Science.gov

Sample records for negatively charged molecules

  1. Astronomers Discover First Negatively-charged Molecule in Space

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Cambridge, MA - Astronomers have discovered the first negatively charged molecule in space, identifying it from radio signals that were a mystery until now. While about 130 neutral and 14 positively charged molecules are known to exist in interstellar space, this is the first negative molecule, or anion, to be found. "We've spotted a rare and exotic species, like the white tiger of space," said astronomer Michael McCarthy of the Harvard-Smithsonian Center for Astrophysics (CfA). By learning more about the rich broth of chemicals found in interstellar space, astronomers hope to explain how the young Earth converted these basic ingredients into the essential chemicals for life. This new finding helps to advance scientists' understanding of the chemistry of the interstellar medium, and hence the birthplaces of planets. McCarthy worked with CfA colleagues Carl Gottlieb, Harshal Gupta (also from the Univ. of Texas), and Patrick Thaddeus to identify the molecular anion known as C6H-: a linear chain of six carbon atoms with one hydrogen atom at the end and an "extra" electron. Such molecules were thought to be extremely rare because ultraviolet light that suffuses space easily knocks electrons off molecules. The large size of C6H-, larger than most neutral and all positive molecules known in space, may increase its stability in the harsh cosmic environment. "The discovery of C6H- resolves a long-standing enigma in astrochemistry: the apparent lack of negatively charged molecules in space," stated Thaddeus. The team first conducted laboratory experiments to determine exactly what radio frequencies to use in their search. Then, they used the National Science Foundation's Robert C. Byrd Green Bank Telescope to hunt for C6H- in celestial objects. In particular, they targeted locations in which previous searches had spotted unidentified radio signals at the appropriate frequencies. They found C6H- in two very different locations-a shell of gas surrounding the evolved red giant

  2. Large negatively charged organic host molecules as inhibitors of endonuclease enzymes.

    PubMed

    Tauran, Yannick; Anjard, Christophe; Kim, Beomjoon; Rhimi, Moez; Coleman, Anthony W

    2014-10-01

    Three large negatively charged organic host molecules; β-cyclodextrin sulphate, para-sulphonato-calix[6]arene and para-sulphonato-calix[8]arene have been shown to be effective inhibitors of endonuclease in the low micromolar range, additionally para-sulphonato-calix[8]arene is a partial inhibitor of rhDNase I.

  3. Increasing the Net Negative Charge by Replacement of DOTA Chelator with DOTAGA Improves the Biodistribution of Radiolabeled Second-Generation Synthetic Affibody Molecules.

    PubMed

    Westerlund, Kristina; Honarvar, Hadis; Norrström, Emily; Strand, Joanna; Mitran, Bogdan; Orlova, Anna; Eriksson Karlström, Amelie; Tolmachev, Vladimir

    2016-05-01

    A promising strategy to enable patient stratification for targeted therapies is to monitor the target expression in a tumor by radionuclide molecular imaging. Affibody molecules (7 kDa) are nonimmunoglobulin scaffold proteins with a 25-fold smaller size than intact antibodies. They have shown an apparent potential as molecular imaging probes both in preclinical and clinical studies. Earlier, we found that hepatic uptake can be reduced by the incorporation of negatively charged purification tags at the N-terminus of Affibody molecules. We hypothesized that liver uptake might similarly be reduced by positioning the chelator at the N-terminus, where the chelator-radionuclide complex will provide negative charges. To test this hypothesis, a second generation synthetic anti-HER2 ZHER2:2891 Affibody molecule was synthesized and labeled with (111)In and (68)Ga using DOTAGA and DOTA chelators. The chelators were manually coupled to the N-terminus of ZHER2:2891 forming an amide bond. Labeling DOTAGA-ZHER2:2891 and DOTA-ZHER2:2891 with (68)Ga and (111)In resulted in stable radioconjugates. The tumor-targeting and biodistribution properties of the (111)In- and (68)Ga-labeled conjugates were compared in SKOV-3 tumor-bearing nude mice at 2 h postinjection. The HER2-specific binding of the radioconjugates was verified both in vitro and in vivo. Using the DOTAGA chelator gave significantly lower radioactivity in liver and blood for both radionuclides. The (111)In-labeled conjugates showed more rapid blood clearance than the (68)Ga-labeled conjugates. The most pronounced influence of the chelators was found when they were labeled with (68)Ga. The DOTAGA chelator gave significantly higher tumor-to-blood (61 ± 6 vs 23 ± 5, p < 0.05) and tumor-to-liver (10.4 ± 0.6 vs 4.5 ± 0.5, p < 0.05) ratios than the DOTA chelator. This study demonstrated that chelators may be used to alter the uptake of Affibody molecules, and most likely other scaffold-based imaging probes, for improvement

  4. Electrokinetic concentration of charged molecules

    DOEpatents

    Singh, Anup K.; Neyer, David W.; Schoeniger, Joseph S.; Garguilo, Michael G.

    2002-01-01

    A method for separating and concentrating charged species from uncharged or neutral species regardless of size differential. The method uses reversible electric field induced retention of charged species, that can include molecules and molecular aggregates such as dimers, polymers, multimers, colloids, micelles, and liposomes, in volumes and on surfaces of porous materials. The retained charged species are subsequently quantitatively removed from the porous material by a pressure driven flow that passes through the retention volume and is independent of direction thus, a multi-directional flow field is not required. Uncharged species pass through the system unimpeded thus effecting a complete separation of charged and uncharged species and making possible concentration factors greater than 1000-fold.

  5. Arabinogalactan proteins are incorporated in negatively charged coffee brew melanoidins.

    PubMed

    Bekedam, E Koen; De Laat, Marieke P F C; Schols, Henk A; Van Boekel, Martinus A J S; Smit, Gerrit

    2007-02-01

    The charge properties of melanoidins in high molecular weight (HMw) coffee brew fractions, isolated by diafiltration and membrane dialysis, were studied. Ion exchange chromatography experiments with the HMw fractions showed that coffee brew melanoidins were negatively charged whereas these molecules did not expose any positive charge at the pH of coffee brew. Fractions with different ionic charges were isolated and subsequently characterized by means of the specific extinction coefficient (K(mix 405nm)), sugar composition, phenolic group content, nitrogen content, and the arabinogalactan protein (AGP) specific Yariv gel-diffusion assay. The isolated fractions were different in composition and AGP was found to be present in one of the HMw fractions. The AGP accounted for 6% of the coffee brew dry matter and had a moderate negative charge, probably caused by the presence of uronic acids. As the fraction that precipitated with Yariv was brown (K(mix 405nm) = 1.2), compared to a white color in the green bean, it was concluded that these AGPs had undergone Maillard reaction resulting in an AGP-melanoidin complex. The presence of mannose (presumably from galactomannan) indicates the incorporation of galactomannans in the AGP-melanoidin complex. As the uronic acid content in the more negatively charged melanoidin-rich, AGP-poor HMw fractions decreased, it was hypothesized that acidic groups are formed or incorporated during melanoidin formation. PMID:17263472

  6. Arabinogalactan proteins are incorporated in negatively charged coffee brew melanoidins.

    PubMed

    Bekedam, E Koen; De Laat, Marieke P F C; Schols, Henk A; Van Boekel, Martinus A J S; Smit, Gerrit

    2007-02-01

    The charge properties of melanoidins in high molecular weight (HMw) coffee brew fractions, isolated by diafiltration and membrane dialysis, were studied. Ion exchange chromatography experiments with the HMw fractions showed that coffee brew melanoidins were negatively charged whereas these molecules did not expose any positive charge at the pH of coffee brew. Fractions with different ionic charges were isolated and subsequently characterized by means of the specific extinction coefficient (K(mix 405nm)), sugar composition, phenolic group content, nitrogen content, and the arabinogalactan protein (AGP) specific Yariv gel-diffusion assay. The isolated fractions were different in composition and AGP was found to be present in one of the HMw fractions. The AGP accounted for 6% of the coffee brew dry matter and had a moderate negative charge, probably caused by the presence of uronic acids. As the fraction that precipitated with Yariv was brown (K(mix 405nm) = 1.2), compared to a white color in the green bean, it was concluded that these AGPs had undergone Maillard reaction resulting in an AGP-melanoidin complex. The presence of mannose (presumably from galactomannan) indicates the incorporation of galactomannans in the AGP-melanoidin complex. As the uronic acid content in the more negatively charged melanoidin-rich, AGP-poor HMw fractions decreased, it was hypothesized that acidic groups are formed or incorporated during melanoidin formation.

  7. Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids

    PubMed Central

    Jiménez-Rojo, Noemi; Sot, Jesús; Viguera, Ana R.; Collado, M. Isabel; Torrecillas, Alejandro; Gómez-Fernández, J.C.; Goñi, Félix M.; Alonso, Alicia

    2014-01-01

    Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease. PMID:24940775

  8. Laboratory Infrared Spectroscopy of Gaseous Negatively Charged Polyaromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Gao, Juehan; Berden, Giel; Oomens, Jos

    2014-06-01

    Based largely on infrared spectroscopic evidence, polycyclic aromatic hydrocarbon (PAH) molecules are now widely accepted to occur abundantly in the interstellar medium. Laboratory infrared spectra have been obtained for a large variety of neutral and cationic PAHs, but data for anionic PAHs are scarce. Nonetheless, in regions with relatively high electron densities and low UV photon fluxes, PAHs have been suggested to occur predominantly as negatively charged ions (anions), having substantial influence on cloud chemistry. While some matrix spectra have been reported for radical anion PAHs, no data is available for even-electron anions, which are more stable against electron detachment. Here we present the first laboratory infrared spectra of deprotonated PAHs ([PAH-H]-) in the wavelength ranges between 6 and 16 μm and around 3 μm. Wavelength-dependent infrared multiple-photon electron detachment is employed to obtain spectra for deprotonated naphthalene, anthracene, and pyrene in the gas phase. Spectra are compared with theoretical spectra computed at the density functional theory level. We show that the relative band intensities in different ranges of the IR spectrum deviate significantly from those of neutral and positively charged PAHs, and moreover from those of radical anion PAHs. These relative band intensities are, however, well reproduced by theory. An analysis of the frontier molecular orbitals of the even- and odd-electron anions reveals a high degree of charge localization in the deprotonated systems, qualitatively explaining the observed differences and suggesting unusually high electric dipole moments for this class of PAH molecules.

  9. Iodide uptake by negatively charged clay interlayers?

    PubMed

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species.

  10. Micro injector sample delivery system for charged molecules

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    1999-11-09

    A micro injector sample delivery system for charged molecules. The injector is used for collecting and delivering controlled amounts of charged molecule samples for subsequent analysis. The injector delivery system can be scaled to large numbers (>96) for sample delivery to massively parallel high throughput analysis systems. The essence of the injector system is an electric field controllable loading tip including a section of porous material. By applying the appropriate polarity bias potential to the injector tip, charged molecules will migrate into porous material, and by reversing the polarity bias potential the molecules are ejected or forced away from the tip. The invention has application for uptake of charged biological molecules (e.g. proteins, nucleic acids, polymers, etc.) for delivery to analytical systems, and can be used in automated sample delivery systems.

  11. Laboratory infrared spectroscopy of gaseous negatively charged polyaromatic hydrocarbons

    SciTech Connect

    Gao, Juehan; Berden, Giel; Oomens, Jos

    2014-06-01

    Based largely on infrared spectroscopic evidence, polycyclic aromatic hydrocarbon (PAH) molecules are now widely accepted to occur abundantly in the interstellar medium. Laboratory infrared spectra have been obtained for a large variety of neutral and cationic PAHs, but data for anionic PAHs are scarce. Nonetheless, in regions with relatively high electron densities and low UV photon fluxes, PAHs have been suggested to occur predominantly as negatively charged ions (anions), having substantial influence on cloud chemistry. While some matrix spectra have been reported for radical anion PAHs, no data is available for even-electron anions, which are more stable against electron detachment. Here we present the first laboratory infrared spectra of deprotonated PAHs ([PAH-H]{sup –}) in the wavelength ranges between 6 and 16 μm and around 3 μm. Wavelength-dependent infrared multiple-photon electron detachment is employed to obtain spectra for deprotonated naphthalene, anthracene, and pyrene in the gas phase. Spectra are compared with theoretical spectra computed at the density functional theory level. We show that the relative band intensities in different ranges of the IR spectrum deviate significantly from those of neutral and positively charged PAHs, and moreover from those of radical anion PAHs. These relative band intensities are, however, well reproduced by theory. An analysis of the frontier molecular orbitals of the even- and odd-electron anions reveals a high degree of charge localization in the deprotonated systems, qualitatively explaining the observed differences and suggesting unusually high electric dipole moments for this class of PAH molecules.

  12. Positively charged polyethylenimines enhance nasal absorption of the negatively charged drug, low molecular weight heparin.

    PubMed

    Yang, Tianzhi; Hussain, Alamdar; Bai, Shuhua; Khalil, Ikramy A; Harashima, Hideyoshi; Ahsan, Fakhrul

    2006-10-27

    This study tests the hypothesis that positively charged polyethylenimines (PEIs) enhance nasal absorption of low molecular weight heparin (LMWH) by reducing the negative surface charge of the drug molecule. Physical interactions between PEIs and LMWH were studied by Fourier transform infrared (FTIR) spectroscopy, particle size analysis, conductivity measurements, zeta potential analysis, and azure A assay. The efficacy of PEIs in enhancing nasal absorption of LMWH was studied by administering LMWH formulated with PEI into the nose of anesthetized rats and monitoring drug absorption by measuring plasma anti-factor Xa activity. The metabolic stability of LMWH was evaluated by incubating the drug in rat nasal mucosal homogenates. FTIR spectra of the LMWH-PEI formulation showed a shift in peak position compared to LMWH or PEI alone. Decreases in conductivity, zeta potential and the amount of free LMWH in the PEI-LMWH formulation, as revealed by azure A assay, suggest that PEIs possibly neutralize the negative surface charge of LMWH. The efficacy of PEI in enhancing the bioavailability of nasally administered LMWH can be ranked as PEI-1000 kDa>or=PEI-750 kDa>PEI-25 kDa. When PEI-1000 kDa was used at a concentration of 0.25%, there was a 4-fold increase in both the absolute and relative bioavailabilities of LMWH compared to the control formulation. Overall, these results indicate that polyethylenimines can be used as potential carriers for nasally administered LMWHs. PMID:17023085

  13. Contactless measurements of charge migration within single molecules

    SciTech Connect

    Nagaya, Kiyonobu; Iwayama, Hiroshi; Sugishima, Akinori; Ohmasa, Yoshinori; Yao, Makoto

    2010-06-07

    Contactless measurements of charge migration were carried out for three pi-conjugated molecules in each of which a bromine atom and an oxygen atom are located on the opposite sides of the aromatic ring. A core hole was generated selectively in the Br atom by x-ray absorption, followed by the Auger cascade, and the subsequent charge migration within the molecule was examined by detecting an O{sup +} ion by means of the coincidence momentum imaging measurements.

  14. Metal oxide charge transport material doped with organic molecules

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  15. Interfacial charge transfer absorption: Application to metal molecule assemblies

    NASA Astrophysics Data System (ADS)

    Creutz, Carol; Brunschwig, Bruce S.; Sutin, Norman

    2006-05-01

    Optically induced charge transfer between adsorbed molecules and a metal electrode was predicted by Hush to lead to new electronic absorption features, but has been only rarely observed experimentally. Interfacial charge transfer absorption (IFCTA) provides information concerning the barriers to charge transfer between molecules and the metal/semiconductor and the magnitude of the electronic coupling and could thus provide a powerful tool for understanding interfacial charge-transfer kinetics. Here, we utilize a previously published model [C. Creutz, B.S. Brunschwig, N. Sutin, J. Phys. Chem. B 109 (2005) 10251] to predict IFCTA spectra of metal-molecule assemblies and compare the literature observations to these predictions. We conclude that, in general, the electronic coupling between molecular adsorbates and the metal levels is so small that IFCTA is not detectable. However, few experiments designed to detect IFCTA have been done. We suggest approaches to optimizing the conditions for observing the process.

  16. Large negative differential conductance in single-molecule break junctions

    NASA Astrophysics Data System (ADS)

    Perrin, Mickael L.; Frisenda, Riccardo; Koole, Max; Seldenthuis, Johannes S.; Gil, Jose A. Celis; Valkenier, Hennie; Hummelen, Jan C.; Renaud, Nicolas; Grozema, Ferdinand C.; Thijssen, Joseph M.; Dulić, Diana; van der Zant, Herre S. J.

    2014-10-01

    Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks. To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport is mainly determined by the alignment of the molecular orbital levels with respect to the Fermi energies of the electrodes and the electronic coupling with those electrodes. Particularly appealing exceptions include molecules in which two moieties are twisted with respect to each other and molecules in which quantum interference effects are possible. Here, we report the experimental observation of pronounced negative differential conductance in the current-voltage characteristics of a single molecule in break junctions. The molecule of interest consists of two conjugated arms, connected by a non-conjugated segment, resulting in two coupled sites. A voltage applied across the molecule pulls the energy of the sites apart, suppressing resonant transport through the molecule and causing the current to decrease. A generic theoretical model based on a two-site molecular orbital structure captures the experimental findings well, as confirmed by density functional theory with non-equilibrium Green's functions calculations that include the effect of the bias. Our results point towards a conductance mechanism mediated by the intrinsic molecular orbitals alignment of the molecule.

  17. Is the negative glow plasma of a direct current glow discharge negatively charged?

    SciTech Connect

    Bogdanov, E. A.; Saifutdinov, A. I.; Demidov, V. I.; Kudryavtsev, A. A.

    2015-02-15

    A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculation of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge.

  18. Abnormal polarity of thunderclouds grown from negatively charged air.

    PubMed

    Moore, C B; Vonnegut, B; Rolan, T D; Cobb, J W; Holden, D N; Hignight, R T; McWilliams, S M; Cadwell, G W

    1986-09-26

    Experiments were carried out in New Mexico to determine whether the electrification processes that lead to the formation of lightning in clouds are influenced by the polarity of the charges in the air from which the clouds grow. The normal, positive space charge in the sub-cloud air was reversed by negative charge released from an electrified wire, suspended across a 2-kilometer-wide canyon. On more than four occasions when the clouds over the wire grew and became electrified, they were of abnormal polarity with dominant positive charges instead of the usual negative charges in the lower part of the cloud. The formation of these abnormally electrified clouds suggests both that the electrification process in thunderclouds can be initiated and that its polarity may be determined by the small charges that are present in the atmosphere.

  19. Electrostatic plasma lens for focusing negatively charged particle beams.

    PubMed

    Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M

    2012-02-01

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  20. Specific formation of negative ions from leucine and isoleucine molecules

    NASA Astrophysics Data System (ADS)

    Papp, Peter; Shchukin, Pavel; Matejčík, Štefan

    2010-01-01

    Dissociative electron attachment (DEA) to gas phase leucine (Leu) and isoleucine (Ile) molecules was studied using experimental and quantum-chemical methods. The relative partial cross sections for DEA have been measured using crossed electron/molecular beams technique. Supporting ab initio calculations of the structure, energies of neutral molecules, fragments, and negative ions have been carried out at G3MP2 and B3LYP levels in order to interpret the experimental data. Leu and Ile exhibit several common features. The negative ionic fragments from both molecules are formed in the electron energy range from 0 to approximately 14 eV via three resonances (1.2, 5.5, and 8 eV). The relative partial cross sections for DEA Leu and Ile are very similar. The dominant negative ions formed were closed shell negative ions (M-H)- (m/z=130) formed preferentially via low electron energy resonance of 1.23 eV. Additional negative ions with m/z=115, 114, 113, 112, 84, 82, 74, 45, 26, and 17 have been detected.

  1. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids.

    PubMed

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J

    2015-01-21

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed.

  2. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  3. X-ray emission from charge exchange of highly-charged ions in atoms and molecules

    NASA Technical Reports Server (NTRS)

    Greenwood, J. B.; Williams, I. D.; Smith, S. J.; Chutjian, A.

    2000-01-01

    Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections.

  4. Single molecule detection using charge-coupled device array technology

    SciTech Connect

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  5. Negatively charged liposomes show potent adjuvant activity when simply admixed with protein antigens

    PubMed Central

    Yanasarn, Nijaporn; Sloat, Brian R.; Cui, Zhengrong

    2011-01-01

    Liposomes have been investigated extensively as a vaccine delivery system. Herein the adjuvant activities of liposomes with different net surface charges (neutral, positive, or negative) were evaluated when admixed with protein antigens, ovalbumin (OVA, pI = 4.7), Bacillus anthracis protective antigen protein (PA, pI = 5.6), or cationized OVA (cOVA). Mice immunized subcutaneously with OVA admixed with different liposomes generated different antibody responses. Interestingly, OVA admixed with net negatively charged liposomes prepared with DOPA was as immunogenic as OVA admixed with positively charged liposomes prepared with DOTAP. Immunization of mice with the anthrax PA protein admixed with the net negatively charged DOPA liposomes also induced a strong and functional anti-PA antibody response. When the cationized OVA was used as a model antigen, liposomes with net neutral, negative, or positive charges showed comparable adjuvant activities. Immunization of mice with the OVA admixed with DOPA liposomes also induced OVA-specific CD8+ cytotoxic T lymphocyte responses and significantly delayed the growth of OVA-expressing B16-OVA tumors in mice. However, not all net negatively charged liposomes showed a strong adjuvant activity. The adjuvant activity of the negatively charged liposomes may be related to the liposome’s ability (i) to up-regulate the expression of molecules related to the activation and maturation of antigen-presenting cells and (ii) to slightly facilitate the uptake of the antigens by antigen-presenting cells. Simply admixing certain negatively charged liposomes with certain protein antigens of interest may represent a novel platform for vaccine development. PMID:21615153

  6. Increased negatively charged nitrogen-vacancy centers in fluorinated diamond

    SciTech Connect

    Cui, Shanying; Hu, Evelyn L.

    2013-07-29

    We investigated the effect of fluorine-terminated diamond surface on the charged state of shallow nitrogen vacancy defect centers (NVs). Fluorination is achieved with CF{sub 4} plasma, and the surface chemistry is confirmed with x-ray photoemission spectroscopy. Photoluminescence of these ensemble NVs reveals that fluorine-treated surfaces lead to a higher and more stable negatively charged nitrogen vacancy (NV{sup −}) population than oxygen-terminated surfaces. NV{sup −} population is estimated by the ratio of negative to neutral charged NV zero-phonon lines. Surface chemistry control of NV{sup −} density is an important step towards improving the optical and spin properties of NVs for quantum information processing and magnetic sensing.

  7. Space Charge Neutralization in the ITER Negative Ion Beams

    SciTech Connect

    Surrey, Elizabeth

    2007-08-10

    A model of the space charge neutralization of negative ion beams, developed from the model due to Holmes, is applied to the ITER heating and diagnostic beams. The Holmes model assumed that the plasma electron temperature was derived from the stripped electrons. This is shown to be incorrect for the ITER beams and the plasma electron temperature is obtained from the average creation energy upon ionization. The model shows that both ITER beams will be fully space charge compensated in the drift distance between the accelerator and the neutralizer. Inside the neutralizer, the plasma over compensates the space charge to the extent that a significant focusing force is predicted. At a certain position in the neutraliser this force balances the defocusing force due to the ions' transverse energy. Under these conditions the beam distribution function can change from Gaussian to Bennett and evidence of such a distribution observed in a multi-aperture, neutralized negative ion beam is presented.

  8. Charge exchange of a polar molecule at its cation

    SciTech Connect

    Buslov, E. Yu. Zon, B. A.

    2011-01-15

    The Landau-Herring method is used to derive an analytic expression for the one-electron exchange interaction of a polar molecule with its positively charged ion, induced by a {sigma}-electron. Analogously to the classical Van der Pole method, the exchange interaction potential is averaged over the rotational states of colliding particles. The resonant charge-transfer cross section is calculated, and the effect of the dipole moments of the core on the cross section is analyzed. It is shown that allowance for the dependence of the exchange potential on the orientation of the dipole moments relative to the molecular axis may change the dependence of the cross section on the velocity of colliding particles, which is typical of the resonant charge exchange, from the resonance to the quasi-resonance dependence.

  9. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes

    PubMed Central

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J.; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C.; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  10. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes.

    PubMed

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  11. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids

    NASA Astrophysics Data System (ADS)

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J.

    2014-12-01

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed.The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor

  12. Interstellar Chemistry Gets More Complex With New Charged-Molecule Discovery

    NASA Astrophysics Data System (ADS)

    2007-07-01

    Astronomers using data from the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) have found the largest negatively-charged molecule yet seen in space. The discovery of the third negatively-charged molecule, called an anion, in less than a year and the size of the latest anion will force a drastic revision of theoretical models of interstellar chemistry, the astronomers say. Molecule formation Formation Process of Large, Negatively-Charged Molecule in Interstellar Space CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for page of graphics and detailed information "This discovery continues to add to the diversity and complexity that is already seen in the chemistry of interstellar space," said Anthony J. Remijan of the National Radio Astronomy Observatory (NRAO). "It also adds to the number of paths available for making the complex organic molecules and other large molecular species that may be precursors to life in the giant clouds from which stars and planets are formed," he added. Two teams of scientists found negatively-charged octatetraynyl, a chain of eight carbon atoms and one hydrogen atom, in the envelope of gas around an old, evolved star and in a cold, dark cloud of molecular gas. In both cases, the molecule had an extra electron, giving it a negative charge. About 130 neutral and about a dozen positively-charged molecules have been discovered in space, but the first negatively-charged molecule was not discovered until late last year. The largest previously-discovered negative ion found in space has six carbon atoms and one hydrogen atom. "Until recently, many theoretical models of how chemical reactions evolve in interstellar space have largely neglected the presence of anions. This can no longer be the case, and this means that there are many more ways to build large organic molecules in cosmic environments than have been explored," said Jan M. Hollis of NASA's Goddard Space Flight Center (GSFC). Ultraviolet light from stars can

  13. Study on space charge compensation in negative hydrogen ion beam.

    PubMed

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results. PMID:26932087

  14. Study on space charge compensation in negative hydrogen ion beam.

    PubMed

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  15. Electron interactions with positively and negatively multiply charged biomolecular clusters

    NASA Astrophysics Data System (ADS)

    Feketeová, Linda

    2012-07-01

    Interactions of positively and negatively multiply charged biomolecular clusters with low-energy electrons, from ~ 0 up to 50 eV of electron energy, were investigated in a high resolution Fourier-Transform Ion Cyclotron Resonance mass spectrometer equipped with an electrospray ionisation source. Electron-induced dissociation reactions of these clusters depend on the energy of the electrons, the size and the charge state of the cluster. The positively charged clusters [Mn+2H]2+ of zwitterionic betaines, M = (CH3)2XCH2CO2 (X = NCH3 and S), do capture an electron in the low electron energy region (< 10 eV). At higher electron energies neutral evaporation from the cluster becomes competitive with Coulomb explosion. In addition, a series of singly charged fragments arise from bond cleavage reactions, including decarboxylation and CH3 group transfer, due to the access of electronic excited states of the precursor ions. These fragmentation reactions depend on the type of betaine (X = NCH3 or S). For the negative dianionic clusters of tryptophan [Trp9-2H]2-, the important channel at low electron energies is loss of a neutral. Coulomb explosion competes from 19.8 eV and dominates at high electron energies. A small amount of [Trp2-H-NH3]- is observed at 21.8 eV.

  16. Electron-molecule chemistry and charging processes on organic ices and Titan's icy aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Pirim, C.; Gann, R. D.; McLain, J. L.; Orlando, T. M.

    2015-09-01

    Electron-induced polymerization processes and charging events that can occur within Titan's atmosphere or on its surface were simulated using electron irradiation and dissociative electron attachment (DEA) studies of nitrogen-containing organic condensates. The DEA studies probe the desorption of H- from hydrogen cyanide (HCN), acetonitrile (CH3CN), and aminoacetonitrile (NH2CH2CN) ices, as well as from synthesized tholin materials condensed or deposited onto a graphite substrate maintained at low temperature (90-130 K). The peak cross sections for H- desorption during low-energy (3-15 eV) electron irradiation were measured and range from 3 × 10-21 to 2 × 10-18 cm2. Chemical and structural transformations of HCN ice upon 2 keV electron irradiation were investigated using X-ray photoelectron and Fourier-transform infrared spectroscopy techniques. The electron-beam processed materials displayed optical properties very similar to tholins produced by conventional discharge methods. Electron and negative ion trapping lead to 1011 charges cm-2 on a flat surface which, assuming a radius of 0.05 μm for Titan aerosols, is ∼628 charges/radius (in μm). The facile charge trapping indicates that electron interactions with nitriles and complex tholin-like molecules could affect the conductivity of Titan's atmosphere due to the formation of large negative ion complexes. These negatively charged complexes can also precipitate onto Titan's surface and possibly contribute to surface reactions and the formation of dunes.

  17. Photodetachment of gaseous multiply charged anions, copper phthalocyanine tetrasulfonate tetraanion: Tuning molecular electronic energy levels by charging and negative electron binding

    SciTech Connect

    Wang, X.B.; Ferris, K.; Wang, L.S.

    2000-01-13

    The authors report photodetachment photoelectron spectroscopy (PES) of gaseous copper phthalocyanine (CuPc) tetrasulfonate quadruply charged anions, [CuPc(SO{sub 3}){sub 4}]{sup 4{minus}}, and its monoprotonated and -sodiumated triply charged anions, [CuPc(SO{sub 3}){sub 4}H]{sup 3{minus}} and [CuPc(SO{sub 3}){sub 4}Na]{sup 3{minus}}. The [CuPc(SO{sub 3}){sub 4}]{sup 4{minus}} tetraanion was found to possess a negative electron binding energy of {minus}0.9 eV, whereas the trianions have binding energies of 1.0 and 1.2 eV for the sodiumated and protonated species, respectively. The PES spectral features of the three multiply charged anions were observed to be similar to that of the parent CuPc neutral molecule, except that the anions have lower binding energies due to the presence of the negative charges ({minus}SO{sub 3}{sup {minus}}). The data thus suggested a stepwise tuning of the molecular electronic energy levels of the CuPc molecule through charging, wherein the molecular orbital energies of the parent molecule were systematically pushed up by the negative charges. The authors further carried out semiempirical calculations, which provided insight into the nature of the localized charges on the peripheral {minus}SO{sub 3}{sup {minus}} groups and the intramolecular electrostatic interactions in the multiply charged anions and confirmed the interpretation of the stepwise tuning of molecular energy levels by charging. Photon energy-dependent studies revealed the effects of the repulsive Coulomb barriers on the photodetachment PES spectra of the multiply charged anions. The barrier heights were estimated to be about 3.5 and 2.5 eV for the tetra- and trianions, respectively. The authors also observed excited states for the multiply charged anions and resonant tunneling through the repulsive Coulomb barriers via the excited states.

  18. How Do Electric Charges Fix the Architecture of Diatomic Molecules?

    NASA Astrophysics Data System (ADS)

    Yarman, Tolga

    2002-03-01

    Previously, we had established an elegant relationship for the vibrational period T, of a diatomic molecule, in terms of its internuclear distance R, and its "clock mass", M_clock, which can be expressed as f_Mm_e, where me is the electron mass, and f_M= [M_red/m_e]^1/2; M_red is the nuclei reduced mass [1, 2]. Thus we had formerly discovered the relationship T_Mm_eR^2, for any diatomic molecule. More specifically we ended up with the relationship T=4π^2/[h(n_in_j)^1/2][gM_redm_e]^1/2R^2; here g is a dimensionless coefficient; ni and nj are the principal quantum numbers of the electrons making up the bond of the molecule of concern. In this work we relate T and R in terms of the electric charges of the molecule to arrive at T_MR/[(f_Zm_e)^(2)], where fZ is an appropriate coefficient, remaining nearly constant for diatomic molecules belonging to a given chemical family; e is the charge of the electron. One can derive an other interesting relationship for T, still based on the electrical charges; this is T_M/[(f_Ze^(2))^(2)m_e]. Note that the elimination of f_Ze^(2) from the last two period relationships leads to the original compact relationship T_Mm_eR^2, and that all of the relationships in question, are Lorentz invariant. In other terms, we can further state the following: Because matter is built as indicated by the above relationships that, the findings of the special theory of relativity occur, i.e. this is for instance how, say the vibrational frequency of a diatomic molecule, brought to a uniform, translational motion is retarded, just as much as an associated "light clock". Note furthermore that the occurances, such as "clock retardation" in a gravitational field, coming into play, within the frame of the general theory of relativity too, can be derived from the above relationships, without having to use the classical principle of equivalence [3, 4]. The proportionality coefficients in question are found to be around unity. Our approach can be extended to

  19. Complexes of Negatively Charged Polypeptides with Cationic Lipids

    NASA Astrophysics Data System (ADS)

    Subramanian, G.; Li, Youli; Safinya, Cyrus R.

    1997-03-01

    Complexes of cationic lipids with oppositely charged proteins are promising candidates for new biomolecular materials. In addition to being used as a direct vehicle for protein transfection, they also find applications as templates for synthesis of molecular sieves. In spite of these wide ranging applications, the structure and interactions in these complexes have largely remained unclear. Here we report on the study of complexes formed between the cationic lipid didodecyldimethylammonium bromide (DDAB) with negatively charged polypeptide poly glutamic acid (PGA) both in the presence and absence of the neutral lipid dilauroylglycerophosphocholine (DLPC). X-ray diffraction of the complexes indicates a condensed lamellar lipid structure with the polypeptide intercalated between the layers. We present a comprehensive phase diagram on this system based on X-ray diffraction data. This work is supported in part by grants NSF DMR-9624091, PRF-31352 AC7, and CU LAR STP/UC 96-118.

  20. Negatively charged nanoparticles produced by splashing of water

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Hõrrak, U.; Kulmala, M.

    2009-01-01

    The production of splashing-generated balloelectric intermediate ions was studied by means of mobility spectrometry in the atmosphere during the rain and in a laboratory experiment simulating the heavy rain. The partial neutralization of intermediate ions with cluster ions generated by beta rays suppressed the space charge of intermediate ions but preserved the shape of the mobility distribution. The balloelectric ions produced from the waterworks water of high TDS (Total Dissolved Solids) had about the same mobilities as the ions produced from the rainwater of low TDS. This suggests that the balloelectric ions can be considered as singly charged water nanoparticles. By different measurements, the diameter mode of these particles was 2.2-2.7 nm, which is close to the diameter of 2.5 nm of the Chaplin's 280-molecule magic icosahedron superclusters. The measurements can be explained by a hypothesis that the pressure of saturated vapor over the nanoparticle surface is suppressed by a number of magnitudes due to the internal structure of the particles near the size of 2.5 nm. The records of the concentration bursts of balloelectric ions in the atmosphere are formally similar to the records of the nucleation bursts but they cannot be qualified as nucleation bursts because the particles are not growing but shrinking.

  1. Negatively charged nanoparticles produced by splashing of water

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Hõrrak, U.; Kulmala, M.

    2008-09-01

    The production of splashing-generated balloelectric intermediate ions was studied by means of mobility spectrometry in the atmosphere during the rain and in a laboratory experiment simulating the heavy rain. The partial neutralization of intermediate ions with cluster ions generated by beta rays suppressed the space charge of intermediate ions but preserved the shape of the mobility distribution. The balloelectric ions produced from the waterworks water of high TDS (Total Dissolved Solids) had about the same mobilities as the ions produced from the rainwater of low TDS. This suggests that the balloelectric ions can be considered as singly charged water nanodroplets. By different measurements, the diameter mode of these droplets was 2.2 2.7 nm, which is close to the diameter of 2.5 nm of the Chaplin's 280-molecule magic icosahedron superclusters. The measurements can be explained by a hypothesis that the pressure of saturated vapor over the nanodroplet surface is suppressed by a number of magnitudes due to the internal structure of the droplets near the size of 2.5 nm. The records of the concentration bursts of balloelectric ions in the atmosphere are formally similar to the records of the nucleation bursts but they cannot be qualified as nucleation bursts because the particles are not growing but shrinking.

  2. Tuning the affinity of anion binding sites in porin channels with negatively charged residues: molecular details for OprP.

    PubMed

    Modi, Niraj; Bárcena-Uribarri, Iván; Bains, Manjeet; Benz, Roland; Hancock, Robert E W; Kleinekathöfer, Ulrich

    2015-02-20

    The cell envelope of the Gram negative opportunistic pathogen Pseudomonas aeruginosa is poorly permeable to many classes of hydrophilic molecules including antibiotics due to the presence of the narrow and selective porins. Here we focused on one of the narrow-channel porins, that is, OprP, which is responsible for the high-affinity uptake of phosphate ions. Its two central binding sites for phosphate contain a number of positively charged amino acids together with a single negatively charged residue (D94). The presence of this negatively charged residue in a binding site for negatively charged phosphate ions is highly surprising due to the potentially reduced binding affinity. The goal of this study was to better understand the role of D94 in phosphate binding, selectivity, and transport using a combination of mutagenesis, electrophysiology, and free-energy calculations. The presence of a negatively charged residue in the binding site is critical for this specific porin OprP as emphasized by the evolutionary conservation of such negatively charged residue in the binding site of several anion-selective porins. Mutations of D94 in OprP to any positively charged or neutral residue increased the binding affinity of phosphate for OprP. Detailed analysis indicated that this anionic residue in the phosphate binding site of OprP, despite its negative charge, maintained energetically favorable phosphate binding sites in the central region of the channel and at the same time decreased residence time thus preventing excessively strong binding of phosphate that would oppose phosphate flux through the channel. Intriguingly mutations of D94 to positively charged residues, lysine and arginine, resulted in very different binding affinities and free energy profiles, indicating the importance of side chain conformations of these positively charged residues in phosphate binding to OprP.

  3. Negative Differential Conductance from Space Charge Limited Currents in Semiconductors

    NASA Astrophysics Data System (ADS)

    Brooks, Andrew; Zhang, Xiaoguang

    Applying the theory of space charge limited currents (SCLC), we show that negative differential conductance can arise from doubly occupied traps that are nearly degenerate with the bottom of the conduction band. Using degenerate state perturbation theory, the Coulomb energy of the doubly occupied traps is shown to depend on the hybridization with the conduction band states. Initially, when carriers are injected into the solid, traps begin to fill while the conduction band states stay relatively empty and thus accessible to trapped electrons via hopping. Trap and conduction states continue to be filled as current is increased, and the energy of trapped electrons begins to rise. A critical current is reached whereupon a further increase in current leads to a reduction of filled traps (i.e. a reduction of space charge in the solid), and thus a corresponding decrease in voltage. This trend in the current-voltage characteristic curves persists until the bottom of the conduction band has been filled, then voltage rises with current.

  4. Charge transfer and negative curvature energy in magnesium boride nanotubes

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Ismail-Beigi, Sohrab

    2016-07-01

    Using first-principles calculations based on density functional theory, we study the energetics and charge transfer effects in MgBx nanotubes and two-dimensional (2D) sheets. The behavior of adsorbed Mg on 2D boron sheets is found to depend on the amount of electron transfer between the two subsystems. The amount is determined by both the density of adsorbed Mg as well as the atomic-scale structure of the boron subsystem. The degree of transfer can lead to repulsive or attractive Mg-Mg interactions. In both cases, model MgBx nanotubes built from 2D MgBx sheets can display negative curvature energy: a relatively unusual situation in nanosystems where the energy cost to curve the parent 2D sheet into a small-diameter nanotube is negative. Namely, the small-diameter nanotube is energetically preferred over the corresponding flat sheet. We also discuss how these findings may manifest themselves in experimentally synthesized MgBx nanotubes.

  5. Penetration of negatively charged lipid interfaces by the doubly deprotonated dipicolinate.

    PubMed

    Crans, Debbie C; Trujillo, Alejandro M; Bonetti, Sandra; Rithner, Christopher D; Baruah, Bharat; Levinger, Nancy E

    2008-12-19

    The possibility that a negatively charged organic molecule penetrates the lipid interface in a reverse micellar system is examined using UV-vis absorption and NMR spectroscopy. The hypothesis that deprotonated forms of dipicolinic acid, H(2)dipic, such as Hdipic(-) and dipic(2-), can penetrate the lipid interface in a microemulsion is based on our previous finding that the insulin-enhancing anionic [VO(2)dipic](-) complex was found to reside in the hydrophobic layer of the reverse micelle (Crans et al. J. Am. Chem. Soc. 2006, 128, 4437-4445). Penetration of a polar and charged compound, namely Hdipic(-) or dipic(2-), into a hydrophobic environment is perhaps unexpected given the established rules regarding the fundamental properties of compound solubility. As such, this work has broad implications in organic chemistry and other disciplines of science. These studies required a comprehensive investigation of the different dipic species and their association in aqueous solutions at varying pH values. Combining the aqueous studies using absorption and NMR spectroscopy with those in microemulsions defines the differences observed in the heterogeneous environment. Despite the expected repulsion between the surfactant head groups and the dianionic probe molecule, these studies demonstrate that dipic resides deep in the hydrophobic portion of the reverse micellar interface. In summary, these results provide evidence that ionic molecules can reside in nonpolar locations in microheterogeneous environments. This suggests that additional factors such as solvation are important to molecule location. Documented ability to penetrate lipid surfaces of similar charge provides a rationale for why specific drugs with less than optimal hydrophobicity are successful even though they violate Lipinski's rules. PMID:19053583

  6. Negatively Charged Lipids as a Potential Target for New Amphiphilic Aminoglycoside Antibiotics: A BIOPHYSICAL STUDY.

    PubMed

    Sautrey, Guillaume; El Khoury, Micheline; Dos Santos, Andreia Giro; Zimmermann, Louis; Deleu, Magali; Lins, Laurence; Décout, Jean-Luc; Mingeot-Leclercq, Marie-Paule

    2016-06-24

    Bacterial membranes are highly organized, containing specific microdomains that facilitate distinct protein and lipid assemblies. Evidence suggests that cardiolipin molecules segregate into such microdomains, probably conferring a negative curvature to the inner plasma membrane during membrane fission upon cell division. 3',6-Dinonyl neamine is an amphiphilic aminoglycoside derivative active against Pseudomonas aeruginosa, including strains resistant to colistin. The mechanisms involved at the molecular level were identified using lipid models (large unilamellar vesicles, giant unilamelllar vesicles, and lipid monolayers) that mimic the inner membrane of P. aeruginosa The study demonstrated the interaction of 3',6-dinonyl neamine with cardiolipin and phosphatidylglycerol, two negatively charged lipids from inner bacterial membranes. This interaction induced membrane permeabilization and depolarization. Lateral segregation of cardiolipin and membrane hemifusion would be critical for explaining the effects induced on lipid membranes by amphiphilic aminoglycoside antibiotics. The findings contribute to an improved understanding of how amphiphilic aminoglycoside antibiotics that bind to negatively charged lipids like cardiolipin could be promising antibacterial compounds.

  7. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    NASA Astrophysics Data System (ADS)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  8. Invariance of molecular charge transport upon changes of extended molecule size and several related issues.

    PubMed

    Bâldea, Ioan

    2016-01-01

    As a sanity test for the theoretical method employed, studies on (steady-state) charge transport through molecular devices usually confine themselves to check whether the method in question satisfies the charge conservation. Another important test of the theory's correctness is to check that the computed current does not depend on the choice of the central region (also referred to as the "extended molecule"). This work addresses this issue and demonstrates that the relevant transport and transport-related properties are indeed invariant upon changing the size of the extended molecule, when the embedded molecule can be described within a general single-particle picture (namely, a second-quantized Hamiltonian bilinear in the creation and annihilation operators). It is also demonstrates that the invariance of nonequilibrium properties is exhibited by the exact results but not by those computed approximately within ubiquitous wide- and flat-band limits (WBL and FBL, respectively). To exemplify the limitations of the latter, the phenomenon of negative differential resistance (NDR) is considered. It is shown that the exactly computed current may exhibit a substantial NDR, while the NDR effect is absent or drastically suppressed within the WBL and FBL approximations. The analysis done in conjunction with the WBLs and FBLs reveals why general studies on nonequilibrium properties require a more elaborate theoretical than studies on linear response properties (e.g., ohmic conductance and thermopower) at zero temperature. Furthermore, examples are presented that demonstrate that treating parts of electrodes adjacent to the embedded molecule and the remaining semi-infinite electrodes at different levels of theory (which is exactly what most NEGF-DFT approaches do) is a procedure that yields spurious structures in nonlinear ranges of current-voltage curves. PMID:27335734

  9. Experimental evidence on removing copper and light-induced degradation from silicon by negative charge

    SciTech Connect

    Boulfrad, Yacine Lindroos, Jeanette; Yli-Koski, Marko; Savin, Hele; Wagner, Matthias; Wolny, Franziska

    2014-11-03

    In addition to boron and oxygen, copper is also known to cause light-induced degradation (LID) in silicon. We have demonstrated previously that LID can be prevented by depositing negative corona charge onto the wafer surfaces. Positively charged interstitial copper ions are proposed to diffuse to the negatively charged surface and consequently empty the bulk of copper. In this study, copper out-diffusion was confirmed by chemical analysis of the near surface region of negatively/positively charged silicon wafer. Furthermore, LID was permanently removed by etching the copper-rich surface layer after negative charge deposition. These results demonstrate that (i) copper can be effectively removed from the bulk by negative charge, (ii) under illumination copper forms a recombination active defect in the bulk of the wafer causing severe light induced degradation.

  10. Multistep photochemical charge separation in rod-like molecules based on aromatic insides and diimides

    SciTech Connect

    Greenfield, S.R.; Svec, W.A.; Gosztola, D.; Wasielewski, M.R. |

    1996-07-17

    A series of intramolecular triads with linear, rod-like structures has been developed that undergo very efficient two-step electron transfer following direct excitation of a chromophore possessing a charge transfer (CT) excited state. The CT state of 4-aminonaphthalene-1,8-imide (ANI), produced by direct excitation of the chromophore, has about 70% of a negative charge transferred from the amine to the imide. Attachment of aniline (AN) and p-methoxyaniline (MeOAn) donors to ANI by means of a piperazine bridge results in linear dyads. An-ANI and MeOAn-ANI, that undergo rapid electron transfer in about 10{sup -11} s to give a >99% yield of the ion pairs, An{sup +}-ANI{sup -} and MeOAn{sup +}-ANI{sup -}, in which the charges are separated by 7.7 A. Further attachment of a 1,8:4,5-naphthalene-dimide (NI) electron acceptor to the imide group of ANI using a 2,5-dimethyphenyl spacer results in triads An-ANI-NI and MeOAn-ANI-NI. Excitation of the CT state of ANI within these triads results in the same high yield charge separation step observed in the corresponding dyads followed by a subnanosecond charge shift reaction to yield the giant dipole states An{sup +}-ANI-NI{sup -} and MeOAn{sup +}-ANI-NI{sup -} in 72% and 92% yield, respectively, in toluene. The lifetime of MeOAn{sup +}-ANI-NI{sup -} is 310 ns. These triad molecules make explicit use of a CT excited state to initiate a multistep electron transfer process. 67 refs., 10 figs., 4 tabs.

  11. Probing the charge-transfer dynamics in DNA at the single-molecule level.

    PubMed

    Kawai, Kiyohiko; Matsutani, Eri; Maruyama, Atsushi; Majima, Tetsuro

    2011-10-01

    Photoinduced charge-transfer fluorescence quenching of a fluorescent dye produces the nonemissive charge-separated state, and subsequent charge recombination makes the reaction reversible. While the information available from the photoinduced charge-transfer process provides the basis for monitoring the microenvironment around the fluorescent dyes and such monitoring is particularly important in live-cell imaging and DNA diagnosis, the information obtainable from the charge recombination process is usually overlooked. When looking at fluorescence emitted from each single fluorescent dye, photoinduced charge-transfer, charge-migration, and charge recombination cause a "blinking" of the fluorescence, in which the charge-recombination rate or the lifetime of the charge-separated state (τ) is supposed to be reflected in the duration of the off time during the single-molecule-level fluorescence measurement. Herein, based on our recently developed method for the direct observation of charge migration in DNA, we utilized DNA as a platform for spectroscopic investigations of charge-recombination dynamics for several fluorescent dyes: TAMRA, ATTO 655, and Alexa 532, which are used in single-molecule fluorescence measurements. Charge recombination dynamics were observed by transient absorption measurements, demonstrating that these fluorescent dyes can be used to monitor the charge-separation and charge-recombination events. Fluorescence correlation spectroscopy (FCS) of ATTO 655 modified DNA allowed the successful measurement of the charge-recombination dynamics in DNA at the single-molecule level. Utilizing the injected charge just like a pulse of sound, such as a "ping" in active sonar systems, information about the DNA sequence surrounding the fluorescent dye was read out by measuring the time it takes for the charge to return.

  12. What happens to negatively charged lipid vesicles upon interacting with polycation species?

    PubMed

    Kabanov, V A; Yaroslavov, A A

    2002-01-17

    Complexation of synthetic polycations with negative lipid vesicles as cell-mimetic species was studied. It was found that such interaction could be accompanied by lateral lipid segregation, highly accelerated transmembrane migration of lipid molecules (polycation-induced flip-flop), incorporation of adsorbed polycations into vesicular membrane as well as aggregation and disruption of vesicles. A polycation adsorbed on the surface of liquid vesicles due to electrostatic attraction could be completely removed from the membrane by increase in simple salt concentration or by recomplexation with polyanions. In contrast, adsorption of a polycation carrying pendant hydrophobic groups was irreversible apparently due to incorporation of these groups into the hydrophobic part of the vesicular membrane. The above mentioned phenomena were examined depending on the polycation structure, fraction of charged lipids in the membrane, vesicle phase state and ionic strength of solution. PMID:11772467

  13. An analysis of five negative sprite-parent discharges and their associated thunderstorm charge structures

    NASA Astrophysics Data System (ADS)

    Boggs, Levi D.; Liu, Ningyu; Splitt, Michael; Lazarus, Steven; Glenn, Chad; Rassoul, Hamid; Cummer, Steven A.

    2016-01-01

    In this study we analyze the discharge morphologies of five confirmed negative sprite-parent discharges and the associated charge structures of the thunderstorms that produced them. The negative sprite-parent lightning took place in two thunderstorms that were associated with a tropical disturbance in east central and south Florida. The first thunderstorm, which moved onshore in east central Florida, produced four of the five negative sprite-parent discharges within a period of 17 min, as it made landfall from the Atlantic Ocean. These negative sprite-parents were composed of bolt-from-the-blue (BFB), hybrid intracloud-negative cloud-to-ground (IC-NCG), and multicell IC-NCGs discharges. The second thunderstorm, which occurred inland over south Florida, produced a negative sprite-parent that was a probable hybrid IC-NCG discharge and two negative gigantic jets (GJs). Weakened upper positive charge with very large midlevel negative charge was inferred for both convective cells that initiated the negative-sprite-parent discharges. Our study suggests tall, intense convective systems with high wind shear at the middle to upper regions of the cloud accompanied by low cloud-to-ground (CG) flash rates promote these charge structures. The excess amount of midlevel negative charge results in these CG discharges transferring much more charge to ground than typical negative CG discharges. We find that BFB discharges prefer an asymmetrical charge structure that brings the negative leader exiting the upper positive charge region closer to the lateral positive screening charge layer. This may be the main factor in determining whether a negative leader exiting the upper positive region of the thundercloud forms a BFB or GJ.

  14. Invariance of molecular charge transport upon changes of extended molecule size and several related issues

    PubMed Central

    2016-01-01

    Summary As a sanity test for the theoretical method employed, studies on (steady-state) charge transport through molecular devices usually confine themselves to check whether the method in question satisfies the charge conservation. Another important test of the theory’s correctness is to check that the computed current does not depend on the choice of the central region (also referred to as the “extended molecule”). This work addresses this issue and demonstrates that the relevant transport and transport-related properties are indeed invariant upon changing the size of the extended molecule, when the embedded molecule can be described within a general single-particle picture (namely, a second-quantized Hamiltonian bilinear in the creation and annihilation operators). It is also demonstrates that the invariance of nonequilibrium properties is exhibited by the exact results but not by those computed approximately within ubiquitous wide- and flat-band limits (WBL and FBL, respectively). To exemplify the limitations of the latter, the phenomenon of negative differential resistance (NDR) is considered. It is shown that the exactly computed current may exhibit a substantial NDR, while the NDR effect is absent or drastically suppressed within the WBL and FBL approximations. The analysis done in conjunction with the WBLs and FBLs reveals why general studies on nonequilibrium properties require a more elaborate theoretical than studies on linear response properties (e.g., ohmic conductance and thermopower) at zero temperature. Furthermore, examples are presented that demonstrate that treating parts of electrodes adjacent to the embedded molecule and the remaining semi-infinite electrodes at different levels of theory (which is exactly what most NEGF-DFT approaches do) is a procedure that yields spurious structures in nonlinear ranges of current–voltage curves. PMID:27335734

  15. Calculating Henry’s Constants of Charged Molecules Using SPARC

    EPA Science Inventory

    SPARC Performs Automated Reasoning in Chemistry is a computer program designed to model physical and chemical properties of molecules solely based on thier chemical structure. SPARC uses a toolbox of mechanistic perturbation models to model intermolecular interactions. SPARC has ...

  16. Temperature dependence of charge transport in conjugated single molecule junctions

    NASA Astrophysics Data System (ADS)

    Huisman, Eek; Kamenetska, Masha; Venkataraman, Latha

    2011-03-01

    Over the last decade, the break junction technique using a scanning tunneling microscope geometry has proven to be an important tool to understand electron transport through single molecule junctions. Here, we use this technique to probe transport through junctions at temperatures ranging from 5K to 300K. We study three amine-terminated (-NH2) conjugated molecules: a benzene, a biphenyl and a terphenyl derivative. We find that amine groups bind selectively to undercoordinate gold atoms gold all the way down to 5K, yielding single molecule junctions with well-defined conductances. Furthermore, we find that the conductance of a single molecule junction increases with temperature and we present a mechanism for this temperature dependent transport result. Funded by a Rubicon Grant from The Netherlands Organisation for Scientific Research (NWO) and the NSEC program of NSF under grant # CHE-0641523.

  17. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    SciTech Connect

    Teyssedre, G. Laurent, C.; Vu, T. T. N.

    2015-12-21

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  18. Theoretical study of negatively charged Fe(-)-(H2O)(n ≤ 6) clusters.

    PubMed

    Castro, Miguel

    2012-06-14

    Interactions of a singly negatively charged iron atom with water molecules, Fe(-)-(H(2)O)(n≤6), in the gas phase were studied by means of density functional theory. All-electron calculations were performed using the B3LYP functional and the 6-311++G(2d,2p) basis set for the Fe, O, and H atoms. In the lowest total energy states of Fe(-)-(H(2)O)(n), the metal-hydrogen bonding is stronger than the metal-oxygen one, producing low-symmetry structures because the water molecules are directly attached to the metal by basically one of their hydrogen atoms, whereas the other ones are involved in a network of hydrogen bonds, which together with the Fe(δ-)-H(δ+) bonding accounts for the nascent hydration of the Fe(-) anion. For Fe(-)-(H(2)O)(3≤n), three-, four-, five-, and six-membered rings of water molecules are bonded to the metal, which is located at the surface of the cluster in such a way as to reduce the repulsion with the oxygen atoms. Nevertheless, internal isomers appear also, lying less than 3 or 5 kcal/mol for n = 2-3 or n = 4-6. These results are in contrast with those of classical TM(+)-(H(2)O)(n) complexes, where the direct TM(+)-O bonding usually produces high symmetry structures with the metal defining the center of the complex. They show also that the Fe(-) anions, as the TM(+) ions, have great capability for the adsorption of water molecules, forming Fe(-)-(H(2)O)(n) structures stabilized by Fe(δ-)-H(δ+) and H-bond interactions.

  19. Maximizing ion current by space-charge neutralization using negative ions and dust particles

    SciTech Connect

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2005-05-15

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space-charge neutralization are introduced. Space-charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space-charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster.

  20. Charging-delay induced dust acoustic collisionless shock wave: Roles of negative ions

    SciTech Connect

    Ghosh, Samiran; Bharuthram, R.; Khan, Manoranjan; Gupta, M. R.

    2006-11-15

    The effects of charging-delay and negative ions on nonlinear dust acoustic waves are investigated. It has been found that the charging-delay induced anomalous dissipation causes generation of dust acoustic collisionless shock waves in an electronegative dusty plasma. The small but finite amplitude wave is governed by a Korteweg-de Vries Burger equation in which the Burger term arises due to the charging-delay. Numerical investigations reveal that the charging-delay induced dissipation and shock strength decreases (increases) with the increase of negative ion concentration (temperature)

  1. Surface charging by large multivalent molecules. Extending the standard Gouy-Chapman treatment.

    PubMed Central

    Stankowski, S

    1991-01-01

    Traditionally, Gouy-Chapman theory has been used to calculate the distribution of ions in the diffuse layer next to a charged surface. In recent years, the same theory has found application to adsorption (incorporation, partitioning) of charged peptides, hormones, or drugs at the membrane-water interface. Empirically it has been found that an effective charge, smaller than the physical charge, must often be used in the Gouy-Chapman formula. In addition, the large size of these molecules can be expected to influence their adsorption isotherms. To improve evaluation techniques for such experiments, comparatively simple extensions of the standard Gouy-Chapman formalism have been studied which are based on a discrete charge virial expansion. The model allows for the mobility of charged groups at the interface. It accounts for finite size of the adsorbed macromolecules and for discrete charge effects arising from pair interactions in the interface plane. In contrast to previous discrete charge treatments this model nearly coincides with the Gouy-Chapman formalism in the case where the adsorbing molecules are univalent. Large discrepancies are found for multivalent molecules. This could explain the reduced effective charges needed in the standard Gouy-Chapman treatment. The reduction factor can be predicted. The model is mainly limited to low surface coverage, typical for the adsorption studies in question. PMID:1912277

  2. Effects of positively charged redox molecules on disulfide-coupled protein folding.

    PubMed

    Okumura, Masaki; Shimamoto, Shigeru; Nakanishi, Takeyoshi; Yoshida, Yu-ichiro; Konogami, Tadafumi; Maeda, Shogo; Hidaka, Yuji

    2012-11-01

    In vitro folding of disulfide-containing proteins is generally regulated by redox molecules, such as glutathione. However, the role of the cross-disulfide-linked species formed between the redox molecule and the protein as a folding intermediate in the folding mechanism is poorly understood. In the present study, we investigated the effect of the charge on a redox molecule on disulfide-coupled protein folding. Several types of aliphatic thiol compounds including glutathione were examined for the folding of disulfide-containing-proteins, such as lysozyme and prouroguanylin. The results indicate that the positive charge and its dispersion play a critical role in accelerating disulfide-coupled protein folding.

  3. Charge as you like! Efficient manipulation of negative ion net charge in electrospray ionization of proteins and nucleic acids.

    PubMed

    Ganisl, Barbara; Taucher, Monika; Riml, Christian; Breuker, Kathrin

    2011-01-01

    Acidic proteins and nucleic acids such as RNA are most readily ionized in electrospray ionization (ESI) operated in negative-ion mode. The multiply deprotonated protein or RNA ions can be used as precursors in top- down mass spectrometry. Because the performance of the dissociation method used critically depends on precursor ion negative net charge, it is important that the extent of charging in ESI can be manipulated efficiently. We show here that (M - nH)(n-) ion net charge of proteins and RNA can be controlled efficiently by the addition of organic bases to the electrosprayed solution. Our study also highlights the fact that ion formation in ESI in negative mode is only poorly understood. PMID:22006635

  4. Ionization of water molecules by fast charged projectiles

    SciTech Connect

    Dubois, A.; Carniato, S.; Fainstein, P. D.; Hansen, J. P.

    2011-07-15

    Single-ionization cross sections of water molecules colliding with fast protons are calculated from lowest-order perturbation theory by taking all electrons and molecular orientations consistently into account. Explicit analytical formulas based on the peaking approximation are obtained for differential ionization cross sections with the partial contribution from the various electron orbitals accounted for. The results, which are in very good agreement with total and partial cross sections at high electron and projectile energies, display a strong variation on molecular orientation and molecular orbitals.

  5. Charge migration induced by attosecond pulses in bio-relevant molecules

    NASA Astrophysics Data System (ADS)

    Calegari, Francesca; Trabattoni, Andrea; Palacios, Alicia; Ayuso, David; Castrovilli, Mattea C.; Greenwood, Jason B.; Decleva, Piero; Martín, Fernando; Nisoli, Mauro

    2016-07-01

    After sudden ionization of a large molecule, the positive charge can migrate throughout the system on a sub-femtosecond time scale, purely guided by electronic coherences. The possibility to actively explore the role of the electron dynamics in the photo-chemistry of bio-relevant molecules is of fundamental interest for understanding, and perhaps ultimately controlling, the processes leading to damage, mutation and, more generally, to the alteration of the biological functions of the macromolecule. Attosecond laser sources can provide the extreme time resolution required to follow this ultrafast charge flow. In this review we will present recent advances in attosecond molecular science: after a brief description of the results obtained for small molecules, recent experimental and theoretical findings on charge migration in bio-relevant molecules will be discussed.

  6. Gold plasmonic effects on charge transport through single molecule junctions

    NASA Astrophysics Data System (ADS)

    Adak, Olgun; Venkataraman, Latha

    2014-03-01

    We study the impact of surface plasmon polaritons, the coupling of electromagnetic waves to collective electron oscillations on metal surfaces, on the conductance of single-molecule junctions. We use a scanning-tunneling microscope based break junction setup that is built into an optical microscope to form molecular junctions. Coherent 685nm light is used to illuminate the molecular junctions formed with 4,4'-bipyridine with diffraction limited focusing performance. We employ a lock-in type technique to measure currents induced by light. Furthermore, the thermal expansion due to laser heating is mimicked by mechanically modulating inter-electrode separation. For each junction studied, we measure current, and use AC techniques to determine molecular junction resonance levels and coupling strengths. We use a cross correlations analysis technique to analyze and compare the effect of light to that of the mechanical modulation. Our results show that junction transmission characteristics are not altered under illumination, within the resolution of our instrument. We argue that photo-currents measured with lock-in techniques in these kinds of structures are due to thermal effects. This work was funded by the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an EFRC funded by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DESC0001085.

  7. Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions

    NASA Astrophysics Data System (ADS)

    Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-03-01

    Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions.

  8. Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions

    PubMed Central

    Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions. PMID:25736094

  9. Crystal growth of new charge-transfer salts based on π-conjugated donor molecules

    NASA Astrophysics Data System (ADS)

    Morherr, Antonia; Witt, Sebastian; Chernenkaya, Alisa; Bäcker, Jan-Peter; Schönhense, Gerd; Bolte, Michael; Krellner, Cornelius

    2016-09-01

    New charge transfer crystals of π-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure are reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-Fx, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with π-conjugated donor molecules.

  10. Changes in mitochondrial surface charge mediate recruitment of signaling molecules during apoptosis.

    PubMed

    Heit, Bryan; Yeung, Tony; Grinstein, Sergio

    2011-01-01

    Electrostatic interactions with negative lipids contribute to the subcellular localization of polycationic proteins. In situ measurements using cytosolic probes of surface charge indicate that normal mitochondria are not noticeably electronegative. However, during apoptosis mitochondria accrue negative charge and acquire the ability to attract cationic proteins, including K-Ras. The marked increase in the surface charge of mitochondria occurs early in apoptosis, preceding depolarization of their inner membrane, cytochrome c release, and flipping of phosphatidylserine across the plasmalemma. Using novel biosensors, we determined that the increased electronegativity of the mitochondria coincided with and was likely attributable to increased exposure of cardiolipin, which is dianionic. Ectopic (over)expression of cardiolipin-binding proteins precluded the increase in surface charge and inhibited apoptosis, implying that mitochondrial exposure of negatively charged lipids is required for progression of programmed cell death. PMID:20926778

  11. Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles

    NASA Astrophysics Data System (ADS)

    Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Zhao, Gongpu; Sun, Kai; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.

    2014-05-01

    Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles and bionic combination of properties as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle.

  12. Aberration of a negative ion beam caused by space charge effect.

    PubMed

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  13. Differing roles for B7 and intercellular adhesion molecule-1 in negative selection of thymocytes

    PubMed Central

    1996-01-01

    To ensure self tolerance, immature thymocytes with high binding affinity for self peptides linked to major histocompatibility complex (MHC) molecules are eliminated in situ via apoptosis (negative selection). The roles of two costimulatory molecules, B7-1 and intercellular adhesion molecule-1 (ICAM-1), in negative selection was examined by studying apoptosis of T cell receptor transgenic CD4+8+ thymocytes cultured with specific peptides presented by MHC class I- transfected Drosophila cells. When coexpressed on these cells, B7-1 and ICAM-1 act synergistically and cause strong class 1-restricted negative selection of thymocytes. When expressed separately, however, B7-1 and ICAM-1 display opposite functions: negative selection is augmented by B7-1, but is inhibited by ICAM-1. It is notable that B7-1 is expressed selectively in the thymic medulla, whereas ICAM-1 is expressed throughout the thymus. Because of this distribution, the differing functions of B7-1 and ICAM-1 may dictate the sites of positive and negative selection. Thus, in the cortex, the presence of ICAM-1, but not B7-1, on the cortical epithelium may preclude or reduce negative selection and thereby promote positive selection. Conversely, the combined expression of B7-1 and ICAM-1 may define the medulla as the principal site of negative selection. PMID:8760806

  14. Interactions of PAMAM dendrimers with negatively charged model biomembranes.

    PubMed

    Yanez Arteta, Marianna; Ainalem, Marie-Louise; Porcar, Lionel; Martel, Anne; Coker, Helena; Lundberg, Dan; Chang, Debby P; Soltwedel, Olaf; Barker, Robert; Nylander, Tommy

    2014-11-13

    We have investigated the interactions between cationic poly(amidoamine) (PAMAM) dendrimers of generation 4 (G4), a potential gene transfection vector, with net-anionic model biomembranes composed of different ratios of zwitterionic phosphocholine (PC) and anionic phospho-L-serine (PS) phospholipids. Two types of model membranes were used: solid-supported bilayers, prepared with lipids carrying palmitoyl-oleoyl (PO) and diphytanoyl (DPh) acyl chains, and free-standing bilayers, formed at the interface between two aqueous droplets in oil (droplet interface bilayers, DIBs) using the DPh-based lipids. G4 dendrimers were found to translocate through POPC:POPS bilayers deposited on silica surfaces. The charge density of the bilayer affects translocation, which is reduced when the ionic strength increases. This shows that the dendrimer-bilayer interactions are largely controlled by their electrostatic attraction. The structure of the solid-supported bilayers remains intact upon translocation of the dendrimer. However, the amount of lipids in the bilayer decreases and dendrimer/lipid aggregates are formed in bulk solution, which can be deposited on the interfacial layers upon dilution of the system with dendrimer-free solvent. Electrophysiology measurements on DIBs confirm that G4 dendrimers cross the lipid membranes containing PS, which then become more permeable to ions. The obtained results have implications for PAMAM dendrimers as delivery vehicles to cells. PMID:25310456

  15. The chemical hardness of molecules and the band gap of solids within charge equilibration formalisms. Toward force field-based simulations of redox reactions

    NASA Astrophysics Data System (ADS)

    Müser, M. H.

    2012-04-01

    This work finds that different charge equilibration methods lead to qualitatively different responses of molecules and solids to an excess charge. The investigated approaches are the regular charge equilibration (QE), the atom-atom-charge transfer (AACT), and the split-charge equilibration (SQE) method. In QE, the hardness of molecules and the band gap of solids approaches zero at large particle numbers, affirming the claim that QE induces metallic behavior. AACT suffers from producing negative values of the hardness; moreover valence and conduction bands of solids cross. In contrast to these methods, SQE can reproduce the generic behavior of dielectric molecules or solids. Moreover, first quantitative results for the NaCl molecule are promising. The results derived in this work may have beneficial implications for the modeling of redox reactions. They reveal that by introducing formal oxidation states into force field-based simulations it will become possible to simulate redox reactions including non-equilibrium contact electrification, voltage-driven charging of galvanic cells, and the formation of zwitterionic molecules.

  16. Reversible Tuning of Interfacial and Intramolecular Charge Transfer in Individual MnPc Molecules.

    PubMed

    Zhong, Jian-Qiang; Wang, Zhunzhun; Zhang, Jia Lin; Wright, Christopher A; Yuan, Kaidi; Gu, Chengding; Tadich, Anton; Qi, Dongchen; Li, He Xing; Lai, Min; Wu, Kai; Xu, Guo Qin; Hu, Wenping; Li, Zhenyu; Chen, Wei

    2015-12-01

    The reversible selective hydrogenation and dehydrogenation of individual manganese phthalocyanine (MnPc) molecules has been investigated using photoelectron spectroscopy (PES), low-temperature scanning tunneling microscopy (LT-STM), synchrotron-based near edge X-ray absorption fine structure (NEXAFS) measurements, and supported by density functional theory (DFT) calculations. It is shown conclusively that interfacial and intramolecular charge transfer arises during the hydrogenation process. The electronic energetics upon hydrogenation is identified, enabling a greater understanding of interfacial and intramolecular charge transportation in the field of single-molecule electronics.

  17. Reversible Tuning of Interfacial and Intramolecular Charge Transfer in Individual MnPc Molecules.

    PubMed

    Zhong, Jian-Qiang; Wang, Zhunzhun; Zhang, Jia Lin; Wright, Christopher A; Yuan, Kaidi; Gu, Chengding; Tadich, Anton; Qi, Dongchen; Li, He Xing; Lai, Min; Wu, Kai; Xu, Guo Qin; Hu, Wenping; Li, Zhenyu; Chen, Wei

    2015-12-01

    The reversible selective hydrogenation and dehydrogenation of individual manganese phthalocyanine (MnPc) molecules has been investigated using photoelectron spectroscopy (PES), low-temperature scanning tunneling microscopy (LT-STM), synchrotron-based near edge X-ray absorption fine structure (NEXAFS) measurements, and supported by density functional theory (DFT) calculations. It is shown conclusively that interfacial and intramolecular charge transfer arises during the hydrogenation process. The electronic energetics upon hydrogenation is identified, enabling a greater understanding of interfacial and intramolecular charge transportation in the field of single-molecule electronics. PMID:26528623

  18. Auger electron spectroscopy as a tool for measuring intramolecular charges of adsorbed molecules

    NASA Astrophysics Data System (ADS)

    Magkoev, T. T.

    A way for the determination of the values of intramolecular charges of adsorbed molecules of some binary dielectrics, based on Auger electron spectroscopy (AES), is proposed. These values can be obtained from the coverage dependences of the ratios of intensities of anion KL 23L 23 and KL 1L 1 Auger transitions, which are sensitive to the amount of charge at the 2p-orbitals. As an example, MgO adsorbed on Mo(110) is presented.

  19. Auger electron spectroscopy as a tool for measuring intramolecular charges of adsorbed molecules

    NASA Astrophysics Data System (ADS)

    Magkoev, T. T.

    1993-10-01

    A way for the determination of the values of intramolecular charges of adsorbed molecules of some binary dielectrics, based on Auger electron spectroscopy (AES), is proposed. These values can be obtained from the coverage dependences of the ratios of intensities of anion KL 23L 23 and KL 1L 1 Auger transitions, which are sensitive to the amount of charge at the 2p-orbitals. As an example, MgO adsorbed on Mo(110) is presented.

  20. Storage of charge carriers on emitter molecules in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Weichsel, Caroline; Burtone, Lorenzo; Reineke, Sebastian; Hintschich, Susanne I.; Gather, Malte C.; Leo, Karl; Lüssem, Björn

    2012-08-01

    Organic light-emitting diodes (OLEDs) using the red phosphorescent emitter iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) [Ir(MDQ)2(acac)] are studied by time-resolved electroluminescence measurements. A transient overshoot after voltage turn-off is found, which is attributed to electron accumulation on Ir(MDQ)2(acac) molecules. The mechanism is verified via impedance spectroscopy and by application of positive and negative off-voltages. We calculate the density of accumulated electrons and find that it scales linearly with the doping concentration of the emitter. Using thin quenching layers, we locate the position of the emission zone during normal OLED operation and after voltage turn-off. In addition, the transient overshoot is also observed in three-color white-emitting OLEDs. By time- and spectrally resolved measurements using a streak camera, we directly attribute the overshoot to electron accumulation on Ir(MDQ)2(acac). We propose that similar processes are present in many state-of-the-art OLEDs and believe that the quantification of charge carrier storage will help to improve the efficiency of OLEDs.

  1. Photoinduced charge transfer from vacuum-deposited molecules to single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Osada, Kazuki; Tanaka, Masatoshi; Ohno, Shinya; Suzuki, Takanori

    2016-06-01

    Variations of photoluminescence (PL) and Raman spectra of single-layer MoS2, MoSe2, WS2, and WSe2 due to the vacuum deposition of C60 or copper phthalocyanine (CuPc) molecules have been investigated. PL spectra are decomposed into two competitive components, an exciton and a charged exciton (trion), depending on carrier density. The variation of PL spectra is interpreted in terms of charge transfer across the interfaces between transition metal dichalcogenides (TMDs) and dopant molecules. We find that deposited C60 molecules inject photoexcited electrons into MoS2, MoSe2, and WS2 or holes into WSe2. CuPc molecules also inject electrons into MoS2, MoSe2, and WS2, while holes are depleted from WSe2 to CuPc. We then propose a band alignment between TMDs and dopant molecules. Peak shifts of Raman spectra and doped carrier density estimated using a three-level model also support the band alignment. We thus demonstrate photoinduced charge transfer from dopant molecules to single-layer TMDs.

  2. The influence of negative charged centers on the hole transport in a typical molecularly doped polymer

    NASA Astrophysics Data System (ADS)

    Tyutnev, Andrey P.; Ikhsanov, Renat Sh.; Saenko, Vladimir S.; Pozhidaev, Evgenii D.

    2014-03-01

    We have studied effects of the negative charged centers on the time of flight (TOF) curves measured in a typical hole-conducting molecularly doped polymer. The main effects are the unusual TOF (surface generation) current rise in the preflight region (be it a flat plateau or a cusp) due to the accumulated space charge and the current reduction at all times because of the monomolecular recombination. TOF-2 (bulk generation) transients are less sensitive to charged centers. Analysis of these effects has proved that charged centers do not change the carrier mobility provided that the space charge field and bimolecular recombination are properly accounted for in terms of the proposed two-layer MT model. We have shown that combination of TOF, TOF-1a and TOF-2 variants of the electron-gun based technique allows one to establish definitively the character of the charge carrier transport in MDPs.

  3. The Role of Negative Charge in the Delivery of Quantum Dots to Neurons

    PubMed Central

    Walters, Ryan; Medintz, Igor L.; Delehanty, James B.; Stewart, Michael H.; Susumu, Kimihiro; Huston, Alan L.; Dawson, Philip E.

    2015-01-01

    Despite our extensive knowledge of the structure of negatively charged cell surface proteoglycans and sialoglycoconjugates in the brain, we have little understanding of how their negative charge contributes to brain function. We have previously shown that intensely photoluminescent 9-nm diameter quantum dots (QDs) with a CdSe core, a ZnS shell, and a negatively charged compact molecular ligand coating (CL4) selectively target neurons rather than glia. We now provide an explanation for this selective neuronal delivery. In this study, we compared three zwitterionic QD coatings differing only in their regions of positive or negative charge, as well as a positively charged (NH2) polyethylene glycol (PEG) coat, for their ability to deliver the cell-membrane-penetrating chaperone lipopeptide JB577 (WG(Palmitoyl)VKIKKP9G2H6) to individual cells in neonatal rat hippocampal slices. We confirm both that preferential uptake in neurons, and the lack of uptake in glia, is strongly associated with having a region of greater negative charge on the QD coating. In addition, the role of negatively charged chondroitin sulfate of the extracellular matrix (ECM) in restricting uptake was further suggested by digesting neonatal rat hippocampal slices with chondroitinase ABC and showing increased uptake of QDs by oligodendrocytes. Treatment still did not affect uptake in astrocytes or microglia. Finally, the future potential of using QDs as vehicles for trafficking proteins into cells continues to show promise, as we show that by administering a histidine-tagged green fluorescent protein (eGFP-His6) to hippocampal slices, we can observe neuronal uptake of GFP. PMID:26243591

  4. The Role of Negative Charge in the Delivery of Quantum Dots to Neurons.

    PubMed

    Walters, Ryan; Medintz, Igor L; Delehanty, James B; Stewart, Michael H; Susumu, Kimihiro; Huston, Alan L; Dawson, Philip E; Dawson, Glyn

    2015-01-01

    Despite our extensive knowledge of the structure of negatively charged cell surface proteoglycans and sialoglycoconjugates in the brain, we have little understanding of how their negative charge contributes to brain function. We have previously shown that intensely photoluminescent 9-nm diameter quantum dots (QDs) with a CdSe core, a ZnS shell, and a negatively charged compact molecular ligand coating (CL4) selectively target neurons rather than glia. We now provide an explanation for this selective neuronal delivery. In this study, we compared three zwitterionic QD coatings differing only in their regions of positive or negative charge, as well as a positively charged (NH2) polyethylene glycol (PEG) coat, for their ability to deliver the cell-membrane-penetrating chaperone lipopeptide JB577 (WG(Palmitoyl)VKIKKP9G2H6) to individual cells in neonatal rat hippocampal slices. We confirm both that preferential uptake in neurons, and the lack of uptake in glia, is strongly associated with having a region of greater negative charge on the QD coating. In addition, the role of negatively charged chondroitin sulfate of the extracellular matrix (ECM) in restricting uptake was further suggested by digesting neonatal rat hippocampal slices with chondroitinase ABC and showing increased uptake of QDs by oligodendrocytes. Treatment still did not affect uptake in astrocytes or microglia. Finally, the future potential of using QDs as vehicles for trafficking proteins into cells continues to show promise, as we show that by administering a histidine-tagged green fluorescent protein (eGFP-His6) to hippocampal slices, we can observe neuronal uptake of GFP. PMID:26243591

  5. A Model of Ball Lightning as a Formation of Water Molecules Confining an Electric Charge and the Classical Theory of the Electron

    NASA Astrophysics Data System (ADS)

    Tennakone, K.

    2012-04-01

    Ball lightning or faintly luminous floating spheres with radii of the order of ten centimeters appearing transiently in air notably during stormy weather continue to remain an unresolved phenomenon. It is suggested that these objects are organized structures constituted of an electrically charged spherical thin shell of electro-frozen dipole oriented water molecules carrying an electric charge, balanced by the internal negative pressure and outward electrostatic stress. A model presented, resembling the classical theory of the electron with Poincare stresses explain almost all observed attributes of this phenomenon. The possibility of realizing macroscopic spherical surface charge distributions in the vacuum and their implication on the problem of electron are commented.

  6. Luminescent systems based on the isolation of conjugated PI systems and edge charge compensation with polar molecules on a charged nanostructured surface

    DOEpatents

    Ivanov, Ilia N.; Puretzky, Alexander A.; Zhao, Bin; Geohegan, David B.; Styers-Barnett, David J.; Hu, Hui

    2014-07-15

    A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.

  7. Framework selection can influence pharmacokinetics of a humanized therapeutic antibody through differences in molecule charge

    PubMed Central

    Li, Bing; Tesar, Devin; Boswell, C Andrew; Cahaya, Hendry S; Wong, Anne; Zhang, Jianhuan; Meng, Y Gloria; Eigenbrot, Charles; Pantua, Homer; Diao, Jinyu; Kapadia, Sharookh B; Deng, Rong; Kelley, Robert F

    2014-01-01

    Pharmacokinetic (PK) testing of a humanized (κI, VH3 framework) and affinity matured anti-hepatitis C virus E2-glycoprotein (HCV-E2) antibody (hu5B3.κ1VH3.v3) in rats revealed unexpected fast clearance (34.9 mL/day/kg). This antibody binds to the rat recycling receptor FcRn as expected for a human IgG1 antibody and does not display non-specific binding to baculovirus particles in an assay that is correlated with fast clearance in cynomolgus monkey. The antigen is not expressed in rat so target-dependent clearance does not contribute to PK. Removal of the affinity maturation changes (hu5B3.κ1VH3.v1) did not restore normal clearance. The antibody was re-humanized on a κ4, VH1 framework and the non-affinity matured version (hu5B3.κ4VH1.v1) was shown to have normal clearance (8.5 mL/day/kg). Since the change in framework results in a lower pI, primarily due to more negative charge on the κ4 template, the effect of additional charge variation on antibody PK was tested by incorporating substitutions obtained through phage display affinity maturation of hu5B3.κ1VH3.v1. A variant having a pI of 8.61 gave very fast clearance (140 mL/day/kg) whereas a molecule with pI of 6.10 gave slow clearance (5.8 mL/kg/day). Both antibodies exhibited comparable binding to rat FcRn, but biodistribution experiments showed that the high pI variant was catabolized in liver and spleen. These results suggest antibody charge can have an effect on PK through alterations in antibody catabolism independent of FcRn-mediated recycling. Furthermore, introduction of affinity maturation changes into the lower pI framework yielded a candidate with PK and virus neutralization properties suitable for clinical development. PMID:25517310

  8. Cell proliferation and cell sheet detachment from the positively and negatively charged nanocomposite hydrogels.

    PubMed

    Liu, Dan; Wang, Tao; Liu, Xinxing; Tong, Zhen

    2014-01-01

    The charged nanocomposite hydrogels (NC gels) were synthesized by copolymerization of positively or negatively chargeable monomer with N-isopropylacrylamide (NIPAm) in the aqueous suspension of hectorite clay. The ionic NC gels preserved the thermo-responsibility with the phase-transition temperature below 37°C. The L929 cell proliferation was sensitive to charge polarity and charge density. As compared to the PNIPAm NC gel, the cationic NC gels with <5 mol % of 2-(dimethylamino)ethyl methacrylate (DMAEMA) showed improved cell proliferation, whereas the cells grew slowly on the gels with negatively charged 2-acrylamido-2-methylpropane sulfonic acid (AMPSNa). By lowering temperature, rapid cell sheet detachment was observed from the surface of ionic NC gels with 1 mol % of ionizable monomers. However, lager amount of AMPSNa or DMAEMA did not support rapid cell sheet detachment, probably owing to the adverse swelling effects and/or enhanced electrostatic attraction.

  9. Presence of negative charge on the basal planes of New York talc.

    PubMed

    Burdukova, E; Becker, M; Bradshaw, D J; Laskowski, J S

    2007-11-01

    Potentiometric titration measurements as well as rheological measurements of talc aqueous suspensions indicate that the behavior of the New York talc particles is consistent with the presence of a negative charge on their basal planes. The possibility of the presence of a negative electrical charge on the basal planes of talc particles is analyzed in this paper. Samples of New York talc were studied using electron microprobe analysis and dehydration techniques and the exact chemical formula of New York talc was determined. It was found that there exists a deficiency of protons in the tetrahedral layers of talc, resulting from substitution of Si(4+) ions with Al(3+) and Ti(3+) ions. The comparison of the level of substitution of Si(4+) ions with ions of a lower valency was found to be of a similar order of magnitude as that found in other talc deposits. This strongly points to the presence of a negative charge on the talc basal planes.

  10. Dust acoustic solitary wave with variable dust charge: Role of negative ions

    SciTech Connect

    Ghosh, Samiran

    2005-09-15

    The role of negative ions on small but finite amplitude dust acoustic solitary wave including the effects of high and low charging rates of dust grains compared to the dust oscillation frequency in electronegative dusty plasma is investigated. In the case of high charging rate, the solitary wave is governed by Korteweg-de Vries (KdV) equation, but in the case of low charging rate, it is governed by KdV equation with a linear damping term. Numerical investigations reveal that in both cases dust acoustic soliton sharpens (flatens) and soliton width decreases (increases) with the increase of negative-ion number density (temperature). Also, the negative ions reduce the damping rate.

  11. Process for preparing negative plates for use in a dry charge battery

    SciTech Connect

    Wegner, P.C.

    1986-02-11

    This patent describes a process for the production of lead-containing negative plates for use in a dry charge battery. The process cnsists of drying wet negative plates while protecting them from oxidation. This improvement is accomplished by treating the wet negative plates prior to the drying operation with an aqueous soluton of an oxidation inhibiting agent selected from salicylic acid, and 2-naphtol. The plates are then protected against oxidation during drying; and dry negative plates are obtained which are resistant to the absorption of water from the atmosphere on storage but are wet immediately by battery acid in use.

  12. Unsupervised vector-based classification of single-molecule charge transport data

    NASA Astrophysics Data System (ADS)

    Lemmer, Mario; Inkpen, Michael S.; Kornysheva, Katja; Long, Nicholas J.; Albrecht, Tim

    2016-10-01

    The stochastic nature of single-molecule charge transport measurements requires collection of large data sets to capture the full complexity of a molecular system. Data analysis is then guided by certain expectations, for example, a plateau feature in the tunnelling current distance trace, and the molecular conductance extracted from suitable histogram analysis. However, differences in molecular conformation or electrode contact geometry, the number of molecules in the junction or dynamic effects may lead to very different molecular signatures. Since their manifestation is a priori unknown, an unsupervised classification algorithm, making no prior assumptions regarding the data is clearly desirable. Here we present such an approach based on multivariate pattern analysis and apply it to simulated and experimental single-molecule charge transport data. We demonstrate how different event shapes are clearly separated using this algorithm and how statistics about different event classes can be extracted, when conventional methods of analysis fail.

  13. Spin-boson theory for charge photogeneration in organic molecules: Role of quantum coherence

    NASA Astrophysics Data System (ADS)

    Yao, Yao

    2015-01-01

    The charge photogeneration process in organic molecules is investigated by a quantum heat engine model, in which two molecules are modeled by a two-spin system sandwiched between two bosonic baths. The two baths represent the high-temperature photon emission source and the low-temperature phonon environment, respectively. We utilize the time-dependent density matrix renormalization group algorithm to investigate the quantum dynamics of the model. It is found that the transient energy current flowing through the two molecules exhibits two stages. In the first stage the energy current is of a coherent feature and represents the ultrafast delocalization of the charge-transfer state, and in the second stage a steady incoherent current is established. The power conversion efficiency is significantly high and may reach the maximum value of 93 % with optimized model parameters. The long-lived quantum entanglement between the two spins is found to be primarily responsible for the hyperefficiency.

  14. Charge Manipulation in Molecules Encapsulated Inside Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yanagi, Kazuhiro; Moriya, Rieko; Cuong, Nguyen Thanh; Otani, Minoru; Okada, Susumu

    2013-02-01

    We report clear experimental evidence for the charge manipulation of molecules encapsulated inside single-wall carbon nanotubes (SWCNTs) using electrochemical doping techniques. We encapsulated β-carotene (Car) inside SWCNTs and clarified electrochemical doping characteristics of their Raman spectra. C=C streching modes of encapsulated Car and a G band of SWCNTs showed clearly different doping behaviors as the electrochemical potentials were shifted. Electron extraction from encapsulated Car was clearly achieved. However, electrochemical characteristics of Car inside SWCNTs and doping mechanisms elucidated by calculations based on density-functional theory indicate the difficulty of charge manipulation of molecules inside SWCNTs due to the presence of strong on-site Coulomb repulsion energy at the molecules.

  15. Beam splitter for guided polar molecules with a Y-shaped charged wire.

    PubMed

    Deng, Lianzhong; Yin, Jianping

    2007-06-15

    We propose a beam splitter for cold polar molecules in weak-field-seeking states that uses a Y-shaped charged wire half embedded in a substrate and sandwiched by a charged metallic parallel-plate capacitor. We demonstrate our molecular-beam splitter and study its dynamic beam-splitting process for the guided cold molecules by using Monte Carlo simulation. Our study shows that cold polar molecules from a supersonic beam source with a mean velocity of a few hundred meters per second can be split with a fixed 0.5/0.5 splitting ratio, and an adjustable splitting ratio of about 0.03-0.97 can be realized by introducing a small alteration to the scheme.

  16. Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces

    NASA Astrophysics Data System (ADS)

    Cappel, Ute B.; Moia, Davide; Bruno, Annalisa; Vaissier, Valerie; Haque, Saif A.; Barnes, Piers R. F.

    2016-02-01

    Excited state dynamics and photo-induced charge transfer of dye molecules have been widely studied due to their relevance for organic and dye-sensitised solar cells. Herein, we present a femtosecond transient absorption spectroscopy study of the indolene dye D131 when adsorbed to inert Al2O3 substrates for different surface concentration of the dye. Surprisingly, we find that at high surface concentrations, the first singlet excited state of the dye is converted into a new state with an efficiency of about 80%. We assign the absorption features of this state to the oxidised dye and discuss the possibility of photo-induced charge separation between neighboring dye molecules. Our study is the first to show that this process can be highly efficient without the use of donor and acceptor molecules of different chemical structures.

  17. Unsupervised vector-based classification of single-molecule charge transport data

    PubMed Central

    Lemmer, Mario; Inkpen, Michael S.; Kornysheva, Katja; Long, Nicholas J.; Albrecht, Tim

    2016-01-01

    The stochastic nature of single-molecule charge transport measurements requires collection of large data sets to capture the full complexity of a molecular system. Data analysis is then guided by certain expectations, for example, a plateau feature in the tunnelling current distance trace, and the molecular conductance extracted from suitable histogram analysis. However, differences in molecular conformation or electrode contact geometry, the number of molecules in the junction or dynamic effects may lead to very different molecular signatures. Since their manifestation is a priori unknown, an unsupervised classification algorithm, making no prior assumptions regarding the data is clearly desirable. Here we present such an approach based on multivariate pattern analysis and apply it to simulated and experimental single-molecule charge transport data. We demonstrate how different event shapes are clearly separated using this algorithm and how statistics about different event classes can be extracted, when conventional methods of analysis fail. PMID:27694904

  18. Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces

    PubMed Central

    Cappel, Ute B.; Moia, Davide; Bruno, Annalisa; Vaissier, Valerie; Haque, Saif A.; Barnes, Piers R. F.

    2016-01-01

    Excited state dynamics and photo-induced charge transfer of dye molecules have been widely studied due to their relevance for organic and dye-sensitised solar cells. Herein, we present a femtosecond transient absorption spectroscopy study of the indolene dye D131 when adsorbed to inert Al2O3 substrates for different surface concentration of the dye. Surprisingly, we find that at high surface concentrations, the first singlet excited state of the dye is converted into a new state with an efficiency of about 80%. We assign the absorption features of this state to the oxidised dye and discuss the possibility of photo-induced charge separation between neighboring dye molecules. Our study is the first to show that this process can be highly efficient without the use of donor and acceptor molecules of different chemical structures. PMID:26891851

  19. Single molecule detection using charge-coupled device array technology. Technical progress report

    SciTech Connect

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  20. Bionic design for surface optimization combining hydrophilic and negative charged biological macromolecules.

    PubMed

    Ran, Fen; Song, Haiming; Niu, Xiaoqin; Yang, Aimei; Nie, Shengqiang; Wang, Lingren; Li, Jie; Sun, Shudong; Zhao, Changsheng

    2014-06-01

    While polyethersulfone (PES) membrane represents a promising option for blood purification, the blood compatibility must be dramatically enhanced to meet today's ever-increasing demands for many emerging application. In this study, we report a bionic design for optimization and development of a modified PES membrane combining hydrophilic and negative charged biological macromolecules on its surface. The hydrophilic and ionic charged biological macromolecules sulfonated poly(styrene)-b-poly(methyl methacrylate)-b-poly-(styrene) (PSSMSS) and poly(vinyl pyrrolidone)-b-poly(methyl methacrylate)-b-poly-(vinyl pyrrolidone) were synthesized via reversible addition-fragmentation chain transfer polymerization and used together to modify PES membranes by blending method. A hydrophilic membrane surface with negative charged surface coating was obtained, imitating the hydrophilic and negatively charged structure feature of heparin. The modified PES membranes showed suppressed platelet adhesion, and a prolonged blood clotting time, and thereby improved blood compatibility. In addition, the blood clotting time of the modified membranes increased with the blended PSSMSS amounts increment, indicating that both the hydrophilic and negative charged groups play important roles in improving the blood compatibility of PES membranes.

  1. Negative space charge effects in photon-enhanced thermionic emission solar converters

    SciTech Connect

    Segev, G.; Weisman, D.; Rosenwaks, Y.; Kribus, A.

    2015-07-06

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionic converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.

  2. The description of charge transfer in fast negative ions scattering on water covered Si(100) surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Qiu, Shunli; Liu, Pinyang; Xiong, Feifei; Lu, Jianjie; Liu, Yuefeng; Li, Guopeng; Liu, Yiran; Ren, Fei; Xiao, Yunqing; Gao, Lei; Zhao, Qiushuang; Ding, Bin; Li, Yuan; Guo, Yanling; Chen, Ximeng

    2016-11-01

    Doping has significantly affected the characteristics and performance of semiconductor electronic devices. In this work, we study the charge transfer processes for 8.5-22.5 keV C- and F- ions scattering on H2O-terminated p-type Si(100) surfaces with two different doping concentrations. We find that doping has no influence on negative-ion formation for fast collisions in this relatively high energy range. Moreover, we build a model to calculate negative ion fractions including the contribution from positive ions. The calculations support the nonadiabatic feature of charge transfer.

  3. Negative photoion spectroscopy of freon molecules in the vicinity of the Cl 2p edge

    SciTech Connect

    Scully, S.W.J.; Mackie, R.A.; Browning, R.; Dunn, K.F.; Latimer, C.J.

    2004-10-01

    Polar photodissociation of CF{sub n}Cl{sub 4-n} (n=0-2) has been studied using synchrotron radiation within the energy range 195-217 eV. The first observations of negative photoion fragments from these molecules after core excitation are reported. In addition to observing a number of previously known resonances two additional resonant states, just above the Cl 2p ionization limit, are observed and play an important role in the polar photodissociation process. The difficulties in identifying these above threshold spin-split features using negative photoion spectroscopy are discussed.

  4. Adhesion, stretching, and electrical charge assessment of dermatan sulfate molecules by colloidal probes.

    PubMed

    Gonzalez, Rodrigo; Caballero, Leonardo; Pavez, Jorge; Melo, Francisco

    2012-06-26

    Electrical and mechanical properties of dermatan sulfate (DS) molecules are studied in an aqueous environment as a function of pH. DS molecules linked at various points distributed on the surface of mica previously silanizated along with a suitable functionalized microsphere, attached to the cantilever of an atomic force microscope (AFM), provided suitable surfaces for testing interactions through the colloidal probe methodology. The repulsive force between the surfaces indicated that the charge of DS increases with pH as a result of the gradual deprotonation of acidic groups. Pulling experiments revealed increasing adhesion of DS to the monolayer as a function of pH, presumably due both to the electrical nature of the interaction between these molecules and the progressive increase of the charge of DS with pH. Serrations exhibited by the force in pulling experiments indicate that more than a single DS molecule is stretched at the same time. In addition, pulling force remained significant even at extensions that went beyond the average contour length of a single DS molecule, which suggests the existence of a significant link between DS molecules.

  5. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions.

    PubMed

    Majeed, Hamid; Liu, Fei; Hategekimana, Joseph; Sharif, Hafiz Rizwan; Qi, Jing; Ali, Barkat; Bian, Yuan-Yuan; Ma, Jianguo; Yokoyama, Wallace; Zhong, Fang

    2016-04-15

    Clove oil (CO) anionic nanoemulsions were prepared with varying ratios of CO to canola oil (CA), emulsified and stabilized with purity gum ultra (PGU), a newly developed succinylated waxy maize starch. Interfacial tension measurements showed that CO acted as a co-surfactant and there was a gradual decrease in interfacial tension which favored the formation of small droplet sizes on homogenization until a critical limit (5:5% v/v CO:CA) was reached. Antimicrobial activity of the negatively charged CO nanoemulsion was determined against Gram positive GPB (Listeria monocytogenes and Staphylococcus aureus) and Gram negative GNB (Escherichia coli) bacterial strains using minimum inhibitory concentration (MIC) and a time kill dynamic method. Negatively charged PGU emulsified CO nanoemulsion showed prolonged antibacterial activities against Gram positive bacterial strains. We concluded that negatively charged CO nanoemulsion droplets self-assemble with GPB cell membrane, and facilitated interaction with cellular components of bacteria. Moreover, no electrostatic interaction existed between negatively charged droplets and the GPB membrane. PMID:26616926

  6. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions.

    PubMed

    Majeed, Hamid; Liu, Fei; Hategekimana, Joseph; Sharif, Hafiz Rizwan; Qi, Jing; Ali, Barkat; Bian, Yuan-Yuan; Ma, Jianguo; Yokoyama, Wallace; Zhong, Fang

    2016-04-15

    Clove oil (CO) anionic nanoemulsions were prepared with varying ratios of CO to canola oil (CA), emulsified and stabilized with purity gum ultra (PGU), a newly developed succinylated waxy maize starch. Interfacial tension measurements showed that CO acted as a co-surfactant and there was a gradual decrease in interfacial tension which favored the formation of small droplet sizes on homogenization until a critical limit (5:5% v/v CO:CA) was reached. Antimicrobial activity of the negatively charged CO nanoemulsion was determined against Gram positive GPB (Listeria monocytogenes and Staphylococcus aureus) and Gram negative GNB (Escherichia coli) bacterial strains using minimum inhibitory concentration (MIC) and a time kill dynamic method. Negatively charged PGU emulsified CO nanoemulsion showed prolonged antibacterial activities against Gram positive bacterial strains. We concluded that negatively charged CO nanoemulsion droplets self-assemble with GPB cell membrane, and facilitated interaction with cellular components of bacteria. Moreover, no electrostatic interaction existed between negatively charged droplets and the GPB membrane.

  7. Sprite produced by consecutive impulse charge transfers following a negative stroke: Observation and simulation

    NASA Astrophysics Data System (ADS)

    Lu, Gaopeng; Cummer, Steven A.; Tian, Ye; Zhang, Hongbo; Lyu, Fanchao; Wang, Tao; Stanley, Mark A.; Yang, Jing; Lyons, Walter A.

    2016-04-01

    On the morning of 5 June 2013, two cameras of the SpriteCam network concurrently captured a red sprite with diffuse halo over a mesoscale convective system (MCS) passing the panhandle area of Oklahoma. This sprite was produced by a negative cloud-to-ground (CG) stroke with peak current of -103 kA in a manner different from previous observations in several aspects. First of all, the causative stroke of sprite is located by the National Lightning Detection Network (NLDN) in the trailing stratiform of MCS, instead of the deep convection typically for negative sprites. Second, the sprite-producing stroke was likely the first stroke of a multistroke negative CG flash (with ≥6 CG strokes) whose evolution was mainly confined in the lower part of thunderstorm; although the parent flash of sprite might contain relatively long in-cloud evolution prior to the first stroke, there is no evidence that the negative leader had propagated into the upper positive region of thundercloud as typically observed for the sprite-producing/class negative CG strokes. Third, as shown by the simulation with a two-dimensional full-wave electrodynamic model, although the impulse charge moment change (-190 C km) produced by the main stroke was not sufficient to induce conventional breakdown in the mesosphere, a second impulse charge transfer occurred with ~2 ms delay to cause a substantial charge transfer (-290 C km) so that the overall charge moment change (-480 C km) exceeded the threshold for sprite production; this is a scenario different from the typical case discussed by Li et al. (2012). As for the source of the second current pulse that played a critical role to produce the sprite, it could be an M component whose charge source was at least 9 km horizontally displaced from the main stroke or a negative CG stroke (with weak peak current for the return stroke) that was not detected by the NLDN.

  8. Dynamic secondary electron emission characteristics of polymers in negative charging process

    NASA Astrophysics Data System (ADS)

    Weng, Ming; Hu, Tian-Cun; Zhang, Na; Cao, Meng

    2016-04-01

    We studied the dynamic secondary electron emission (SEE) characteristics of a polyimide sample in negative charging process under electron bombardment. The time evolution of secondary electron yield (SEY) has been measured with a pulsed electron gun. The dynamic SEY, as well as the surface potential have been analyzed using a capacitance model. The shift in surface potential caused by the negative charge accumulation on the sample reduces the landing energy of the primary electrons (PEs), which in turn alters the SEY. The charging process tends to be stable when the landing energy of PEs reaches the secondary crossover energy where the corresponding SEY is 1. The surface potential has an approximately negative exponential relationship with the irradiation time. The total accumulated charge at the stable state is found to be proportional to the product of the sample capacitance and the difference between initial incident energy and the secondary crossover energy. The time constant of the exponential function is proportional to the ratio of final accumulated charge to the incident current.

  9. Negative Ion CID Fragmentation of O-linked Oligosaccharide Aldoses—Charge Induced and Charge Remote Fragmentation

    NASA Astrophysics Data System (ADS)

    Doohan, Roisin A.; Hayes, Catherine A.; Harhen, Brendan; Karlsson, Niclas Göran

    2011-06-01

    Collision induced dissociation (CID) fragmentation was compared between reducing and reduced sulfated, sialylated, and neutral O-linked oligosaccharides. It was found that fragmentation of the [M - H]- ions of aldoses with acidic residues gave unique Z-fragmentation of the reducing end GalNAc containing the acidic C-6 branch, where the entire C-3 branch was lost. This fragmentation pathway, which is not seen in the alditols, showed that the process involved charge remote fragmentation catalyzed by a reducing end acidic anomeric proton. With structures containing sialic acid on both the C-3 and C-6 branch, the [M - H]- ions were dominated by the loss of sialic acid. This fragmentation pathway was also pronounced in the [M - 2H]2- ions revealing both the C-6 Z-fragment plus its complementary C-3 C-fragment in addition to glycosidic and cross ring fragmentation. This generation of the Z/C-fragment pairs from GalNAc showed that the charges were not participating in their generation. Fragmentation of neutral aldoses showed pronounced Z-fragmentation believed to be generated by proton migration from the C-6 branch to the negatively charged GalNAc residue followed by charge remote fragmentation similar to the acidic oligosaccharides. In addition, A-type fragments generated by charge induced fragmentation of neutral oligosaccharides were observed when the charge migrated from C-1 of the GalNAc to the GlcNAc residue followed by rearrangement to accommodate the 0,2A-fragmentation. LC-MS also showed that O-linked aldoses existed as interchangeable α/β pyranose anomers, in addition to a third isomer (25% of the total free aldose) believed to be the furanose form.

  10. Ion-exchange molecularly imprinted polymer for the extraction of negatively charged acesulfame from wastewater samples.

    PubMed

    Zarejousheghani, Mashaalah; Schrader, Steffi; Möder, Monika; Lorenz, Pierre; Borsdorf, Helko

    2015-09-11

    Acesulfame is a known indicator that is used to identify the introduction of domestic wastewater into water systems. It is negatively charged and highly water-soluble at environmental pH values. In this study, a molecularly imprinted polymer (MIP) was synthesized for negatively charged acesulfame and successfully applied for the selective solid phase extraction (SPE) of acesulfame from influent and effluent wastewater samples. (Vinylbenzyl)trimethylammonium chloride (VBTA) was used as a novel phase transfer reagent, which enhanced the solubility of negatively charged acesulfame in the organic solvent (porogen) and served as a functional monomer in MIP synthesis. Different molecularly imprinted polymers were synthesized to optimize the extraction capability of acesulfame. The different materials were evaluated using equilibrium rebinding experiments, selectivity experiments and scanning electron microscopy (SEM). The most efficient MIP was used in a molecularly imprinted-solid phase extraction (MISPE) protocol to extract acesulfame from wastewater samples. Using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) analysis, detection and quantification limits were achieved at 0.12μgL(-1) and 0.35μgL(-1), respectively. Certain cross selectivity for the chemical compounds containing negatively charged sulfonamide functional group was observed during selectivity experiments. PMID:26256920

  11. Ion-exchange molecularly imprinted polymer for the extraction of negatively charged acesulfame from wastewater samples.

    PubMed

    Zarejousheghani, Mashaalah; Schrader, Steffi; Möder, Monika; Lorenz, Pierre; Borsdorf, Helko

    2015-09-11

    Acesulfame is a known indicator that is used to identify the introduction of domestic wastewater into water systems. It is negatively charged and highly water-soluble at environmental pH values. In this study, a molecularly imprinted polymer (MIP) was synthesized for negatively charged acesulfame and successfully applied for the selective solid phase extraction (SPE) of acesulfame from influent and effluent wastewater samples. (Vinylbenzyl)trimethylammonium chloride (VBTA) was used as a novel phase transfer reagent, which enhanced the solubility of negatively charged acesulfame in the organic solvent (porogen) and served as a functional monomer in MIP synthesis. Different molecularly imprinted polymers were synthesized to optimize the extraction capability of acesulfame. The different materials were evaluated using equilibrium rebinding experiments, selectivity experiments and scanning electron microscopy (SEM). The most efficient MIP was used in a molecularly imprinted-solid phase extraction (MISPE) protocol to extract acesulfame from wastewater samples. Using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) analysis, detection and quantification limits were achieved at 0.12μgL(-1) and 0.35μgL(-1), respectively. Certain cross selectivity for the chemical compounds containing negatively charged sulfonamide functional group was observed during selectivity experiments.

  12. How Do Distance and Solvent Affect Halogen Bonding Involving Negatively Charged Donors?

    PubMed

    Chen, Zhaoqiang; Wang, Guimin; Xu, Zhijian; Wang, Jinan; Yu, Yuqi; Cai, Tingting; Shao, Qiang; Shi, Jiye; Zhu, Weiliang

    2016-09-01

    It was reported that negatively charged donors can form halogen bonding, which is stable, especially, in a polar environment. On the basis of a survey of the Protein Data Bank, we noticed that the distance between the negative charge center and the halogen atom of an organohalogen may vary greatly. Therefore, a series of model systems, composed of 4-halophenyl-conjugated polyene acids and ammonia, were designed to explore the potential effect of distance on halogen bonding in different solvents. Quantum mechanics (QM) calculations demonstrated that the longer the distance, the stronger the bonding. The energy decomposition analysis on all of the model systems demonstrated that electrostatic interaction contributes the most (44-56%) to the overall binding, followed by orbital interaction (42-36%). Natural bond orbital calculations showed that electron transfer takes place from the acceptor to the donor, whereas the halogen atom becomes more positive during the bonding, which is in agreement with the result of neutral halogen bonding. QM/molecular mechanics calculations demonstrated that the polarity of binding pockets makes all of the interactions attractive in a protein system. Hence, the strength of halogen bonding involving negatively charged donors could be adjusted by changing the distance between the negative charge center and halogen atom and the environment in which the bonding exists, which may be applied in material and drug design for tuning their function and activity. PMID:27504672

  13. Solvent-tuned intramolecular charge-recombination rates in a conjugated donor-acceptor molecule

    NASA Technical Reports Server (NTRS)

    Khundkar, Lutfur R.; Stiegman, A. E.; Perry, Joseph W.

    1990-01-01

    The nonradiative charge-recombination rates from the charge-transfer state of a new conjugated donor-acceptor molecule (p-cyano-p-prime-methylthiodiphenylacetylene) can be tuned over almost an order of magnitude by varying the polarity of the solvent. These measurements of intramolecular recombination show a turnover of rates as a function of emission energy, consistent with the 'normal' and 'inverted' behavior of Marcus theory. Steady-state spectra and time-resolved measurements make it possible to quantitatively compare thermal and optical electron-transfer rates as a function of driving force and demonstrate their correspondence.

  14. Charged particle flows in the beam extraction region of a negative ion source for NBI.

    PubMed

    Geng, S; Tsumori, K; Nakano, H; Kisaki, M; Ikeda, K; Osakabe, M; Nagaoka, K; Takeiri, Y; Shibuya, M; Kaneko, O

    2016-02-01

    Experiments by a four-pin probe and photodetachment technique were carried out to investigate the charged particle flows in the beam extraction region of a negative hydrogen ion source for neutral beam injector. Electron and positive ion flows were obtained from the polar distribution of the probe saturation current. Negative hydrogen ion flow velocity and temperature were obtained by comparing the recovery times of the photodetachment signals at opposite probe tips. Electron and positive ions flows are dominated by crossed field drift and ambipolar diffusion. Negative hydrogen ion temperature is evaluated to be 0.12 eV. PMID:26931985

  15. Poisson-Boltzmann theory for membranes with mobile charged lipids and the pH-dependent interaction of a DNA molecule with a membrane.

    PubMed Central

    Fleck, Christian; Netz, Roland R; von Grünberg, Hans Hennig

    2002-01-01

    We consider a planar stiff model membrane consisting of mobile surface groups whose state of charge depends on the pH and the ionic composition of the adjacent electrolyte solution. To calculate the mean-field interaction potential between a charged object and such a model membrane, one needs to solve a Poisson-Boltzmann boundary value problem. We here derive and discuss the boundary condition at the membrane surface, a condition that is generally appropriate for biological membranes where two charge-regulating mechanisms are present at the same time: the pH-dependent chemical charge regulation and a regulation through the in-plane mobility of the surface groups. As an application of this general formalism, we consider the specific example of a single DNA molecule, approximated by a cylinder with smeared-out surface charges, interacting with such a model membrane. We study the effect that the two competing charge-regulating mechanisms have on the DNA/membrane interaction and the distribution of surface ions in the plane of the membrane. We find that, at short DNA-membrane distances, membrane fluidity can have a considerable impact on the DNA adsorption behavior and can lead to such counterintuitive phenomena as the adsorption of a negatively charged DNA onto a (on average) negatively charged membrane. PMID:11751297

  16. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    SciTech Connect

    Zanni, Martin T.

    1999-12-17

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  17. Nanoscale charge transport in cytochrome c3/DNA network: Comparative studies between redox-active molecules

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Harumasa; Che, Dock-Chil; Hirano, Yoshiaki; Suzuki, Masayuki; Higuchi, Yoshiki; Matsumoto, Takuya

    2015-09-01

    The redox-active molecule of a cytochrome c3/DNA network exhibits nonlinear current-voltage (I-V) characteristics with a threshold bias voltage at low temperature and zero-bias conductance at room temperature. I-V curves for the cytochrome c3/DNA network are well matched with the Coulomb blockade network model. Comparative studies of the Mn12 cluster, cytochrome c, and cytochrome c3, which have a wide variety of redox potentials, indicate no difference in charge transport, which suggests that the conduction mechanism is not directly related to the redox states. The charge transport mechanism has been discussed in terms of the newly-formed electronic energy states near the Fermi level, induced by the ionic interaction between redox-active molecules with the DNA network.

  18. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses

    PubMed Central

    Boll, Rebecca; Erk, Benjamin; Coffee, Ryan; Trippel, Sebastian; Kierspel, Thomas; Bomme, Cédric; Bozek, John D.; Burkett, Mitchell; Carron, Sebastian; Ferguson, Ken R.; Foucar, Lutz; Küpper, Jochen; Marchenko, Tatiana; Miron, Catalin; Patanen, Minna; Osipov, Timur; Schorb, Sebastian; Simon, Marc; Swiggers, Michelle; Techert, Simone; Ueda, Kiyoshi; Bostedt, Christoph; Rolles, Daniel; Rudenko, Artem

    2016-01-01

    Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse. PMID:27051675

  19. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses.

    PubMed

    Boll, Rebecca; Erk, Benjamin; Coffee, Ryan; Trippel, Sebastian; Kierspel, Thomas; Bomme, Cédric; Bozek, John D; Burkett, Mitchell; Carron, Sebastian; Ferguson, Ken R; Foucar, Lutz; Küpper, Jochen; Marchenko, Tatiana; Miron, Catalin; Patanen, Minna; Osipov, Timur; Schorb, Sebastian; Simon, Marc; Swiggers, Michelle; Techert, Simone; Ueda, Kiyoshi; Bostedt, Christoph; Rolles, Daniel; Rudenko, Artem

    2016-07-01

    Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I(21+). The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse. PMID:27051675

  20. Ionization Efficiency of Doubly Charged Ions Formed from Polyprotic Acids in Electrospray Negative Mode

    NASA Astrophysics Data System (ADS)

    Liigand, Piia; Kaupmees, Karl; Kruve, Anneli

    2016-07-01

    The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low p K a1 and p K a2) and to have high hydrophobicity (log P ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions.

  1. Channel-forming activity of syringopeptin 25A in mercury-supported phospholipid monolayers and negatively charged bilayers.

    PubMed

    Becucci, Lucia; Toppi, Arianna; Fiore, Alberto; Scaloni, Andrea; Guidelli, Rolando

    2016-10-01

    Interactions of the cationic lipodepsipeptide syringopeptin 25A (SP25A) with mercury-supported dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylserine (DOPS) and dioeleoylphosphatidic acid (DOPA) self-assembled monolayers (SAMs) were investigated by AC voltammetry in 0.1M KCl at pH3, 5.4 and 6.8. SP25A targets and penetrates the DOPS SAM much more effectively than the other SAMs not only at pH6.8, where the DOPS SAM is negatively charged, but also at pH3, where it is positively charged just as SP25A. Similar investigations at tethered bilayer lipid membranes (tBLMs) consisting of a thiolipid called DPTL anchored to mercury, with a DOPS, DOPA or DOPC distal monolayer on top of it, showed that, at physiological transmembrane potentials, SP25A forms ion channels spanning the tBLM only if DOPS is the distal monolayer. The distinguishing chemical feature of the DOPS SAM is the ionic interaction between the protonated amino group of a DOPS molecule and the carboxylate group of an adjacent phospholipid molecule. Under the reasonable assumption that SP25A preferentially interacts with this ion pair, the selective lipodepsipeptide antimicrobial activity against Gram-positive bacteria may be tentatively explained by its affinity for similar protonated amino-carboxylate pairs, which are expected to be present in the peptide moieties of peptidoglycan strands.

  2. Channel-forming activity of syringopeptin 25A in mercury-supported phospholipid monolayers and negatively charged bilayers.

    PubMed

    Becucci, Lucia; Toppi, Arianna; Fiore, Alberto; Scaloni, Andrea; Guidelli, Rolando

    2016-10-01

    Interactions of the cationic lipodepsipeptide syringopeptin 25A (SP25A) with mercury-supported dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylserine (DOPS) and dioeleoylphosphatidic acid (DOPA) self-assembled monolayers (SAMs) were investigated by AC voltammetry in 0.1M KCl at pH3, 5.4 and 6.8. SP25A targets and penetrates the DOPS SAM much more effectively than the other SAMs not only at pH6.8, where the DOPS SAM is negatively charged, but also at pH3, where it is positively charged just as SP25A. Similar investigations at tethered bilayer lipid membranes (tBLMs) consisting of a thiolipid called DPTL anchored to mercury, with a DOPS, DOPA or DOPC distal monolayer on top of it, showed that, at physiological transmembrane potentials, SP25A forms ion channels spanning the tBLM only if DOPS is the distal monolayer. The distinguishing chemical feature of the DOPS SAM is the ionic interaction between the protonated amino group of a DOPS molecule and the carboxylate group of an adjacent phospholipid molecule. Under the reasonable assumption that SP25A preferentially interacts with this ion pair, the selective lipodepsipeptide antimicrobial activity against Gram-positive bacteria may be tentatively explained by its affinity for similar protonated amino-carboxylate pairs, which are expected to be present in the peptide moieties of peptidoglycan strands. PMID:27322780

  3. Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Schwarz, Florian; Kastlunger, Georg; Lissel, Franziska; Egler-Lucas, Carolina; Semenov, Sergey N.; Venkatesan, Koushik; Berke, Heinz; Stadler, Robert; Lörtscher, Emanuel

    2016-02-01

    Charge transport through single molecules can be influenced by the charge and spin states of redox-active metal centres placed in the transport pathway. These intrinsic properties are usually manipulated by varying the molecule's electrochemical and magnetic environment, a procedure that requires complex setups with multiple terminals. Here we show that oxidation and reduction of organometallic compounds containing either Fe, Ru or Mo centres can solely be triggered by the electric field applied to a two-terminal molecular junction. Whereas all compounds exhibit bias-dependent hysteresis, the Mo-containing compound additionally shows an abrupt voltage-induced conductance switching, yielding high-to-low current ratios exceeding 1,000 at bias voltages of less than 1.0 V. Density functional theory calculations identify a localized, redox-active molecular orbital that is weakly coupled to the electrodes and closely aligned with the Fermi energy of the leads because of the spin-polarized ground state unique to the Mo centre. This situation provides an additional slow and incoherent hopping channel for transport, triggering a transient charging effect in the entire molecule with a strong hysteresis and large high-to-low current ratios.

  4. The dynamics of charged particles in the near wake of a very negatively charged body - Laboratory experiment and numerical simulation

    NASA Technical Reports Server (NTRS)

    Morgan, M. Alvin; Chan, Chung; Cooke, David L.; Tautz, Maurice F.

    1989-01-01

    A numerical simulation that is cylindrical in configuration space and three-dimensional in velocity space has been initiated to test a model for the near-wake dynamics of a very negatively charged body, with reference to the plasma environment around spacecraft. The simulation parameters were closely matched to those of a laboratory experiment so that the results can be compared directly. The laboratory study showed that the electrons and ions can display different temporal features in the filling-in of the wake; and that they can both be found within one body diameter of an object with a highly negative body potential. It was also found that the temperature of the electrons in the very near wake could be somewhat colder than the ambient value, suggesting the possibility of a filtering mechanism being operative there. The simulation results to date largely corroborate the density findings.

  5. Core Ionization Initiates Subfemtosecond Charge Migration in the Valence Shell of Molecules

    NASA Astrophysics Data System (ADS)

    Kuleff, Alexander I.; Kryzhevoi, Nikolai V.; Pernpointner, Markus; Cederbaum, Lorenz S.

    2016-08-01

    After the ionization of a valence electron, the created hole can migrate ultrafast from one end of the molecule to another. Because of the advent of attosecond pulse techniques, the measuring and understanding of charge migration has become a central topic in attosecond science. Here, we pose the hitherto unconsidered question whether ionizing a core electron will also lead to charge migration. It is found that the created hole in the core stays put, but in response to this hole interesting electron dynamics takes place which can lead to intense charge migration in the valence shell. This migration is typically faster than that after the ionization of a valence electron and transpires on a shorter time scale than the natural decay of the core hole by the Auger process, making the subject very challenging to attosecond science.

  6. Simulation of space charge compensation in a multibeamlet negative ion beam.

    PubMed

    Sartori, E; Maceina, T J; Veltri, P; Cavenago, M; Serianni, G

    2016-02-01

    Ion beam space charge compensation occurs by cumulating in the beam potential well charges having opposite polarity, usually generated by collisional processes. In this paper we investigate the case of a H(-) ion beam drift, in a bi-dimensional approximation of the NIO1 (Negative Ion Optimization phase 1) negative ion source. H(-) beam ion transport and plasma formation are studied via particle-in-cell simulations. Differential cross sections are sampled to determine the velocity distribution of secondary particles generated by ionization of the residual gas (electrons and slow H2 (+) ions) or by stripping of the beam ions (electrons, H, and H(+)). The simulations include three beamlets of a horizontal section, so that multibeamlet space charge and secondary particle diffusion between separate generation regions are considered, and include a repeller grid biased at various potentials. Results show that after the beam space charge is effectively screened by the secondary plasma in about 3 μs (in agreement with theoretical expectations), a plasma grows across the beamlets with a characteristic time three times longer, and a slight overcompensation of the electric potential is verified as expected in the case of negative ions. PMID:26932089

  7. Tuning Charge and Correlation Effects for a Single Molecule on a Graphene Device

    NASA Astrophysics Data System (ADS)

    Tsai, Hsin-Zon; Wickenburg, Sebastian; Lu, Jiong; Lischner, Johannes; Omrani, Arash A.; Riss, Alexander; Karrasch, Christoph; Jung, Han Sae; Khajeh, Ramin; Wong, Dillon; Watanabe, Kenji; Taniguchi, Takashi; Zettl, Alex; Louie, Steven G.; Crommie, Michael F.

    Controlling electronic devices down to the single molecule level is a grand challenge of nanotechnology. Single-molecules have been integrated into devices capable of tuning electronic response, but a drawback for these systems is that their microscopic structure remains unknown due to inability to image molecules in the junction region. Here we present a combined STM and nc-AFM study demonstrating gate-tunable control of the charge state of individual F4TCNQ molecules at the surface of a graphene field effect transistor. This is different from previous studies in that the Fermi level of the substrate was continuously tuned across the molecular orbital energy level. Using STS we have determined the resulting energy level evolution of the LUMO, its associated vibronic modes, and the graphene Dirac point (ED). We show that the energy difference between ED and the LUMO increases as EF is moved away from ED due to electron-electron interactions that renormalize the molecular quasiparticle energy. This is attributed to gate-tunable image-charge screening in graphene and corroborated by ab initio calculations.

  8. Excited-State Proton Transfer and Intramolecular Charge Transfer in 1,3-Diketone Molecules.

    PubMed

    Savarese, Marika; Brémond, Éric; Adamo, Carlo; Rega, Nadia; Ciofini, Ilaria

    2016-05-18

    The photophysical signature of the tautomeric species of the asymmetric (N,N-dimethylanilino)-1,3-diketone molecule are investigated using approaches rooted in density functional theory (DFT) and time-dependent DFT (TD-DFT). In particular, since this molecule, in the excited state, can undergo proton transfer reactions coupled to intramolecular charge transfer events, the different radiative and nonradiative channels are investigated by making use of different density-based indexes. The use of these tools, together with the analysis of both singlet and triplet potential energy surfaces, provide new insights into excited-state reactivity allowing one to rationalize the experimental findings including different behavior of the molecule as a function of solvent polarity.

  9. Generation and annihilation of traps in metal-oxide-semiconductor devices after negative air corona charging

    NASA Astrophysics Data System (ADS)

    Prasad, Ila; Srivastava, R. S.

    1993-07-01

    Surface and bulk traps along with positive oxide charge accumulation have been found to be generated in metal-oxide-semiconductor capacitors, when subjected to negative air corona discharge at slightly reduced pressure (≂10-1 Torr). The effects are neutralized and device quality improved when annealed at 200 °C in air. The bulk traps and a fraction of oxide charges were annealable when kept at room temperature for several months. The results have been analyzed by Nicollian-Goetzberger's conductance technique and a plausible explanation is given.

  10. Discharges on a negatively biased solar array in a charged particle environment

    NASA Technical Reports Server (NTRS)

    Snyder, D. B.

    1983-01-01

    The charging behavior of a negatively biased solar cell array when subjected to a charged particle environment is studied in the ion density range from 200 to 12 000 ions/sq cm with the applied bias range of -500 to -1400 V. The profile of the surface potentials across the array is related to the presence of discharges. At the low end of the ion density range the solar cell cover slides charge to from 0 to +5 volts independent of the applied voltage. No discharges are seen at bias voltages as large as -1400 V. At the higher ion densities the cover slide potential begins to fluctuate, and becomes significantly negative. Under these conditions discharges can occur. The threshold bias voltage for discharges decreases with increasing ion density. A condition for discharges emerging from the experimental observations is that the average coverslide potential must be more negative than -4 V. The observations presented suggest that the plasma potential near the array becomes negative before a discharge occurs. This suggests that discharges are driven by an instability in the plasma.

  11. Characteristics of EMI generated by negative metal-positive dielectric voltage stresses due to spacecraft charging

    NASA Astrophysics Data System (ADS)

    Chaky, R. C.; Inouye, G. T.

    1985-03-01

    Charging of spacecraft surfaces by the environmental plasma can result in differential potentials between metallic structure and adjacent dielectric surfaces in which the relative polarity of the voltage stress is either negative dielectric/positive metal or negative metal/positive dielectric. Negative metal/positive dielectric is a stress condition that may arise if relatively large areas of spacecraft surface metals are shadowed from solar UV and/or if the UV intensity is reduced as in the situation in which the spacecraft is entering into or leaving eclipse. The results of experimental studies of negative metal/positive dielectric systems are given. Information is given on: enhanced electron emission I-V curves; e(3) corona noise vs e(3) steady-state current; the localized nature of e(3) and negative metal arc discharge currents; negative metal arc discharges at stress thresholds below 1 kilovolt; negative metal arc discharge characteristics; dependence of blowoff arc discharge current on spacecraft capacitance to space (linear dimension); and damage to second surface mirrors due to negative metal arcs.

  12. Characteristics of EMI generated by negative metal-positive dielectric voltage stresses due to spacecraft charging

    NASA Technical Reports Server (NTRS)

    Chaky, R. C.; Inouye, G. T.

    1985-01-01

    Charging of spacecraft surfaces by the environmental plasma can result in differential potentials between metallic structure and adjacent dielectric surfaces in which the relative polarity of the voltage stress is either negative dielectric/positive metal or negative metal/positive dielectric. Negative metal/positive dielectric is a stress condition that may arise if relatively large areas of spacecraft surface metals are shadowed from solar UV and/or if the UV intensity is reduced as in the situation in which the spacecraft is entering into or leaving eclipse. The results of experimental studies of negative metal/positive dielectric systems are given. Information is given on: enhanced electron emission I-V curves; e(3) corona noise vs e(3) steady-state current; the localized nature of e(3) and negative metal arc discharge currents; negative metal arc discharges at stress thresholds below 1 kilovolt; negative metal arc discharge characteristics; dependence of blowoff arc discharge current on spacecraft capacitance to space (linear dimension); and damage to second surface mirrors due to negative metal arcs.

  13. Charge-mosaic membranes: enhanced permeability and negative osmosis with a symmetrical salt.

    PubMed

    Weinstein, J N; Caplan, S R

    1968-07-01

    Charge-mosaic membranes are prepared by embedding a single layer of alternating cation and anion exchange beads in silicone resin. Membranes made in an identical manner but containing only one type of exchanger serve as controls. The mosaic membranes are 50 to 100 times more permeable to potassium chloride than the controls; and furthermore they give rise to net volume flow from concentrated to dilute solutions of potassium chloride in the absence of a pressure gradient ("negative osmosis"), whereas the controls exhibit normal osmotic behavior. The negative reflection coefficients of the mosaics suggest potential applications in desalination.

  14. Optimizing charge neutralization for a magnetic sector SIMS instrument in negative mode

    SciTech Connect

    Pivovarov, Alexander L.; Guryanov, Georgiy M.

    2012-07-15

    Successful self-adjusted charge compensation was demonstrated for a CAMECA magnetic-sector secondary ion mass spectrometer applied in negative mode. Operation with the normal-incidence electron gun (NEG) potential positively biased relative to a sample potential enables substantial broadening of the Cs primary-ion-current density range available for analysis of insulators. The decrease of the negative NEG potential by 30 V allows the highest value of primary current density used for the analysis of a silica sample to increase by a factor of more than 6. By applying the improved charge neutralization technique, accurate Na depth profiles for SiO{sub 2} samples were obtained within detection limits of {approx}3 Multiplication-Sign 10{sup 15} atoms/cm{sup 3}.

  15. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, Øystein

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  16. Imaging charge and energy transfer in molecules using free-electron lasers

    NASA Astrophysics Data System (ADS)

    Rudenko, Artem

    2014-05-01

    Charge and energy transfer reactions drive numerous important processes in physics, chemistry and biology, with applications ranging from X-ray astrophysics to artificial photosynthesis and molecular electronics. Experimentally, the central goal in studies of transfer phenomena is to trace the spatial localization of charge at a given time. Because of their element and site sensitivity, ultrafast X-rays provide a promising tool to address this goal. In this talk I will discuss several experiments where free-electron lasers were employed to study charge and energy transfer dynamics in fragmenting molecules. In a first example, we used intense, 70 femtosecond 1.5 keV pulses from the Linac Coherent Light Source (LCLS) to study distance dependence of electron transfer in laser-dissociated methyl iodide molecules. Inducing well-localized positive charge on the heavy iodine atom, we observe signature of electron transition from the separated methyl group up to the distances of 35 atomic units. In a complementary experiment, we studied charge exchange between two partners in a dissociating molecular iodine employing a pump-probe arrangement with two identical 90 eV pulses from the Free-Electron LASer in Hamburg (FLASH). In both cases, the effective spatial range of the electron transfer can be reasonably described by a classical over-the-barrier model developed for ion-atom collisions. Finally, I will discuss a time-resolved measurement on non-local relaxation mechanism based on a long-range energy transfer, the so-called interatomic Coulombic decay. This work was supported by Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy and by the Kansas NSF ``First Award'' program.

  17. A Negatively Charged Residue Stabilizes the Tropoelastin N-terminal Region for Elastic Fiber Assembly*

    PubMed Central

    Yeo, Giselle C.; Baldock, Clair; Wise, Steven G.; Weiss, Anthony S.

    2014-01-01

    Tropoelastin is an extracellular matrix protein that assembles into elastic fibers that provide elasticity and strength to vertebrate tissues. Although the contributions of specific tropoelastin regions during each stage of elastogenesis are still not fully understood, studies predominantly recognize the central hinge/bridge and C-terminal foot as the major participants in tropoelastin assembly, with a number of interactions mediated by the abundant positively charged residues within these regions. However, much less is known about the importance of the rarely occurring negatively charged residues and the N-terminal coil region in tropoelastin assembly. The sole negatively charged residue in the first half of human tropoelastin is aspartate 72. In contrast, the same region comprises 17 positively charged residues. We mutated this aspartate residue to alanine and assessed the elastogenic capacity of this novel construct. We found that D72A tropoelastin has a decreased propensity for initial self-association, and it cross-links aberrantly into denser, less porous hydrogels with reduced swelling properties. Although the mutant can bind cells normally, it does not form elastic fibers with human dermal fibroblasts and forms fewer atypical fibers with human retinal pigmented epithelial cells. This impaired functionality is associated with conformational changes in the N-terminal region. Our results strongly point to the role of the Asp-72 site in stabilizing the N-terminal segment of human tropoelastin and the importance of this region in facilitating elastic fiber assembly. PMID:25342751

  18. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    SciTech Connect

    Pan, Shanlin

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  19. Probing Dynamics from Within in Negative Ions, Neutral Molecules and van der Waals Clusters

    NASA Astrophysics Data System (ADS)

    Berrah, Nora

    2006-05-01

    We have investigated with unprecedented levels of detail, processes and phenomena involving photodetachment of negative ions and photoionization of molecules and van der Waals clusters using the brightness, spectral resolution, tunability and polarization of the Advanced Light Source at Lawrence Berkeley National Laboratory. Photodetachment of negative ions exhibit structure and processes differing substantially from corresponding processes in neutral and positive ions, owing to the dominance of correlation in both the initial and final states. We will report on investigations carried out in inner-valence CN^- molecules giving rise to absolute double photodetachment cross sections as well as on fragmentation of negative ions clusters. We will also present absolute inner-shell photodetachment of atoms leading to multi-Auger decay [1] and discuss threshold laws [2] and PCI effects [3]. The measurements were conducted using collinear photon-ion spectroscopy. The evolution of inner-shell photoionization of clusters, as a function of photon energy, will be presented and compared to analogous measurements in atoms. The measurements were conducted using angle resolved two-dimensional photoelectron spectroscopy. Molecular fragmentation results using an ion imaging detector will briefly be presented. [1] R. C. Bilodeau, J. D. Bozek, G. D. Ackerman, N. D. Gibson, C. W.Walter, A. Aguilar, G. Turri, I. Dumitriu and N. Berrah, PRA 72, 050701(R), 2005. [2] R. C. Bilodeau, J. D. Bozek, N. D. Gibson, C. W. Walter, G. D. Ackerman, I. Dumitriu, and N. Berrah, Phys. Rev. Lett. 95, 083001 (2005). [3] R. C. Bilodeau, J. D. Bozek, A. Agular, G. D. Ackerman, and N. Berrah, (in press PRA brief report).

  20. Evaluating the Effect of Ionic Strength on Duplex Stability for PNA Having Negatively or Positively Charged Side Chains

    PubMed Central

    De Costa, N. Tilani S.; Heemstra, Jennifer M.

    2013-01-01

    The enhanced thermodynamic stability of PNA:DNA and PNA:RNA duplexes compared with DNA:DNA and DNA:RNA duplexes has been attributed in part to the lack of electrostatic repulsion between the uncharged PNA backbone and negatively charged DNA or RNA backbone. However, there are no previously reported studies that systematically evaluate the effect of ionic strength on duplex stability for PNA having a charged backbone. Here we investigate the role of charge repulsion in PNA binding by synthesizing PNA strands having negatively or positively charged side chains, then measuring their duplex stability with DNA or RNA at varying salt concentrations. At low salt concentrations, positively charged PNA binds more strongly to DNA and RNA than does negatively charged PNA. However, at medium to high salt concentrations, this trend is reversed, and negatively charged PNA shows higher affinity for DNA and RNA than does positively charged PNA. These results show that charge screening by counterions in solution enables negatively charged side chains to be incorporated into the PNA backbone without reducing duplex stability with DNA and RNA. This research provides new insight into the role of electrostatics in PNA binding, and demonstrates that introduction of negatively charged side chains is not significantly detrimental to PNA binding affinity at physiological ionic strength. The ability to incorporate negative charge without sacrificing binding affinity is anticipated to enable the development of PNA therapeutics that take advantage of both the inherent benefits of PNA and the multitude of charge-based delivery technologies currently being developed for DNA and RNA. PMID:23484047

  1. Excited states and valley effects in a negatively charged impurity in a silicon FinFET.

    SciTech Connect

    Hollenberg, Lloyd; Klimeck, Gerhard; Carroll, Malcolm S.; Rahman, Rajib; Muller, Richard Partain; Rogge, Sven; Verduijn, Arjan; Lansbergen, Gabriel

    2010-07-01

    The observation and characterization of a single atom system in silicon is a significant landmark in half a century of device miniaturization, and presents an important new laboratory for fundamental quantum and atomic physics. We compare with multi-million atom tight binding (TB) calculations the measurements of the spectrum of a single two-electron (2e) atom system in silicon - a negatively charged (D-) gated Arsenic donor in a FinFET. The TB method captures accurate single electron eigenstates of the device taking into account device geometry, donor potentials, applied fields, interfaces, and the full host bandstructure. In a previous work, the depths and fields of As donors in six device samples were established through excited state spectroscopy of the D0 electron and comparison with TB calculations. Using self-consistent field (SCF) TB, we computed the charging energies of the D- electron for the same six device samples, and found good agreement with the measurements. Although a bulk donor has only a bound singlet ground state and a charging energy of about 40 meV, calculations show that a gated donor near an interface can have a reduced charging energy and bound excited states in the D- spectrum. Measurements indeed reveal reduced charging energies and bound 2e excited states, at least one of which is a triplet. The calculations also show the influence of the host valley physics in the two-electron spectrum of the donor.

  2. Reversal of negative charges on the surface of Escherichia coli thioredoxin: pockets versus protrusions.

    PubMed

    Mancusso, Romina; Cruz, Eduardo; Cataldi, Marcela; Mendoza, Carla; Fuchs, James; Wang, Hsin; Yang, Xiaomin; Tasayco, María Luisa

    2004-04-01

    Recent studies of proteins with reversed charged residues have demonstrated that electrostatic interactions on the surface can contribute significantly to protein stability. We have used the approach of reversing negatively charged residues using Arg to evaluate the effect of the electrostatics context on the transition temperature (T(m)), the unfolding Gibbs free energy change (DeltaG), and the unfolding enthalpy change (DeltaH). We have reversed negatively charged residues at a pocket (Asp9) and protrusions (Asp10, Asp20, Glu85), all located in interconnecting segments between elements of secondary structure on the surface of Arg73Ala Escherichia coli thioredoxin. DSC measurements indicate that reversal of Asp in a pocket (Asp9Arg/Arg73Ala, DeltaT(m) = -7.3 degrees C) produces a larger effect in thermal stability than reversal at protrusions: Asp10Arg/Arg73Ala, DeltaT(m) = -3.1 degrees C, Asp20Arg/Arg73Ala, DeltaT(m) = 2.0 degrees C, Glu85Arg/Arg73Ala, DeltaT(m) = 3.9 degrees ). The 3D structure of thioredoxin indicates that Asp20 and Glu85 have no nearby charges within 8 A, while Asp9 does not only have Asp10 as sequential neighbor, but it also forms a 5-A long-range ion pair with the solvent-exposed Lys69. Further DSC measurements indicate that neutralization of the individual charges of the ion pair Asp9-Lys69 with nonpolar residues produces a significant decrease in stability in both cases: Asp9Ala/Arg73Ala, DeltaT(m) = -3.7 degrees C, Asp9Met/Arg73Ala, DeltaT(m) = -5.5 degrees C, Lys69Leu/Arg73Ala, DeltaT(m) = -5.1 degrees C. However, thermodynamic analysis shows that reversal or neutralization of Asp9 produces a 9-15% decrease in DeltaH, while both reversal of Asp at protrusions and neutralization of Lys69 produce negligible changes. These results correlate well with the NMR analysis, which demonstrates that only the substitution of Asp9 produces extensive conformational changes and these changes occur in the surroundings of Lys69. Our results led us to

  3. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.

    PubMed

    Saeki, Akinori; Koizumi, Yoshiko; Aida, Takuzo; Seki, Shu

    2012-08-21

    (-1) s(-1), based on a combination of flash-photolysis TRMC and transient absorption spectroscopy (TAS) measurements. Single-crystal rubrene showed an ambipolarity with anisotropic charge carrier transport along each crystal axis on the nanometer scale. Finally, we describe the charge carrier mobility of a self-assembled nanotube consisting of a large π-plane of hexabenzocoronene (HBC) partially appended with an electron acceptor. The local (intratubular) charge carrier mobility reached 3 cm(2) V(-1) s(-1) for the nanotubes that possessed well-ordered π-stacking, but it dropped to 0.7 cm(2) V(-1) s(-1) in regions that contained greater amounts of the electron acceptor because those molecules reduced the structural integrity of π-stacked HBC arrays. Interestingly, the long-range (intertubular) charge carrier mobility was on the order of 10(-4) cm(2) V(-1) s(-1) and monotonically decreased when the acceptor content was increased. These results suggest the importance of investigating charge carrier mobilities by frequency-dependent charge carrier motion for the development of more efficient organic electronic devices. PMID:22676381

  4. Manipulating the charge state and conductance of a single molecule on a semiconductor surface by electrostatic gating

    NASA Astrophysics Data System (ADS)

    Martinez-Blanco, Jesus; Nacci, Christophe; Erwin, Steven C.; Kanisawa, Kiyoshi; Locane, Elina; Thomas, Mark; von Oppen, Felix; Brouwer, Piet; Foelsch, Stefan

    2015-03-01

    We studied the charge state and tunneling conductance of single phthalocyanine molecules adsorbed on InAs(111)A using scanning tunneling microscopy (STM) at 5 K. On the InAs(111)A surface, native +1 charged indium adatoms can be repositioned by the STM tip using atom manipulation. This allows us to electrostatically gate an individual adsorbed molecule by placing charged adatoms nearby or, alternatively, by repositioning the molecule within the electrostatic potential landscape created by an STM-engineered adatom corral. By stepwise increasing the gating potential, the molecular charge state can be tuned from neutral to -1, as well as to bistable intermediate states. We find that the molecule changes its orientational conformation when the charge state is switched. Scanning tunneling spectroscopy measurements reveal that the conductance gap of the single-molecule tunneling junction can be precisely controlled by the electrostatic gating. We discuss the observed gating-dependent single-molecule tunneling conductance in terms of charge transport through a gated quantum dot. Granted by the German Research Foundation (FO 362/4-1; SFB 658).

  5. Properties of clusters in the gas phase. V - Complexes of neutral molecules onto negative ions

    NASA Technical Reports Server (NTRS)

    Keesee, R. G.; Lee, N.; Castleman, A. W., Jr.

    1980-01-01

    Ion-molecules association reactions of the form A(-)(B)n-1 + B = A(-)(B)n were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl(-), I(-), and NO2(-) with n ranging from one to three or four, and onto SO2(-) and SO3(-) with n equal to one; and (2) carbon dioxide onto Cl(-), I(-), NO2(-), CO3(-), and SO3(-) with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions.

  6. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation.

    PubMed

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S Assiyeh Alizadeh; Leiknes, TorOve

    2016-10-15

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR18), and acid yellow 36 (AY36) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane-dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye-dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment.

  7. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation.

    PubMed

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S Assiyeh Alizadeh; Leiknes, TorOve

    2016-10-15

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR18), and acid yellow 36 (AY36) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane-dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye-dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment. PMID:27486044

  8. Negative dispersion of birefringence of smectic liquid crystal-polymer composite: dependence on the constituent molecules and temperature.

    PubMed

    Yang, Seungbin; Lee, Hyojin; Lee, Ji-Hoon

    2015-02-01

    We investigated the dependence of the negative dispersion of birefringence of smectic liquid crystal-polymer composites on the constituent molecules and temperature. The dispersion of birefringence was significantly varied from positive dispersion to negative dispersion by the change of the relative fraction of the constituent monomers. For the temperature dependence of the dispersion, a composite with more fraction of monomers located at the inter-layer space showed a wider temperature range of the negative dispersion of birefringence.

  9. Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules

    DOE PAGES

    Ha, Dong -Gwang; Kim, Jang -Joo; Baldo, Marc A.

    2016-04-29

    Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl) amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl) benzene (BmPyPb)more » mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. Furthermore, the analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.« less

  10. Importance of separated efficiencies between positively and negatively charged particles for cumulant calculations

    NASA Astrophysics Data System (ADS)

    Nonaka, Toshihiro; Sugiura, Tetsuro; Esumi, ShinIchi; Masui, Hiroshi; Luo, Xiaofeng

    2016-09-01

    We show the importance of separated efficiency corrections between positively and negatively charged particles for cumulant calculations by toy models and analytical calculations. Our results indicate that S σ in published net-proton results from the STAR experiment will be suppressed about 10% in central collisions and 20% in peripheral collisions at the beam energy of √{sN N}=200 GeV if the separated efficiencies are used to perform the efficiency correction, while no sizable efffect can be seen for κ σ2 .

  11. Optical spectra and intensities of graphene magnetic dot bound to a negatively charged Coulomb impurity

    SciTech Connect

    Lee, C. M. E-mail: apkschan@cityu.edu.hk; Chan, K. S. E-mail: apkschan@cityu.edu.hk

    2014-07-28

    Employing numerical diagonalization, we study the optical properties of an electron in a monolayer-graphene magnetic dot bound to an off-center negatively charged Coulomb impurity based on the massless Dirac-Weyl model. Numerical results show that, since the electron-hole symmetry is broken by the Coulomb potential, the optical absorption spectra of the magnetic dot in the presence of a Coulomb impurity are different between the electron states and the hole states. Effects of both the magnetic field and the dot size on the absorption coefficient are presented as functions of the incident photon energies.

  12. A robust force field based method for calculating conformational energies of charged drug-like molecules.

    PubMed

    Poehlsgaard, Jacob; Harpsøe, Kasper; Jørgensen, Flemming Steen; Olsen, Lars

    2012-02-27

    The binding affinity of a drug-like molecule depends among other things on the availability of the bioactive conformation. If the bioactive conformation has a significantly higher energy than the global minimum energy conformation, then the molecule is unlikely to bind to its target. Determination of the global minimum energy conformation and calculation of conformational penalties of binding is a prerequisite for prediction of reliable binding affinities. Here, we present a simple and computationally efficient procedure to estimate the global energy minimum for a wide variety of structurally diverse molecules, including polar and charged compounds. Identifying global energy minimum conformations of such compounds with force field methods is problematic due to the exaggeration of intramolecular electrostatic interactions. We demonstrate that the global energy minimum conformations of zwitterionic compounds generated by conformational analysis with modified electrostatics are good approximations of the conformational distributions predicted by experimental data and with molecular dynamics performed in explicit solvent. Finally the method is used to calculate conformational penalties for zwitterionic GluA2 agonists and to filter false positives from a docking study. PMID:21985436

  13. Long-range charge transport in single G-quadruplex DNA molecules.

    PubMed

    Livshits, Gideon I; Stern, Avigail; Rotem, Dvir; Borovok, Natalia; Eidelshtein, Gennady; Migliore, Agostino; Penzo, Erika; Wind, Shalom J; Di Felice, Rosa; Skourtis, Spiros S; Cuevas, Juan Carlos; Gurevich, Leonid; Kotlyar, Alexander B; Porath, Danny

    2014-12-01

    DNA and DNA-based polymers are of interest in molecular electronics because of their versatile and programmable structures. However, transport measurements have produced a range of seemingly contradictory results due to differences in the measured molecules and experimental set-ups, and transporting significant current through individual DNA-based molecules remains a considerable challenge. Here, we report reproducible charge transport in guanine-quadruplex (G4) DNA molecules adsorbed on a mica substrate. Currents ranging from tens of picoamperes to more than 100 pA were measured in the G4-DNA over distances ranging from tens of nanometres to more than 100 nm. Our experimental results, combined with theoretical modelling, suggest that transport occurs via a thermally activated long-range hopping between multi-tetrad segments of DNA. These results could re-ignite interest in DNA-based wires and devices, and in the use of such systems in the development of programmable circuits. PMID:25344689

  14. Characterization of oil-free and oil-loaded liquid-crystalline particles stabilized by negatively charged stabilizer citrem.

    PubMed

    Nilsson, Christa; Edwards, Katarina; Eriksson, Jonny; Larsen, Susan Weng; Østergaard, Jesper; Larsen, Claus; Urtti, Arto; Yaghmur, Anan

    2012-08-14

    The present study was designed to evaluate the effect of the negatively charged food-grade emulsifier citrem on the internal nanostructures of oil-free and oil-loaded aqueous dispersions of phytantriol (PHYT) and glyceryl monooleate (GMO). To our knowledge, this is the first report in the literature on the utilization of this charged stabilizing agent in the formation of aqueous dispersions consisting of well-ordered interiors (either inverted-type hexagonal (H(2)) phases or inverted-type microemulsion systems). Synchrotron small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) were used to characterize the dispersed and the corresponding nondispersed phases of inverted-type nonlamellar liquid-crystalline phases and microemulsions. The results suggest a transition between different internal nanostructures of the aqueous dispersions after the addition of the stabilizer. In addition to the main function of citrem as a stabilizer that adheres to the surface of the dispersed particles, it has a significant impact on the internal nanostructures, which is governed by the following factors: (1) its penetration between the hydrophobic tails of the lipid molecules and (2) its degree of incorporation into the lipid-water interfacial area. In the presence of citrem, the formation of aqueous dispersions with functionalized hydrophilic domains by the enlargement of the hydrophilic nanochannels of the internal H(2) phase in hexosomes and the hydrophilic core of the L(2) phase in emulsified microemulsions (EMEs) could be particularly attractive for solubilizing and controlling the release of positively charged drugs.

  15. Transient performance estimation of charge plasma based negative capacitance junctionless tunnel FET

    NASA Astrophysics Data System (ADS)

    Singh, Sangeeta; Kondekar, P. N.; Pal, Pawan

    2016-02-01

    We investigate the transient behavior of an n-type double gate negative capacitance junctionless tunnel field effect transistor (NC-JLTFET). The structure is realized by using the work-function engineering of metal electrodes over a heavily doped n+ silicon channel and a ferroelectric gate stack to get negative capacitance behavior. The positive feedback in the electric dipoles of ferroelectric materials results in applied gate bias boosting. Various device transient parameters viz. transconductance, output resistance, output conductance, intrinsic gain, intrinsic gate delay, transconductance generation factor and unity gain frequency are analyzed using ac analysis of the device. To study the impact of the work-function variation of control and source gate on device performance, sensitivity analysis of the device has been carried out by varying these parameters. Simulation study reveals that it preserves inherent advantages of charge-plasma junctionless structure and exhibits improved transient behavior as well.

  16. Negative-charge-functionalized mesoporous silica nanoparticles as drug vehicles targeting hepatocellular carcinoma.

    PubMed

    Xie, Meng; Xu, Yuanguo; Shen, Haijun; Shen, Song; Ge, Yanru; Xie, Jimin

    2014-10-20

    In this paper, a series of doxorubicin-loaded and negative-charge-functionalized mesoporous silica nanoparticles (DOX-MSN/COOH) was successfully prepared and used for imaging and targeting therapy of hepatocellular carcinoma. The nanoparticles were uniform and negatively charged, with a diameter of about 55 nm, and a zeta potential of -20 mV. In vitro study showed that the nanoparticles could easily be endocytosed by liver cancer cells (HepG2) and were well-accumulated in the liver by passive targeting. In vivo study proved the ability of DOX-MSN/COOH to inhibit the tumor growth and prolong the survival time of mice bearing hepatocellular carcinoma in situ, giving better results than free DOX. More importantly, histological examination showed no histopathological abnormalities of normal liver cells and heart cells after the administration of DOX-MSN/COOH, while the treatment with free DOX caused damage to those cells. In conclusion, DOX-MSN/COOH exhibited enhanced antitumor efficacy as well as reduced side effects for liver cancer therapy. PMID:25149125

  17. Phagocytosis and transforming activity of crystalline metal sulfide particles are related to their negative surface charge

    SciTech Connect

    Abbracchio, M.P.; Heck, J.D.; Costa, M.

    1982-01-01

    Crystalline nickel sulfide (alpha NiS) and cobalt sulfide (CoS2) particles can cause greater cell transformation and cellular toxicity than the respective amorphous metal sulfide particles. Cultured mammalian cells phagocytose the crystalline metal sulfide particles more readily than the amorphous ones. In the case of the nickel sulfides, the crystalline metal sulfide particles had negatively charged surfaces (Zeta potential: -27.012 mV) in contrast to the amorphous particles, which were positively charge (Zeta potential: +9.174 mV). X-ray photoelectron spectroscopy analysis of amorphous and crystalline NiS particles revealed that the outermost surface (1-4 nm) of the two particles had striking differences in Ni/S ratios and in their sulfur oxidation states. Rendering particles' surfaces more negative by reduction with lithium aluminum hydride enhanced their phagocytosis, and in the case of amorphous NiS chemical reduction resulted in an incidence of morphological transformation of Syrian hamster embryo cells comparable to that observed with untreated crystalline alpha NiS.

  18. The negatively charged carboxy-terminal tail of β-tubulin promotes proper chromosome segregation

    PubMed Central

    Fees, Colby P.; Aiken, Jayne; O’Toole, Eileen T.; Giddings, Thomas H.; Moore, Jeffrey K.

    2016-01-01

    Despite the broadly conserved role of microtubules in chromosome segregation, we have a limited understanding of how molecular features of tubulin proteins contribute to the underlying mechanisms. Here we investigate the negatively charged carboxy-terminal tail domains (CTTs) of α- and β-tubulins, using a series of mutants that alter or ablate CTTs in budding yeast. We find that ablating β-CTT causes elevated rates of chromosome loss and cell cycle delay. Complementary live-cell imaging and electron tomography show that β-CTT is necessary to properly position kinetochores and organize microtubules within the assembling spindle. We identify a minimal region of negatively charged amino acids that is necessary and sufficient for proper chromosome segregation and provide evidence that this function may be conserved across species. Our results provide the first in vivo evidence of a specific role for tubulin CTTs in chromosome segregation. We propose that β-CTT promotes the ordered segregation of chromosomes by stabilizing the spindle and contributing to forces that move chromosomes toward the spindle poles. PMID:27053662

  19. Translocation of positively and negatively charged polystyrene nanoparticles in an in vitro placental model.

    PubMed

    Kloet, Samantha K; Walczak, Agata P; Louisse, Jochem; van den Berg, Hans H J; Bouwmeester, Hans; Tromp, Peter; Fokkink, Remco G; Rietjens, Ivonne M C M

    2015-10-01

    To obtain insight in translocation of nanoparticles across the placental barrier, translocation was studied for one positively and two negatively charged polystyrene nanoparticles (PS-NPs) of similar size in an in vitro model. The model consisted of BeWo b30 cells, derived from a human choriocarcinoma grown on a transwell insert forming a cell layer that separates an apical from a basolateral compartment. PS-NPs were characterized with respect to size, surface charge, morphology and protein corona. Translocation of PS-NPs was not related to PS-NP charge. Two PS-NPs were translocated across the BeWo transwell model to a lower extent than amoxicillin, a model compound known to be translocated over the placental barrier to only a limited extent, whereas one PS-NP showed a slightly higher translocation. Studies on the effect of transporter inhibitors on the translocation of the PS-NPs indicated that their translocation was not mediated by known transporters and mainly dependent on passive diffusion. It is concluded that the BeWo b30 model can be used as an efficient method to get an initial qualitative impression about the capacity of NPs to translocate across the placental barrier and set priorities in further in vivo studies on translocation of NPs to the fetus. PMID:26145586

  20. Activation energy of negative fixed charges in thermal ALD Al2O3

    NASA Astrophysics Data System (ADS)

    Kühnhold-Pospischil, S.; Saint-Cast, P.; Richter, A.; Hofmann, M.

    2016-08-01

    A study of the thermally activated negative fixed charges Qtot and the interface trap densities Dit at the interface between Si and thermal atomic-layer-deposited amorphous Al2O3 layers is presented. The thermal activation of Qtot and Dit was conducted at annealing temperatures between 220 °C and 500 °C for durations between 3 s and 38 h. The temperature-induced differences in Qtot and Dit were measured using the characterization method called corona oxide characterization of semiconductors. Their time dependency were fitted using stretched exponential functions, yielding activation energies of EA = (2.2 ± 0.2) eV and EA = (2.3 ± 0.7) eV for Qtot and Dit, respectively. For annealing temperatures from 350 °C to 500 °C, the changes in Qtot and Dit were similar for both p- and n-type doped Si samples. In contrast, at 220 °C the charging process was enhanced for p-type samples. Based on the observations described in this contribution, a charging model leading to Qtot based on an electron hopping process between the silicon and Al2O3 through defects is proposed.

  1. Translocation of positively and negatively charged polystyrene nanoparticles in an in vitro placental model.

    PubMed

    Kloet, Samantha K; Walczak, Agata P; Louisse, Jochem; van den Berg, Hans H J; Bouwmeester, Hans; Tromp, Peter; Fokkink, Remco G; Rietjens, Ivonne M C M

    2015-10-01

    To obtain insight in translocation of nanoparticles across the placental barrier, translocation was studied for one positively and two negatively charged polystyrene nanoparticles (PS-NPs) of similar size in an in vitro model. The model consisted of BeWo b30 cells, derived from a human choriocarcinoma grown on a transwell insert forming a cell layer that separates an apical from a basolateral compartment. PS-NPs were characterized with respect to size, surface charge, morphology and protein corona. Translocation of PS-NPs was not related to PS-NP charge. Two PS-NPs were translocated across the BeWo transwell model to a lower extent than amoxicillin, a model compound known to be translocated over the placental barrier to only a limited extent, whereas one PS-NP showed a slightly higher translocation. Studies on the effect of transporter inhibitors on the translocation of the PS-NPs indicated that their translocation was not mediated by known transporters and mainly dependent on passive diffusion. It is concluded that the BeWo b30 model can be used as an efficient method to get an initial qualitative impression about the capacity of NPs to translocate across the placental barrier and set priorities in further in vivo studies on translocation of NPs to the fetus.

  2. A Hypersweet Protein: Removal of The Specific Negative Charge at Asp21 Enhances Thaumatin Sweetness

    PubMed Central

    Masuda, Tetsuya; Ohta, Keisuke; Ojiro, Naoko; Murata, Kazuki; Mikami, Bunzo; Tani, Fumito; Temussi, Piero Andrea; Kitabatake, Naofumi

    2016-01-01

    Thaumatin is an intensely sweet-tasting protein that elicits sweet taste at a concentration of 50 nM, a value 100,000 times larger than that of sucrose on a molar basis. Here we attempted to produce a protein with enhanced sweetness by removing negative charges on the interacting side of thaumatin with the taste receptor. We obtained a D21N mutant which, with a threshold value 31 nM is much sweeter than wild type thaumatin and, together with the Y65R mutant of single chain monellin, one of the two sweetest proteins known so far. The complex model between the T1R2-T1R3 sweet receptor and thaumatin, derived from tethered docking in the framework of the wedge model, confirmed that each of the positively charged residues critical for sweetness is close to a receptor residue of opposite charge to yield optimal electrostatic interaction. Furthermore, the distance between D21 and its possible counterpart D433 (located on the T1R2 protomer of the receptor) is safely large to avoid electrostatic repulsion but, at the same time, amenable to a closer approach if D21 is mutated into the corresponding asparagine. These findings clearly confirm the importance of electrostatic potentials in the interaction of thaumatin with the sweet receptor. PMID:26837600

  3. Excitation of Kelvin Helmholtz instability by an ion beam in a plasma with negatively charged dust grains

    SciTech Connect

    Rani, Kavita; Sharma, Suresh C.

    2015-02-15

    An ion beam propagating through a magnetized dusty plasma drives Kelvin Helmholtz Instability (KHI) via Cerenkov interaction. The frequency of the unstable wave increases with the relative density of negatively charged dust grains. It is observed that the beam has stabilizing effect on the growth rate of KHI for low shear parameter, but for high shear parameter, the instability is destabilized with relative density of negatively charged dust grains.

  4. The Negatively Charged Regions of Lactoferrin Binding Protein B, an Adaptation against Anti-Microbial Peptides

    PubMed Central

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B.

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein’s C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides. PMID:24465982

  5. The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides.

    PubMed

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein's C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides. PMID:24465982

  6. Communication: Charge-population based dispersion interactions for molecules and materials

    NASA Astrophysics Data System (ADS)

    Stöhr, Martin; Michelitsch, Georg S.; Tully, John C.; Reuter, Karsten; Maurer, Reinhard J.

    2016-04-01

    We introduce a system-independent method to derive effective atomic C6 coefficients and polarizabilities in molecules and materials purely from charge population analysis. This enables the use of dispersion-correction schemes in electronic structure calculations without recourse to electron-density partitioning schemes and expands their applicability to semi-empirical methods and tight-binding Hamiltonians. We show that the accuracy of our method is en par with established electron-density partitioning based approaches in describing intermolecular C6 coefficients as well as dispersion energies of weakly bound molecular dimers, organic crystals, and supramolecular complexes. We showcase the utility of our approach by incorporation of the recently developed many-body dispersion method [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012)] into the semi-empirical density functional tight-binding method and propose the latter as a viable technique to study hybrid organic-inorganic interfaces.

  7. New effects of a long-lived negatively charged massive particle on big bang nucleosynthesis

    SciTech Connect

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kino, Yasushi; Mathews, Grant J.

    2014-05-02

    Primordial {sup 7}Li abundance inferred from observations of metal-poor stars is a factor of about 3 lower than the theoretical value of standard big bang nucleosynthesis (BBN) model. One of the solutions to the Li problem is {sup 7}Be destruction during the BBN epoch caused by a long-lived negatively charged massive particle, X{sup −}. The particle can bind to nuclei, and X-bound nuclei (X-nuclei) can experience new reactions. The radiative X{sup −} capture by {sup 7}Be nuclei followed by proton capture of the bound state of {sup 7}Be and X{sup −} ({sup 7}Be{sub x}) is a possible {sup 7}Be destruction reaction. Since the primordial abundance of {sup 7}Li originates mainly from {sup 7}Li produced via the electron capture of {sup 7}Be after BBN, the {sup 7}Be destruction provides a solution to the {sup 7}Li problem. We suggest a new route of {sup 7}Be{sub x} formation, that is the {sup 7}Be charge exchange at the reaction of {sup 7}Be{sup 3+} ion and X{sup −}. The formation rate depends on the ionization fraction of {sup 7}Be{sup 3+} ion, the charge exchange cross section of {sup 7}Be{sup 3+}, and the probability that excited states {sup 7}Be{sub x}* produced at the charge exchange are converted to the ground state. We find that this reaction can be equally important as or more important than ordinary radiative recombination of {sup 7}Be and X{sup −}. The effect of this new route is shown in a nuclear reaction network calculation.

  8. Space Charge Neutralization of DEMO Relevant Negative Ion Beams at Low Gas Density

    SciTech Connect

    Surrey, Elizabeth; Porton, Michael

    2011-09-26

    The application of neutral beams to future power plant devices (DEMO) is dependent on achieving significantly improved electrical efficiency and the most promising route to achieving this is by implementing a photoneutralizer in place of the traditional gas neutralizer. A corollary of this innovation would be a significant reduction in the background gas density through which the beam is transported between the accelerator and the neutralizer. This background gas is responsible for the space charge neutralization of the beam, enabling distances of several metres to be traversed without significant beam expansion. This work investigates the sensitivity of a D{sup -} beam to reduced levels of space charge compensation for energies from 100 keV to 1.5 MeV, representative of a scaled prototype experiment, commissioning and full energy operation. A beam transport code, following the evolution of the phase space ellipse, is employed to investigate the effect of space charge on the beam optics. This shows that the higher energy beams are insensitive to large degrees of under compensation, unlike the lower energies. The probable degree of compensation at low gas density is then investigated through a simple, two component beam-plasma model that allows the potential to be negative. The degree of under-compensation is dependent on the positive plasma ion energy, one source of which is dissociation of the gas by the beam. The subsequent space charge state of the beam is shown to depend upon the relative times for equilibration of the dissociation energy and ionization by the beam ions.

  9. Long-lived charge carrier generation in ordered films of a covalent perylenediimide–diketopyrrolopyrrole–perylenediimide molecule

    DOE PAGES

    Hartnett, Patrick E.; Dyar, Scott M.; Margulies, Eric A.; Shoer, Leah E.; Cook, Andrew W.; Eaton, Samuel W.; Marks, Tobin J.; Wasielewski, Michael R.

    2015-07-31

    The photophysics of a covalently linked perylenediimide–diketopyrrolopyrrole–perylenediimide acceptor–donor–acceptor molecule (PDI–DPP–PDI, 1) were investigated and found to be markedly different in solution versus in unannealed and solvent annealed films. Photoexcitation of 1 in toluene results in quantitative charge separation in τ = 3.1 ± 0.2 ps, with charge recombination in τ = 340 ± 10 ps, while in unannealed/disordered films of 1, charge separation occurs in τ < 250 fs, while charge recombination displays a multiexponential decay in ~6 ns. The absence of long-lived, charge separation in the disordered film suggests that few free charge carriers are generated. In contrast, uponmore » CH₂Cl₂ vapor annealing films of 1, grazing-incidence X-ray scattering shows that the molecules form a more ordered structure. Photoexcitation of the ordered films results in initial formation of a spin-correlated radical ion pair (electron–hole pair) as indicated by magnetic field effects on the formation of free charge carriers which live for ~4 μs. This result has significant implications for the design of organic solar cells based on covalent donor–acceptor systems and shows that long-lived, charge-separated states can be achieved by controlling intramolecular charge separation dynamics in well-ordered systems.« less

  10. Long-lived charge carrier generation in ordered films of a covalent perylenediimide–diketopyrrolopyrrole–perylenediimide molecule

    SciTech Connect

    Hartnett, Patrick E.; Dyar, Scott M.; Margulies, Eric A.; Shoer, Leah E.; Cook, Andrew W.; Eaton, Samuel W.; Marks, Tobin J.; Wasielewski, Michael R.

    2015-07-31

    The photophysics of a covalently linked perylenediimide–diketopyrrolopyrrole–perylenediimide acceptor–donor–acceptor molecule (PDI–DPP–PDI, 1) were investigated and found to be markedly different in solution versus in unannealed and solvent annealed films. Photoexcitation of 1 in toluene results in quantitative charge separation in τ = 3.1 ± 0.2 ps, with charge recombination in τ = 340 ± 10 ps, while in unannealed/disordered films of 1, charge separation occurs in τ < 250 fs, while charge recombination displays a multiexponential decay in ~6 ns. The absence of long-lived, charge separation in the disordered film suggests that few free charge carriers are generated. In contrast, upon CH₂Cl₂ vapor annealing films of 1, grazing-incidence X-ray scattering shows that the molecules form a more ordered structure. Photoexcitation of the ordered films results in initial formation of a spin-correlated radical ion pair (electron–hole pair) as indicated by magnetic field effects on the formation of free charge carriers which live for ~4 μs. This result has significant implications for the design of organic solar cells based on covalent donor–acceptor systems and shows that long-lived, charge-separated states can be achieved by controlling intramolecular charge separation dynamics in well-ordered systems.

  11. Characteristics of low energy atom and molecule beams generated by the charge exchange reaction

    SciTech Connect

    Hara, Yasuhiro; Takashima, Seigo; Toyoda, Hirotaka; Sekine, Makoto; Hori, Masaru; Yamakawa, Koji; Den, Shoji

    2008-03-01

    A low energy NB source, which consisted of a surface wave plasma (SWP) source and two large diameter carbon electrodes, was developed for damageless etching of ultralarge-scale integrated devices. Ion beams were extracted from the SWP using two carbon electrodes, accelerated and injected to the process chamber, and then neutralized without energy loss by a charge exchange reaction. The energy distribution functions of an Ar ion beam and an Ar atom beam was observed using a quadrupole mass spectroscope equipped with an energy analyzer. The energy of the Ar ion beam and the Ar atom beam was controlled by the acceleration voltage. N{sub 2} ion and N ion beams were also extracted from a nitrogen plasma source. The intensity ratio of the N ion beam to the N{sub 2} ion beam was 5:9, indicating that N ions were efficiently generated in the nitrogen SWP. The N{sub 2} ion and N ion beams were changed to N{sub 2} molecule and N atom beams, respectively, through a charge exchange reaction without energy loss. The energy of these beams was controlled by the acceleration voltage and was in the region less of than 100 eV. When the acceleration voltage is higher than 40 V, not only the primary peaks due to the N{sub 2} ion beam or N ion beam were observed but also a low energy second peak was observed in the energy distribution. The energy of the low energy second peak was controlled by the acceleration voltage. It was concluded that the low energy second peak corresponds to the N{sub 2} molecule ion beam and the N ion beam, which is extracted from the second plasma generated in the space between the two carbon electrodes.

  12. Molecular-scale quantitative charge density measurement of biological molecule by frequency modulation atomic force microscopy in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Umeda, Kenichi; Kobayashi, Kei; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi

    2015-07-01

    Surface charge distributions on biological molecules in aqueous solutions are essential for the interactions between biomolecules, such as DNA condensation, antibody-antigen interactions, and enzyme reactions. There has been a significant demand for a molecular-scale charge density measurement technique for better understanding such interactions. In this paper, we present the local electric double layer (EDL) force measurements on DNA molecules in aqueous solutions using frequency modulation atomic force microscopy (FM-AFM) with a three-dimensional force mapping technique. The EDL forces measured in a 100 mM KCl solution well agreed with the theoretical EDL forces calculated using reasonable parameters, suggesting that FM-AFM can be used for molecular-scale quantitative charge density measurements on biological molecules especially in a highly concentrated electrolyte.

  13. How topoisomerase IV can efficiently unknot and decatenate negatively supercoiled DNA molecules without causing their torsional relaxation.

    PubMed

    Rawdon, Eric J; Dorier, Julien; Racko, Dusan; Millett, Kenneth C; Stasiak, Andrzej

    2016-06-01

    Freshly replicated DNA molecules initially form multiply interlinked right-handed catenanes. In bacteria, these catenated molecules become supercoiled by DNA gyrase before they undergo a complete decatenation by topoisomerase IV (Topo IV). Topo IV is also involved in the unknotting of supercoiled DNA molecules. Using Metropolis Monte Carlo simulations, we investigate the shapes of supercoiled DNA molecules that are either knotted or catenated. We are especially interested in understanding how Topo IV can unknot right-handed knots and decatenate right-handed catenanes without acting on right-handed plectonemes in negatively supercoiled DNA molecules. To this end, we investigate how the topological consequences of intersegmental passages depend on the geometry of the DNA-DNA juxtapositions at which these passages occur. We observe that there are interesting differences between the geometries of DNA-DNA juxtapositions in the interwound portions and in the knotted or catenated portions of the studied molecules. In particular, in negatively supercoiled, multiply interlinked, right-handed catenanes, we detect specific regions where DNA segments belonging to two freshly replicated sister DNA molecules form left-handed crossings. We propose that, due to its geometrical preference to act on left-handed crossings, Topo IV can specifically unknot supercoiled DNA, as well as decatenate postreplicative catenanes, without causing their torsional relaxation.

  14. How topoisomerase IV can efficiently unknot and decatenate negatively supercoiled DNA molecules without causing their torsional relaxation

    PubMed Central

    Rawdon, Eric J.; Dorier, Julien; Racko, Dusan; Millett, Kenneth C.; Stasiak, Andrzej

    2016-01-01

    Freshly replicated DNA molecules initially form multiply interlinked right-handed catenanes. In bacteria, these catenated molecules become supercoiled by DNA gyrase before they undergo a complete decatenation by topoisomerase IV (Topo IV). Topo IV is also involved in the unknotting of supercoiled DNA molecules. Using Metropolis Monte Carlo simulations, we investigate the shapes of supercoiled DNA molecules that are either knotted or catenated. We are especially interested in understanding how Topo IV can unknot right-handed knots and decatenate right-handed catenanes without acting on right-handed plectonemes in negatively supercoiled DNA molecules. To this end, we investigate how the topological consequences of intersegmental passages depend on the geometry of the DNA-DNA juxtapositions at which these passages occur. We observe that there are interesting differences between the geometries of DNA-DNA juxtapositions in the interwound portions and in the knotted or catenated portions of the studied molecules. In particular, in negatively supercoiled, multiply interlinked, right-handed catenanes, we detect specific regions where DNA segments belonging to two freshly replicated sister DNA molecules form left-handed crossings. We propose that, due to its geometrical preference to act on left-handed crossings, Topo IV can specifically unknot supercoiled DNA, as well as decatenate postreplicative catenanes, without causing their torsional relaxation. PMID:27106058

  15. Transient negative photoconductance in a charge transfer double quantum well under optical intersubband excitation

    NASA Astrophysics Data System (ADS)

    Rüfenacht, M.; Tsujino, S.; Sakaki, H.

    1998-06-01

    Recently, it was shown that an electron-hole radiative recombination is induced by a mid-infrared light exciting an intersubband transition in a charge transfer double quantum well (CTDQW). This recombination was attributed to an upstream transfer of electrons from an electron-rich well to a hole-rich well. In this study, we investigated the electrical response of a CTDQW under intersubband optical excitation, and found that a positive photocurrent, opposite in sign and proportional to the applied electric field, accompanies the intersubband-transition-induced luminescence (ITIL) signal. A negative photocurrent component was also observed and attributed to heating processes. This work brings a further evidence of the ITIL process and shows that an important proportion of the carriers are consumed by the transfer of electrons.

  16. Polymerization on the rocks: negatively-charged alpha-amino acids

    NASA Technical Reports Server (NTRS)

    Hill, A. R. Jr; Bohler, C.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    Oligomers of the negatively-charged amino acids, glutamic acid, aspartic acid, and O-phospho-L-serine are adsorbed by hydroxylapatite and illite with affinities that increase with oligomer length. In the case of oligo-glutamic acids adsorbed on hydroxylapatite, addition of an extra residue results in an approximately four-fold increase in the strength of adsorption. Oligomers much longer than the 7-mer are retained tenaciously by the mineral. Repeated incubation of short oligo-glutamic acids adsorbed on hydroxylapatite or illite with activated monomer leads to the accumulation of oligomers at least 45 units long. The corresponding reactions of aspartic acid and O-phospho-L-serine on hydroxylapatite are less effective in generating long oligomers, while illite fails to accumulate substantial amounts of long oligomers of aspartic acid or of O-phospho-L-serine.

  17. Stroke multiplicity and horizontal scale of negative charge regions in thunderclouds

    NASA Astrophysics Data System (ADS)

    Williams, Earle R.; Mattos, Enrique V.; Machado, Luiz A. T.

    2016-05-01

    An X-band polarimetric radar and multiple lightning detection systems are used to document the initial cloud-to-ground lightning flash in a large number (46 cases) of incipient thunderstorms, as part of the CHUVA-Vale field campaign during the 2011/2012 spring-summer in southeast Brazil. The results show an exceptionally low stroke multiplicity (87% of flashes with single stroke) in the initial ground flashes, a finding consistent with the limited space available for the positive leader extension into new regions of negative space charge in compact cells. The results here are contrasted with the behavior of ground flashes in mesoscale thunderstorms in previous studies. Additionally, we found evidence for a minimum scale (radar echo >20 dBZ) for lightning initiation (>3 km in radius) and that the peak currents of initial cloud-to-ground flashes in these compact thunderstorms are only half as large as return stroke peak currents in general.

  18. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    NASA Astrophysics Data System (ADS)

    Kundu, Sourav; Karmakar, S. N.

    2016-07-01

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  19. Negatively charged hyperbranched polyglycerol grafted membranes for osmotic power generation from municipal wastewater.

    PubMed

    Li, Xue; Cai, Tao; Chen, Chunyan; Chung, Tai-Shung

    2016-02-01

    Osmotic power holds great promise as a clean, sustainable and largely unexploited energy resource. Recent membrane development for pressure-retarded osmosis (PRO) is making the osmotic power generation more and more realistic. However, severe performance declines have been observed because the porous layer of PRO membranes is fouled by the feed stream. To overcome it, a negatively charged antifouling PRO hollow fiber membrane has been designed and studied in this work. An antifouling polymer, derived from hyperbranched polyglycerol and functionalized by α-lipoic acid and succinic anhydride, was synthesized and grafted onto the polydopamine (PDA) modified poly(ether sulfone) (PES) hollow fiber membranes. In comparison to unmodified membranes, the charged hyperbranched polyglycerol (CHPG) grafted membrane is much less affected by organic deposition, such as bovine serum albumin (BSA) adsorption, and highly resistant to microbial growths, demonstrated by Escherichia coli adhesion and Staphylococcus aureus attachment. CHPG-g-TFC was also examined in PRO tests using a concentrated wastewater as the feed. Comparing to the plain PES-TFC and non-charged HPG-g-TFC, the newly developed membrane exhibits not only the smallest decline in water flux but also the highest recovery rate. When using 0.81 M NaCl and wastewater as the feed pair in PRO tests at 15 bar, the average power density remains at 5.6 W/m(2) in comparison to an average value of 3.6 W/m(2) for unmodified membranes after four PRO runs. In summary, osmotic power generation may be sustained by properly designing and anchoring the functional polymers to PRO membranes.

  20. Negatively charged hyperbranched polyglycerol grafted membranes for osmotic power generation from municipal wastewater.

    PubMed

    Li, Xue; Cai, Tao; Chen, Chunyan; Chung, Tai-Shung

    2016-02-01

    Osmotic power holds great promise as a clean, sustainable and largely unexploited energy resource. Recent membrane development for pressure-retarded osmosis (PRO) is making the osmotic power generation more and more realistic. However, severe performance declines have been observed because the porous layer of PRO membranes is fouled by the feed stream. To overcome it, a negatively charged antifouling PRO hollow fiber membrane has been designed and studied in this work. An antifouling polymer, derived from hyperbranched polyglycerol and functionalized by α-lipoic acid and succinic anhydride, was synthesized and grafted onto the polydopamine (PDA) modified poly(ether sulfone) (PES) hollow fiber membranes. In comparison to unmodified membranes, the charged hyperbranched polyglycerol (CHPG) grafted membrane is much less affected by organic deposition, such as bovine serum albumin (BSA) adsorption, and highly resistant to microbial growths, demonstrated by Escherichia coli adhesion and Staphylococcus aureus attachment. CHPG-g-TFC was also examined in PRO tests using a concentrated wastewater as the feed. Comparing to the plain PES-TFC and non-charged HPG-g-TFC, the newly developed membrane exhibits not only the smallest decline in water flux but also the highest recovery rate. When using 0.81 M NaCl and wastewater as the feed pair in PRO tests at 15 bar, the average power density remains at 5.6 W/m(2) in comparison to an average value of 3.6 W/m(2) for unmodified membranes after four PRO runs. In summary, osmotic power generation may be sustained by properly designing and anchoring the functional polymers to PRO membranes. PMID:26630043

  1. Synthesis of positively and negatively charged silver nanoparticles and their deposition on the surface of titanium

    NASA Astrophysics Data System (ADS)

    Sharonova, A.; Loza, K.; Surmeneva, M.; Surmenev, R.; Prymak, O.; Epple, M.

    2016-02-01

    Bacterial infections related to dental implants are currently a significant complication. A good way to overcome this challenge is functionalization of implant surface with Ag nanoparticles (NPs) as antibacterial agent. This article aims at review the synthesis routes, size and electrical properties of AgNPs. Polyvinyl pyrrolidone (PVP) and polyethyleneimine (PEI) were used as stabilizers. Dynamic Light Scattering, Nanoparticle Tracking Analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) have been used to characterize the prepared AgNPs. Two types of NPs were synthesized in aqueous solutions: PVP-stabilized NPs with a diameter of the metallic core of 70 ± 20 nm, and negative charge of -20 mV, PEI-stabilized NPs with the size of the metallic core of 50 ± 20 nm and positive charge of +55 mV. According to SEM results, all the NPs have a spherical shape. Functionalization of the titanium substrate surface with PVP and PEI-stabilized AgNPs was carried out by dropping method. XRD patterns revealed that the AgNPs are crystalline with the crystallite size of 14 nm.

  2. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1-x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  3. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1‑x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  4. Negatively-charged NV-center in SiC: Electronic structure properties

    NASA Astrophysics Data System (ADS)

    Dev, Pratibha; Economou, Sophia

    Deep defects with high-spin states in semiconductors are promising candidates as solid-state systems for quantum computing applications. The charged NV-center in diamond is the best-known and most-studied defect center, and has proven to be a good proof-of-principle structure for demonstrating the use of such defects in quantum technologies. Increasingly, however, there is an interest in exploring deep defects in alternative semiconductors such as SiC. This is due to the challenges posed by diamond as host material for defects, as well as the attractive properties of SiC. In this density functional theory work, we study the spin-1 structure of the negatively charged NV-center in two polytypes: 3C-SiC and 4H-SiC. The calculated zero phonon line for the excited state of the defect is in telecom range (0.90eV), making it a very good candidate for quantum technologies. This work provides basic ingredients required to understand the physics of this color center at a quantitative and qualitative level. We also design quantum information applications, such as a spin-photon interface and multi-photon entanglement.

  5. Quorum sensing signal molecules (acylated homoserine lactones) in gram-negative fish pathogenic bacteria.

    PubMed

    Bruhn, Jesper B; Dalsgaard, Inger; Nielsen, Kristian F; Buchholtz, Christiane; Larsen, Jens L; Gram, Lone

    2005-06-14

    The aim of the present study was to investigate the production of quorum sensing signals (specifically acylated homoserine lactones, AHLs) among a selection of strains of Gram-negative fish bacterial pathogens. These signals are involved in the regulation of virulence factors in some human and plant-pathogenic bacteria. A total of 59 strains, representing 9 different fish pathogenic species, were tested against 2 AHL monitor bacteria (Agrobacterium tumefaciens NT1 [pZLR4] and Chromobacterium violaceum CV026) in a well diffusion assay and by thin-layer chromatography (TLC). Representative samples were further characterized by high performance liquid chromatography-high resolution mass spectrometry (HPLC-HR-MS). AHLs were produced by all strains of Aeromonas salmonicida, Aeromonas hydrophila, Yersinia ruckeri, Vibrio salmonicida, and Vibrio vulnificus. Some strains of atypical Aeromonas salmonicida and Vibrio splendidus were also positive. Aeromonas species produced N-butanoyl homoserine lactone (BHL) and N-hexanoyl homoserine lactone (HHL) and 1 additional product, whereas N-3-oxo-hexanoyl homoserine lactone (OHHL) and HHL were detected in Vibrio salmonicida. N-3-oxo-octanoyl homoserine lactone (OOHL) and N-3-octanoyl homoserine lactone (OHL) were detected in Y. ruckeri. AHLs were not detected from strains of Photobacterium damselae, Flavobacterium psychrophilum or Moritella viscosa. AHLs were extracted from fish infected with Y. ruckeri but not from fish infected with A. salmonicida. In conclusion, the production of quorum sensing signals, AHLs, is common among the strains that we examined. If the AHL molecules regulate the expression of the virulence phenotype in these bacteria, as shown to occur in some bacterial pathogens, novel disease control measures may be developed by blocking AHL-mediated communication and suppressing virulence.

  6. Negatively Charged Carbon Nanohorn Supported Cationic Liposome Nanoparticles: A Novel Delivery Vehicle for Anti-Nicotine Vaccine.

    PubMed

    Zheng, Hong; Hu, Yun; Huang, Wei; de Villiers, Sabina; Pentel, Paul; Zhang, Jianfei; Dorn, Harry; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Tobacco addiction is the second-leading cause of death in the world. Due to the nature of nicotine (a small molecule), finding ways to combat nicotine's deleterious effects has been a constant challenge to the society and the medical field. In the present work, a novel anti-nicotine vaccine based on nanohorn supported liposome nanoparticles (NsL NPs) was developed. The nano-vaccine was constructed by using negatively charged carbon nanohorns as a scaffold for the assembly of cationic liposomes, which allow the conjugation of hapten conjugated carrier proteins. The assembled bio-nanoparticles are stable. Mice were immunized subcutaneously with the nano-vaccine, which induced high titer and high affinity of nicotine specific antibodies in mice. Furthermore, no evidence of clinical signs or systemic toxicity followed multiple administrations of NsL-based anti-nicotine vaccine. These results suggest that NsL-based anti-nicotine vaccine is a promising candidate in treating nicotine dependence and could have potential to significantly contribute to smoking cessation.

  7. Ex vivo complement protein adsorption on positively and negatively charged cellulose dialyser membranes.

    PubMed

    Mahiout, A; Matata, B M; Vienken, J; Courtney, J M

    1997-05-01

    An ex vivo test system was used to measure complement protein C3 and factor B adsorption onto small dialyser modules made from regenerated and modified cellulosic hollow fibre membranes in which positive diethylaminoethyl (DEAE) or negative carboxymethyl (CM) groups were introduced into the cellulose matrix. The extracorporeal system, which included test-dialysers and the dialysis environment, allowed the use of labelled proteins without contaminating the blood donors which were connected in an open-loop fashion to the extracorporeal test system. The modules were removed at selected time points from the extracorporeal system for radioactivity counting. The results were used to evaluate the mechanisms involved in complement reactions to foreign surfaces. The system therefore allowed the analysis of complement protein adsorption occurring in the dialyser modules and its relationship to the complement generation rate in the extracorporeal system to be evaluated. It was possible to demonstrate that significant complement C3 and factor B adsorption occurred in the test modules made of cellulosic membranes. Complement adsorption as a function of the pH and the release reaction of the adsorbed C3 and factor B after membrane blood perfusion were therefore found to be variable according to the cellulosic membrane type and the presence of positive or negative charged groups within the cellulose matrix. The data obtained from the ex vivo model therefore provided additional evidence on the discussion of the mechanisms involved in the increased complement activation by regenerated cellulose and in its attenuation by DEAE- or CM-modified cellulose.

  8. Internal configuration and electric potential in planar negatively charged lipid head group region in contact with ionic solution.

    PubMed

    Lebar, Alenka Maček; Velikonja, Aljaž; Kramar, Peter; Iglič, Aleš

    2016-10-01

    The lipid bilayer composed of negatively charged lipid 1-palmitoyl-3-oleoyl-sn-glycero-3-phosphatidylserine (POPS) in contact with an aqueous solution of monovalent salt ions was studied theoretically by using the mean-field modified Langevin-Poisson-Boltzmann (MLPB) model. The MLPB results were tested by using molecular dynamic (MD) simulations. In the MLPB model the charge distribution of POPS head groups is theoretically described by the negatively charged surface which accounts for negatively charged phosphate groups, while the positively charged amino groups and negatively charged carboxylate groups are assumed to be fixed on the rod-like structures with rotational degree of freedom. The spatial variation of relative permittivity, which is not considered in the well-known Gouy-Chapman (GC) model or in MD simulations, is thoroughly derived within a strict statistical mechanical approach. Therefore, the spatial dependence and magnitude of electric potential within the lipid head group region and its close vicinity are considerably different in the MLPB model from the GC model. The influence of the bulk salt concentration and temperature on the number density profiles of counter-ions and co-ions in the lipid head group region and aqueous solution along with the probability density function for the lipid head group orientation angle was compared and found to be in qualitative agreement in the MLPB and MD models. PMID:27209203

  9. Exploration of Porphyrin-based Semiconductors for Negative Charge Transport Applications Using Synthetic, Spectroscopic, Potentiometric, Magnetic Resonance, and Computational Methods

    NASA Astrophysics Data System (ADS)

    Rawson, Jeffrey Scott

    Organic pi-conjugated materials are emerging as commercially relevant components in electronic applications that include transistors, light-emitting diodes, and solar cells. One requirement common to all of these functions is an aptitude for accepting and transmitting charges. It is generally agreed that the development of organic semiconductors that favor electrons as the majority carriers (n-type) lags behind the advances in hole transporting (p-type) materials. This shortcoming suggests that the design space for n-type materials is not yet well explored, presenting researchers with the opportunity to develop unconventional architectures. In this regard, it is worth noting that discrete molecular materials are demonstrating the potential to usurp the preeminent positions that pi-conjugated polymers have held in these areas of organic electronics research. This dissertation describes how an extraordinary class of molecules, meso-to-meso ethyne-bridged porphyrin arrays, has been bent to these new uses. Chapter one describes vis-NIR spectroscopic and magnetic resonance measurements revealing that these porphyrin arrays possess a remarkable aptitude for the delocalization of negative charge. In fact, the miniscule electron-lattice interactions exhibited in these rigid molecules allow them to host the most vast electron-polarons ever observed in a pi-conjugated material. Chapter two describes the development of an ethyne-bridged porphyrin-isoindigo hybrid chromophore that can take the place of fullerene derivatives in the conventional thin film solar cell architecture. Particularly noteworthy is the key role played by the 5,15-bis(heptafluoropropyl)porphyrin building block in the engineering of a chromophore that, gram for gram, is twice as absorptive as poly(3-hexyl)thiophene, exhibits a lower energy absorption onset than this polymer, and yet possesses a photoexcited singlet state sufficiently energetic to transfer a hole to this polymer. Chapter three describes

  10. STUDIES OF X-RAY PRODUCTION FOLLOWING CHARGE EXCHANGE RECOMBINATION BETWEEN HIGHLY CHARGED IONS AND NEUTRAL ATOMS AND MOLECULES

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Chen, H; Clementson, J; Frankel, M; Gu, M F; Kelley, R L; Kilbourne, C A; Porter, F S; Thorn, D B; Wargelin, B J

    2008-08-28

    We have used microcalorimeters built by the NASA/Goddard Space Flight Center and the Lawrence Livermore National Laboratory Electron Beam Ion Trap to measure X-ray emission produced by charge exchange reactions between highly charged ions colliding with neutral helium, hydrogen, and nitrogen gas. Our measurements show the spectral dependence on neutral species and also show the distinct differences between spectra produced by charge exchange reactions and those produced by direct impact excitation. These results are part of an ongoing experimental investigation at the LLNL EBIT facility of charge exchange spectral signatures and can be used to interpret X-ray spectra produced by a variety of laboratory and celestial sources including cometary and planetary atmospheres, the Earth's magnetosheath, the heliosphere, and tokamaks.

  11. Charge symmetric dissociation of doubly ionized N{sub 2} and CO molecules

    SciTech Connect

    Pandey, A. Bapat, B.; Shamasundar, K. R.

    2014-01-21

    We report a comparative study of the features in dissociative double ionization by high energy electron impact of N{sub 2} and CO molecules. The ratio of cross-section of charge symmetric dissociative ionization to non-dissociative ionization (CSD-to-ND ratio) and the kinetic energy release (KER) spectra of dissociation are experimentally measured and carefully corrected for various ion transmission losses and detector inefficiencies. Given that the double ionization cross sections of these iso-electronic diatomics are very similar, the large difference in the CSD-to-ND ratios must be attributable to the differences in the evolution dynamics of the dications. To understand these differences, potential energy curves (PECs) of dications have been computed using multi-reference configuration interaction method. The Franck-Condon factors and tunneling life times of vibrational levels of dications have also been computed. While the KER spectrum of N{sub 2}{sup ++} can be readily explained by considering dissociation via repulsive states and tunneling of meta-stable states, indirect dissociation processes such as predissociation and autoionization have to be taken into account to understand the major features of the KER spectrum of CO{sup ++}. Direct and indirect processes identified on the basis of the PECs and experimental KER spectra also provide insights into the differences in the CSD-to-ND ratios.

  12. Charge symmetric dissociation of doubly ionized N2 and CO molecules.

    PubMed

    Pandey, A; Bapat, B; Shamasundar, K R

    2014-01-21

    We report a comparative study of the features in dissociative double ionization by high energy electron impact of N2 and CO molecules. The ratio of cross-section of charge symmetric dissociative ionization to non-dissociative ionization (CSD-to-ND ratio) and the kinetic energy release (KER) spectra of dissociation are experimentally measured and carefully corrected for various ion transmission losses and detector inefficiencies. Given that the double ionization cross sections of these iso-electronic diatomics are very similar, the large difference in the CSD-to-ND ratios must be attributable to the differences in the evolution dynamics of the dications. To understand these differences, potential energy curves (PECs) of dications have been computed using multi-reference configuration interaction method. The Franck-Condon factors and tunneling life times of vibrational levels of dications have also been computed. While the KER spectrum of N2 (++) can be readily explained by considering dissociation via repulsive states and tunneling of meta-stable states, indirect dissociation processes such as predissociation and autoionization have to be taken into account to understand the major features of the KER spectrum of CO(++). Direct and indirect processes identified on the basis of the PECs and experimental KER spectra also provide insights into the differences in the CSD-to-ND ratios. PMID:25669391

  13. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.

    PubMed

    Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng

    2015-07-21

    The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven

  14. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.

    PubMed

    Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng

    2015-07-21

    The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven

  15. Strong n-type molecule as low bias negative differential resistance device predicted by first-principles study

    NASA Astrophysics Data System (ADS)

    Min, Y.; Zhong, C. G.; Dong, Z. C.; Zhao, Z. Y.; Zhou, P. X.; Yao, K. L.

    2016-10-01

    A first-principles study of the transport properties of two thiolated pentacenes sandwiching ethyl is performed. The thiolated pentacene molecule shows strong n-type characteristics when contact Ag lead because of low work function about metal Ag. A strong negative differential resistance (NDR) effect with large peak-to-valley ratio of 758% is present under low bias. Our investigations indicate that strong n- or p-type molecules can be used as low bias molecular NDR devices and that the molecular NDR effect based on molecular-level leaving not on molecular-level crossing has no hysteresis.

  16. Excitation of dust acoustic waves by an ion beam in a plasma cylinder with negatively charged dust grains

    SciTech Connect

    Sharma, Suresh C.; Kaur, Daljeet; Gahlot, Ajay; Sharma, Jyotsna

    2014-10-15

    An ion beam propagating through a plasma cylinder having negatively charged dust grains drives a low frequency electrostatic dust acoustic wave (DAW) to instability via Cerenkov interaction. The unstable wave frequencies and the growth rate increase with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales to the one-third power of the beam density. The real part of the frequency of the unstable mode increases with the beam energy and scales to almost one-half power of the beam energy. The phase velocity, frequency, and wavelength results of the unstable mode are in compliance with the experimental observations.

  17. Statistical mechanics of dust charging in a multi-ion plasma with negative and positive ionic species

    SciTech Connect

    Mishra, S. K.; Misra, Shikha

    2015-02-15

    On the basis of statistical mechanics and charging kinetics, the charge distribution over uniform size spherical dust particles in a multi-ion plasma comprising of multiple charged negative and positive ions is investigated. Two specific situations where the complex plasma is viz., (i) dark (no emission from dust) and (ii) irradiated by laser light (causing photoemission from dust) have been taken into account. The analytical formulation includes the population balance equation for the charged dust particles along with number and energy balance of the complex plasma constituents. The departure of the results for multi-ion plasma from that in case of usual singly charged positive ion plasma is graphically illustrated and discussed. In contrast to electron-ion plasma, significant number of particles is seen to acquire opposite charge in case of pure positive-negative ion plasma, even in the absence of electron emission from the dust grains. The effects of various plasma parameters viz., number density, particle size, and work function of dust on charge distribution have also been examined.

  18. Enhancement of DNA compaction by negatively charged nanoparticles: effect of nanoparticle size and surfactant chain length.

    PubMed

    Rudiuk, Sergii; Yoshikawa, Kenichi; Baigl, Damien

    2012-02-15

    We study the compaction of genomic DNA by a series of alkyltrimethylammonium bromide surfactants having different hydrocarbon chain lengths n: dodecyl-(DTAB, n=12), tetradecyl-(TTAB, n=14) and hexadecyl-(CTAB, n=16), in the absence and in the presence of negatively charged silica nanoparticles (NPs) with a diameter in the range 15-100 nm. We show that NPs greatly enhance the ability of all cationic surfactants to induce DNA compaction and that this enhancement increases with an increase in NP diameter. In the absence of NP, the ability of cationic surfactants to induce DNA compaction increases with an increase in n. Conversely, in the presence of NPs, the enhancement of DNA compaction increases with a decrease in n. Therefore, although CTAB is the most efficient surfactant to compact DNA, maximal enhancement by NPs is obtained for the largest NP diameter (here, 100 nm) and the smallest surfactant chain length (here, DTAB). We suggest a mechanism where the preaggregation of surfactants on NP surface mediated by electrostatic interactions promotes cooperative binding to DNA and thus enhances the ability of surfactants to compact DNA. We show that the amplitude of enhancement is correlated with the difference between the surfactant concentration corresponding to aggregation on DNA alone and that corresponding to the onset of adsorption on nanoparticles.

  19. Negatively charged nano-grains at 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Gombosi, T. I.; Burch, J. L.; Horányi, M.

    2015-11-01

    Shortly after the Rosetta mission's rendezvous with 67P/Churyumov-Gerasimenko the RPC/IES instrument intermittently detected negative particles that were identified as singly charged nano-dust grains. These grains were recorded as a nearly mono-energetic beam of particles in the 200-500 eV range arriving from the direction of the comet. Occasionally, another population of particles in the energy range of 1-20 keV were also noticed arriving from the approximate direction of the Sun. In this paper we review the processes that can explain the energization and the directionality of the observed nano-dust populations. We show that the observations are consistent with gas-drag acceleration of the outflowing particles with radii of 3-4 nm, and with the returning fragments of bigger particles accelerated by radiation pressure with approximate radii of 30-80 nm. In addition to gas drag and radiation pressure, we also examine the role of the solar wind induced motional electric field, and its possible role in explaining the intermittency of the detection of a nano-grain population arriving from the solar direction.

  20. Identification of functionally important negatively charged residues in the carboxy end of mouse hepatitis coronavirus A59 nucleocapsid protein.

    PubMed

    Verma, Sandhya; Bednar, Valerie; Blount, Andrew; Hogue, Brenda G

    2006-05-01

    The coronavirus nucleocapsid (N) protein is a multifunctional viral gene product that encapsidates the RNA genome and also plays some as yet not fully defined role in viral RNA replication and/or transcription. A number of conserved negatively charged amino acids are located within domain III in the carboxy end of all coronavirus N proteins. Previous studies suggested that the negatively charged residues are involved in virus assembly by mediating interaction between the membrane (M) protein carboxy tail and nucleocapsids. To determine the importance of these negatively charged residues, a series of alanine and other charged-residue substitutions were introduced in place of those in the N gene within a mouse hepatitis coronavirus A59 infectious clone. Aspartic acid residues 440 and 441 were identified as functionally important. Viruses could not be isolated when both residues were replaced by positively charged amino acids. When either amino acid was replaced by a positively charged residue or both were changed to alanine, viruses were recovered that contained second-site changes within N, but not in the M or envelope protein. The compensatory role of the new changes was confirmed by the construction of new viruses. A few viruses were recovered that retained the D441-to-arginine change and no compensatory changes. These viruses exhibited a small-plaque phenotype and produced significantly less virus. Overall, results from our analysis of a large panel of plaque-purified recovered viruses indicate that the negatively charged residues at positions 440 and 441 are key residues that appear to be involved in virus assembly. PMID:16611893

  1. Linear free energy relationships for metal-ligand complexation: Bidentate binding to negatively-charged oxygen donor atoms

    NASA Astrophysics Data System (ADS)

    Carbonaro, Richard F.; Atalay, Yasemin B.; Di Toro, Dominic M.

    2011-05-01

    Stability constants for metal complexation to bidentate ligands containing negatively-charged oxygen donor atoms can be estimated from the following linear free energy relationship (LFER): log KML = χOO( αO log KHL,1 + αO log KHL,2) where KML is the metal-ligand stability constant for a 1:1 complex, KHL,1 and KHL,2 are the proton-ligand stability constants (the ligand p Ka values), and αO is the Irving-Rossotti slope. The parameter χOO is metal specific and has slightly different values for five and six membered chelate rings. LFERs are presented for 21 different metal ions and are accurate to within approximately 0.30 log units in predictions of log KML values. Ligands selected for use in LFER development include dicarboxylic acids, carboxyphenols, and ortho-diphenols. For ortho-hydroxybenzaldehydes, α-hydroxycarboxylic acids, and α-ketocarboxylic acids, a modification of the LFER where log KHL,2 is set equal to zero is required. The chemical interpretation of χOO is that it accounts for the extra stability afforded to metal complexes by the chelate effect. Cu-NOM binding constants calculated from the bidentate LFERs are similar in magnitude to those used in WHAM 6. This LFER can be used to make log KML predictions for small organic molecules. Since natural organic matter (NOM) contains many of the same functional groups (i.e. carboxylic acids, phenols, alcohols), the LFER log KML predictions shed light on the range of appropriate values for use in modeling metal partitioning in natural systems.

  2. Radiation transport codes for potential applications related to radiobiology and radiotherapy using protons, neutrons, and negatively charged pions

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.

    1972-01-01

    Several Monte Carlo radiation transport computer codes are used to predict quantities of interest in the fields of radiotherapy and radiobiology. The calculational methods are described and comparisions of calculated and experimental results are presented for dose distributions produced by protons, neutrons, and negatively charged pions. Comparisons of calculated and experimental cell survival probabilities are also presented.

  3. Chemical Interaction, Space-charge Layer and Molecule Charging Energy for a TiO2/TCNQ Interface

    PubMed Central

    Martínez, José I.; Flores, Fernando; Ortega, José; Rangan, Sylvie; Ruggieri, Charles; Bartynski, Robert

    2015-01-01

    Three driving forces control the energy level alignment between transition-metal oxides and organic materials: the chemical interaction between the two materials, the organic electronegativity and the possible space charge layer formed in the oxide. This is illustrated in this study by analyzing experimentally and theoretically a paradigmatic case, the TiO2(110) / TCNQ interface: due to the chemical interaction between the two materials, the organic electron affinity level is located below the Fermi energy of the n-doped TiO2. Then, one electron is transferred from the oxide to this level and a space charge layer is developed in the oxide inducing an important increase in the interface dipole and in the oxide work-function. PMID:26877826

  4. Charge-transfer complex formation in gelation: the role of solvent molecules with different electron-donating capacities.

    PubMed

    Basak, Shibaji; Bhattacharya, Sumantra; Datta, Ayan; Banerjee, Arindam

    2014-05-01

    A naphthalenediimide (NDI)-based synthetic peptide molecule forms gels in a particular solvent mixture (chloroform/aromatic hydrocarbon, 4:1) through charge-transfer (CT) complex formation; this is evident from the corresponding absorbance and fluorescence spectra at room temperature. Various aromatic hydrocarbon based solvents, including benzene, toluene, xylene (ortho, meta and para) and mesitylene, have been used for the formation of the CT complex. The role of different solvent molecules with varying electron-donation capacities in the formation of CT complexes has been established through spectroscopic and computational studies. PMID:24677404

  5. Tantalum oxide/silicon nitride: A negatively charged surface passivation stack for silicon solar cells

    SciTech Connect

    Wan, Yimao Bullock, James; Cuevas, Andres

    2015-05-18

    This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited tantalum oxide (Ta{sub 2}O{sub 5}) underneath plasma enhanced chemical vapour deposited silicon nitride (SiN{sub x}). Cross-sectional transmission electron microscopy imaging shows an approximately 2 nm thick interfacial layer between Ta{sub 2}O{sub 5} and c-Si. Surface recombination velocities as low as 5.0 cm/s and 3.2 cm/s are attained on p-type 0.8 Ω·cm and n-type 1.0 Ω·cm c-Si wafers, respectively. Recombination current densities of 25 fA/cm{sup 2} and 68 fA/cm{sup 2} are measured on 150 Ω/sq boron-diffused p{sup +} and 120 Ω/sq phosphorus-diffused n{sup +} c-Si, respectively. Capacitance–voltage measurements reveal a negative fixed insulator charge density of −1.8 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5} film and −1.0 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5}/SiN{sub x} stack. The Ta{sub 2}O{sub 5}/SiN{sub x} stack is demonstrated to be an excellent candidate for surface passivation of high efficiency silicon solar cells.

  6. Calcium diffusion enhanced after cleavage of negatively charged components of brain extracellular matrix by chondroitinase ABC

    PubMed Central

    Hrabětová, Sabina; Masri, Daniel; Tao, Lian; Xiao, Fanrong; Nicholson, Charles

    2009-01-01

    The concentration of extracellular calcium plays a critical role in synaptic transmission and neuronal excitability as well as other physiological processes. The time course and extent of local fluctuations in the concentration of this ion largely depend on its effective diffusion coefficient (D*) and it has been speculated that fixed negative charges on chondroitin sulphate proteoglycans (CSPGs) and other components of the extracellular matrix may influence calcium diffusion because it is a divalent cation. In this study we used ion-selective microelectrodes combined with pressure ejection or iontophoresis of ions from a micropipette to quantify diffusion characteristics of neocortex and hippocampus in rat brain slices. We show that D* for calcium is less than the value predicted from the behaviour of the monovalent cation tetramethylammonium (TMA), a commonly used diffusion probe, but D* for calcium increases in both brain regions after the slices are treated with chondroitinase ABC, an enzyme that predominantly cleaves chondroitin sulphate glycans. These results suggest that CSPGs do play a role in determining the local diffusion properties of calcium in brain tissue, most likely through electrostatic interactions mediating rapid equilibrium binding. In contrast, chondroitinase ABC does not affect either the TMA diffusion or the extracellular volume fraction, indicating that the enzyme does not alter the structure of the extracellular space and that the diffusion of small monovalent cations is not affected by CSPGs in the normal brain ionic milieu. Both calcium and CSPGs are known to have many distinct roles in brain physiology, including brain repair, and our study suggests they may be functionally coupled through calcium diffusion properties. PMID:19546165

  7. Influence of the charge carrier tunneling processes on the recombination dynamics in single lateral quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Hermannstädter, C.; Beirne, G. J.; Witzany, M.; Heldmaier, M.; Peng, J.; Bester, G.; Wang, L.; Rastelli, A.; Schmidt, O. G.; Michler, P.

    2010-08-01

    We report on the charge carrier dynamics in single lateral quantum dot molecules and the effect of an applied electric field on the molecular states. Controllable electron tunneling manifests itself in a deviation from the typical excitonic decay behavior in dot molecules. It results in a faster population decay and can be strongly influenced by the tuning electric field and intermolecular Coulomb energies. A rate equation model is developed and compared to the experimental data to gain more insight into the charge transfer and tunneling mechanisms. Nonresonant (phonon-mediated) electron tunneling which changes the molecular exciton character from direct to indirect, and vice versa, is found to be the dominant tunable decay mechanism of excitons besides radiative recombination.

  8. Understanding the charge-transfer state and singlet exciton emission from solution-processed small-molecule organic solar cells.

    PubMed

    Ran, Niva A; Kuik, Martijn; Love, John A; Proctor, Christopher M; Nagao, Ikuhiro; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2014-11-19

    Electroluminescence (EL) from the charge-transfer state and singlet excitons is observed at low applied voltages from high-performing small-molecule bulk-heterojunction solar cells. Singlet emission from the blends emerges upon altering the processing conditions, such as thermal annealing and processing with a solvent additive, and correlates with improved photovoltaic performance. Low-temperature EL measurements are utilized to access the physics behind the singlet emission.

  9. The hydrophobic adsorption of charged molecules to bilayer membranes: a test of the applicability of the stern equation.

    PubMed

    McLaughlin, S; Harary, H

    1976-05-01

    To describe the hydrophobic adsorption of charged molecules to bilayer membranes, one must recognize that the adsorption produces a change in the electrostatic potential at the surface of the membrane. The surface potential produced by the adsorption of the charged molecules can be described most simply by the Gouy equation from the theory of the diffuse double layer. This potential will tend to lower the concentration of the adsorbing ions in the aqueous phase immediately adjacent to the membrane, a phenomenon which can be described by the Boltzmann relation. The number of adsorbed ions is, in turn, a function of the aqueous concentration of these ions at the membrane solution interface and can be described, in the simplest case, by a Langmuir adsorption isotherm. If the ions are regarded as point charges, the combination of the Gouy, Boltzmann, and Langmuir relations may be considered a simplified Stern equation. To test experimentally the applicability of this equation, one should measure both the charge density and surface potential as a function of the concentration of adsorbing molecules in the bulk aqueous phases. Direct, accurate measurements of one of these parameters, the number of moles of 2, 6-toluidinylnaphthalenesulfonate ions bound to vesicles formed from phosphatidylcholine, are available in the literature (Huang, C., and Charlton, J.P. (1972), Biochemistry 11, 735). We estimated the change in the surface potential in two independent ways; by means of conductance measurements with "probe" molecules on planar black lipid membranes and by means of electrophoresis measurements on multilaminar unsonicated vesicles. The two estimates agreed with one another and all of the data could be adequately described by the Stern equation, assuming, at 25 degrees C, a dissociation constant of 2 X 10(-4) M and a maximum number of binding sites of 1/70 A2.

  10. Enhanced antidepressant-like effects of the macromolecule trefoil factor 3 by loading into negatively charged liposomes.

    PubMed

    Qin, Jing; Yang, Xu; Mi, Jia; Wang, Jianxin; Hou, Jia; Shen, Teng; Li, Yongji; Wang, Bin; Li, Xuri; Zhu, Weili

    2014-01-01

    Immunocytes, mainly neutrophils and monocytes, exhibit an intrinsic homing property, enabling them to migrate to sites of injury and inflammation. They can thus act as Trojan horses carrying concealed drug cargoes while migrating across impermeable barriers to sites of disease, especially the blood-brain barrier (BBB). In this study, to target circulating phagocytic cells, we formulated negatively charged nanosize liposomes and loaded trefoil factor 3 (TFF3) into liposomes by the pH-gradient method. According to the optimized formulation (5:1.5 of lipid to cholesterol, 10:1 of lipid to drug, 10 mg/mL of lipid concentration, and 10 mmol/L of phosphate-buffered saline), 44.47% entrapment efficiency was obtained for TFF3 liposomes with 129.6 nm particle size and -36.6 mV zeta potential. Compared with neutrally charged liposomes, the negatively charged liposomes showed a strong binding capacity with monocytes and were effectively carried by monocytes to cross the BBB in vitro. Furthermore, enhanced antidepressant-like effects were found in the tail-suspension and forced-swim tests in mice, as measured by decreased immobility time, as well as increased swimming time and reduced immobility in rats. These results suggested that negatively charged liposomes could improve the behavioral responses of TFF3, and our study opens up a new way for the development of effective therapies for brain disease by increasing the permeability of the BBB. PMID:25419129

  11. Role of negatively charged ions in plasma on the growth and field emission properties of spherical carbon nanotube tip

    SciTech Connect

    Tewari, Aarti; Walia, Ritu; Sharma, Suresh C.

    2012-01-15

    The role of negatively charged ions in plasma on growth (without catalyst) and field emission properties of spherical carbon nanotube (CNT) tip has been theoretically investigated. A theoretical model of charge neutrality, including the kinetics of electrons, negatively and positively charged ions, neutral atoms, and the energy balance of various species has been developed. Numerical calculations of the spherical CNT tip radius for different relative density of negatively charged ions {epsilon}{sub r}(=n{sub SF{sub 6{sup -}}}/n{sub C{sup +}}, where n{sub SF{sub 6{sup -}}} and n{sub C}{sup +} are the equilibrium densities of sulphur hexafluoride and carbon ions, respectively) have been carried out for the typical glow discharge plasma parameters. It is found that the spherical CNT tip radius decreases with {epsilon}{sub r} and hence the field emission of electrons from the spherical CNT tip increases. Some of our theoretical results are in accordance with the existing experimental observations.

  12. Stable negative ions and shape resonances in a series of organic molecules

    NASA Astrophysics Data System (ADS)

    Gallup, G. A.

    2013-09-01

    We report on the theoretical determination of low-lying shape resonances in a selected set of seven molecules. The finite element discrete model method is used and the absolute differences between calculated and experimental values, where known, are ⪅0.15 eV for the resonances lowest in energy. Difficulties expected with the higher calculated values are discussed. This article reports results for ortho-benzyne, benzene, naphthalene, anthracene, styrene, formamide, and acetamide. Comparisons are made with a few other calculations, again where available.

  13. Angle-resolved DIET of negative ions from halogenated molecules on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Nair, L.; Sack, N. J.; Madey, T. E.

    1995-06-01

    We present data on the electron stimulated desorption (ESD) of negative ions from PF 3 and CCl 4 adsorbed on Ru(0001) at 100 K. We use a two-dimensional digital ESDIAD detector with time-of-flight capability which allows mass and angle resolved ion detection. We find F - and F 2- to desorb from PF 3, yielding hexagonal ESDIAD patterns, and Cl - and Cl 2- from CCl 4, desorbing in a broad normal emission. The ratio of F 2- to F - and of Cl 2- to Cl - is more than a factor 10 higher than in electron induced gas phase dissociation. We compare the negative ion yields to those of positive ions.

  14. Fixed negative charge and the Donnan effect: a description of the driving forces associated with brain tissue swelling and oedema

    PubMed Central

    Elkin, Benjamin S.; Shaik, Mohammed A.; Morrison, Barclay

    2010-01-01

    Cerebral oedema or brain tissue swelling is a significant complication following traumatic brain injury or stroke that can increase the intracranial pressure (ICP) and impair blood flow. Here, we have identified a potential driver of oedema: the negatively charged molecules fixed within cells. This fixed charge density (FCD), once exposed, could increase ICP through the Donnan effect. We have shown that metabolic processes and membrane integrity are required for concealing this FCD as slices of rat cortex swelled immediately (within 30 min) following dissection if treated with 2 deoxyglucose + cyanide (2DG+CN) or Triton X-100. Slices given ample oxygen and glucose, however, did not swell significantly. We also found that dead brain tissue swells and shrinks in response to changes in ionic strength of the bathing medium, which suggests that the Donnan effect is capable of pressurizing and swelling brain tissue. As predicted, a non-ionic osmolyte, 1,2 propanediol, elicited no volume change at 2000×10−3 osmoles l−1 (Osm). Swelling data were well described by triphasic mixture theory with the calculated reference state FCD similar to that measured with a 1,9 dimethylmethylene blue assay. Taken together, these data suggest that intracellular fixed charges may contribute to the driving forces responsible for brain swelling. PMID:20047940

  15. Small molecule-capped gold nanoparticles as potent antibacterial agents that target Gram-negative bacteria.

    PubMed

    Zhao, Yuyun; Tian, Yue; Cui, Yan; Liu, Wenwen; Ma, Wanshun; Jiang, Xingyu

    2010-09-01

    This report illustrates a new strategy in designing antibacterial agents--a series of commercially available compounds, amino-substituted pyrimidines (themselves completely inactive as antibiotics), when presented on gold nanoparticles (NPs), show antibacterial activities against multidrug-resistant clinical isolates, without external sources of energy such as IR. These pyrimidine-capped gold NPs exert their antibiotic actions via sequestration of magnesium or calcium ions to disrupt the bacterial cell membrane, resulting in leakage of cytoplasmic contents including nucleic acids from compromised cell membranes, and via interaction with DNA and inhibition of protein synthesis by internalized NPs. These amino-substituted pyrimidine-capped gold NPs induce bacterial resistance more slowly compared with conventional, small-molecule antibiotics and appear harmless to human cells; these NPs may hence be useful for clinical applications.

  16. Energy straggling of low-energy ion beam in a charge exchange cell for negative ion production

    SciTech Connect

    Takeuchi, S.; Sasao, M.; Sugawara, H.; Tanaka, N.; Kisaki, M.; Okamoto, A.; Shinto, K.; Kitajima, S.; Nishiura, M.; Wada, M.

    2008-02-15

    Energy straggling in a charge exchange cell, which is frequently used for negative ion production, was studied experimentally and compared with the results of theoretical evaluation. The change of the energy spectrum of a He{sup +} beam due to charge exchange processes in argon gas was measured in the energy range of 2-6 keV. Energy straggling by multiple collisions is expressed by the energy loss formula due to inelastic and elastic processes. The impact parameter is related to the elastic scattering angle, and the geometry of the charge exchange cell and other components of the beam transportation system determines the maximum acceptable scattering angle. The energy spread was evaluated taking the integral limit over the impact parameter into consideration. The theoretical results showed good agreement with those of actual measurement.

  17. Water Dispersible, Positively and Negatively Charged MoS2 Nanosheets: Surface Chemistry and the Role of Surfactant Binding.

    PubMed

    Gupta, Amit; Arunachalam, Vaishali; Vasudevan, Sukumaran

    2015-02-19

    Stable aqueous dispersions of atomically thin layered MoS2 nanosheets have been obtained by sonication in the presence of ionic surfactants. The dispersions are stabilized by electrostatic repulsion between the sheets, and we show that the sign of the charge on the MoS2 nanosheets, either positive or negative, can be can be controlled by the choice of the surfactant. Using techniques from solution NMR, we show that the surfactant chains are weakly bound to the MoS2 sheets and undergo rapid exchange with free surfactant chains present in the dispersion. In situ nuclear Overhauser effect spectroscopic measurements provide direct evidence that the surfactant chains lie flat, arranged randomly on the basal plane of the MoS2 nanosheets with their charged headgroup exposed. These results provide a chemical perspective for understanding the stability of these inorganic nanosheets in aqueous dispersions and the origin of the charge on the sheets.

  18. Observations of the connection of positive and negative leaders in meter-scale electric discharges generated by clouds of negatively charged water droplets

    NASA Astrophysics Data System (ADS)

    Kostinskiy, A. Yu.; Syssoev, V. S.; Bogatov, N. A.; Mareev, E. A.; Andreev, M. G.; Bulatov, M. U.; Makal'sky, L. M.; Sukharevsky, D. I.; Rakov, V. A.

    2016-08-01

    Detailed observations of the connection between positive and negative leaders in meter-scale electric discharges generated by clouds of negatively charged water droplets are presented, and their possible implications for the attachment process in lightning are discussed. Optical images obtained with three different high-speed cameras (visible range with image enhancement, visible-range regular, and infrared) and corresponding current recordings were used. Two snapshots of the breakthrough phase of the leader connection, showing significant leader branching inside the common streamer zone, are presented for the first time. Positive and negative leader speeds inside the common streamer zone for two events were found to be similar. Higher leader speeds were generally associated with higher leader currents. In the case of head-to-head leader connection, the infrared brightness of the junction region (probably representing the gas temperature and, hence, the energy input) was typically a factor of 5 or so higher than for channel sections either below or above that region. In 16% of cases, the downward negative leader connected to the upward positive leader below its tip (attached to the lateral surface of the positive leader), with the connection being accomplished via a channel segment that appeared to be perpendicular to one or both of the leader channels.

  19. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules.

    PubMed

    Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A

    2014-10-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the

  20. Local description of the through phenyl transfer of a negative charge within resonance theory: topological effects in xylylene radical anions

    NASA Astrophysics Data System (ADS)

    Karafiloglou, Padeleimon; Launay, Jean-Pierre

    1999-11-01

    The topological effects specifying a di-substituted phenyl ring bearing a negative charge are investigated by considering the radical anions of para- and meta-xylylene isomers as model systems. The super exchange (SE) and double exchange (DE) component mechanisms describing the through phenyl transfer of a negative charge are considered and examined within `resonance' or `mesomeric' theory. The radical anion electronic events characterizing the DE and SE resonance structures are investigated by means of poly-electron population analysis. Correlated ab initio MO wavefunctions are used as the starting material in our calculations, and the various second quantized density operators are built on the basis of natural AOs. Conditional electronic events specifying SE or DE mechanisms are defined, and the corresponding probabilities are compared for meta and para topologies. The main trends are rationalized by comparing the effects provoked in phenyl ring when the negative charge is transferred from one substituent or the other. In para topology the effects are additive for the most important resonance structures, while in meta (characterized from `quantum interferences') the same effects are antagonist in all structures and for both SE and DE mechanisms.

  1. N-(1-naphthyl) ethylenediamine dinitrate: a new matrix for negative ion MALDI-TOF MS analysis of small molecules.

    PubMed

    Chen, Rui; Chen, Suming; Xiong, Caiqiao; Ding, Xunlei; Wu, Chih-Che; Chang, Huan-Cheng; Xiong, Shaoxiang; Nie, Zongxiu

    2012-09-01

    An organic salt, N-(1-naphthyl) ethylenediamine dinitrate (NEDN), with rationally designed properties of a strong UV absorbing chromophore, hydrogen binding and nitrate anion donors, has been employed as a matrix to analyze small molecules (m/z < 1000) such as oligosaccharides, peptides, metabolites and explosives using negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Compared with conventional matrixes such as α-cyano-4-hydroxycinnamic acid (CCA) and 2,5-dihydroxybenzoic acid (DHB), NEDN provides a significant improvement in detection sensitivity and yields very few matrix-associated fragment and cluster ions interfering with MS analysis. For low-molecular-weight saccharides, the lowest detection limit achieved ranges from 500 amol to 5 pmol, depending on the molecular weight and the structure of the analytes. Additionally, the mass spectra in the lower mass range (m/z < 200) consist of only nitrate and nitric acid cluster ions, making the matrix particularly useful for structural identification of oligosaccharides by post-source decay (PSD) MALDI-MS. Such a characteristic is illustrated by using maltoheptaose as a model system. This work demonstrates that NEDN is a novel negative ion-mode matrix for MALDI-MS analysis of small molecules with nitrate anion attachment.

  2. N-(1-Naphthyl) Ethylenediamine Dinitrate: A New Matrix for Negative Ion MALDI-TOF MS Analysis of Small Molecules

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Chen, Suming; Xiong, Caiqiao; Ding, Xunlei; Wu, Chih-Che; Chang, Huan-Cheng; Xiong, Shaoxiang; Nie, Zongxiu

    2012-09-01

    An organic salt, N-(1-naphthyl) ethylenediamine dinitrate (NEDN), with rationally designed properties of a strong UV absorbing chromophore, hydrogen binding and nitrate anion donors, has been employed as a matrix to analyze small molecules ( m/z < 1000) such as oligosaccharides, peptides, metabolites and explosives using negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Compared with conventional matrixes such as α-cyano-4-hydroxycinnamic acid (CCA) and 2,5-dihydroxybenzoic acid (DHB), NEDN provides a significant improvement in detection sensitivity and yields very few matrix-associated fragment and cluster ions interfering with MS analysis. For low-molecular-weight saccharides, the lowest detection limit achieved ranges from 500 amol to 5 pmol, depending on the molecular weight and the structure of the analytes. Additionally, the mass spectra in the lower mass range ( m/z < 200) consist of only nitrate and nitric acid cluster ions, making the matrix particularly useful for structural identification of oligosaccharides by post-source decay (PSD) MALDI-MS. Such a characteristic is illustrated by using maltoheptaose as a model system. This work demonstrates that NEDN is a novel negative ion-mode matrix for MALDI-MS analysis of small molecules with nitrate anion attachment.

  3. Gold nanoelectrodes of varied size: transition to molecule-like charging

    PubMed

    Chen; Ingram; Hostetler; Pietron; Murray; Schaaff; Khoury; Alvarez; Whetten

    1998-06-26

    A transition from metal-like double-layer capacitive charging to redox-like charging was observed in electrochemical ensemble Coulomb staircase experiments on solutions of gold nanoparticles of varied core size. The monodisperse gold nanoparticles are stabilized by short-chain alkanethiolate monolayers and have 8 to 38 kilodaltons core mass (1.1 to 1.9 nanometers in diameter). Larger cores display Coulomb staircase responses consistent with double-layer charging of metal-electrolyte interfaces, whereas smaller core nanoparticles exhibit redox chemical character, including a large central gap. The change in behavior is consistent with new near-infrared spectroscopic data showing an emerging gap between the highest occupied and lowest unoccupied orbitals of 0.4 to 0.9 electron volt.

  4. A theoretical study of charge transport properties of trifluoromethyl (-CF3) substituted naphthalene (TFMNA) molecule

    NASA Astrophysics Data System (ADS)

    Sahoo, S. R.; Parida, S. K.; Sahu, S.

    2016-09-01

    We present a density functional (DFT) study of the charge transport properties of CF3-naphthalene. Nature of charge transport is investigated using parameters such as reorganization energy (X), transfer integral (t), ionization potential (IP), electron affinity (EA), and carrier mobility (μ) computed through electronic structure calculations. We observe a decrease in X and IP from 2,6-DTFMNA to 1,5-DTFMNA, whereas, the EA is found to be enhanced, as a result p-type characteristics, with mild n-type signature, in the organic semiconductor gets increased. In addition, the HOMO-LUMO gap also gets reduced inferring more charge injection through the potential barrier. The maximum hole and electron mobility values for the substituted compound are obtained to be 2.17 cm2/ Vsec & 0.20 cm2/ Vsec, respectively.

  5. Small-molecule inhibitors of gram-negative lipoprotein trafficking discovered by phenotypic screening.

    PubMed

    McLeod, Sarah M; Fleming, Paul R; MacCormack, Kathleen; McLaughlin, Robert E; Whiteaker, James D; Narita, Shin-Ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A

    2015-03-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. PMID:25583975

  6. Small-Molecule Inhibitors of Gram-Negative Lipoprotein Trafficking Discovered by Phenotypic Screening

    PubMed Central

    Fleming, Paul R.; MacCormack, Kathleen; McLaughlin, Robert E.; Whiteaker, James D.; Narita, Shin-ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A.

    2015-01-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. PMID:25583975

  7. Density functional theory study of neutral, singly, and multiply charged Polycylcic Aromatic Hydrocarbon molecules

    NASA Astrophysics Data System (ADS)

    Zettergren, Henning; Holm, Anne I. S.; Johansson, Henrik; Cederquist, Henrik

    2012-11-01

    We have studied multiply ionization for a range of Polycyclic Aromatic Hydrocarbons (PAHs) and their charge dependent stabilities with respect to H-, H+-, C2H2- and C2H2+-emissions by means of Density Functional Theory. The adiabatic dissociation energies reveal information about the competition between these channels as functions of PAH charge state and provide predictions of the thermodynamical stability limits, while the sequences of ionization energies may e.g. be used to extract absolute ionization cross sections of astrophysical relevance.

  8. Charge and Nuclear Dynamics Induced by Deep Inner-Shell Multiphoton Ionization of CH3I Molecules by Intense X-ray Free-Electron Laser Pulses.

    PubMed

    Motomura, Koji; Kukk, Edwin; Fukuzawa, Hironobu; Wada, Shin-ichi; Nagaya, Kiyonobu; Ohmura, Satoshi; Mondal, Subhendu; Tachibana, Tetsuya; Ito, Yuta; Koga, Ryosuke; Sakai, Tsukasa; Matsunami, Kenji; Rudenko, Artem; Nicolas, Christophe; Liu, Xiao-Jing; Miron, Catalin; Zhang, Yizhu; Jiang, Yuhai; Chen, Jianhui; Anand, Mailam; Kim, Dong Eon; Tono, Kensuke; Yabashi, Makina; Yao, Makoto; Ueda, Kiyoshi

    2015-08-01

    In recent years, free-electron lasers operating in the true X-ray regime have opened up access to the femtosecond-scale dynamics induced by deep inner-shell ionization. We have investigated charge creation and transfer dynamics in the context of molecular Coulomb explosion of a single molecule, exposed to sequential deep inner-shell ionization within an ultrashort (10 fs) X-ray pulse. The target molecule was CH3I, methane sensitized to X-rays by halogenization with a heavy element, iodine. Time-of-flight ion spectroscopy and coincident ion analysis was employed to investigate, via the properties of the atomic fragments, single-molecule charge states of up to +22. Experimental findings have been compared with a parametric model of simultaneous Coulomb explosion and charge transfer in the molecule. The study demonstrates that including realistic charge dynamics is imperative when molecular Coulomb explosion experiments using short-pulse facilities are performed.

  9. Femtosecond transient studies of photoinduced charge transfer in polymers doped with strong acceptor molecules; applications for organic solar cells

    NASA Astrophysics Data System (ADS)

    Holt, Josh; Drori, Tomer; Sheng, Chuanxiang; Valy Vardeny, Z.

    2007-03-01

    Current developments in organic solar cells (˜5% efficiency nowadays) require understanding and control of photoinduced charge carrier transfer and electronic state dynamics of donor-acceptor pairs. One current drawback to organic solar cell efficiency is negligible absorption in the near infrared region of the solar spectrum. We provide and compare evidence that poly(2-methoxy-5(2'-ethyl)hexoxy-phenylenevinylene) (MEH-PPV) and regio-regular poly-3-hexyl thiophene (RR-P3HT) doped with 2,7-dinitrofluorenone (DNF) or 2,4,7-trinitrofluorenone (TNF) form below-gap charge transfer complex state that can extend absorption into the near infrared. Using fs transient and CW spectroscopies we found that the photoluminescence and mid-ir photoinduced absorption (PA) band of excitons are simultaneously quenched, when excited in the visible/uv or near ir. We compare our results to those of comparable systems using C60 as acceptor molecules.

  10. Bianthrone at a metal surface: Conductance switching with a bistable molecule made feasible by image charge effects

    SciTech Connect

    Geskin, Victor; Bouzakraoui, Saïd; Cornil, Jérôme; Lara-Avila, Samuel; Danilov, Andrey; Kubatkin, Sergey; Bjornholm, Thomas

    2015-01-22

    Bianthrone is a sterically hindered compound that exists in the form of two non-planar isomers. Our experimental study of single-molecule junctions with bianthrone reveals persistent switching of electric conductance at low temperatures, which can be reasonably associated to molecular isomerization events. Temperature dependence of the switching rate allows for an estimate of the activation energy of the process, on the order of 35–90 meV. Quantum-chemical calculations of the potential surface of neutral bianthrone and its anion, including identification of transition states, yields the isolated molecule isomerization barriers too high vs. the previous estimate, though in perfect agreement with previous experimental studies in solution. Nevertheless, we show that the attraction of the anion in the vicinity of the metal surface by its image charge can significantly alter the energetic landscape, in particular, by reducing the barrier to the values compatible with the observed switching behavior.

  11. Charge transfer emission of T-shaped π-conjugated molecules: impact of quinoid character on the excited state properties.

    PubMed

    Inouchi, Toshifumi; Nakashima, Takuya; Kawai, Tsuyoshi

    2014-04-10

    We investigate the impact of quinoid character of a π-conjugation system on the emission properties of T-shaped cross-conjugated molecules. Three π-conjugated systems with different quinoid nature including benzothiophene, 2-phenylthiophene, and 2-phenylthieno[3,2-b]thiophene were connected orthogonally to a π-conjugated bis(phenylethynyl)arylene with an acid responsive N-methylbenzimidazole junction. The enhancement of quinoid character of a vertical π-system effectively suppressed the twisted intramolecular charge transfer (TICT) emission, leading to a more planar ICT state with enhanced emission intensity as well as a shortened Stokes shift.

  12. Controllable electrostatic surface guide for cold molecules with a single charged wire

    NASA Astrophysics Data System (ADS)

    Gu, Zhenxing; Guo, Chaoxiu; Hou, Shunyong; Li, Shengqiang; Deng, Lianzhong; Yin, Jianping

    2013-05-01

    We demonstrate a controllable highly efficient electrostatic surface guide for ND3 molecules in the weak-field-seeking states on a ceramic substrate over a distance of 840 mm, and study the dependences of the relative molecule number (or the overall transmission efficiency) of our single-wire guide and the guiding-center positions on the guiding voltages, both experimentally and theoretically. Our study shows that the guiding-center position and the number of the guided molecules can be easily controlled by adjusting the guiding voltages, and find that an overall transmission efficiency of higher than 50% in a single quantum state can be obtained. Our experimental results are consistent with ones of Monte Carlo simulations. Also, we discuss the transverse velocity filtering effect and the acceptance of the guided molecules in four-dimensional phase space. Both the transmission efficiency and the acceptance in two-dimensional position space are higher than that in our previous two-wire guide [Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, Phys. Rev. Lett.0031-900710.1103/PhysRevLett.100.043003 100, 043003 (2008)].

  13. Adsorption of water molecules on selected charged sodium-chloride clusters.

    PubMed

    Bradshaw, James A; Gordon, Sidney L; Leavitt, Andrew J; Whetten, Robert L

    2012-01-12

    The adsorption of water molecules (H(2)O) on sodium chloride cluster cations and anions was studied at 298 K over a mass range of 100-1200 amu using a custom-built laser desorption ionization reactor and mass spectrometer. Under the conditions used, the cations Na(3)Cl(2)(+) and Na(4)Cl(3)(+) bind up to three water molecules, whereas the larger cations, Na(5)Cl(4)(+) to Na(19)Cl(18)(+), formed hydrates with one or two only. The overall trend is a decrease in hydration with increasing cluster size, with an abrupt drop occurring at the closed-shell Na(14)Cl(13)(+). As compared to the cluster cations, the cluster anions showed almost no adsorption. Among smaller clusters, a weak adsorption of one water molecule was observed for the cluster anions Na(6)Cl(7)(-) and Na(7)Cl(8)(-). In the higher mass region, a substantial adsorption of one water molecule was observed for Na(14)Cl(15)(-). Density functional theory (DFT) computations were carried out for the adsorption of one molecule of H(2)O on the cations Na(n)Cl(n-1)(+), for n = 2-8, and the anions Na(n)Cl(n+1)(-), for n = 1-7. For each ion, the structure of the hydrate, the hydration energy, and the standard-state enthalpy, entropy, and Gibbs energy of hydration at 298 K were computed. In addition, it was useful to compute the distortion energy, defined as the electronic energy lost due to weakening of the Na-Cl bonds upon adsorption of H(2)O. The results show that strong adsorption of a H(2)O molecule occurs for the linear cations only at an end Na ion and for the nonlinear cations only at a corner Na ion bonded to two Cl ions. An unexpected result of the theoretical investigation for the anions is that certain low-energy isomers of Na(6)Cl(7)(-) and Na(7)Cl(8)(-) bind H(2)O strongly enough to produce the observed weak adsorption. The possible implications of these results for the initial hydration of extended NaCl surfaces are discussed.

  14. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y.; Taub, H.; Miskowiec, A.

    2016-04-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 108-109 V m-1, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ˜1 V (˜2 ṡ 108 V m-1) when in the fluid phase with a monovalent counter-ion and ˜1.4 V (˜2.8 ṡ 108 V m-1) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC

  15. Atomistic simulations of negatively charged donor states probed in STM experiments

    NASA Astrophysics Data System (ADS)

    Tankasala, Archana; Salfi, Joe; Rogge, Sven; Klimeck, Gerhard; Rahman, Rajib

    A single donor in silicon binding two electrons (D-) is important for electron spin readout and two-qubit operations in a donor based silicon (Si) quantum computer, and has recently been probed in Scanning Tunneling Microscope (STM) experiments for sub-surface dopants. In this work, atomistic configuration interaction technique is used to compute the two-electron states of the donor taking into account the geometry of the STM-vacuum-silicon-reservoir device. While 45 meV charging energy is obtained for D- in bulk Si, the electrostatics of the device reduces the charging energy to 30 meVs. It is also shown that the reduced charging energy enables spin triplet states to be bound to the donor. The exchange splitting between the singlet and triplet states can be tuned by an external electric field. The computed wavefunctions of the D- state helps to understand how the contribution of the momentum space valley states change with donor depth and electric field.

  16. Negative Compressibility and Charge Partitioning Between Graphene and MoS2 Two-Dimensional Electron Gases

    NASA Astrophysics Data System (ADS)

    Tolsma, John; Larentis, Stefano; Tutuc, Emanuel; MacDonald, Allan

    2014-03-01

    Electron-electron interactions often have opposite influences on thermodynamic properties of electrons in graphene compared to conventional two-dimensional electron gases (2DEGs), for example by lowering charge and spin-susceptibilities in the graphene case and enhancing them in the ordinary 2DEG case. In ordinary 2DEGs the charge susceptibility diverges at a finite carrier density, below which the compressibility becomes negative. We theoretically explore the influence of this qualitative difference on how charge is partitioned between a MoS2 and a graphene sheet 2DEG when they act as a compound capacitor electrode. Our theory is based on a random phase approximation for charge fluctuations in the 2DEGS and the coupling constant formulation for the ground state energy. We find that in the ideal case the MoS2 2DEG carrier density jumps immediately to a finite value when it is initially populated and discuss how this effect is moderated by disorder. Work supported by the Welch Foundation grant TBF1473 and the DOE Division of Materials Sciences Engineering grant DE-FG03-02ER45958.

  17. Structural influences on charge carrier dynamics for small-molecule organic photovoltaics

    SciTech Connect

    Wang, Zhiping Shibata, Yosei; Yamanari, Toshihiro; Matsubara, Koji; Yoshida, Yuji; Miyadera, Tetsuhiko; Saeki, Akinori; Seki, Shu; Zhou, Ying

    2014-07-07

    We investigated the structural influences on the charge carrier dynamics in zinc phthalocyanine/fullerene (ZnPc/C{sub 60}) photovoltaic cells by introducing poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and 2,5-bis(4-biphenylyl)-bithiophene (BP2T) between indium tin oxide and ZnPc layers. ZnPc films can be tuned to be round, long fiber-like, and short fiber-like structure, respectively. Time-resolved microwave conductivity measurements reveal that charge carrier lifetime in ZnPc/C{sub 60} bilayer films is considerably affected by the intra-grain properties. Transient photocurrent of ZnPc single films indicated that the charge carriers can transport for a longer distance in the long fiber-like grains than that in the round grains, due to the greatly lessened grain boundaries. By carefully controlling the structure of ZnPc films, the short-circuit current and fill factor of a ZnPc/C{sub 60} heterojunction solar cell with BP2T are significantly improved and the power conversion efficiency is increased to 2.6%, which is 120% larger than the conventional cell without BP2T.

  18. Structural influences on charge carrier dynamics for small-molecule organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Wang, Zhiping; Miyadera, Tetsuhiko; Saeki, Akinori; Zhou, Ying; Seki, Shu; Shibata, Yosei; Yamanari, Toshihiro; Matsubara, Koji; Yoshida, Yuji

    2014-07-01

    We investigated the structural influences on the charge carrier dynamics in zinc phthalocyanine/fullerene (ZnPc/C60) photovoltaic cells by introducing poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and 2,5-bis(4-biphenylyl)-bithiophene (BP2T) between indium tin oxide and ZnPc layers. ZnPc films can be tuned to be round, long fiber-like, and short fiber-like structure, respectively. Time-resolved microwave conductivity measurements reveal that charge carrier lifetime in ZnPc/C60 bilayer films is considerably affected by the intra-grain properties. Transient photocurrent of ZnPc single films indicated that the charge carriers can transport for a longer distance in the long fiber-like grains than that in the round grains, due to the greatly lessened grain boundaries. By carefully controlling the structure of ZnPc films, the short-circuit current and fill factor of a ZnPc/C60 heterojunction solar cell with BP2T are significantly improved and the power conversion efficiency is increased to 2.6%, which is 120% larger than the conventional cell without BP2T.

  19. Preparation and chromatographic evaluation of zwitterionic stationary phases with controllable ratio of positively and negatively charged groups.

    PubMed

    Cheng, Xiao-Dong; Hao, Yan-Hong; Peng, Xi-Tian; Yuan, Bi-Feng; Shi, Zhi-Guo; Feng, Yu-Qi

    2015-08-15

    The present study described the preparation and application of zwitterionic stationary phases (ACS) with controllable ratio of positively charged tertiary amine groups and negatively charged carboxyl groups. Various parameters, including water content, pH values and ionic strength of the mobile phase, were investigated to study the chromatographic characteristics of ACS columns. The prepared ACS columns demonstrated a mix-mode retention mechanism composed of surface adsorption, partitioning and electrostatic interactions. The elemental analysis of different batches of the ACS phases demonstrated good reproducibility of the preparation strategy. Additionally, various categories of compounds, including nucleosides, water-soluble vitamins, benzoic acid derivatives and basic compounds were successively employed to evaluate the separation selectivity of the prepared ACS stationary phases. These ACS phases exhibited entirely different selectivity and retention behavior from each other for various polar analytes, demonstrating the excellent application potential in the analysis of polar compounds in HILIC. PMID:25966373

  20. Identification of positive and negative regulatory elements governing cell-type-specific expression of the neural cell adhesion molecule gene.

    PubMed Central

    Hirsch, M R; Gaugler, L; Deagostini-Bazin, H; Bally-Cuif, L; Goridis, C

    1990-01-01

    The neural cell adhesion molecule (NCAM) is one of the most prevalent cell adhesion molecules in vertebrates. Its expression is subject to complex cell-type- and developmental-stage-dependent regulation. To study this regulation at the level of transcription, we analyzed the promoter region of the mouse NCAM gene. The NCAM promoter did not contain a typical TATA box. Transcription started at several sites that were used indiscriminately by different cell types, implying that the different NCAM isoforms are expressed from a single promoter. Sequences responsible for both promotion and inhibition of transcription resided within 840 base pairs upstream of the main transcriptional start site. The sequence from positions -645 to -37 relative to the translation initiation site directed high levels of expression in NCAM-expressing N2A cells. The same fragment was six times less active but still significantly active in L cells, but this activity was repressed by inclusion of an additional upstream segment. We mapped eight domains of interactions with nuclear proteins within the 840-base-pair region. The segment with maximum promoter activity contained two adjacent footprints, the occupation of which appeared to be mutually exclusive. One of them corresponded to an Sp1-factor-binding consensus site, the other one bound a factor with nuclear factor I activity. The single protected domain in the fragment harboring a repressor activity consisted of a GGA repeat resembling negative regulatory elements in other promoters. Three adjacent binding sites occupied an A + T-rich segment and contained ATTA motifs also found in the recognition elements of homeodomain proteins. These results show that negative and positive elements interact to regulate the tissue-specific patterns of expression of the NCAM gene and indicate that a factor related to nuclear factor I is involved in its transcriptional control. Images PMID:2325642

  1. Large work function reduction by adsorption of a molecule with a negative electron affinity: pyridine on ZnO(1010).

    PubMed

    Hofmann, Oliver T; Deinert, Jan-Christoph; Xu, Yong; Rinke, Patrick; Stähler, Julia; Wolf, Martin; Scheffler, Matthias

    2013-11-01

    Using thermal desorption and photoelectron spectroscopy to study the adsorption of pyridine on ZnO(1010), we find that the work function is significantly reduced from 4.5 eV for the bare ZnO surface to 1.6 eV for one monolayer of adsorbed pyridine. Further insight into the interface morphology and binding mechanism is obtained using density functional theory. Although semilocal density functional theory provides unsatisfactory total work functions, excellent agreement of the work function changes is achieved for all coverages. In a closed monolayer, pyridine is found to bind to every second surface Zn atom. The strong polarity of the Zn-pyridine bond and the molecular dipole moment act cooperatively, leading to the observed strong work function reduction. Based on simple alignment considerations, we illustrate that even larger work function modifications should be achievable using molecules with negative electron affinity. We expect the application of such molecules to significantly reduce the electron injection barriers at ZnO/organic heterostructures.

  2. Nearly Perfect Spin Filter, Spin Valve and Negative Differential Resistance Effects in a Fe4-based Single-molecule Junction

    PubMed Central

    Zu, Fengxia; Liu, Zuli; Yao, Kailun; Gao, Guoying; Fu, Huahua; Zhu, Sicong; Ni, Yun; Peng, Li

    2014-01-01

    The spin-polarized transport in a single-molecule magnet Fe4 sandwiched between two gold electrodes is studied, using nonequilibrium Green's functions in combination with the density-functional theory. We predict that the device possesses spin filter effect (SFE), spin valve effect (SVE), and negative differential resistance (NDR) behavior. Moreover, we also find that the appropriate chemical ligand, coupling the single molecule to leads, is a key factor for manipulating spin-dependent transport. The device containing the methyl ligand behaves as a nearly perfect spin filter with efficiency approaching 100%, and the transport is dominated by transmission through the Fe4 metal center. However, in the case of phenyl ligand, the spin filter effect seems to be reduced, but the spin valve effect is significantly enhanced with a large magnetoresistance ratio, reaching 1800%. This may be attributed to the blocking effect of the phenyl ligands in mediating transport. Our findings suggest that such a multifunctional molecular device, possessing SVE, NDR and high SFE simultaneously, would be an excellent candidate for spintronics of molecular devices. PMID:24787446

  3. Nearly perfect spin filter, spin valve and negative differential resistance effects in a Fe4-based single-molecule junction.

    PubMed

    Zu, Fengxia; Liu, Zuli; Yao, Kailun; Gao, Guoying; Fu, Huahua; Zhu, Sicong; Ni, Yun; Peng, Li

    2014-01-01

    The spin-polarized transport in a single-molecule magnet Fe4 sandwiched between two gold electrodes is studied, using nonequilibrium Green's functions in combination with the density-functional theory. We predict that the device possesses spin filter effect (SFE), spin valve effect (SVE), and negative differential resistance (NDR) behavior. Moreover, we also find that the appropriate chemical ligand, coupling the single molecule to leads, is a key factor for manipulating spin-dependent transport. The device containing the methyl ligand behaves as a nearly perfect spin filter with efficiency approaching 100%, and the transport is dominated by transmission through the Fe4 metal center. However, in the case of phenyl ligand, the spin filter effect seems to be reduced, but the spin valve effect is significantly enhanced with a large magnetoresistance ratio, reaching 1800%. This may be attributed to the blocking effect of the phenyl ligands in mediating transport. Our findings suggest that such a multifunctional molecular device, possessing SVE, NDR and high SFE simultaneously, would be an excellent candidate for spintronics of molecular devices. PMID:24787446

  4. Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: bridging classical electrodynamics and quantum dynamics.

    PubMed

    Hu, Zixuan; Ratner, Mark A; Seideman, Tamar

    2014-12-14

    We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify our approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.

  5. Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: Bridging classical electrodynamics and quantum dynamics

    SciTech Connect

    Hu, Zixuan; Ratner, Mark A.; Seideman, Tamar

    2014-12-14

    We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify our approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.

  6. Free and trapped hybrid charge transfer excitons at a ZnO/small-molecule heterojunction

    NASA Astrophysics Data System (ADS)

    Panda, Anurag; Ding, Kan; Liu, Xiao; Forrest, Stephen R.

    2016-09-01

    We study the temperature-dependent electrical and optical properties of hybrid charge transfer excitons (HCTEs) at a ZnO/4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) organic/inorganic semiconductor heterojunction (OI-HJ). The electroluminescence spectrum of the HCTE formed by recombination of injected charge undergoes a hypsochromic shift from 1.65 ± 0.01 eV to 2.05 ± 0.01 eV with decreasing temperature from T =300 K to 30 K at a current density of J =100 mA c m-2 , and with increasing voltage from V =1.5 V to 4.5 V. We observe an external quantum efficiency of 6.0 ± 0.2% at a wavelength of 332 nm for excitons generated in CBP, indicating exciton to charge conversion via HCTEs. However, no HCTE photoluminescence is observed at temperatures as low as T =25 K . A quantum mechanical model based on the coexistence of both free and trapped singlet HCTE states at the OI-HJ describes these observations. The free HCTE consists of a hole in CPB Coulombically bound with an energy of 9 meV to a delocalized electron in ZnO, and it is the precursor to photocurrent generation via CBP Frenkel excitons. The observed electroluminescence is due to electron injection into localized defect states at the ZnO surface that are bound to holes in CBP forming a trapped HCTE with binding energies of 60-430 meV and oscillator strength that is four orders of magnitude higher compared to the free HCTE.

  7. Charge-transfer photodissociation of adsorbed molecules via electron image states

    SciTech Connect

    Jensen, E. T.

    2008-01-28

    The 248 and 193 nm photodissociations of submonolayer quantities of CH{sub 3}Br and CH{sub 3}I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from subvacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane-vacuum interface, and then the charge transfers from this image state to the affinity level of a coadsorbed halomethane which then dissociates.

  8. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS{sub 2}

    SciTech Connect

    Zhou, Changjie; Zhu, Huili; Yang, Weihuang

    2015-06-07

    Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS{sub 2} upon adsorption of various gas molecules (H{sub 2}, O{sub 2}, H{sub 2}O, NH{sub 3}, NO, NO{sub 2}, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS{sub 2} with a low degree of charge transfer and accept charge from the monolayer, except for NH{sub 3}, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS{sub 2} are not significantly altered upon adsorption of H{sub 2}, H{sub 2}O, NH{sub 3}, and CO, whereas the lowest unoccupied molecular orbitals of O{sub 2}, NO, and NO{sub 2} are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS{sub 2}. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS{sub 2}. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides.

  9. Antibiotic Resistance and Regulation of the Gram-Negative Bacterial Outer Membrane Barrier by Host Innate Immune Molecules

    PubMed Central

    2016-01-01

    ABSTRACT The Gram-negative outer membrane is an important barrier that provides protection against toxic compounds, which include antibiotics and host innate immune molecules such as cationic antimicrobial peptides. Recently, significant research progress has been made in understanding the biogenesis, regulation, and functioning of the outer membrane, including a recent paper from the laboratory of Dr. Brett Finlay at the University of British Columbia (J. van der Heijden et al., mBio 7:e01238-16, 2016, http://dx.doi.org/10.1128/mBio.01541-16). These investigators demonstrate that toxic oxygen radicals, such as those found in host tissues, regulate outer membrane permeability by altering the outer membrane porin protein channels to regulate the influx of oxygen radicals as well as β-lactam antibiotics. This commentary provides context about this interesting paper and discusses the prospects of utilizing increased knowledge of outer membrane biology to develop new antibiotics for antibiotic-resistant Gram-negative bacteria. PMID:27677793

  10. Role of different classes of mammalian cell surface molecules in adherence of coagulase positive and coagulase negative staphylococci.

    PubMed

    Hafez, Mohamed M; Aboulwafa, Mohammad M; Yassien, Mahmoud A; Hassouna, Nadia A

    2008-10-01

    In the present study the role of different mammalian cell receptors in adherence of the coagulase positive pathogen, Staphylococcus aureus and some coagulase negative staphylococci, namely Staphylococcus epidermidis and Staphylococcus saprophyticus was investigated. Upon testing the adherence to Vero and Hep-2 cells, S. aureus isolates showed an adherence to both cell lines while S. epidermidis and S. saprophyticus isolates adhered to Vero cells only. According to the obtained results, both O-linked and N-linked mammalian cell surface glycoproteins are involved in the adherence of S. aureus isolates to Vero and Hep-2 cells, whereas only the O-linked ones serve as receptors for adherence of S. epidermidis and S. saprophyticus isolates to Vero cells. Of the O-linked glycoproteins, GAG-like receptors are involved in adherence of all tested isolates to Vero cells. The coagulase positive staphylococci preferred to adhere to the highly sulphated GAGs (Heparin and chondroitin sulphate B) while the coagulase negative isolates showed higher affinity to the less sulphated ones (Chondroitin sulphate A and C). Mucin like receptors appeared to be important for the adherence of all tested staphylococci. The role exhibited by fibronectin- and fibrinogen-like receptors was detected with S. aureus and S. epidermidis but not with S. saprophyticus isolates. While, collagen and gelatin were found to contribute to the adherence of S. aureus isolates only. Neither carbohydrate moieties of the glycoconjugates nor lipid molecules on the mammalian cell surface played a role in the adherence of the tested staphylococcal isolates. Taken together, the results revealed that both coagulase negative and coagulase positive staphylococcal tested isolates adhere to the same classes of mammalian cell surface receptors such as mucin-like, fibrinogen-like, fibronectin-like and GAG-like receptors. However, the tested isolates exhibited different degrees of affinities to such receptors.

  11. Preparation of C{sub 60} charge transfer complexes with organic donor molecules and alkali doping

    SciTech Connect

    Otsuka, A.; Saito, G.; Hirate, S.; Pac, S.; Ishida, T.; Zakhidov, A.A.; Yakushi, K.

    1998-07-01

    Solid charge transfer (CT) complexes of C{sub 60} with TseC{sub 1}-TTF, EDT-TTF, EOET-TTF, and TDAP (1, 3, 6, 8-tetrakis(dimethylamino)pyrene) were newly prepared. All the obtained black crystals were proved to be neutral despite their rather strong electron donor ability. Lattice parameters of them except for EOET-TTF complex were determined together with those of HMTTeF{center_dot}C{sub 60}, which had been reported with different values. Rubidium doping under a mild condition was examined on the complexes of TDAP, EOET-TTF, HMTTeF, BEDT-TTF, hydroquinone and ferrocene to search for the superconductors of new crystal and electronic structures. Among them, the rubidium-doped ferrocene complex easily showed an apparent superconducting signal in SQUID magnetization measurements. The doping effect on these CT complexes is compared to that on OMTTF complex.

  12. Charge transfer states appear in the π-conjugated pure hydrocarbon molecule on Cu(111)

    NASA Astrophysics Data System (ADS)

    Yonezawa, Keiichirou; Suda, Yosuke; Yanagisawa, Susumu; Hosokai, Takuya; Kato, Kengo; Yamaguchi, Takuma; Yoshida, Hiroyuki; Ueno, Nobuo; Kera, Satoshi

    2016-04-01

    We report on the results of experimental and theoretical studies on the electronic structure of gas-phase diindenoperylene (DIP) and DIP-monolayer (ML) on Cu(111). Vapor-phase ultraviolet photoelectron spectroscopy (UPS) was realized for 11.3 mg of DIP, giving reference orbital energies of isolated DIP, and UPS and inverse photoemission spectroscopy of DIP-ML/graphite were performed to obtain DIP-ML electronic states at a weak interfacial interaction. Furthermore, first-principles calculation clearly demonstrates the interfacial rearrangement. These results provide evidence that the rearrangement of orbital energies, which is realized in HOMO-LUMO and HOMO-HOMO-1 gaps, brings partially occupied LUMO through the surface-induced aromatic stabilization of DIP, a pure hydrocarbon molecule, on Cu(111).

  13. Negative Ion MALDI Mass Spectrometry of Polyoxometalates (POMs): Mechanism of Singly Charged Anion Formation and Chemical Properties Evaluation

    NASA Astrophysics Data System (ADS)

    Boulicault, Jean E.; Alves, Sandra; Cole, Richard B.

    2016-08-01

    MALDI-MS has been developed for the negative ion mode analysis of polyoxometalates (POMs). Matrix optimization was performed using a variety of matrix compounds. A first group of matrixes offers MALDI mass spectra containing abundant intact singly charged anionic adduct ions, as well as abundant in-source fragmentations at elevated laser powers. A relative ranking of the ability to induce POM fragmentation is found to be: DAN > CHCA > CNA > DIT> HABA > DCTB > IAA. Matrixes of a second group provide poorer quality MALDI mass spectra without observable fragments. Sample preparation, including the testing of salt additives, was performed to optimize signals for a model POM, POMc12, the core structure of which bears four negative charges. The matrix 9-cyanoanthracene (CNA) provided the best signals corresponding to singly charged intact POMc12 anions. Decompositions of these intact anionic species were examined in detail, and it was concluded that hydrogen radical-induced mechanisms were not prevalent, but rather that the observed prompt fragments originate from transferred energy derived from initial electronic excitation of the CNA matrix. Moreover, in obtained MALDI mass spectra, clear evidence of electron transfer to analyte POM species was found: a manifestation of the POMs ability to readily capture electrons. The affinity of polyanionic POMc12 toward a variety of cations was evaluated and the following affinity ranking was established: Fe3+ > Al3+ > Li+ > Ga3+ > Co2+ > Cr3+ > Cu2+ > [Mn2+, Mg2+] > [Na+, K+]. Thus, from the available cationic species, specific adducts are preferentially formed, and evidence is given that these higher affinity POM complexes are formed in the gas phase during the early stages of plume expansion.

  14. Associating a negatively charged GdDOTA-derivative to the Pittsburgh compound B for targeting Aβ amyloid aggregates.

    PubMed

    Martins, André F; Oliveira, Alexandre C; Morfin, Jean-François; Laurents, Douglas V; Tóth, Éva; Geraldes, Carlos F G C

    2016-03-01

    We have conjugated the tetraazacyclododecane-tetraacetate (DOTA) chelator to Pittsburgh compound B (PiB) forming negatively charged lanthanide complexes, Ln(L4), with targeting capabilities towards aggregated amyloid peptides. The amphiphilic Gd(L4) chelate undergoes micellar aggregation in aqueous solution, with a critical micellar concentration of 0.68 mM, lower than those for the neutral complexes of similar structure. A variable temperature (17)O NMR and NMRD study allowed the assessment of the water exchange rate, k ex (298) = 9.7 × 10(6) s(-1), about the double of GdDOTA, and for the description of the rotational dynamics for both the monomeric and the micellar forms of Gd(L4). With respect to the analogous neutral complexes, the negative charge induces a significant rigidity of the micelles formed, which is reflected by slower and more restricted local motion of the Gd(3+) centers as evidenced by higher relaxivities at 20-60 MHz. Surface Plasmon Resonance results indicate that the charge does not affect significantly the binding strength to Aβ1-40 [K d = 194 ± 11 μM for La(L4)], but it does enhance the affinity constant to human serum albumin [K a = 6530 ± 68 M(-1) for Gd(L4)], as compared to neutral counterparts. Protein-based NMR points to interaction of Gd(L4) with Aβ1-40 in the monomer state as well, in contrast to neutral complexes interacting only with the aggregated form. Circular dichroism spectroscopy monitored time- and temperature-dependent changes of the Aβ1-40 secondary structure, indicating that Gd(L4) stabilizes the random coil relative to the α-helix and β-sheet. TEM images confirm that the Gd(L4) complex reduces the formation of aggregated fibrils. PMID:26613605

  15. Associating a negatively charged GdDOTA-derivative to the Pittsburgh compound B for targeting Aβ amyloid aggregates.

    PubMed

    Martins, André F; Oliveira, Alexandre C; Morfin, Jean-François; Laurents, Douglas V; Tóth, Éva; Geraldes, Carlos F G C

    2016-03-01

    We have conjugated the tetraazacyclododecane-tetraacetate (DOTA) chelator to Pittsburgh compound B (PiB) forming negatively charged lanthanide complexes, Ln(L4), with targeting capabilities towards aggregated amyloid peptides. The amphiphilic Gd(L4) chelate undergoes micellar aggregation in aqueous solution, with a critical micellar concentration of 0.68 mM, lower than those for the neutral complexes of similar structure. A variable temperature (17)O NMR and NMRD study allowed the assessment of the water exchange rate, k ex (298) = 9.7 × 10(6) s(-1), about the double of GdDOTA, and for the description of the rotational dynamics for both the monomeric and the micellar forms of Gd(L4). With respect to the analogous neutral complexes, the negative charge induces a significant rigidity of the micelles formed, which is reflected by slower and more restricted local motion of the Gd(3+) centers as evidenced by higher relaxivities at 20-60 MHz. Surface Plasmon Resonance results indicate that the charge does not affect significantly the binding strength to Aβ1-40 [K d = 194 ± 11 μM for La(L4)], but it does enhance the affinity constant to human serum albumin [K a = 6530 ± 68 M(-1) for Gd(L4)], as compared to neutral counterparts. Protein-based NMR points to interaction of Gd(L4) with Aβ1-40 in the monomer state as well, in contrast to neutral complexes interacting only with the aggregated form. Circular dichroism spectroscopy monitored time- and temperature-dependent changes of the Aβ1-40 secondary structure, indicating that Gd(L4) stabilizes the random coil relative to the α-helix and β-sheet. TEM images confirm that the Gd(L4) complex reduces the formation of aggregated fibrils.

  16. Negative Ion MALDI Mass Spectrometry of Polyoxometalates (POMs): Mechanism of Singly Charged Anion Formation and Chemical Properties Evaluation.

    PubMed

    Boulicault, Jean E; Alves, Sandra; Cole, Richard B

    2016-08-01

    MALDI-MS has been developed for the negative ion mode analysis of polyoxometalates (POMs). Matrix optimization was performed using a variety of matrix compounds. A first group of matrixes offers MALDI mass spectra containing abundant intact singly charged anionic adduct ions, as well as abundant in-source fragmentations at elevated laser powers. A relative ranking of the ability to induce POM fragmentation is found to be: DAN > CHCA > CNA > DIT> HABA > DCTB > IAA. Matrixes of a second group provide poorer quality MALDI mass spectra without observable fragments. Sample preparation, including the testing of salt additives, was performed to optimize signals for a model POM, POMc12, the core structure of which bears four negative charges. The matrix 9-cyanoanthracene (CNA) provided the best signals corresponding to singly charged intact POMc12 anions. Decompositions of these intact anionic species were examined in detail, and it was concluded that hydrogen radical-induced mechanisms were not prevalent, but rather that the observed prompt fragments originate from transferred energy derived from initial electronic excitation of the CNA matrix. Moreover, in obtained MALDI mass spectra, clear evidence of electron transfer to analyte POM species was found: a manifestation of the POMs ability to readily capture electrons. The affinity of polyanionic POMc12 toward a variety of cations was evaluated and the following affinity ranking was established: Fe(3+) > Al(3+) > Li(+) > Ga(3+) > Co(2+) > Cr(3+) > Cu(2+) > [Mn(2+), Mg(2+)] > [Na(+), K(+)]. Thus, from the available cationic species, specific adducts are preferentially formed, and evidence is given that these higher affinity POM complexes are formed in the gas phase during the early stages of plume expansion. Graphical Abstract ᅟ. PMID:27142457

  17. Charge recombination mechanism to explain the negative capacitance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lie-Feng, Feng; Kun, Zhao; Hai-Tao, Dai; Shu-Guo, Wang; Xiao-Wei, Sun

    2016-03-01

    Negative capacitance (NC) in dye-sensitized solar cells (DSCs) has been confirmed experimentally. In this work, the recombination behavior of carriers in DSC with semiconductor interface as a carrier’s transport layer is explored theoretically in detail. Analytical results indicate that the recombination behavior of carriers could contribute to the NC of DSCs under small signal perturbation. Using this recombination capacitance we propose a novel equivalent circuit to completely explain the negative terminal capacitance. Further analysis based on the recombination complex impedance show that the NC is inversely proportional to frequency. In addition, analytical recombination resistance is composed by the alternating current (AC) recombination resistance (Rrac) and the direct current (DC) recombination resistance (Rrdc), which are caused by small-signal perturbation and the DC bias voltage, respectively. Both of two parts will decrease with increasing bias voltage. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204209 and 60876035) and the Natural Science Foundation of Tianjin City, China (Grant No. 13JCZDJC32800).

  18. Thickness dependent charge transfer states and dark carriers density in vacuum deposited small molecule organic photocell

    NASA Astrophysics Data System (ADS)

    Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir

    2016-10-01

    We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.

  19. Using light-switching molecules to modulate charge mobility in a quantum dot array

    NASA Astrophysics Data System (ADS)

    Chu, Iek-Heng; Trinastic, Jonathan; Wang, Lin-Wang; Cheng, Hai-Ping

    2014-03-01

    We have studied the electron hopping in a two-CdSe quantum dot (QD) system linked by an azobenzene-derived light-switching molecule. This system can be considered as a prototype of a QD supercrystal. Following the computational strategies given in our recent work [I.-H. Chu et al., J. Phys. Chem. C 115, 21409 (2011), 10.1021/jp206526s], we have investigated the effects of molecular attachment, molecular isomer (trans and cis), and QD size on the electron hopping rate using Marcus theory. Our results indicate that molecular attachment has a large impact on the system for both isomers. In the most energetically favorable attachment, the cis isomer provides significantly greater coupling between the two QDs and hence the electron hopping rate is greater compared to the trans isomer. As a result, the carrier mobility of the QD array in the low carrier density, weak external electric-field regime is several orders of magnitude higher in the cis compared to the trans configuration. This demonstration of mobility modulation using QDs and azobenzene could lead to an alternative type of switching device.

  20. Antitumor potential of a synthetic interferon-alpha/PLGF-2 positive charge peptide hybrid molecule in pancreatic cancer cells

    PubMed Central

    Yin, Hongmei; Chen, Naifei; Guo, Rui; Wang, Hong; Li, Wei; Wang, Guanjun; Cui, Jiuwei; Jin, Haofan; Hu, Ji-Fan

    2015-01-01

    Pancreatic cancer is the most aggressive malignant disease, ranking as the fourth leading cause of cancer-related death among men and women in the United States. Interferon alpha (IFNα) has been used to treat pancreatic cancer, but its clinical application has been significantly hindered due to the low antitumor activity. We used a “cDNA in-frame fragment library” screening approach to identify short peptides that potentiate the antitumor activity of interferons. A short positively charged peptide derived from the C-terminus of placental growth factor-2 (PLGF-2) was selected to enhance the activity of IFNα. For this, we constructed a synthetic interferon hybrid molecule (SIFα) by fusing the positively charged PLGF-2 peptide to the C-terminus of the human IFNα. Using human pancreatic cell lines (ASPC and CFPAC1) as a model system, we found that SIFα exhibited a significantly higher activity than did the wild-type IFNα in inhibiting the tumor cell growth. The enhanced activity of the synthetic SIFα was associated with the activation of interferon pathway target genes and the increased binding of cell membrane receptor. This study demonstrates the potential of a synthetic SIFα as a novel antitumor agent. PMID:26584517

  1. Manipulating the dipole layer of polar organic molecules on metal surfaces via different charge-transfer channels

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Wang, Chin-Yung; Pi, Tun-Wen; Ishii, Hisao; Tang, S.-J.

    The key properties of organic films such as energy level alignment (ELA), work functions, and injection barriers are closely linked to this dipole layer. Using angle resolved photoemission spectroscopy (ARPES), we systemically investigate the coverage-dependent work functions and spectra line shapes of occupied molecular orbital states of a polar molecule, chloroaluminium phthalocyanine (ClAlPc), grown on Ag(111) to show that the orientations of the first ClAlPc layer can be manipulated via the molecule deposition rate and post annealing, causing ELA at organic-metal interface to differ for about 0.3 eV between Cl-up and Cl-down configuration. Moreover, by comparing the experimental results with the calculations based on both gas-phase model and realistic model of ClAlPc on Ag(111) , we evidence that the different orientations of ClAlPc dipole layers lead to different charge-transfer channels between ClAlPc and Ag, a key factor that controls the ELA at organic-metal interface.

  2. Kinetic energy release in thermal ion--molecule reactions: The Nb sup 2+ --(benzene) single charge--transfer reaction

    SciTech Connect

    Gord, J.R.; Freiser, B.S. ); Buckner, S.W. )

    1991-03-15

    We have adapted the techniques originally developed to measure ion kinetic energies in ion cyclotron resonance (ICR) spectrometry to study the single charge--transfer reaction of Nb{sup 2+} with benzene under thermal conditions in a Fourier transform ion cyclotron resonance mass spectrometer (FTICRMS). The partitioning of reaction exothermicity among the internal and translational modes available is consistent with a long-distance electron-transfer mechanism, in which the reactants approach on an ion-induced dipole attractive potential and cross to a repulsive potential at a critical separation of {similar to}7.5 A when electron transfer occurs. The reaction exothermicity, 5.08 eV, is partitioned to translation of Nb{sup +} , 0.81{plus minus}0.25 eV, translation of C{sub 6} H{sub 6}{sup +}, 1.22{plus minus}0.25 eV, and internal excitation of C{sub 6} H{sub 6}{sup +} to produce the la{sub 2{ital u}} electronic state, which is {similar to}3 eV above the ground state of the ion. We have also studied the kinetics of the reaction of Nb{sup 2+} with benzene and determined the rate constant, {ital k} = 1.4{times}10{sup {minus}9} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}, and the efficiency, 0.60, of the process. These also support the proposed charge--transfer mechanism. In addition to the charge--transfer pathway, which accounts for 95% of the reaction products, Nb{sup 2+} is observed to dehydrogenate benzene to form Nb{sup 2+} (benzyne). This process implies {ital D}(Nb{sup 2+} --benzyne){ge}79 kcal/mol.

  3. One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters

    NASA Astrophysics Data System (ADS)

    Gao, Jining; Ran, Xinze; Shi, Chunmeng; Cheng, Humin; Cheng, Tianmin; Su, Yongping

    2013-07-01

    Highly charged hydrophilic superparamagnetic Fe3O4 colloidal nanocrystal clusters with an average diameter of 195 nm have been successfully synthesized using a modified one-step solvothermal method. Anionic polyelectrolyte poly(4-styrenesulfonic acid-co-maleic acid) sodium salt containing both sulfonate and carboxylate groups was used as the stabilizer. The clusters synthesized under different experimental conditions were characterized with transmission electron microscopy and dynamic light scattering; it was found that the size distribution and water dispersity were significantly affected by the concentration of the polyelectrolyte stabilizer and iron sources in the reaction mixtures. A possible mechanism involving novel gel-like large molecular networks that confined the nucleation and aggregation process was proposed and discussed. The colloidal nanocrystal clusters remained negatively charged in the experimental pH ranges from 2 to 11, and also showed high colloidal stability in phosphate buffered saline (PBS) and ethanol. These highly colloidal stable superparamagnetic Fe3O4 clusters could find potential applications in bioseparation, targeted drug delivery, and photonics.Highly charged hydrophilic superparamagnetic Fe3O4 colloidal nanocrystal clusters with an average diameter of 195 nm have been successfully synthesized using a modified one-step solvothermal method. Anionic polyelectrolyte poly(4-styrenesulfonic acid-co-maleic acid) sodium salt containing both sulfonate and carboxylate groups was used as the stabilizer. The clusters synthesized under different experimental conditions were characterized with transmission electron microscopy and dynamic light scattering; it was found that the size distribution and water dispersity were significantly affected by the concentration of the polyelectrolyte stabilizer and iron sources in the reaction mixtures. A possible mechanism involving novel gel-like large molecular networks that confined the nucleation and

  4. Interfacial charge transfer between CdTe quantum dots and Gram negative vs. Gram positive bacteria.

    SciTech Connect

    Dumas, E.; Gao, C.; Suffern, D.; Bradforth, S. E.; Dimitrejevic, N. M.; Nadeau, J. L.; McGill Univ.; Univ. of Southern California

    2010-01-01

    Oxidative toxicity of semiconductor and metal nanomaterials to cells has been well established. However, it may result from many different mechanisms, some requiring direct cell contact and others resulting from the diffusion of reactive species in solution. Published results are contradictory due to differences in particle preparation, bacterial strain, and experimental conditions. It has been recently found that C{sub 60} nanoparticles can cause direct oxidative damage to bacterial proteins and membranes, including causing a loss of cell membrane potential (depolarization). However, this did not correlate with toxicity. In this study we perform a similar analysis using fluorescent CdTe quantum dots, adapting our tools to make use of the particles fluorescence. We find that two Gram positive strains show direct electron transfer to CdTe, resulting in changes in CdTe fluorescence lifetimes. These two strains also show changes in membrane potential upon nanoparticle binding. Two Gram negative strains do not show these effects - nevertheless, they are over 10-fold more sensitive to CdTe than the Gram positives. We find subtoxic levels of Cd{sup 2+} release from the particles upon irradiation of the particles, but significant production of hydroxyl radicals, suggesting that the latter is a major source of toxicity. These results help establish mechanisms of toxicity and also provide caveats for use of certain reporter dyes with fluorescent nanoparticles which will be of use to anyone performing these assays. The findings also suggest future avenues of inquiry into electron transfer processes between nanomaterials and bacteria.

  5. The role of multiparticle correlations and Cooper pairing in the formation of molecules in an ultracold gas of Fermi atoms with a negative scattering length

    SciTech Connect

    Babichenko, V. S. Kagan, Yu.

    2012-11-15

    The influence of multiparticle correlation effects and Cooper pairing in an ultracold Fermi gas with a negative scattering length on the formation rate of molecules is investigated. Cooper pairing is shown to cause the formation rate of molecules to increase, as distinct from the influence of Bose-Einstein condensation in a Bose gas on this rate. This trend is retained in the entire range of temperatures below the critical one.

  6. Negatively-charged residues in the polar carboxy-terminal region in FSP27 are indispensable for expanding lipid droplets.

    PubMed

    Tamori, Yoshikazu; Tateya, Sanshiro; Ijuin, Takeshi; Nishimoto, Yuki; Nakajima, Shinsuke; Ogawa, Wataru

    2016-03-01

    FSP27 has an important role in large lipid droplet (LD) formation because it exchanges lipids at the contact site between LDs. In the present study, we clarify that the amino-terminal domain of FSP27 (amino acids 1-130) is dispensable for LD enlargement, although it accelerates LD growth. LD expansion depends on the carboxy-terminal domain of FSP27 (amino acids 131-239). Especially, the negative charge of the acidic residues (D215, E218, E219 and E220) in the polar carboxy-terminal region (amino acids 202-239) is essential for the enlargement of LD. We propose that the carboxy-terminal domain of FSP27 has a crucial role in LD expansion, whereas the amino-terminal domain only has a supportive role. PMID:26921608

  7. Simultaneous iron gettering and passivation of p-type monocrystalline silicon using a negatively charged aluminum-doped dielectric

    NASA Astrophysics Data System (ADS)

    Das, Arnab; Rohatgi, Ajeet

    2012-12-01

    Rapid gettering of iron from p-type c-Si has been achieved using a negatively charged spin-on Al-doped glass. After a 10 min oxidation to cure the Al-doped glass, >99% of Fe can be gettered from silicon wafers. This is comparable to, and under some processing conditions better than, the efficiency of conventional POCl3 gettering. In the same short oxidation step, the Al-doped glass also passivates p-Si surfaces with surface recombination velocities of 100 cm/s and 10 600 cm/s achieved for surface doping of 6 × 1015 cm-3 and 4 × 1019 cm-3, respectively. These passivation results are comparable to those achieved with thermal SiO2 layers.

  8. Cell Type-Specific Activation of AKT and ERK Signaling Pathways by Small Negatively-Charged Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rauch, Jens; Kolch, Walter; Mahmoudi, Morteza

    2012-11-01

    The interaction of nanoparticles (NPs) with living organisms has become a focus of public and scientific debate due to their potential wide applications in biomedicine, but also because of unwanted side effects. Here, we show that superparamagnetic iron oxide NPs (SPIONs) with different surface coatings can differentially affect signal transduction pathways. Using isogenic pairs of breast and colon derived cell lines we found that the stimulation of ERK and AKT signaling pathways by SPIONs is selectively dependent on the cell type and SPION type. In general, cells with Ras mutations respond better than their non-mutant counterparts. Small negatively charged SPIONs (snSPIONs) activated ERK to a similar extent as epidermal growth factor (EGF), and used the same upstream signaling components including activation of the EGF receptor. Importantly, snSPIONs stimulated the proliferation of Ras transformed breast epithelial cells as efficiently as EGF suggesting that NPs can mimic physiological growth factors.

  9. Interaction of the Tim44 C-terminal domain with negatively charged phospholipids.

    PubMed

    Marom, Milit; Safonov, Roman; Amram, Shay; Avneon, Yoav; Nachliel, Esther; Gutman, Menachem; Zohary, Keren; Azem, Abdussalam; Tsfadia, Yossi

    2009-12-01

    The translocation of proteins from the cytosol into the mitochondrial matrix is mediated by the coordinated action of the TOM complex in the outer membrane, as well as the TIM23 complex and its associated protein import motor in the inner membrane. The focus of this work is the peripheral inner membrane protein Tim44. Tim44 is a vital component of the mitochondrial protein translocation motor that anchors components of the motor to the TIM23 complex. For this purpose, Tim44 associates with the import channel by direct interaction with the Tim23 protein. Additionally, it was shown in vitro that Tim44 associates with acidic model membranes, in particular those containing cardiolipin. The latter interaction was shown to be mediated by the carboxy-terminal domain of Tim44 [Weiss, C., et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8890-8894]. The aim of this study was to determine the precise recognition site for negative lipids in the C-terminal domain of Tim44. In particular, we wanted to examine the recently suggested hypothesis that acidic phospholipids associate with Tim44 via a hydrophobic cavity that is observed in the high-resolution structure of the C-terminal domain of the protein [Josyula, R., et al. (2006) J. Mol. Biol. 359, 798-804]. Molecular dynamics simulations suggest that (i) the hydrophobic tail of lipids may interact with Tim44 via the latter's hydrophobic cavity and (ii) a region, located in the N-terminal alpha-helix of the C-terminal domain (helices A1 and A2), may serve as a membrane attachment site. To validate this assumption, N-terminal truncations of yeast Tim44 were examined for their ability to bind cardiolipin-containing phospholipid vesicles. The results indicate that removal of the N-terminal alpha-helix (helix A1) abolishes the capacity of Tim44 to associate with cardiolipin-containing liposomes. We suggest that helices A1 and A2, in Tim44, jointly promote the association of the protein with acidic phospholipids. PMID:19863062

  10. Targeted delivery of chemically modified anti-miR-221 to hepatocellular carcinoma with negatively charged liposomes

    PubMed Central

    Zhang, Wendian; Peng, Fangqi; Zhou, Taotao; Huang, Yifei; Zhang, Li; Ye, Peng; Lu, Miao; Yang, Guang; Gai, Yongkang; Yang, Tan; Ma, Xiang; Xiang, Guangya

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death. Gene therapy was established as a new strategy for treating HCC. To explore the potential delivery system to support the gene therapy of HCC, negatively charged liposomal delivery system was used to deliver miR-221 antisense oligonucleotide (anti-miR-221) to the transferrin (Tf) receptor over expressed HepG2 cells. The liposome exhibited a mean particle size of 122.5 nm, zeta potential of −15.74 mV, anti-miR-221 encapsulation efficiency of 70%, and excellent colloidal stability at 4°C. Anti-miR-221-encapsulated Tf-targeted liposome demonstrated a 15-fold higher delivery efficiency compared to nontargeted liposome in HepG2 cells in vitro. Anti-miR-221 Tf-targeted liposome effectively delivered anti-miR-221 to HepG2 cells, upregulated miR-221 target genes PTEN, P27kip1, and TIMP3, and exhibited greater silencing efficiency over nontargeted anti-miR-221 liposome. After intravenous injection into HepG2 tumor-bearing xenografted mice with Cy3-labeled anti-miR-221 Tf-targeted liposome, Cy3-anti-miR-221 was successfully delivered to the tumor site and increased the expressions of PTEN, P27kip1, and TIMP3. Our results demonstrate that the Tf-targeted negatively charged liposome could be a potential therapeutic modality in the gene therapy of human HCC. PMID:26251599

  11. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    PubMed

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-01

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications. PMID:26076630

  12. Exposure to negatively charged-particle dominant air-conditions on human lymphocytes in vitro activates immunological responses.

    PubMed

    Nishimura, Yasumitsu; Takahashi, Kazuaki; Mase, Akinori; Kotani, Muneo; Ami, Kazuhisa; Maeda, Megumi; Shirahama, Takashi; Lee, Suni; Matsuzaki, Hidenori; Kumagai-Takei, Naoko; Yoshitome, Kei; Otsuki, Takemi

    2015-12-01

    Indoor air-conditions may play an important role in human health. Investigation of house conditions that promote health revealed that negatively charged-particle dominant indoor air-conditions (NAC) induced immune stimulation. NAC was established using fine charcoal powder on walls and ceilings and utilizing forced negatively charged particles (approximate diameter: 20 nm) dominant in indoor air-conditions created by applying an electric voltage (72 V) between the backside of the walls and the ground. We reported previously that these conditions induced a slight and significant increase of interleukin-2 during 2.5 h stay, and an increase of natural killer (NK) cell cytotoxicity, when examining human subjects after a two-week night stay under these conditions. In the present study, we investigated whether exposure to NAC in vitro affects immune conditions. Although the concentrations of particles were different, an incubator for cell culture with NAC was set and cellular compositions and functions of various freshly isolated human lymphocytes derived from healthy donors were assayed in the NAC incubator and compared with those of cultures in a standard (STD) incubator. Results showed that NAC cultivation caused an increase of CD25 and PD-1 expressing cells in the CD4 positive fraction, enhancement of NK cell cytotoxicity, production of interferon-y (IFNγ), and slight enhancement of regulatory T cell function. In addition, the formula designated as the "immune-index" clearly differed between STD and NAC culture conditions. Thus, NAC conditions may promote human health through slight activation of the immune system against cancer cells and virus infection as shown by this in vitro study and our previously reported human studies.

  13. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    PubMed

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-01

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications.

  14. Effects of superthermal electrons and negatively (positively) charged dust grains on dust-ion acoustic wave modulation

    NASA Astrophysics Data System (ADS)

    Ainejad, H.; Mahdavi, M.; Shahmansouri, M.

    2014-05-01

    The modulational instability of dust-ion acoustic (DIA) waves is studied in an unmagnetized dusty plasma comprising arbitrarily charged dust particles, adiabatic fluid ions, and electrons satisfying a kappa ( κ) distribution. By using the multiple space and time scales perturbation, a nonlinear Schrödinger (NLS) equation is derived, and then the existence along with the stability of wave packets are discussed in the parameter space of two oppositely charged dust and ion temperature over a range of values of electron superthermality. It is found that the transition from stable dark solitons to unstable bright ones shifts to the smaller wavelength regions in a way that depends on the increase of superthermality index κ. In this case, a narrower range (in spatial extension) of the envelope solitons is observed. It is also found that the instability growth rate reduces, due to the electron superthemality. Furthermore, positive dust concentration enhances the instability region, whereas more populations of negative dust grains may control or suppress one.

  15. One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters.

    PubMed

    Gao, Jining; Ran, Xinze; Shi, Chunmeng; Cheng, Humin; Cheng, Tianmin; Su, Yongping

    2013-08-01

    Highly charged hydrophilic superparamagnetic Fe3O4 colloidal nanocrystal clusters with an average diameter of 195 nm have been successfully synthesized using a modified one-step solvothermal method. Anionic polyelectrolyte poly(4-styrenesulfonic acid-co-maleic acid) sodium salt containing both sulfonate and carboxylate groups was used as the stabilizer. The clusters synthesized under different experimental conditions were characterized with transmission electron microscopy and dynamic light scattering; it was found that the size distribution and water dispersity were significantly affected by the concentration of the polyelectrolyte stabilizer and iron sources in the reaction mixtures. A possible mechanism involving novel gel-like large molecular networks that confined the nucleation and aggregation process was proposed and discussed. The colloidal nanocrystal clusters remained negatively charged in the experimental pH ranges from 2 to 11, and also showed high colloidal stability in phosphate buffered saline (PBS) and ethanol. These highly colloidal stable superparamagnetic Fe3O4 clusters could find potential applications in bioseparation, targeted drug delivery, and photonics. PMID:23803791

  16. Interaction of quinine with negatively charged lipid vesicles studied by fluorescence spectroscopy Influence of the pH

    NASA Astrophysics Data System (ADS)

    Pedrós, Jesús; Porcar, Iolanda; Gómez, Clara M.; Campos, Agustín; Abad, Concepción

    1997-03-01

    The interaction of quinine with dimyristoylphosphatidic acid (DMPA) and dimyristoylphosphatidyl glycerol (DMPG) small unilamellar vesicles in the gel phase was studied by steady-state fluorescence spectroscopy at pHs 7, 6, 5 and 4 and 20°C. In aqueous solution, with excitation at 335 nm, the emission fluorescence spectrum of quinine varied with pH reflecting the occurrence of different charged species of the drug. In all cases, the emission maximum centered at 383 or 443 nm shifted to lower wavelength in the presence of vesicles. This indicates that the membrane-bound state quinine is in an environment of low polarity. Drug monocationic species were deeply buried in DMPG relative to DMPA bilayers whereas no significant differences were observed for dicationic species, the fluorophore being located in this case in a more aqueous-like environment. Experimental association isotherms generated from fluorescence intensity changes were quantitatively analyzed in terms of the binding equilibrium model. Although the binding affinity of quinine to anionic membranes was always higher for DMPG over DMPA, dicationic species showed a reduced ability to bind the negatively charged membrane. In addition, the binding model has been related with the partition model leading to a good agreement between the theoretical (calculated from the binding model) and the experimental (from the initial slope of the experimental isotherms) partition coefficient derived in each case.

  17. Isomer-selected photoelectron spectroscopy of isolated DNA oligonucleotides: phosphate and nucleobase deprotonation at high negative charge states.

    PubMed

    Vonderach, Matthias; Ehrler, Oli T; Matheis, Katerina; Weis, Patrick; Kappes, Manfred M

    2012-05-01

    Fractionation according to ion mobility and mass-to-charge ratio has been used to select individual isomers of deprotonated DNA oligonucleotide multianions for subsequent isomer-resolved photoelectron spectroscopy (PES) in the gas phase. Isomer-resolved PE spectra have been recorded for tetranucleotides, pentanucleotides, and hexanucleotides. These were studied primarily in their highest accessible negative charge states (3-, 4-, and 5-, respectively), as provided by electrospraying from room temperature solutions. In particular, the PE spectra obtained for pentanucleotide tetraanions show evidence for two coexisting classes of gas-phase isomeric structures. We suggest that these two classes comprise: (i) species with excess electrons localized exclusively at deprotonated phosphate backbone sites and (ii) species with at least one deprotonated base (in addition to several deprotonated phosphates). By permuting the sequence of bases in various [A(5-x)T(x)](4-) and [GT(4)](4-) pentanucleotides, we have established that the second type of isomer is most likely to occur if the deprotonated base is located at the first or last position in the sequence. We have used a combination of molecular mechanics and semiempirical calculations together with a simple electrostatic model to explore the photodetachment mechanism underlying our photoelectron spectra. Comparison of predicted to measured photoelectron spectra suggests that a significant fraction of the detected electrons originates from the DNA bases (both deprotonated and neutral).

  18. Experimental and theoretical characterization of the 3,5-didehydrobenzoate anion: a negatively charged meta-benzyne.

    PubMed

    Price, Jason M; Nizzi, Katrina Emilia; Campbell, J Larry; Kenttämaa, Hilkka I; Seierstad, Mark; Cramer, Christopher J

    2003-01-01

    A negatively charged analogue of meta-benzyne, 3,5-didehydrobenzoate, was synthesized in a Fourier transform ion cyclotron resonance mass spectrometer, and its reactivity was compared to that of the same ion generated previously in a flowing afterglow apparatus and to its positively charged cousin, N-(3,5-didehydrophenyl)-3-fluoropyridinium. 3,5-Didehydrobenzoate was found to react as a nucleophile with electrophilic reagents. In contrast, N-(3,5-didehydrophenyl)-3-fluoropyridinium does not react with the same electrophilic reagents but reacts instead with nucleophilic reagents. Neither ion is able to abstract hydrogen atoms from typical hydrogen atom donors. The absence of any radical reactivity for these meta-benzynes is consistent with predictions that radical reactions of singlet biradicals should be hindered as compared to their monoradical counterparts. High-level calculations predict that the carboxylate moiety does not significantly perturb the singlet-triplet splitting of 3,5-didehydrobenzoate relative to the parent meta-benzyne.

  19. Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction.

    PubMed

    Long, Yan-Min; Zhao, Xing-Chen; Clermont, Allen C; Zhou, Qun-Fang; Liu, Qian; Feener, Edward P; Yan, Bing; Jiang, Gui-Bin

    2016-01-01

    Silver nanoparticles (AgNPs) have been extensively used as antibacterial component in numerous healthcare, biomedical and consumer products. Therefore, their adverse effects to biological systems have become a major concern. AgNPs have been shown to be absorbed into circulation and redistributed into various organs. It is thus of great importance to understand how these nanoparticles affect vascular permeability and uncover the underlying molecular mechanisms. A negatively charged mecaptoundeonic acid-capped silver nanoparticle (MUA@AgNP) was investigated in this work. Ex vivo experiments in mouse plasma revealed that MUA@AgNPs caused plasma prekallikrein cleavage, while positively charged or neutral AgNPs, as well as Ag ions had no effect. In vitro tests revealed that MUA@AgNPs activated the plasma kallikrein-kinin system (KKS) by triggering Hageman factor autoactivation. By using specific inhibitors aprotinin and HOE 140, we demonstrated that KKS activation caused the release of bradykinin, which activated B2 receptors and induced the shedding of adherens junction protein, VE-cadherin. These biological perturbations eventually resulted in endothelial paracellular permeability in mouse retina after intravitreal injection of MUA@AgNPs. The findings from this work provided key insights for toxicity modulation and biomedical applications of AgNPs. PMID:26399585

  20. Quantum effects in electron emission from and accretion on negatively charged spherical particles in a complex plasma

    SciTech Connect

    Mishra, S. K.; Sodha, M. S.; Misra, Shikha

    2012-07-15

    The authors have investigated the electron emissions (thermionic, electric field, photoelectric, and light induced field) from and electron accretion on a charged particle in a complex plasma, on the basis of a three region electrical potential model in and around a charged spherical particle in a complex plasma, characterized by Debye shielding. A continuous variation of the transmission coefficient across the surface of a particle (corresponding to emission and accretion) with the radial electron energy {epsilon}{sub r} has been obtained. It is seen that the numerical values of the emission and accretion transmission coefficients [D({epsilon}{sub r})] are almost the same. This is the necessary and sufficient condition for the validity of Saha's equation for thermal equilibrium of a system of dust and electrons. This is in contrast to the earlier condition, which limited the range of validity of Saha's equation to the range of the applicability of Born approximation. It is seen that D({epsilon}{sub r}) increases with increasing {epsilon}{sub r}, increasing negative electric potential on the surface, decreasing radius, and deceasing Debye length. The electron currents, corresponding to thermionic, electric field, photoelectric and light induced field emission increase with increasing surface potential; this fact may have significant repercussions in complex plasma kinetics. Since numerically D({epsilon}{sub r}) is significantly different from unity in the range of {epsilon}{sub r} of interest, it is necessary to take into account the D({epsilon}{sub r})-{epsilon}{sub r} dependence in complex plasma theory.

  1. Isomer-selected photoelectron spectroscopy of isolated DNA oligonucleotides: phosphate and nucleobase deprotonation at high negative charge states.

    PubMed

    Vonderach, Matthias; Ehrler, Oli T; Matheis, Katerina; Weis, Patrick; Kappes, Manfred M

    2012-05-01

    Fractionation according to ion mobility and mass-to-charge ratio has been used to select individual isomers of deprotonated DNA oligonucleotide multianions for subsequent isomer-resolved photoelectron spectroscopy (PES) in the gas phase. Isomer-resolved PE spectra have been recorded for tetranucleotides, pentanucleotides, and hexanucleotides. These were studied primarily in their highest accessible negative charge states (3-, 4-, and 5-, respectively), as provided by electrospraying from room temperature solutions. In particular, the PE spectra obtained for pentanucleotide tetraanions show evidence for two coexisting classes of gas-phase isomeric structures. We suggest that these two classes comprise: (i) species with excess electrons localized exclusively at deprotonated phosphate backbone sites and (ii) species with at least one deprotonated base (in addition to several deprotonated phosphates). By permuting the sequence of bases in various [A(5-x)T(x)](4-) and [GT(4)](4-) pentanucleotides, we have established that the second type of isomer is most likely to occur if the deprotonated base is located at the first or last position in the sequence. We have used a combination of molecular mechanics and semiempirical calculations together with a simple electrostatic model to explore the photodetachment mechanism underlying our photoelectron spectra. Comparison of predicted to measured photoelectron spectra suggests that a significant fraction of the detected electrons originates from the DNA bases (both deprotonated and neutral). PMID:22524691

  2. Positive/negative surface charge of chitosan based nanogels and its potential influence on oral insulin delivery.

    PubMed

    Wang, Juan; Xu, Mengxue; Cheng, Xiaojie; Kong, Ming; Liu, Ya; Feng, Chao; Chen, Xiguang

    2016-01-20

    To develop insulin delivery system for the treatment of diabetes, two insulin-loaded nanogels with opposite zeta potential (-15.94 ± 0.449 mV for insulin:CMCS/CS-NGs(-) and +17.15 ± 0.492 mV for insulin:CMCS/CS-NGs(+)) were obtained. Ex vivo results showed that the nanogels with opposite surface charge exhibited different adhesion and permeation in specific intestinal segments. There was no significant differences in adhesion and permeation in rat duodenum, but in rat jejunum, insulin:CMCS/CS-NGs(-) exhibited enhanced adhesion and permeation, which were about 3 folds (adhesion) and 1.7 folds (permeation) higher than insulin:CMCS/CS-NGs(+). These results demonstrated that the surface charge property of nanogels determined the absorption sites of CMCS/CS-NGs in small intestine. In vivo study, the blood glucose level in insulin:CMCS/CS-NGs(-) group had 3 mmol/L lower than insulin:CMCS/CS-NGs(+) group during 1h to 11h after the oral administration, which demonstrated that negative insulin:CMCS/CS-NGs had a better management of blood glucose than positive ones. PMID:26572423

  3. Nanowires formed by the co-assembly of a negatively charged low-molecular weight gelator and a zwitterionic polythiophene.

    PubMed

    Li, Feng; Palaniswamy, Ganesan; de Jong, Menno R; Aslund, Andreas; Konradsson, Peter; Marcelis, Antonius T M; Sudhölter, Ernst J R; Stuart, Martien A Cohen; Leermakers, Frans A M

    2010-06-21

    Conjugated organic nanowires have been prepared by co-assembling a carboxylate containing low-molecular weight gelator (LMWG) and an amino acid substituted polythiophene derivative (PTT). Upon introducing the zwitterionic polyelectrolyte PTT to a basic molecular solution of the organogelator, the negative charges on the LMWG are compensated by the positive charges of the PTT. As a result, nanowires form through co-assembly. These nanowires are visualized by both transmission electron microscopy (TEM) and atomic force microscopy (AFM). Depending on the concentration and ratio of the components these nanowires can be micrometers long. These measurements further suggest that the aggregates adopt a helical conformation. The morphology of these nanowires are studied with fluorescent confocal laser scanning microscopy (CLSM). The interactions between LMWG and PTT are characterized by steady-state and time-resolved fluorescence spectroscopy studies. The steady-state spectra indicate that the backbone of the PTT adopts a more planar and more aggregated conformation when interacting with LMWG. The time- resolved fluorescence decay studies confirm this interpretation.

  4. Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction.

    PubMed

    Long, Yan-Min; Zhao, Xing-Chen; Clermont, Allen C; Zhou, Qun-Fang; Liu, Qian; Feener, Edward P; Yan, Bing; Jiang, Gui-Bin

    2016-01-01

    Silver nanoparticles (AgNPs) have been extensively used as antibacterial component in numerous healthcare, biomedical and consumer products. Therefore, their adverse effects to biological systems have become a major concern. AgNPs have been shown to be absorbed into circulation and redistributed into various organs. It is thus of great importance to understand how these nanoparticles affect vascular permeability and uncover the underlying molecular mechanisms. A negatively charged mecaptoundeonic acid-capped silver nanoparticle (MUA@AgNP) was investigated in this work. Ex vivo experiments in mouse plasma revealed that MUA@AgNPs caused plasma prekallikrein cleavage, while positively charged or neutral AgNPs, as well as Ag ions had no effect. In vitro tests revealed that MUA@AgNPs activated the plasma kallikrein-kinin system (KKS) by triggering Hageman factor autoactivation. By using specific inhibitors aprotinin and HOE 140, we demonstrated that KKS activation caused the release of bradykinin, which activated B2 receptors and induced the shedding of adherens junction protein, VE-cadherin. These biological perturbations eventually resulted in endothelial paracellular permeability in mouse retina after intravitreal injection of MUA@AgNPs. The findings from this work provided key insights for toxicity modulation and biomedical applications of AgNPs.

  5. Estimating collision cross sections of negatively charged N-glycans using traveling wave ion mobility-mass spectrometry.

    PubMed

    Hofmann, Johanna; Struwe, Weston B; Scarff, Charlotte A; Scrivens, James H; Harvey, David J; Pagel, Kevin

    2014-11-01

    Glycosylation is one of the most common post-translational modifications occurring in proteins. A detailed structural characterization of the involved carbohydrates, however, is still one of the greatest challenges in modern glycoproteomics, since multiple regio- and stereoisomers with an identical monosaccharide composition may exist. Recently, ion mobility-mass spectrometry (IM-MS), a technique in which ions are separated according to their mass, charge, and shape, has evolved as a promising technique for the separation and structural analysis of complex carbohydrates. This growing interest is based on the fact that the measured drift times can be converted into collision cross sections (CCSs), which can be compared, implemented into databases, and used as additional search criteria for structural identification. However, most of the currently used commercial IM-MS instruments utilize a nonuniform traveling wave field to propel the ions through the IM cell. As a result, CCS measurements cannot be performed directly and require calibration. Here, we present a calibration data set consisting of over 500 reference CCSs for negatively charged N-glycans and their fragments. Moreover, we show that dextran, already widely used as a calibrant in high performance liquid chromatography, is also a suitable calibrant for CCS estimations. Our data also indicate that a considerably increased error has to be taken into account when reference CCSs acquired in a different drift gas are used for calibration. PMID:25268221

  6. Macrocyclic lanthanide complexes as artificial nucleases and ribonucleases: effects of pH, metal ionic radii, number of coordinated water molecules, charge, and concentrations of the metal complexes.

    PubMed

    Chang, C Allen; Wu, Bo Hong; Kuan, Bu Yuan

    2005-09-19

    We have been interested in the design, synthesis, and characterization of artificial nucleases and ribonucleases by employing macrocyclic lanthanide complexes because their high thermodynamic stability, low kinetic lability, high coordination number, and charge density (Lewis acidity) allow more design flexibility and stability. In this paper, we report the study of the use of the europium(III) complex, EuDO2A+ (DO2A is 1,7-dicarboxymethyl-1,4,7,10-tetraazacyclododecane) and other lanthanide complexes (i.e., LaDO2A+, YbDO2A+, EuK21DA+, EuEDDA+, and EuHEDTA where K21DA is 1,7-diaza-4,10,13-trioxacyclopentadecane-N,N'-diacetic acid, EDDA is ethylenediamine-N,N'-diacetic acid, and HEDTA is N-hydroxyethyl-ethylenediamine-N,N',N'-triacetic acid), as potential catalysts for the hydrolysis of the phosphodiester bond of BNPP (sodium bis(4-nitrophenyl)-phosphate). For the pH range 7.0-11.0 studied, EuDO2A+ promotes BNPP hydrolysis with the quickest rates among LaDO2A+, EuDO2A+, and YbDO2A+. This indicates that charge density is not the only factor affecting the reaction rates. Among the four complexes, EuDO2A+, EuK21DA+, EuEDDA+, and EuHEDTA, with their respective number of inner-sphere coordinated water molecules three, two, five, and three, EuEDDA+, with the greatest number of inner-sphere coordinated water molecules and a positive charge, promotes BNPP hydrolysis more efficiently at pH below 8.4, and the observed rate trend is EuEDDA+ > EuDO2A+ > EuK21DA+ > EuHEDTA. At pH > 8.4, the EuEDDA+ solution becomes misty and precipitates form. At pH 11.0, the hydrolysis rate of BNPP in the presence of EuDO2A+ is 100 times faster than that of EuHEDTA, presumably because the positively charged EuDO2A+ is more favorable for binding with the negatively charged phosphodiester compounds. The logarithmic hydrolysis constants (pKh) were determined, and are reported in the parentheses, by fitting the kinetic k(obs) data vs pH for EuDO2A+ (8.4), LaDO2A+ (8.4), YbDO2A+ (9.4), EuK21DA+ (7

  7. Single-molecule conductance of a chemically modified, π-extended tetrathiafulvalene and its charge-transfer complex with F4TCNQ

    PubMed Central

    García, Raúl; Herranz, M Ángeles; González, M Teresa; Bollinger, Gabino Rubio; Bürkle, Marius; Zotti, Linda A; Asai, Yoshihiro; Pauly, Fabian; Cuevas, Juan Carlos; Agraït, Nicolás

    2015-01-01

    Summary We describe the synthesis and single-molecule electrical transport properties of a molecular wire containing a π-extended tetrathiafulvalene (exTTF) group and its charge-transfer complex with F4TCNQ. We form single-molecule junctions using the in situ break junction technique using a homebuilt scanning tunneling microscope with a range of conductance between 10 G0 down to 10−7 G0. Within this range we do not observe a clear conductance signature of the neutral parent molecule, suggesting either that its conductance is too low or that it does not form a stable junction. Conversely, we do find a clear conductance signature in the experiments carried out on the charge-transfer complex. Due to the fact we expected this species to have a higher conductance than the neutral molecule, we believe this supports the idea that the conductance of the neutral molecule is very low, below our measurement sensitivity. This idea is further supported by theoretical calculations. To the best of our knowledge, these are the first reported single-molecule conductance measurements on a molecular charge-transfer species. PMID:26199662

  8. MoS2/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Zhao, Yaju; Deng, Guoqing; Liu, Xiaohui; Sun, Liang; Li, Hui; Cheng, Quan; Xi, Kai; Xu, Danke

    2016-09-21

    This paper reports a facile synthesis of molybdenum disulfide nanosheets/silver nanoparticles (MoS2/Ag) hybrid and its use as an effective matrix in negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The nanohybrid exerts a strong synergistic effect, leading to high performance detection of small molecule analytes including amino acids, peptides, fatty acids and drugs. The enhancement of laser desorption/ionization (LDI) efficiency is largely attributed to the high surface roughness and large surface area for analyte adsorption, better dispersibility, increased thermal conductivity and enhanced UV energy absorption as compared to pure MoS2. Moreover, both Ag nanoparticles and the edge of the MoS2 layers function as deprotonation sites for proton capture, facilitating the charging process in negative ion mode and promoting formation of negative ions. As a result, the MoS2/Ag nanohybrid proves to be a highly attractive matrix in MALDI-TOF MS, with desired features such as high desorption/ionization efficiency, low fragmentation interference, high salt tolerance, and no sweet-spots for mass signal. These characteristic properties allowed for simultaneous analysis of eight different drugs and quantification of acetylsalicylic acid in the spiked human serum. This work demonstrates for the first time the fabrication and application of a novel MoS2/Ag hybrid, and provides a new platform for use in the rapid and high throughput analysis of small molecules by mass spectrometry.

  9. MoS2/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Zhao, Yaju; Deng, Guoqing; Liu, Xiaohui; Sun, Liang; Li, Hui; Cheng, Quan; Xi, Kai; Xu, Danke

    2016-09-21

    This paper reports a facile synthesis of molybdenum disulfide nanosheets/silver nanoparticles (MoS2/Ag) hybrid and its use as an effective matrix in negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The nanohybrid exerts a strong synergistic effect, leading to high performance detection of small molecule analytes including amino acids, peptides, fatty acids and drugs. The enhancement of laser desorption/ionization (LDI) efficiency is largely attributed to the high surface roughness and large surface area for analyte adsorption, better dispersibility, increased thermal conductivity and enhanced UV energy absorption as compared to pure MoS2. Moreover, both Ag nanoparticles and the edge of the MoS2 layers function as deprotonation sites for proton capture, facilitating the charging process in negative ion mode and promoting formation of negative ions. As a result, the MoS2/Ag nanohybrid proves to be a highly attractive matrix in MALDI-TOF MS, with desired features such as high desorption/ionization efficiency, low fragmentation interference, high salt tolerance, and no sweet-spots for mass signal. These characteristic properties allowed for simultaneous analysis of eight different drugs and quantification of acetylsalicylic acid in the spiked human serum. This work demonstrates for the first time the fabrication and application of a novel MoS2/Ag hybrid, and provides a new platform for use in the rapid and high throughput analysis of small molecules by mass spectrometry. PMID:27590549

  10. Investigation of N-acyl homoserine lactone (AHL) molecule production in Gram-negative bacteria isolated from cooling tower water and biofilm samples.

    PubMed

    Haslan, Ezgi; Kimiran-Erdem, Ayten

    2013-09-01

    In this study, 99 Gram-negative rod bacteria were isolated from cooling tower water, and biofilm samples were examined for cell-to-cell signaling systems, N-acyl homoserine lactone (AHL) signal molecule types, and biofilm formation capacity. Four of 39 (10 %) strains isolated from water samples and 14 of 60 (23 %) strains isolated from biofilm samples were found to be producing a variety of AHL signal molecules. It was determined that the AHL signal molecule production ability and the biofilm formation capacity of sessile bacteria is higher than planktonic bacteria, and there was a statistically significant difference between the AHL signal molecule production of these two groups (p < 0.05). In addition, it was found that bacteria belonging to the same species isolated from cooling tower water and biofilm samples produced different types of AHL signal molecules and that there were different types of AHL signal molecules in an AHL extract of bacteria. In the present study, it was observed that different isolates of the same strains did not produce the same AHLs or did not produce AHL molecules, and bacteria known as AHL producers did not produce AHL. These findings suggest that detection of signal molecules in bacteria isolated from cooling towers may contribute to prevention of biofilm formation, elimination of communication among bacteria in water systems, and blockage of quorum-sensing controlled virulence of these bacteria. PMID:23250628

  11. Kinetic Energy Release of the Singly and Doubly Charged Methylene Chloride Molecule: The Role of Fast Dissociation.

    PubMed

    Alcantara, K F; Rocha, A B; Gomes, A H A; Wolff, W; Sigaud, L; Santos, A C F

    2016-09-01

    The center of mass kinetic energy release distribution (KERD) spectra of selected ionic fragments, formed through dissociative single and double photoionization of CH2Cl2 at photon energies around the Cl 2p edge, were extracted from the shape and width of the experimentally obtained time-of-flight (TOF) distributions. The KERD spectra exhibit either smooth profiles or structures, depending on the moiety and photon energy. In general, the heavier the ionic fragments, the lower their average KERDs are. In contrast, the light H(+) fragments are observed with kinetic energies centered around 4.5-5.5 eV, depending on the photon energy. It was observed that the change in the photon energy involves a change in the KERDs, indicating different processes or transitions taking place in the breakup process. In the particular case of double ionization with the ejection of two charged fragments, the KERDs present have characteristics compatible with the Coulombic fragmentation model. Intending to interpret the experimental data, singlet and triplet states at Cl 2p edge of the CH2Cl2 molecule, corresponding to the Cl (2p → 10a1*) and Cl (2p → 4b1*) transitions, were calculated at multiconfigurational self-consistent field (MCSCF) level and multireference configuration interaction (MRCI). These states were selected to form the spin-orbit coupling matrix elements, which after diagonalization result in a spin-orbit manifold. Minimum energy pathways for dissociation of the molecule were additionally calculated aiming to give support to the presence of the ultrafast dissociation mechanism in the molecular breakup.

  12. Non-adiabatic processes in the charge transfer reaction of O{sub 2} molecules with potassium surfaces without dissociation

    SciTech Connect

    Krix, David; Nienhaus, Hermann

    2014-08-21

    Thin potassium films grown on Si(001) substrates are used to measure internal chemicurrents and the external emission of exoelectrons simultaneously during adsorption of molecular oxygen on K surfaces at 120 K. The experiments clarify the dynamics of electronic excitations at a simple metal with a narrow valence band. X-ray photoemission reveals that for exposures below 5 L almost exclusively peroxide K{sub 2}O{sub 2} is formed, i.e., no dissociation of the molecule occurs during interaction. Still a significant chemicurrent and a delayed exoelectron emission are detected due to a rapid injection of unoccupied molecular levels below the Fermi level. Since the valence band width of potassium is approximately equal to the potassium work function (2.4 eV) the underlying mechanism of exoemission is an Auger relaxation whereas chemicurrents are detected after resonant charge transfer from the metal valence band into the injected level. The change of the chemicurrent and exoemission efficiencies with oxygen coverage can be deduced from the kinetics of the reaction and the recorded internal and external emission currents traces. It is shown that the non-adiabaticity of the reaction increases with coverage due to a reduction of the electronic density of states at the surface while the work function does not vary significantly. Therefore, the peroxide formation is one of the first reaction systems which exhibits varying non-adiabaticity and efficiencies during the reaction. Non-adiabatic calculations based on model Hamiltonians and density functional theory support the picture of chemicurrent generation and explain the rapid injection of hot hole states by an intramolecular motion, i.e., the expansion of the oxygen molecule on the timescale of a quarter of a vibrational period.

  13. Adsorption and transport of charged vs. neutral hydrophobic molecules at the membrane of murine erythroleukemia (MEL) cells.

    PubMed

    Zeng, Jia; Eckenrode, Heather M; Dai, Hai-Lung; Wilhelm, Michael J

    2015-03-01

    The adsorption and transport of hydrophobic molecules at the membrane surface of pre- and post-DMSO induced differentiated murine erythroleukemia (MEL) cells were examined by time- and wavelength-resolved second harmonic light scattering. Two medium (<600 Da) hydrophobic molecules, cationic malachite green (MG) and neutral bromocresol purple (BCP), were investigated. While it was observed that the MG cation adsorbs onto the surface of the MEL cell, neutral BCP does not. It is suggested that an electrostatic interaction between the opposite charges of the cation and the MEL cell surface is the primary driving force for adsorption. Comparisons of adsorption density and free energy, measured at different pH and cell morphology, indicate that the interaction is predominantly through sialic acid carboxyl groups. MG cation adsorption densities have been determined as (0.6±0.3)×10(6) μm(-2) on the surface of undifferentiated MEL cells, and (1.8±0.5)×10(7) μm(-2) on differentiated MEL cells, while the deduced adsorption free energies are effectively identical (ca. -10.9±0.1 and -10.8±0.1 kcal mol(-1), respectively). The measured MG densities indicate that the total number of surface carboxyl groups is largely conserved following differentiation, and therefore the density of carboxylic groups is much larger on the differentiated cell surface than the undifferentiated one. Finally, in contrast to synthetic liposomes and bacterial membranes, surface adsorbed MG cations are unable to traverse the MEL cell membrane. PMID:25660095

  14. Kinetic Energy Release of the Singly and Doubly Charged Methylene Chloride Molecule: The Role of Fast Dissociation.

    PubMed

    Alcantara, K F; Rocha, A B; Gomes, A H A; Wolff, W; Sigaud, L; Santos, A C F

    2016-09-01

    The center of mass kinetic energy release distribution (KERD) spectra of selected ionic fragments, formed through dissociative single and double photoionization of CH2Cl2 at photon energies around the Cl 2p edge, were extracted from the shape and width of the experimentally obtained time-of-flight (TOF) distributions. The KERD spectra exhibit either smooth profiles or structures, depending on the moiety and photon energy. In general, the heavier the ionic fragments, the lower their average KERDs are. In contrast, the light H(+) fragments are observed with kinetic energies centered around 4.5-5.5 eV, depending on the photon energy. It was observed that the change in the photon energy involves a change in the KERDs, indicating different processes or transitions taking place in the breakup process. In the particular case of double ionization with the ejection of two charged fragments, the KERDs present have characteristics compatible with the Coulombic fragmentation model. Intending to interpret the experimental data, singlet and triplet states at Cl 2p edge of the CH2Cl2 molecule, corresponding to the Cl (2p → 10a1*) and Cl (2p → 4b1*) transitions, were calculated at multiconfigurational self-consistent field (MCSCF) level and multireference configuration interaction (MRCI). These states were selected to form the spin-orbit coupling matrix elements, which after diagonalization result in a spin-orbit manifold. Minimum energy pathways for dissociation of the molecule were additionally calculated aiming to give support to the presence of the ultrafast dissociation mechanism in the molecular breakup. PMID:27523328

  15. Atomic charge transfer-counter polarization effects determine infrared CH intensities of hydrocarbons: a quantum theory of atoms in molecules model.

    PubMed

    Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Bruns, Roy E

    2014-11-14

    Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.

  16. Excitation of atoms and molecules in collisions with highly charged ions. [Cyclotron Inst. , Texas A M Univ. , College Station, Texas

    SciTech Connect

    Watson, R.L.

    1993-01-01

    A study of the double ionization of He by high-energy N[sup 7+] ions was extended up in energy to 40 MeV/amu. Coincidence time-of-flight studies of multicharged N[sub 2], O[sub 2], and CO molecular ions produced in collisions with 97-MeV Ar[sup 14+] ions were completed. Analysis of the total kinetic energy distributions and comparison with the available data for CO[sup 2+] and CO[sup 3+] from synchrotron radiation experiments led to the conclusion that ionization by Ar-ion impact populates states having considerably higher excitation energies than those accessed by photoionization. The dissociation fractions for CO[sup 1+] and CO[sup 2+] molecular ions, and the branching ratios for the most prominent charge division channels of CO[sup 2+] through CO[sup 7+] were determined from time-of-flight singles and coincidence data. An experiment designed to investigate the orientation dependence of dissociative multielectron ionization of molecules by heavy ion impact was completed. Measurements of the cross sections for K-shell ionization of intermediate-Z elements by 30-MeV/amu H, N, Ne, and Ar ions were completed. The cross sections were determined for solid targets of Z = 13, 22, 26, 29, 32, 40, 42, 46, and 50 by recording the spectra of K x rays with a Si(Li) spectrometer.

  17. Excitation of atoms and molecules in collisions with highly charged ions. Progress report, January 1, 1990--December 1, 1992

    SciTech Connect

    Watson, R.L.

    1993-01-01

    A study of the double ionization of He by high-energy N{sup 7+} ions was extended up in energy to 40 MeV/amu. Coincidence time-of-flight studies of multicharged N{sub 2}, O{sub 2}, and CO molecular ions produced in collisions with 97-MeV Ar{sup 14+} ions were completed. Analysis of the total kinetic energy distributions and comparison with the available data for CO{sup 2+} and CO{sup 3+} from synchrotron radiation experiments led to the conclusion that ionization by Ar-ion impact populates states having considerably higher excitation energies than those accessed by photoionization. The dissociation fractions for CO{sup 1+} and CO{sup 2+} molecular ions, and the branching ratios for the most prominent charge division channels of CO{sup 2+} through CO{sup 7+} were determined from time-of-flight singles and coincidence data. An experiment designed to investigate the orientation dependence of dissociative multielectron ionization of molecules by heavy ion impact was completed. Measurements of the cross sections for K-shell ionization of intermediate-Z elements by 30-MeV/amu H, N, Ne, and Ar ions were completed. The cross sections were determined for solid targets of Z = 13, 22, 26, 29, 32, 40, 42, 46, and 50 by recording the spectra of K x rays with a Si(Li) spectrometer.

  18. Electrostatic potential and Born energy of charged molecules interacting with phospholipid membranes: calculation via 3-D numerical solution of the full Poisson equation.

    PubMed

    Schnitzer, J E; Lambrakis, K C

    1991-09-21

    Understanding the physicochemical basis of the interaction of molecules with lipid bilayers is fundamental to membrane biology. In this study, a new, three-dimensional numerical solution of the full Poisson equation including local dielectric variation is developed using finite difference techniques in order to model electrostatic interactions of charged molecules with a non-uniform dielectric. This solution is used to describe the electric field and electrostatic potential profile of a charged molecule interacting with a phospholipid bilayer in a manner consistent with the known composition and structure of the membrane. Furthermore, the Born interaction energy is then calculated by appropriate integration of the electric field over whole space. Numerical computations indicate that the electrostatic potential profile surrounding a charge molecule and its resultant Born interaction energy are a function of molecular position within the membrane and change most significantly within the polar region of the bilayer. The maximum interaction energy is observed when the charge is placed at the center of the hydrophobic core of the membrane and is strongly dependent on the size of the charge and on the thickness of the hydrocarbon core of the bilayer. The numerical results of this continuum model are compared with various analytical approximations for the Born energy including models established for discontinuous slab dielectrics. The calculated energies agree with the well-known Born analytical expression only when the charge is located near the center of a hydrocarbon core of greater than 60 A in thickness. The Born-image model shows excellent agreement with the numerical results only when modified to include an appropriate effective thickness of the low dielectric region. In addition, a newly derived approximation which considers the local mean dielectric provides a simple and continuous solution that also agrees well with the numerical results.

  19. Manufacturing and characterization of bent silicon crystals for studies of coherent interactions with negatively charged particles beams

    NASA Astrophysics Data System (ADS)

    Germogli, G.; Mazzolari, A.; Bandiera, L.; Bagli, E.; Guidi, V.

    2015-07-01

    Efficient steering of GeV-energy negatively charged particle beams was demonstrated to be possible with a new generation of thin bent silicon crystals. Suitable crystals were produced at the Sensor Semiconductor Laboratory of Ferrara starting from Silicon On Insulator wafers, adopting proper revisitation of silicon micromachining techniques such as Low Pressure Chemical Vapor Deposition, photolithography and anisotropic chemical etching. Mechanical holders, which allow to properly bend the crystal and to reduce unwanted torsions, were employed. Crystallographic directions and crystal holder design were optimized in order to excite quasi-mosaic effect along (1 1 1) planes. Prior to exposing the crystal to particle beams, a full set of characterizations were performed. Infrared interferometry was used to measure crystal thickness with high accuracy. White-light interferometry was employed to characterize surface deformational state and its torsion. High-resolution X-rays diffraction was used to precisely measure crystal bending angle along the beam. Manufactured crystals were installed and tested at the MAMI MAinz MIcrotron to steer sub-GeV electrons, and at SLAC to deflect an electron beam in the 1 to 10 GeV energy range.

  20. [Air negative charge ion concentration and its relationships with meteorological factors in different ecological functional zones of Hefei City].

    PubMed

    Wei, Chaoling; Wang, Jingtao; Jiang, Yuelin; Zhang, Qingguo

    2006-11-01

    Air negative charge ion concentration (ANCIC) has a close relationship with air quality. The observations on the ANCIC, sunlight intensity, air temperature, and air relative humidity in different ecological functional zones of Hefei City from 2003 to 2004 showed that the diurnal change pattern of ANCIC was of single peak in sightseeing and habitation zones, dual peak in industrial zone, and complicated in commercial zone. Different ecological functional zones had different appearance time of their daily ANCIC extremum. The diurnal fluctuation of ANCIC was in the order of commercial zone > industrial zone > habitation zone and sightseeing zone. The annual change pattern of ANCIC in these zones was similar, being the highest in summer and lowest in winter, and the mean annual ANCIC was 819, 340, 149 and 126 ions x cm(-3), respectively. The most important meteorological factor affecting the ANCIC in Hefei City was air relative humidity, followed by sunlight intensity and air temperature. There was an exponential relationship between ANCIC and air relative humidity.

  1. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.

    PubMed

    Park, Minsung; Lee, Dajung; Shin, Sungchul; Hyun, Jinho

    2015-06-01

    Nanofibrous 2,2,6,6-tetramethylpiperidine-1-oxyl(TEMPO)-oxidized bacterial cellulose (TOBC) was used as a dispersant of hydroxyapatite (HA) nanoparticles in aqueous solution. The surfaces of TOBC nanofibers were negatively charged after the reaction with the TEMPO/NaBr/NaClO system at pH 10 and room temperature. HA nanoparticles were simply adsorbed on the TOBC nanofibers (HA-TOBC) and dispersed well in DI water. The well-dispersed HA-TOBC colloidal solution formed a hydrogel after the addition of gelatin, followed by crosslinking with glutaraldehyde (HA-TOBC-Gel). The chemical modification of the fiber surfaces and the colloidal stability of the dispersion solution confirmed TOBC as a promising HA dispersant. Both the Young's modulus and maximum tensile stress increased as the amount of gelatin increased due to the increased crosslinking of gelatin. In addition, the well-dispersed HA produced a denser scaffold structure resulting in the increase of the Young's modulus and maximum tensile stress. The well-developed porous structures of the HA-TOBC-Gel composites were incubated with Calvarial osteoblasts. The HA-TOBC-Gel significantly improved cell proliferation as well as cell differentiation confirming the material as a potential candidate for use in bone tissue engineering scaffolds. PMID:25910635

  2. Bid binding to negatively charged phospholipids may not be required for its pro-apoptotic activity in vivo

    PubMed Central

    Manara, Anna; Lindsay, Jennefer; Marchioretto, Marta; Astegno, Alessandra; Gilmore, Andrew P.; Esposti, Mauro Degli; Crimi, Massimo

    2010-01-01

    Bid is a ubiquitous pro-apoptotic member of the Bcl-2 family that has been involved in a variety of pathways of cell death. Unique among pro-apoptotic proteins, Bid is activated after cleavage by the apical caspases of the extrinsic pathway; subsequently it moves to mitochondria, where it promotes the release of apoptogenic proteins in concert with other Bcl-2 family proteins like Bak. Diverse factors appear to modulate the pro-apoptotic action of Bid, from its avid binding to mitochondrial lipids (in particular, cardiolipin) to multiple phosphorylations at sites that can modulate its caspase cleavage. This work addresses the question of how the lipid interactions of Bid that are evident in vitro actually impact on its pro-apoptotic action within cells. Using site-directed mutagenesis, we identified mutations that reduced mouse Bid lipid binding in vitro. Mutation of the conserved residue Lys157 specifically decreased the binding to negatively charged lipids related to cardiolipin and additionally affected the rate of caspase cleavage. However, this lipid-binding mutant had no discernable effect on Bid pro-apoptotic function in vivo. The results are interpreted in relation to an underlying interaction of Bid with lysophosphatidylcholine, which is not disrupted in any mutant retaining pro-apoptotic function both in vitro and in vivo. PMID:19463967

  3. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.

    PubMed

    Park, Minsung; Lee, Dajung; Shin, Sungchul; Hyun, Jinho

    2015-06-01

    Nanofibrous 2,2,6,6-tetramethylpiperidine-1-oxyl(TEMPO)-oxidized bacterial cellulose (TOBC) was used as a dispersant of hydroxyapatite (HA) nanoparticles in aqueous solution. The surfaces of TOBC nanofibers were negatively charged after the reaction with the TEMPO/NaBr/NaClO system at pH 10 and room temperature. HA nanoparticles were simply adsorbed on the TOBC nanofibers (HA-TOBC) and dispersed well in DI water. The well-dispersed HA-TOBC colloidal solution formed a hydrogel after the addition of gelatin, followed by crosslinking with glutaraldehyde (HA-TOBC-Gel). The chemical modification of the fiber surfaces and the colloidal stability of the dispersion solution confirmed TOBC as a promising HA dispersant. Both the Young's modulus and maximum tensile stress increased as the amount of gelatin increased due to the increased crosslinking of gelatin. In addition, the well-dispersed HA produced a denser scaffold structure resulting in the increase of the Young's modulus and maximum tensile stress. The well-developed porous structures of the HA-TOBC-Gel composites were incubated with Calvarial osteoblasts. The HA-TOBC-Gel significantly improved cell proliferation as well as cell differentiation confirming the material as a potential candidate for use in bone tissue engineering scaffolds.

  4. Apport de la microscopie a effet tunnel a la caracterisation d'interfaces molecule-metal a fort transfert de charge

    NASA Astrophysics Data System (ADS)

    Bedwani, Stephane

    To assess the importance of charge-transfer on the interface properties, we studied the interaction of the tetracyanoethylene (TCNE) molecule with various copper surfaces. TCNE, a highly electrophilic molecule, appears as an ideal candidate to study the influence of high charge-transfer on the electronic and structural properties of molecule-surface interfaces. Indeed, various TCNE-transition metal complexes exhibit magnetism at room temperature, which is in agreement with a very significant change of the residual charge on the TCNE molecule. The adsorption of TCNE molecules on Cu(100) and Cu(111) surfaces was studied by scanning tunneling microscopy (STM) and by density functional theory (DFT) calculations with a local density approximation (LDA). DFT-LDA calculations were performed to determine the geometric and electronic structure of the studied interfaces. Mulliken analysis was used to evaluate the partial net charge on the adsorbed species. The density of states (DOS) diagrams provided informations on the nature of the frontier orbitals involved in the charge-transfer at molecule-metal interfaces. To validate the theoretical observations, a comparative study was conducted between our simulated STM images and experimental STM images provided by our collaborators. The theoretical STM images were obtained with the SPAGS-STM software using the Landauer-Buttiker formalism with a semi-empirical Hamiltonian based on the extended Huckel theory (EHT) and parameterized using DFT calculations. During the development of the SPAGS-STM software, we have created a discretization module allowing rapid generation of STM images. This module is based on an adaptive Delaunay meshing scheme to minimize the amount of tunneling current to be computed. The general idea consists into refining the mesh, and therefore the calculations, near large contrast zones rather than over the entire image. The adapted mesh provides an STM image resolution equivalent to that obtained with a

  5. Buffer system for the separation of neutral and charged small molecules using micellar electrokinetic chromatography with mass spectrometric detection.

    PubMed

    Goetzinger, Wolfgang K; Cai, Hong

    2005-06-24

    An organic buffer system will be discussed that is suitable for the separation of neutral as well as charged molecules be means of micellar electrokinetic chromatography (MEKC). The buffers are based on the combination of a long chain alkyl acid, such as lauric acid with ammonium hydroxide or an organic base such as tris-hydroxymethylaminomethane (Tris). The resulting buffer system is able to separate neutral compounds based on its micellar properties. These buffers exhibit much reduced conductivity compared to traditional MEKC buffers, such as sodium dodecylsulfate (SDS), which contain inorganic salts. They also have inherent buffer capacity at high pH resulting from the basic buffer component, which in our studies had pK values from about 8-11. The separations that were observed showed high efficiency with plate counts in many cases above 500,000 plates per meter. The reduced conductivity allowed for the application of much higher electric fields, resulting in very fast analysis times. Alternatively, an increase in detection sensitivity could be achieved, as the reduced conductivity allowed for the use of capillaries with lager internal diameters. Combinations of different alkyl acids and organic bases provided for significant flexibility in selectivity tuning. Finally, the fact that the organic micellar buffer systems discussed here do not contain inorganic ions, allows for coupling with mass spectrometric (MS) detection. The possibility of MS detection combined with the high speed in analysis that can be obtained using these organic buffer systems, could make this approach an interesting option for high throughput analysis of combinatorial libraries. PMID:16038325

  6. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.

    PubMed

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew

    2015-12-28

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  7. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-12-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  8. Investigation of multi-state charge-storage properties of redox-active organic molecules in silicon-molecular hybrid devices for DRAM and Flash applications

    NASA Astrophysics Data System (ADS)

    Gowda, Srivardhan Shivappa

    Molecular electronics has recently spawned a considerable amount of interest with several molecules possessing charge-conduction and charge-storage properties proposed for use in electronic devices. Hybrid silicon-molecular technology has the promise of augmenting the current silicon technology and provide for a transitional path to future molecule-only technology. The focus of this dissertation work has been on developing a class of hybrid silicon-molecular electronic devices for DRAM and Flash memory applications utilizing redox-active molecules. This work exploits the ability of molecules to store charges with single-electron precision at room temperature. The hybrid devices are fabricated by forming self-assembled monolayers of redox-active molecules on Si and oxide (SiO2 and HfO2) surfaces via formation of covalent linkages. The molecules possess discrete quantum states from which electrons can tunnel to the Si substrate at discrete applied voltages (oxidation process, cell write), leaving behind a positively charged layer of molecules. The reduction (erase) process, which is the process of electrons tunneling back from Si to the molecules, neutralizes the positively charged molecular monolayer. Hybrid silicon-molecular capacitor test structures were electrically characterized with an electrolyte gate using cyclic voltammetry (CyV) and impedance spectroscopy (CV) techniques. The redox voltages, kinetics (write/erase speeds) and charge-retention characteristics were found to be strongly dependent on the Si doping type and densities, and ambient light. It was also determined that the redox energy states in the molecules communicate with the valence band of the Si substrate. This allows tuning of write and read states by modulating minority carriers in n- and p-Si substrates. Ultra-thin dielectric tunnel barriers (SiO2, HfO2) were placed between the molecules and the Si substrate to augment charge-retention for Flash memory applications. The redox response was

  9. Quantum theory of atoms in molecules/charge-charge flux-dipole flux models for fundamental vibrational intensity changes on H-bond formation of water and hydrogen fluoride

    SciTech Connect

    Silva, Arnaldo F.; Richter, Wagner E.; Bruns, Roy E.; Terrabuio, Luiz A.; Haiduke, Roberto L. A.

    2014-02-28

    The Quantum Theory of Atoms In Molecules/Charge-Charge Flux-Dipole Flux (QTAIM/CCFDF) model has been used to investigate the electronic structure variations associated with intensity changes on dimerization for the vibrations of the water and hydrogen fluoride dimers as well as in the water-hydrogen fluoride complex. QCISD/cc-pVTZ wave functions applied in the QTAIM/CCFDF model accurately provide the fundamental band intensities of water and its dimer predicting symmetric and antisymmetric stretching intensity increases for the donor unit of 159 and 47 km mol{sup −1} on H-bond formation compared with the experimental values of 141 and 53 km mol{sup −1}. The symmetric stretching of the proton donor water in the dimer has intensity contributions parallel and perpendicular to its C{sub 2v} axis. The largest calculated increase of 107 km mol{sup −1} is perpendicular to this axis and owes to equilibrium atomic charge displacements on vibration. Charge flux decreases occurring parallel and perpendicular to this axis result in 42 and 40 km mol{sup −1} total intensity increases for the symmetric and antisymmetric stretches, respectively. These decreases in charge flux result in intensity enhancements because of the interaction contributions to the intensities between charge flux and the other quantities. Even though dipole flux contributions are much smaller than the charge and charge flux ones in both monomer and dimer water they are important for calculating the total intensity values for their stretching vibrations since the charge-charge flux interaction term cancels the charge and charge flux contributions. The QTAIM/CCFDF hydrogen-bonded stretching intensity strengthening of 321 km mol{sup −1} on HF dimerization and 592 km mol{sup −1} on HF:H{sub 2}O complexation can essentially be explained by charge, charge flux and their interaction cross term. Atomic contributions to the intensities are also calculated. The bridge hydrogen atomic contributions alone

  10. A 90-day study of subchronic oral toxicity of 20 nm, negatively charged zinc oxide nanoparticles in Sprague Dawley rats

    PubMed Central

    Park, Hark-Soo; Shin, Sung-Sup; Meang, Eun Ho; Hong, Jeong-sup; Park, Jong-Il; Kim, Su-Hyon; Koh, Sang-Bum; Lee, Seung-Young; Jang, Dong-Hyouk; Lee, Jong-Yun; Sun, Yle-Shik; Kang, Jin Seok; Kim, Yu-Ri; Kim, Meyoung-Kon; Jeong, Jayoung; Lee, Jong-Kwon; Son, Woo-Chan; Park, Jae-Hak

    2014-01-01

    Purpose The widespread use of nanoparticles (NPs) in industrial and biomedical applications has prompted growing concern regarding their potential toxicity and impact on human health. This study therefore investigated the subchronic, systemic oral toxicity and no-observed-adverse-effect level (NOAEL) of 20 nm, negatively charged zinc oxide (ZnOSM20(−)) NPs in Sprague Dawley rats for 90 days. Methods The high-dose NP level was set at 500 mg/kg of bodyweight, and the mid- and low-dose levels were set at 250 and 125 mg/kg, respectively. The rats were observed during a 14-day recovery period after the last NP administration for the persistence or reduction of any adverse effects. Toxicokinetic and distribution studies were also conducted to determine the systemic distribution of the NPs. Results No rats died during the test period. However, ZnOSM20(−) NPs (500 mg/kg) induced changes in the levels of anemia-related factors, prompted acinar cell apoptosis and ductular hyperplasia, stimulated periductular lymphoid cell infiltration and excessive salivation, and increased the numbers of regenerative acinar cells in the pancreas. In addition, stomach lesions were seen at 125, 250, and 500 mg/kg, and retinal atrophy was observed at 250 and 500 mg/kg. The Zn concentration was dose-dependently increased in the liver, kidney, intestines, and plasma, but not in other organs investigated. Conclusion A ZnOSM20(−) NP NOAEL could not be established from the current results, but the lowest-observed-adverse-effect level was 125 mg/kg. Furthermore, the NPs were associated with a number of undesirable systemic actions. Thus, their use in humans must be approached with caution. PMID:25565828

  11. Vibrational relaxation in H/sub 2/ molecules by wall collisions: applications to negative ion source processes

    SciTech Connect

    Karo, A.M.; Hiskes, J.R.; Hardy, R.J.

    1984-10-01

    In the volume of a hydrogen discharge, H/sub 2/ molecules, excited to high vibrational levels (v'' > 6), are formed either by fast-electron collisions or from H/sub 2//sup +/ ions that are accelerated across the discharge-wall potential that undergo Auger neutralization prior to impact with the discharge chamber wall. We have used computer molecular dynamics to study the de-excitation and re-excitation of vibrationally-excited H/sub 2/ molecules undergoing repeated wall collisions. The initial translational energies range from thermal to 100 eV and the initial vibrational states range from v'' = 2 to v'' = 12. The average loss or gain of vibrational, rotational, translational, and total molecular energies and the survival rates of the molecules have been evaluated. At thermal energies vibrational de-excitation is the predominant process, and a consistent picture emerges of rapid energy redistribution into all the molecular degrees of freedom and a slower rate of loss of total molecular energy to the wall. At higher translational energies (1 to 100 eV) a substantial fraction of the molecules survive with large (v'' > 6) vibrational energy. This vibrational population provides a contribution to the total excited vibrational population comparable to that from the fast-electron collision process.

  12. Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    falling and till reach the equilibrium of stable spatial charge distribution, which is just the cause of the geomagnetic field and the geo-electric field (the observational value on the earth surface is about 120 V/m downward equivalent to 500000 Coulomb negative charges in the earth surface). All celestial bodies are gravitation sources and attract the molecules and ions in space to its circumference by the gravitation of own and other celestial bodies, e.g., all planets in the solar system have their own atmospheres. Therefore, the origin mechanism of geo-electric and geomagnetic fields caused by gravitation is very universal, at least it is appli-cable to all the planets in the solar system. For planets, the joint result of the gravitations of the planets and the sun makes the negative charges and dipolar charges distributed in the surfaces of the celestial bodies. The quicker the rotation is, the larger the angular momentum U is, then larger the accompanying current and magnetic moment P, it accord a experiential law found by subsistent observational data of all celestial bodies in solar system: P = -G 1/2 U cos θ / c (1), θ is the angle between the net ν 0 flux direction (mark by CMB) and the rotational axis of celestial body (Chen Shao-Guang, Chinese Science Bulletin, 26,233,1981). Uranian and Neptunian P predicted with Eq.(1) in 1981 are about -3.4•1028 Gs•cm3 and 1.9•1028 Gs•cm3 respectively (use new rotate speed measured by Voyager 2). The P measured by Voyager 2 in 1986 and 1989 are about -1.9 •1028 Gs•cm3 and 1.5•1028 Gs•cm3 respectively (the contribution of quadrupole P is converted into the contribution of dipole P alone). The neutron star pos-sesses much high density and rotational speed because of the conservation of the mass and the angular momentum during the course of the formation, then has strong gravity and largerU. From Eq.(1) there is a larger P and extremely strong surface magnetic field in neutron star. The origin mechanism of

  13. New Antibiotic Molecules: Bypassing the Membrane Barrier of Gram Negative Bacteria Increases the Activity of Peptide Deformylase Inhibitors

    PubMed Central

    Mamelli, Laurent; Petit, Sylvain; Chevalier, Jacqueline; Giglione, Carmela; Lieutaud, Aurélie; Meinnel, Thierry; Artaud, Isabelle; Pagès, Jean-Marie

    2009-01-01

    Background Multi-drug resistant (MDR) bacteria have become a major concern in hospitals worldwide and urgently require the development of new antibacterial molecules. Peptide deformylase is an intracellular target now well-recognized for the design of new antibiotics. The bacterial susceptibility to such a cytoplasmic target primarily depends on the capacity of the compound to reach and accumulate in the cytosol. Methodology/Principal Findings To determine the respective involvement of penetration (influx) and pumping out (efflux) mechanisms to peptide deformylase inhibitors (PDF-I) activity, the potency of various series was determined using various genetic contexts (efflux overproducers or efflux-deleted strains) and membrane permeabilizers. Depending on the structure of the tested molecules, two behaviors could be observed: (i) for actinonin the first PDF-I characterized, the AcrAB efflux system was the main parameter involved in the bacterial susceptibility, and (ii), for the lastest PDF-Is such as the derivatives of 2-(5-bromo-1H-indol-3-yl)-N-hydroxyacetamide, the penetration through the membrane was a important limiting step. Conclusions/Significance Our results clearly show that the bacterial membrane plays a key role in modulating the antibacterial activity of PDF-Is. The bacterial susceptibility for these new antibacterial molecules can be improved by two unrelated ways in MDR strains: by collapsing the Acr efflux activity or by increasing the uptake rate through the bacterial membrane. The efficiency of the second method is associated with the nature of the compound. PMID:19649280

  14. Comparing Coulomb explosion dynamics of multiply charged triatomic molecules after ionization by highly charged ion impact and few cycle femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Wales, B.; Karimi, R.; Bisson, E.; Beaulieu, S.; Giguère, M.; Motojima, T.; Anderson, R.; Matsumoto, J.; Kieffer, J.-C.; Légaré, F.; Shiromaru, H.; Sanderson, J.

    2013-09-01

    Recent experiments using highly charged ions (HCI) at Tokyo Metropolitan University and few cycle laser pulses at the advanced laser light source have centered on multiply ionizing carbonyl sulfide to form charge states from 3 + to 7 + . By measuring the kinetic energy release during subsequent break up and comparing with previous results from HCI impact on CO2 we can see a pattern emerging which implies that shorter laser pulses than the current sub 7 fs standard could lead to higher kinetic energy release than expected from Coulomb explosion.

  15. Femtosecond Hydrogen Bond Dynamics of Bulk-like and Bound Water at Positively and Negatively Charged Lipid Interfaces Revealed by 2D HD-VSFG Spectroscopy.

    PubMed

    Singh, Prashant Chandra; Inoue, Ken-Ichi; Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Tahara, Tahei

    2016-08-26

    Interfacial water in the vicinity of lipids plays an important role in many biological processes, such as drug delivery, ion transportation, and lipid fusion. Hence, molecular-level elucidation of the properties of water at lipid interfaces is of the utmost importance. We report the two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) study of the OH stretch of HOD at charged lipid interfaces, which shows that the hydrogen bond dynamics of interfacial water differ drastically, depending on the lipids. The data indicate that the spectral diffusion of the OH stretch at a positively charged lipid interface is dominated by the ultrafast (<∼100 fs) component, followed by the minor sub-picosecond slow dynamics, while the dynamics at a negatively charged lipid interface exhibit sub-picosecond dynamics almost exclusively, implying that fast hydrogen bond fluctuation is prohibited. These results reveal that the ultrafast hydrogen bond dynamics at the positively charged lipid-water interface are attributable to the bulk-like property of interfacial water, whereas the slow dynamics at the negatively charged lipid interface are due to bound water, which is hydrogen-bonded to the hydrophilic head group. PMID:27482947

  16. Excitation of Meinel and the first negative band system at the collision of electrons and protons with the nitrogen molecule

    SciTech Connect

    Gochitashvili, Malkhaz R.; Lomsadze, Ramaz A.; Kezerashvili, Roman Ya.

    2010-08-15

    The absolute cross sections for the e-N{sub 2} and p-N{sub 2} collisions for the first negative B{sup 2{Sigma}}{sub u}{sup +}-X{sup 2{Sigma}}{sub g}{sup +} and Meinel A{sup 2{Pi}}{sub u}-X{sup 2{Sigma}}{sub g}{sup +} bands have been measured in the energy region of 400-1500 eV for electrons and 0.4-10 keV for protons, respectively. Measurements are performed in the visible spectral region of 400-800 nm by an optical spectroscopy method. The ratio of the cross sections of the Meinel band system to the cross section of the first negative band system (0,0) does not depend on the incident electron energy. The populations of vibrational levels corresponding to A{sup 2{Pi}}{sub u} states are consistent with the Franck-Condon principle. The ratios of the cross sections of (4,1) to (3,0) bands and (5,2) to (3,0) bands exhibit slight dependence on the proton energy. A theoretical estimation within the quasimolecular approximation provides a reasonable description of the total cross section for the first negative band.

  17. Charge steering of laser plasma accelerated fast ions in a liquid spray — creation of MeV negative ion and neutral atom beams

    SciTech Connect

    Schnürer, M.; Abicht, F.; Priebe, G.; Braenzel, J.; Prasad, R.; Borghesi, M.; Andreev, A.; Nickles, P. V.; Jequier, S.; Tikhonchuk, V.; Ter-Avetisyan, S.

    2013-11-15

    The scenario of “electron capture and loss” has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, et al., Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source.

  18. Spectroscopic and computational investigations on the origin of charge transfer between included neutral guest molecules and a functionalized anionic layered host.

    PubMed

    Dutta, Dipak; Tummanapelli, Anil Kumar

    2016-08-10

    Layered double hydroxides (LDHs) or anionic clays are an important class of ion-exchange materials, well known for drug and gene delivery and several other applications including catalysis, bioactive nanocomposite, electroactive and photoactive materials. Their structure is based on positively charged brucite-like inorganic sheets with the interlamellar space being occupied by charge-compensating exchangeable anions. In spite of having a vast scope many of the applications of LDHs are restricted as their host-guest chemistry is limited to ion-exchange reactions. Recently we have shown for the first time that charge-transfer interactions can be used as a driving force for the insertion of neutral guest molecules (ortho- and para-chloranil) within the galleries of an Mg-Al LDH by forming a charge-transfer complex with aniline pre-intercalated as p-aminobenzoate anion. Here, we have performed quantum chemical calculations in combination with molecular dynamics simulations to elucidate the nature of interactions, arrangement and the evaluation of electronic and Raman spectral signatures of the chloranil charge-transfer complex included within the galleries of the Mg-Al LDH. The natural bond orbital (NBO) analysis has been used to understand the nature and origin of the unidirectional charge-transfer that lead to the unusual insertion of chloranil in the galleries of the Mg-Al LDH. The NBO analysis reveals that a considerable amount of electronic charge redistribution occurs from the p-aminobenzoate to the chloranil during latter's insertion within the LDH galleries with a very negligible amount of back donation. This work is expected to pave the way for understanding the host-guest chemistry and targeted and controlled delivery of poorly soluble drugs. PMID:27461409

  19. Deviation of negatively charged protein fractions in the trochophore and veliger larvae by the larvicidal action of baygon in freshwater pulmonate Gyraulus convexiusculus (Planorbidae).

    PubMed

    Bhide, Mangla; Gupta, Priyamvada

    2006-10-01

    In the present investigation egg capsules of Gyraulus convexiusculus were treated with different concentrations of baygon. A dose and duration dependent deviations in the number of negatively charged protein fractions in the trochophore and veliger larval stages were observed. It resulted into anomalies in the morphogenesis and organogenesis of corresponding larval stages. Most of the protein bands showed the decrease in the protein positive intensities in comparison to control. This suggested that baygon causes larval toxicity in Gyraulus convexiusculus.

  20. Molecular motion, dielectric response, and phase transition of charge-transfer crystals: acquired dynamic and dielectric properties of polar molecules in crystals.

    PubMed

    Harada, Jun; Ohtani, Masaki; Takahashi, Yukihiro; Inabe, Tamotsu

    2015-04-01

    Molecules in crystals often suffer from severe limitations on their dynamic processes, especially on those involving large structural changes. Crystalline compounds, therefore, usually fail to realize their potential as dielectric materials even when they have large dipole moments. To enable polar molecules to undergo dynamic processes and to provide their crystals with dielectric properties, weakly bound charge-transfer (CT) complex crystals have been exploited as a molecular architecture where the constituent polar molecules have some freedom of dynamic processes, which contribute to the dielectric properties of the crystals. Several CT crystals of polar tetrabromophthalic anhydride (TBPA) molecules were prepared using TBPA as an electron acceptor and aromatic hydrocarbons, such as coronene and perylene, as electron donors. The crystal structures and dielectric properties of the CT crystals as well as the single-component crystal of TBPA were investigated at various temperatures. Molecular reorientation of TBPA molecules did not occur in the single-component crystal, and the crystal did not show a dielectric response due to orientational polarization. We have found that the CT crystal formation provides a simple and versatile method to develop molecular dielectrics, revealing that the molecular dynamics of the TBPA molecules and the dielectric property of their crystals were greatly changed in CT crystals. The TBPA molecules underwent rapid in-plane reorientations in their CT crystals, which exhibited marked dielectric responses arising from the molecular motion. An order-disorder phase transition was observed for one of the CT crystals, which resulted in an abrupt change in the dielectric constant at the transition temperature.

  1. Charge-transfer complexes of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone with amino molecules in polar solvents

    NASA Astrophysics Data System (ADS)

    Berto, Silvia; Chiavazza, Enrico; Ribotta, Valentina; Daniele, Pier Giuseppe; Barolo, Claudia; Giacomino, Agnese; Vione, Davide; Malandrino, Mery

    2015-10-01

    The charge-transfer complexes have scientific relevance because this type of molecular interaction is at the basis of the activity of pharmacological compounds and because the absorption bands of the complexes can be used for the quantification of electron donor molecules. This work aims to assess the stability of the charge-transfer complexes between the electron acceptor 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and two drugs, procaine and atenolol, in acetonitrile and ethanol. The stability of DDQ in solution and the time required to obtain the maximum complex formation were evaluated. The stoichiometry and the stability of the complexes were determined, respectively, by Job's plot method and by the elaboration of UV-vis titrations data. The latter task was carried out by using the non-linear global analysis approach to determine the equilibrium constants. This approach to data elaboration allowed us to overcome the disadvantages of the classical linear-regression method, to obtain reliable values of the association constants and to calculate the entire spectra of the complexes. NMR spectra were recorded to identify the portion of the donor molecule that was involved in the interaction. The data support the participation of the aliphatic amino groups in complex formation and exclude the involvement of the aromatic amine present in the procaine molecule.

  2. Charge-transfer complexes of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone with amino molecules in polar solvents.

    PubMed

    Berto, Silvia; Chiavazza, Enrico; Ribotta, Valentina; Daniele, Pier Giuseppe; Barolo, Claudia; Giacomino, Agnese; Vione, Davide; Malandrino, Mery

    2015-01-01

    The charge-transfer complexes have scientific relevance because this type of molecular interaction is at the basis of the activity of pharmacological compounds and because the absorption bands of the complexes can be used for the quantification of electron donor molecules. This work aims to assess the stability of the charge-transfer complexes between the electron acceptor 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and two drugs, procaine and atenolol, in acetonitrile and ethanol. The stability of DDQ in solution and the time required to obtain the maximum complex formation were evaluated. The stoichiometry and the stability of the complexes were determined, respectively, by Job's plot method and by the elaboration of UV-vis titrations data. The latter task was carried out by using the non-linear global analysis approach to determine the equilibrium constants. This approach to data elaboration allowed us to overcome the disadvantages of the classical linear-regression method, to obtain reliable values of the association constants and to calculate the entire spectra of the complexes. NMR spectra were recorded to identify the portion of the donor molecule that was involved in the interaction. The data support the participation of the aliphatic amino groups in complex formation and exclude the involvement of the aromatic amine present in the procaine molecule. PMID:25942088

  3. Femtosecond transient studies of charge transfer in polymers doped with acceptor molecules; applications for organic solar cells

    NASA Astrophysics Data System (ADS)

    Holt, Josh; Sheng, Chuanxiang; Drori, Tomer; Valy Vardeny, Z.

    2006-10-01

    Current developments in organic solar cells (˜5% efficiency nowadays) require understanding and control of charge carrier transfer and electronic state dynamics of donor-acceptor pairs. One current drawback to organic solar cell efficiency is negligible absorption in the near infrared region of the solar spectrum. We provide evidence that poly(2-methoxy-5(2'-ethyl)hexoxy-phenylenevinylene) (MEH-PPV) doped with 2,7-dinitrofluoronone (DNF) forms a charge transfer complex state that can extend absorption into the near infrared. We found that photoluminescence and the photoinduced absorption (PA) band of excitons are simultaneously quenched. Ultrafast spectroscopic measurements with spectral range from 0.2 to 1.2 eV provide insights into polaron and exciton band dynamics for these complexes. We also suggest a mechanism for bimolecular charge transfer in this system.

  4. The axon guidance molecule semaphorin 3F is a negative regulator of tumor progression and proliferation in ileal neuroendocrine tumors.

    PubMed

    Bollard, Julien; Massoma, Patrick; Vercherat, Cécile; Blanc, Martine; Lepinasse, Florian; Gadot, Nicolas; Couderc, Christophe; Poncet, Gilles; Walter, Thomas; Joly, Marie-Odile; Hervieu, Valérie; Scoazec, Jean-Yves; Roche, Colette

    2015-11-01

    Gastro-intestinal neuroendocrine tumors (GI-NETs) are rare neoplasms, frequently metastatic, raising difficult clinical and therapeutic challenges due to a poor knowledge of their biology. As neuroendocrine cells express both epithelial and neural cell markers, we studied the possible involvement in GI-NETs of axon guidance molecules, which have been shown to decrease tumor cell proliferation and metastatic dissemination in several tumor types. We focused on the role of Semaphorin 3F (SEMA3F) in ileal NETs, one of the most frequent subtypes of GI-NETs.SEMA3F expression was detected in normal neuroendocrine cells but was lost in most of human primary tumors and all their metastases. SEMA3F loss of expression was associated with promoter gene methylation. After increasing endogenous SEMA3F levels through stable transfection, enteroendocrine cell lines STC-1 and GluTag showed a reduced proliferation rate in vitro. In two different xenograft mouse models, SEMA3F-overexpressing cells exhibited a reduced ability to form tumors and a hampered liver dissemination potential in vivo. This resulted, at least in part, from the inhibition of mTOR and MAPK signaling pathways.This study demonstrates an anti-tumoral role of SEMA3F in ileal NETs. We thus suggest that SEMA3F and/or its cellular signaling pathway could represent a target for ileal NET therapy.

  5. Possibility of controlling the earth's negative charge and the unitary variation of its electric field by cosmic rays

    NASA Technical Reports Server (NTRS)

    Bragin, Y. A.; Vorontsov, S. S.; Kocheyev, A. A.

    1975-01-01

    The dependence of the atmospheric conductivity upon the cosmic ray intensity, the possibility of charge generation in thunderstorms by cosmic rays, the dependence of the troposphere electricity on the stratosphere, the relationship between the unitary variation of the earth's electric field intensity and that of cosmic ray intensity (daily, yearly and 11-year latitudinal dependence of both values), deny first, the exceptional role of the tropospheric processes in maintaining the terrestrial charge and unitary variation, and, second, compel one to consider the cause mentioned above to be the result of the influence of cosmic rays.

  6. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    NASA Astrophysics Data System (ADS)

    Spencer, J.; Gajdos, F.; Blumberger, J.

    2016-08-01

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  7. Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of Gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones).

    PubMed

    Jiang, Hui; Jiang, Donglei; Shao, Jingdong; Sun, Xiulan

    2016-01-15

    We have developed a novel and economical electrochemical sensor to measure Gram-negative bacterial quorum signaling molecules (AHLs) using magnetic nanoparticles and molecularly imprinted polymer (MIP) technology. Magnetic molecularly imprinted polymers (MMIPs) capable of selectively absorbing AHLs were successfully synthesized by surface polymerization. The particles were deposited onto a magnetic carbon paste electrode (MGCE) surface, and characterized by electrochemical measurements. Differential Pulse Voltammetry (DPV) was utilized to record the oxidative current signal that is characteristic of AHL. The detection limit of this assay was determined to be 8×10(-10)molL(-1) with a linear detection range of 2.5×10(-9)molL(-1) to 1.0×10(-7)molL(-1). This Fe3O4@SiO2-MIP-based electrochemical sensor is a valuable new tool that allows quantitative measurement of Gram-negative bacterial quorum signaling molecules. It has potential applications in the fields of clinical diagnosis or food analysis with real-time detection capability, high specificity, excellent reproducibility, and good stability.

  8. R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments

    PubMed Central

    Vanquelef, Enguerran; Simon, Sabrina; Marquant, Gaelle; Garcia, Elodie; Klimerak, Geoffroy; Delepine, Jean Charles; Cieplak, Piotr; Dupradeau, François-Yves

    2011-01-01

    R.E.D. Server is a unique, open web service, designed to derive non-polarizable RESP and ESP charges and to build force field libraries for new molecules/molecular fragments. It provides to computational biologists the means to derive rigorously molecular electrostatic potential-based charges embedded in force field libraries that are ready to be used in force field development, charge validation and molecular dynamics simulations. R.E.D. Server interfaces quantum mechanics programs, the RESP program and the latest version of the R.E.D. tools. A two step approach has been developed. The first one consists of preparing P2N file(s) to rigorously define key elements such as atom names, topology and chemical equivalencing needed when building a force field library. Then, P2N files are used to derive RESP or ESP charges embedded in force field libraries in the Tripos mol2 format. In complex cases an entire set of force field libraries or force field topology database is generated. Other features developed in R.E.D. Server include help services, a demonstration, tutorials, frequently asked questions, Jmol-based tools useful to construct PDB input files and parse R.E.D. Server outputs as well as a graphical queuing system allowing any user to check the status of R.E.D. Server jobs. PMID:21609950

  9. Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper).

    PubMed

    Jelesarov, I; Dürr, E; Thomas, R M; Bosshard, H R

    1998-05-19

    The stability of a coiled coil or leucine zipper is controlled by hydrophobic interactions and electrostatic forces between the constituent helices. We have designed a 30-residue peptide with the repeating seven-residue pattern of a coiled coil, (abcdefg)n, and with Glu in positions e and g of each heptad. The glutamate side chains prevented folding at pH values above 6 because of electrostatic repulsion across the helix dimer interface as well as within the individual helices. Protonation of the carboxylates changed the conformation from a random coil monomer to a coiled coil dimer. Folding at alkaline pH where the peptide had a net charge of -7e was promoted by the addition of salts. The nature of the charge screening cation was less important than that of the anion. The high salt concentrations (>1 M) necessary to induce folding indicated that the salt-induced folding resulted from alterations in the protein-water interaction. Folding was promoted by the kosmotropic anions sulfate and fluoride and to a lesser extent by the weak kosmotrope formate, whereas chloride and the strong chaotrope perchlorate were ineffective. Kosmotropes are excluded from the protein surface, which is preferentially hydrated, and this promotes folding by strengthening hydrophobic interactions at the coiled coil interface. Although charge neutralization also contributed to folding, it was effective only when the screening cation was partnered by a good kosmotropic anion. Folding conformed to a two-state transition from random coil monomer to coiled coil dimer and was enthalpy driven and characterized by a change in the heat capacity of unfolding of 3.9 +/- 1.2 kJ mol-1 K-1. The rate of folding was analyzed by fluorescence stopped-flow measurements. Folding occurred in a biphasic reaction in which the rapid formation of an initial dimer (kf = 2 x 10(7) M-1 s-1) was followed by an equally rapid concentration-independent rearrangement to the folded dimer (k > 100 s-1).

  10. Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper).

    PubMed

    Jelesarov, I; Dürr, E; Thomas, R M; Bosshard, H R

    1998-05-19

    The stability of a coiled coil or leucine zipper is controlled by hydrophobic interactions and electrostatic forces between the constituent helices. We have designed a 30-residue peptide with the repeating seven-residue pattern of a coiled coil, (abcdefg)n, and with Glu in positions e and g of each heptad. The glutamate side chains prevented folding at pH values above 6 because of electrostatic repulsion across the helix dimer interface as well as within the individual helices. Protonation of the carboxylates changed the conformation from a random coil monomer to a coiled coil dimer. Folding at alkaline pH where the peptide had a net charge of -7e was promoted by the addition of salts. The nature of the charge screening cation was less important than that of the anion. The high salt concentrations (>1 M) necessary to induce folding indicated that the salt-induced folding resulted from alterations in the protein-water interaction. Folding was promoted by the kosmotropic anions sulfate and fluoride and to a lesser extent by the weak kosmotrope formate, whereas chloride and the strong chaotrope perchlorate were ineffective. Kosmotropes are excluded from the protein surface, which is preferentially hydrated, and this promotes folding by strengthening hydrophobic interactions at the coiled coil interface. Although charge neutralization also contributed to folding, it was effective only when the screening cation was partnered by a good kosmotropic anion. Folding conformed to a two-state transition from random coil monomer to coiled coil dimer and was enthalpy driven and characterized by a change in the heat capacity of unfolding of 3.9 +/- 1.2 kJ mol-1 K-1. The rate of folding was analyzed by fluorescence stopped-flow measurements. Folding occurred in a biphasic reaction in which the rapid formation of an initial dimer (kf = 2 x 10(7) M-1 s-1) was followed by an equally rapid concentration-independent rearrangement to the folded dimer (k > 100 s-1). PMID:9585569

  11. Optical Signature of Charge Transfer in n-Type Carbon Nanotube Transistors Doped with Printable Organic Molecules

    NASA Astrophysics Data System (ADS)

    Shimizu, Ryo; Matsuzaki, Satoki; Yanagi, Kazuhiro; Takenobu, Taishi

    2012-12-01

    Single-walled carbon nanotubes (SWCNTs) are known to be p-type semiconductors, due to unintentional hole doping. Therefore, air-stable electron dopants are important for the fabrication of logic circuits. Recently, n-type characteristics of SWCNT film transistors have been achieved by using several types of donative organic molecules, and these molecular dopants have opened a route for application. However, it is still unclear whether the cause of n-type operation is the Fermi level shift of SWCNTs or the lowering of the Schottky barrier for electrons. In this study, we found the evidences of electron transfer from organic molecules to SWCNTs using optical measurements.

  12. Redox-Active Star Molecules Incorporating the 4-Benzolypyridinium Cation: Implications for the Charge Transfer Efficiency Along Branches versus Across the Perimeter in Dendrimers

    NASA Technical Reports Server (NTRS)

    Yang, Jin-Hua; Rawashdeh, Abdel Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia; Leventis, Nicholas

    2003-01-01

    We report the redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches, but remains constant at fixed radii. Voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that only two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers of a branch are accessible electrochemically within the same time frame. These results are discussed in terms of slow through-space charge transfer and the globular 3-D folding of the molecules.

  13. Positively and Negatively Charged Ionic Modifications to Cellulose Assessed as Cotton-Based Protease-Lowering and Haemostatic Wound Agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in cellulose wound dressings targeted to different stages of wound healing have been based on structural and charge modifications that function to modulate events in the complex inflammatory and hemostatic phases of wound healing. Hemostasis and inflammation comprise two overlapp...

  14. The role of charge and multiple faces of the CD8 alpha/alpha homodimer in binding to major histocompatibility complex class I molecules: support for a bivalent model.

    PubMed Central

    Giblin, P A; Leahy, D J; Mennone, J; Kavathas, P B

    1994-01-01

    The CD8 dimer interacts with the alpha 3 domain of major histocompatibility complex class I molecules through two immunoglobulin variable-like domains. In this study a crystal structure-informed mutational analysis has been performed to identify amino acids in the CD8 alpha/alpha homodimer that are likely to be involved in binding to class I. Several key residues are situated on the top face of the dimer within loops analogous to the complementarity-determining regions (CDRs) of immunoglobulin. In addition, other important amino acids are located in the A and B beta-strands on the sides of the dimer. The potential involvement of amino acids on both the top and the side faces of the molecule is consistent with a bivalent model for the interaction between a single CD8 alpha/alpha homodimer and two class I molecules and may have important implications for signal transduction in class I-expressing cells. This study also demonstrates a role for the positive surface potential of CD8 in class I binding and complements previous work demonstrating the importance of a negatively charged loop on the alpha 3 domain of class I for CD8 alpha/alpha-class I interaction. We propose a model whereby residues located on the CDR-like loops of the CD8 homodimer interact with the alpha 3 domain of MHC class I while amino acids on the side of the molecule containing the A and B beta-strands contact the alpha 2 domain of class I. Images PMID:8127870

  15. Predictive DFT-based approaches to charge and spin transport in single-molecule junctions and two-dimensional materials: successes and challenges.

    PubMed

    Quek, Su Ying; Khoo, Khoong Hong

    2014-11-18

    CONSPECTUS: The emerging field of flexible electronics based on organics and two-dimensional (2D) materials relies on a fundamental understanding of charge and spin transport at the molecular and nanoscale. It is desirable to make predictions and shine light on unexplained experimental phenomena independently of experimentally derived parameters. Indeed, density functional theory (DFT), the workhorse of first-principles approaches, has been used extensively to model charge/spin transport at the nanoscale. However, DFT is essentially a ground state theory that simply guarantees correct total energies given the correct charge density, while charge/spin transport is a nonequilibrium phenomenon involving the scattering of quasiparticles. In this Account, we critically assess the validity and applicability of DFT to predict charge/spin transport at the nanoscale. We also describe a DFT-based approach, DFT+Σ, which incorporates corrections to Kohn-Sham energy levels based on many-electron calculations. We focus on single-molecule junctions and then discuss how the important considerations for DFT descriptions of transport can differ in 2D materials. We conclude that when used appropriately, DFT and DFT-based approaches can play an important role in making predictions and gaining insight into transport in these materials. Specifically, we shall focus on the low-bias quasi-equilibrium regime, which is also experimentally most relevant for single-molecule junctions. The next question is how well can the scattering of DFT Kohn-Sham particles approximate the scattering of true quasiparticles in the junction? Quasiparticles are electrons (holes) that are surrounded by a constantly changing cloud of holes (electrons), but Kohn-Sham particles have no physical significance. However, Kohn-Sham particles can often be used as a qualitative approximation to quasiparticles. The errors in standard DFT descriptions of transport arise primarily from errors in the Kohn-Sham energy levels

  16. Transport of the highly charged myo-inositol hexakisphosphate molecule across the red blood cell membrane: a phase transfer and biological study.

    PubMed

    Vincent, Stéphane P; Lehn, Jean-Marie; Lazarte, Jaime; Nicolau, Claude

    2002-09-01

    To address the problem of delivering highly charged small molecules, such as phytic acid (InsP(6) or IHP), across biological membranes, we investigated an approach based on a non-covalent interaction between transport molecule(s) and IHP. Thus, we synthesized a collection of compounds containing IHP ionically bound to lipophilic (but non-lipidic) ammonium or poly-ammonium cations. First, we assessed the ability of these water-soluble salts to cross a biological membrane by measuring the partition coefficients between human serum and 1-octanol. In view of the ability of IHP to act as potent effector for oxygen release, the O(2)-hemoglobin dissociation curves were then measured for the most efficient salts on whole blood. From both the biological and the physical properties of IHP-ammonium salts we determined that cycloalkylamines (or poly-amines) were the best transport molecules, especially cycloheptyl- and cyclooctylamine. Indeed, the octanol/serum partition coefficient of IHP undecacyclooctylammonium salt, is superior to 1, which is very favorable for potential uptake into the red blood cell membrane. A qualitative correlation was found between the partitioning experiments and the biological evaluations performed on whole blood. PMID:12110302

  17. A New Class of Quorum Quenching Molecules from Staphylococcus Species Affects Communication and Growth of Gram-Negative Bacteria

    PubMed Central

    Chu, Ya-Yun; Nega, Mulugeta; Wölfle, Martina; Plener, Laure; Grond, Stephanie; Jung, Kirsten; Götz, Friedrich

    2013-01-01

    The knowledge that many pathogens rely on cell-to-cell communication mechanisms known as quorum sensing, opens a new disease control strategy: quorum quenching. Here we report on one of the rare examples where Gram-positive bacteria, the ‘Staphylococcus intermedius group’ of zoonotic pathogens, excrete two compounds in millimolar concentrations that suppress the quorum sensing signaling and inhibit the growth of a broad spectrum of Gram-negative beta- and gamma-proteobacteria. These compounds were isolated from Staphylococcus delphini. They represent a new class of quorum quenchers with the chemical formula N-[2-(1H-indol-3-yl)ethyl]-urea and N-(2-phenethyl)-urea, which we named yayurea A and B, respectively. In vitro studies with the N-acyl homoserine lactone (AHL) responding receptor LuxN of V. harveyi indicated that both compounds caused opposite effects on phosphorylation to those caused by AHL. This explains the quorum quenching activity. Staphylococcal strains producing yayurea A and B clearly benefit from an increased competitiveness in a mixed community. PMID:24098134

  18. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin

    PubMed Central

    Masin, Jiri; Osickova, Adriana; Sukova, Anna; Fiser, Radovan; Halada, Petr; Bumba, Ladislav; Linhartova, Irena; Osicka, Radim; Sebo, Peter

    2016-01-01

    The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The ‘AC to Hly-linking segment’ thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins. PMID:27581058

  19. Design of an electrolyte composition for stable and rapid charging-discharging of a graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid

    NASA Astrophysics Data System (ADS)

    Matsui, Yukiko; Yamagata, Masaki; Murakami, Satoshi; Saito, Yasuteru; Higashizaki, Tetsuya; Ishiko, Eriko; Kono, Michiyuki; Ishikawa, Masashi

    2015-04-01

    We evaluate the effects of lithium salt on the charge-discharge performance of a graphite negative electrode in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) ionic liquid-based electrolytes. Although the graphite negative electrode exhibits good cyclability and rate capability in both 0.43 mol dm-3 LiFSI/EMImFSI and LiTFSI/EMImFSI (TFSI- = bis(trifluoromethylsulfonyl)imide) at room temperature, only the LiFSI/EMImFSI system enables the graphite electrode to be operated with sufficient discharge capacity at the low temperature of 0 °C, even though there is no noticeable difference in ionic conductivity, compared with LiTFSI/EMImFSI. Furthermore, a clear difference in the low-temperature behaviors of the two cells composed of EMImFSI with a high-concentration of lithium salts is observed. Additionally, charge-discharge operation of the graphite electrode at C-rate of over 5.0 can be achieved using of the high-concentration LiFSI/EMImFSI electrolyte. Considering the low-temperature characteristics in both high-concentration electrolytes, the stable and rapid charge-discharge operation in the high-concentration LiFSI/EMImFSI is presumably attributed to a suitable electrode/electrolyte interface with low resistivity. These results suggest that optimization of the electrolyte composition can realize safe and high-performance lithium-ion batteries that utilize ionic liquid-based electrolytes.

  20. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin.

    PubMed

    Masin, Jiri; Osickova, Adriana; Sukova, Anna; Fiser, Radovan; Halada, Petr; Bumba, Ladislav; Linhartova, Irena; Osicka, Radim; Sebo, Peter

    2016-01-01

    The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The 'AC to Hly-linking segment' thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins. PMID:27581058

  1. Enhanced density of negative fixed charges in Al2O3 layers on Si through a subsequent deposition of TiO2

    NASA Astrophysics Data System (ADS)

    Schneider, Thomas; Ziegler, Johannes; Kaufmann, Kai; Ilse, Klemens; Sprafke, Alexander; Wehrspohn, Ralf B.

    2016-04-01

    The passivation of silicon surfaces play an important role for achieving high-efficiency crystalline silicon solar cells. In this work, a stack system comprising of 20nm Al2O3 with a 22nm TiO2 topping layer was deposited on p-type Si using thermal atomic layer deposition (ALD) and was investigated regarding its passivation quality. Quasi-steady-state photo conductance (QSSPC) measurements reveal that the minority carrier lifetime at an injection density of 1015cm-3 increased from 1.10ms to 1.96ms after the deposition of TiO2, which shows that the deposition of TiO2 onto Al2O3 is capable of enhancing its passivation quality. Capacity voltage (CV) measurements show that the amount of negative charges in the dielectric layer has increased from -2.4·1012cm-2 to -6.3·1012cm-2 due to the deposition of TiO2. The location of the additional charges was analyzed in this work by etching the dielectric layer stack in several steps. After each step CV measurements were performed. It is found that the additional negative charges are created within the Al2O3 layer. Additionally, ToF-SIMS measurements were performed to check for diffusion processes within the Al2O3 layer.

  2. Matrix assisted ionization: new aromatic and nonaromatic matrix compounds producing multiply charged lipid, peptide, and protein ions in the positive and negative mode observed directly from surfaces.

    PubMed

    Li, Jing; Inutan, Ellen D; Wang, Beixi; Lietz, Christopher B; Green, Daniel R; Manly, Cory D; Richards, Alicia L; Marshall, Darrell D; Lingenfelter, Steven; Ren, Yue; Trimpin, Sarah

    2012-10-01

    Matrix assisted inlet ionization (MAII) is a method in which a matrix:analyte mixture produces mass spectra nearly identical to electrospray ionization without the application of a voltage or the use of a laser as is required in laserspray ionization (LSI), a subset of MAII. In MAII, the sample is introduced by, for example, tapping particles of dried matrix:analyte into the inlet of the mass spectrometer and, therefore, permits the study of conditions pertinent to the formation of multiply charged ions without the need of absorption at a laser wavelength. Crucial for the production of highly charged ions are desolvation conditions to remove matrix molecules from charged matrix:analyte clusters. Important factors affecting desolvation include heat, vacuum, collisions with gases and surfaces, and even radio frequency fields. Other parameters affecting multiply charged ion production is sample preparation, including pH and solvent composition. Here, findings from over 100 compounds found to produce multiply charged analyte ions using MAII with the inlet tube set at 450 °C are presented. Of the compounds tested, many have -OH or -NH(2) functionality, but several have neither (e.g., anthracene), nor aromaticity or conjugation. Binary matrices are shown to be applicable for LSI and solvent-free sample preparation can be applied to solubility restricted compounds, and matrix compounds too volatile to allow drying from common solvents. Our findings suggest that the physical properties of the matrix such as its morphology after evaporation of the solvent, its propensity to evaporate/sublime, and its acidity are more important than its structure and functional groups.

  3. Adherence of Model Molecules to Silica Surfaces: First Principle Calculations

    NASA Astrophysics Data System (ADS)

    Nuñez, Matías; Prado, Miguel Oscar

    The adherence of "model molecules" methylene blue and eosine Y ("positive" and "negatively" charged respectively) to crystal SiO2 surfaces is studied from first principle calculations at the DFT level. Adsorption energies are calculated which follow the experimental threads obtained elsewhere (Rivera et al., 2013). We study the quantum nature of the electronic charge transfer between the surface and the molecules, showing the localized and delocalized patterns associated to the repulsive and attractive case respectively.

  4. Crystal structure of Jararacussin-I: the highly negatively charged catalytic interface contributes to macromolecular selectivity in snake venom thrombin-like enzymes.

    PubMed

    Ullah, A; Souza, T A C B; Zanphorlin, L M; Mariutti, R B; Santana, V S; Murakami, M T; Arni, R K

    2013-01-01

    Snake venom serine proteinases (SVSPs) are hemostatically active toxins that perturb the maintenance and regulation of both the blood coagulation cascade and fibrinolytic feedback system at specific points, and hence, are widely used as tools in pharmacological and clinical diagnosis. The crystal structure of a thrombin-like enzyme (TLE) from Bothrops jararacussu venom (Jararacussin-I) was determined at 2.48 Å resolution. This is the first crystal structure of a TLE and allows structural comparisons with both the Agkistrodon contortrix contortrix Protein C Activator and the Trimeresurus stejnegeri plasminogen activator. Despite the highly conserved overall fold, significant differences in the amino acid compositions and three-dimensional conformations of the loops surrounding the active site significantly alter the molecular topography and charge distribution profile of the catalytic interface. In contrast to other SVSPs, the catalytic interface of Jararacussin-I is highly negatively charged, which contributes to its unique macromolecular selectivity. PMID:23139169

  5. Is ionized oxygen negatively or positively charged more effective for carboxyhemoglobin reduction compare to medical oxygen at atmospheric pressure?

    PubMed

    Perečinský, S; Kron, I; Engler, I; Murínová, L; Donič, V; Varga, M; Marossy, A; Legáth, Ľ

    2015-01-01

    Carbon monoxide (CO) reversibly binds to hemoglobin forming carboxyhemoglobin (COHb). CO competes with O(2) for binding place in hemoglobin leading to tissue hypoxia. Already 30 % saturation of COHb can be deadly. Medical oxygen at atmospheric pressure as a therapy is not enough effective. Therefore hyperbaric oxygen O(2) inhalation is recommended. There was a question if partially ionized oxygen can be a better treatment at atmospheric pressure. In present study we evaluated effect of partially ionized oxygen produced by device Oxygen Ion 3000 by Dr. Engler in elimination of COHb in vitro experiments and in smokers. Diluted blood with different content of CO was purged with 5 l/min of either medicinal oxygen O(2), negatively ionized O(2) or positively ionized O(2) for 15 min, then the COHb content was checked. In vivo study, 15 smokers inhaled of either medicinal oxygen O(2) or negatively ionized O(2), than we compared CO levels in expired air before and after inhalation. In both studies we found the highest elimination of CO when we used negatively ionized O(2). These results confirmed the benefit of short inhalation of negatively ionized O(2), in frame of Ionized Oxygen Therapy (I O(2)Th/Engler) which could be used in smokers for decreasing of COHb in blood.

  6. Enhancement of NK Cell Cytotoxicity Induced by Long-Term Living in Negatively Charged-Particle Dominant Indoor Air-Conditions

    PubMed Central

    Nishimura, Yasumitsu; Takahashi, Kazuaki; Mase, Akinori; Kotani, Muneo; Ami, Kazuhisa; Maeda, Megumi; Shirahama, Takashi; Lee, Suni; Matsuzaki, Hidenori; Kumagai-Takei, Naoko; Yoshitome, Kei; Otsuki, Takemi

    2015-01-01

    Investigation of house conditions that promote health revealed that negatively charged-particle dominant indoor air-conditions (NCPDIAC) induced immune stimulation. Negatively charged air-conditions were established using a fine charcoal powder on walls and ceilings and utilizing forced negatively charged particles (approximate diameter: 20 nm) dominant in indoor air-conditions created by applying an electric voltage (72 V) between the backside of the walls and the ground. We reported previously that these conditions induced a slight and significant increase of interleukin-2 during a 2.5-h stay and an increase of NK cell cytotoxicity when examining human subjects after a two-week night stay under these conditions. In the present study, seven healthy volunteers had a device installed to create NCPDIAC in the living or sleeping rooms of their own homes. Every three months the volunteers then turned the NCPDIAC device on or off. A total of 16 ON and 13 OFF trials were conducted and their biological effects were analyzed. NK activity increased during ON trials and decreased during OFF trials, although no other adverse effects were found. In addition, there were slight increases of epidermal growth factor (EGF) during ON trials. Furthermore, a comparison of the cytokine status between ON and OFF trials showed that basic immune status was stimulated slightly during ON trials under NCPIADC. Our overall findings indicate that the NCPDIAC device caused activation of NK activity and stimulated immune status, particularly only on NK activity, and therefore could be set in the home or office buildings. PMID:26173062

  7. FAST TRACK COMMUNICATION: Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques

    NASA Astrophysics Data System (ADS)

    Voggu, Rakesh; Das, Barun; Sekhar Rout, Chandra; Rao, C. N. R.

    2008-11-01

    The effects of the interaction of few-layer graphene with electron donor and acceptor molecules have been investigated by employing Raman spectroscopy, and the results compared with those from electrochemical doping. The G-band softens progressively with increasing concentration of tetrathiafulvalene (TTF) which is an electron donor, while the band stiffens with increasing concentration of tetracyanoethylene (TCNE) which is an electron acceptor. Interaction with both TTF and TCNE broadens the G-band. Hole and electron doping by electrochemical means, however, stiffen and sharpen the G-band. The 2D-band position is also affected by interaction with TTF and TCNE. More importantly, the intensity of the 2D-band decreases markedly with the concentration of either. The ratio of intensities of the 2D-band and G-band decreases with an increase in TTF or TCNE concentration, and provides a means for carrier titration in the charge transfer system. Unlike the intensity of the 2D-band, that of the D-band increases on interaction with TTF or TCNE. All of these effects occur due to molecular charge transfer, also evidenced by the occurrence of charge transfer bands in the electronic absorption spectra. The electrical resistivity of graphene varies in opposite directions on interaction with TTF and TCNE, the resistivity depending on the concentration of either compound.

  8. Complex frequency-dependent polarizability through the π → π* excitation energy of azobenzene molecules by a combined charge-transfer and point-dipole interaction model.

    PubMed

    Haghdani, Shokouh; Davari, Nazanin; Sandnes, Runar; Åstrand, Per-Olof

    2014-11-26

    The complex frequency-dependent polarizability and π → π* excitation energy of azobenzene compounds are investigated by a combined charge-transfer and point-dipole interaction (CT/PDI) model. To parametrize the model, we adopted time-dependent density functional theory (TDDFT) calculations of the frequency-dependent polarizability extended with excited-state lifetimes to include also its imaginary part. The results of the CT/PDI model are compared with the TDDFT calculations and experimental data demonstrating that the CT/PDI model is fully capable to reproduce the static polarizability as well as the π → π* excitation energy for these compounds. In particular, azobenzene molecules with different functional groups in the para-position have been included serving as a severe test of the model. The π → π* excitation is to a large extent localized to the azo bond, and substituting with electron-donating or electron-attracting groups on the phenyl rings results in charge-transfer effects and a shift in the excitation energy giving rise to azobenzene compounds with a range of different colors. In the CT/PDI model, the π → π* excitation in azobenzenes is manifested as drastically increasing atomic induced dipole moments in the azo group as well as in the adjacent carbon atoms, whereas the shifts in the excitation energies are due to charge-transfer effects.

  9. Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins

    PubMed Central

    2009-01-01

    Background In recent times photodynamic antimicrobial therapy has been used to efficiently destroy Gram (+) and Gram (-) bacteria using cationic porphyrins as photosensitizers. There is an increasing interest in this approach, namely in the search of photosensitizers with adequate structural features for an efficient photoinactivation process. In this study we propose to compare the efficiency of seven cationic porphyrins differing in meso-substituent groups, charge number and charge distribution, on the photodynamic inactivation of a Gram (+) bacterium (Enterococcus faecalis) and of a Gram (-) bacterium (Escherichia coli). The present study complements our previous work on the search for photosensitizers that might be considered good candidates for the photoinactivation of a large spectrum of environmental microorganisms. Results Bacterial suspension (107 CFU mL-1) treated with different photosensitizers concentrations (0.5, 1.0 and 5.0 μM) were exposed to white light (40 W m-2) for a total light dose of 64.8 J cm-2. The most effective photosensitizers against both bacterial strains were the Tri-Py+-Me-PF and Tri-Py+-Me-CO2Me at 5.0 μM with a light fluence of 64.8 J cm-2, leading to > 7.0 log (> 99,999%) of photoinactivation. The tetracationic porphyrin also proved to be a good photosensitizer against both bacterial strains. Both di-cationic and the monocationic porphyrins were the least effective ones. Conclusion The number of positive charges, the charge distribution in the porphyrins' structure and the meso-substituent groups seem to have different effects on the photoinactivation of both bacteria. As the Tri-Py+-Me-PF porphyrin provides the highest log reduction using lower light doses, this photosensitizer can efficiently photoinactivate a large spectrum of environmental bacteria. The complete inactivation of both bacterial strains with low light fluence (40 W m-2) means that the photodynamic approach can be applied to wastewater treatment under natural

  10. Structure/function analysis of human factor XII using recombinant deletion mutants. Evidence for an additional region involved in the binding to negatively charged surfaces.

    PubMed

    Citarella, F; Ravon, D M; Pascucci, B; Felici, A; Fantoni, A; Hack, C E

    1996-05-15

    The binding site of human factor XII (FXII) for negatively charged surfaces has been proposed to be localized in the N-terminal region of factor XII. We have generated two recombinant factor XII proteins that lack this region: one protein consisting of the second growth-factor-like domain, the kringle domain, the proline-rich region and the catalytic domain of FXII (rFXII-U-like), and another consisting of only 16 amino acids of the proline-rich region of the heavy-chain region and the catalytic domain (rFXII-1pc). Each recombinant truncated protein, as well as recombinant full-length FXII (rFXII), were produced in HepG2 cells and purified by immunoaffinity chromatography. The capability of these recombinant proteins to bind to negatively charged surfaces and to initiate contact activation was studied. Radiolabeled rFXII-U-like and, to a lesser extent, rFXII-lpc bound to glass in a concentration-dependent manner, yet with lower efficiency than rFXII. The binding of the recombinant proteins was inhibited by a 100-fold molar excess of non-labeled native factor XII. On native polyacrylamide gel electrophoresis, both truncated proteins appeared to bind also to dextran sulfate, a soluble negatively charged compound. Glass-bound rFXII-U-like was able to activate prekallikrein in FXII-deficient plasma (assessed by measuring the generation of kallikrein-C1-inhibitor complexes), but less efficiently than rFXII, rFXII-U-like and rFXII-lpc exhibited coagulant activity, but this activity was significantly lower than that of rFXII. These data confirm that the N-terminal part of the heavy-chain region of factor XII contains a binding site for negatively charged activating surfaces, and indicate that other sequences, possibly located on the second epidermal-growth-factor-like domain and/or the kringle domain, contribute to the binding of factor XII to these surfaces.

  11. Impact of the Crystalline Packing Structures on Charge Transport and Recombination via Alkyl Chain Tunability of DPP-Based Small Molecules in Bulk Heterojunction Solar Cells.

    PubMed

    Song, Chang Eun; Kim, Yu Jin; Suranagi, Sanjaykumar R; Kini, Gururaj P; Park, Sangheon; Lee, Sang Kyu; Shin, Won Suk; Moon, Sang-Jin; Kang, In-Nam; Park, Chan Eon; Lee, Jong-Cheol

    2016-05-25

    A series of small compound materials based on benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) with three different alkyl side chains were synthesized and used for organic photovoltaics. These small compounds had different alkyl branches (i.e., 2-ethylhexyl (EH), 2-butyloctyl (BO), and 2-hexyldecyl (HD)) attached to DPP units. Thin films made of these compounds were characterized and their solar cell parameters were measured in order to systematically analyze influences of the different side chains of compounds on the film microstructure, molecular packing, and hence, charge-transport and recombination properties. The relatively shorter side chains in the small molecules enabled more ordered packing structures with higher crystallinities, which resulted in higher carrier mobilities and less recombination factors; the small molecule with the EH branches exhibited the best semiconducting properties with a power conversion efficiency of up to 5.54% in solar cell devices. Our study suggested that tuning the alkyl chain length of semiconducting molecules is a powerful strategy for achieving high performance of organic photovoltaics.

  12. Redox-Active Star Molecules Incorporating the 4-Benzoylpyridinium Cation - Implications for the Charge Transfer Along Branches vs. Across the Perimeter in Dendrimer

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Yang, Jinua; Fabrizio,Even F.; Rawashdeh, Abdel-Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia

    2004-01-01

    Dendrimers are self-repeating globular branched star molecules, whose fractal structure continues to fascinate, challenge, and inspire. Functional dendrimers may incorporate redox centers, and potential applications include antennae molecules for light harvesting, sensors, mediators, and artificial biomolecules. We report the synthesis and redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches but remains constant at fixed radii. Bulk electrolysis shows that at a semi-infinite time scale all redox centers are electrochemically accessible. However, voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that on1y two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers along branches are accessible electrochemically within the same time frame. These results are explained in terms of slow through-space charge transfer and the globular 3-D folding of the molecules and are discussed in terms of their implications on the design of efficient redox functional dendrimers.

  13. Double-ionization energies of some n-alkyl isocyanate molecules; studies with double-charge-transfer spectrometry and ab initio propagator theory

    NASA Astrophysics Data System (ADS)

    Bayliss, M. A.; Griffiths, I. W.; Harris, F. M.; Parry, D. E.

    2003-12-01

    Double-charge-transfer (DCT) collisions of H+, OH+ and F+ 3 keV beam ions with a series of alkyl isocyanate molecules were studied using mass spectrometric techniques. Measurement of the kinetic energies of H- ions so produced enabled the determination of double-ionization energies (DIE) for transitions to singlet doubly ionized states of the target molecules; those for triplet doubly ionized states were obtained similarly from measurements of the kinetic energies of OH- and F- ions. Values up to approximately 40 eV were obtained in most cases and were found to be in close agreement with the predictions of ab initio calculations using propagator theory, also presented here. For n-butyl isocyanate (and by implication heavier molecules in the series) the density of doubly ionized states above 30 eV was both observed and predicted to be too large and featureless for meaningful analysis, so establishing an effective upper limit on molecular size for the current application of these techniques. Significant configuration interaction was predicted for the final doubly ionized states, which justified theoretical analysis with a relatively complex method that accounts well for correlation effects.

  14. Spiroconjugated intramolecular charge-transfer emission in non-typical spiroconjugated molecules: the effect of molecular structure upon the excited-state configuration.

    PubMed

    Zhu, Linna; Zhong, Cheng; Liu, Cui; Liu, Zhongyin; Qin, Jingui; Yang, Chuluo

    2013-04-01

    A set of terfluorenes and terfluorene-like molecules with different pendant substitutions or side groups were designed and synthesized, their photophysical properties and the excited-state geometries were studied. Dual fluorescence emissions were observed in compounds with rigid pendant groups bearing electron-donating N atoms. According to our earlier studies, in this set of terfluorenes, the blue emission is from the local π-π* transition, while the long-wavelength emission is attributed to a spiroconjugation-like through-space charge-transfer process. Herein, we probe further into how the molecular structures (referring to the side groups, the type of linkage between central fluorene and the 2,2'-azanediyldiethanol units, and-most importantly-the amount of pendant groups), as well as the excited-state geometries, affect the charge-transfer process of these terfluorenes or terfluorene-like compounds. 9-(9,9,9'',9''-tetrahexyl-9H,9'H,9''H-[2,2':7',2''-terfluoren]-9'-yl)-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolone (TFPJH), with only one julolidine pendant group, was particularly synthesized, which exhibits complete "perpendicular" conformation between julolidine and the central fluorene unit in the excited state, thus typical spiroconjugation could be achieved. Notably, its photophysical behaviors resemble those of TFPJ with two pendant julolidines. This study proves that spiroconjugation does happen in these terfluorene derivatives, although their structures are not in line with the typical orthogonal π fragments. The spiroconjugation charge-transfer emission closely relates to the electron-donating N atoms on the pendant groups, and to the rigid connection between the central fluorene and the N atoms, whereas the amount of pendant groups and the nature of the side chromophores have little effect. These findings may shed light on the understanding of the through-space charge-transfer properties and the emission color tuning of fluorene derivatives.

  15. Carboxyl and negative charge-functionalized superparamagnetic nanochains with amorphous carbon shell and magnetic core: synthesis and their application in removal of heavy metal ions

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Chen, Qian-Wang; Chen, Jian; Yu, Bin-Xing; Hu, Xian-Yi

    2011-11-01

    This communication describes carboxyl-functionalized nanochains with amorphous carbon shell (18 nm) and magnetic core using ferrocene as a single reactant under the induction of an external magnetic field (0.40 T), which shows a superparamagnetic behavior and magnetization saturation of 38.6 emu g-1. Because of mesoporous structure (3.8 nm) and surface negative charge (-35.18 mV), the nanochains can be used as adsorbent for removing the heavy metal ions (90%) from aqueous solution.This communication describes carboxyl-functionalized nanochains with amorphous carbon shell (18 nm) and magnetic core using ferrocene as a single reactant under the induction of an external magnetic field (0.40 T), which shows a superparamagnetic behavior and magnetization saturation of 38.6 emu g-1. Because of mesoporous structure (3.8 nm) and surface negative charge (-35.18 mV), the nanochains can be used as adsorbent for removing the heavy metal ions (90%) from aqueous solution. Electronic supplementary information (ESI) available: Experimental section, Fig. S1, Fig. S2, Fig. S3, Fig. S4 and Fig. S5. See DOI: 10.1039/c1nr11012h

  16. A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides

    SciTech Connect

    Du Yuzhe; Song Weizhong; Groome, James R.; Nomura, Yoshiko; Luo Ningguang; Dong Ke

    2010-08-15

    Voltage-gated sodium channels are the primary target of pyrethroids, an important class of synthetic insecticides. Pyrethroids bind to a distinct receptor site on sodium channels and prolong the open state by inhibiting channel deactivation and inactivation. Recent studies have begun to reveal sodium channel residues important for pyrethroid binding. However, how pyrethroid binding leads to inhibition of sodium channel deactivation and inactivation remains elusive. In this study, we show that a negatively charged aspartic acid residue at position 802 (D802) located in the extracellular end of transmembrane segment 1 of domain II (IIS1) is critical for both the action of pyrethroids and the voltage dependence of channel activation. Charge-reversing or -neutralizing substitutions (K, G, or A) of D802 shifted the voltage dependence of activation in the depolarizing direction and reduced channel sensitivity to deltamethrin, a pyrethroid insecticide. The charge-reversing mutation D802K also accelerated open-state deactivation, which may have counteracted the inhibition of sodium channel deactivation by deltamethrin. In contrast, the D802G substitution slowed open-state deactivation, suggesting an additional mechanism for neutralizing the action of deltamethrin. Importantly, Schild analysis showed that D802 is not involved in pyrethroid binding. Thus, we have identified a sodium channel residue that is critical for regulating the action of pyrethroids on the sodium channel without affecting the receptor site of pyrethroids.

  17. Method for the direct observation and quantification of survival of bacteria attached to negatively or positively charged surfaces in an aqueous medium.

    PubMed

    Asadishad, Bahareh; Ghoshal, Subhasis; Tufenkji, Nathalie

    2011-10-01

    The risk of groundwater contamination by microbial pathogens is linked to their survival in the subsurface. Although there is a large body of literature on the inactivation behavior of suspended (planktonic) microorganisms, little is known about the inactivation of bacteria when attached to sand grain surfaces in groundwater aquifers. The main goal of this study was to develop a fluorescence-based experimental technique for evaluating the extent of inactivation over time of bacteria adhered onto a surface in an aqueous environment. Key features of the developed technique are as follows: (i) attached cells do not need to be removed from the surface of interest for quantification, (ii) bacterial inactivation can be examined in real-time for prolonged time periods, and (iii) the system remains undisturbed (i.e., the aqueous environment is unchanged) during the assay. A negatively or positively charged substrate (i.e., bare or coated glass slide) was mounted in a parallel-plate flow cell, bacteria were allowed to attach onto the substrate, and the loss of bacterial membrane integrity and respiratory activity were investigated as a function of time by fluorescence microscopy using Live/Dead BacLight and BacLight RedoxSensor CTC (5-cyano-2,3-ditolyl tetrazolium chloride) viability assays. These two different measures of bacterial inactivation result in comparable trends in bacterial inactivation, confirming the validity of the experimental technique. The results of this work show that the developed technique is sensitive enough to distinguish between the inactivation kinetics of different representative bacteria attached to either a negatively charged (bare glass) surface or a positively charged (coated glass) surface. Hence, the technique can be used to characterize bacterial inactivation kinetics when attached to environmentally relevant surfaces over a broad range of groundwater chemistries.

  18. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    SciTech Connect

    Ye, ChuanXiang; Zhao, Yi E-mail: liangwz@xmu.edu.cn; Liang, WanZhen E-mail: liangwz@xmu.edu.cn

    2015-10-21

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT.

  19. A single Tisbnd Osbnd C linkage induces interfacial charge-transfer transitions between TiO2 and a π-conjugated molecule

    NASA Astrophysics Data System (ADS)

    Fujisawa, Jun-ichi; Matsumura, Shingo; Hanaya, Minoru

    2016-07-01

    Interfacial charge-transfer (ICT) transitions between wide-band-gap semiconductors such as titanium dioxide (TiO2) and π-conjugated molecules enable the absorption of visible light with colorless organic compounds and also direct photoinduced electron transfers across the interfaces. ICT transitions have been reported to be induced by a double Tisbnd Osbnd C linkage of enediol compounds with two hydroxy groups to TiO2. In this Letter, we demonstrate that a single Tisbnd Osbnd C linkage of phenol with one hydroxy group can induce ICT transitions in the visible region. Our result widely opens up the range of organic compounds available for ICT transitions from diol compounds to mono-hydroxy compounds.

  20. REVISED BIG BANG NUCLEOSYNTHESIS WITH LONG-LIVED, NEGATIVELY CHARGED MASSIVE PARTICLES: UPDATED RECOMBINATION RATES, PRIMORDIAL {sup 9}Be NUCLEOSYNTHESIS, AND IMPACT OF NEW {sup 6}Li LIMITS

    SciTech Connect

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kino, Yasushi; Mathews, Grant J. E-mail: kyungsik@kau.ac.kr E-mail: kajino@nao.ac.jp E-mail: gmathews@nd.edu

    2014-09-01

    We extensively reanalyze the effects of a long-lived, negatively charged massive particle, X {sup –}, on big bang nucleosynthesis (BBN). The BBN model with an X {sup –} particle was originally motivated by the discrepancy between the {sup 6,} {sup 7}Li abundances predicted in the standard BBN model and those inferred from observations of metal-poor stars. In this model, {sup 7}Be is destroyed via the recombination with an X {sup –} particle followed by radiative proton capture. We calculate precise rates for the radiative recombinations of {sup 7}Be, {sup 7}Li, {sup 9}Be, and {sup 4}He with X {sup –}. In nonresonant rates, we take into account respective partial waves of scattering states and respective bound states. The finite sizes of nuclear charge distributions cause deviations in wave functions from those of point-charge nuclei. For a heavy X {sup –} mass, m{sub X} ≳ 100 GeV, the d-wave → 2P transition is most important for {sup 7}Li and {sup 7,} {sup 9}Be, unlike recombination with electrons. Our new nonresonant rate of the {sup 7}Be recombination for m{sub X} = 1000 GeV is more than six times larger than the existing rate. Moreover, we suggest a new important reaction for {sup 9}Be production: the recombination of {sup 7}Li and X {sup –} followed by deuteron capture. We derive binding energies of X nuclei along with reaction rates and Q values. We then calculate BBN and find that the amount of {sup 7}Be destruction depends significantly on the charge distribution of {sup 7}Be. Finally, updated constraints on the initial abundance and the lifetime of the X {sup –} are derived in the context of revised upper limits to the primordial {sup 6}Li abundance. Parameter regions for the solution to the {sup 7}Li problem and the primordial {sup 9}Be abundances are revised.

  1. Negatively charged metal oxide nanoparticles interact with the 20S proteasome and differentially modulate its biologic functional effects.

    PubMed

    Falaschetti, Christine A; Paunesku, Tatjana; Kurepa, Jasmina; Nanavati, Dhaval; Chou, Stanley S; De, Mrinmoy; Song, MinHa; Jang, Jung-tak; Wu, Aiguo; Dravid, Vinayak P; Cheon, Jinwoo; Smalle, Jan; Woloschak, Gayle E

    2013-09-24

    The multicatalytic ubiquitin-proteasome system (UPS) carries out proteolysis in a highly orchestrated way and regulates a large number of cellular processes. Deregulation of the UPS in many disorders has been documented. In some cases, such as carcinogenesis, elevated proteasome activity has been implicated in disease development, while the etiology of other diseases, such as neurodegeneration, includes decreased UPS activity. Therefore, agents that alter proteasome activity could suppress as well as enhance a multitude of diseases. Metal oxide nanoparticles, often developed as diagnostic tools, have not previously been tested as modulators of proteasome activity. Here, several types of metal oxide nanoparticles were found to adsorb to the proteasome and show variable preferential binding for particular proteasome subunits with several peptide binding "hotspots" possible. These interactions depend on the size, charge, and concentration of the nanoparticles and affect proteasome activity in a time-dependent manner. Should metal oxide nanoparticles increase proteasome activity in cells, as they do in vitro, unintended effects related to changes in proteasome function can be expected.

  2. Negatively Charged Metal Oxide Nanoparticles Interact with the 20S Proteasome and Differentially Modulate Its Biologic Functional Effects

    PubMed Central

    Falaschetti, Christine A.; Paunesku, Tatjana; Kurepa, Jasmina; Nanavati, Dhaval; Chou, Stanley S.; De, Mrinmoy; Song, MinHa; Jang, Jung-tak; Wu, Aiguo; Dravid, Vinayak P.; Cheon, Jinwoo; Smalle, Jan; Woloschak, Gayle E.

    2013-01-01

    The multicatalytic ubiquitin-proteasome system (UPS) carries out proteolysis in a highly orchestrated way and regulates a large number of cellular processes. Deregulation of the UPS in many disorders has been documented. In some cases, e.g. carcinogenesis, elevated proteasome activity has been implicated in disease development, while the etiology of other diseases, e.g. neurodegeneration, includes decreased UPS activity. Therefore, agents that alter proteasome activity could suppress as well as enhance a multitude of diseases. Metal oxide nanoparticles, often developed as diagnostic tools, have not previously been tested as modulators of proteasome activity. Here, several types of metal oxide nanoparticles were found to adsorb to the proteasome and show variable preferential binding for particular proteasome subunits with several peptide binding “hotspots” possible. These interactions depend on the size, charge, and concentration of the nanoparticles and affect proteasome activity in a time-dependent manner. Should metal oxide nanoparticles increase proteasome activity in cells, as they do in vitro, unintended effects related to changes in proteasome function can be expected. PMID:23930940

  3. Adsorption of carbon monoxide on small aluminum oxide clusters: Role of the local atomic environment and charge state on the oxidation of the CO molecule

    NASA Astrophysics Data System (ADS)

    Ornelas-Lizcano, J. C.; Guirado-López, R. A.

    2015-03-01

    We present extensive density functional theory (DFT) calculations dedicated to analyze the adsorption behavior of CO molecules on small AlxOy± clusters. Following the experimental results of Johnson et al. [J. Phys. Chem. A 112, 4732 (2008)], we consider structures having the bulk composition Al2O3, as well as smaller Al2O2 and Al2O units. Our electron affinity and total energy calculations are consistent with aluminum oxide clusters having two-dimensional rhombus-like structures. In addition, interconversion energy barriers between two- and one-dimensional atomic arrays are of the order of 1 eV, thus clearly defining the preferred isomers. Single CO adsorption on our charged AlxOy± clusters exhibits, in general, spontaneous oxygen transfer events leading to the production of CO2 in line with the experimental data. However, CO can also bind to both Al and O atoms of the clusters forming aluminum oxide complexes with a CO2 subunit. The vibrational spectra of AlxOy + CO2 provides well defined finger prints that may allow the identification of specific isomers. The AlxOy+ clusters are more reactive than the anionic species and the final Al2O+ + CO reaction can result in the production of atomic Al and carbon dioxide as observed from experiments. We underline the crucial role played by the local atomic environment, charge density distribution, and spin-multiplicity on the oxidation behavior of CO molecules. Finally, we analyze the importance of coadsorption and finite temperature effects by performing DFT Born-Oppenheimer molecular dynamics. Our calculations show that CO oxidation on AlxOy+ clusters can be also promoted by the binding of additional CO species at 300 K, revealing the existence of fragmentation processes in line with the ones experimentally inferred.

  4. Adsorption of carbon monoxide on small aluminum oxide clusters: Role of the local atomic environment and charge state on the oxidation of the CO molecule.

    PubMed

    Ornelas-Lizcano, J C; Guirado-López, R A

    2015-03-28

    We present extensive density functional theory (DFT) calculations dedicated to analyze the adsorption behavior of CO molecules on small AlxOy (±) clusters. Following the experimental results of Johnson et al. [J. Phys. Chem. A 112, 4732 (2008)], we consider structures having the bulk composition Al2O3, as well as smaller Al2O2 and Al2O units. Our electron affinity and total energy calculations are consistent with aluminum oxide clusters having two-dimensional rhombus-like structures. In addition, interconversion energy barriers between two- and one-dimensional atomic arrays are of the order of 1 eV, thus clearly defining the preferred isomers. Single CO adsorption on our charged AlxOy (±) clusters exhibits, in general, spontaneous oxygen transfer events leading to the production of CO2 in line with the experimental data. However, CO can also bind to both Al and O atoms of the clusters forming aluminum oxide complexes with a CO2 subunit. The vibrational spectra of AlxOy + CO2 provides well defined finger prints that may allow the identification of specific isomers. The AlxOy (+) clusters are more reactive than the anionic species and the final Al2O(+) + CO reaction can result in the production of atomic Al and carbon dioxide as observed from experiments. We underline the crucial role played by the local atomic environment, charge density distribution, and spin-multiplicity on the oxidation behavior of CO molecules. Finally, we analyze the importance of coadsorption and finite temperature effects by performing DFT Born-Oppenheimer molecular dynamics. Our calculations show that CO oxidation on AlxOy (+) clusters can be also promoted by the binding of additional CO species at 300 K, revealing the existence of fragmentation processes in line with the ones experimentally inferred.

  5. Predicting the stability of atom-like and molecule-like unit-charge Coulomb three-particle systems

    SciTech Connect

    King, Andrew W.; Herlihy, Patrick E.; Cox, Hazel

    2014-07-28

    Non-relativistic quantum chemical calculations of the particle mass, m{sub 2}{sup ±}, corresponding to the dissociation threshold in a range of Coulomb three-particle systems of the form (m{sub 1}{sup ±}m{sub 2}{sup ±}m{sub 3}{sup ∓}), are performed variationally using a series solution method with a Laguerre-based wavefunction. These masses are used to calculate an accurate stability boundary, i.e., the line that separates the stability domain from the instability domains, in a reciprocal mass fraction ternary diagram. This result is compared to a lower bound to the stability domain derived from symmetric systems and reveals the importance of the asymmetric (mass-symmetry breaking) terms in the Hamiltonian at dissociation. A functional fit to the stability boundary data provides a simple analytical expression for calculating the minimum mass of a third particle required for stable binding to a two-particle system, i.e., for predicting the bound state stability of any unit-charge three-particle system.

  6. Kinetic instability of the dust acoustic mode in inhomogeneous, partially magnetized plasma with both positively and negatively charged grains

    SciTech Connect

    Vranjes, J.; Poedts, S.

    2010-08-15

    A purely kinetic instability of the dust acoustic mode in inhomogeneous plasmas is discussed. In the presence of a magnetic field, electrons and ions may be magnetized while at the same time dust grains may remain unmagnetized. Although the dynamics of the light species is strongly affected by the magnetic field, the dust acoustic mode may still propagate in practically any direction. The inhomogeneity implies a source of free energy for an instability that develops through the diamagnetic drift effects of the magnetized species. It is shown that this may be a powerful mechanism for the excitation of dust acoustic waves. The analysis presented in the work is also directly applicable to plasmas containing both positive and negative ions and electrons, provided that at least one of the two ion species is unmagnetized.

  7. Characterization of a Novel Small Molecule That Potentiates β-Lactam Activity against Gram-Positive and Gram-Negative Pathogens

    PubMed Central

    Nair, Dhanalakshmi R.; Monteiro, João M.; Memmi, Guido; Thanassi, Jane; Pucci, Michael; Schwartzman, Joseph; Pinho, Mariana G.

    2015-01-01

    In a loss-of-viability screen using small molecules against methicillin-resistant Staphylococcus aureus (MRSA) strain USA300 with a sub-MIC of a β-lactam, we found a small molecule, designated DNAC-1, which potentiated the effect of oxacillin (i.e., the MIC of oxacillin decreased from 64 to 0.25 μg/ml). Fluorescence microscopy indicated a disruption in the membrane structures within 15 min of exposure to DNAC-1 at 2× MIC. This permeabilization was accompanied by a rapid loss of membrane potential, as monitored by use of the DiOC2 (3,3′-diethyloxacarbocyanine iodide) dye. Macromolecular analysis showed the inhibition of staphylococcal cell wall synthesis by DNAC-1. Transmission electron microscopy of treated MRSA USA300 cells revealed a slightly thicker cell wall, together with mesosome-like projections into the cytosol. The exposure of USA300 cells to DNAC-1 was associated with the mislocalization of FtsZ accompanied by the localization of penicillin-binding protein 2 (PBP2) and PBP4 away from the septum, as well as mild activation of the vraRS-mediated cell wall stress response. However, DNAC-1 does not have any generalized toxicity toward mammalian host cells. DNAC-1 in combination with ceftriaxone is also effective against an assortment of Gram-negative pathogens. Using a murine subcutaneous coinjection model with 108 CFU of USA300 as a challenge inoculum, DNAC-1 alone or DNAC-1 with a sub-MIC of oxacillin resulted in a 6-log reduction in bacterial load and decreased abscess formation compared to the untreated control. We propose that DNAC-1, by exerting a bimodal effect on the cell membrane and cell wall, is a viable candidate in the development of combination therapy against many common bacterial pathogens. PMID:25583731

  8. Carcinoembryonic antigen-related cell adhesion molecule 1 negatively regulates granulocyte colony-stimulating factor production by breast tumor-associated macrophages that mediate tumor angiogenesis.

    PubMed

    Samineni, Sridhar; Zhang, Zhifang; Shively, John E

    2013-07-15

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a cell adhesion molecule expressed on epithelial cells and activated immune cells, is downregulated in many cancers and plays a role in inhibition of inflammation in part by inhibition of granulocyte colony-stimulating factor (G-CSF) production by myeloid cells. As macrophages are associated with a poor prognosis in breast cancer, but play important roles in normal breast, we hypothesized that CEACAM1 downregulation would lead to tumor promotion under inflammatory conditions. Cocultures of proinflammatory M1 macrophages with CEACAM1 negative MCF7 breast cells produced high levels of G-CSF (10 ng/mL) compared to CEACAM1-transfected MCF7/4S cells (1 ng/mL) or anti-inflammatory M2 macrophage cocultures (0.5 or 0.1 ng/mL, MCF7 or MCF7/4S, respectively). The expression of CEACAM1 on M1s was much greater than for M2s and was observed only in cocultures with either MCF7 or MCF7/4S cells. When M1 macrophages were mixed with MCF7 cells and implanted in murine mammary fat pads of nonobese diabetic/severe combined immunodeficient mice, tumor size and blood vessel density were significantly greater than MCF7 or MCF7/4S only tumors which were hardly detected after 8 weeks of growth. In contrast, M1 cells had a much reduced effect on MCF7/4S tumor growth and blood vessel density, indicating that the tumor inhibitory effect of CEACAM1 is most likely related to its anti-inflammatory action on inflammatory macrophages. These results support our previous finding that CEACAM1 inhibits both G-CSF production by myeloid cells and G-CSF-stimulated tumor angiogenesis.

  9. Characterization of a novel small molecule that potentiates β-lactam activity against gram-positive and gram-negative pathogens.

    PubMed

    Nair, Dhanalakshmi R; Monteiro, João M; Memmi, Guido; Thanassi, Jane; Pucci, Michael; Schwartzman, Joseph; Pinho, Mariana G; Cheung, Ambrose L

    2015-04-01

    In a loss-of-viability screen using small molecules against methicillin-resistant Staphylococcus aureus (MRSA) strain USA300 with a sub-MIC of a β-lactam, we found a small molecule, designated DNAC-1, which potentiated the effect of oxacillin (i.e., the MIC of oxacillin decreased from 64 to 0.25 μg/ml). Fluorescence microscopy indicated a disruption in the membrane structures within 15 min of exposure to DNAC-1 at 2× MIC. This permeabilization was accompanied by a rapid loss of membrane potential, as monitored by use of the DiOC2 (3,3'-diethyloxacarbocyanine iodide) dye. Macromolecular analysis showed the inhibition of staphylococcal cell wall synthesis by DNAC-1. Transmission electron microscopy of treated MRSA USA300 cells revealed a slightly thicker cell wall, together with mesosome-like projections into the cytosol. The exposure of USA300 cells to DNAC-1 was associated with the mislocalization of FtsZ accompanied by the localization of penicillin-binding protein 2 (PBP2) and PBP4 away from the septum, as well as mild activation of the vraRS-mediated cell wall stress response. However, DNAC-1 does not have any generalized toxicity toward mammalian host cells. DNAC-1 in combination with ceftriaxone is also effective against an assortment of Gram-negative pathogens. Using a murine subcutaneous coinjection model with 10(8) CFU of USA300 as a challenge inoculum, DNAC-1 alone or DNAC-1 with a sub-MIC of oxacillin resulted in a 6-log reduction in bacterial load and decreased abscess formation compared to the untreated control. We propose that DNAC-1, by exerting a bimodal effect on the cell membrane and cell wall, is a viable candidate in the development of combination therapy against many common bacterial pathogens.

  10. Theoretical characterization of photoinduced electron transfer in rigidly linked donor-acceptor molecules: the fragment charge difference and the generalized Mulliken-Hush schemes

    NASA Astrophysics Data System (ADS)

    Lee, Sheng-Jui; Chen, Hung-Cheng; You, Zhi-Qiang; Liu, Kuan-Lin; Chow, Tahsin J.; Chen, I.-Chia; Hsu, Chao-Ping

    2010-10-01

    We calculate the electron transfer (ET) rates for a series of heptacyclo[6.6.0.02,6.03,13.014,11.05,9.010,14]-tetradecane (HCTD) linked donor-acceptor molecules. The electronic coupling factor was calculated by the fragment charge difference (FCD) [19] and the generalized Mulliken-Hush (GMH) schemes [20]. We found that the FCD is less prone to problems commonly seen in the GMH scheme, especially when the coupling values are small. For a 3-state case where the charge transfer (CT) state is coupled with two different locally excited (LE) states, we tested with the 3-state approach for the GMH scheme [30], and found that it works well with the FCD scheme. A simplified direct diagonalization based on Rust's 3-state scheme was also proposed and tested. This simplified scheme does not require a manual assignment of the states, and it yields coupling values that are largely similar to those from the full Rust's approach. The overall electron transfer (ET) coupling rates were also calculated.

  11. Water-molecule fragmentation induced by charge exchange in slow collisions with He{sup +} and He{sup 2+} ions in the keV-energy region

    SciTech Connect

    Cabrera-Trujillo, R.; Deumens, E.; Oehrn, Y.; Quinet, O.; Sabin, J. R.; Stolterfoht, N.

    2007-05-15

    Charge exchange and fragmentation in the collision systems He{sup 2+}+H{sub 2}O and He{sup +}+H{sub 2}O are theoretically investigated at projectile energies of a few keV. The calculations are based on the electron nuclear dynamics (END) method which solves the time-dependent Schroedinger equation. Total and differential cross sections for charge exchange are evaluated by averaging over 10 orientations of the H{sub 2}O molecule. Summed total electron capture cross sections are found to be in good agreement with available experimental data. Projectile scattering was studied in the full angular range with respect to the incident beam direction. The theory provides a description of the fragmentation mechanisms such as Coulomb explosion and binary collision processes. For impact parameters below 3.5 a.u., we find that single and double electron capture occurs, resulting always in full fragmentation of H{sub 2}O independent of the target orientation for {sup 3}He{sup 2+} ions. Hydrogen and oxygen fragments and its respective ions, are studied as a function of emission angle and energy. In the binary collisions regime the theoretical results are found to be in excellent agreement with previous experimental data. In the Coulomb explosion regime the theoretical data are found to peak at specific angles including 90 degree sign , which is consistent with the experiment.

  12. Water-molecule fragmentation induced by charge exchange in slow collisions with He+ and He2+ ions in the keV-energy region

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.; Deumens, E.; Öhrn, Y.; Quinet, O.; Sabin, J. R.; Stolterfoht, N.

    2007-05-01

    Charge exchange and fragmentation in the collision systems He2++H2O and He++H2O are theoretically investigated at projectile energies of a few keV. The calculations are based on the electron nuclear dynamics (END) method which solves the time-dependent Schrödinger equation. Total and differential cross sections for charge exchange are evaluated by averaging over 10 orientations of the H2O molecule. Summed total electron capture cross sections are found to be in good agreement with available experimental data. Projectile scattering was studied in the full angular range with respect to the incident beam direction. The theory provides a description of the fragmentation mechanisms such as Coulomb explosion and binary collision processes. For impact parameters below 3.5a.u. , we find that single and double electron capture occurs, resulting always in full fragmentation of H2O independent of the target orientation for He2+3 ions. Hydrogen and oxygen fragments and its respective ions, are studied as a function of emission angle and energy. In the binary collisions regime the theoretical results are found to be in excellent agreement with previous experimental data. In the Coulomb explosion regime the theoretical data are found to peak at specific angles including 90°, which is consistent with the experiment.

  13. Identification of a putative binding site for negatively charged surfaces in the fibronectin type II domain of human factor XII--an immunochemical and homology modeling approach.

    PubMed

    Citarella, F; te Velthuis, H; Helmer-Citterich, M; Hack, C E

    2000-12-01

    Monoclonal antibodies directed against functional sites of proteins provide useful tools for structure-function studies. Here we describe a mAb, KOK5, directed against the heavy chain region of human coagulation factor XII (FXII), which inhibits kaolin-induced clotting activity by preventing the binding of FXII to kaolin. Furthermore, mAb KOK5 enhances FXII susceptibility for cleavage by kallikrein and supports FXII autoactivation. Hence, mAb KOK5 likely is directed against the binding site of FXII for negatively charged surfaces. Screening of two phage-displayed random peptide libraries with mAb KOK5 selected phages that could be grouped on the basis of two amino acid consensus sequences: A) FXFQTPXW and B) HQ/LCTHR/KKC. Sequence A contains two motifs: one shares homology with FXII amino acid residues 30-33 (FPFQ), the second one with residues 57-60 (TPNF); both amino acid stretches belonging to the fibronectin type II domain of FXII. Sequence B also reveals homology with part of the fibronectin type II domain, i.e. the stretch 40-47 (HKCTHKGR). A three-dimensional model of FXII residues 28-65, obtained by homology modeling, indicated that the three amino acid stretches 30-33, 40-47 and 57-60 are close to each other and accessible for the solvent, i.e. in a form available for interaction with the monoclonal antibody, suggesting that mAb KOK5 recognizes a discontinuous epitope on the fibronectin type III domain of FXII. Peptides corresponding to FXII sequences 29-37 (FXII29-37) or 39-47 (FXII39-47), were synthesized and tested for the capability to inhibit FXII binding to negatively charged surfaces. Peptide FXII39-47 inhibited the binding of labeled FXII to kaolin and effectively prevented both dextran sulfate- and kaolin-induced activation of the contact system in plasma. Hence, we suggest that the fibronectin type II domain of FXII, in particular residues 39 to 47, contribute to the binding site of FXII for negatively charged surfaces.

  14. Negative and positive ion trapping by isotopic molecules in cryocrystals in case of solid parahydrogen containing electrons and H(6) (+) radical cations.

    PubMed

    Shimizu, Yuta; Inagaki, Makoto; Kumada, Takayuki; Kumagai, Jun

    2010-06-28

    We performed electron spin resonance studies of trapped electrons and H(6) (+) radical cations produced by radiolysis of solid parahydrogen (p-H(2)), p-H(2)-ortho-D(2) (o-D(2)), and p-H(2)-HD mixtures. Yields of trapped electrons, H(6) (+) radical cations, and its isotopic analogs H(6-n)D(n) (+) (4>or=n>or=1) increased with increasing o-D(2) and HD concentrations in solid p-H(2). Electrons were found trapped near an o-D(2) or an HD in solid p-H(2) due to the long-range charge-induced dipole and quadrupole interactions between electrons and isotopic hydrogen molecules. H(6) (+) radical cations diffuse in solid p-H(2) by repetition of H(6) (+)+H(2)-->H(2)+H(6) (+) and are trapped by ortho-D(2) or HD to form H(6-n)D(n) (+) (4>or=n>or=1) as isotope condensation reactions. Decay behaviors of these cations by the repetition, isotope condensation, and geminate recombination between electrons and H(6-n)D(n) (+) (4>or=n>or=0) were reproduced by determining the corresponding reaction rate constants k(1), k(2), and k(3). Values of 0.045 and 0.0015 L mol(-1) min(-1) were obtained for k(1) (H(6) (+)+D(2)-->H(2)+H(4)D(2) (+)) and k(2) (H(4)D(2) (+)+D(2)-->H(2)+H(2)D(4) (+)), respectively, and the value was quasinull for k(3) (H(2)D(4) (+)+D(2)-->H(2)+D(6) (+)). These rate constants suggest that hole mobility drastically decreased in the repetition reaction when H(6) (+) radical cations acting as hole carriers formed H(4)D(2) (+) or H(2)D(4) (+). HD and D(2) molecules, therefore, act as electron and hole acceptors in irradiated solid p-H(2)-o-D(2) and p-H(2)-HD mixtures.

  15. Negative charge trapping effects in Al2O3 films grown by atomic layer deposition onto thermally oxidized 4H-SiC

    NASA Astrophysics Data System (ADS)

    Schilirò, Emanuela; Lo Nigro, Raffaella; Fiorenza, Patrick; Roccaforte, Fabrizio

    2016-07-01

    This letter reports on the negative charge trapping in Al2O3 thin films grown by atomic layer deposition onto oxidized silicon carbide (4H-SiC). The films exhibited a permittivity of 8.4, a breakdown field of 9.2 MV/cm and small hysteresis under moderate bias cycles. However, severe electron trapping inside the Al2O3 film (1 × 1012 cm-2) occurs upon high positive bias stress (>10V). Capacitance-voltage measurements at different temperatures and stress conditions have been used to determine an activation energy of 0.1eV. The results provide indications on the possible nature of the trapping defects and, hence, on the strategies to improve this technology for 4H-SiC devices.

  16. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates

    PubMed Central

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Strocov, Vladimir N.; Zubko, Pavlo; Balandeh, Shadi; Triscone, Jean-Marc; Sawatzky, George; Schmitt, Thorsten

    2016-01-01

    The metal–insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal–insulator transition in terms of bond disproportionation. PMID:27725665

  17. Ground-state oxygen holes and the metal-insulator transition in the negative charge-transfer rare-earth nickelates

    NASA Astrophysics Data System (ADS)

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Strocov, Vladimir N.; Zubko, Pavlo; Balandeh, Shadi; Triscone, Jean-Marc; Sawatzky, George; Schmitt, Thorsten

    2016-10-01

    The metal-insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal-insulator transition in terms of bond disproportionation.

  18. Pair Tunneling through Single Molecules

    NASA Astrophysics Data System (ADS)

    Raikh, Mikhail

    2007-03-01

    Coupling to molecular vibrations induces a polaronic shift, and can lead to a negative charging energy, U. For negative U, the occupation of the ground state of the molecule is even. In this situation, virtual pair transitions between the molecule and the leads can dominate electron transport. At low temperature, T, these transitions give rise to the charge-Kondo effect [1]. We developed the electron transport theory through the negative-U molecule [2] at relatively high T, when the Kondo correlations are suppressed. Two physical ingredients distinguish our theory from the transport through a superconducting grain coupled to the normal leads [3]: (i) in parallel with sequential pair-tunneling processes, single-particle cotunneling processes take place; (ii) the electron pair on the molecule can be created (or annihilated) by two electrons tunneling in from (or out to) opposite leads. We found that, even within the rate-equation description, the behavior of differential conductance through the negative-U molecule as function of the gate voltage is quite peculiar: the height of the peak near the degeneracy point is independent of temperature, while its width is proportional to T. This is in contrast to the ordinary Coulomb-blockade conductance peak, whose integral strength is T-independent. At finite source-drain bias, V>>T, the width of the conductance peak is ˜V, whereas the conventional Coulomb-blockade peak at finite V splits into two sharp peaks at detunings V/2, and -V/2. Possible applications to the gate-controlled current rectification and switching will be discussed. [1] A. Taraphder and P. Coleman, Phys. Rev. Lett. 66, 2814 (1991). [2] J. Koch, M. E. Raikh, and F. von Oppen, Phys. Rev. Lett. 96, 056803 (2006). [3] F. W. J. Hekking, L. I. Glazman, K. A. Matveev, and R. I. Shekhter, Phys. Rev. Lett. 70, 4138 (1993).

  19. The electrostatic co-assembly in non-stoichiometric aqueous mixtures of copolymers composed of one neutral water-soluble and one polyelectrolyte (either positively or negatively charged) block: a dissipative particle dynamics study.

    PubMed

    Šindelka, Karel; Limpouchová, Zuzana; Lísal, Martin; Procházka, Karel

    2016-06-28

    The electrostatic co-assembly in non-stoichiometric aqueous mixtures of diblock copolymers composed of a neutral water-soluble block and an either positively or negatively charged polyelectrolyte (PE) block has been studied by dissipative particle dynamics (DPD) simulations. The employed DPD variant includes explicit electrostatics and enables the investigation of the role of small ions in the co-assembly. The properties of core-shell associates containing insoluble interpolyelectrolyte complex cores and protective neutral shells were investigated as functions of the ratio of positive-to-negative charges in the system. This ratio was varied by increasing the number of positively charged PE chains of the same length as those of negatively charged chains, and by changing the PE length and charge density. The simulation results show that the associates formed in non-stoichiometric mixtures differ from those formed in stoichiometric mixtures: their association numbers are lower, their cores are charged and a fraction of excess chains remain free in the non-associated state. The study demonstrates the important role of the compatibility of the counterions with the polymer blocks. It simultaneously emphasizes the necessity of including the electrostatic interaction of all the charged species in the DPD computational scheme. PMID:27253089

  20. Adsorption of carbon monoxide on small aluminum oxide clusters: Role of the local atomic environment and charge state on the oxidation of the CO molecule

    SciTech Connect

    Ornelas-Lizcano, J. C.; Guirado-López, R. A.

    2015-03-28

    We present extensive density functional theory (DFT) calculations dedicated to analyze the adsorption behavior of CO molecules on small Al{sub x}O{sub y}{sup ±} clusters. Following the experimental results of Johnson et al. [J. Phys. Chem. A 112, 4732 (2008)], we consider structures having the bulk composition Al{sub 2}O{sub 3}, as well as smaller Al{sub 2}O{sub 2} and Al{sub 2}O units. Our electron affinity and total energy calculations are consistent with aluminum oxide clusters having two-dimensional rhombus-like structures. In addition, interconversion energy barriers between two- and one-dimensional atomic arrays are of the order of 1 eV, thus clearly defining the preferred isomers. Single CO adsorption on our charged Al{sub x}O{sub y}{sup ±} clusters exhibits, in general, spontaneous oxygen transfer events leading to the production of CO{sub 2} in line with the experimental data. However, CO can also bind to both Al and O atoms of the clusters forming aluminum oxide complexes with a CO{sub 2} subunit. The vibrational spectra of Al{sub x}O{sub y} + CO{sub 2} provides well defined finger prints that may allow the identification of specific isomers. The Al{sub x}O{sub y}{sup +} clusters are more reactive than the anionic species and the final Al{sub 2}O{sup +} + CO reaction can result in the production of atomic Al and carbon dioxide as observed from experiments. We underline the crucial role played by the local atomic environment, charge density distribution, and spin-multiplicity on the oxidation behavior of CO molecules. Finally, we analyze the importance of coadsorption and finite temperature effects by performing DFT Born-Oppenheimer molecular dynamics. Our calculations show that CO oxidation on Al{sub x}O{sub y}{sup +} clusters can be also promoted by the binding of additional CO species at 300 K, revealing the existence of fragmentation processes in line with the ones experimentally inferred.

  1. Charge Transfer Reactions Induce Born-Oppenheimer Breakdown in Surface Chemistry: Applications of Double Resonance Spectroscopy in Molecule-Surface Scattering

    NASA Astrophysics Data System (ADS)

    Wodtke, Alec M.

    2013-06-01

    Atomic and molecular interactions constitute a many-body quantum problem governed fundamentally only by the Coulomb forces between many electrons and nuclei. While simple to state, computers are simply not fast enough to solve this problem by brute force, except for the simplest examples. Combining the Born-Oppenheimer Approximation (BOA) with Density Functional Theory (DFT), however, allows theoretical simulations of extraordinarily complex chemical systems including molecular interactions at solid metal surfaces, the physical basis of surface chemistry. This lecture describes experiments demonstrating the limits of the BOA/DFT approximation as it relates to molecules interacting with solid metal surfaces. One of the most powerful experimental tools at our disposal is a form of double resonance spectroscopy, which allows us to define the quantum state of the molecule both before and after the collision with the surface, providing a complete picture of the resulting energy conversion processes. With such data, we are able to emphasize quantitative measurements that can be directly compared to first principles theories that go beyond the Born-Oppenheimer approximation. One important outcome of this work is the realization that Born-Oppenheimer breakdown can be induced by simple charge transfer reactions that are common in surface chemistry. J. D. White, J. Chen, D. Matsiev, D. J. Auerbach and A. M. Wodtke Nature {433}(7025), 503-505 (2005) Y. H. Huang, C. T. Rettner, D. J. Auerbach and A. M. Wodtke Science {290}(5489), 111-114 (2000) R. Cooper, I. Rahinov, Z. S. Li, D. Matsiev, D. J. Auerbach and A. M. Wodtke Chemical Science {1}(1), 55-61 (2010) J. Larue, T. Schäfer, D. Matsiev, L. Velarde, N. H. Nahler, D. J. Auerbach and A. M. Wodtke PCCP {13}(1), 97-99 (2011).

  2. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. III. Molecules with partial charges at bulk phases, confined geometries and interfaces

    SciTech Connect

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-09-07

    In Paper I [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 139(23), 234104 (2013)], we showed that how a third-order Weeks–Chandler–Anderson (WCA) Thermodynamic Perturbation Theory and molecular simulation can be integrated to characterize the repulsive and dispersive contributions to the Helmholtz free energy for realistic molecular conformations. To this end, we focused on n-alkanes to develop a theory for fused and soft chains. In Paper II [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 141(2), 024708 (2014)], we adapted the classical Density Functional Theory and studied the microstructure of the realistic molecular fluids in confined geometries and vapor-liquid interfaces. We demonstrated that a detailed consistency between molecular simulation and theory can be achieved for both bulk and inhomogeneous phases. In this paper, we extend the methodology to molecules with partial charges such as carbon dioxide, water, 1-alkanols, nitriles, and ethers. We show that the electrostatic interactions can be captured via an effective association potential in the framework of Statistical Associating Fluid Theory (SAFT). Implementation of the resulting association contribution in assessing the properties of these molecules at confined geometries and interfaces presents satisfactory agreement with molecular simulation and experimental data. For example, the predicted surface tension deviates less than 4% comparing to full potential simulations. Also, the theory, referred to as SAFT-γ WCA, is able to reproduce the specific orientation of hydrophilic head and hydrophobic tail of 1-alkanols at the vapor-liquid interface of water.

  3. Identification of the SLAM Adapter Molecule EAT-2 as a Lupus-Susceptibility Gene That Acts through Impaired Negative Regulation of Dendritic Cell Signaling.

    PubMed

    Talaei, Nafiseh; Yu, Tao; Manion, Kieran; Bremner, Rod; Wither, Joan E

    2015-11-15

    We showed previously that C57BL/6 congenic mice with an introgressed homozygous 70 cM (125.6 Mb) to 100 cM (179.8 Mb) interval on c1 from the lupus-prone New Zealand Black (NZB) mouse develop high titers of antinuclear Abs and severe glomerulonephritis. Using subcongenic mice, we found that a genetic locus in the 88-96 cM region was associated with altered dendritic cell (DC) function and synergized with T cell functional defects to promote expansion of pathogenic proinflammatory T cell subsets. In this article, we show that the promoter region of the NZB gene encoding the SLAM signaling pathway adapter molecule EWS-activated transcript 2 (EAT-2) is polymorphic, which results in an ∼ 70% reduction in EAT-2 in DC. Silencing of the EAT-2 gene in DC that lacked this polymorphism led to increased production of IL-12 and enhanced differentiation of T cells to a Th1 phenotype in T cell-DC cocultures, reproducing the phenotype observed for DC from congenic mice with the NZB c1 70-100 cM interval. SLAM signaling was shown to inhibit production of IL-12 by CD40L-activated DCs. Consistent with a role for EAT-2 in this inhibition, knockdown of EAT-2 resulted in increased production of IL-12 by CD40-stimulated DC. Assessment of downstream signaling following CD40 cross-linking in the presence or absence of SLAM cross-linking revealed that SLAM coengagement blocked activation of p38 MAPK and JNK signaling pathways in DC, which was reversed in DC with the NZB EAT-2 allele. We conclude that EAT-2 negatively regulates cytokine production in DC downstream of SLAM engagement and that a genetic polymorphism that disturbs this process promotes the development of lupus.

  4. ZRBA1, a Mixed EGFR/DNA Targeting Molecule, Potentiates Radiation Response Through Delayed DNA Damage Repair Process in a Triple Negative Breast Cancer Model

    SciTech Connect

    Heravi, Mitra; Kumala, Slawomir; Rachid, Zakaria; Jean-Claude, Bertrand J.; Radzioch, Danuta; Muanza, Thierry M.

    2015-06-01

    Purpose: ZRBA1 is a combi-molecule designed to induce DNA alkylating lesions and to block epidermal growth factor receptor (EGFR) TK domain. Inasmuch as ZRBA1 downregulates the EGFR TK-mediated antisurvival signaling and induces DNA damage, we postulated that it might be a radiosensitizer. The aim of this study was to further investigate the potentiating effect of ZRBA1 in combination with radiation and to elucidate the possible mechanisms of interaction between these 2 treatment modalities. Methods and Materials: The triple negative human breast MDA-MB-468 cancer cell line and mouse mammary cancer 4T1 cell line were used in this study. Clonogenic assay, Western blot analysis, and DNA damage analysis were performed at multiple time points after treatment. To confirm our in vitro findings, in vivo tumor growth delay assay was performed. Results: Our results show that a combination of ZRBA1 and radiation increases the radiation sensitivity of both cell lines significantly with a dose enhancement factor of 1.56, induces significant numbers of DNA strand breaks, prolongs higher DNA damage up to 24 hours after treatment, and significantly increases tumor growth delay in a syngeneic mouse model. Conclusions: Our data suggest that the higher efficacy of this combination could be partially due to increased DNA damage and delayed DNA repair process and to the inhibition of EGFR. The encouraging results of this combination demonstrated a significant improvement in treatment efficiency and therefore could be applicable in early clinical trial settings.

  5. Theoretical study of stability and charge-transport properties of coronene molecule and some of its halogenated derivatives: A path to ambipolar organic-based materials?

    SciTech Connect

    Sancho-García, J. C. Pérez-Jiménez, A. J.

    2014-10-07

    We have carefully investigated the structural and electronic properties of coronene and some of its fluorinated and chlorinated derivatives, including full periphery substitution, as well as the preferred orientation of the non-covalent dimer structures subsequently formed. We have paid particular attention to a set of methodological details, to first obtain single-molecule magnitudes as accurately as possible, including next the use of modern dispersion-corrected methods to tackle the corresponding non-covalently bound dimers. Generally speaking, this class of compounds is expected to self-assembly in neighboring π-stacks with dimer stabilization energies ranging from –20 to –30 kcal mol{sup −1} at close distances around 3.0–3.3 Å. Then, in a further step, we have also calculated hole and electron transfer rates of some suitable candidates for ambipolar materials, and corresponding charge mobility values, which are known to critically depend on the supramolecular organization of the samples. For coronene and per-fluorinated coronene, we have found high values for their hopping rates, although slightly smaller for the latter due to an increase (decrease) of the reorganization energies (electronic couplings)

  6. Theoretical study of stability and charge-transport properties of coronene molecule and some of its halogenated derivatives: a path to ambipolar organic-based materials?

    PubMed

    Sancho-García, J C; Pérez-Jiménez, A J

    2014-10-01

    We have carefully investigated the structural and electronic properties of coronene and some of its fluorinated and chlorinated derivatives, including full periphery substitution, as well as the preferred orientation of the non-covalent dimer structures subsequently formed. We have paid particular attention to a set of methodological details, to first obtain single-molecule magnitudes as accurately as possible, including next the use of modern dispersion-corrected methods to tackle the corresponding non-covalently bound dimers. Generally speaking, this class of compounds is expected to self-assembly in neighboring π-stacks with dimer stabilization energies ranging from -20 to -30 kcal mol(-1) at close distances around 3.0-3.3 Å. Then, in a further step, we have also calculated hole and electron transfer rates of some suitable candidates for ambipolar materials, and corresponding charge mobility values, which are known to critically depend on the supramolecular organization of the samples. For coronene and per-fluorinated coronene, we have found high values for their hopping rates, although slightly smaller for the latter due to an increase (decrease) of the reorganization energies (electronic couplings). PMID:25296829

  7. Conserved Negative Charges in the N-terminal Tetramerization Domain Mediate Efficient Assembly of Kv2.1 and Kv2.1/Kv6.4 Channels*

    PubMed Central

    Bocksteins, Elke; Labro, Alain J.; Mayeur, Evy; Bruyns, Tine; Timmermans, Jean-Pierre; Adriaensen, Dirk; Snyders, Dirk J.

    2009-01-01

    Voltage-gated potassium (Kv) channels are transmembrane tetramers of individual α-subunits. Eight different Shaker-related Kv subfamilies have been identified in which the tetramerization domain T1, located on the intracellular N terminus, facilitates and controls the assembly of both homo- and heterotetrameric channels. Only the Kv2 α-subunits are able to form heterotetramers with members of the silent Kv subfamilies (Kv5, Kv6, Kv8, and Kv9). The T1 domain contains two subdomains, A and B box, which presumably determine subfamily specificity by preventing incompatible subunits to assemble. In contrast, little is known about the involvement of the A/B linker sequence. Both Kv2 and silent Kv subfamilies contain a fully conserved and negatively charged sequence (CDD) in this linker that is lacking in the other subfamilies. Neutralizing these aspartates in Kv2.1 by mutating them to alanines did not affect the gating properties, but reduced the current density moderately. However, charge reversal arginine substitutions strongly reduced the current density of these homotetrameric mutant Kv2.1 channels and immunocytochemistry confirmed the reduced expression at the plasma membrane. Förster resonance energy transfer measurements using confocal microscopy showed that the latter was not due to impaired trafficking, but to a failure to assemble the tetramer. This was further confirmed with co-immunoprecipitation experiments. The corresponding arginine substitution in Kv6.4 prevented its heterotetrameric interaction with Kv2.1. These results indicate that these aspartates (especially the first one) in the A/B box linker of the T1 domain are required for efficient assembly of both homotetrameric Kv2.1 and heterotetrameric Kv2.1/silent Kv6.4 channels. PMID:19717558

  8. Negatively charged Ir(iii) cyclometalated complexes containing a chelating bis-tetrazolato ligand: synthesis, photophysics and the study of reactivity with electrophiles.

    PubMed

    Fiorini, Valentina; Zacchini, Stefano; Raiteri, Paolo; Mazzoni, Rita; Zanotti, Valerio; Massi, Massimiliano; Stagni, Stefano

    2016-08-01

    The bis-tetrazolate dianion [1,2 BTB](2-), which is the deprotonated form of 1,2 bis-(1H-tetrazol-5-yl)benzene [1,2-H2BTB], is for the first time exploited as an ancillary N^N ligand for negatively charged [Ir(C^N)2(N^N)](-)-type complexes, where C^N is represented by cyclometalated 2-phenylpyridine (ppy) or 2-(2,4-difluorophenyl)pyridine (F2ppy). The new Ir(iii) complexes [Ir(ppy)2(1,2 BTB)]- and [Ir(F2ppy)2(1,2 BTB)]- have been fully characterised and the analysis of the X-ray structure of [Ir(ppy)2(1,2 BTB)]- confirmed the coordination of the [1,2 BTB](2-) dianion in a bis chelated fashion through the N-atoms adjacent to each of the tetrazolic carbons. Both of the new anionic Ir(iii) complexes displayed phosphorescence in the visible region, with intense sky-blue (λmax = 460-490 nm) or aqua (λmax = 490-520 nm) emissions originating from [Ir(F2ppy)2(1,2 BTB)]- and [Ir(ppy)2(1,2 BTB)]-, respectively. In comparison with our very recent examples of anionic Ir(iii)tetrazolate cyclometalates, the new Ir(iii) tris chelate complexes [Ir(F2ppy)2(1,2 BTB)]- and [Ir(ppy)2(1,2 BTB)]-, display an improved robustness, allowing the study of their reactivity toward the addition of electrophiles such as H(+) and CH3(+). In all cases, the electrophilic attacks occurred at the coordinated tetrazolate rings, involving the reversible - by a protonation deprotonation mechanism - or permanent - upon addition of a methyl moiety - switching of their global net charge from negative to positive and, in particular, the concomitant variation of their photoluminescence output. The combination of the anionic complexes [Ir(F2ppy)2(1,2 BTB)]- or [Ir(ppy)2(1,2 BTB)]- with a deep red emitting (λmax = 686 nm) cationic Ir(iii) tetrazole complex such as [IrTPYZ-Me]+, where TPYZ-Me is 2-(2-methyl-2H-tetrazol-5-yl)pyrazine, gave rise to two fully Ir(iii)-based soft salts capable of displaying additive and O2-sensitive emission colours, with an almost pure white light obtained by the appropriate

  9. Extraction of negative charges from an ion source: Transition from an electron repelling to an electron attracting plasma close to the extraction surface

    NASA Astrophysics Data System (ADS)

    Wimmer, Christian; Fantz, Ursel

    2016-08-01

    Large-scale sources for negative hydrogen ions, capable of delivering an extracted ion current of several ten amperes, are a key component of the neutral beam injection system of the upcoming ITER fusion device. Since the created heat load of the inevitably co-extracted electrons after magnetic separation from the extracted beam limits their tolerable amount, special care must be taken for the reduction of co-extracted electrons—in particular, in deuterium operation, where the larger amount of co-extracted electrons often limits the source performance. By biasing the plasma grid (PG, first grid of the extraction system) positively with respect to the source body, the plasma sheath in front of the PG can be changed from an electron repelling towards an electron attracting sheath. In this way, the flux of charged particles onto the PG can be varied, thus changing the bias current and inverse to it the amount of co-extracted electrons. The PG bias affects also the flux of surface-produced H - towards the plasma volume as well as the plasma symmetry in front of the plasma grid, strongly influenced by an E → × B → drift. The influence of varying PG sheath potential profile on the plasma drift, the negative hydrogen ion density, and the source performance at the prototype H - source is presented, comparing hydrogen and deuterium operation. The transition in the PG sheath profile takes place in both isotopes, with a minimum of co-extracted electrons formed in case of the electron attracting PG sheath. The co-extracted electron density in deuterium operation is higher than in hydrogen operation, which is accompanied by an increased plasma density in deuterium.

  10. Crossing behavior of the singlet and triplet State of the negatively charged magneto-exciton in a GaAs/AlGaAs quantum well

    SciTech Connect

    MUNTEANU,F.M.; KIM,YONGMIN; PERRY,C.H.; RICKEL,D.G.; SIMMONS,JERRY A.; RENO,JOHN L.

    2000-01-27

    Polarized magneto-photoluminescence (MPL) measurements on a high mobility {delta}-doped GaAs/AlGaAs single quantum well from 0--60 T at temperatures between 0.37--2.1 K are reported. In addition to the neutral heavy hole magneto-exciton (X{sup 0}), the singlet (X {sub s}{sup {minus}}) and triplet (X {sub t}{sup {minus}}) states of the negatively charged magneto-exciton are observed in both polarizations. The energy dispersive and time-resolved MPL data suggest that their development is fundamentally related to the formation of the neutral magneto-exciton. At a magnetic field of 40 T the singlet and the triplet states cross as a result of the role played by the higher Landau levels and higher energy subbands in their energetic evolution, confirming theoretical predictions. The authors also observed the formation of two higher energy peaks. One of them is completely right circularly polarized and its appearance can be considered a result of the electron-hole exchange interaction enhancement with an associated electron g-factor of 3.7 times the bulk value. The other peak completely dominates the MPL spectrum at fields around 30 T. Its behavior with magnetic field and temperature indicates that it may be related to previous anomalies observed in the integer and fractional quantum Hall regimes.

  11. Disinfection of Escherichia coli Gram negative bacteria using surface modified TiO2: optimization of Ag metallization and depiction of charge transfer mechanism.

    PubMed

    Gomathi Devi, LakshmipathiNaik; Nagaraj, Basavalingaiah

    2014-01-01

    The antibacterial activity of silver deposited TiO2 (Ag-TiO2 ) against Gram negative Escherichia coli bacteria was investigated by varying the Ag metal content from 0.10 to 0.50% on the surface of TiO2 . Ag depositions by the photoreduction method were found to be stable. Surface silver metallization was confirmed by EDAX and XPS studies. Photoluminescence studies show that the charge carrier recombination is less for 0.1% Ag-TiO2 and this catalyst shows superior bactericidal activity under solar light irradiation compared to Sol gel TiO2 (SG-TiO2 ) due to the surface plasmon effect. The energy levels of deposited Ag are dependent on the Ag content and it varies from -4.64 eV to -1.30 eV with respect to the vacuum energy level based on atomic silver to bulk silver deposits. The ability of electron transfer from Ag deposit to O2 depends on the position of the energy levels. The 0.25% and 0.50% Ag depositions showed detrimental effect on bactericidal activity due to the mismatch of energy levels. The effect of the EROS (External generation of the Reactive Oxygen Species by 0.1% Ag-TiO2 ) and IROS (Interior generation of Reactive Oxygen Species within the bacteria) on the bactericidal inactivation is discussed in detail. PMID:24995499

  12. Recovery rate of multiple enteric viruses artificially seeded in water and concentrated by adsorption-elution with negatively charged membranes: interaction and interference between different virus species.

    PubMed

    Vecchia, Andréia Dalla; Rigotto, Caroline; Soliman, Mayra Cristina; Souza, Fernanda Gil de; Giehl, Isabel Cristina; Spilki, Fernando Rosado

    2015-01-01

    Viral concentration method by adsorption-elution with negative membranes has been widely employed for concentrating viruses from environmental samples. In order to provide an adequate assessment of its recovery efficiency, this study was conducted to assess viral recovery rates for viral species commonly found in water (HAdV-5, EV, RV, BAdV and CAV-2), quantifying viral genomes at the end of the five different steps of the process. Recovery rates were analyzed for several viruses combined in a single water sample and for each virus assayed separately. Ultrapure water samples were artificially contaminated and analyzed by real-time quantitative polymerase chain reaction (qPCR). High recovery rates were found after the final stage when assessed individually (89 to 125%) and combined in the same sample (23 to > 164%). HAdV-5 exhibited >100% recovery when assayed with human viruses and other AdVs, whereas BAdV and CAV-2 were not detected. These data suggest that recovery efficiency could be related to viral structural characteristics, their electric charges and other interactions, so that they are retained with greater or lesser efficiency when coupled. This protocol could be applied to environmental samples, since high recovery rates were observed and infectious viruses were detected at the end of the concentration process. PMID:26676018

  13. Measurement of negatively charged pion spectra in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Busygina, O.; Christakoglou, P.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Diakonos, F.; Luise, S. Di; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Feofilov, G. A.; Fodor, Z.; Fulop, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hierholzer, M.; Idczak, R.; Igolkin, S.; Ivashkin, A.; Joković, D.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kiełczewska, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Kovesarki, P.; Kowalski, S.; Krasnoperov, A.; Kurepin, A.; Larsen, D.; László, A.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A. I.; Manić, D.; Marcinek, A.; Marin, V.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Mrówczyński, St.; Murphy, S.; Nakadaira, T.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A. D.; Paul, T.; Pistillo, C.; Peryt, W.; Petukhov, O.; Płaneta, R.; Pluta, J.; Popov, B. A.; Posiadała, M.; Puławski, S.; Puzović, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczyński, M.; Sadovsky, A.; Sakashita, K.; Savić, M.; Schmidt, K.; Sekiguchi, T.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Sipos, R.; Skrzypczak, E.; Słodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberič, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszyński, O.; Zambelli, L.; Zipper, W.

    2014-03-01

    We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/ c ( 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively). The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN super proton synchrotron. Two-dimensional spectra are determined in terms of rapidity and transverse momentum. Their properties such as the width of rapidity distributions and the inverse slope parameter of transverse mass spectra are extracted and their collision energy dependences are presented. The results on inelastic p+p interactions are compared with the corresponding data on central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. The results presented in this paper are part of the NA61/SHINE ion program devoted to the study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. They are required for interpretation of results on nucleus-nucleus and proton-nucleus collisions.

  14. Atmospheric reactions on electrically charged surfaces.

    PubMed

    Phillips, Leon F

    2013-07-14

    It is proposed that tropospheric NO2 at concentrations in the parts-per-billion range can be efficiently converted to HONO in a dust storm, by a process that is initiated by electron capture by NO2 from a negatively-charged dust particle. The electron capture is visualized as a harpoon-type process that does not require the NO2 to be adsorbed on the particle. The resulting electronically excited [NO2(-)]* ion reacts with water to form an HONO molecule plus an OH(-)·(H2O)n cluster ion. It is suggested that analogous processes can occur on other atmospheric aerosol particles with both positive and negative charges, with other molecules of high electron affinity such as SO2, and also, because the earth's surface is effectively the negative plate of a planet-sized capacitor, at the surfaces of terrestrial solids, lakes and oceans. PMID:23689618

  15. Nepsilon-(3-[*I]Iodobenzoyl)-Lys5-Nalpha-maleimido-Gly1-GEEEK ([*I]IB-Mal-D-GEEEK): a radioiodinated prosthetic group containing negatively charged D-glutamates for labeling internalizing monoclonal antibodies.

    PubMed

    Vaidyanathan, Ganesan; Alston, Kevin L; Bigner, Darrel D; Zalutsky, Michael R

    2006-01-01

    Novel methods are needed for the radiohalogenation of cell-internalizing proteins and peptides because rapid loss of label occurs after lysosomal processing when these molecules are labeled using conventional radioiodination methodologies. We have developed a radiolabeled prosthetic group that contains multiple negatively charged D-amino acids to facilitate trapping of the radioactivity in the cell after proteolysis of the labeled protein. N(epsilon)-(3-[(125)I]iodobenzoyl)-Lys(5)-N(alpha)-maleimido-Gly(1)-GEEEK ([(125)I]IB-Mal-D-GEEEK) was synthesized via iododestannylation in 90.3 +/- 3.9% radiochemical yields. This radioiodinated agent was conjugated to iminothiolane-treated L8A4, an anti-epidermal growth factor receptor variant III (EGFRvIII) specific monoclonal antibody (mAb) in 54.3 +/- 17.7% conjugation yields. In vitro assays with the EGFRvIII-expressing U87MGDeltaEGFR glioma cell line demonstrated that the internalized radioactivity for the [(125)I]IB-Mal-D-GEEEK-L8A4 conjugate increased from 14.1% at 1 h to 44.7% at 24 h and was about 15-fold higher than that of directly radioiodinated L8A4 at 24 h. A commensurately increased tumor uptake in vivo in athymic mice bearing subcutaneous U87MGDeltaEGFR xenografts (52.6 +/- 14.3% injected dose per gram versus 17.4 +/- 3.5% ID/g at 72 h) also was observed. These results suggest that [(125)I]IB-Mal-d-GEEEK is a promising reagent for the radioiodination of internalizing mAbs. PMID:16848419

  16. Acanthamoeba myosin IC colocalizes with phosphatidylinositol 4,5-bisphosphate at the plasma membrane due to the high concentration of negative charge.

    PubMed

    Brzeska, Hanna; Hwang, Kae-Jung; Korn, Edward D

    2008-11-14

    The tail of Acanthamoeba myosin IC (AMIC) has a basic region (BR), which contains a putative pleckstrin homology (PH) domain, followed by two Gly/Pro/Ala (GPA)-rich regions separated by a Src homology 3 (SH3) domain. Cryoelectron microscopy had shown that the tail is folded back on itself at the junction of BR and GPA1, and nuclear magnetic resonance spectroscopy indicated that the SH3 domain may interact with the putative PH domain. The BR binds to acidic phospholipids, and the GPA region binds to F-actin. We now show that the folded tail does not affect the affinity of AMIC for acidic phospholipids. AMIC binds phosphatidylinositol 4,5-bisphosphate (PIP2) with high affinity (approximately 1 microm), but binding is not stereospecific. When normalized to net negative charge, AMIC binds with equal affinity to phosphatidylserine (PS) and PIP2. This and other data show that the putative PH domain of AMIC is not a typical PIP2-specific PH domain. We have identified a 13-residue sequence of basic-hydrophobic-basic amino acids within the putative PH domain that may be a major determinant of binding of AMIC to acidic phospholipids. Despite the lack of stereospecificity, AMIC binds 10 times more strongly to vesicles containing 5% PIP2 plus 25% PS than to vesicles containing only 25% PS, suggesting that AMIC may be targeted to PIP2-enriched regions of the plasma membrane. In agreement with this, AMIC colocalizes with PIP2 at dynamic, protrusive regions of the plasma membrane. We discuss the possibility that AMIC binding to PIP2 may initiate the formation of a multiprotein complex at the plasma membrane.

  17. Negatively Charged Amino Acids Near and in Transient Receptor Potential (TRP) Domain of TRPM4 Channel Are One Determinant of Its Ca2+ Sensitivity*

    PubMed Central

    Yamaguchi, Soichiro; Tanimoto, Akira; Otsuguro, Ken-ichi; Hibino, Hiroshi; Ito, Shigeo

    2014-01-01

    Transient receptor potential (TRP) channel melastatin subfamily member 4 (TRPM4) is a broadly expressed nonselective monovalent cation channel. TRPM4 is activated by membrane depolarization and intracellular Ca2+, which is essential for the activation. The Ca2+ sensitivity is known to be regulated by calmodulin and membrane phosphoinositides, such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Although these regulators must play important roles in controlling TRPM4 activity, mutation analyses of the calmodulin-binding sites have suggested that Ca2+ binds to TRPM4 directly. However, the intrinsic binding sites in TRPM4 remain to be elucidated. Here, by using patch clamp and molecular biological techniques, we show that there are at least two functionally different divalent cation-binding sites, and the negatively charged amino acids near and in the TRP domain in the C-terminal tail of TRPM4 (Asp-1049 and Glu-1062 of rat TRPM4) are required for maintaining the normal Ca2+ sensitivity of one of the binding sites. Applications of Co2+, Mn2+, or Ni2+ to the cytosolic side potentiated TRPM4 currents, increased the Ca2+ sensitivity, but were unable to evoke TRPM4 currents without Ca2+. Mutations of the acidic amino acids near and in the TRP domain, which are conserved in TRPM2, TRPM5, and TRPM8, deteriorated the Ca2+ sensitivity in the presence of Co2+ or PI(4,5)P2 but hardly affected the sensitivity to Co2+ and PI(4,5)P2. These results suggest a novel role of the TRP domain in TRPM4 as a site responsible for maintaining the normal Ca2+ sensitivity. These findings provide more insights into the molecular mechanisms of the regulation of TRPM4 by Ca2+. PMID:25378404

  18. Generation of nano-scaled DNA patterns through electro-beam induced charge trapping

    NASA Astrophysics Data System (ADS)

    Chi, Pei-Yin; Lin, Hung-Yi; Liu, Cheng-Hsien; Chen, Chii-Dong

    2006-10-01

    In this study, distinct regions of trapped charges on glass substrates created by electron beam bombardment were utilized to attract and to immobilize DNA molecules. The negatively charged DNA molecules were attracted by the positive charge layer beneath the substrate surface resulting from escape of secondary electrons. With this mechanism, we demonstrated high-precision patterning of unmodified DNA molecules, independent of the length, sequence, and number of DNA strands, and with an attachment to the glass surface strong enough to withstand vigorous washing with water. DNA patterns with the line width of 50 nm were achieved.

  19. High brilliance negative ion and neutral beam source

    DOEpatents

    Compton, Robert N.

    1991-01-01

    A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.

  20. Controlling the orbital sequence in individual Cu-phthalocyanine molecules.

    PubMed

    Uhlmann, C; Swart, I; Repp, J

    2013-02-13

    We report on the controlled change of the energetic ordering of molecular orbitals. Negatively charged copper(II)phthalocyanine on NaCl/Cu(100) undergoes a Jahn-Teller distortion that lifts the degeneracy of two frontier orbitals. The energetic order of the levels can be controlled by Au and Ag atoms in the vicinity of the molecule. As only one of the states is occupied, the control of the energetic order is accompanied by bistable changes of the charge distribution inside the molecule, rendering it a bistable switch.

  1. Nonlinear Optical Properties of X(C6H5)4 (X = B(-), C, N(+), P(+)): A New Class of Molecules with a Negative Third-Order Polarizability.

    PubMed

    Gieseking, Rebecca L; Ensley, Trenton R; Hu, Honghua; Hagan, David J; Risko, Chad; Van Stryland, Eric W; Brédas, Jean-Luc

    2015-08-01

    Organic π-conjugated materials have been widely used for a variety of nonlinear optical (NLO) applications. Molecules with negative real components Re(γ) of the third-order polarizability, which leads to nonlinear refraction in macroscopic systems, have important benefits for several NLO applications. However, few organic systems studied to date have negative Re(γ) in the long wavelength limit, and all inorganic materials show positive nonlinear refraction in this limit. Here, we introduce a new class of molecules of the form X(C6H5)4, where X = B(-), C, N(+), and P(+), that have negative Re(γ). The molecular mechanism for the NLO properties in these systems is very different from those in typical linear conjugated systems: These systems have a band of excited states involving single-electron excitations within the π-system, several of which have significant coupling to the ground state. Thus, Re(γ) cannot be understood in terms of a simplified essential-state model and must be analyzed in the context of the full sum-over-states expression. Although Re(γ) is significantly smaller than that of other commonly studied NLO chromophores, the introduction of a new molecular architecture offering the potential for a negative Re(γ) introduces new avenues of molecular design for NLO applications.

  2. Influence of turn (or fold) and local charge in fragmentation of the peptide analogue molecule CH3CO-Gly-NH2 following single-photon VUV (118.22 nm) ionization.

    PubMed

    Bhattacharya, Atanu; Bernstein, Elliot R

    2011-10-01

    The radical cationic reactivity of the peptide analogue molecule CH(3)CO-Gly-NH(2) is addressed both experimentally and theoretically. The radical cation intermediate of CH(3)CO-Gly-NH(2) is created by single-photon ionization of this molecule at 118.22 nm (~10.5 eV). The two most stable conformers (C(7) and C(5)) of this molecule exhibit different folds along the backbone: the C(7) conformer has a γ-turn structure, and the C(5) conformer has a β-strand structure. The experimental results show that the radical cation intermediate of CH(3)CO-Gly-NH(2) dissociates and generates a fragment-ion signal at 73 amu that is observed through TOFMS. Theoretical results show how the fragment-ion signal at 73 amu is generated by only one conformer of CH(3)CO-Gly-NH(2) (C(7)) and how local charge and specific hydrogen bonding in the molecule influence fragmentation of the radical cation intermediate of CH(3)CO-Gly-NH(2). The specific fold of the molecule controls fragmentation of this reactive radical cation intermediate. Whereas the radical cation of the C(7) conformer dissociates through a hydrogen-transfer mechanism followed by HNCO elimination, the radical cation of the C(5) conformer does not dissociate at all. CASSCF calculations show that positive charge in the radical cationic C(7) conformer is localized at the NH(2)CO moiety of the molecular ion. This site-specific localization of the positive charge enhances the acidity of the terminal NH(2) group, facilitating hydrogen transfer from the NH(2) to the COCH(3) end of the molecular ion. Positive charge in the C(5) conformer of the CH(3)CO-Gly-NH(2) radical cation is, however, localized at the COCH(3) end of the molecular ion, and this conformer does not have enough energy to surmount the energy barrier to dissociation on the ion potential energy surface. CASSCF results show that conformation-specific localization of charge in the CH(3)CO-Gly-NH(2) molecular ion occurs as a result of the different hydrogen

  3. Correlation-induced DNA adsorption on like-charged membranes

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Blossey, Ralf

    2016-10-01

    The adsorption of DNA or other polyelectrolyte molecules on charged membranes is a recurrent motif in soft matter and bionanotechnological systems. Two typical situations encountered are the deposition of single DNA chains onto substrates for further analysis, e.g., by force microscopy, or the pulling of polyelectrolytes into membrane nanopores, as in sequencing applications. In this paper, we present a theoretical analysis of such scenarios based on the self-consistent field theory approach, which allows us to address the important effect of charge correlations. We calculate the grand potential of a stiff polyelectrolyte immersed in an electrolyte in contact with a negatively charged dielectric membrane. For the sake of conciseness, we neglect conformational polymer fluctuations and model the molecule as a rigid charged line. At strongly charged membranes, the adsorbed counterions enhance the screening ability of the interfacial region. In the presence of highly charged polymers such as double-stranded DNA molecules close to the membrane, this enhanced interfacial screening dominates the mean-field level DNA-membrane repulsion and results in the adsorption of the DNA molecule to the surface. This picture provides a simple explanation for the recently observed DNA binding onto similarly charged substrates [G. L.-Caballero et al., Soft Matter 10, 2805 (2014), 10.1039/c3sm52428k] and points out charge correlations as a non-negligible ingredient of polymer-surface interactions.

  4. Effect of the degree of dissociation of molecules in a monolayer at an air/water interface on the force between the monolayer and a like-charged particle in the subphase.

    PubMed

    McNamee, Cathy E; Kappl, Michael; Butt, Hans-Juergen; Nguyen, Hang; Sato, Shinichiro; Graf, Karlheinz; Healy, Thomas W

    2012-11-26

    We used the monolayer particle interaction apparatus to measure the force between a monolayer of stearic acid or octadecanol at the air/water interface and a colloidal silica sphere. The silica sphere approached the monolayer from the aqueous subphase. The aim was to analyze how the magnitude of the charge of a deformable interface affects the interaction between that interface and a like-charged hard particle. The charge density of the stearic acid monolayer was controlled by adjusting the pH (5.8-9) and the surface pressure. The octadecanol monolayer acted as a reference; the alcohol headgroup did not dissociate between pH 5.8-9.0. Stable monolayers of dissociated stearic acid molecules were formed at the air/water interface by dissolving stearic acid into the subphase to give a saturated concentration at each pH value studied. The approach force curve showed that the electrostatic repulsion increased with an increasing degree of dissociation and therefore the charge of the monolayer. The strength of the repulsion corresponded to that measured between two like-charged hard surfaces, but the apparent range of the repulsion was larger for a deformable interface. Retracting force curves displayed a significant adhesion, whose magnitude and range depended on the surface pressure and subphase pH.

  5. How accessible is atomic charge information from infrared intensities? A QTAIM/CCFDF interpretation.

    PubMed

    Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Faria, Sergio H D M; Bruns, Roy E

    2012-08-01

    Infrared fundamental intensities calculated by the quantum theory of atoms in molecules/charge-charge flux-dipole flux (QTAIM/CCFDF) method have been partitioned into charge, charge flux, and dipole flux contributions as well as their charge-charge flux, charge-dipole flux, and charge flux-dipole flux interaction contributions. The interaction contributions can be positive or negative and do not depend on molecular orientations in coordinate systems or normal coordinate phase definitions, as do CCFDF dipole moment derivative contributions. If interactions are positive, their corresponding dipole moment derivative contributions have the same polarity reinforcing the total intensity estimates whereas negative contributions indicate opposite polarities and lower CCFDF intensities. Intensity partitioning is carried out for the normal coordinates of acetylene, ethylene, ethane, all the chlorofluoromethanes, the X(2)CY (X = F, Cl; Y = O, S) molecules, the difluoro- and dichloroethylenes and BF(3). QTAIM/CCFDF calculated intensities with optimized quantum levels agree within 11.3 km mol(-1) of the experimental values. The CH stretching and in-plane bending vibrations are characterized by significant charge flux, dipole flux, and charge flux-dipole flux interaction contributions with the negative interaction tending to cancel the individual contributions resulting in vary small intensity values. CF stretching and bending vibrations have large charge, charge-charge flux, and charge-dipole flux contributions for which the two interaction contributions tend to cancel one another. The experimental CF stretching intensities can be estimated to within 31.7 km mol(-1) or 16.3% by a sum of these three contributions. However, the charge contribution alone is not successful at quantitatively estimating these CF intensities. Although the CCl stretching vibrations have significant charge-charge flux and charge-dipole flux contributions, like those of the CF stretches, both of these

  6. Proposal for high-speed and high-fidelity electron-spin initialization in a negatively charged quantum dot coupled to a microcavity in a weak external magnetic field

    SciTech Connect

    Majumdar, Arka; Lin Ziliang; Faraon, Andrei; Vuckovic, Jelena

    2010-08-15

    We describe a proposal for fast electron-spin initialization in a negatively charged quantum dot coupled to a microcavity without the need for a strong magnetic field. We employ two-photon excitation to access trion states that are spin forbidden by one-photon excitation. Our simulation shows a maximum initialization speed of 1.3 GHz and maximum fidelity of 99.7% with realistic system parameters.

  7. Phase behavior of mixtures of oppositely charged protein nanoparticles at asymmetric charge ratios

    NASA Astrophysics Data System (ADS)

    Maarten Biesheuvel, P.; Lindhoud, Saskia; Cohen Stuart, Martien A.; de Vries, Renko

    2006-04-01

    We present experimental and theoretical results for the phase behavior of mixtures of oppositely charged globular protein molecules in aqueous solutions containing monovalent salt. These colloidal mixtures are interesting model systems, on the one hand for electrolyte solutions (“colloidal ionic liquids”), and on the other for mixtures of oppositely charged (bio)macromolecules, colloids, micelles, etc., with the range of the electrostatic interactions (Debye length) easily tunable from much smaller to much larger than the particle size, simply by adding different amounts of monovalent salt. In this paper we investigate the phase behavior of such mixtures in the case that equally sized colloids have a large difference in charge magnitude. This is possible at any mixing ratio because small ions compensate any colloidal charge asymmetry. Our experimental system is based on lysozyme, a positively charged “hard” globular protein molecule, and succinylated lysozyme, a chemical modification of lysozyme which is negatively charged. By changing the solution pH we can adjust the ratio of charge between the two molecules. To describe phase separation into a dilute phase and a dense “complex” phase, a thermodynamic model is set up in which we combine the Carnahan-Starling-van der Waals equation of state with a heterogeneous Poisson-Boltzmann cell model and include the possibility that protein molecules adjust their charge when they move from one phase to the other (charge regulation). The theory uses the nonelectrostatic attraction strength as the only adjustable parameter and reasonably well reproduces the data in that complexation is only possible at intermediate pH , not too asymmetric mixing ratios, and low enough ionic strength and temperature.

  8. CuFe2O4 magnetic nanocrystal clusters as a matrix for the analysis of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Lin, Zian; Zheng, Jiangnan; Bian, Wei; Cai, Zongwei

    2015-08-01

    CuFe2O4 magnetic nanocrystal clusters (CuFe2O4 MNCs) were proposed as a new matrix for small molecule analysis by negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the first time. We demonstrated its advantages over conventional organic matrices in the detection of small molecules such as amino acids, peptides, nucleobases, fatty acids, and steroid hormones. A systematic comparison of CuFe2O4 MNCs with different ionization modes revealed that MS spectra obtained for the CuFe2O4 MNC matrix in the negative ion mode was only featured by deprotonated ion peaks with a free matrix background, which was different from the complicated alkali metal adducts produced in the positive ion mode. The developed method was found relatively tolerant to salt contamination and exhibited good reproducibility. A detection limit down to the subpicomolar level was achieved when testosterone was analyzed. In addition, by comparison of the MS spectra obtained from bare Fe3O4 and MFe2O4 MNC (M = Co, Ni, Cu, Zn) matrices, two main factors of MFe2O4 MNC matrices were revealed to play a vital role in assisting the negative ion desorption/ionization (D/I) process: doping transition metals into ferrite nanocrystals favoring laser absorption and energy transfer and a good match between the UV absorption of MFe2O4 MNCs and the excitation of nitrogen laser source facilitating LDI efficiency. This work creates a new branch of application for MFe2O4 MNCs and provides an alternative solution for small molecule analysis. PMID:26086699

  9. Fragmentation of multiply charged hydrocarbon molecules C{sub n}H{sup q+} (n{<=} 4, q{<=} 9) produced in high-velocity collisions: Branching ratios and kinetic energy release of the H{sup +} fragment

    SciTech Connect

    Beroff, K.; Pino, T.; Carpentier, Y.; Van-Oanh, N. T.; Chabot, M.; Tuna, T.; Martinet, G.; Le Padellec, A.; Lavergne, L.

    2011-09-15

    Fragmentation branching ratios for channels involving H{sup +} emission and associated kinetic energy release of the H{sup +} fragment [KER(H{sup +})] have been measured for multicharged C{sub n}H{sup q+} molecules produced in high velocity (3.6 a.u.) collisions between C{sub n}H{sup +} projectiles and helium atoms. For CH{sup q+} (q{<=} 4) molecules, measured KER(H{sup +}) were found well below predictions of the simple point charge Coulomb model (PCCM) for all q values. Multireference configuration interaction (MRCI) calculations for ground as well as electronic excited states were performed which allowed a perfect interpretation of the CH{sup q+} experimental results for low charges (q = 2-3) as well as for the highest charge (q = 4). In this last case we could show, on the basis of ionization cross sections calculations and experimental measurements performed on the same systems at slightly higher velocity (4.5 a.u.), the prominent role played by inner-shell ionization followed by Auger relaxation and could extract the lifetime of this Auger relaxation giving rise to the best agreement between the experiment and the calculations. For dissociation of C{sub 2}H{sup q+} and C{sub 3}H{sup q+} with the highest charges (q{>=} 5), inner-shell ionization contributed in a prominent way to the ion production. In these two cases it was shown that measured KER(H{sup +}) were in good agreement with PCCM predictions when those were corrected for Auger relaxation with the same Auger lifetime value as in CH{sup 3+}.

  10. Molecular dissection of the contribution of negatively and positively charged residues in S2, S3, and S4 to the final membrane topology of the voltage sensor in the K+ channel, KAT1.

    PubMed

    Sato, Yoko; Sakaguchi, Masao; Goshima, Shinobu; Nakamura, Tatsunosuke; Uozumi, Nobuyuki

    2003-04-11

    Voltage-dependent ion channels control changes in ion permeability in response to membrane potential changes. The voltage sensor in channel proteins consists of the highly positively charged segment, S4, and the negatively charged segments, S2 and S3. The process involved in the integration of the protein into the membrane remains to be elucidated. In this study, we used in vitro translation and translocation experiments to evaluate interactions between residues in the voltage sensor of a hyperpolarization-activated potassium channel, KAT1, and their effect on the final topology in the endoplasmic reticulum (ER) membrane. A D95V mutation in S2 showed less S3-S4 integration into the membrane, whereas a D105V mutation allowed S4 to be released into the ER lumen. These results indicate that Asp(95) assists in the membrane insertion of S3-S4 and that Asp(105) helps in preventing S4 from being releasing into the ER lumen. The charge reversal mutation, R171D, in S4 rescued the D105R mutation and prevented S4 release into the ER lumen. A series of constructs containing different C-terminal truncations of S4 showed that Arg(174) was required for correct integration of S3 and S4 into the membrane. Interactions between Asp(105) and Arg(171) and between negative residues in S2 or S3 and Arg(174) may be formed transiently during membrane integration. These data clarify the role of charged residues in S2, S3, and S4 and identify posttranslational electrostatic interactions between charged residues that are required to achieve the correct voltage sensor topology in the ER membrane.

  11. Water permeation through a charged channel.

    PubMed

    Hao, Liang; Su, Jiaye; Guo, Hongxia

    2013-06-27

    Transport properties of water molecules through hydrophobic channels have been explored extensively in recent years; however, our knowledge about the transport properties of hydrophilic channels is still rather poor. Herein, we use molecular dynamics simulations to study the permeation of water molecules through a charged channel. For comparison, we first consider the pristine hydrophobic channel without charge, and we find an analytic expression that can predict the water flow through it. For uniformly charged channels, with the increase of charge density, the water flow decreases, due to the increase of roughness in the free energy profile experienced by a water molecule along the channel; while the ion flow exhibits a maximum, because of the competition between the increasing ion number and ion-channel attraction. Surprisingly, the water occupancy for positive and negative channels varies in the opposite direction, which is strongly related to the excluded volume effect of ions. Additionally, we also discuss the effect of surface charge patterns and channel sizes. These results not only enrich our understanding of the transport properties of hydrophilic channels, but also have deep implications for the design of nanometer water gates.

  12. The Orphan G Protein-coupled Receptor GPR17 Negatively Regulates Oligodendrocyte Differentiation via Gαi/o and Its Downstream Effector Molecules.

    PubMed

    Simon, Katharina; Hennen, Stephanie; Merten, Nicole; Blättermann, Stefanie; Gillard, Michel; Kostenis, Evi; Gomeza, Jesus

    2016-01-01

    Recent studies have recognized G protein-coupled receptors as important regulators of oligodendrocyte development. GPR17, in particular, is an orphan G protein-coupled receptor that has been identified as oligodendroglial maturation inhibitor because its stimulation arrests primary mouse oligodendrocytes at a less differentiated stage. However, the intracellular signaling effectors transducing its activation remain poorly understood. Here, we use Oli-neu cells, an immortalized cell line derived from primary murine oligodendrocytes, and primary rat oligodendrocyte cultures as model systems to identify molecular targets that link cell surface GPR17 to oligodendrocyte maturation blockade. We demonstrate that stimulation of GPR17 by the small molecule agonist MDL29,951 (2-carboxy-4,6-dichloro-1H-indole-3-propionic acid) decreases myelin basic protein expression levels mainly by triggering the Gαi/o signaling pathway, which in turn leads to reduced activity of the downstream cascade adenylyl cyclase-cAMP-PKA-cAMP response element-binding protein (CREB). In addition, we show that GPR17 activation also diminishes myelin basic protein abundance by lessening stimulation of the exchange protein directly activated by cAMP (EPAC), thus uncovering a previously unrecognized role for EPAC to regulate oligodendrocyte differentiation. Together, our data establish PKA and EPAC as key downstream effectors of GPR17 that inhibit oligodendrocyte maturation. We envisage that treatments augmenting PKA and/or EPAC activity represent a beneficial approach for therapeutic enhancement of remyelination in those demyelinating diseases where GPR17 is highly expressed, such as multiple sclerosis.

  13. Increased cellularity and expression of adhesion molecules in muscle biopsy specimens from patients with rheumatoid arthritis with clinical suspicion of vasculitis, but negative routine histology

    PubMed Central

    Verschueren, P.; Voskuyl, A.; Smeets, T; Zwinderman, K.; Breedveld, F.; Tak, P.

    2000-01-01

    OBJECTIVE—Histological analysis of random quadriceps muscle biopsy specimens can be used to detect vasculitis in patients with rheumatoid arthritis (RA). This study aimed at determining the immunohistological features in patients with clinical suspicion of rheumatoid vasculitis, but without a transmural infiltrate or fibrinoid necrosis of the vessel wall on routine histology.
METHODS—Three groups of patients with RA were studied: (a) without clinical signs of vasculitis (n=6); (b) with recent onset of extra-articular features and a clinical suspicion of vasculitis but normal routine histology (n=11); and (c) with recent onset of extra-articular features and vasculitis, histologically proved either in muscle or other biopsy specimens (n=14). A control group of patients with osteoarthritis was also included (n=5). Frozen sections from quadriceps muscle biopsy specimens were analysed with monoclonal antibodies to detect CD3, CD4, CD8, CD68, ICAM-1, VCAM-1, and HLA-DR. The slides were evaluated using a semiquantitative scoring system (0-4).
RESULTS—The mean scores gradually increased from group 1 to 3, leading to significant differences between groups 1 and 2, but not between groups 2 and 3 for most markers (p< 0.05). Thus the pathological changes were similar for the two groups with clinical signs of vasculitis, even when the conventional histological evaluation was negative. Higher immunohistological scores were associated with perivascular infiltrates on routine histology.
CONCLUSION—The pathophysiological events leading to vasculitis are reflected by the changes in the quadriceps muscle biopsy specimens. The data indicate that the sensitivity of examination of muscle biopsy specimens for the diagnosis of rheumatoid vasculitis can be increased by the use of new criteria.

 PMID:10913056

  14. Synthesis of an A-D-A type of molecule used as electron acceptor for improving charge transfer in organic solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chao-Zhi; Gu, Shu-Duo; Shen, Dan; Yuan, Yang; Zhang, Mingdao

    2016-08-01

    Electron-accepting molecules play an important role in developing organic solar cells. A new type of A-D-A molecule, 3,6-di([7-(5-bromothiophen-2-yl)-1,5,2,4,6,8-dithiotetrazocin-3-yl]thiophen-2-yl)-9-(2-ethylhexyl)carbazole, was synthesized. The lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels are -3.55 and -5.85 eV, respectively. Therefore, the A-D-A type of compound could be used as electron acceptor for fabricating organic solar cell with a high open circuit voltage. Gibbs free energy (-49.2 kJ/mol) reveals that the process of A-D-A acceptor accepting an electron from poly(3-hexylthiophene) at excited state is spontaneous. The value of entropy (118 J/mol) in the process of an electron transferring from P3HT to the A-D-A acceptor at organic interface suggests that electrons generated from separation of electron-hole pairs at donor/acceptor interface would be delocalized efficiently. Therefore, the A-D-A molecule would be a potential acceptor for efficient organic BHJ solar cells.

  15. Submolecular Resolution Imaging of Molecules by Atomic Force Microscopy: The Influence of the Electrostatic Force.

    PubMed

    van der Lit, Joost; Di Cicco, Francesca; Hapala, Prokop; Jelinek, Pavel; Swart, Ingmar

    2016-03-01

    The forces governing the contrast in submolecular resolution imaging of molecules with atomic force microscopy (AFM) have recently become a topic of intense debate. Here, we show that the electrostatic force is essential to understand the contrast in atomically resolved AFM images of polar molecules. Specifically, we image strongly polarized molecules with negatively and positively charged tips. A contrast inversion is observed above the polar groups. By taking into account the electrostatic forces between tip and molecule, the observed contrast differences can be reproduced using a molecular mechanics model. In addition, we analyze the height dependence of the various force components contributing to the high-resolution AFM contrast.

  16. Submolecular Resolution Imaging of Molecules by Atomic Force Microscopy: The Influence of the Electrostatic Force

    NASA Astrophysics Data System (ADS)

    van der Lit, Joost; Di Cicco, Francesca; Hapala, Prokop; Jelinek, Pavel; Swart, Ingmar

    2016-03-01

    The forces governing the contrast in submolecular resolution imaging of molecules with atomic force microscopy (AFM) have recently become a topic of intense debate. Here, we show that the electrostatic force is essential to understand the contrast in atomically resolved AFM images of polar molecules. Specifically, we image strongly polarized molecules with negatively and positively charged tips. A contrast inversion is observed above the polar groups. By taking into account the electrostatic forces between tip and molecule, the observed contrast differences can be reproduced using a molecular mechanics model. In addition, we analyze the height dependence of the various force components contributing to the high-resolution AFM contrast.

  17. An efficient computational scheme for electronic excitation spectra of molecules in solution using the symmetry-adapted cluster–configuration interaction method: The accuracy of excitation energies and intuitive charge-transfer indices

    SciTech Connect

    Fukuda, Ryoichi Ehara, Masahiro

    2014-10-21

    Solvent effects on electronic excitation spectra are considerable in many situations; therefore, we propose an efficient and reliable computational scheme that is based on the symmetry-adapted cluster-configuration interaction (SAC-CI) method and the polarizable continuum model (PCM) for describing electronic excitations in solution. The new scheme combines the recently proposed first-order PCM SAC-CI method with the PTE (perturbation theory at the energy level) PCM SAC scheme. This is essentially equivalent to the usual SAC and SAC-CI computations with using the PCM Hartree-Fock orbital and integrals, except for the additional correction terms that represent solute-solvent interactions. The test calculations demonstrate that the present method is a very good approximation of the more costly iterative PCM SAC-CI method for excitation energies of closed-shell molecules in their equilibrium geometry. This method provides very accurate values of electric dipole moments but is insufficient for describing the charge-transfer (CT) indices in polar solvent. The present method accurately reproduces the absorption spectra and their solvatochromism of push-pull type 2,2{sup ′}-bithiophene molecules. Significant solvent and substituent effects on these molecules are intuitively visualized using the CT indices. The present method is the simplest and theoretically consistent extension of SAC-CI method for including PCM environment, and therefore, it is useful for theoretical and computational spectroscopy.

  18. Solvation thermodynamics and heat capacity of polar and charged solutes in water.

    PubMed

    Sedlmeier, Felix; Netz, Roland R

    2013-03-21

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F(-) and a Na(+) ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na(+) and F(-) ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity ΔC(p) stays positive and even increases slightly upon charging the Na(+) ion, it decreases upon charging the F(-) ion and becomes negative beyond an ion charge of q = -0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  19. Solvation thermodynamics and heat capacity of polar and charged solutes in water

    SciTech Connect

    Sedlmeier, Felix; Netz, Roland R.

    2013-03-21

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F{sup -} and a Na{sup +} ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na{sup +} and F{sup -} ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity {Delta}C{sub p} stays positive and even increases slightly upon charging the Na{sup +} ion, it decreases upon charging the F{sup -} ion and becomes negative beyond an ion charge of q=-0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  20. Solvation thermodynamics and heat capacity of polar and charged solutes in water

    NASA Astrophysics Data System (ADS)

    Sedlmeier, Felix; Netz, Roland R.

    2013-03-01

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F- and a Na+ ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na+ and F- ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity ΔCp stays positive and even increases slightly upon charging the Na+ ion, it decreases upon charging the F- ion and becomes negative beyond an ion charge of q = -0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  1. Activation of a water molecule using a mononuclear Mn complex: from Mn-aquo, to Mn-hydroxo, to Mn-oxyl via charge compensation†

    PubMed Central

    Lassalle-Kaiser, Benedikt; Hureau, Christelle; Pantazis, Dimitrios A.; Pushkar, Yulia; Guillot, Régis; Yachandra, Vittal K.; Yano, Junko; Neese, Frank; Anxolabéhère-Mallart, Elodie

    2014-01-01

    Activation of a water molecule by the electrochemical oxidation of a Mn-aquo complex accompanied by the loss of protons is reported. The sequential (2 × 1 electron/1 proton) and direct (2 electron/2 proton) proton-coupled electrochemical oxidation of a non-porphyrinic six-coordinated Mn(II)OH2 complex into a mononuclear Mn(O) complex is described. The intermediate Mn(III)OH2 and Mn(III)OH complexes are electrochemically prepared and analysed. Complete deprotonation of the coordinated water molecule in the Mn(O) complex is confirmed by electrochemical data while the analysis of EXAFS data reveals a gradual shortening of an Mn–O bond upon oxidation from Mn(II)OH2 to Mn(III)OH and Mn(O). Reactivity experiments, DFT calculations and XANES pre-edge features provide strong evidence that the bonding in Mn(O) is best characterized by a Mn(III)-oxyl description. Such oxyl species could play a crucial role in natural and artificial water splitting reactions. We provide here a synthetic example for such species, obtained by electrochemical activation of a water ligand. PMID:24772190

  2. Doubly Excited Resonances in the Positronium Negative Ion

    NASA Technical Reports Server (NTRS)

    Ho, Y.K.

    2007-01-01

    The recent theoretical studies on the doubly excited states of the Ps' ion are described. The results obtained by using the method of complex coordinate rotation show that the three-lepton system behaves very much like an XYX tri-atomic molecule. Furthermore, the recent investigation on the positronium negative ion embedded in Debye plasma environments is discussed. The problem is modeled by the use of a screened Coulomb potential to represent the interaction between the charge particles.

  3. Partial Atomic Charges and Screened Charge Models of the Electrostatic Potential.

    PubMed

    Wang, Bo; Truhlar, Donald G

    2012-06-12

    We propose a new screened charge method for calculating partial atomic charges in molecules by electrostatic potential (ESP) fitting. The model, called full density screening (FDS), is used to approximate the screening effect of full charge densities of atoms in molecules. The results are compared to the conventional ESP fitting method based on point charges and to our previously proposed outer density screening (ODS) method, in which the parameters are reoptimized for the present purpose. In ODS, the charge density of an atom is represented by the sum of a point charge and a smeared negative charge distributed in a Slater-type orbital (STO). In FDS, the charge density of an atom is taken to be the sum of the charge density of the neutral atom and a partial atomic charge (of either sign) distributed in an STO. The ζ values of the STOs used in these two models are optimized in the present study to best reproduce the electrostatic potentials. The quality of the fit to the electrostatics is improved in the screened charge methods, especially for the regions that are within one van der Waals radius of the centers of atoms. It is also found that the charges derived by fitting electrostatic potentials with screened charges are less sensitive to the positions of the fitting points than are those derived with conventional electrostatic fitting. Moreover, we found that the electrostatic-potential-fitted (ESP) charges from the screened charge methods are similar to those from the point-charge method except for molecules containing the methyl group, where we have explored the use of restraints on nonpolar H atoms. We recommend the FDS model if the only goal is ESP fitting to obtain partial atomic charges or a fit to the ESP field. However, the ODS model is more accurate for electronic embedding in combined quantum mechanical and molecular mechanical (QM/MM) modeling and is more accurate than point-charge models for ESP fitting, and it is recommended for applications

  4. The empirical dependence of radiation-induced charge neutralization on negative bias in dosimeters based on the metal-oxide-semiconductor field-effect transistor

    SciTech Connect

    Benson, Chris; Albadri, Abdulrahman; Joyce, Malcolm J.; Price, Robert A.

    2006-08-15

    The dependence of radiation-induced charge neutralization (RICN) has been studied in metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. These devices were first exposed to x rays under positive bias and then to further dose increments at a selection of reverse bias levels. A nonlinear empirical trend has been established that is consistent with that identified in the data obtained in this work. Estimates for the reverse bias level corresponding to the maximum rate of RICN have been extracted from the data. These optimum bias levels appear to be independent of the level of initial absorbed dose under positive bias. The established models for threshold voltage change have been considered and indicate a related nonlinear trend for neutralization cross section {sigma}{sub N} as a function of oxide field. These data are discussed in the context of dose measurement with MOSFETs and within the framework of statistical mechanics associated with neutral traps and their field dependence.

  5. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations.

    PubMed

    Han, Gyeo-Re; Jang, Chang-Hyun

    2014-10-01

    Herein, we demonstrated a simple, sensitive, and rapid label-free detection method for heavy-metal (HM) ions using liquid crystal (LC) droplet patterns on a solid surface. Stearic-acid-doped LC droplet patterns were spontaneously generated on an n-octyltrichlorosilane (OTS)-treated glass substrate by evaporating a solution of the nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), dissolved in heptane. The optical appearance of the droplet patterns was a dark crossed texture when in contact with air, which represents the homeotropic orientation of the LC. This was caused by the steric interaction between the LC molecules and the alkyl chains of the OTS-treated surface. The dark crossed appearance of the acid-doped LC patterns was maintained after the addition of phosphate buffered saline (PBS) solution (pH 8.1 at 25°C). The deprotonated stearic-acid molecules self-assembled through the LC/aqueous interface, thereby supporting the homeotropic anchoring of 5CB. However, the optical image of the acid-doped LC droplet patterns incubated with PBS containing HM ions appeared bright, indicating a planar orientation of 5CB at the aqueous/LC droplet interface. This dark to bright transition of the LC patterns was caused by HM ions attached to the deprotonated carboxylate moiety, followed by the sequential interruption of the self-assembly of the stearic acid at the LC/aqueous interface. The results showed that the acid-doped LC pattern system not only enabled the highly sensitive detection of HM ions at a sub-nanomolar concentration but it also facilitated rapid detection (<10 min) with simple procedures. PMID:25059128

  6. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations.

    PubMed

    Han, Gyeo-Re; Jang, Chang-Hyun

    2014-10-01

    Herein, we demonstrated a simple, sensitive, and rapid label-free detection method for heavy-metal (HM) ions using liquid crystal (LC) droplet patterns on a solid surface. Stearic-acid-doped LC droplet patterns were spontaneously generated on an n-octyltrichlorosilane (OTS)-treated glass substrate by evaporating a solution of the nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), dissolved in heptane. The optical appearance of the droplet patterns was a dark crossed texture when in contact with air, which represents the homeotropic orientation of the LC. This was caused by the steric interaction between the LC molecules and the alkyl chains of the OTS-treated surface. The dark crossed appearance of the acid-doped LC patterns was maintained after the addition of phosphate buffered saline (PBS) solution (pH 8.1 at 25°C). The deprotonated stearic-acid molecules self-assembled through the LC/aqueous interface, thereby supporting the homeotropic anchoring of 5CB. However, the optical image of the acid-doped LC droplet patterns incubated with PBS containing HM ions appeared bright, indicating a planar orientation of 5CB at the aqueous/LC droplet interface. This dark to bright transition of the LC patterns was caused by HM ions attached to the deprotonated carboxylate moiety, followed by the sequential interruption of the self-assembly of the stearic acid at the LC/aqueous interface. The results showed that the acid-doped LC pattern system not only enabled the highly sensitive detection of HM ions at a sub-nanomolar concentration but it also facilitated rapid detection (<10 min) with simple procedures.

  7. Quantifying charge transfer energies at donor-acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Scholz, Reinhard; Luschtinetz, Regina; Seifert, Gotthard; Jägeler-Hoheisel, Till; Körner, Christian; Leo, Karl; Rapacioli, Mathias

    2013-11-01

    Charge transfer states around the donor-acceptor interface in an organic solar cell determine the device performance in terms of the open circuit voltage. In the present work, we propose a computational scheme based on constrained density functional tight binding theory (c-DFTB) to assess the energy of the lowest charge transfer (CT) state in such systems. A comparison of the c-DFTB scheme with Hartree-Fock based configuration interaction of singles (CIS) and with time-dependent density functional theory (TD-DFT) using the hybrid functional B3LYP reveals that CIS and c-DFTB reproduce the correct Coulomb asymptotics between cationic donor and anionic acceptor configurations, whereas TD-DFT gives a qualitatively wrong excitation energy. Together with an embedding scheme accounting for the polarizable medium, this c-DFTB scheme is applied to several donor-acceptor combinations used in molecular solar cells. The external quantum efficiency of photovoltaic cells based on zinc phthalocyanine-C60 blends reveals a CT band remaining much narrower than the density of states of acceptor HOMO and donor LUMO, an observation which can be interpreted in a natural way in terms of Marcus transfer theory. A detailed comparison with c-DFTB calculations reveals an energy difference of 0.32 eV between calculated and observed absorption from the electronic ground state into the CT state. In a blend of a functionalized thiophene and C60, the photoluminescence spectra differ significantly from neat films, allowing again an assignment to CT states. The proposed computational scheme reproduces the observed trends of the observed open circuit voltages in photovoltaic devices relying on several donor-acceptor blends, finding an offset of 1.16 eV on average. This value is similar as in polymer-fullerene photovoltaic systems where it amounts to about 0.9 eV, indicating that the photophysics of CT states in molecular donor-acceptor blends and in polymer-fullerene blends are governed by the same

  8. Quantifying charge transfer energies at donor-acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods.

    PubMed

    Scholz, Reinhard; Luschtinetz, Regina; Seifert, Gotthard; Jägeler-Hoheisel, Till; Körner, Christian; Leo, Karl; Rapacioli, Mathias

    2013-11-27

    Charge transfer states around the donor-acceptor interface in an organic solar cell determine the device performance in terms of the open circuit voltage. In the present work, we propose a computational scheme based on constrained density functional tight binding theory (c-DFTB) to assess the energy of the lowest charge transfer (CT) state in such systems. A comparison of the c-DFTB scheme with Hartree-Fock based configuration interaction of singles (CIS) and with time-dependent density functional theory (TD-DFT) using the hybrid functional B3LYP reveals that CIS and c-DFTB reproduce the correct Coulomb asymptotics between cationic donor and anionic acceptor configurations, whereas TD-DFT gives a qualitatively wrong excitation energy. Together with an embedding scheme accounting for the polarizable medium, this c-DFTB scheme is applied to several donor-acceptor combinations used in molecular solar cells. The external quantum efficiency of photovoltaic cells based on zinc phthalocyanine-C60 blends reveals a CT band remaining much narrower than the density of states of acceptor HOMO and donor LUMO, an observation which can be interpreted in a natural way in terms of Marcus transfer theory. A detailed comparison with c-DFTB calculations reveals an energy difference of 0.32 eV between calculated and observed absorption from the electronic ground state into the CT state. In a blend of a functionalized thiophene and C60, the photoluminescence spectra differ significantly from neat films, allowing again an assignment to CT states. The proposed computational scheme reproduces the observed trends of the observed open circuit voltages in photovoltaic devices relying on several donor-acceptor blends, finding an offset of 1.16 eV on average. This value is similar as in polymer-fullerene photovoltaic systems where it amounts to about 0.9 eV, indicating that the photophysics of CT states in molecular donor-acceptor blends and in polymer-fullerene blends are governed by the

  9. Multiplicity distribution and spectra of negatively charged hadrons in Au+Au collisions at square root of (sNN) = 130 GeV.

    PubMed

    Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Bland, L C; Blyth, C O; Bonner, B E; Bossingham, R; Boucham, A; Brandin, A; Caines, H; Calderón De La Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chattopadhyay, S; Chen, M L; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Conin, L; Cormier, T M; Cramer, J G; Crawford, H J; DeMello, M; Deng, W S; Derevschikov, A A; Didenko, L; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grabski, J; Grachov, O; Greiner, D; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Heffner, M; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Hümmler, H; Igo, G; Ishihara, A; Ivanshin, Y I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E; Kaneta, M; Kaplan, M; Keane, D; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R K; Kuznetsov, A A; Lakehal-Ayat, L; Lamas-Valverde, J; Lamont, M A; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lebedev, A; LeCompte, T; Lednický, R; Leontiev, V M; Leszczynski, P; LeVine, M J; Li, Q; Li, Q; Lindenbaum, S J; Lisa, M A; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lynn, D; Majka, R; Maliszewski, A; Margetis, S; Martin, L; Marx, J; Matis, H S; Matulenko, Y A; McShane, T S; Meissner, F; Melnick, Y; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moltz, D; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Mutchler, G S; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Pinganaud, W; Platner, E; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Radomski, S; Rai, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Roy, C; Russ, D; Rykov, V; Sakrejda, I; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schweda, K; Schmitz, N; Schroeder, L S; Schüttauf, A; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Stroebele, H; Struck, C; Suaide, A A; Sugarbaker, E; Suire, C; Sumbera, M; Symons, T J; Szanto De Toledo, A; Szarwas, P; Takahashi, J; Tang, A H; Thomas, J H; Tikhomirov, V; Trainor, T A; Trentalange, S; Tokarev, M; Tonjes, M B; Trofimov, V; Tsai, O; Turner, K; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vanyashin, A; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Wenaus, T; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yokosawa, A; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2001-09-10

    The minimum-bias multiplicity distribution and the transverse momentum and pseudorapidity distributions for central collisions have been measured for negative hadrons ( h(-)) in Au+Au interactions at square root of ([s(NN)]) = 130 GeV. The multiplicity density at midrapidity for the 5% most central interactions is dN(h(-))/d(eta)/(eta = 0) = 280+/-1(stat)+/-20(syst), an increase per participant of 38% relative to pp collisions at the same energy. The mean transverse momentum is 0.508+/-0.012 GeV/c and is larger than in central Pb+Pb collisions at lower energies. The scaling of the h(-) yield per participant is a strong function of p( perpendicular). The pseudorapidity distribution is almost constant within /eta/<1. PMID:11531517

  10. Charge and aggregation pattern govern the interaction of plasticins with LPS monolayers mimicking the external leaflet of the outer membrane of Gram-negative bacteria.

    PubMed

    Michel, J P; Wang, Y X; Dé, E; Fontaine, P; Goldmann, M; Rosilio, V

    2015-11-01

    Bacterial resistance to antibiotics has become today a major public health issue. In the development of new anti-infectious therapies, antimicrobial peptides appear as promising candidates. However, their mechanisms of action against bacterial membranes are still poorly understood. We describe for the first time the interaction and penetration of plasticins into lipid monolayers and bilayers modeling the two leaflets of the asymmetrical outer membrane of Gram-negative bacteria. The lipid composition of these monolayers mimics that of each leaflet: mixtures of LPS Re 595 mutant and wild type S-form from Salmonella enterica for the external leaflet, and SOPE/SOPG/cardiolipin (80/15/5) for the inner one. The analysis of the interfacial behavior of native (PTCDA1) and modified (PTCDA1-KF) antimicrobial plasticins showed that PTCDA1-KF exhibited better surface properties than its unmodified counterpart. Both peptides could penetrate into the model monolayers at concentrations higher than 0.1 μM. The penetration was particularly enhanced for PTCDA1-KF into the mixed LPS monolayer, due to attractive electrostatic interactions. Grazing X-ray diffraction and atomic force microscopy studies revealed the changes in LPS monolayers organization upon peptide insertion. The interaction of plasticins with liposomes was also monitored by light scattering and circular dichroism techniques. Only the cationic plasticin achieved full disaggregation and structuration in α helices, whereas the native one remained aggregated and unstructured. The main steps of the penetration mechanism of the two plasticins into lipid models of the external leaflet of the outer membrane of Gram-negative bacteria have been established.

  11. Singlet molecular oxygen ( sup 1. Delta. sub g O sub 2 ) formation upon irradiation of an oxygen ( sup 3. Sigma. sub g sup minus O sub 2 )-organic molecule charge-transfer absorption band

    SciTech Connect

    Scurlock, R.D.; Ogilby, P.R. )

    1989-07-13

    Singlet molecular oxygen ({sup 1}{Delta}{sub g}O{sub 2}) phosphorescence ({sup 3}{Sigma}{sub g}{sup {minus}}O{sub 2} {l arrow} {sup 1}{Delta}{sub g}O{sub 2}: 1270 nm) has been observed in a time-resolved experiment subsequent to pulsed UV laser irradiation of the oxygen ({sup 3}{Sigma}{sub g}{sup {minus}}O{sub 2})-organic molecule charge-transfer bands of liquid aromatic hydrocarbons (mesitylene, p-xylene, o-xylene, toluene, benzene), ethers (tetrahydrofuran, 1,4-dioxane, glyme, diglyme, triglyme), alcohols (methanol, propanol), and aliphatic hydrocarbons (cyclohexane, cyclooctane, decahydronaphthalene). Although {sup 1}{Delta}{sub g}O{sub 2} could originate from a variety of different processes in these oxygenated solvent systems, we have used the results of several independent experiments to indicate that an oxygen-solvent charge-transfer (CT) state is the {sup 1}{Delta}{sub g}O{sub 2} precursor. Other transient species have also been observed in time-resolved absorption experiments subsequent to pulsed UV irradiation of the oxygen-solvent CT bands. Some of these molecular transients, or species derived from these intermediates, may be responsible for an observed increase in the rate of {sup 1}{Delta}{sub g}O{sub 2} decay under certain conditions.

  12. Quadrupole, octopole, and hexadecapole electric moments of Sigma, Pi, Delta, and Phi electronic states: cylindrically asymmetric charge density distributions in linear molecules with nonzero electronic angular momentum.

    PubMed

    Bruna, Pablo J; Grein, Friedrich

    2007-08-21

    The number of independent components, n, of traceless electric 2(l)-multipole moments is determined for C(infinity v) molecules in Sigma(+/-), Pi, Delta, and Phi electronic states (Lambda=0,1,2,3). Each 2(l) pole is defined by a rank-l irreducible tensor with (2l+1) components P(m)((l)) proportional to the solid spherical harmonic r(l)Y(m)(l)(theta,phi). Here we focus our attention on 2(l) poles with l=2,3,4 (quadrupole Theta, octopole Omega, and hexadecapole Phi). An important conclusion of this study is that n can be 1 or 2 depending on both the multipole rank l and state quantum number Lambda. For Sigma(+/-)(Lambda=0) states, all 2(l) poles have one independent parameter (n=1). For spatially degenerate states--Pi, Delta, and Phi (Lambda=1,2,3)--the general rule reads n=1 for l<2/Lambda/ (when the 2(l)-pole rank lies below 2/Lambda/ but n=2 for higher 2(l) poles with l>or=2/Lambda/. The second nonzero term is the off-diagonal matrix element [formula: see text]. Thus, a Pi(Lambda=1) state has one dipole (mu(z)) but two independent 2(l) poles for l>or=2--starting with the quadrupole [Theta(zz),(Theta(xx)-Theta(yy))]. A Delta(Lambda=2) state has n=1 for 2((1,2,3)) poles (mu(z),Theta(zz),Omega(zzz)) but n=2 for higher 2((l>or=4)) poles--from the hexadecapole Phi up. For Phi(Lambda=3) states, it holds that n=1 for 2(1) to 2(5) poles but n=2 for all 2((l>or=6)) poles. In short, what is usually stated in the literature--that n=1 for all possible 2(l) poles of linear molecules--only applies to Sigma(+/-) states. For degenerate states with n=2, all Cartesian 2(l)-pole components (l>or=2/Lambda/) can be expressed as linear combinations of two irreducible multipoles, P(m=0)((l)) and P/m/=2 Lambda)((l)) [parallel (z axis) and anisotropy (xy plane)]. Our predictions are exemplified by the Theta, Omega, and Phi moments calculated for Lambda=0-3 states of selected diatomics (in parentheses): X (2)Sigma(+)(CN), X (2)Pi(NO), a (3)Pi(u)(C(2)), X (2)Delta(NiH), X (3)Delta(TiO), X

  13. Influence of negatively charged plume grains on the structure of Enceladus' Alfvén wings: Hybrid simulations versus Cassini Magnetometer data

    NASA Astrophysics Data System (ADS)

    Kriegel, Hendrik; Simon, Sven; Motschmann, Uwe; Saur, Joachim; Neubauer, Fritz M.; Persoon, Ann M.; Dougherty, Michele K.; Gurnett, Donald A.

    2011-10-01

    We apply the hybrid simulation code AIKEF (adaptive ion kinetic electron fluid) to the interaction between Enceladus' plume and Saturn's magnetospheric plasma. For the first time, the influence of the electron-absorbing dust grains in the plume on the plasma structures and magnetic field perturbation, the Alfvén wing, is taken into account within the framework of a global simulation. Our work continues the analytical calculations by Simon et al. (2011), who showed that electron absorption within the plume leads to a negative sign of the Hall conductivity. The resulting twist of the magnetic field, referred to as the Anti-Hall effect, has been observed during all targeted Enceladus flybys between 2005 and 2010. We show that (1) applying a plume model that considers both, the neutral gas and the dust allow us to quantitatively explain Cassini Magnetometer (MAG) data, (2) dust enhances the anti-Saturnward deflection of the ions, causing asymmetries which are evident in the MAG data, and (3) the ions in the plume are slowed down below 1 km s-1; and we compare our results to MAG data in order to systematically analyze variations in the plume activity and orientation for selected pairs of similar flybys: (E5, E6), (E7, E9) and (E8, E11).

  14. Models for Cometary Comae Containing Negative Ions

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Charnley, S. B.

    2012-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [I]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of our new models for the chemistry of cometary comae that include atomic and molecular anions. We calculate the impact of these anions on the charge balance and examine their importance for cometary coma chemistry.

  15. Charged particles in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Tripathi, Sachchida

    2010-05-01

    Charged particles in Titan's ionosphere Marykutty Michael1, Sachchida Nand Tripathi1,2,3, Pratima Arya1 1Indian Institute of Technology Kanpur 2Oak Ridge Associated Universities 3NASA Goddard Space Flight Center Observations by two instruments onboard the Cassini spacecraft, Ion Neutral Mass Spectrometer (INMS) and CAssini Plasma Spectrometer (CAPS), revealed the existence of heavy hydrocarbon and nitrile species with masses of several thousand atomic mass units at altitudes of 950 - 1400 km in the atmosphere of Titan (Waite et al., 2007; Crary et al., 2009). Though these particles were believed to be molecules, they are most likely aerosols formed by the clumping of smaller molecules (Waite et al., 2009). These particles were estimated to have a density of 10-3 kg m-3 and a size of up to 256 nm. The existence of very heavy ions has also been observed by the CAPS components with a mass by charge ratio of up to 10000 (Coates et al., 2007, 2009; Sittler et al., 2009). The goal of this paper is to find out whether the so called heavy ions (or charged particles) are generated by the charge transfer of ions and electrons to the particles. The charging of these particles has been studied by using the charge balance equations that include positive ions, negative ions, electrons, neutral and charged particles. Information on the most abundant ion clusters are obtained from Vuitton et al., (2009) and Wilson and Atreya, (2004). Mass by charge ratio thus calculated will be compared with those observed by Coates et al. (2007). References: Coates AJ, et al., Discovery of heavy negative ions in Titan's ionosphere, Geophys. Res. Lett., 34:L22103, 2007. Coates AJ, et al., Heavy negative ions in titan's ionosphere: altitude and latitude dependence. Planet. Space Sci., doi:10.1016/j.pss.2009.05.009, 2009. Crary F.J., et al., Heavy ions, temperatures and winds in titan's ionosphere: Combined cassini caps and inms observations. Planet. Space Sci., doi:10.1016/j.pss.2009.09.006, 2009

  16. Nanoparticle coagulation in fractionally charged and charge fluctuating dusty plasmas

    SciTech Connect

    Nunomura, Shota; Kondo, Michio; Shiratani, Masaharu; Koga, Kazunori; Watanabe, Yukio

    2008-08-15

    The kinetics of nanoparticle coagulation has been studied in fractionally charged and charge fluctuating dusty plasmas. The coagulation occurs when the mutual collision frequency among nanoparticles exceeds their charging and decharging/neutralization frequency. Interestingly, the coagulation is suppressed while a fraction (several percent) of nanoparticles are negatively charged in a plasma, in which stochastic charging plays an important role. A model is developed to predict a phase diagram of the coagulation and its suppression.

  17. Visualizing the Positive-Negative Interface of Molecular Electrostatic Potentials as an Educational Tool for Assigning Chemical Polarity

    ERIC Educational Resources Information Center

    Schonborn, Konrad; Host, Gunnar; Palmerius, Karljohan

    2010-01-01

    To help in interpreting the polarity of a molecule, charge separation can be visualized by mapping the electrostatic potential at the van der Waals surface using a color gradient or by indicating positive and negative regions of the electrostatic potential using different colored isosurfaces. Although these visualizations capture the molecular…

  18. A model for the abrogation of the SOS response by an SOS protein: a negatively charged helix in DinI mimics DNA in its interaction with RecA

    PubMed Central

    Voloshin, Oleg N.; Ramirez, Benjamin E.; Bax, Ad; Camerini-Otero, R. Daniel

    2001-01-01

    DinI is a recently described negative regulator of the SOS response in Escherichia coli. Here we show that it physically interacts with RecA and prevents the binding of single-stranded DNA to RecA, which is required for the activation of the latter. DinI also displaces ssDNA from a stable RecA–DNA cofilament, thus eliminating the SOS signal. In addition, DinI inhibits RecA-mediated homologous DNA pairing, but has no effect on actively proceeding strand exchange. Biochemical data, together with the molecular structure, define the C-terminal α-helix in DinI as the active site of the protein. In an unusual example of molecular mimicry, a negatively charged surface on this α-helix, by imitating single-stranded DNA, interacts with the loop L2 homologous pairing region of RecA and interferes with the activation of RecA. PMID:11230150

  19. Permeability of cartilage to neutral and charged polysaccharides

    SciTech Connect

    Haselton, F.R.; Fishman, A.P.; Sampson, P.M.

    1986-05-01

    The authors investigated macromolecular transport through a negatively charged membrane made from articular cartilage. Sections (150-1000 ..mu..) of cartilage obtained at autopsy from a horse fetlock were clamped between two 15 ml chambers containing .15 M sodium chloride in pH 7.4, .004 M phosphate. Tracers were introduced into chamber A and transport was determined by radiolabel transferred to chamber B over time. Structural integrity was preserved as shown by histological staining. In three experiments, size selectivity was measured using polydisperse uncharged /sup 3/H-dextran. The authors determined the elution patterns from a calibrated Sephadex S300 column of samples from each chamber. The relative transport of molecules over the size range of 1.0 to 10.0 nm was determined by comparing the two elution patterns. They found a sharp cutoff at an effective molecular radius of 2.5 nm. In an additional three experiments, charge selectivity was investigated by comparing the simultaneous transport of /sup 3/H-inulin and /sup 14/C-carboxy inulin. Both tracers have an effective molecular radius of 1.1 nm. The negatively charged carboxy inulin was transferred 15% faster than the uncharged inulin. They conclude: a) there is a maximum effective radius for uncharged dextrans that can be transferred across this membrane which is smaller than that reported for proteins and b) negatively charged cartilagenous membranes do not retard the transport of negatively charged inulin.

  20. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  1. Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation

    SciTech Connect

    Railsback, Justin; Singh, Abhishek; Pearce, Ryan; McKnight, Timothy E; Collazo, Ramon; Sitar, Zlatko; Yingling, Yaroslava; Melechko, Anatoli Vasilievich

    2012-01-01

    The understanding of interactions between double stranded (ds) DNA and charged nanoparticles will have a broad bearing on many important applications from drug delivery [ 1 4 ] to DNAtemplated metallization. [ 5 , 6 ] Cationic nanoparticles (NPs) can bind to DNA, a negatively charged molecule, through a combination of electrostatic attraction, groove binding, and intercalation. Such binding events induce changes in the conformation of a DNA strand. In nature, DNA wraps around a cylindrical protein assembly (diameter and height of 6 nm) [ 7 ] with an 220 positive charge, [ 8 ] creating the complex known as chromatin. Wrapping and bending of DNA has also been achieved in the laboratory through the binding of highly charged species such as molecular assemblies, [ 9 , 10 ] cationic dendrimers, [ 11 , 12 ] and nanoparticles. [ 13 15 ] The charge of a nanoparticle plays a crucial role in its ability to induce DNA structural changes. If a nanoparticle has a highly positive surface charge density, the DNA is likely to wrap and bend upon binding to the nanoparticle [ 13 ] (as in the case of chromatin). On the other hand, if a nanoparticle is weakly charged it will not induce dsDNA compaction. [ 9 , 10 , 15 ] Consequently, there is a transition zone from extended to compact DNA conformations which depends on the chemical nature of the nanoparticle and occurs for polycations with charges between 5 and 10. [ 9 ] While the interactions between highly charged NPs and DNA have been extensively studied, the processes that occur within the transition zone are less explored.

  2. SOI nanowires as sensors for charge detection

    NASA Astrophysics Data System (ADS)

    Naumova, O. V.; Fomin, B. I.; Nasimov, D. A.; Dudchenko, N. V.; Devyatova, S. F.; Zhanaev, E. D.; Popov, V. P.; Latyshev, A. V.; Aseev, A. L.; Ivanov, Yu D.; Archakov, A. I.

    2010-05-01

    The properties of silicon-on-insulator nanowires (SOI NWs) fabricated by means of electron lithography and gas etching of SOI in XeF2 or SF6:CFCl3 have been investigated. The method used to fabricate the nanowires was found to require no additional anneal to be given to the final structure for defect removal after nanostructuring. The sensitivity of SOI NWs to negative protein BSA molecules in the pH 7.4 buffer solution was shown to be as high as 1 femtomoles. The gate characteristics of SOI NWs were used to determine the charge density of particles adsorbed on the NW surface. A charge density of 4.6 × 1011 cm-2 was estimated for a 1 femtomole protein concentration. The combined use of open-channel structures with top gates was employed for determining the charge state of structure surfaces after different chemical treatments. Chemical treatments giving rise to a density of the negative charges on the surface of NWs ranging in the interval (7-23) × 1011 cm-2 were examined. Treatments in methanol (after removal of the native oxide) were found to provide stabilization of the SOI surface over a 3-h interval after the treatments.

  3. First-Principle Framework for Total Charging Energies in Electrocatalytic Materials and Charge-Responsive Molecular Binding at Gas-Surface Interfaces.

    PubMed

    Tan, Xin; Tahini, Hassan A; Seal, Prasenjit; Smith, Sean C

    2016-05-01

    Heterogeneous charge-responsive molecular binding to electrocatalytic materials has been predicted in several recent works. This phenomenon offers the possibility of using voltage to manipulate the strength of the binding interaction with the target gas molecule and thereby circumvent thermochemistry constraints, which inhibit achieving both efficient binding and facile release of important targets such as CO2 and H2. Stability analysis of such charge-induced molecular adsorption has been beyond the reach of existing first-principle approaches. Here, we draw on concepts from semiconductor physics and density functional theory to develop a first principle theoretical approach that allows calculation of the change in total energy of the supercell due to charging. Coupled with the calculated adsorption energy of gas molecules at any given charge, this allows a complete description of the energetics of the charge-induced molecular adsorption process. Using CO2 molecular adsorption onto negatively charged h-BN (wide-gap semiconductor) and g-C4N3 (half metal) as example cases, our analysis reveals that - while adsorption is exothermic after charge is introduced - the overall adsorption processes are not intrinsically spontaneous due to the energetic cost of charging the materials. The energies needed to overcome the barriers of these processes are 2.10 and 0.43 eV for h-BN and g-C4N3, respectively. This first principle approach opens up new pathways for a more complete description of charge-induced and electrocatalytic processes.

  4. First-Principle Framework for Total Charging Energies in Electrocatalytic Materials and Charge-Responsive Molecular Binding at Gas-Surface Interfaces.

    PubMed

    Tan, Xin; Tahini, Hassan A; Seal, Prasenjit; Smith, Sean C

    2016-05-01

    Heterogeneous charge-responsive molecular binding to electrocatalytic materials has been predicted in several recent works. This phenomenon offers the possibility of using voltage to manipulate the strength of the binding interaction with the target gas molecule and thereby circumvent thermochemistry constraints, which inhibit achieving both efficient binding and facile release of important targets such as CO2 and H2. Stability analysis of such charge-induced molecular adsorption has been beyond the reach of existing first-principle approaches. Here, we draw on concepts from semiconductor physics and density functional theory to develop a first principle theoretical approach that allows calculation of the change in total energy of the supercell due to charging. Coupled with the calculated adsorption energy of gas molecules at any given charge, this allows a complete description of the energetics of the charge-induced molecular adsorption process. Using CO2 molecular adsorption onto negatively charged h-BN (wide-gap semiconductor) and g-C4N3 (half metal) as example cases, our analysis reveals that - while adsorption is exothermic after charge is introduced - the overall adsorption processes are not intrinsically spontaneous due to the energetic cost of charging the materials. The energies needed to overcome the barriers of these processes are 2.10 and 0.43 eV for h-BN and g-C4N3, respectively. This first principle approach opens up new pathways for a more complete description of charge-induced and electrocatalytic processes. PMID:27067063

  5. Quantitative real-time PCR as a sensitive protein-protein interaction quantification method and a partial solution for non-accessible autoactivator and false-negative molecule analysis in the yeast two-hybrid system.

    PubMed

    Maier, Richard H; Maier, Christina J; Hintner, Helmut; Bauer, Johann W; Onder, Kamil

    2012-12-01

    Many functional proteomic experiments make use of high-throughput technologies such as mass spectrometry combined with two-dimensional polyacrylamide gel electrophoresis and the yeast two-hybrid (Y2H) system. Currently there are even automated versions of the Y2H system available that can be used for proteome-wide research. The Y2H system has the capacity to deliver a profusion of Y2H positive colonies from a single library screen. However, subsequent analysis of these numerous primary candidates with complementary methods can be overwhelming. Therefore, a method to select the most promising candidates with strong interaction properties might be useful to reduce the number of candidates requiring further analysis. The method described here offers a new way of quantifying and rating the performance of positive Y2H candidates. The novelty lies in the detection and measurement of mRNA expression instead of proteins or conventional Y2H genetic reporters. This method correlates well with the direct genetic reporter readouts usually used in the Y2H system, and has greater sensitivity for detecting and quantifying protein-protein interactions (PPIs) than the conventional Y2H system, as demonstrated by detection of the Y2H false-negative PPI of RXR/PPARG. Approximately 20% of all proteins are not suitable for the Y2H system, the so-called autoactivators. A further advantage of this method is the possibility to evaluate molecules that usually cannot be analyzed in the Y2H system, exemplified by a VDR-LXXLL motif peptide interaction. PMID:22982175

  6. Tunable magnetoresistance in an asymmetrically coupled single-molecule junction.

    PubMed

    Warner, Ben; El Hallak, Fadi; Prüser, Henning; Sharp, John; Persson, Mats; Fisher, Andrew J; Hirjibehedin, Cyrus F

    2015-03-01

    Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories. The scaling of such phenomena down to the single-molecule level may enable novel spintronic devices. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications. PMID:25622229

  7. Tunable magnetoresistance in an asymmetrically coupled single-molecule junction

    NASA Astrophysics Data System (ADS)

    Warner, Ben; El Hallak, Fadi; Prüser, Henning; Sharp, John; Persson, Mats; Fisher, Andrew J.; Hirjibehedin, Cyrus F.

    2015-03-01

    Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories. The scaling of such phenomena down to the single-molecule level may enable novel spintronic devices. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications.

  8. A comparative study on the effect of Curcumin and Chlorin-p6 on the diffusion of two organic cations across a negatively charged lipid bilayer probed by second harmonic spectroscopy

    NASA Astrophysics Data System (ADS)

    Saini, R. K.; Varshney, G. K.; Dube, A.; Gupta, P. K.; Das, K.

    2014-09-01

    The influence of Curcumin and Chlorin-p6 (Cp6) on the real time diffusion kinetics of two organic cations, LDS (LDS-698) and Malachite Green (MG) across a negatively charged phospholipid bilayer is investigated by Second Harmonic (SH) spectroscopy. The diffusion time constant of LDS at neutral pH in liposomes containing either Curcumin or Cp6 is significantly reduced, the effect being more pronounced with Curcumin. At acidic pH, the quantum of reduction in the diffusion time constant of MG by both the drugs was observed to be similar. The relative changes in the average diffusion time constants of the cations with increasing drug concentration at pH 5.0 and 7.4 shows a substantial pH effect for Curcumin induced membrane permeability, while a modest pH effect was observed for Cp6 induced membrane permeability. Based on available evidence this can be attributed to the increased interaction between the drug and the polar head groups of the lipid at pH 7.4 where the drug resides closer to the lipid-water interface.

  9. New insight in the structural features of haloadaptation in α-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface.

    PubMed

    Zorgani, Mohamed Amine; Patron, Kevin; Desvaux, Mickaël

    2014-07-01

    Proteins from halophilic archaea, which live in extreme saline conditions, have evolved to remain folded, active and stable at very high ionic strengths. Understanding the mechanism of haloadaptation is the first step toward engineering of halostable biomolecules. Amylases are one of the main enzymes used in industry. Yet, no three-dimensional structure has been experimentally resolved for α-amylases from halophilic archaea. In this study, homology structure modeling of α-amylases from the halophilic archaea Haloarcula marismortui, Haloarcula hispanica, and Halalkalicoccus jeotgali were performed. The resulting models were subjected to energy minimization, evaluation, and structural analysis. Calculations of the amino acid composition, salt bridges and hydrophobic interactions were also performed and compared to a set of non-halophilic counterparts. It clearly appeared that haloarchaeal α-amylases exhibited lower propensities for helix formation and higher propensities for coil-forming regions. Furthermore, they could maintain a folded and stable conformation in high salt concentration through highly negative charged surface with over representation of acidic residues, especially Asp, and low hydrophobicity with increase of salt bridges and decrease in hydrophobic interactions on the protein surface. This study sheds some light on the stability of α-amylases from halophilic archaea and provides strong basis not only to understand haloadaptation mechanisms of proteins in microorganisms from hypersalines environments but also for biotechnological applications.

  10. The surface charge of trypanosomatids.

    PubMed

    Souto-Padrón, Thaïs

    2002-12-01

    The surface charge of trypanosomatids was evaluated by means of the binding of cationic particles, as visualized by electron microscopy and by direct measurements of the electrophoretic mobility of cells. The results obtained indicate that most of the trypanosomatids exhibit a negatively charged surface whose value is species specific and varies according to the developmental stages. Sialic acids associated with glycoproteins, glycolipids and phosphate groups are the major components responsible for the net negative surface charge of the trypanosomatids.

  11. Charged particles interacting with a mixed supported lipid bilayer as a biomimetic pulmonary surfactant.

    PubMed

    Munteanu, B; Harb, F; Rieu, J P; Berthier, Y; Tinland, B; Trunfio-Sfarghiu, A-M

    2014-08-01

    This study shows the interactions of charged particles with mixed supported lipid bilayers (SLB) as biomimetic pulmonary surfactants. We tested two types of charged particles: positively charged and negatively charged particles. Two parameters were measured: adsorption density of particles on the SLB and the diffusion coefficient of lipids by FRAPP techniques as a measure of interaction strength between particles and lipids. We found that positively charged particles do not adsorb on the bilayer, probably due to the electrostatic repulsion between positively charged parts of the lipid head and the positive groups on the particle surface, therefore no variation in diffusion coefficient of lipid molecules was observed. On the contrary, the negatively charged particles, driven by electrostatic interactions are adsorbed onto the supported bilayer. The adsorption of negatively charged particles increases with the zeta-potential of the particle. Consecutively, the diffusion coefficient of lipids is reduced probably due to binding onto the lipid heads which slows down their Brownian motion. The results are directly relevant for understanding the interactions of particulate matter with pulmonary structures which could lead to pulmonary surfactant inhibition or deficiency causing severe respiratory distress or pathologies.

  12. Negative magnetoresistivity in holography

    NASA Astrophysics Data System (ADS)

    Sun, Ya-Wen; Yang, Qing

    2016-09-01

    Negative magnetoresistivity is a special magnetotransport property associated with chiral anomaly in four dimensional chiral anomalous systems, which refers to the transport behavior that the DC longitudinal magnetoresistivity decreases with increasing magnetic field. We calculate the longitudinal magnetoconductivity in the presence of back-reactions of the magnetic field to gravity in holographic zero charge and axial charge density systems with and without axial charge dissipation. In the absence of axial charge dissipation, we find that the quantum critical conductivity grows with increasing magnetic field when the backreaction strength is larger than a critical value, in contrast to the monotonically decreasing behavior of quantum critical conductivity in the probe limit. With axial charge dissipation, we find the negative magnetoresistivity behavior. The DC longitudinal magnetoconductivity scales as B in the large magnetic field limit, which deviates from the exact B 2 scaling of the probe limit result. In both cases, the small frequency longitudinal magnetoconductivity still agrees with the formula obtained from the hydrodynamic linear response theory, even in the large magnetic field limit.

  13. Synthesis and biodistribution of 211At-labeled, biotinylated, and charge-modified poly-L-lysine: evaluation for use as an effector molecule in pretargeted intraperitoneal tumor therapy.

    PubMed

    Lindegren, Sture; Andersson, Håkan; Jacobsson, Lars; Bäck, Tom; Skarnemark, Gunnar; Karlsson, Börje

    2002-01-01

    Poly-L-lysine (7, 21, and 204 kDa) has been evaluated as an effector carrier for use in pretargeted intraperitoneal tumor therapy. For the synthesis, the epsilon-amino groups on the poly-L-lysine were modified in three steps utilizing conjugate biotinylation with biotin amidocaproate N-hydroxysuccinimide ester (BANHS), conjugate radiolabeling with (211)At using the intermediate reagent N-succinimidyl 3-(trimethylstannyl)benzoate (m-MeATE), and charge modification using succinic anhydride, resulting in an increase in the molecular weight of approximately 80% of the final product. The labeling of the m-MeATE reagent and subsequent conjugation of the polymer were highly efficient with overall radiochemical yields in the range of 60-70%. The in vitro avidin binding ability of the modified polymer was almost complete (90-95%), as determined by binding to avidin beads using a convenient filter tube assay. Following intraperitoneal (ip) injection in athymic mice, the 13 kDa polymer product was cleared mainly via the kidneys with fast kinetics (biological half-live T(b) approximately 2 h) and with low whole-body retention. The clearance of the 38 kDa polymer was distributed between kidneys and liver, and the 363 kDa polymer was mainly sequestered by the liver with a T(b) of 8 h. Increased tissue uptake in the thyroid, lungs, stomach, and spleen following the distribution of the large effector molecules (38 and 363 kDa) suggests that degradation of the polymers by the liver may release some of the label as free astatine/astatide. PMID:12009939

  14. Controlled synthesis and inclusion ability of a hyaluronic acid derivative bearing beta-cyclodextrin molecules.

    PubMed

    Charlot, Aurélia; Heyraud, Alain; Guenot, Pierre; Rinaudo, Marguerite; Auzély-Velty, Rachel

    2006-03-01

    A new synthetic route to beta-cyclodextrin-linked hyaluronic acid (HA-CD) was developed. This was based on the preparation of a HA derivative selectively modified with adipic dihydrazide (HA-ADH) and a beta-cyclodextrin derivative possessing an aldehyde function on the primary face, followed by their coupling by a reductive amination-type reaction. The CD-polysaccharide was fully characterized in terms of chemical integrity and purity by high-resolution NMR spectroscopy. The complexation ability of the grafted CD was further demonstrated by isothermal titration calorimetry using sodium adamantane acetate (ADAc) and Ibuprofen as model guest molecules. The thermodynamic parameters for the complexation of these negatively charged guest molecules by the beta-CD grafted on negatively charged HA were shown to be largely influenced by the ionic strength of the aqueous medium. PMID:16529430

  15. Negative ions at Titan and Enceladus: recent results.

    PubMed

    Coates, Andrew J; Wellbrock, Anne; Lewis, Gethyn R; Jones, Geraint H; Young, David T; Crary, Frank J; Waite, J Hunter; Johnson, Robert E; Hille, Thomas W; Sittler, Edward C

    2010-01-01

    The detection of heavy negative ions (up to 13 800 amu) in Titan's ionosphere is one of the tantalizing new results from the Cassini mission. These heavy ions indicate for the first time the existence of heavy hydrocarbon and nitrile molecules in this primitive Earth-like atmosphere. These ions were suggested to be precursors of aerosols in Titan's atmosphere and may precipitate to the surface as tholins. We present the evidence for and the analysis of these heavy negative ions at Titan. In addition we examine the variation of the maximum mass of the Titan negative ions with altitude and latitude for the relevant encounters so far, and we discuss the implications for the negative ion formation process. We present data from a recent set of encounters where the latitude was varied between encounters, with other parameters fixed. Models are beginning to explain the low mass negative ions, but the formation process for the higher mass ions is still not understood. It is possible that the structures may be chains, rings or even fullerenes. Negative ions, mainly water clusters in this case, were seen during Cassini's recent close flybys of Enceladus. We present mass spectra from the Enceladus plume, showing water clusters and additional species. As at Titan, the negative ions indicate chemical complexities which were unknown before the Cassini encounters, and are indicative of a complex balance between neutrals and positively and negatively charged ions. PMID:21302552

  16. Charge transport in nanoscale junctions.

    PubMed

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    the molecular level. Nanoscale charge transport experiments in ionic liquids extend the field to high temperatures and to systems with intriguing interfacial potential distributions. Other directions may include dye-sensitized solar cells, new sensor applications and diagnostic tools for the study of surface-bound single molecules. Another motivation for this special issue is thus to highlight activities across different research communities with nanoscale charge transport as a common denominator. This special issue gathers 27 articles by scientists from the United States, Germany, the UK, Denmark, Russia, France, Israel, Canada, Australia, Sweden, Switzerland, the Netherlands, Belgium and Singapore; it gives us a flavour of the current state-of-the-art of this diverse research area. While based on contributions from many renowned groups and institutions, it obviously cannot claim to represent all groups active in this very broad area. Moreover, a number of world-leading groups were unable to take part in this project within the allocated time limit. Nevertheless, we regard the current selection of papers to be representative enough for the reader to draw their own conclusions about the current status of the field. Each paper is original and has its own merit, as all papers in Journal of Physics: Condensed Matter special issues are subjected to the same scrutiny as regular contributions. The Guest Editors have deliberately not defined the specific subjects covered in this issue. These came out logically from the development of this area, for example: 'Traditional' solid state nanojunctions based on adsorbed layers, oxide films or nanowires sandwiched between two electrodes: effects of molecular structure (aromaticity, anchoring groups), symmetry, orientation, dynamics (noise patterns) and current-induced heating. Various 'physical effects': inelastic tunnelling and Coulomb blockade, polaron effects, switching modes, and negative differential resistance; the role of

  17. Mobius Molecules

    ERIC Educational Resources Information Center

    Eckert, J. M.

    1973-01-01

    Discusses formation of chemical molecules via Mobius strip intermediates, and concludes that many special physics-chemical properties of the fully closed circular form (1) of polyoma DNA are explainable by this topological feature. (CC)

  18. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  19. Interstellar molecules

    NASA Astrophysics Data System (ADS)

    Smith, D.

    1987-09-01

    Some 70 different molecular species have so far been detected variously in diffuse interstellar clouds, dense interstellar clouds, and circumstellar shells. Only simple (diatomic and triatomic) species exist in diffuse clouds because of the penetration of destructive UV radiations, whereas more complex (polyatomic) molecules survive in dense clouds as a result of the shielding against this UV radiation provided by dust grains. A current list of interstellar molecules is given together with a few other molecular species that have so far been detected only in circumstellar shells. Also listed are those interstellar species that contain rare isotopes of several elements. The gas phase ion chemistry is outlined via which the observed molecules are synthesized, and the process by which enrichment of the rare isotopes occurs in some interstellar molecules is described.

  20. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  1. Enumerating molecules.

    SciTech Connect

    Visco, Donald Patrick, Jr.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2004-04-01

    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  2. The second exon-encoded factor XII region is involved in the interaction of factor XII with factor XI and does not contribute to the binding site for negatively charged surfaces.

    PubMed

    Citarella, F; Fedele, G; Roem, D; Fantoni, A; Hack, C E

    1998-12-01

    Contact system activation, in vitro, is triggered by activation of factor XII (FXII) on binding to an activator, such as negatively charged surfaces. A putative surface-binding site of FXII has been located within the amino acid residues 1-28 by identifying the epitope recognized by a monoclonal antibody (MoAb), B7C9, which inhibits kaolin-induced clotting activity. To further elucidate the role of the amino terminal binding site in the regulation of FXII activation, we have characterized a FXII recombinant protein (rFXII-triangle up19) deleted of the amino acid residues 3-19, which are encoded by the second exon of FXII gene. A plasmid encoding for rFXII-triangle up19 was constructed and expressed in HepG2 cells by using vaccinia virus. Purified rFXII-triangle up19 migrated as a single band of Mr 77,000 on sodium dodecyl sulfate (SDS)-polyacrylamide gel, did not bind to MoAb B7C9 immobilized on Protein A-Sepharose, thus confirming that it lacked the epitope for this MoAb, and had no amidolytic activity towards the chromogenic substrate S-2302 in the absence of activator. rFXII-triangle up19 specific clotting activity was lower (44%) than that of native FXII. The activation rate of rFXII-triangle up19 by kallikrein in the absence of dextran sulfate was about four times higher than that of full-length FXII and was increased in the presence of dextran sulfate. However, rFXII-triangle up19 underwent autoactivation in the presence of dextran sulfate. Labeled rFXII-triangle up19 bound to kaolin, which binding was equally well inhibited by either, rFXII-triangle up19 or full-length FXII (IC50 = 7.2 +/- 2.2 nmol/L for both proteins). Accordingly, a synthetic peptide corresponding to FXII amino acid residues 3-19 did not inhibit the binding of labeled full-length FXII to kaolin. rFXII-triangle up19 generated a similar amount of FXIIa- and kallikrein-C1-inhibitor complexes in FXII-deficient plasma in the presence of kaolin, as did full-length FXII; but generated less factor

  3. Charge-controlled switchable CO2 capture on boron nitride nanomaterials.

    PubMed

    Sun, Qiao; Li, Zhen; Searles, Debra J; Chen, Ying; Lu, Gaoqing Max; Du, Aijun

    2013-06-01

    Increasing concerns about the atmospheric CO2 concentration and its impact on the environment are motivating researchers to discover new materials and technologies for efficient CO2 capture and conversion. Here, we report a study of the adsorption of CO2, CH4, and H2 on boron nitride (BN) nanosheets and nanotubes (NTs) with different charge states. The results show that the process of CO2 capture/release can be simply controlled by switching on/off the charges carried by BN nanomaterials. CO2 molecules form weak interactions with uncharged BN nanomaterials and are weakly adsorbed. When extra electrons are introduced to these nanomaterials (i.e., when they are negatively charged), CO2 molecules become tightly bound and strongly adsorbed. Once the electrons are removed, CO2 molecules spontaneously desorb from BN absorbents. In addition, these negatively charged BN nanosorbents show high selectivity for separating CO2 from its mixtures with CH4 and/or H2. Our study demonstrates that BN nanomaterials are excellent absorbents for controllable, highly selective, and reversible capture and release of CO2. In addition, the charge density applied in this study is of the order of 10(13) cm(-2) of BN nanomaterials and can be easily realized experimentally. PMID:23678978

  4. Configuration effects on satellite charging response

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.

    1980-01-01

    The response of various spacecraft configurations to a charging environment in sunlight was studied using the NASA Charging Analyzer Program code. The configuration features geometry, type of stabilization, and overall size. Results indicate that sunlight charging response is dominated by differential charging effects. Shaded insulation charges negatively result in the formation of potential barriers which suppress photoelectron emission from sunlit surfaces. Sunlight charging occurs relatively slowly: with 30 minutes of charging simulations, in none of the configurations modeled did the most negative surface cell reach half its equilibrium potential in eclipse.

  5. Negative differential conductance and hysteretic current switching of benzene molecular junction in a transverse electric field

    NASA Astrophysics Data System (ADS)

    Zhu, Wen-Huan; Ding, Guo-Hui; Dong, Bing

    2014-11-01

    We study charge transport through single benzene molecular junction (BMJ) directly sandwiched between two platinum electrodes by using a tight-binding model and the non-equilibrium Green's function approach. Pronounced negative differential conductance is observed at finite bias voltage, resulting from charge redistribution in BMJ and a Coulomb blockade effect at the interface of molecule-electrode contacts. In the presence of a transverse electric field, hysteretic switching behavior and large spin-polarization of current are obtained, indicating the potential application of BMJ for acting as a nanoscale current modulator or spintronic molecular device.

  6. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: Charge transfer reaction of N2+(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar

    NASA Astrophysics Data System (ADS)

    Chang, Yih Chung; Xu, Yuntao; Lu, Zhou; Xu, Hong; Ng, C. Y.

    2012-09-01

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N2+(v+, N+) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N2+(X 2Σg+, v+ = 0-2, N+ = 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N2+ PFI-PI beam can be formed with a laboratory kinetic energy resolution of ΔElab = ± 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (Ecm's) down to thermal energies. Absolute total rovibrationally selected cross sections σ(v+ = 0-2, N+ = 0-9) for the N2+(X 2Σg+; v+ = 0-2, N+ = 0-9) + Ar CT reaction have been measured in the Ecm range of 0.04-10.0 eV, revealing strong vibrational enhancements and Ecm-dependencies of σ(v+ = 0-2, N+ = 0-9). The thermochemical threshold at Ecm = 0.179 eV for the formation of Ar+ from N2+(X; v+ = 0, N+) + Ar was observed by the measured σ(v+ = 0), confirming the narrow ΔEcm spread achieved in the present study. The σ(v+ = 0-2; N+) values obtained here are compared with previous experimental and theoretical results. The theoretical predictions calculated based on the Landau-Zener-Stückelberg formulism are found to be in fair

  7. 'Escentric' molecules.

    PubMed

    Schön, Geza

    2008-06-01

    Can a fragrance be revolutionary? In this commentary, the creation of two unusual, extravagant fine fragrances, 'escentric01' and 'molecule01', is described. In response to the fantasy components found in release notes of many recent perfume launches, both center around a single real fragrance raw material, the transparent woody aroma chemical 'Iso E Super' (1+2). The perfume 'escentric01' contains 65% of it, accompanied by Trisamber (3), red pepper, lime oil, incense and musks, while 'molecule01' consists exclusively of 'Iso E Super' (1+2). The elegant woody note lives here its own eccentric life--the revolution starts.

  8. Surface charge modulated aptasensor in a single glass conical nanopore.

    PubMed

    Cai, Sheng-Lin; Cao, Shuo-Hui; Zheng, Yu-Bin; Zhao, Shuang; Yang, Jin-Lei; Li, Yao-Qun

    2015-09-15

    In this work, we have proposed a label-free nanopore-based biosensing strategy for protein detection by performing the DNA-protein interaction inside a single glass conical nanopore. A lysozyme binding aptamer (LBA) was used to functionalize the walls of glass nanopore via siloxane chemistry and negatively charged recognition sites were thus generated. The covalent modification procedures and their recognition towards lysozyme of the single conical nanopore were characterized via ionic current passing through the nanopore membrane, which was measured by recording the current-voltage (I-V) curves in 1mM KCl electrolyte at pH=7.4. With the occurring of recognition event, the negatively charged wall was partially neutralized by the positively charged lysozyme molecules, leading to a sensitive change of the surface charge-dependent current-voltage (I-V) characteristics. Our results not only demonstrate excellent selectivity and sensitivity towards the target protein, but also suggest a route to extend this nanopore-based sensing strategy to the biosensing platform designs of a wide range of proteins based on a charge modulation.

  9. Critical Points of the Electric Field from a Collection of Point Charges

    SciTech Connect

    Max, N; Weinkauf, T

    2007-02-16

    The electric field around a molecule is generated by the charge distribution of its constituents: positively charged atomic nuclei, which are well approximated by point charges, and negatively charged electrons, whose probability density distribution can be computed from quantum mechanics. For the purposes of molecular mechanics or dynamics, the charge distribution is often approximated by a collection of point charges, with either a single partial charge at each atomic nucleus position, representing both the nucleus and the electrons near it, or as several different point charges per atom. The critical points in the electric field are useful in visualizing its geometrical and topological structure, and can help in understanding the forces and motion it induces on a charged ion or neutral dipole. Most visualization tools for vector fields use only samples of the field on the vertices of a regular grid, and some sort of interpolation, for example, trilinear, on the grid cells. There is less risk of missing or misinterpreting topological features if they can be derived directly from the analytic formula for the field, rather than from its samples. This work presents a method which is guaranteed to find all the critical points of the electric field from a finite set of point charges. To visualize the field topology, we have modified the saddle connector method to use the analytic formula for the field.

  10. Molecule-hugging graphene nanopores.

    PubMed

    Garaj, Slaven; Liu, Song; Golovchenko, Jene A; Branton, Daniel

    2013-07-23

    It has recently been recognized that solid-state nanopores in single-atomic-layer graphene membranes can be used to electronically detect and characterize single long charged polymer molecules. We have now fabricated nanopores in single-layer graphene that are closely matched to the diameter of a double-stranded DNA molecule. Ionic current signals during electrophoretically driven translocation of DNA through these nanopores were experimentally explored and theoretically modeled. Our experiments show that these nanopores have unusually high sensitivity (0.65 nA/Å) to extremely small changes in the translocating molecule's outer diameter. Such atomically short graphene nanopores can also resolve nanoscale-spaced molecular structures along the length of a polymer, but do so with greatest sensitivity only when the pore and molecule diameters are closely matched. Modeling confirms that our most closely matched pores have an inherent resolution of ≤ 0.6 nm along the length of the molecule. PMID:23836648

  11. Charge-based precipitation of extracellular vesicles

    PubMed Central

    Deregibus, Maria Chiara; Figliolini, Federico; D'antico, Sergio; Manzini, Paola Maria; Pasquino, Chiara; De Lena, Michela; Tetta, Ciro; Brizzi, Maria Felice; Camussi, Giovanni

    2016-01-01

    Vesicular-mediated communication between cells appears critical in many biological processes. Extracellular vesicles (EVs) released from healthy and diseased cells are involved in a network of exchange of biologically active molecules. Since EVs present in biological fluids carry the signature of the cell of origin, they are potential biomarkers for ongoing physiological or pathological processes. Despite the knowledge on EV biology accrued in recent years, techniques of EV purification remain a challenge and all the described methods have some advantages and disadvantages. In the present study, we described a method based on charge precipitation of EVs from biological fluids and from cell supernatants in comparison with the differential ultracentrifugation, which is considered the gold standard for EV purification. The analysis of ζ-potential revealed that EVs have a negative charge that allows the interaction with a positively charged molecule, such as protamine. Protamine was shown to induce EV precipitation from serum and saliva and from cell culture media without the need for ultracentrifugation. EV resuspension was facilitated when protamine (P) precipitation was performed in the presence of PEG 35,000 Da (P/PEG precipitation). The recovery of precipitated EVs evaluated by NanoSight analysis was more efficient than that obtained by ultracentrifugation. By electron microscopy the size of EVs was similar after both methods were used, and the expression of CD63, CD9 and CD81 exosomal markers in the P/PEG-precipitated EVs indicated an enrichment in exosomes. The RNA recovery of P/PEG-precipitated EVs was similar to that of EVs isolated by ultracentrifugation. In addition, P/PEG-precipitated EVs retained the biological activity in vitro as observed by the induction of wound closure by keratinocytes and of proliferation of tubular epithelial cells. In conclusion, charge-based precipitation of EVs has the merit of simplicity and avoids the requirement of expensive

  12. Vibrationally dependent electron-electron interactions in resonant electron transport through single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Erpenbeck, A.; Härtle, R.; Bockstedte, M.; Thoss, M.

    2016-03-01

    We investigate the role of electronic-vibrational coupling in resonant electron transport through single-molecule junctions, taking into account that the corresponding coupling strengths may depend on the charge and excitation state of the molecular bridge. Within an effective-model Hamiltonian approach for a molecule with multiple electronic states, this requires to extend the commonly used model and include vibrationally dependent electron-electron interaction. We use Born-Markov master equation methods and consider selected models to exemplify the effect of the additional interaction on the transport characteristics of a single-molecule junction. In particular, we show that it has a significant influence on local cooling and heating mechanisms, it may result in negative differential resistance, and it may cause pronounced asymmetries in the conductance map of a single-molecule junction.

  13. Nanopore detection of DNA molecules in magnesium chloride solutions.

    PubMed

    Zhang, Yin; Liu, Lei; Sha, Jingjie; Ni, Zhonghua; Yi, Hong; Chen, Yunfei

    2013-01-01

    High translocation speed of a DNA strand through a nanopore is a major bottleneck for nanopore detection of DNA molecules. Here, we choose MgCl2 electrolyte as salt solution to control DNA mobility. Experimental results demonstrate that the duration time for straight state translocation events in 1 M MgCl2 solution is about 1.3 ms which is about three times longer than that for the same DNA in 1 M KCl solution. This is because Mg(2+) ions can effectively reduce the surface charge density of the negative DNA strands and then lead to the decrease of the DNA electrophoretic speed. It is also found that the Mg(2+) ions can induce the DNA molecules binding together and reduce the probability of straight DNA translocation events. The nanopore with small diameter can break off the bound DNA strands and increase the occurrence probability of straight DNA translocation events.

  14. Charged fullerenes as high-capacity hydrogen storage media.

    PubMed

    Yoon, Mina; Yang, Shenyuan; Wang, Enge; Zhang, Zhenyu

    2007-09-01

    Using first-principles calculations within density functional theory, we explore systematically the capacity of charged carbon fullerenes Cn (20 negatively charged fullerenes can be dramatically enhanced to 0.18-0.32 eV, a desirable range for potential room-temperature, near ambient applications. The enhanced binding is delocalized in nature, surrounding the whole surface of a charged fullerene, and is attributed to the polarization of the hydrogen molecules by the high electric field generated near the surface of the charged fullerene. At full hydrogen coverage, these charged fullerenes can gain storage capacities of up to approximately 8.0 wt %. We also find that, contrary to intuitive expectation, fullerenes containing encapsulated metal atoms only exhibit negligible enhancement in the hydrogen binding strength, because the charge donated by the metal atoms is primarily confined inside the fullerene cages. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage media.

  15. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  16. Triboelectric and plasma charging of microparticles

    NASA Astrophysics Data System (ADS)

    Heijmans, L. C. J.; Nijdam, S.

    2016-06-01

    The charge on two sets of 100 μm polystyrene particles has been measured using their acceleration in an externally applied electric field. This allows for the measurement of the individual charge on multiple particles at the same time. It is found that particles will charge each other both positively and negatively due to the triboelectric effect. This leads to a broad particle-charge distribution with positive, negative and neutral particles. The particle charge can be largely removed by applying a plasma over the particle containing surface. After plasma charge removal, the particles are triboelectrically recharged when they come into contact with other materials.

  17. Photoelectric Charging of Dust Particles

    NASA Technical Reports Server (NTRS)

    Sickafoose, A.; Colwell, J.; Horanyi, M.; Robertson, S.; Walch, B.

    1999-01-01

    Laboratory experiments have been performed on the photoelectric charging of dust particles which are either isolated or adjacent to a surface that is also a photoemitter. We find that zinc dust charges to a positive potential of a few volts when isolated in vacuum and that it charges to a negative potential of a few volts when passed by a photoemitting surface. The illumination is an arc lamp emitting wavelengths longer than 200 nm and the emitting surface is a zirconium foil.

  18. Negative necrotaxis.

    PubMed

    Ragot, R

    1993-01-01

    We studied necrotaxis in several strains of protists and compared the reaction of living cells in the vicinity of cells killed by a ruby laser. Negative necrotaxis was observed for the unicellular green alga Euglena gracilis, whereas Chlamydomonas was shown to exhibit positive necrotaxis. The cellular colony Pandorina morum exhibited no reaction to the killing of nearby colonies. Both the colorless cryptomonad Chilomonas paramecium and the ciliate Tetrahymena pyriformis exhibited negative necrotaxis following the lysis of vitally stained specimens of their own species. They also exhibited negative necrotaxis following the lysis of Euglena cells. It was also demonstrated that the cellular content of Euglena cells lysed by heat or by a mechanical procedure acts as a repellent to intact Euglena cells. These results suggest that the negative necrotaxis provoked in Euglena by the laser irradiation is probably due to the chemotactic effect produced by the release of cell content in the extracellular medium. This cell content could, according to its chemical composition, act either as a repellent, an attractant, or be inactive. The sensitivity of cells (specific or nonspecific ion channels or chemoreceptors) are also of prime importance in the process.

  19. Cobalt single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Yang, En-Che; Hendrickson, David N.; Wernsdorfer, Wolfgang; Nakano, Motohiro; Zakharov, Lev N.; Sommer, Roger D.; Rheingold, Arnold L.; Ledezma-Gairaud, Marisol; Christou, George

    2002-05-01

    A cobalt molecule that functions as a single-molecule magnet, [Co4(hmp)4(MeOH)4Cl4], where hmp- is the anion of hydroxymethylpyridine, is reported. The core of the molecule consists of four Co(II) cations and four hmp- oxygen atom ions at the corners of a cube. Variable-field and variable-temperature magnetization data have been analyzed to establish that the molecule has a S=6 ground state with considerable negative magnetoanisotropy. Single-ion zero-field interactions (DSz2) at each cobalt ion are the origin of the negative magnetoanisotropy. A single crystal of the compound was studied by means of a micro-superconducting quantum interference device magnetometer in the range of 0.040-1.0 K. Hysteresis was found in the magnetization versus magnetic field response of this single crystal.

  20. Direct visualization of molecule deprotonation on an insulating surface.

    PubMed

    Kittelmann, Markus; Rahe, Philipp; Gourdon, André; Kühnle, Angelika

    2012-08-28

    Elucidating molecular-scale details of basic reaction steps on surfaces is decisive for a fundamental understanding of molecular reactivity within many fields, including catalysis and on-surface synthesis. Here, the deprotonation of 2,5-dihydroxybenzoic acid (DHBA) deposited onto calcite (101;4) held at room temperature is followed in situ by noncontact atomic force microscopy. After deposition, the molecules form two coexisting phases, a transient striped phase and a stable dense phase. A detailed analysis of high-resolution noncontact atomic force microscopy images indicates the transient striped phase being a bulk-like phase, which requires hydrogen bonds between the carboxylic acid moieties to be formed. With time, the striped phase transforms into the dense phase, which is explained by the deprotonation of the molecules. In the deprotonated state, the molecules can no longer form hydrogen bonds, but anchor to the surface calcium cations with their negatively charged carboxylate group. The deprotonation step is directly confirmed by Kelvin probe force microscopy images that unravel the change in the molecular charge. PMID:22838491

  1. Getting a charge out of transparent tape

    NASA Astrophysics Data System (ADS)

    Harrington, Randal

    2000-01-01

    When two pieces of transparent tape are placed on top of each other (sticky side to nonsticky side) and then separated, it is observed that one piece becomes negatively charged and the other positively charged. The sign of the charge on each piece depends on the brand of tape used. This phenomenon is frequently used to investigate the properties of charge and charged objects in introductory physics courses.

  2. Folding without charges

    PubMed Central

    Kurnik, Martin; Hedberg, Linda; Danielsson, Jens; Oliveberg, Mikael

    2012-01-01

    Surface charges of proteins have in several cases been found to function as “structural gatekeepers,” which avoid unwanted interactions by negative design, for example, in the control of protein aggregation and binding. The question is then if side-chain charges, due to their desolvation penalties, play a corresponding role in protein folding by avoiding competing, misfolded traps? To find out, we removed all 32 side-chain charges from the 101-residue protein S6 from Thermus thermophilus. The results show that the charge-depleted S6 variant not only retains its native structure and cooperative folding transition, but folds also faster than the wild-type protein. In addition, charge removal unleashes pronounced aggregation on longer timescales. S6 provides thus an example where the bias toward native contacts of a naturally evolved protein sequence is independent of charges, and point at a fundamental difference in the codes for folding and intermolecular interaction: specificity in folding is governed primarily by hydrophobic packing and hydrogen bonding, whereas solubility and binding relies critically on the interplay of side-chain charges. PMID:22454493

  3. CHARGE IMBALANCE

    SciTech Connect

    Clarke, John

    1980-09-01

    The purpose of this article is to review the theory of charge imbalance, and to discuss its relevance to a number of experimental situations. We introduce the concepts of quasiparticle charge and charge imbalance, and discuss the generation and detection of charge imbalance by tunneling. We describe the relaxation of the injected charge imbalance by inelastic scattering processes, and show how the Boltzmann equation can be solved to obtain the steady state quasiparticle distribution and the charge relaxation rate. Details are given of experiments to measure charge imbalance and the charge relaxation rate when inelastic scattering is the predominant relaxation mechanism. E