inferred from lightning structure that, in their mature stage, all cells we examined had a positive tripole electrical structure (an upper positive charge center, a midlevel negative charge center, and a lower positive charge center). The storms began with lightning activity in the lower dipole (lower positive and midlevel negative regions), but this evolved into lightning activity throughout the tripole structure within approximately 15-20 minutes. In the longer lived storms, the mature stage lasted for approximately 1.5-2 hours. During this stage, the lower positive charge region was situated less than 5 km above ground, the midlevel negative charge region was typically above 5 km, and the upper positive charge region was located at an altitude of less than 10 km in all the storm cells analyzed. The charge regions descended over approximately the last 30 minutes of lightning activity, the lower charge regions eventually reaching ground. This resulted in the loss of the lower positive charge center and the subsequent diminishment of the lower negative charge center. Lightning initiation usually coincided with the edges of regions of high reflectivity and was coincident with the presence of graupel and ice crystals in the lower dipole. Radar data suggest that ice crystals were the dominant charge carriers in the upper positive region.

  11. Lunar Surface Charging during Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Halekas, Jasper S.; Delory, G. T.; Mewaldt, R. A.; Lin, R. P.; Fillingim, M. O.; Brain, D. A.; Lee, C. O.; Stubbs, T. J.; Farrell, W. M.; Hudson, M. K.

    2006-09-01

    The surface of the Moon, not protected by any substantial atmosphere, is directly exposed to the impact of both solar UV and solar wind plasma and energetic particles. This creates a complex lunar electrostatic environment, with the surface typically charging slightly positive in sunlight, and negative in shadow. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging leads to dust electrification and transport, posing a potentially significant hazard for exploration. The most significant charging effects should occur when the Moon is exposed to high-temperature plasmas like those encountered in the terrestrial plasmasheet or in solar storms. We now present evidence for kilovolt-scale negative charging of the shadowed lunar surface during solar energetic particle (SEP) events, utilizing data from the Lunar Prospector Electron Reflectometer (LP ER). We find that SEP events are associated with the most extreme lunar surface charging observed during the LP mission - rivaled only by previously reported charging during traversals of the terrestrial plasmasheet. The largest charging event observed by LP is a 4 kV negative surface potential (as compared to typical values of V) during a SEP event in May 1998. We characterize lunar surface charging during several SEP events, and compare to energetic particle measurements from ACE, Wind, and SOHO in order to determine the relationship between SEP events and extreme lunar surface charging. Space weather events are already considered by NASA to be a significant hazard to lunar exploration, due to high-energy ionizing radiation. Our observations demonstrate that plasma interactions with the lunar surface during SEP events, causing extreme surface charging and potentially significant dust electrification and transport, represent an additional hazard associated with space weather.

  12. Effect of surface material on electrostatic charging of houseflies (Musca domestica L).

    PubMed

    McGonigle, Daniel F; Jackson, Chris W

    2002-04-01

    Houseflies (Musca domestica L) accumulated electrostatic charges when walking over clean, uncharged dielectric surfaces. The charges elicited on a walking housefly by a range of materials were quantified, allowing a triboelectric series to be determined relative to M domestica. This ranged from surfaces that charged individuals positively, e.g. Correx (corrugated polypropylene) [.1 (+/- 4.2)pC], to those that applied a negative charge, e.g. clear cast acrylic [-14.9 (+/- 2.9)pC]. Maximum positive and negative charges accumulated by individual M domestica were +73 and -27 pC. Replicate measurements on the same fly and surface showed little variation. Variation between individuals was not related to sex and was not consistent between surfaces. Different materials charged M domestica significantly differently and individual flies had significantly different charging properties. Variation in temperature between 21.3 degrees C and 24.7 degrees C and humidity between 24% and 41% RH significantly affected charge accumulated by M domestica on some surfaces, although further experimentation is needed to confirm this. The implications of this work are discussed in relation to insect trap design and pollination biology.

  13. Maxwell's conjecture on three point charges with equal magnitudes

    NASA Astrophysics Data System (ADS)

    Tsai, Ya-Lun

    2015-08-01

    Maxwell's conjecture on three point charges states that the number of non-degenerate equilibrium points of the electrostatic field generated by them in R3 is at most four. We prove the conjecture in the cases when three point charges have equal magnitudes and show the number of isolated equilibrium points can only be zero, two, three, or four. Specifically, fixing positions of two positive charges in R3, we know exactly where to place the third positive charge to have two, three, or four equilibrium points. All equilibrium points are isolated and there are no other possibilities for the number of isolated equilibrium points. On the other hand, if both two of the fixed charges have negative charge values, there are always two equilibrium points except when the third positive charge lies in the line segment connecting the two negative charges. The exception cases are when the field contains only a curve of equilibrium points. In this paper, computations assisted by computer involve symbolic and exact integer computations. Therefore, all the results are proved rigorously.

  14. Radiation-hardened-by-design clocking circuits in 0.13-μm CMOS technology

    NASA Astrophysics Data System (ADS)

    You, Y.; Huang, D.; Chen, J.; Gong, D.; Liu, T.; Ye, J.

    2014-01-01

    We present a single-event-hardened phase-locked loop for frequency generation applications and a digital delay-locked loop for DDR2 memory interface applications. The PLL covers a 12.5 MHz to 500 MHz frequency range with an RMS Jitter (RJ) of 4.70-pS. The DLL operates at 267 MHz and has a phase resolution of 60-pS. Designed in 0.13-μm CMOS technology, the PLL and the DLL are hardened against SEE for charge injection of 250 fC. The PLL and the DLL consume 17 mW and 22 mW of power under a 1.5 V power supply, respectively.

  15. Toward microstate counting beyond large N in localization and the dual one-loop quantum supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal

    The topologically twisted index for ABJM theory with gauge group U(N)k × U(N)−k has recently been shown, in the large-N limit, to reproduce the BekensteinHawking entropy of certain magnetically charged asymptotically AdS4 black holes. We numerically study the index beyond the large-N limit and provide evidence that it contains a subleading logarithmic term of the form −1/2 log N. On the holographic side, this term naturally arises from a one-loop computation. However, we find that the contribution coming from the near horizon states does not reproduce the field theory answer. We give some possible reasons for this apparent discrepancy.

  16. Determination of the structure and heating mechanisms of coronal loops from soft X-ray observations with the solar probe. [grazing incidence telescope

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Krieger, A. S.

    1978-01-01

    High resolution soft X-ray imaging from the solar probe is justified in terms of the expected scientific returns which include the determination of the temperature and density structure of a coronal loop. The advantages of the grazing incidence telescope over the multiple pinhole camera are discussed. An instrument package is described which includes a grazing incidence mirror, a thermal prefilter, a three position filter wheel and a focal plane detector baselined as an 800 by 800 back-illuminated charge coupled device. The structural assembly together with the data processing equipment would draw heavily on the designs being developed for the Solar Polar Mission.

  17. Self-driven cooling loop for a large superconducting magnet in space

    NASA Technical Reports Server (NTRS)

    Mord, A. J.; Snyder, H. A.

    1992-01-01

    Pressurized cooling loops in which superfluid helium circulation is driven by the heat being removed have been previously demonstrated in laboratory tests. A simpler and lighter version which eliminates a heat exchanger by mixing the returning fluid directly with the superfluid helium bath was analyzed. A carefully designed flow restriction must be used to prevent boiling in this low-pressure system. A candidate design for Astromag is shown that can keep the magnet below 2.0 K during magnet charging. This gives a greater margin against accidental quench than approaches that allow the coolant to warm above the lambda point. A detailed analysis of one candidate design is presented.

  18. Physical Origin of Transient Negative Capacitance in a Ferroelectric Capacitor

    NASA Astrophysics Data System (ADS)

    Chang, Sou-Chi; Avci, Uygar E.; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2018-01-01

    Transient negative differential capacitance, the dynamic reversal of transient capacitance in an electrical circuit, is of highly technological and scientific interest since it probes the foundation of ferroelectricity. We study a resistor-ferroelectric capacitor (R -FEC) network through a series of coupled equations based on Kirchhoff's law, electrostatics, and Landau theory. We show that transient negative capacitance (NC) in a R -FEC circuit originates from the mismatch in switching rate between the free charge on the metal plate and the bound charge in a ferroelectric (FE) capacitor during the polarization switching. This transient free charge-polarization mismatch is driven by the negative curvature of the FE free-energy landscape, and it is also analytically shown that a free-energy profile with a negative curvature is the only physical system that can describe transient NC in a R -FEC circuit. Furthermore, transient NC induced by the free charge-polarization mismatch is justified by its dependence on both external resistance and the intrinsic FE viscosity coefficient. The depolarization effect on FE capacitors emphasizes the importance of negative curvature to transient NC and also implies that transient and steady-state NC cannot be observed in a FE capacitor simultaneously. Finally, using the transient NC measurements, a procedure to experimentally determine the viscosity coefficient is presented to provide more insight into the relation between transient NC and the FE free-energy profile.

  19. The magnetosphere as system

    NASA Astrophysics Data System (ADS)

    Siscoe, G. L.

    2012-12-01

    What is a system? A group of elements interacting with each other so as to create feedback loops. A system gets complex as the number of feedback loops increases and as the feedback loops exhibit time delays. Positive and negative feedback loops with time delays can give a system intrinsic time dependence and emergent properties. A system generally has input and output flows of something (matter, energy, money), which, if time variable, add an extrinsic component to its behavior. The magnetosphere is a group of elements interacting through feedback loops, some with time delays, driven by energy and mass inflow from a variable solar wind and outflow into the atmosphere and solar wind. The magnetosphere is a complex system. With no solar wind, there is no behavior. With solar wind, there is behavior from intrinsic and extrinsic causes. As a contribution to taking a macroscopic view of magnetospheric dynamics, to treating the magnetosphere as a globally integrated, complex entity, I will discus the magnetosphere as a system, its feedback loops, time delays, emergent behavior, and intrinsic and extrinsic behavior modes.

  20. Composite particle theory of three-dimensional gapped fermionic phases: Fractional topological insulators and charge-loop excitation symmetry

    NASA Astrophysics Data System (ADS)

    Ye, Peng; Hughes, Taylor L.; Maciejko, Joseph; Fradkin, Eduardo

    2016-09-01

    Topological phases of matter are usually realized in deconfined phases of gauge theories. In this context, confined phases with strongly fluctuating gauge fields seem to be irrelevant to the physics of topological phases. For example, the low-energy theory of the two-dimensional (2D) toric code model (i.e., the deconfined phase of Z2 gauge theory) is a U(1 )×U(1 ) Chern-Simons theory in which gauge charges (i.e., e and m particles) are deconfined and the gauge fields are gapped, while the confined phase is topologically trivial. In this paper, we point out a route to constructing exotic three-dimensional (3D) gapped fermionic phases in a confining phase of a gauge theory. Starting from a parton construction with strongly fluctuating compact U(1 )×U(1 ) gauge fields, we construct gapped phases of interacting fermions by condensing two linearly independent bosonic composite particles consisting of partons and U(1 )×U(1 ) magnetic monopoles. This can be regarded as a 3D generalization of the 2D Bais-Slingerland condensation mechanism. Charge fractionalization results from a Debye-Hückel-type screening cloud formed by the condensed composite particles. Within our general framework, we explore two aspects of symmetry-enriched 3D Abelian topological phases. First, we construct a new fermionic state of matter with time-reversal symmetry and Θ ≠π , the fractional topological insulator. Second, we generalize the notion of anyonic symmetry of 2D Abelian topological phases to the charge-loop excitation symmetry (Charles ) of 3D Abelian topological phases. We show that line twist defects, which realize Charles transformations, exhibit non-Abelian fusion properties.

  1. The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel.

    PubMed

    Mishima, Eriko; Sato, Yoko; Nanatani, Kei; Hoshi, Naomi; Lee, Jong-Kook; Schiller, Nina; von Heijne, Gunnar; Sakaguchi, Masao; Uozumi, Nobuyuki

    2016-12-01

    Voltage-dependent K + (K V ) channels control K + permeability in response to shifts in the membrane potential. Voltage sensing in K V channels is mediated by the positively charged transmembrane domain S4. The best-characterized K V channel, KvAP, lacks the distinct hydrophilic region corresponding to the S3-S4 extracellular loop that is found in other K + channels. In the present study, we evaluated the topogenic properties of the transmembrane regions within the voltage-sensing domain in KvAP. S3 had low membrane insertion activity, whereas S4 possessed a unique type-I signal anchor (SA-I) function, which enabled it to insert into the membrane by itself. S4 was also found to function as a stop-transfer signal for retention in the membrane. The length and structural nature of the extracellular S3-S4 loop affected the membrane insertion of S3 and S4, suggesting that S3 membrane insertion was dependent on S4. Replacement of charged residues within the transmembrane regions with residues of opposite charge revealed that Asp 72 in S2 and Glu 93 in S3 contributed to membrane insertion of S3 and S4, and increased the stability of S4 in the membrane. These results indicate that the SA-I function of S4, unique among K + channels studied to date, promotes the insertion of S3 into the membrane, and that the charged residues essential for voltage sensing contribute to the membrane-insertion of the voltage sensor domain in KvAP. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  2. Receptor-Mediated Melanoma Targeting with Radiolabeled α-Melanocyte-Stimulating Hormone: Relevance of the Net Charge of the Ligand.

    PubMed

    Bapst, Jean-Philippe; Eberle, Alex N

    2017-01-01

    A majority of melanotic and amelanotic melanomas overexpress melanocortin type 1 receptors (MC1Rs) for α-melanocyte-stimulating hormone. Radiolabeled linear or cyclic analogs of α-MSH have a great potential as diagnostic or therapeutic tools for the management of malignant melanoma. Compounds such as [ 111 In]DOTA-NAP-amide exhibit high affinity for the MC1R in vitro , good tumor uptake in vivo , but they may suffer from relatively high kidney uptake and retention in vivo . We have shown previously that the introduction of negative charges into radiolabeled DOTA-NAP-amide peptide analogs may enhance their excretion and reduce kidney retention. To address the question of where to place negative charges within the ligand, we have extended these studies by designing two novel peptides, Ac-Nle-Asp-His-d-Phe-Arg-Trp-Gly-Lys(DOTA)-d-Asp-d-Asp-OH (DOTA-NAP-d-Asp-d-Asp) with three negative charges at the C -terminal end (overall net charge of the molecule -2) and DOTA-Gly-Tyr(P)-Nle-Asp-His-d-Phe-Arg-Trp-NH 2 (DOTA-Phospho-MSH 2-9 ) with two negative charges in the N -terminal region (net charge -1). The former peptide showed markedly reduced receptor affinity and biological activity by >10-fold compared to DOTA-NAP-amide as reference compound, and the latter peptide displayed similar bioactivity and receptor affinity as the reference compound. The uptake by melanoma tumor tissue of [ 111 In]DOTA-Phospho-MSH 2-9 was 7.33 ± 0.47 %ID/g 4 h after injection, i.e., almost equally high as with [ 111 In]DOTA-NAP-amide. The kidney retention was 2.68 ± 0.18 %ID/g 4 h after injection and hence 44% lower than that of [ 111 In]DOTA-NAP-amide. Over an observation period from 4 to 48 h, the tumor-to-kidney ratio of [ 111 In]DOTA-Phospho-MSH 2-9 was 35% more favorable than that of the reference compound. In a comparison of DOTA-NAP-d-Asp-d-Asp, DOTA-Phospho-MSH 2-9 and DOTA-NAP-amide with five previously published analogs of DOTA-NAP-amide that altogether cover a range of peptides with an overall net charge between +2 and -2, we now demonstrate that a net charge of -1, with the extra negative charges preferably placed in the N -terminal region, has led to the lowest kidney uptake and retention. Charges of +2 or -2 markedly increased kidney uptake and retention. In conclusion, the novel DOTA-Phospho-MSH 2-9 may represent a new lead compound for negatively charged linear MC1R ligands that can be further developed into a clinically relevant melanoma targeting radiopeptide.

  3. Receptor-Mediated Melanoma Targeting with Radiolabeled α-Melanocyte-Stimulating Hormone: Relevance of the Net Charge of the Ligand

    PubMed Central

    Bapst, Jean-Philippe; Eberle, Alex N.

    2017-01-01

    A majority of melanotic and amelanotic melanomas overexpress melanocortin type 1 receptors (MC1Rs) for α-melanocyte-stimulating hormone. Radiolabeled linear or cyclic analogs of α-MSH have a great potential as diagnostic or therapeutic tools for the management of malignant melanoma. Compounds such as [111In]DOTA-NAP-amide exhibit high affinity for the MC1R in vitro, good tumor uptake in vivo, but they may suffer from relatively high kidney uptake and retention in vivo. We have shown previously that the introduction of negative charges into radiolabeled DOTA-NAP-amide peptide analogs may enhance their excretion and reduce kidney retention. To address the question of where to place negative charges within the ligand, we have extended these studies by designing two novel peptides, Ac-Nle-Asp-His-d-Phe-Arg-Trp-Gly-Lys(DOTA)-d-Asp-d-Asp-OH (DOTA-NAP-d-Asp-d-Asp) with three negative charges at the C-terminal end (overall net charge of the molecule −2) and DOTA-Gly-Tyr(P)-Nle-Asp-His-d-Phe-Arg-Trp-NH2 (DOTA-Phospho-MSH2-9) with two negative charges in the N-terminal region (net charge −1). The former peptide showed markedly reduced receptor affinity and biological activity by >10-fold compared to DOTA-NAP-amide as reference compound, and the latter peptide displayed similar bioactivity and receptor affinity as the reference compound. The uptake by melanoma tumor tissue of [111In]DOTA-Phospho-MSH2-9 was 7.33 ± 0.47 %ID/g 4 h after injection, i.e., almost equally high as with [111In]DOTA-NAP-amide. The kidney retention was 2.68 ± 0.18 %ID/g 4 h after injection and hence 44% lower than that of [111In]DOTA-NAP-amide. Over an observation period from 4 to 48 h, the tumor-to-kidney ratio of [111In]DOTA-Phospho-MSH2-9 was 35% more favorable than that of the reference compound. In a comparison of DOTA-NAP-d-Asp-d-Asp, DOTA-Phospho-MSH2-9 and DOTA-NAP-amide with five previously published analogs of DOTA-NAP-amide that altogether cover a range of peptides with an overall net charge between +2 and −2, we now demonstrate that a net charge of −1, with the extra negative charges preferably placed in the N-terminal region, has led to the lowest kidney uptake and retention. Charges of +2 or −2 markedly increased kidney uptake and retention. In conclusion, the novel DOTA-Phospho-MSH2-9 may represent a new lead compound for negatively charged linear MC1R ligands that can be further developed into a clinically relevant melanoma targeting radiopeptide. PMID:28491052

  4. An automatic tracking system for phase-noise measurement.

    PubMed

    Yuen, Chung Ming; Tsang, Kim Fung

    2005-05-01

    A low cost, automatic tracking system for phase noise measurement has been implemented successfully. The tracking system is accomplished by applying a charge pump phase-locked loop as an external reference source to a digital spectrum analyzer. Measurement of a 2.5 GHz, free-running, voltage-controlled oscillator demonstrated the tracking accuracy, thus verifying the feasibility of the system.

  5. Dynamic Processes in Regulation and Some Implications for Biofeedback and Biobehavioral Interventions

    PubMed Central

    Lehrer, Paul; Eddie, David

    2013-01-01

    Systems theory has long been applied in psychology, biology, and sociology. This paper applies newer methods of control systems modeling to the assessment of system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning. PMID:23572244

  6. Asparagine, valine, and threonine in the third extracellular loop of muscarinic receptor have essential roles in the positive cooperativity of strychnine-like allosteric modulators.

    PubMed

    Jakubík, J; Krejcí, A; Dolezal, V

    2005-05-01

    We have investigated allosteric interactions of four closely related strychnine-like substances: Wieland-Gumlich aldehyde (WGA), propargyl Wieland-Gumlich aldehyde, strychnine, and brucine with N-methylscopolamine (NMS) on M(3) subtype of muscarinic receptor genetically modified in the second or the third extracellular loop to corresponding loops of M(2) subtype (M(3)o2 and M(3)o3 chimera). The M(3)o2 chimeric receptor The exhibited no change in either affinity of strychnine, brucine, and WGA or in cooperativity of brucine or WGA, whereas both parameters for propargyl-WGA changed. In contrast, there was a change in affinity of all tested modulators (except for brucine) and in their cooperativity in the M(3)o3 chimera. Directions of affinity changes in both chimeras were always toward values of the donor M(2) subtype, but changes in cooperativity were variable. Compared with the native M(3) receptor, strychnine displayed a slight increase in positive cooperativity and propargyl-WGA a robust decrease in negative cooperativity at M(3)o2 chimera. Similar changes were found in the M(3)o3 chimera. Interestingly, cooperativity of brucine and WGA at the M(3)o3 chimera changed from negative to positive. This is the first evidence of constitution of positive cooperativity of WGA by switching sequences of two parental receptors, both exhibiting negative cooperativity. Gradual replacement of individual amino acids revealed that only three residues (NVT of the o3 loop of the M(2) receptor) are involved in this effect. Data suggest that these amino acids are essential for propagation of a conformation change resulting in positive cooperativity induced by these modulators.

  7. Probing the effects of defects on ferroelectricity in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Lin

    Ferroelectric materials have been intensively studied due to their interesting properties such as piezoelectricity, ferroelectricity including spontaneous polarization, remnant polarization, hysteresis loop, and etc. In this study, effects of defects, thickness, and temperature on ferroelectric stability, hysteresis loop, and phase transition in ferroelectric thin films have been investigated using molecular dynamics simulations with first-principles effective Hamiltonian. Various types of defects are considered including oxygen vacancy, hydrogen contamination, and dead layer. We first study the effects of oxygen vacancy on ferroelectricity in PbTiO3 (PTO) thin films. An oxygen vacancy has been modeled as a +2q charged point defect which generates local strain and electrostatic fields. Atomic displacements induced by an oxygen vacancy were obtained by first-principles calculations and the corresponding strain field was fitted with elastic continuum model of a point defect. The obtained local strain and electrostatic fields are the inputs to the molecular dynamics (MD) simulations. We limited the oxygen vacancies in the interfacial layers between the film and electrodes. Oxygen vacancies reduce the spontaneous polarization and significantly increase the critical thickness below which the spontaneous polarization disappears. With the presence of oxygen vacancy only at one interface layer, PTO film exhibits asymmetric hysteresis loop which is consistent with experimental observations about the imprint effect. In the heating-up and cooling-down processes, oxygen vacancies weaken the phase transitions, but contribute tension along the thickness direction at high temperature. First-principles calculations are performed to determine the possible position, formation energy, and mobility of the interstitial hydrogen atom, and the calculated results are used as inputs to MD simulations in a large system. The hydrogen atom is able to move within one unit cell with small energy barriers. The energy difference between a hydrogen contaminated PTO and a pure PTO is considered as an energy penalty term induced by hydrogen contamination. Then, the effective Hamiltonian with the energy penalty is employed in MD simulations to investigate the effects of hydrogen contamination on the ferroelectric responses of PTO films. The hysteresis loops are presented and analyzed for PTO films with various concentrations of hydrogen impurities and thicknesses. Hydrogen contamination reduces the remnant polarization, especially for thin films. As the concentration of hydrogen impurities increases, the critical thickness increases. By analyzing the vertical cross section snapshots, it has been found that the hydrogen impurities near interfaces affect the polarization throughout the entire PTO film. To study the effect of the dead layer (depolarization field), the soft modes in the top and bottom layers are constrained to be zero, which gives rise to the reduced polarization and increased critical thickness. Negative capacitance is a new and hot topic, which was recently observed by experiment. It is a transient effect that correlated with depolarization field. Some preliminary results and application of negative capacitance are discussed.

  8. Electron kinetics at the plasma interface

    NASA Astrophysics Data System (ADS)

    Bronold, Franz Xaver; Fehske, Holger; Pamperin, Mathias; Thiessen, Elena

    2018-05-01

    The most fundamental response of an ionized gas to a macroscopic object is the formation of the plasma sheath. It is an electron depleted space charge region, adjacent to the object, which screens the object's negative charge arising from the accumulation of electrons from the plasma. The plasma sheath is thus the positively charged part of an electric double layer whose negatively charged part is inside the wall. In the course of the Transregional Collaborative Research Center SFB/TRR24 we investigated, from a microscopic point of view, the elementary charge transfer processes responsible for the electric double layer at a floating plasma-wall interface and made first steps towards a description of the negative part of the layer inside the wall. Below we review our work in a colloquial manner, describe possible extensions, and identify key issues which need to be resolved to make further progress in the understanding of the electron kinetics across plasma-wall interfaces. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  9. Characteristics of space charge formed in a laminated LDPE/EVA dielectric under DC stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toshikatsu; Kisanuki, Osamu; Sakata, Masataka

    1996-12-31

    A laser-induced pressure pulse (LIPP) method was used for measuring the space charge distribution of LDPE/EVA laminate dielectrics under dc stress. The constant voltage up to {+-}20 kV was applied to a side of the laminates of 0.5 mm thickness for 30 minutes. The other side is grounded. When the amount of space charge was measured by LIPP, both sides were virtually grounded. Space charge built up in or near the interface between LDPE and EVA was mainly investigated. Positive and negative voltage was applied to the side of LDPE in the laminates. It was clarified that the space chargemore » was larger in case of LDPE negatively biased than in case of LDPE positively biased. The density of the space charge ranged around 1 nC/mm{sup 3}. The formation of interfacial space charge is analyzed.« less

  10. Charge Effects on the Efflorescence in Single Levitated Droplets.

    PubMed

    Hermann, Gunter; Zhang, Yan; Wassermann, Bernhard; Fischer, Henry; Quennet, Marcel; Rühl, Eckart

    2017-09-14

    The influence of electrical excess charges on the crystallization from supersaturated aqueous sodium chloride solutions is reported. This is accomplished by efflorescence studies on single levitated microdroplets using optical and electrodynamic levitation. Specifically, a strong increase in efflorescence humidity is observed as a function of the droplet's negative excess charge, ranging up to -2.1 pC, with a distinct threshold behavior, increasing the relative efflorescence humidity, at which spontaneous nucleation occurs, from 44% for the neutral microparticle to 60%. These findings are interpreted by using molecular dynamics simulations for determining plausible structural patterns located near the particle surface that could serve as suitable precursors for the formation of critical clusters overcoming the nucleation barrier. These results, facilitating heterogeneous nucleation in the case of negatively charged microparticles, are compared to recent work on charge-induced nucleation of neat supercooled water, where a distinctly different nucleation behavior as a function of droplet charge has been observed.

  11. Transmission of low-energy negative ions through insulating nanocapillaries

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Liu, Zhonglin; Li, Pengfei; Jin, Bo; Song, Guangyin; Jin, Dingkun; Niu, Ben; Wei, Long; Ha, Shuai; Xie, Yiming; Ma, Yue; Wan, Chengliang; Cui, Ying; Zhou, Peng; Zhang, Hongqiang; Chen, Ximeng

    2018-04-01

    A simulation is performed to study the transmission of low-energy C l- ions through A l2O3 nanocapillaries. For the trajectory simulations, there are several processes involved: the image forces induced by the projectile; the electrostatic force from the deposited charges; the scattering from the inner surface and charge exchange. The simulation reproduces the main features of the experiments; i.e., the double peak structure in the transmitted angular distribution and the transmitted fractions of C l- , C l+ , and C l0 were found in the charge state distribution. The transmitted C l- ions are centered around the beam direction while the transmitted fractions of C l0 and C l+ are centered around the tilt angles. The role of the deposited charge is also studied by simulations. With the deposited charge, it is found that C l- is dominant in the transmission and the majority of the ions, centered around the tilt angle, are mainly from the single deflection by the negative charge patches on the inner surfaces of the capillaries, and only a few directly transmitted C l- ions are centered around the incident direction. There are also a few transmitted fractions of C l0 and C l+ from close surface scatterings. In the case that there are no negative charge patches, the simulation agrees with the experiment in detail: The majority of the directly transmitted C l- ions are centered around the incident direction while only a few scattered C l- ions are centered around the tilt angle from the single close collisions with the inner surfaces of the capillaries. There is a portion, comparable to the transmitted fraction of C l- , of the transmitted fractions of C l0 and C l+ , centered around the tilt angle, from the single scatterings with the inner surfaces of the capillaries. This confirms that at the present experimental conditions there are most probably no negative charge patches formed to guide the negative ions through insulating A l2O3 nanocapillaries.

  12. Lysozyme adsorption in pH-responsive hydrogel thin-films: the non-trivial role of acid-base equilibrium.

    PubMed

    Narambuena, Claudio F; Longo, Gabriel S; Szleifer, Igal

    2015-09-07

    We develop and apply a molecular theory to study the adsorption of lysozyme on weak polyacid hydrogel films. The theory explicitly accounts for the conformation of the network, the structure of the proteins, the size and shape of all the molecular species, their interactions as well as the chemical equilibrium of each titratable unit of both the protein and the polymer network. The driving forces for adsorption are the electrostatic attractions between the negatively charged network and the positively charged protein. The adsorption is a non-monotonic function of the solution pH, with a maximum in the region between pH 8 and 9 depending on the salt concentration of the solution. The non-monotonic adsorption is the result of increasing negative charge of the network with pH, while the positive charge of the protein decreases. At low pH the network is roughly electroneutral, while at sufficiently high pH the protein is negatively charged. Upon adsorption, the acid-base equilibrium of the different amino acids of the protein shifts in a nontrivial fashion that depends critically on the particular kind of residue and solution composition. Thus, the proteins regulate their charge and enhance adsorption under a wide range of conditions. In particular, adsorption is predicted above the protein isoelectric point where both the solution lysozyme and the polymer network are negatively charged. This behavior occurs because the pH in the interior of the gel is significantly lower than that in the bulk solution and it is also regulated by the adsorption of the protein in order to optimize protein-gel interactions. Under high pH conditions we predict that the protein changes its charge from negative in the solution to positive within the gel. The change occurs within a few nanometers at the interface of the hydrogel film. Our predictions show the non-trivial interplay between acid-base equilibrium, physical interactions and molecular organization under nanoconfined conditions, which leads to non-trivial adsorption behavior that is qualitatively different from what would be predicted from the state of the proteins in the bulk solution.

  13. A new biphasic osteoinductive calcium composite material with a negative Zeta potential for bone augmentation

    PubMed Central

    Smeets, Ralf; Kolk, Andreas; Gerressen, Marcus; Driemel, Oliver; Maciejewski, Oliver; Hermanns-Sachweh, Benita; Riediger, Dieter; Stein, Jamal M

    2009-01-01

    The aim of the present study was to analyze the osteogenic potential of a biphasic calcium composite material (BCC) with a negative surface charge for maxillary sinus floor augmentation. In a 61 year old patient, the BCC material was used in a bilateral sinus floor augmentation procedure. Six months postoperative, a bone sample was taken from the augmented regions before two titanium implants were inserted at each side. We analyzed bone neoformation by histology, bone density by computed tomography, and measured the activity of voltage-activated calcium currents of osteoblasts and surface charge effects. Control orthopantomograms were carried out five months after implant insertion. The BCC was biocompatible and replaced by new mineralized bone after being resorbed completely. The material demonstrated a negative surface charge (negative Zeta potential) which was found to be favorable for bone regeneration and osseointegration of dental implants. PMID:19523239

  14. Modeling carbonaceous particle formation in an argon graphite cathode dc discharge

    NASA Astrophysics Data System (ADS)

    Michau, A.; Lombardi, G.; Colina Delacqua, L.; Redolfi, M.; Arnas, C.; Bonnin, X.; Hassouni, K.

    2010-12-01

    We develop a model for the nucleation, growth and transport of carbonaceous dust particles in a non-reactive gas dc discharge where the carbon source is provided by cathode sputtering. We consider only the initial phase of the discharge when the dust charge density remains small with respect to the electron density. We find that an electric field reversal at the entrance of the negative glow region promotes trapping of negatively charged clusters and dust particles, confining them for long times in the plasma and favoring molecular growth. An essential ingredient for this process is electron attachment, which negatively charges the initially neutral clusters. We perform sensitivity studies on several number parameters: size of the largest molecular edifice, sticking coefficient, etc.

  15. Variation of wave speed determined by the PU-loop with proximity to a reflection site.

    PubMed

    Li, Ye; Borlotti, Alessandra; Parker, Kim H; Khir, Ashraf W

    2011-01-01

    Wave speed is directly related to arterial distensibility and is widely used by clinicians to assess arterial stiffness. The PU-loop method for determining wave speed is based on the water hammer equation for flow in flexible tubes and artery using the method of characteristics. This technique determines wave speed using simultaneous measurements of pressure and velocity at a single point. The method shows that during the early part of systole, the relationship between pressure and velocity is generally linear, and the initial slope of the PU-loop is proportional to wave speed. In this work, we designed an in-vitro experiment to investigate the effect of proximity to a reflection site on the wave speed determined by the PU-loop through varying the distance between the measurement and reflection sites. Measurements were made in a flexible tube with a reflection site at the distal end formed by joining the tube to another tube with a different diameter and material properties. Six different flexible tubes were used to generate both positive and negative reflection coefficients of different magnitudes. We found that the wave speed determined by the PU-loop did not change when the measurement site was far from the reflection site but did change as the distance to the reflection site decreased. The calculated wave speed increased with positive reflections and decreased with negative reflections. The magnitude of the change in wave speed at a fixed distance from the reflection site increased with increasing the value of the reflection coefficient.

  16. Hybrid suboptimal control of multi-rate multi-loop sampled-data systems

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Chen, Gwangchywan; Tsai, Jason S. H.

    1992-01-01

    A hybrid state-space controller is developed for suboptimal digital control of multirate multiloop multivariable continuous-time systems. First, an LQR is designed for a continuous-time subsystem which has a large bandwidth and is connnected in the inner loop of the overall system. The designed LQR would optimally place the eigenvalues of a closed-loop subsystem in the common region of an open sector bounded by sector angles + or - pi/2k for k = 2 or 3 from the negative real axis and the left-hand side of a vertical line on the negative real axis in the s-plane. Then, the developed continuous-time state-feedback gain is converted into an equivalent fast-rate discrete-time state-feedback gain via a digital redesign technique (Tsai et al. 1989, Shieh et al. 1990) reviewed here. A real state reconstructor is redeveloped utilizing the fast-rate input-output data of the system of interest. The design procedure of multiloop multivariable systems using multirate samplers is shown, and a terminal homing missile system example is used to demonstrate the effectiveness of the proposed method.

  17. Biocybernetic system evaluates indices of operator engagement in automated task

    NASA Technical Reports Server (NTRS)

    Pope, A. T.; Bogart, E. H.; Bartolome, D. S.

    1995-01-01

    A biocybernetic system has been developed as a method to evaluate automated flight deck concepts for compatibility with human capabilities. A biocybernetic loop is formed by adjusting the mode of operation of a task set (e.g., manual/automated mix) based on electroencephalographic (EEG) signals reflecting an operator's engagement in the task set. A critical issue for the loop operation is the selection of features of the EEG to provide an index of engagement upon which to base decisions to adjust task mode. Subjects were run in the closed-loop feedback configuration under four candidate and three experimental control definitions of an engagement index. The temporal patterning of system mode switching was observed for both positive and negative feedback of the index. The indices were judged on the basis of their relative strength in exhibiting expected feedback control system phenomena (stable operation under negative feedback and unstable operation under positive feedback). Of the candidate indices evaluated in this study, an index constructed according to the formula, beta power/(alpha power + theta power), reflected task engagement best.

  18. Nanoparticle coagulation in fractionally charged and charge fluctuating dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunomura, Shota; Kondo, Michio; Shiratani, Masaharu

    2008-08-15

    The kinetics of nanoparticle coagulation has been studied in fractionally charged and charge fluctuating dusty plasmas. The coagulation occurs when the mutual collision frequency among nanoparticles exceeds their charging and decharging/neutralization frequency. Interestingly, the coagulation is suppressed while a fraction (several percent) of nanoparticles are negatively charged in a plasma, in which stochastic charging plays an important role. A model is developed to predict a phase diagram of the coagulation and its suppression.

  19. A Brief 30-Year Review: Research Highlights from Lightning Mapping Systems 1970-2000

    NASA Astrophysics Data System (ADS)

    MacGorman, D. R.

    2016-12-01

    Modern lightning mapping began in the 1970s, the decade in which VHF mapping systems, acoustic mapping systems, and ground strike locating systems were introduced. Adding GPS synchronization of VHF systems in the late 1990s enabled real-time VHF mapping systems to be deployed more extensively. Data these systems provided by 2000 revolutionized our understanding of how storms produce lightning. Among key results: Electrostatics, not electrodynamics, governs where lightning is initiated and where it propagates, contrary to early expectations. Lightning is initiated in a region of large electric field magnitude, typically between a positive charge region and a negative charge region. The geometry of a storm's charge regions governs the spatial extent of each end of the flash. The flash initially propagates bidirectionally toward the two charge regions that initiated it, and once it reaches the charge regions and maximizes the ambient potential difference spanned by the flash structure, it extends through each charge region's ambient electric potential well until the total electric field magnitude at the ends of the flash drops below the threshold for continued propagation. The typical charge distribution producing a cloud-to-ground flash is a region of charge of the polarity being lowered to ground, above a lesser amount of charge of the opposite polarity; the lower region has too little charge to capture the downward propagating channel. Contrary to previous understanding, naturally occurring cloud-to-ground lightning often lowers positive charge to ground, instead of the usual negative charge, in several situations, including winter storms, stratiform precipitation regions, some severe storms, and storms on the High Plains of the United States. The reason cloud-to-ground activity in some storms is dominated by flashes that lower positive charge to ground is that the polarity of the main charge regions in those storms is inverted from the usual polarity, with the main mid-level charge being positive and the main upper-level charge being negative. This strongly implies that the dominant non-inductive electrification mechanism is inverted in those storms, probably because the liquid water content in the mixed phase region is larger than in most storms.

  20. Investigation of Dusts Effect and Negative Ion in DC Plasmas by Electric Probes

    NASA Astrophysics Data System (ADS)

    Oh, Hye Taek; Kang, Inje; Bae, Min-Keun; Park, Insun; Lee, Seunghwa; Jeong, Seojin; Chung, Kyu-Sun

    2017-10-01

    Dust is typically negatively charged by electron attachment whose thermal velocities are fast compared to that of the heavier ions. The negatively charged particles can play a role of negative ions which affect the quasi-neutrality of background plasma. To investigate effect of metal dusts and negative ion on plasma and materials, metal dusts are injected into background Ar plasma which is generated by tungsten filament using dust dispenser on Cubical Plasma Device (CPD). The CPD has following conditions: size =24x24x24cm3, plasma source =DC filament plasma (ne 1x10x1010, Te 2eV), background gas =Ar, dusts =tungsten powder (diameter 1.89micron). The dust dispenser is developed to quantitate of metal dust by ultrasonic transducer. Electronegative plasmas are generated by adding O2 + Ar plasma to compare negative ion and dust effect. A few grams of micron-sized dusts are placed in the dust dispenser which is located at the upper side of the Cubical Plasma Device. The falling particles by dust dispenser are mainly charged up by the collection of the background plasma. The change in parameters due to negative ion production are characterized by measuring the floating and plasma potential, electron temperature and negative ion density using electric probes.

  1. Mediating electrostatic binding of 1-butyl-3-methylimidazolium chloride to enzyme surfaces improves conformational stability.

    PubMed

    Nordwald, Erik M; Kaar, Joel L

    2013-08-01

    We have recently developed a general approach to improve the utility of enzymes in ionic liquids (ILs) via tuning of the ratio of enzyme-containing positive to negative surface charges. In this work, the impact of enzyme surface charge ratio on the biophysical interaction of 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) with chymotrypsin and lipase was investigated to understand this approach at the molecular level. Results of fluorescence quenching assays indicated that the extent of binding of the [BMIM] cation decreased (7- and 3.5-fold for chymotrypsin and lipase, respectively) as a function of increasing ratio of positive to negative surface charges. Conformational stability assays further showed a close correlation between thermodynamic stabilization and enzyme surface charge ratio as well as [BMIM] binding. As evidence of this correlation, succinylation and acetylation resulted in the stabilization of chymotrypsin in 10% (v/v) [BMIM][Cl] by 17.0 and 6.6 kJ/mol, respectively, while cationization destabilized chymotrypsin by 3.6 kJ/mol. Combined, these results indicate that altering the surface charge ratio mediates the organization of IL molecules, namely, [BMIM] and [Cl], around the enzymes. Preferential exclusion of [Cl], in particular, via lowering of the ratio of positive to negative surface charges, correlated with increased enzyme stability. Accordingly, these results more broadly provide insight into the mechanism of stabilization in ILs via charge modification.

  2. A threshold effect for spacecraft charging

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1983-01-01

    The borderline case between no charging and large (kV) negative potentials for eclipse charging events on geosynchronous satellites is investigated, and the dependence of this transition on a threshold energy in the ambient plasma is examined. Data from the Applied Technology Satellite 6 and P78-2 (SCATHA) show that plasma sheet fluxes must extend above 10 keV for these satellites to charge in eclipse. The threshold effect is a result of the shape of the normal secondary yield curve, in particular the high energy crossover, where the secondary yield drops below 1. It is found that a large portion of the ambient electron flux must exceed this energy for a negative current to exist.

  3. Negative Differential Conductance in Polyporphyrin Oligomers with Nonlinear Backbones.

    PubMed

    Kuang, Guowen; Chen, Shi Zhang; Yan, Linghao; Chen, Ke Qiu; Shang, Xuesong; Liu, Pei Nian; Lin, Nian

    2018-01-17

    We study negative differential conductance (NDC) effects in polyporphyrin oligomers with nonlinear backbones. Using a low-temperature scanning tunneling microscope, we selectively controlled the charge transport path in single oligomer wires. We observed robust NDC when charge passed through a T-shape junction, bistable NDC when charge passed through a 90° kink and no NDC when charge passed through a 120° kink. Aided by density functional theory with nonequilibrium Green's functions simulations, we attributed this backbone-dependent NDC to bias-modulated hybridization of the electrode states with the resonant transport molecular orbital. We argue this mechanism is generic in molecular systems, which opens a new route of designing molecular NDC devices.

  4. Coexistence of ΘI I-loop-current order with checkerboard d -wave CDW/PDW order in a hot-spot model for cuprate superconductors

    NASA Astrophysics Data System (ADS)

    de Carvalho, Vanuildo S.; Pépin, Catherine; Freire, Hermann

    2016-03-01

    We investigate the strong influence of the ΘI I-loop-current order on both unidirectional and bidirectional d -wave charge-density-wave/pair-density-wave (CDW/PDW) composite orders along axial momenta (±Q0,0 ) and (0 ,±Q0) that emerge in an effective hot-spot model departing from the three-band Emery model relevant to the phenomenology of the cuprate superconductors. This study is motivated by the compelling evidence that the ΘI I-loop-current order described by this model may explain groundbreaking experiments such as spin-polarized neutron scattering performed in these materials. Here, we demonstrate, within a saddle-point approximation, that the ΘI I-loop-current order clearly coexists with bidirectional (i.e., checkerboard) d -wave CDW and PDW orders along axial momenta, but is visibly detrimental to the unidirectional (i.e., stripe) case. This result has potentially far-reaching implications for the physics of the cuprates and agrees well with very recent x-ray experiments on YBCO that indicate that at higher dopings the CDW order has indeed a tendency to be bidirectional.

  5. Different designs of kinase-phosphatase interactions and phosphatase sequestration shapes the robustness and signal flow in the MAPK cascade

    PubMed Central

    2012-01-01

    Background The three layer mitogen activated protein kinase (MAPK) signaling cascade exhibits different designs of interactions between its kinases and phosphatases. While the sequential interactions between the three kinases of the cascade are tightly preserved, the phosphatases of the cascade, such as MKP3 and PP2A, exhibit relatively diverse interactions with their substrate kinases. Additionally, the kinases of the MAPK cascade can also sequester their phosphatases. Thus, each topologically distinct interaction design of kinases and phosphatases could exhibit unique signal processing characteristics, and the presence of phosphatase sequestration may lead to further fine tuning of the propagated signal. Results We have built four architecturally distinct types of models of the MAPK cascade, each model with identical kinase-kinase interactions but unique kinases-phosphatases interactions. Our simulations unravelled that MAPK cascade’s robustness to external perturbations is a function of nature of interaction between its kinases and phosphatases. The cascade’s output robustness was enhanced when phosphatases were sequestrated by their target kinases. We uncovered a novel implicit/hidden negative feedback loop from the phosphatase MKP3 to its upstream kinase Raf-1, in a cascade resembling the B cell MAPK cascade. Notably, strength of the feedback loop was reciprocal to the strength of phosphatases’ sequestration and stronger sequestration abolished the feedback loop completely. An experimental method to verify the presence of the feedback loop is also proposed. We further showed, when the models were activated by transient signal, memory (total time taken by the cascade output to reach its unstimulated level after removal of signal) of a cascade was determined by the specific designs of interaction among its kinases and phosphatases. Conclusions Differences in interaction designs among the kinases and phosphatases can differentially shape the robustness and signal response behaviour of the MAPK cascade and phosphatase sequestration dramatically enhances the robustness to perturbations in each of the cascade. An implicit negative feedback loop was uncovered from our analysis and we found that strength of the negative feedback loop is reciprocally related to the strength of phosphatase sequestration. Duration of output phosphorylation in response to a transient signal was also found to be determined by the individual cascade’s kinase-phosphatase interaction design. PMID:22748295

  6. Stability of nTiO2 particles and their attachment to sand: Effects of humic acid at different pH.

    PubMed

    Wu, Yang; Cheng, Tao

    2016-01-15

    The fate and transport of nano-scale or micro-scale titanium dioxide particles (nTiO2) in subsurface environments are strongly influenced by the stability of nTiO2 and their attachment to sediment grains. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively-charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand at HA concentrations that are relevant to typical groundwater conditions, so that mechanisms that control nTiO2 immobilization and transport in natural systems can be elucidated. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand are experimentally measured under a range of HA concentrations at pH5 and 9. Results show that at pH5, negatively-charged HA strongly adsorbs to positively-charged nTiO2 and Fe oxyhydroxide, which, at low HA concentrations, partially neutralizes the positive charges on nTiO2 and Fe oxyhydroxide, and therefore decreases the repulsive electrostatic forces between the surfaces, resulting in nTiO2 aggregation and attachment. At high HA concentrations, adsorbed HA reverses the surface charges of nTiO2 and Fe oxyhydroxide, and makes nTiO2 and Fe oxyhydroxide strongly negatively charged, resulting in stable nTiO2 suspension and low nTiO2 attachment. At pH9, HA, nTiO2, and Fe oxyhydroxide are all negatively charged, and HA adsorption is low and does not have a strong impact on the stability and attachment of nTiO2. Overall, this study shows that changes in surface charges of nTiO2 and Fe oxyhydroxide coating caused by HA adsorption is a key factor that influences the stability and attachment of nTiO2. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Charge-dependent flow and the search for the chiral magnetic wave in Pb-Pb collisions at s N N = 2.76 TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2016-04-08

    We report on measurements of a charge-dependent flow using a novel three-particle correlator with ALICE in Pb-Pb collisions at the CERN Large Hadron Collider (LHC), and discuss the implications for observation of local parity violation and the chiral magnetic wave (CMW) in heavy-ion collisions. Charge-dependent flow is reported for different collision centralities as a function of the event charge asymmetry. While our results are in qualitative agreement with expectations based on the CMW, the nonzero signal observed in higher harmonics correlations indicates a possible significant background contribution. We also present results on a differential correlator, where the flow of positivemore » and negative charges is reported as a function of the mean charge of the particles and their pseudorapidity separation. We argue that this differential correlator is better suited to distinguish the differences in positive and negative charges expected due to the CMW and the background effects, such as local charge conservation coupled with strong radial and anisotropic flow.« less

  8. Charge-dependent flow and the search for the chiral magnetic wave in Pb-Pb collisions at √{sN N}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira da Costa, H.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; de Souza, R. D.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yasar, C.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration

    2016-04-01

    We report on measurements of a charge-dependent flow using a novel three-particle correlator with ALICE in Pb-Pb collisions at the CERN Large Hadron Collider (LHC), and discuss the implications for observation of local parity violation and the chiral magnetic wave (CMW) in heavy-ion collisions. Charge-dependent flow is reported for different collision centralities as a function of the event charge asymmetry. While our results are in qualitative agreement with expectations based on the CMW, the nonzero signal observed in higher harmonics correlations indicates a possible significant background contribution. We also present results on a differential correlator, where the flow of positive and negative charges is reported as a function of the mean charge of the particles and their pseudorapidity separation. We argue that this differential correlator is better suited to distinguish the differences in positive and negative charges expected due to the CMW and the background effects, such as local charge conservation coupled with strong radial and anisotropic flow.

  9. Ionization Efficiency of Doubly Charged Ions Formed from Polyprotic Acids in Electrospray Negative Mode

    NASA Astrophysics Data System (ADS)

    Liigand, Piia; Kaupmees, Karl; Kruve, Anneli

    2016-07-01

    The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low p K a1 and p K a2) and to have high hydrophobicity (log P ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions.

  10. String unification scale and the hyper-charge Kac-Moody level in the non-supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Cho, Gi-Chol; Hagiwara, Kaoru

    1998-02-01

    The string theory predicts the unification of the gauge couplings and gravity. The minimal supersymmetric Standard Model, however, gives the unification scale ~2x1016 GeV which is significantly smaller than the string scale ~5x1017 GeV of the weak coupling heterotic string theory. We study the unification scale of the non-supersymmetric minimal Standard Model quantitatively at the two-loop level. We find that the unification scale should be at most ~4x1016 GeV and the desired Kac-Moody level of the hyper-charge coupling should be 1.33<~kY<~1.35.

  11. The light cycle controls the hatching rhythm in Bombyx mori via negative feedback loop of the circadian oscillator.

    PubMed

    Tao, Hui; Li, Xue; Qiu, Jian-Feng; Liu, Heng-Jiang; Zhang, Da-Yan; Chu, Feng; Sima, Yanghu; Xu, Shi-Qing

    2017-10-01

    Hatching behavior is a key target in silkworm (Bombyx mori) rearing, especially for the control of Lepidoptera pests. According to previous research, hatching rhythms appear to be controlled by a clock mechanism that restricts or "gates" hatching to a particular time. However, the underlying mechanism remains elusive. Under 12-h light:12-h dark photoperiod (LD) conditions, the transcriptional levels of the chitinase5 (Cht5) and hatching enzyme-like (Hel) genes, as well as the enzymatic activities of their gene products, oscillated in time with ambient light cycles, as did the transcriptional levels of the cryptochrome 1, cryptochrome 2, period (per), and timeless genes, which are key components of the negative feedback loop of the circadian rhythm. These changes were related to the expression profile of the ecdysteroid receptor gene and the hatching behavior of B. mori eggs. However, under continuous light or dark conditions, the hatching behavior, the expression levels of Cht5 and Hel, as well as the enzymatic activities of their gene products, were not synchronized unlike under LD conditions. In addition, immunohistochemistry experiments showed that light promoted the translocation of PER from the cytoplasm to the nucleus. In conclusion, LD cycles regulate the hatching rhythm of B. mori via negative feedback loop of the circadian oscillator. © 2017 Wiley Periodicals, Inc.

  12. Strong field gravitational lensing by a charged Galileon black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shan-Shan; Xie, Yi, E-mail: clefairy035@163.com, E-mail: yixie@nju.edu.cn

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgrmore » A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.« less

  13. Charge separation and transport of the n=2 instability in C-2 FRC plasmas

    NASA Astrophysics Data System (ADS)

    Deng, Bihe; Sun, Xuan; Tuszewski, Michel

    2012-10-01

    Charge separation is critical in the positive feedback loop for gravitational type instabilities to grow [1], such as in the case of the n=2 mode in the C-2 field reversed configuration (FRC) experiment [2]. A fast time response Langmuir probe with minimum perturbation to the plasma is inserted into the edge of the C-2 plasma to measure the plasma floating potential. With the combined plasma wobble motion and spin motion, 2-D scans of the plasma floating potential are obtained, and evidence of charge separation associated with the n=2 instability is observed. The transport due to charge separation is estimated. Charge neutralization can provide an alternative method to stabilize the n=2 mode. An experiment is proposed to test this method with two probes inserted into the plasma from two azimuthally separated ports and an external shorting circuit, to constantly neutralize the charge separation, thus suppress the growth of the n=2 mode. [4pt] [1] R.J. Goldston and P.H. Rutherford, Introduction to Plasma Physics (Institute of Physics Publishing, Bristol, 2000).[0pt] [2]. M.W. Binderbauer et al, Phys. Rev. Lett. 105, 045003 (2010).

  14. Whole body acid-base modeling revisited.

    PubMed

    Ring, Troels; Nielsen, Søren

    2017-04-01

    The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis. Copyright © 2017 the American Physiological Society.

  15. Modeling the total dust production of Enceladus from stochastic charge equilibrium and simulations

    NASA Astrophysics Data System (ADS)

    Meier, Patrick; Motschmann, Uwe; Schmidt, Jürgen; Spahn, Frank; Hill, Thomas W.; Dong, Yaxue; Jones, Geraint H.; Kriegel, Hendrik

    2015-12-01

    Negatively and positively charged nano-sized ice grains were detected in the Enceladus plume by the Cassini Plasma Spectrometer (CAPS). However, no data for uncharged grains, and thus for the total amount of dust, are available. In this paper we estimate this population of uncharged grains based on a model of stochastic charging in thermodynamic equilibrium and on the assumption of quasi-neutrality in the plasma-dust system. This estimation is improved upon by combining simulations of the dust component of the plume and simulations for the plasma environment into one self-consistent model. Calibration of this model with CAPS data provides a total dust production rate of about 12 kg s-1, including larger dust grains up to a few microns in size. We find that the fraction of charged grains dominates over that of the uncharged grains. Moreover, our model reproduces densities of both negatively and positively charged nanograins measured by Cassini CAPS. In Enceladus' plume ion densities up to ~104cm-3 are required by the self-consistent model, resulting in an electron depletion of about 50% in the plasma, because electrons are attached to the negatively charged nanograins. These ion densities correspond to effective ionization rates of about 10-7s-1, which are about two orders of magnitude higher than expected.

  16. Electrolyte effects in a model of proton discharge on charged electrodes

    NASA Astrophysics Data System (ADS)

    Wiebe, Johannes; Kravchenko, Kateryna; Spohr, Eckhard

    2015-01-01

    We report results on the influence of NaCl electrolyte dissolved in water on proton discharge reactions from aqueous solution to charged platinum electrodes. We have extended a recently developed combined proton transfer/proton discharge model on the basis of empirical valence bond theory to include NaCl solutions with several different concentrations of cations and anions, both stoichiometric (1:1) compositions and non-stoichiometric ones with an excess of cations. The latter solutions partially screen the electrostatic potential from the surface charge of the negatively charged electrode. 500-1000 trajectories of a discharging proton were integrated by molecular dynamics simulations until discharge occurred, or for at most 1.5 ns. The results show a strong dependence on ionic strength, but only a weak dependence on the screening behavior, when comparing stoichiometric and non-stoichiometric solutions. Overall, the Na+ cations exert a more dominant effect on the discharge reaction, which we argue is likely due to the very rigid arrangements of the cations on the negatively polarized electrode surface. Thus, our model predicts, for the given and very high negative surface charge densities, the fastest discharge reaction for pure water, but obviously cannot take into account the fact that such high charge densities are even more out of reach experimentally than for higher electrolyte concentrations.

  17. Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli.

    PubMed

    Pagnout, Christophe; Jomini, Stéphane; Dadhwal, Mandeep; Caillet, Céline; Thomas, Fabien; Bauda, Pascale

    2012-04-01

    The increasing production and use of titanium dioxide nanoparticles (NP-TiO(2)) has led to concerns about their possible impact on the environment. Bacteria play crucial roles in ecosystem processes and may be subject to the toxicity of these nanoparticles. In this study, we showed that at low ionic strength, the cell viability of Escherichia coli was more severely affected at pH 5.5 than at pH 7.0 and pH 9.5. At pH 5.5, nanoparticles (positively charged) strongly interacted with the bacterial cells (negatively charged) and accumulated on their surfaces. This phenomenon was observed in a much lower degree at pH 7.0 (NP-TiO(2) neutrally charged and cells negatively charged) and pH 9.5 (both NP-TiO(2) and cells negatively charged). It was also shown that the addition of electrolytes (NaCl, CaCl(2), Na(2)SO(4)) resulted in a gradual reduction of the NP-TiO(2) toxicity at pH 5.5 and an increase in this toxicity at pH 9.5, which was closely related to the reduction of the NP-TiO(2) and bacterial cell electrostatic charges. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  18. Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements.

    PubMed

    Leicht, Lennart; Eilebrecht, Benjamin; Weyer, Soren; Leonhardt, Steffen; Teichmann, Daniel

    2017-04-01

    Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectric charge generation and motion artifacts, signal and thus diagnostic quality is inferior to galvanic coupling. Active closed-loop humidification of capacitive electrodes is proposed in this work as a new concept to improve signal quality. A capacitive ECG recording system integrated into a common car seat is presented. It can regulate the micro climate at the interface of electrode and patient by actively dispensing water vapour and monitoring humidity in a closed-loop approach. As a regenerative water reservoir, silica gel is used. The system was evaluated with respect to subjective and objective ECG signal quality. Active humidification was found to have a significant positive effect in case of previously poor quality. Also, it had no diminishing effect in case of already good signal quality.

  19. Unitarity violation in noninteger dimensional Gross-Neveu-Yukawa model

    NASA Astrophysics Data System (ADS)

    Ji, Yao; Kelly, Michael

    2018-05-01

    We construct an explicit example of unitarity violation in fermionic quantum field theories in noninteger dimensions. We study the two-point correlation function of four-fermion operators. We compute the one-loop anomalous dimensions of these operators in the Gross-Neveu-Yukawa model. We find that at one-loop order, the four-fermion operators split into three classes with one class having negative norms. This implies that the theory violates unitarity, following the definition in Ref. [1].

  20. Oscillatory stimuli differentiate adapting circuit topologies

    PubMed Central

    Rahi, Sahand Jamal; Larsch, Johannes; Pecani, Kresti; Katsov, Alexander Y.; Mansouri, Nahal; Tsaneva-Atanasova, Krasimira; Sontag, Eduardo D.; Cross, Frederick R.

    2017-01-01

    Adapting pathways consist of negative feedback loops (NFLs) or incoherent feedforward loops (IFFLs), which we show can be differentiated using oscillatory stimulation: NFLs but not IFFLs generically show ‘refractory period stabilization’ or ‘period skipping’. Using these signatures and genetic rewiring we identified the circuit dominating cell cycle timing in yeast. In C. elegans AWA neurons we uncovered a Ca2+-NFL, diffcult to find by other means, especially in wild-type, intact animals. (70 words) PMID:28846089

  1. Val-407 and Ile-408 in the β5′-Loop of Pancreatic Lipase Mediate Lipase-Colipase Interactions in the Presence of Bile Salt Micelles*

    PubMed Central

    Freie, Angela Bourbon; Ferrato, Francine; Carrière, Frédéric; Lowe, Mark E.

    2013-01-01

    In a previous study, we demonstrated that the β5′-loop in the C-terminal domain of human pancreatic triglyceride lipase (hPTL) makes a major contribution in the function of hPTL (Chahinian et al. (2002) Biochemistry 41, 13725–13735). In the present study, we characterized the contribution of three residues in the β5′-loop, Val-407, Ile-408, and Leu-412, to the function of hPTL. By substituting charged residues, aspartate or lysine, in these positions, we altered the hydrophilic to lipophilic ratio of the β5′-loop. Each of the mutants was expressed, purified, and characterized for activity and binding with both monolayers and emulsions and for binding to colipase. Experiments with monolayers and with emulsions suggested that the interaction of hPTL with a phospholipid monolayer differs from the interaction of the hPTL-colipase complex with a dicaprin monolayer or a triglyceride emulsion (i.e. neutral lipids). Val-407, Ile-408, and Leu-412 make major contributions to interactions with monolayers, whereas only Val-407 and Ile-408 appear essential for activity on triglyceride emulsions in the presence of bile salt micelles. In solutions of taurodeoxycholate at micellar concentrations, a major effect of the β5′-loop mutations is to change the interaction between hPTL and colipase. These observations support a major contribution of residues in the β5′-loop in the function of hPTL and suggest that a third partner, bile salt micelles or the lipid interface or both, influence the binding of colipase and hPTL through interactions with the β5′-loop. PMID:16431912

  2. Analysis of Physicochemical and Structural Properties Determining HIV-1 Coreceptor Usage

    PubMed Central

    Bozek, Katarzyna; Lengauer, Thomas; Sierra, Saleta; Kaiser, Rolf; Domingues, Francisco S.

    2013-01-01

    The relationship of HIV tropism with disease progression and the recent development of CCR5-blocking drugs underscore the importance of monitoring virus coreceptor usage. As an alternative to costly phenotypic assays, computational methods aim at predicting virus tropism based on the sequence and structure of the V3 loop of the virus gp120 protein. Here we present a numerical descriptor of the V3 loop encoding its physicochemical and structural properties. The descriptor allows for structure-based prediction of HIV tropism and identification of properties of the V3 loop that are crucial for coreceptor usage. Use of the proposed descriptor for prediction results in a statistically significant improvement over the prediction based solely on V3 sequence with 3 percentage points improvement in AUC and 7 percentage points in sensitivity at the specificity of the 11/25 rule (95%). We additionally assessed the predictive power of the new method on clinically derived ‘bulk’ sequence data and obtained a statistically significant improvement in AUC of 3 percentage points over sequence-based prediction. Furthermore, we demonstrated the capacity of our method to predict therapy outcome by applying it to 53 samples from patients undergoing Maraviroc therapy. The analysis of structural features of the loop informative of tropism indicates the importance of two loop regions and their physicochemical properties. The regions are located on opposite strands of the loop stem and the respective features are predominantly charge-, hydrophobicity- and structure-related. These regions are in close proximity in the bound conformation of the loop potentially forming a site determinant for the coreceptor binding. The method is available via server under http://structure.bioinf.mpi-inf.mpg.de/. PMID:23555214

  3. Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids

    PubMed Central

    Jiménez-Rojo, Noemi; Sot, Jesús; Viguera, Ana R.; Collado, M. Isabel; Torrecillas, Alejandro; Gómez-Fernández, J.C.; Goñi, Félix M.; Alonso, Alicia

    2014-01-01

    Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease. PMID:24940775

  4. Bounding Extreme Spacecraft Charging in the Lunar Environment

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda N.

    2008-01-01

    Robotic and manned spacecraft from the Apollo era demonstrated that the lunar surface in daylight will charge to positive potentials of a few tens of volts because the photoelectron current dominates the charging process. In contrast, potentials of the lunar surface in darkness which were predicted to be on the order of a hundred volts negative in the Apollo era have been shown more recently to reach values of a few hundred volts negative with extremes on the order of a few kilovolts. The recent measurements of night time lunar surface potentials are based on electron beams in the Lunar Prospector Electron Reflectometer data sets interpreted as evidence for secondary electrons generated on the lunar surface accelerated through a plasma sheath from a negatively charged lunar surface. The spacecraft potential was not evaluated in these observations and therefore represents a lower limit to the magnitude of the lunar negative surface potential. This paper will describe a method for obtaining bounds on the magnitude of lunar surface potentials from spacecraft measurements in low lunar orbit based on estimates of the spacecraft potential. We first use Nascap-2k surface charging analyses to evaluate potentials of spacecraft in low lunar orbit and then include the potential drops between the ambient space environment and the spacecraft to the potential drop between the lunar surface and the ambient space environment to estimate the lunar surface potential from the satellite measurements.

  5. Limit cycles in piecewise-affine gene network models with multiple interaction loops

    NASA Astrophysics Data System (ADS)

    Farcot, Etienne; Gouzé, Jean-Luc

    2010-01-01

    In this article, we consider piecewise affine differential equations modelling gene networks. We work with arbitrary decay rates, and under a local hypothesis expressed as an alignment condition of successive focal points. The interaction graph of the system may be rather complex (multiple intricate loops of any sign, multiple thresholds, etc.). Our main result is an alternative theorem showing that if a sequence of region is periodically visited by trajectories, then under our hypotheses, there exists either a unique stable periodic solution, or the origin attracts all trajectories in this sequence of regions. This result extends greatly our previous work on a single negative feedback loop. We give several examples and simulations illustrating different cases.

  6. Surface charge effects in protein adsorption on nanodiamonds

    NASA Astrophysics Data System (ADS)

    Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids. Electronic supplementary information (ESI) available: The FTIR spectrum of nanodiamonds, QCM-D profiles of 50 nm nanodiamond adsorption on silica surfaces, QCM-D profiles of protein desorption after rinsing with water (rinsing experiment) and the full FTIR spectrum of proteins before and after adsorption on ND particles. See DOI: 10.1039/c5nr00250h

  7. Charge Induced Dynamics of Water in a Graphene–Mica Slit Pore

    PubMed Central

    2017-01-01

    We use atomic force microscopy to in situ investigate the dynamic behavior of confined water at the interface between graphene and mica. The graphene is either uncharged, negatively charged, or positively charged. At high humidity, a third water layer will intercalate between graphene and mica. When graphene is negatively charged, the interface fills faster with a complete three layer water film, compared to uncharged graphene. As charged positively, the third water layer dewets the interface, either by evaporation into the ambient or by the formation of three-dimensional droplets under the graphene, on top of the bilayer. Our experimental findings reveal novel phenomena of water at the nanoscale, which are interesting from a fundamental point of view and demonstrate the direct control over the wetting properties of the graphene/water interface. PMID:28985466

  8. Structural and Functional Studies of a Phosphatidic Acid-Binding Antifungal Plant Defensin MtDef4: Identification of an RGFRRR Motif Governing Fungal Cell Entry

    PubMed Central

    Buchko, Garry W.; Berg, Howard R.; Kaur, Jagdeep; Pandurangi, Raghu S.; Smith, Thomas J.; Shah, Dilip M.

    2013-01-01

    MtDef4 is a 47-amino acid cysteine-rich evolutionary conserved defensin from a model legume Medicago truncatula. It is an apoplast-localized plant defense protein that inhibits the growth of the ascomycetous fungal pathogen Fusarium graminearum in vitro at micromolar concentrations. Little is known about the mechanisms by which MtDef4 mediates its antifungal activity. In this study, we show that MtDef4 rapidly permeabilizes fungal plasma membrane and is internalized by the fungal cells where it accumulates in the cytoplasm. Furthermore, analysis of the structure of MtDef4 reveals the presence of a positively charged γ-core motif composed of β2 and β3 strands connected by a positively charged RGFRRR loop. Replacement of the RGFRRR sequence with AAAARR or RGFRAA abolishes the ability of MtDef4 to enter fungal cells, suggesting that the RGFRRR loop is a translocation signal required for the internalization of the protein. MtDef4 binds to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Amino acid substitutions in the RGFRRR sequence which abolish the ability of MtDef4 to enter fungal cells also impair its ability to bind PA. These findings suggest that MtDef4 is a novel antifungal plant defensin capable of entering into fungal cells and affecting intracellular targets and that these processes are mediated by the highly conserved cationic RGFRRR loop via its interaction with PA. PMID:24324798

  9. Gauge coupling unification and light exotica in string theory.

    PubMed

    Raby, Stuart; Wingerter, Akin

    2007-08-03

    In this Letter we consider the consequences for the CERN Large Hadron Collider of light vectorlike exotica with fractional electric charge. It is shown that such states are found in orbifold constructions of the heterotic string. Moreover, these exotica are consistent with gauge coupling unification at one loop, even though they do not come in complete multiplets of SU(5).

  10. Positive and negative contribution to birefringence in a family of carbonates: A Born effective charges analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Qun; Yang, Guang; Hou, Juan

    It is an important topic to investigate the birefringence and reveal the contribution from ions to birefringence because it plays an important role in nonlinear optical materials. In this paper, the birefringence of carbonates with coplanar CO{sub 3} groups were investigated using the first-principles method. The results show that the lead carbonates exhibit relative large birefringence. After detailed investigate the electronic structures, and Born effective charges, the authors find out that anisotropic electron distribution in the CO{sub 3} groups and Pb atoms give positive contribution, while the negative contribution was found from fluorine atoms, meanwhile the Ca, Mg, and Cdmore » atoms give very small contribution to birefringence. - Graphical abstract: Using the DFT and Born effective charges, the birefringence and the contribution of ions were investigated, the positive and negative contribution was found from Pb and F ions, respectively. - Highlights: • Optical properties and Born effective charges of carbonates are investigated. • Lead carbonates exhibit relative large birefringence. • Coplanar CO{sub 3} groups and Pb atoms give positive contribution. • F atoms give negative contribution. • Ca, Mg, and Cd atoms give very small contribution.« less

  11. New insights into the structural and functional involvement of the gate loop in AcrB export activity.

    PubMed

    Ababou, Abdessamad

    2018-02-01

    AcrB is a major multidrug exporter in Escherichia coli and other Gram-negative bacteria. Its gate loop, located between the proximal and the distal pockets, have been reported to play important role in the export of many antibiotics. This loop location, rigidity and interactions with substrates have led recent reports to suggest that AcrB export mechanism operates in a sequential manner. First the substrate binds the proximal pocket in the access monomer, then it moves to bind the distal pocket in the binding monomer and subsequently it is extruded in the extrusion monomer. Recently, we have demonstrated that the gate loop is not required for the binding of Erythromycin but the integrity of this loop is important for an efficient export of this substrate. However, here we show that the antibiotic susceptibilities of the same AcrB gate loop mutants for Doxorubicin were unaffected, suggesting that this loop is not required for its export, and we demonstrate that this substrate may use principally the tunnel-1, located between transmembranes 8 and 9, more often than previously reported. To further explain our findings, here we address the gate loop mutations effects on AcrB solution energetics (fold, stability, molecular dynamics) and on the in vivo efflux of Erythromycin and Doxorubicin. Finally, we discuss the efflux and the discrepancy between the structural and the functional experiments for Erythromycin in these gate loop mutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Suppression of Heating of Coronal Loops Rooted in Opposite Polarity Sunspot Umbrae

    NASA Technical Reports Server (NTRS)

    Tiwari, Sanjiv K.; Thalmann, Julia K.; Moore, Ronald L.; Panesar, Navdeep K.; Winebarger, Amy R.

    2016-01-01

    EUV observations of active region (AR) coronae reveal the presence of loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 Å images we identify many clearly discernible coronal loops that connect plage or a sunspot of one polarity to an opposite-­polarity plage region. The AIA 94 Å images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the Heliosesmic Magnetic Imager (HMI) onboard SDO. The NLFFF model, validated by comparison of calculated model field lines with observed loops in AIA 193 and 94 Å, specifies the photospheric roots of the model field lines. Some model coronal magnetic field lines arch from the dim umbral area of the positive-polarity sunspot to the dim umbral area of a negative-polarity sunspot. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.

  13. The influence of ligand charge and length on the assembly of Brome mosaic virus derived virus-like particles with magnetic core

    NASA Astrophysics Data System (ADS)

    Mieloch, Adam A.; Krecisz, Monika; Rybka, Jakub D.; Strugała, Aleksander; Krupiński, Michał; Urbanowicz, Anna; Kozak, Maciej; Skalski, Bohdan; Figlerowicz, Marek; Giersig, Michael

    2018-03-01

    Virus-like particles (VLPs) have sparked a great interest in the field of nanobiotechnology and nanomedicine. The introduction of superparamagnetic nanoparticles (SPIONs) as a core, provides potential use of VLPs in the hyperthermia therapy, MRI contrast agents and magnetically-powered delivery agents. Magnetite NPs also provide a significant improvement in terms of VLPs stability. Moreover employing viral structural proteins as self-assembling units has opened a new paths for targeted therapy, drug delivery systems, vaccines design, and many more. In many cases, the self-assembly of a virus strongly depends on electrostatic interactions between positively charged groups of the capsid proteins and negatively charged nucleic acid. This phenomenon imposes the negative net charge as a key requirement for the core nanoparticle. In our experiments, Brome mosaic virus (BMV) capsid proteins isolated from infected plants Hordeum vulgare were used. Superparamagnetic iron oxide nanoparticles (Fe3O4) with 15 nm in diameter were synthesized by thermal decomposition and functionalized with COOH-PEG-PL polymer or dihexadecylphosphate (DHP) in order to provide water solubility and negative charge required for the assembly. Nanoparticles were characterized by Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), Zeta Potential, Fourier Transformed Infrared Spectroscopy (FTIR) and Superconducting Quantum Interference Device (SQUID) magnetometry. TEM and DLS study were conducted to verify VLPs creation. This study demonstrates that the increase of negative surface charge is not a sufficient factor determining successful assembly. Additional steric interactions provided by longer ligands are crucial for the assembly of BMV SPION VLPs and may enhance the colloidal stability.

  14. The influence of PAMAM dendrimers surface groups on their interaction with porcine pepsin.

    PubMed

    Ciolkowski, Michal; Rozanek, Monika; Bryszewska, Maria; Klajnert, Barbara

    2013-10-01

    In this study the ability of three polyamidoamine (PAMAM) dendrimers with different surface charge (positive, neutral and negative) to interact with a negatively charged protein (porcine pepsin) was examined. It was shown that the dendrimer with a positively charged surface (G4 PAMAM-NH2), as well as the dendrimer with a neutral surface (G4 PAMAM-OH), were able to inhibit enzymatic activity of pepsin. It was also found that these dendrimers act as mixed partially non-competitive pepsin inhibitors. The negatively charged dendrimer (G3.5 PAMAM-COOH) was not able to inhibit the enzymatic activity of pepsin, probably due to the electrostatic repulsion between this dendrimer and the protein. No correlation between changes in enzymatic activity of pepsin and alterations in CD spectrum of the protein was observed. It indicates that the interactions between dendrimers and porcine pepsin are complex, multidirectional and not dependent only on disturbances of the secondary structure. © 2013.

  15. Comparative experimental study of gas evolution and gas consumption reactions in sealed Ni-Cd and Ni-MH cells

    NASA Astrophysics Data System (ADS)

    Cha, Chuansin; Yu, Jingxian; Zhang, Jixiao

    The behavior of the sealed Ni-Cd and Ni-MH systems are compared experimentally with regard to their ability to consume gaseous products generated during the overcharge stage of these systems. It was found that the Ni-Cd system could only consume oxygen, while the Ni-MH system possesses the additional ability to adsorb hydrogen and to catalyze the recombination reaction of hydrogen and oxygen. The internal pressure within both sealed Ni-Cd cells and sealed Ni-MH cells can be kept well under control during the charge/overcharge processes if the rate of overcharge is not too high and if there is sufficient surplus of charging capacity at the negative electrodes. However, the internal pressure can rise to dangerously high levels if the rate of overcharge is too high or there is a deficiency of the charging capacity at the negative electrodes. The various factors that may affect the surplus of charging capacity of the negative electrodes are also discussed.

  16. Deciphering the roles of outer membrane protein A extracellular loops in the pathogenesis of Escherichia coli K1 meningitis.

    PubMed

    Mittal, Rahul; Krishnan, Subramanian; Gonzalez-Gomez, Ignacio; Prasadarao, Nemani V

    2011-01-21

    Outer membrane protein A (OmpA) has been implicated as an important virulence factor in several gram-negative bacterial infections such as Escherichia coli K1, a leading cause of neonatal meningitis associated with significant mortality and morbidity. In this study, we generated E. coli K1 mutants that express OmpA in which three or four amino acids from various extracellular loops were changed to alanines, and we examined their ability to survive in several immune cells. We observed that loop regions 1 and 2 play an important role in the survival of E. coli K1 inside neutrophils and dendritic cells, and loop regions 1 and 3 are needed for survival in macrophages. Concomitantly, E. coli K1 mutants expressing loop 1 and 2 mutations were unable to cause meningitis in a newborn mouse model. Of note, mutations in loop 4 of OmpA enhance the severity of the pathogenesis by allowing the pathogen to survive better in circulation and to produce high bacteremia levels. These results demonstrate, for the first time, the roles played by different regions of extracellular loops of OmpA of E. coli K1 in the pathogenesis of meningitis and may help in designing effective preventive strategies against this deadly disease.

  17. Video, LMA and ULF observations of a negative gigantic jet in North Texas

    NASA Astrophysics Data System (ADS)

    Bruning, E. C.; Cummer, S.; Palivec, K.; Lyons, W. A.; Chmielewski, V.; MacGorman, D. R.

    2017-12-01

    On 8 September 2016 at 0125:38 UTC video of a negative gigantic jet was captured from Hawley, TX. VHF Lightning Mapping Arrays in West Texas and Oklahoma also observed the parent flash (duration of about 1 s) and, for the first time, mapped dozens of points along ascending negative leaders, lasting about 50 ms, which extended well above cloud top to about 35 km MSL altitude. A few well-located VHF sources were also detected near 50 km. Together, the video and VHF observations provide additional confirmation of the altitude at which the leader-to-streamer transition takes place in gigantic jet discharges. ULF magnetic field data from the Duke iCMC network show a current excursion associated with the onset of the upward movement of negative charge and leaders in the VHF. As the gigantic jet reached its full height, current spiked to 80 kA, followed by several hundred milliseconds of continuing current of 10-20 kA. Total charge moment change was about 6000 C km. The storm complex produced predominantly negative large charge moment change events, which is characteristic of storms that produce negative gigantic jets.

  18. Vector two-point functions in finite volume using partially quenched chiral perturbation theory at two loops

    NASA Astrophysics Data System (ADS)

    Bijnens, Johan; Relefors, Johan

    2017-12-01

    We calculate vector-vector correlation functions at two loops using partially quenched chiral perturbation theory including finite volume effects and twisted boundary conditions. We present expressions for the flavor neutral cases and the flavor charged case with equal masses. Using these expressions we give an estimate for the ratio of disconnected to connected contributions for the strange part of the electromagnetic current. We give numerical examples for the effects of partial quenching, finite volume and twisting and suggest the use of different twists to check the size of finite volume effects. The main use of this work is expected to be for lattice QCD calculations of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment.

  19. [Sorption of microorganisms by fiber materials].

    PubMed

    Nikovskaia, G N; Gordienko, A S; Globa, L I

    1986-01-01

    Candida guilliermondii and Escherichia coli cells were adsorbed on glass and basalt fibres with a similar specific surface, but with a different charge. The quantity of adsorbed microorganisms did not depend on the type and charge of a fibre surface. However, cells were adsorbed faster and more firmly on positively charged and uncharged fibres than on negatively charged fibres.

  20. S1-S3 counter charges in the voltage sensor module of a mammalian sodium channel regulate fast inactivation.

    PubMed

    Groome, James R; Winston, Vern

    2013-05-01

    The movement of positively charged S4 segments through the electric field drives the voltage-dependent gating of ion channels. Studies of prokaryotic sodium channels provide a mechanistic view of activation facilitated by electrostatic interactions of negatively charged residues in S1 and S2 segments, with positive counterparts in the S4 segment. In mammalian sodium channels, S4 segments promote domain-specific functions that include activation and several forms of inactivation. We tested the idea that S1-S3 countercharges regulate eukaryotic sodium channel functions, including fast inactivation. Using structural data provided by bacterial channels, we constructed homology models of the S1-S4 voltage sensor module (VSM) for each domain of the mammalian skeletal muscle sodium channel hNaV1.4. These show that side chains of putative countercharges in hNaV1.4 are oriented toward the positive charge complement of S4. We used mutagenesis to define the roles of conserved residues in the extracellular negative charge cluster (ENC), hydrophobic charge region (HCR), and intracellular negative charge cluster (INC). Activation was inhibited with charge-reversing VSM mutations in domains I-III. Charge reversal of ENC residues in domains III (E1051R, D1069K) and IV (E1373K, N1389K) destabilized fast inactivation by decreasing its probability, slowing entry, and accelerating recovery. Several INC mutations increased inactivation from closed states and slowed recovery. Our results extend the functional characterization of VSM countercharges to fast inactivation, and support the premise that these residues play a critical role in domain-specific gating transitions for a mammalian sodium channel.

  1. Molecular understanding of osmosis in semipermeable membranes.

    PubMed

    Raghunathan, A V; Aluru, N R

    2006-07-14

    We investigate single-file osmosis of water through a semipermeable membrane with an uncharged, a positively and a negatively charged nanopore. Molecular dynamics simulations indicate that the osmotic flux through a negatively charged pore (J_) is higher compared to the osmotic flux in a positively charged pore (J+) followed by the osmotic flux in the uncharged pore (J(0)), i.e., J_ > J+ > J(0). The molecular mechanisms governing osmosis, steady state osmosis, and the observed osmotic flux dependence on the nanopore charge are explained by computing all the molecular interactions involved and identifying the molecular interactions that play an important role during and after osmosis. This study helps in a fundamental understanding of osmosis and in the design of advanced nanoporous membranes for various applications of osmosis.

  2. Controlling the electrophoretic mobility of single-walled carbon nanotubes: a comparison of theory and experiment.

    PubMed

    Usrey, Monica L; Nair, Nitish; Agnew, Daniel E; Pina, Cesar F; Strano, Michael S

    2007-07-03

    The electrophoretic mobilities of single-walled carbon nanotubes (SWNTs) in agarose gels subjected to negatively charged covalent functionalization and noncovalent anionic surfactant adsorption are compared using a simplified hydrodynamic model. Net charges are calculated on the basis of estimated friction coefficients for cylindrical rodlike particles. The effects of functionalization with negatively charged 4-hydroxybenzene diazonium and anionic sodium cholate are quantified and compared with model predictions. The adsorption of Na+ counterions into the nonionic surfactant layer adsorbed on SWNTs (Triton-X-405) is shown to induce a positive charge and reverse the mobility under select conditions. This effect has not been identified or quantified for nanoparticle systems and may be important in the processing of these systems.

  3. The effects of vortex like distributed electron in magnetized multi-ion dusty plasmas

    NASA Astrophysics Data System (ADS)

    Haider, Md. Masum; Ferdous, Tahmina; Duha, Syed S.

    2014-09-01

    The nonlinear propagation of small but finite amplitude dust-ion-acoustic solitary waves in a magnetized, collisionless dusty plasma is investigated theoretically. It has been assumed that the electrons are trapped following the vortex-like distribution and that the negatively and positively charged ions are mobile with the presence of charge fluctuating stationary dusts, where ions mass provide the inertia and restoring forces are provided by the thermal pressure of hot electrons. A reductive perturbation method was employed to obtain a modified Korteweg-de Vries (mK-dV) equation for the first-order potential and a stationary solution is obtained. The effect of the presence of trapped electrons, negatively and positively charged ions and arbitrary charged dust grains are discussed.

  4. The Role of Nanoparticle Surface Functionality in the Disruption of Model Cell Membranes

    PubMed Central

    Moghadam, Babak Y.; Hou, Wen-Che; Corredor, Charlie; Westerhoff, Paul; Posner, Jonathan D.

    2012-01-01

    Lipid bilayers are biomembranes common to cellular life and constitute a continuous barrier between cells and their environment. Understanding the interaction of engineered nanomaterials (ENMs) with lipid bilayers is an important step toward predicting subsequent biological effects. In this study, we assess the effect of varying the surface functionality and concentration of 10 nm-diameter gold (Au) and titanium dioxide (TiO2) ENMs on the disruption of negatively charged lipid bilayer vesicles (liposomes) using a dye leakage assay. Our findings show that Au ENMs having both positive and negative surface charge induce leakage that reaches a steady state after several hours. Positively charged particles with identical surface functionality and different core composition show similar leakage effects and result in faster and greater leakage than negatively charged particles, which suggests that surface functionality, not particle core composition, is a critical factor in determining the interaction between ENMs and lipid bilayers. The results suggest that particles permanently adsorb to bilayers and that only one positively charged particle is required to disrupt a liposome and trigger leakage of its entire contents in contrast to mellitin molecules, the most widely studied membrane lytic peptide, which requires hundred of molecules to generate leakage. PMID:22921268

  5. Surface charge effects in protein adsorption on nanodiamonds.

    PubMed

    Aramesh, M; Shimoni, O; Ostrikov, K; Prawer, S; Cervenka, J

    2015-03-19

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.

  6. Unipolar memristive Switching in Bulk Negative Temperature Coefficient Thermosensitive Ceramics

    PubMed Central

    Wu, Hongya; Cai, Kunpeng; Zhou, Ji; Li, Bo; Li, Longtu

    2013-01-01

    A memristive phenomenon was observed in macroscopic bulk negative temperature coefficient nickel monoxide (NiO) ceramic material. Current-voltage characteristics of memristors, pinched hysteretic loops were systematically observed in the Ag/NiO/Ag cell. A thermistor-based model for materials with negative temperature coefficient was proposed to explain the mechanism of the experimental phenomena. Most importantly, the results demonstrate the potential for a realization of memristive systems based on macroscopic bulk materials. PMID:24255717

  7. Negative measurement sensitivity values of planar capacitive imaging probes

    NASA Astrophysics Data System (ADS)

    Yin, Xiaokang; Chen, Guoming; Li, Wei; Hutchins, David

    2014-02-01

    The measurement sensitivity distribution of planar capacitive imaging (CI) probes describes how effectively each region in the sensing area is contributing to the measured charge signal on the sensing electrode. It can be used to determine the imaging ability of a CI probe. It is found in previous work that, there are regions in the sensing area where the change of the charge output and the change of targeting physical parameter are of opposite trends. This opposite correlation implies that the measurement sensitivity values in such regions are negative. In this work, the cause of negative sensitivity is discussed. Experiments are also designed and performed so as to verify the existence of negative sensitivity and study the factors that may affect the negative sensitivity distributions.

  8. Assessment and Control of Spacecraft Charging Risks on the International Space Station

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Edeen, Marybeth; Spetch, William; Dalton, Penni; Keening, Thomas

    2003-01-01

    Electrical interactions between the F2 region ionospheric plasma and the 160V photovoltaic (PV) electrical power system on the International Space Station (ISS) can produce floating potentials (FP) on the ISS conducting structure of greater magnitude than are usually observed on spacecraft in low-Earth orbit. Flight through the geomagnetic field also causes magnetic induction charging of ISS conducting structure. Charging processes resulting from interaction of ISS with auroral electrons may also contribute to charging albeit rarely. The magnitude and frequency of occurrence of possibly hazardous charging events depends on the ISS assembly stage (six more 160V PV arrays will be added to ISS), ISS flight configuration, ISS position (latitude and longitude), and the natural variability in the ionospheric flight environment. At present, ISS is equipped with two plasma contactors designed to control ISS FP to within 40 volts of the ambient F2 plasma. The negative-polarity grounding scheme utilized in the ISS 160V power system leads, naturally, to negative values of ISS FP. A negative ISS structural FP leads to application of electrostatic fields across the dielectrics that separate conducting structure from the ambient F2 plasma, thereby enabling dielectric breakdown and arcing. Degradation of some thermal control coatings and noise in electrical systems can result. Continued review and evaluation of the putative charging hazards, as required by the ISS Program Office, revealed that ISS charging could produce a risk of electric shock to the ISS crew during extra vehicular activity. ISS charging risks are being evaluated in ongoing ISS charging measurements and analysis campaigns. The results of ISS charging measurements are combined with a recently developed detailed model of the ISS charging process and an extensive analysis of historical ionospheric variability data, to assess ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA analysis (estimated frequency of occurrence and severity of the charging hazards) are then used to select the hazard control strategy that provides the best overall safety and mission success environment for ISS and the ISS crew. This paper presents: 1) a summary of ISS spacecraft charging analysis, measurements, observations made to date, 2) plans for future ISS spacecraft charging measurement campaigns, and 3) a detailed discussion of the PRA strategy used to assess ISS spacecraft charging risks and select charging hazard control strategies

  9. Assessment and Control of International Space Station Spacecraft Charging Risks

    NASA Astrophysics Data System (ADS)

    Koontz, S.; Edeen, M.; Spetch, W.; Dalton, P.; Keeping, T.; Minow, J.

    2003-12-01

    Electrical interactions between the F2 region ionospheric plasma and the 160V photovoltaic (PV) electrical power system on the International Space Station (ISS) can produce floating potentials (FP) on ISS conducting structure of greater magnitude than are usually observed on spacecraft in low-Earth orbit. Flight through the geomagnetic field also causes magnetic induction charging of ISS conducting structure. Charging processes resulting from interaction of ISS with auroral electrons may also contribute to charging, albeit rarely. The magnitude and frequency of occurrence of possibly hazardous charging events depends on the ISS assembly stage (six more 160V PV arrays will be added to ISS), ISS flight configuration, ISS position (latitude and longitude), and the natural variability in the ionospheric flight environment. At present, ISS is equipped with two plasma contactors designed to control ISS FP to within 40 volts of the ambient F2 plasma. The negative-polarity grounding scheme utilized in the ISS 160V power system leads, naturally, to negative values of ISS FP. A negative ISS structural FP leads to application of electrostatic fields across the dielectrics that separate conducting structure from the ambient F2 plasma, thereby enabling dielectric breakdown and arcing. Degradation of some thermal control coatings and noise in electrical systems can result. Continued review and evaluation of the putative charging hazards, as required by the ISS Program Office, revealed that ISS charging could produce a risk of electric shock to the ISS crew during extra vehicular activity. ISS charging risks are being evaluated in ongoing ISS charging measurements and analysis campaigns. The results of ISS charging measurements are combined with a recently developed detailed model of the ISS charging process and an extensive analysis of historical ionospheric variability data, to assess ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA analysis (estimated frequency of occurrence and severity of the charging hazards) are then used to select the hazard control strategy that provides the best overall safety and mission success environment for ISS and the ISS crew. This paper presents: 1) a summary of ISS spacecraft charging analysis, measurements, observations made to date, 2) plans for future ISS spacecraft charging measurement campaigns, and 3) a detailed discussion of the PRA strategy used to assess ISS spacecraft charging risks and select charging hazard control strategies.

  10. Protein charge ladders reveal that the net charge of ALS-linked superoxide dismutase can be different in sign and magnitude from predicted values

    PubMed Central

    Shi, Yunhua; Abdolvahabi, Alireza; Shaw, Bryan F

    2014-01-01

    This article utilized “protein charge ladders”—chemical derivatives of proteins with similar structure, but systematically altered net charge—to quantify how missense mutations that cause amyotrophic lateral sclerosis (ALS) affect the net negative charge (Z) of superoxide dismutase-1 (SOD1) as a function of subcellular pH and Zn2+ stoichiometry. Capillary electrophoresis revealed that the net charge of ALS-variant SOD1 can be different in sign and in magnitude—by up to 7.4 units per dimer at lysosomal pH—than values predicted from standard pKa values of amino acids and formal oxidation states of metal ions. At pH 7.4, the G85R, D90A, and G93R substitutions diminished the net negative charge of dimeric SOD1 by up to +2.29 units more than predicted; E100K lowered net charge by less than predicted. The binding of a single Zn2+ to mutant SOD1 lowered its net charge by an additional +2.33 ± 0.01 to +3.18 ± 0.02 units, however, each protein regulated net charge when binding a second, third, or fourth Zn2+ (ΔZ < 0.44 ± 0.07 per additional Zn2+). Both metalated and apo-SOD1 regulated net charge across subcellular pH, without inverting from negative to positive at the theoretical pI. Differential scanning calorimetry, hydrogen-deuterium exchange, and inductively coupled plasma mass spectrometry confirmed that the structure, stability, and metal content of mutant proteins were not significantly affected by lysine acetylation. Measured values of net charge should be used when correlating the biophysical properties of a specific ALS-variant SOD1 protein with its observed aggregation propensity or clinical phenotype. PMID:25052939

  11. Frequency-Dependent Capacitance of Hydrophobic Membranes Containing Fixed Negative Charges

    PubMed Central

    Ilani, Asher

    1968-01-01

    Filters containing fixed negative charges were saturated with hydrophobic solvent and interposed between aqueous solutions. The capacitance of such membranes was measured in the frequency range of 0.05-30 kc. The capacitance increased with decrease in frequency. The frequency dependence of the capacitance was sensitive to nature of the cation present and to salt concentration in the aqueous solution. It is suggested that variation of membrane resistivity in the space charge region of the membrane is responsible for this phenomenon. Possible effects of the potential and counterion concentration profiles at the membrane-water interface are discussed. PMID:5699796

  12. Connected, disconnected and strange quark contributions to HVP

    NASA Astrophysics Data System (ADS)

    Bijnens, Johan; Relefors, Johan

    2016-11-01

    We calculate all neutral vector two-point functions in Chiral Perturbation Theory (ChPT) to two-loop order and use these to estimate the ratio of disconnected to connected contributions as well as contributions involving the strange quark. We extend the ratio of -1/10 derived earlier in two flavour ChPT at one-loop order to a large part of the higher order contributions and discuss corrections to it. Our final estimate of the ratio disconnected to connected is negative and a few % in magnitude.

  13. Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles.

    PubMed

    Guldi, Dirk M; Zilbermann, Israel; Anderson, Greg; Kotov, Nicholas A; Tagmatarchis, Nikos; Prato, Maurizio

    2004-11-10

    Novel organic (positively charged fullerene)-inorganic (negatively charged CdTe nanoparticle) nanoensembles were devised through electrostatic interactions and probed as versatile donor-acceptor hybrids. Photoirradiation of their homogeneous solutions, containing the electrostatically packed components, let to very long-lived (1.3 ms) charge separated states.

  14. Nanocomplexes of Photolabile Polyelectrolyte and Upconversion Nanoparticles for Near-Infrared Light-Triggered Payload Release.

    PubMed

    Xiang, Jun; Ge, Feijie; Yu, Bing; Yan, Qiang; Shi, Feng; Zhao, Yue

    2018-06-07

    A new approach to encapsulating charged cargo molecules into a nanovector and subsequently using near-infrared (NIR) light to trigger the release is demonstrated. NIR light-responsive nanovector was prepared through electrostatic interaction-driven complexation between negatively charged silica-coated upconversion nanoparticles (UCNP@silica, 87 nm hydrodynamic diameter, polydispersity index ∼0.05) and a positively charged UV-labile polyelectrolyte bearing pendants of poly(ethylene glycol) and o-nitrobenzyl side groups; whereas charged fluorescein (FLU) was loaded through a co-complexation process. By controlling the amount of polyelectrolyte, UCNP@silica can be covered by the polymer, whereas remaining dispersed in aqueous solution. Under 980 nm laser excitation, UV light emitted by UCNP is absorbed by photolytic side groups within polyelectrolyte, which results in cleavage of o-nitrobenzyl groups and formation of carboxylic acid groups. Such NIR light-induced partial reversal of positive charge to negative charge on the polyelectrolyte layer disrupts the equilibrium among UCNP@silica, polyelectrolyte, and FLU and, consequently, leads to release of FLU molecules.

  15. Numerical modelling of needle-grid electrodes for negative surface corona charging system

    NASA Astrophysics Data System (ADS)

    Zhuang, Y.; Chen, G.; Rotaru, M.

    2011-08-01

    Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.

  16. Effect of surface charge density on the affinity of oxide nanoparticles for the vapor-water interface.

    PubMed

    Brown, Matthew A; Duyckaerts, Nicolas; Redondo, Amaia Beloqui; Jordan, Inga; Nolting, Frithjof; Kleibert, Armin; Ammann, Markus; Wörner, Hans Jakob; van Bokhoven, Jeroen A; Abbas, Zareen

    2013-04-23

    Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements. We compare the results and interpretation of the in-situ XPS and corrected Debye-Hückel theory for surface complexation calculations with traditional surface tension measurements. Our results show that controlling the surface charge density of colloid particles can regulate their adsorption to the interface between two dielectrics.

  17. Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy.

    PubMed

    Chen, Xiaoyun; Wang, Jie; Paszti, Zoltan; Wang, Fulin; Schrauben, Joel N; Tarabara, Volodymyr V; Schmaier, Alvin H; Chen, Zhan

    2007-05-01

    Electrostatic interactions between negatively charged polymer surfaces and factor XII (FXII), a blood coagulation factor, were investigated by sum frequency generation (SFG) vibrational spectroscopy, supplemented by several analytical techniques including attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), quartz crystal microbalance (QCM), zeta-potential measurement, and chromogenic assay. A series of sulfonated polystyrenes (sPS) with different sulfonation levels were synthesized as model surfaces with different surface charge densities. SFG spectra collected from FXII adsorbed onto PS and sPS surfaces with different surface charge densities showed remarkable differences in spectral features and especially in spectral intensity. Chromogenic assay experiments showed that highly charged sPS surfaces induced FXII autoactivation. ATR-FTIR and QCM results indicated that adsorption amounts on the PS and sPS surfaces were similar even though the surface charge densities were different. No significant conformational change was observed from FXII adsorbed onto surfaces studied. Using theoretical calculations, the possible contribution from the third-order nonlinear optical effect induced by the surface electric field was evaluated, and it was found to be unable to yield the SFG signal enhancement observed. Therefore it was concluded that the adsorbed FXII orientation and ordering were the main reasons for the remarkable SFG amide I signal increase on sPS surfaces. These investigations indicate that negatively charged surfaces facilitate or induce FXII autoactivation on the molecular level by imposing specific orientation and ordering on the adsorbed protein molecules.

  18. Interactions and diffusion in fine-stranded β-lactoglobulin gels determined via FRAP and binding.

    PubMed

    Schuster, Erich; Hermansson, Anne-Marie; Ohgren, Camilla; Rudemo, Mats; Lorén, Niklas

    2014-01-07

    The effects of electrostatic interactions and obstruction by the microstructure on probe diffusion were determined in positively charged hydrogels. Probe diffusion in fine-stranded gels and solutions of β-lactoglobulin at pH 3.5 was determined using fluorescence recovery after photobleaching (FRAP) and binding, which is widely used in biophysics. The microstructures of the β-lactoglobulin gels were characterized using transmission electron microscopy. The effects of probe size and charge (negatively charged Na2-fluorescein (376Da) and weakly anionic 70kDa FITC-dextran), probe concentration (50 to 200 ppm), and β-lactoglobulin concentration (9% to 12% w/w) on the diffusion properties and the electrostatic interaction between the negatively charged probes and the positively charged gels or solutions were evaluated. The results show that the diffusion of negatively charged Na2-fluorescein is strongly influenced by electrostatic interactions in the positively charged β-lactoglobulin systems. A linear relationship between the pseudo-on binding rate constant and the β-lactoglobulin concentration for three different probe concentrations was found. This validates an important assumption of existing biophysical FRAP and binding models, namely that the pseudo-on binding rate constant equals the product of the molecular binding rate constant and the concentration of the free binding sites. Indicators were established to clarify whether FRAP data should be analyzed using a binding-diffusion model or an obstruction-diffusion model. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Correlation between octanol/water and liposome/water distribution coefficients and drug absorption of a set of pharmacologically active compounds.

    PubMed

    Esteves, Freddy; Moutinho, Carla; Matos, Carla

    2013-06-01

    Absorption and consequent therapeutic action are key issues in the development of new drugs by the pharmaceutical industry. In this sense, different models can be used to simulate biological membranes to predict the absorption of a drug. This work compared the octanol/water and the liposome/water models. The parameters used to relate the two models were the distribution coefficients between liposomes and water and octanol and water and the fraction of drug orally absorbed. For this study, 66 drugs were collected from literature sources and divided into four groups according to charge and ionization degree: neutral; positively charged; negatively charged; and partially ionized/zwitterionic. The results show a satisfactory linear correlation between the octanol and liposome systems for the neutral (R²= 0.9324) and partially ionized compounds (R²= 0.9367), contrary to the positive (R²= 0.4684) and negatively charged compounds (R²= 0.1487). In the case of neutral drugs, results were similar in both models because of the high fraction orally absorbed. However, for the charged drugs (positively, negatively, and partially ionized/zwitterionic), the liposomal model has a more-appropriate correlation with absorption than the octanol model. These results show that the neutral compounds only interact with membranes through hydrophobic bonds, whereas charged drugs favor electrostatic interactions established with the liposomes. With this work, we concluded that liposomes may be a more-appropriate biomembrane model than octanol for charged compounds.

  20. Carbon Dioxide Removal by Salty Aerosols

    NASA Astrophysics Data System (ADS)

    Gokturk, H.

    2016-12-01

    Aerosols consisting of salt ions dissolved in water are observed in nature as sea spray particles generated by breaking waves. Such aerosols can be also generated artificially by spraying seawater to the atmosphere to create clouds, which was suggested as a method of solar radiation management (SRM). Salty aerosols can be utilized not only for SRM, but also for carbon dioxide removal from the atmosphere, if salt ions carrying charges -2 or more negative are added to the seawater. CO2 is a very stable molecule where carbon to oxygen double bond has a bond strength of 8.3 eV (190 kcal/mol). Therefore the approach chosen here to modify CO2 is to further oxidize it to CO3. Quantum mechanical calculations indicate that CO2 reacts readily with hydroxyl minus ion (OH-) or oxygen double minus ion (O-) to form HCO3- or CO3-, respectively. What is studied in this paper is the utilization of hydrated negative salt ions to create OH- and possibly even O-. The negative ions chosen are chlorine minus ion (Cl-), sulfate double minus ion (SO4-), phosphate triple minus ion (PO4--) and silicate quadruple minus ion (SiO4--). The former two ions exist in seawater, but the latter two ions do not, though they are available as part of water soluble salts such as potassium phosphate. Using quantum mechanical calculations, following reactions were investigated: R1: (Cl-) + H2O => HCl + (OH-), R2: (SO4-) + H2O => (HSO4-) + (OH-), R3: (PO4--) + H2O => (HPO4-) + (OH-), R4: (SiO4--) + H2O => (HSiO4--) + (OH-), R5: (HPO4-) + H2O => (H2PO4-) + (OH-), R6: (HSiO4--) + H2O => (H2SiO4-) + (OH-), R7: (H2SiO4-) + H2O => (H3SiO4-) + (OH-), R8: (SiO4--) + H2O => (H2SiO4-) + (O-). Results indicate that singly charged negative salt ions, such as Cl- in R1, cannot create OH-. Doubly charged negative salt ions, such as SO4- in R2, can create OH-, though the amount of SO4- in seawater is relatively small. Triply or quadruply charged negative ions are even more favorable than doubly charged ions in creating OH- (R3, R4, R6). Quadruply charged negative ions can also create O- (R8), however in practice O- is likely to react with other water molecules to create more OH-. In conclusion, seawater fortified with highly charged negative salt ions and sprayed into the atmosphere has the potential to create aerosols containing OH- which can react with the CO2 and modify it to a carbonate.

Top