Science.gov

Sample records for negatively regulates human

  1. Human VAP-C negatively regulates hepatitis C virus propagation.

    PubMed

    Kukihara, Hiroshi; Moriishi, Kohji; Taguwa, Shuhei; Tani, Hideki; Abe, Takayuki; Mori, Yoshio; Suzuki, Tetsuro; Fukuhara, Takasuke; Taketomi, Akinobu; Maehara, Yoshihiko; Matsuura, Yoshiharu

    2009-08-01

    Human vesicle-associated membrane protein-associated protein (VAP) subtype A (VAP-A) and subtype B (VAP-B) are involved in the regulation of membrane trafficking, lipid transport and metabolism, and the unfolded protein response. VAP-A and VAP-B consist of the major sperm protein (MSP) domain, the coiled-coil motif, and the C-terminal transmembrane anchor and form homo- and heterodimers through the transmembrane domain. VAP-A and VAP-B interact with NS5B and NS5A of hepatitis C virus (HCV) through the MSP domain and the coiled-coil motif, respectively, and participate in the replication of HCV. VAP-C is a splicing variant of VAP-B consisting of the N-terminal half of the MSP domain of VAP-B followed by the subtype-specific frameshift sequences, and its biological function has not been well characterized. In this study, we have examined the biological functions of VAP-C in the propagation of HCV. VAP-C interacted with NS5B but not with VAP-A, VAP-B, or NS5A in immunoprecipitation analyses, and the expression of VAP-C inhibited the interaction of NS5B with VAP-A or VAP-B. Overexpression of VAP-C impaired the RNA replication of the HCV replicon and the propagation of the HCV JFH1 strain, whereas overexpression of VAP-A and VAP-B enhanced the replication. Furthermore, the expression of VAP-C was observed in various tissues, whereas it was barely detected in the liver. These results suggest that VAP-C acts as a negative regulator of HCV propagation and that the expression of VAP-C may participate in the determination of tissue tropism of HCV propagation.

  2. MERTK as negative regulator of human T cell activation

    PubMed Central

    Cabezón, Raquel; Carrera-Silva, E. Antonio; Flórez-Grau, Georgina; Errasti, Andrea E.; Calderón-Gómez, Elisabeth; Lozano, Juan José; España, Carolina; Ricart, Elena; Panés, Julián; Rothlin, Carla Vanina; Benítez-Ribas, Daniel

    2015-01-01

    The aim of this study was to test the hypothesis whether MERTK, which is up-regulated in human DCs treated with immunosuppressive agents, is directly involved in modulating T cell activation. MERTK is a member of the TAM family and contributes to regulating innate immune response to ACs by inhibiting DC activation in animal models. However, whether MERTK interacts directly with T cells has not been addressed. Here, we show that MERTK is highly expressed on dex-induced human tol-DCs and participates in their tolerogenic effect. Neutralization of MERTK in allogenic MLR, as well as autologous DC–T cell cultures, leads to increased T cell proliferation and IFN-γ production. Additionally, we identify a previously unrecognized noncell-autonomous regulatory function of MERTK expressed on DCs. Mer-Fc protein, used to mimic MERTK on DCs, suppresses naïve and antigen-specific memory T cell activation. This mechanism is mediated by the neutralization of the MERTK ligand PROS1. We find that MERTK and PROS1 are expressed in human T cells upon TCR activation and drive an autocrine proproliferative mechanism. Collectively, these results suggest that MERTK on DCs controls T cell activation and expansion through the competition for PROS1 interaction with MERTK in the T cells. In conclusion, this report identified MERTK as a potent suppressor of T cell response. PMID:25624460

  3. Human Discs Large is a new negative regulator of human immunodeficiency virus-1 infectivity.

    PubMed

    Perugi, Fabien; Muriaux, Delphine; Ramirez, Bertha Cecilia; Chabani, Sabah; Decroly, Etienne; Darlix, Jean-Luc; Blot, Vincent; Pique, Claudine

    2009-01-01

    Human immunodeficiency virus (HIV)-1 replication is positively or negatively regulated through multiple interactions with host cell proteins. We report here that human Discs Large (Dlg1), a scaffold protein recruited beneath the plasma membrane and involved in the assembly of multiprotein complexes, restricts HIV-1 infectivity. The endogenous Dlg1 and HIV-1 Gag polyprotein spontaneously interact in HIV-1-chronically infected T cells. Depleting endogenous Dlg1 in either adherent cells or T cells does not affect Gag maturation, production, or release, but it enhances the infectivity of progeny viruses five- to sixfold. Conversely, overexpression of Dlg1 reduces virus infectivity by approximately 80%. Higher virus infectivity upon Dlg1 depletion correlates with increased Env content in cells and virions, whereas the amount of virus-associated Gag or genomic RNA remains identical. Dlg1 knockdown is also associated with the redistribution and colocalization of Gag and Env toward CD63 and CD82 positive vesicle-like structures, including structures that seem to still be connected to the plasma membrane. This study identifies both a new negative regulator that targets the very late steps of the HIV-1 life cycle, and an assembly pathway that optimizes HIV-1 infectivity.

  4. Human Discs Large Is a New Negative Regulator of Human Immunodeficiency Virus-1 Infectivity

    PubMed Central

    Perugi, Fabien; Muriaux, Delphine; Ramirez, Bertha Cecilia; Chabani, Sabah; Decroly, Etienne; Darlix, Jean-Luc; Blot, Vincent

    2009-01-01

    Human immunodeficiency virus (HIV)-1 replication is positively or negatively regulated through multiple interactions with host cell proteins. We report here that human Discs Large (Dlg1), a scaffold protein recruited beneath the plasma membrane and involved in the assembly of multiprotein complexes, restricts HIV-1 infectivity. The endogenous Dlg1 and HIV-1 Gag polyprotein spontaneously interact in HIV-1-chronically infected T cells. Depleting endogenous Dlg1 in either adherent cells or T cells does not affect Gag maturation, production, or release, but it enhances the infectivity of progeny viruses five- to sixfold. Conversely, overexpression of Dlg1 reduces virus infectivity by ∼80%. Higher virus infectivity upon Dlg1 depletion correlates with increased Env content in cells and virions, whereas the amount of virus-associated Gag or genomic RNA remains identical. Dlg1 knockdown is also associated with the redistribution and colocalization of Gag and Env toward CD63 and CD82 positive vesicle-like structures, including structures that seem to still be connected to the plasma membrane. This study identifies both a new negative regulator that targets the very late steps of the HIV-1 life cycle, and an assembly pathway that optimizes HIV-1 infectivity. PMID:18946087

  5. Necdin, a negative growth regulator, is a novel STAT3 target gene down-regulated in human cancer.

    PubMed

    Haviland, Rachel; Eschrich, Steven; Bloom, Gregory; Ma, Yihong; Minton, Susan; Jove, Richard; Cress, W Douglas

    2011-01-01

    Cytokine and growth factor signaling pathways involving STAT3 are frequently constitutively activated in many human primary tumors, and are known for the transcriptional role they play in controlling cell growth and cell cycle progression. However, the extent of STAT3's reach on transcriptional control of the genome as a whole remains an important question. We predicted that this persistent STAT3 signaling affects a wide variety of cellular functions, many of which still remain to be characterized. We took a broad approach to identify novel STAT3 regulated genes by examining changes in the genome-wide gene expression profile by microarray, using cells expressing constitutively-activated STAT3. Using computational analysis, we were able to define the gene expression profiles of cells containing activated STAT3 and identify candidate target genes with a wide range of biological functions. Among these genes we identified Necdin, a negative growth regulator, as a novel STAT3 target gene, whose expression is down-regulated at the mRNA and protein levels when STAT3 is constitutively active. This repression is STAT3 dependent, since inhibition of STAT3 using siRNA restores Necdin expression. A STAT3 DNA-binding site was identified in the Necdin promoter and both EMSA and chromatin immunoprecipitation confirm binding of STAT3 to this region. Necdin expression has previously been shown to be down-regulated in a melanoma and a drug-resistant ovarian cancer cell line. Further analysis of Necdin expression demonstrated repression in a STAT3-dependent manner in human melanoma, prostate and breast cancer cell lines. These results suggest that STAT3 coordinates expression of genes involved in multiple metabolic and biosynthetic pathways, integrating signals that lead to global transcriptional changes and oncogenesis. STAT3 may exert its oncogenic effect by up-regulating transcription of genes involved in promoting growth and proliferation, but also by down-regulating expression

  6. Thioredoxin reductase-1 negatively regulates HIV-1 transactivating protein Tat-dependent transcription in human macrophages.

    PubMed

    Kalantari, Parisa; Narayan, Vivek; Natarajan, Sathish K; Muralidhar, Kambadur; Gandhi, Ujjawal H; Vunta, Hema; Henderson, Andrew J; Prabhu, K Sandeep

    2008-11-28

    Epidemiological studies suggest a correlation between severity of acquired immunodeficiency syndrome (AIDS) and selenium deficiency, indicating a protective role for this anti-oxidant during HIV infection. Here we demonstrate that thioredoxin reductase-1 (TR1), a selenium-containing pyridine nucleotide-disulfide oxidoreductase that reduces protein disulfides to free thiols, negatively regulates the activity of the HIV-1 encoded transcriptional activator, Tat, in human macrophages. We used a small interfering RNA approach as well as a high affinity substrate of TR1, ebselen, to demonstrate that Tat-dependent transcription and HIV-1 replication were significantly increased in human macrophages when TR1 activity was reduced. The increase in HIV-1 replication in TR1 small interfering RNA-treated cells was independent of the redox-sensitive transcription factor, NF-kappaB. These studies indicate that TR-1 acts as a negative regulator of Tat-dependent transcription. Furthermore, in vitro biochemical assays with recombinant Tat protein confirmed that TR1 targets two disulfide bonds within the Cys-rich motif required for efficient HIV-1 transactivation. Increasing TR1 expression along with other selenoproteins by supplementing with selenium suggests a potential inexpensive adjuvant therapy for HIV/AIDS patients.

  7. SIGIRR participates in negative regulation of LPS response and tolerance in human bladder epithelial cells.

    PubMed

    Li, Dan; Zhang, Xin; Chen, Baiyi

    2015-12-03

    The innate immune response of urinary tract is critically important in the defense to microbial attack. Toll-like receptor 4 (TLR4) controls initial mucosal response to uropathogenic Escherichia coli (UPEC). However, excessive and dysfunctional TLR signaling may result in severe inflammation and inappropriate tissue damage. Previous studies have demonstrated that single immunoglobulin IL-1R-related receptor/Toll IL-1 receptor 8 (SIGIRR/TIR8) is a member of the toll-interleukin-1 receptor (TIR) family that can negatively modulate TLR4 mediated signaling, but its role in the innate immunity of urinary tract infection remains incompletely defined. In this study, we investigated its cellular distribution and mechanisms involved within the human bladder epithelial cells after LPS stimulation. Immunostaining, reverse transcription PCR and Western blot results showed that SIGIRR was constitutively expressed in the human bladder epithelial cell lines and was downregulated after LPS stimulation. To further define the role of SIGIRR, cells were transiently transfected with SIGIRR siRNA and stimulated with LPS. SIGIRR gene silencing augmented chemokine expression in response to LPS, as indicated by increased levels of IL-6 and IL-8 secretions in the supernatants compared with negative control siRNA. Furthermore, LPS tolerance, a protective mechanism against second LPS stimulation, was significantly reduced in SIGIRR siRNA transfected cells. Moreover, transient gene silencing augmented LPS-induced NF-κB and MAPK activation. In conclusion, our results suggest that SIGIRR plays an important role in the negative regulation of LPS response and tolerance in human bladder epithelial cells, possibly through its impact on TLR-mediated signaling.

  8. Cardiovascular regulation in humans in response to oscillatory lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Levenhagen, D. K.; Evans, J. M.; Wang, M.; Knapp, C. F.

    1994-01-01

    The frequency response characteristics of human cardiovascular regulation during hypotensive stress have not been determined. We therefore exposed 10 male volunteers to seven frequencies (0.004-0.1 Hz) of oscillatory lower body negative pressure (OLBNP; 0-50 mmHg). Fourier spectra of arterial pressure (AP), central venous pressure (CVP), stroke volume (SV), cardiac output (CO), heart rate (HR), and total peripheral resistance (TPR) were determined and first harmonic mean, amplitude, and phase angles with respect to OLBNP are presented. AP was relatively well regulated as demonstrated by small oscillations in half amplitude (3.5 mmHg) that were independent of OLBNP frequency and similar to unstressed control spectra. Due to the biomechanics of the system, the magnitudes of oscillations in calf circumference (CC) and CVP decreased with increasing frequency; therefore, we normalized responses by these indexes of the fluid volume shifted. The ratios of oscillations in AP to oscillations in CC increased by an order of magnitude, whereas oscillations in CVP to oscillations in CC and oscillations in AP to oscillations in CVP both tripled between 0.004 and 0.1 Hz. Therefore, even though the amount of fluid shifted by OLBNP decreased with increasing frequency, the magnitude of both CVP and AP oscillations per volume of fluid shifted increased (peaking at 0.08 Hz). The phase relationships between variables, particularly the increasing lags in SV and TPR, but not CVP, indicated that efferent responses with lags of 5-6 s could account for the observed responses. We conclude that, at frequencies below 0.02 Hz, the neural system of humans functioned optimally in regulating AP; OLBNP-induced decreases in SV (by as much as 50%) were counteracted by appropriate oscillations in HR and TPR responses. As OLBNP frequency increased, SV, TPR, and HR oscillations increasingly lagged the input and became less optimally timed for AP regulation.

  9. Cardiovascular regulation in humans in response to oscillatory lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Levenhagen, D. K.; Evans, J. M.; Wang, M.; Knapp, C. F.

    1994-01-01

    The frequency response characteristics of human cardiovascular regulation during hypotensive stress have not been determined. We therefore exposed 10 male volunteers to seven frequencies (0.004-0.1 Hz) of oscillatory lower body negative pressure (OLBNP; 0-50 mmHg). Fourier spectra of arterial pressure (AP), central venous pressure (CVP), stroke volume (SV), cardiac output (CO), heart rate (HR), and total peripheral resistance (TPR) were determined and first harmonic mean, amplitude, and phase angles with respect to OLBNP are presented. AP was relatively well regulated as demonstrated by small oscillations in half amplitude (3.5 mmHg) that were independent of OLBNP frequency and similar to unstressed control spectra. Due to the biomechanics of the system, the magnitudes of oscillations in calf circumference (CC) and CVP decreased with increasing frequency; therefore, we normalized responses by these indexes of the fluid volume shifted. The ratios of oscillations in AP to oscillations in CC increased by an order of magnitude, whereas oscillations in CVP to oscillations in CC and oscillations in AP to oscillations in CVP both tripled between 0.004 and 0.1 Hz. Therefore, even though the amount of fluid shifted by OLBNP decreased with increasing frequency, the magnitude of both CVP and AP oscillations per volume of fluid shifted increased (peaking at 0.08 Hz). The phase relationships between variables, particularly the increasing lags in SV and TPR, but not CVP, indicated that efferent responses with lags of 5-6 s could account for the observed responses. We conclude that, at frequencies below 0.02 Hz, the neural system of humans functioned optimally in regulating AP; OLBNP-induced decreases in SV (by as much as 50%) were counteracted by appropriate oscillations in HR and TPR responses. As OLBNP frequency increased, SV, TPR, and HR oscillations increasingly lagged the input and became less optimally timed for AP regulation.

  10. SREBP-2 negatively regulates FXR-dependent transcription of FGF19 in human intestinal cells.

    PubMed

    Miyata, Masaaki; Hata, Tatsuya; Yamazoe, Yasushi; Yoshinari, Kouichi

    2014-01-10

    Sterol regulatory element-binding protein-2 (SREBP-2) is a basic helix-loop-helix-leucine zipper transcription factor that positively regulates transcription of target genes involved in cholesterol metabolism. In the present study, we have investigated a possible involvement of SREBP-2 in human intestinal expression of fibroblast growth factor (FGF)19, which is an endocrine hormone involved in the regulation of lipid and glucose metabolism. Overexpression of constitutively active SREBP-2 decreased FGF19 mRNA levels in human colon-derived LS174T cells. In reporter assays, active SREBP-2 overexpression suppressed GW4064/FXR-mediated increase in reporter activities in regions containing the IR-1 motif (+848 to +5200) in the FGF19 gene. The suppressive effect disappeared in reporter activities in the region containing the IR-1 motif when the mutation was introduced into the IR-1 motif. In electrophoretic mobility shift assays, binding of the FXR/retinoid X receptor α heterodimer to the IR-1 motif was attenuated by adding active SREBP-2, but SREBP-2 binding to the IR-1 motif was not observed. In chromatin immunoprecipitation assays, specific binding of FXR to the IR-1-containing region of the FGF19 gene (+3214 to +3404) was increased in LS174T cells by treatment with cholesterol and 25-hydroxycholesterol. Specific binding of SREBP-2 to FXR was observed in glutathione-S-transferase (GST) pull-down assays. These results suggest that SREBP-2 negatively regulates the FXR-mediated transcriptional activation of the FGF19 gene in human intestinal cells.

  11. Osteocalcin as a negative regulator of serum leptin concentration in humans: insight from triathlon competitions.

    PubMed

    Guadalupe-Grau, Amelia; Ara, Ignacio; Dorado, Cecilia; Vicente-Rodríguez, German; Perez-Gomez, Jorge; Cabrero, Javier Chavarren; Serrano-Sanchez, José A; Santana, Alfredo; Calbet, Jose A L

    2010-10-01

    Osteocalcin is a hormone produced by osteoblasts which acts as a negative regulator of fat mass, protecting against diet induced obesity and insulin resistance in rodents. To determine if an acute increase in osteocalcin concentration is associated with opposed changes in circulating leptin levels and insulin resistance we studied 15 middle and long distance male triathletes, (age 32.1 ± 6.9 years), before and 48 h after an Olympic (OT) or an Ironman (IT) triathlon competition. Muscle power, anaerobic capacity, body composition (dual-energy X-ray absorptiometry), and serum concentrations of testosterone, dihydrotestosterone, osteocalcin, leptin, glucose, insulin and insulin resistance (HOMA) were determined pre- and post-race. Pre- and 48 h post-race total and regional lean body mass was not altered, but fat mass was similarly increased (~250 g) 48 h after the competitions. This elicited an increase in plasma leptin of 33% after the IT while it remained unchanged after the OT, likely due to a 25% increase in plasma osteocalcin which occurred only after the OT (all p < 0.05). Post-race HOMA remained unchanged in OT and IT. Performance was normalized 48 h after the competitions, with the exception of a slightly lower jumping capacity after the IT. Serum testosterone concentration tended to decrease by 10% after the IT whilst dihydrotestosterone was reduced by 24% after the IT. In conclusion, an acute increase in serum osteocalcin concentration blunts the expected increase of serum leptin concentration that should occur with fat mass gain. This study provides evidence for osteocalcin as a negative regulator of serum leptin in humans.

  12. Glyceraldehyde 3-phosphate dehydrogenase negatively regulates human immunodeficiency virus type 1 infection

    PubMed Central

    2012-01-01

    Background Host proteins are incorporated inside human immunodeficiency virus type 1 (HIV-1) virions during assembly and can either positively or negatively regulate HIV-1 infection. Although the identification efficiency of host proteins is improved by mass spectrometry, how those host proteins affect HIV-1 replication has not yet been fully clarified. Results In this study, we show that virion-associated glyceraldehyde 3-phosphate dehydrogenase (GAPDH) does not allosterically inactivate HIV-1 reverse transcriptase (RT) but decreases the efficiency of reverse transcription reactions by decreasing the packaging efficiency of lysyl-tRNA synthetase (LysRS) and tRNALys3 into HIV-1 virions. Two-dimensional (2D) gel electrophoresis demonstrated that some isozymes of GAPDH with different isoelectric points were expressed in HIV-1-producing CEM/LAV-1 cells, and a proportion of GAPDH was selectively incorporated into the virions. Suppression of GAPDH expression by RNA interference in CEM/LAV-1 cells resulted in decreased GAPDH packaging inside the virions, and the GAPDH-packaging-defective virus maintained at least control levels of viral production but increased the infectivity. Quantitative analysis of reverse transcription products indicated that the levels of early cDNA products of the GAPDH-packaging-defective virus were higher than those of the control virus owing to the higher packaging efficiencies of LysRS and tRNALys3 into the virions rather than the GAPDH-dependent negative allosteric modulation for RT. Furthermore, immunoprecipitation assay using an anti-GAPDH antibody showed that GAPDH directly interacted with Pr55gag and p160gag-pol and the overexpression of LysRS in HIV-1-producing cells resulted in a decrease in the efficiency of GAPDH packaging in HIV particles. In contrast, the viruses produced from cells expressing a high level of GAPDH showed decreased infectivity in TZM-bl cells and reverse transcription efficiency in TZM-bl cells and peripheral blood

  13. Lipopolysaccharide-binding protein is a negative regulator of adipose tissue browning in mice and humans.

    PubMed

    Gavaldà-Navarro, Aleix; Moreno-Navarrete, José M; Quesada-López, Tania; Cairó, Montserrat; Giralt, Marta; Fernández-Real, José M; Villarroya, Francesc

    2016-10-01

    Adipocyte lipopolysaccharide-binding protein (LBP) biosynthesis is associated with obesity-induced adipose tissue dysfunction. Our purpose was to study the role of LBP in regulating the browning of adipose tissue. Adult mice were maintained at 4°C for 3 weeks or treated with the β3-adrenergic agonist, CL316,243, for 1 week to induce the browning of white fat. Precursor cells from brown and white adipose tissues were cultured under differentiation-inducing conditions to yield brown and beige/brite adipocytes, respectively. In vitro, Lbp was knocked down in 3T3-L1 adipocytes, and cells were treated with recombinant LBP or co-cultured in transwells with control 3T3-L1 adipocytes. Wild-type and Lbp-null mice, fed a standard or high fat diet (HFD) for 15 weeks, were also used in investigations. In humans, subcutaneous and visceral adipose tissue samples were obtained from a cohort of morbidly obese participants. The induction of white fat browning by exposure of mice to cold or CL316,243 treatment was strongly associated with decreased Lbp mRNA expression in white adipose tissue. The acquisition of the beige/brite phenotype in cultured cells was associated with downregulation of Lbp. Moreover, silencing of Lbp induced the expression of brown fat-related genes in adipocytes, whereas LBP treatment reversed this effect. Lbp-null mice exhibited the spontaneous induction of subcutaneous adipose tissue browning, as evidenced by a remarkable increase in Ucp1 and Dio2 gene expression and the appearance of multivacuolar adipocyte clusters. The amount of brown adipose tissue, and brown adipose tissue activity were also increased in Lbp-null mice. These changes were associated with decreased weight gain in Lbp-null mice and protection against HFD-induced inflammatory responses, as shown by reduced IL-6 levels. However, rather than improving glucose homeostasis, these effects led to glucose intolerance and insulin resistance. LBP is identified as a negative regulator of the

  14. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling.

    PubMed

    Carty, Michael; Goodbody, Rory; Schröder, Martina; Stack, Julianne; Moynagh, Paul N; Bowie, Andrew G

    2006-10-01

    Toll-like receptors discriminate between different pathogen-associated molecules and activate signaling cascades that lead to immune responses. The specificity of Toll-like receptor signaling occurs by means of adaptor proteins containing Toll-interleukin 1 receptor (TIR) domains. Activating functions have been assigned to four TIR adaptors: MyD88, Mal, TRIF and TRAM. Here we characterize a fifth TIR adaptor, SARM, as a negative regulator of TRIF-dependent Toll-like receptor signaling. Expression of SARM blocked gene induction 'downstream' of TRIF but not of MyD88. SARM associated with TRIF, and 'knockdown' of endogenous SARM expression by interfering RNA led to enhanced TRIF-dependent cytokine and chemokine induction. Thus, the fifth mammalian TIR adaptor SARM is a negative regulator of Toll-like receptor signaling.

  15. CCAAT/enhancer binding protein β negatively regulates progesterone receptor expression in human glioblastoma cells.

    PubMed

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Camacho-Arroyo, Ignacio

    2017-01-05

    Many progesterone (P4) actions are mediated by its intracellular receptor (PR), which has two isoforms (PR-A and PR-B) differentially transcribed from separate promoters of a single gene. In glioblastomas, the most frequent and aggressive brain tumors, PR-B is the predominant isoform. In an in silico analysis we showed putative CCAAT/Enhancer Binding Protein (C/EBP) binding sites at PR-B promoter. We evaluated the role of C/EBPβ in PR-B expression regulation in glioblastoma cell lines, which expressed different ratios of PR and C/EBPβ isoforms (LAP1, LAP2, and LIP). ChIP assays showed a significant basal binding of C/EBPβ, specific protein 1 (Sp1) and estrogen receptor alpha (ERα) to PR-B promoter. C/EBPβ knockdown increased PR-B expression and treatment with estradiol (E2) reduced C/EBPβ binding to the promoter and up-regulated PR-B expression. P4 induced genes were differently regulated when CEBP/β was silenced. These data show that C/EBPβ negatively regulates PR-B expression in glioblastoma cells.

  16. CD84 negatively regulates IgE high affinity receptor signaling in human mast cells

    PubMed Central

    Álvarez-Errico, Damiana; Oliver-Vila, Irene; Aínsua-Enrich, Erola; Gilfillan, Alasdair M.; Picado, César; Sayós, Joan; Martín, Margarita

    2011-01-01

    CD84 is a self-binding receptor from the CD150 family that is broadly expressed in hematopoietic cells. It has been described that the adaptors SAP and EAT-2 are critical for CD150 family members signaling and function. We observed that human mast cells express CD84 but lack SAP or EAT-2, that CD84 is tyrosine phosphorylated upon FcεRI engagement, and that the release of granule contents is reduced when FcεRI is co-engaged with CD84 in LAD2 and human CD34+-derived mast cells (huMCs). In addition, we observed that the release of IL-8 and GM-CSF was also reduced in FcεRI/CD84 costimulated cells as compared to FcεRI/Ig control. In order to understand how CD84 down-regulates FcεRI-mediated function, we analyzed signaling pathways affected by CD84 in human mast cells. Our results showed that CD84 dampens FcεRI-mediated calcium mobilization after its co-crosslinking with the receptor. Furthermore, FcεRI-mediated Syk-LAT-PLCγ1 axis activity is down-regulated after CD84 stimulation, compared to FcεRI/Ig control. The inhibitory kinase Fes phosphorylates mainly the inhibitory motif for CD84. Moreover Fes, which has been described to become phosphorylated after substrate binding, also gets phosphorylated when co-expressed with CD84. Consistently, Fes was observed to be more phosphorylated after CD84 and FcεRI co-crosslinking. The phosphorylation of the protein phosphatase SHP-1 also increases after CD84 and FcεRI coengagement. Taken together, our results show that CD84 is highly expressed in mast cells and that it contributes to the regulation of FcεRI signaling in a SAP and EAT-2 independent and Fes and SHP-1 dependent mechanisms. PMID:22068234

  17. FRMD6 inhibits human glioblastoma growth and progression by negatively regulating activity of receptor tyrosine kinases

    PubMed Central

    Xu, Yin; Wang, Kaiqiang; Yu, Qin

    2016-01-01

    FRMD6 is an Ezrin/Radixin/Moesin (ERM) family protein and a human homologue of Drosophila expanded (ex). Ex functions in parallel of Drosophila merlin at upstream of the Hippo signaling pathway that controls proliferation, apoptosis, tissue regeneration, and tumorigenesis. Even though the core kinase cascade (MST1/2-Lats1/2-YAP/TAZ) of the Hippo pathway has been well established, its upstream regulators are not well understood. Merlin promotes activation of the Hippo pathway. However, the effect of FRMD6 on the Hippo pathway is controversial. Little is known about how FRMD6 functions and the potential role of FRMD in gliomagenesis and glioblastoma (GBM) progression. We demonstrate for the first time that FRMD6 is down-regulated in human GBM cells and tissues and that increased FRMD6 expression inhibits whereas FRMD6 knockdown promotes GBM cell proliferation/invasion in vitro and GBM growth/progression in vivo. Furthermore, we demonstrate that unlike increased expression of merlin, which enhances the stress induced activation of the Hippo pathway, increased FRMD6 expression displays little effect on the pathway. In contrast, we show that FRMD6 inhibits activation of a couple of receptor tyrosine kinases (RTKs) including c-Met and PDGFR and their downstream Erk and AKT kinases. Moreover, we show that expression of constitutively active c-Met, the TPR-Met fusion protein, largely reverses the anti-GBM effect of FRMD6 in vivo, suggesting that FRMD6 functions at least partially through inhibiting activity of RTKs especially c-Met. These results establish a novel function of FRMD6 in inhibiting human GBM growth and progression and uncover a novel mechanism by which FRMD6 exerts its anti-GBM activity. PMID:27661120

  18. Eos Negatively Regulates Human γ-globin Gene Transcription during Erythroid Differentiation

    PubMed Central

    Yu, Hai-Chuan; Zhao, Hua-Lu; Wu, Zhi-Kui; Zhang, Jun-Wu

    2011-01-01

    Background Human globin gene expression is precisely regulated by a complicated network of transcription factors and chromatin modifying activities during development and erythropoiesis. Eos (Ikaros family zinc finger 4, IKZF4), a member of the zinc finger transcription factor Ikaros family, plays a pivotal role as a repressor of gene expression. The aim of this study was to examine the role of Eos in globin gene regulation. Methodology/Principal Findings Western blot and quantitative real-time PCR detected a gradual decrease in Eos expression during erythroid differentiation of hemin-induced K562 cells and Epo-induced CD34+ hematopoietic stem/progenitor cells (HPCs). DNA transfection and lentivirus-mediated gene transfer demonstrated that the enforced expression of Eos significantly represses the expression of γ-globin, but not other globin genes, in K562 cells and CD34+ HPCs. Consistent with a direct role of Eos in globin gene regulation, chromatin immunoprecipitaion and dual-luciferase reporter assays identified three discrete sites located in the DNase I hypersensitivity site 3 (HS3) of the β-globin locus control region (LCR), the promoter regions of the Gγ- and Aγ- globin genes, as functional binding sites of Eos protein. A chromosome conformation capture (3C) assay indicated that Eos may repress the interaction between the LCR and the γ-globin gene promoter. In addition, erythroid differentiation was inhibited by enforced expression of Eos in K562 cells and CD34+ HPCs. Conclusions/Significance Our results demonstrate that Eos plays an important role in the transcriptional regulation of the γ-globin gene during erythroid differentiation. PMID:21829552

  19. Eos negatively regulates human γ-globin gene transcription during erythroid differentiation.

    PubMed

    Yu, Hai-Chuan; Zhao, Hua-Lu; Wu, Zhi-Kui; Zhang, Jun-Wu

    2011-01-01

    Human globin gene expression is precisely regulated by a complicated network of transcription factors and chromatin modifying activities during development and erythropoiesis. Eos (Ikaros family zinc finger 4, IKZF4), a member of the zinc finger transcription factor Ikaros family, plays a pivotal role as a repressor of gene expression. The aim of this study was to examine the role of Eos in globin gene regulation. Western blot and quantitative real-time PCR detected a gradual decrease in Eos expression during erythroid differentiation of hemin-induced K562 cells and Epo-induced CD34+ hematopoietic stem/progenitor cells (HPCs). DNA transfection and lentivirus-mediated gene transfer demonstrated that the enforced expression of Eos significantly represses the expression of γ-globin, but not other globin genes, in K562 cells and CD34+ HPCs. Consistent with a direct role of Eos in globin gene regulation, chromatin immunoprecipitaion and dual-luciferase reporter assays identified three discrete sites located in the DNase I hypersensitivity site 3 (HS3) of the β-globin locus control region (LCR), the promoter regions of the Gγ- and Aγ- globin genes, as functional binding sites of Eos protein. A chromosome conformation capture (3C) assay indicated that Eos may repress the interaction between the LCR and the γ-globin gene promoter. In addition, erythroid differentiation was inhibited by enforced expression of Eos in K562 cells and CD34+ HPCs. Our results demonstrate that Eos plays an important role in the transcriptional regulation of the γ-globin gene during erythroid differentiation.

  20. CHIP promotes human telomerase reverse transcriptase degradation and negatively regulates telomerase activity.

    PubMed

    Lee, Ji Hoon; Khadka, Prabhat; Baek, Seung Han; Chung, In Kwon

    2010-12-31

    The maintenance of eukaryotic telomeres requires telomerase, which is minimally composed of a telomerase reverse transcriptase (TERT) and an associated RNA component. Telomerase activity is tightly regulated by expression of human (h) TERT at both the transcriptional and post-translational levels. The Hsp90 and p23 molecular chaperones have been shown to associate with hTERT for the assembly of active telomerase. Here, we show that CHIP (C terminus of Hsc70-interacting protein) physically associates with hTERT in the cytoplasm and regulates the cellular abundance of hTERT through a ubiquitin-mediated degradation. Overexpression of CHIP prevents nuclear translocation of hTERT and promotes hTERT degradation in the cytoplasm, thereby inhibiting telomerase activity. In contrast, knockdown of endogenous CHIP results in the stabilization of cytoplasmic hTERT. However, it does not affect the level of nuclear hTERT and has no effect on telomerase activity and telomere length. We further show that the binding of CHIP and Hsp70 to hTERT inhibits nuclear translocation of hTERT by dissociating p23. However, Hsp90 binding to hTERT was not affected by CHIP overexpression. These results suggest that CHIP can remodel the hTERT-chaperone complexes. Finally, the amount of hTERT associated with CHIP peaks in G(2)/M phases but decreases during S phase, suggesting a cell cycle-dependent regulation of hTERT. Our data suggest that CHIP represents a new pathway for modulating telomerase activity in cancer.

  1. Melatonin as a negative mitogenic hormonal regulator of human prostate epithelial cell growth: potential mechanisms and clinical significance.

    PubMed

    Tam, Chun W; Chan, Kwok W; Liu, Vincent W S; Pang, Bo; Yao, Kwok-Ming; Shiu, Stephen Y W

    2008-11-01

    Circannual variation in the human serum levels of prostate-specific antigen, a growth marker of the prostate gland, has been reported recently. The present study was conducted to investigate the role of the photoperiodic hormone melatonin (MLT) and its membrane receptors in the modulation of human prostate growth. Expression of MT(1) and MT(2) receptors was detected in benign human prostatic epithelial tissues and RWPE-1 cells. MLT and 2-iodomelatonin inhibited RWPE-1 cell proliferation and up-regulated p27(Kip1) gene and protein expression in the cells. The effects of MLT were blocked by the nonselective MT(1)/MT(2) receptor antagonist luzindole, but were not affected by the selective MT(2) receptor antagonist 4-phenyl-2-propionamidotetraline. Of note, the antiproliferative action of MLT on benign prostate epithelial RWPE-1 cells was effected via increased p27(Kip1) gene transcription through MT(1) receptor-mediated activation of protein kinase A (PKA) and protein kinase C (PKC) in parallel, a signaling process which has previously been demonstrated in 22Rv1 prostate cancer cells. Taken together, the demonstration of the MT(1)/PKA+PKC/p27(Kip1) antiproliferative pathway in benign and malignant prostate epithelial cell lines indicated the potential importance of this MLT receptor-mediated signaling mechanism in growth regulation of the human prostate gland in health and disease. Collectively, our data support the hypothesis that MLT may function as a negative mitogenic hormonal regulator of human prostate epithelial cell growth.

  2. Negative Human Interaction

    ERIC Educational Resources Information Center

    Brannan, John M.

    1972-01-01

    This study is an effort to examine man's most negative experiences as he perceives them. The results indicated that teachers were involved more often than any other person in the most negative experience reported. Improved human relations skills are clearly indicated for those in higher education as well as in public schools. (Author)

  3. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation

    PubMed Central

    Cui, Guoliang; Qin, Xia; Wu, Lili; Zhang, Yuebo; Sheng, Xiaoyan; Yu, Qiwen; Sheng, Hongguang; Xi, Beili; Zhang, Jingwu Z.; Zang, Ying Qin

    2011-01-01

    Th17 cells are a subset of CD4+ T cells with an important role in clearing certain bacterial and fungal pathogens. However, they have also been implicated in autoimmune diseases such as multiple sclerosis. Exposure of naive CD4+ T cells to IL-6 and TGF-β leads to Th17 cell differentiation through a process in which many proteins have been implicated. We report here that ectopic expression of liver X receptor (LXR) inhibits Th17 polarization of mouse CD4+ T cells, while LXR deficiency promotes Th17 differentiation in vitro. LXR activation in mice ameliorated disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, whereas LXR deficiency exacerbated disease. Further analysis revealed that Srebp-1, which is encoded by an LXR target gene, mediated the suppression of Th17 differentiation by binding to the E-box element on the Il17 promoter, physically interacting with aryl hydrocarbon receptor (Ahr) and inhibiting Ahr-controlled Il17 transcription. The putative active site (PAS) domain of Ahr and the N-terminal acidic region of Srebp-1 were essential for this interaction. Additional analyses suggested that similar LXR-dependent mechanisms were operational during human Th17 differentiation in vitro. This study reports what we believe to be a novel signaling pathway underlying LXR-mediated regulation of Th17 cell differentiation and autoimmunity. PMID:21266776

  4. Primary Cilia Negatively Regulate Melanogenesis in Melanocytes and Pigmentation in a Human Skin Model.

    PubMed

    Choi, Hyunjung; Shin, Ji Hyun; Kim, Eun Sung; Park, So Jung; Bae, Il-Hong; Jo, Yoon Kyung; Jeong, In Young; Kim, Hyoung-June; Lee, Youngjin; Park, Hea Chul; Jeon, Hong Bae; Kim, Ki Woo; Lee, Tae Ryong; Cho, Dong-Hyung

    2016-01-01

    The primary cilium is an organelle protruding from the cell body that senses external stimuli including chemical, mechanical, light, osmotic, fluid flow, and gravitational signals. Skin is always exposed to the external environment and responds to external stimuli. Therefore, it is possible that primary cilia have an important role in skin. Ciliogenesis was reported to be involved in developmental processes in skin, such as keratinocyte differentiation and hair formation. However, the relation between skin pigmentation and primary cilia is largely unknown. Here, we observed that increased melanogenesis in melanocytes treated with a melanogenic inducer was inhibited by a ciliogenesis inducer, cytochalasin D, and serum-free culture. However, these inhibitory effects disappeared in GLI2 knockdown cells. In addition, activation of sonic hedgehog (SHH)-smoothened (Smo) signaling pathway by a Smo agonist, SAG inhibited melanin synthesis in melanocytes and pigmentation in a human skin model. On the contrary, an inhibitor of primary cilium formation, ciliobrevin A1, activated melanogenesis in melanocytes. These results suggest that skin pigmentation may be regulated partly by the induction of ciliogenesis through Smo-GLI2 signaling.

  5. Primary Cilia Negatively Regulate Melanogenesis in Melanocytes and Pigmentation in a Human Skin Model

    PubMed Central

    Kim, Eun Sung; Park, So Jung; Bae, Il-Hong; Jo, Yoon Kyung; Jeong, In Young; Kim, Hyoung-June; Lee, Youngjin; Park, Hea Chul; Jeon, Hong Bae; Kim, Ki Woo; Lee, Tae Ryong; Cho, Dong-Hyung

    2016-01-01

    The primary cilium is an organelle protruding from the cell body that senses external stimuli including chemical, mechanical, light, osmotic, fluid flow, and gravitational signals. Skin is always exposed to the external environment and responds to external stimuli. Therefore, it is possible that primary cilia have an important role in skin. Ciliogenesis was reported to be involved in developmental processes in skin, such as keratinocyte differentiation and hair formation. However, the relation between skin pigmentation and primary cilia is largely unknown. Here, we observed that increased melanogenesis in melanocytes treated with a melanogenic inducer was inhibited by a ciliogenesis inducer, cytochalasin D, and serum-free culture. However, these inhibitory effects disappeared in GLI2 knockdown cells. In addition, activation of sonic hedgehog (SHH)-smoothened (Smo) signaling pathway by a Smo agonist, SAG inhibited melanin synthesis in melanocytes and pigmentation in a human skin model. On the contrary, an inhibitor of primary cilium formation, ciliobrevin A1, activated melanogenesis in melanocytes. These results suggest that skin pigmentation may be regulated partly by the induction of ciliogenesis through Smo-GLI2 signaling. PMID:27941997

  6. LKB1 tumor suppressor and salt-inducible kinases negatively regulate human T-cell leukemia virus type 1 transcription

    PubMed Central

    2013-01-01

    Background Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Treatment options are limited and prophylactic agents are not available. We have previously demonstrated an essential role for CREB-regulating transcriptional coactivators (CRTCs) in HTLV-1 transcription. Results In this study we report on the negative regulatory role of LKB1 tumor suppressor and salt-inducible kinases (SIKs) in the activation of HTLV-1 long terminal repeats (LTR) by the oncoprotein Tax. Activation of LKB1 and SIKs effectively blunted Tax activity in a phosphorylation-dependent manner, whereas compromising these kinases, but not AMP-dependent protein kinases, augmented Tax function. Activated LKB1 and SIKs associated with Tax and suppressed Tax-induced LTR activation by counteracting CRTCs and CREB. Enforced expression of LKB1 or SIK1 in cells transfected with HTLV-1 molecular clone pX1MT repressed proviral transcription. On the contrary, depletion of LKB1 in pX1MT-transfected cells and in HTLV-1-transformed T cells boosted the expression of Tax. Treatment of HTLV-1 transformed cells with metformin led to LKB1/SIK1 activation, reduction in Tax expression, and inhibition of cell proliferation. Conclusions Our findings revealed a new function of LKB1 and SIKs as negative regulators of HTLV-1 transcription. Pharmaceutical activation of LKB1 and SIKs might be considered as a new strategy in anti-HTLV-1 and anti-ATL therapy. PMID:23577667

  7. Extracellular nucleotide inhibits cell proliferation and negatively regulates Toll-like receptor 4 signalling in human progenitor endothelial cells.

    PubMed

    Xiao, Zhilin; Yang, Mei; Fang, Li; Lv, Qingshan; He, Qing; Deng, Minjie; Liu, Xueting; Chen, Xiaobin; Chen, Meifang; Xie, Xiumei; Hu, Jinyue

    2012-07-01

    Extracellular nucleotides mediate a wide range of physiological effects by interacting with plasma membrane P2 purinergic receptors. P2 receptors are expressed in certain kinds of stem cells, and function to induce cytokine expression and to modulate cell proliferation. We have analysed the expression and the function of P2 receptors in human umbilical cord blood-derived EPCs (endothelial progenitor cells). EPCs expressed P2X4,6,7 and P2Y2,4,11,13,14 receptors and extracellular ATP inhibited EPCs proliferation. As in a previous study, EPCs expressed functional TLR4 (Toll-like receptor 4) and activation of TLR4 by LPS (lipopolysaccharide) evoked a pro-inflammatory immune response. When human EPCs were stimulated with LPS and nucleotides, ATP or UTP inhibited the expression of pro-inflammatory cytokines including MCP-1 (monocyte chemoattractant protein-1), IFNα (interferon α), TNFα (tumour necrosis factor α) and adhesion molecule VCAM-1 (vascular cell adhesion molecule 1) induced by LPS. ATP and UTP also down-regulated the gene expression of TLR4, CD14 and MyD88 (myeloid differentiation factor 88), a TLR adaptor molecule, and protein expression of CD14 and MyD88. Moreover, the phosphorylation of NF-κB (nuclear factor κB) p65 induced by TLR4 activation was inhibited partly by ATP or UTP at concentrations of 1-5 μM. These results suggest that extracellular nucleotides negatively regulate EPCs proliferation and TLR4 signalling.

  8. Identification of a novel human MD-2 splice variant that negatively regulates Lipopolysaccharide-induced TLR4 signaling.

    PubMed

    Gray, Pearl; Michelsen, Kathrin S; Sirois, Cherilyn M; Lowe, Emily; Shimada, Kenichi; Crother, Timothy R; Chen, Shuang; Brikos, Constantinos; Bulut, Yonca; Latz, Eicke; Underhill, David; Arditi, Moshe

    2010-06-01

    Myeloid differentiation factor 2 (MD-2) is a secreted gp that assembles with TLR4 to form a functional signaling receptor for bacterial LPS. In this study, we have identified a novel alternatively spliced isoform of human MD-2, termed MD-2 short (MD-2s), which lacks the region encoded by exon 2 of the MD-2 gene. Similar to MD-2, MD-2s is glycosylated and secreted. MD-2s also interacted with LPS and TLR4, but failed to mediate LPS-induced NF-kappaB activation and IL-8 production. We show that MD-2s is upregulated upon IFN-gamma, IL-6, and TLR4 stimulation and negatively regulates LPS-mediated TLR4 signaling. Furthermore, MD-2s competitively inhibited binding of MD-2 to TLR4. Our study pinpoints a mechanism that may be used to regulate TLR4 activation at the onset of signaling and identifies MD-2s as a potential therapeutic candidate to treat human diseases characterized by an overly exuberant or chronic immune response to LPS.

  9. Dihydropyrimidine dehydrogenase (DPD) expression is negatively regulated by certain microRNAs in human lung tissues.

    PubMed

    Hirota, Takeshi; Date, Yuko; Nishibatake, Yu; Takane, Hiroshi; Fukuoka, Yasushi; Taniguchi, Yuuji; Burioka, Naoto; Shimizu, Eiji; Nakamura, Hiroshige; Otsubo, Kenji; Ieiri, Ichiro

    2012-07-01

    Dihydropyrimidine dehydrogenase (DPD) is important to the antitumor effect of 5-fluorouracil (5-FU). DPD gene (DPYD) expression in tumors is correlated with sensitivity to 5-FU. Because the 5-FU accumulated in cancer cells is also rapidly converted into inactivated metabolites through catabolic pathways mediated by DPD, high DPD activity in cancer cells is an important determinant of the response to 5-FU. DPD activity is highly variable and reduced activity causes a high risk of 5-FU toxicity. Genetic variation in DPYD has been proposed as the main factor responsible for the variation in DPD activity. However, only a small proportion of the activity of DPD can be explained by DPYD mutations. In this study, we found that DPYD is a target of the following microRNAs (miRNA): miR-27a, miR-27b, miR-134, and miR-582-5p. In luciferase assays with HepG2 cells, the overexpression of these miRNAs was associated with significantly decreased reporter activity in a plasmid containing the 3'-UTR of DYPD mRNA. The level of DPD protein in MIAPaca-2 cells was also significantly decreased by the overexpression of these four miRNAs. The results suggest that miR-27a, miR-27b, miR-134, and miR-582-5p post-transcriptionally regulate DPD protein expression. The levels of miRNAs in normal lung tissue and lung tumors were compared; miR-27b and miR-134 levels were significantly lower in the tumors than normal tissue (3.64 ± 4.02 versus 9.75 ± 6.58 and 0.64 ± 0.75 versus 1.48 ± 1.39). DPD protein levels were significantly higher in the tumors. Thus, the decreased expression of miR-27b would be responsible for the high levels of DPD protein. This study is the first to show that miRNAs regulate the DPD protein, and provides new insight into 5-FU-based chemotherapy.

  10. Negative regulation of EGFR signalling by the human folliculin tumour suppressor protein

    PubMed Central

    Laviolette, Laura A.; Mermoud, Julien; Calvo, Isabel A.; Olson, Nicholas; Boukhali, Myriam; Steinlein, Ortrud K.; Roider, Elisabeth; Sattler, Elke C.; Huang, Dachuan; Teh, Bin Tean; Motamedi, Mo; Haas, Wilhelm; Iliopoulos, Othon

    2017-01-01

    Germline mutations in the Folliculin (FLCN) tumour suppressor gene result in fibrofolliculomas, lung cysts and renal cancers, but the precise mechanisms of tumour suppression by FLCN remain elusive. Here we identify Rab7A, a small GTPase important for endocytic trafficking, as a novel FLCN interacting protein and demonstrate that FLCN acts as a Rab7A GTPase-activating protein. FLCN−/− cells display slower trafficking of epidermal growth factor receptors (EGFR) from early to late endosomes and enhanced activation of EGFR signalling upon ligand stimulation. Reintroduction of wild-type FLCN, but not tumour-associated FLCN mutants, suppresses EGFR signalling in a Rab7A-dependent manner. EGFR signalling is elevated in FLCN−/− tumours and the EGFR inhibitor afatinib suppresses the growth of human FLCN−/− cells as tumour xenografts. The functional interaction between FLCN and Rab7A appears conserved across species. Our work highlights a mechanism explaining, at least in part, the tumour suppressor function of FLCN. PMID:28656962

  11. Tumor suppressor protein p53 exerts negative transcriptional regulation on human sodium iodide symporter gene expression in breast cancer.

    PubMed

    Kelkar, Madhura G; Thakur, Bhushan; Derle, Abhishek; Chatterjee, Sushmita; Ray, Pritha; De, Abhijit

    2017-08-01

    Aberrant expression of human sodium iodide symporter (NIS) in breast cancer (BC) is well documented but the transcription factors (TF) regulating its aberrant expression is poorly known. We identify the presence of three p53 binding sites on the human NIS promoter sequence by conducting genome-wide TF analysis, and further investigate their regulatory role. The differences in transcription and translation were measured by real-time PCR, luciferase reporter assay, site-directed mutagenesis, in vivo optical imaging, and chromatin immunoprecipitation. The relation of NIS and p53 in clinical samples was judged by TCGA data analysis and immunohistochemistry. Overexpression of wild-type p53 as a transgene or pharmacological activation by doxorubicin drug treatment shows significant suppression of NIS transcription in multiple BC cell types which also results in lowered NIS protein content and cellular iodide intake. NIS repression by activated p53 is further confirmed by non-invasive bioluminescence imaging in live cell and orthotropic tumor model. Abrogation of p53-binding sites by directional mutagenesis confirms reversal of transcriptional activity in wild-type p53-positive BC cells. We also observe direct binding of p53 to these sites on the human NIS promoter. Importantly, TCGA data analysis of NIS and p53 co-expression registers an inverse relationship between the two candidates. Our data for the first time highlight the role of p53 as a negative regulator of functional NIS expression in BC, where the latter is a potential targeted radioiodine therapy candidate. Thus, the study provides an important insight into prospective clinical application of this approach that may significantly impact the patient with mutant versus wild-type p53 profile.

  12. Negative and positive mRNA splicing elements act competitively to regulate human immunodeficiency virus type 1 vif gene expression.

    PubMed

    Exline, C M; Feng, Z; Stoltzfus, C M

    2008-04-01

    Over 40 different human immunodeficiency virus type 1 (HIV-1) mRNAs are produced by alternative splicing of the primary HIV-1 RNA transcripts. In addition, approximately half of the viral RNA remains unspliced and is used as genomic RNA and as mRNA for the Gag and Pol gene products. Regulation of splicing at the HIV-1 3' splice sites (3'ss) requires suboptimal polypyrimidine tracts, and positive or negative regulation occurs through the binding of cellular factors to cis-acting splicing regulatory elements. We have previously shown that splicing at HIV-1 3'ss A1, which produces single-spliced vif mRNA and promotes the inclusion of HIV exon 2 into both completely and incompletely spliced viral mRNAs, is increased by optimizing the 5' splice site (5'ss) downstream of exon 2 (5'ss D2). Here we show that the mutations within 5'ss D2 that are predicted to lower or increase the affinity of the 5'ss for U1 snRNP result in reduced or increased Vif expression, respectively. Splicing at 5'ss D2 was not necessary for the effect of 5'ss D2 on Vif expression. In addition, we have found that mutations of the GGGG motif proximal to the 5'ss D2 increase exon 2 inclusion and Vif expression. Finally, we report the presence of a novel exonic splicing enhancer (ESE) element within the 5'-proximal region of exon 2 that facilitates both exon inclusion and Vif expression. This ESE binds specifically to the cellular SR protein SRp75. Our results suggest that the 5'ss D2, the proximal GGGG silencer, and the ESE act competitively to determine the level of vif mRNA splicing and Vif expression. We propose that these positive and negative splicing elements act together to allow the accumulation of vif mRNA and unspliced HIV-1 mRNA, compatible with optimal virus replication.

  13. A novel human aquaporin-4 splice variant exhibits a dominant-negative activity: a new mechanism to regulate water permeability.

    PubMed

    De Bellis, Manuela; Pisani, Francesco; Mola, Maria Grazia; Basco, Davide; Catalano, Francesco; Nicchia, Grazia Paola; Svelto, Maria; Frigeri, Antonio

    2014-02-01

    Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated.

  14. A novel human aquaporin-4 splice variant exhibits a dominant-negative activity: a new mechanism to regulate water permeability

    PubMed Central

    De Bellis, Manuela; Pisani, Francesco; Mola, Maria Grazia; Basco, Davide; Catalano, Francesco; Nicchia, Grazia Paola; Svelto, Maria; Frigeri, Antonio

    2014-01-01

    Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated. PMID:24356448

  15. ECRG4 is a negative regulator of caspase-8-mediated apoptosis in human T-leukemia cells.

    PubMed

    Matsuzaki, Junichi; Torigoe, Toshihiko; Hirohashi, Yoshihiko; Kamiguchi, Kenjiro; Tamura, Yasuaki; Tsukahara, Tomohide; Kubo, Terufumi; Takahashi, Akari; Nakazawa, Emiri; Saka, Eri; Yasuda, Kazuyo; Takahashi, Shuji; Sato, Noriyuki

    2012-05-01

    We previously established Fas-resistant variant clones from the human T-cell leukemia lines Jurkat and SUP-T13. Comparative gene expression analysis of the Fas-resistant and Fas-sensitive clones revealed several genes that were aberrantly expressed in the Fas-resistant clones. One of the genes, esophageal cancer-related gene 4 (ECRG4), contained a VDAC2-like domain that might be associated with apoptotic signals. In the present study, we examined the subcellular localization and function of ECRG4 in Fas-mediated apoptosis. By confocal fluorescence microscopy, ECRG4-EGFP fusion protein was detected in mitochondria, endoplasmic reticulum and the Golgi apparatus in gene-transfected HeLa cells. Overexpression of ECRG4 in Fas-sensitive Jurkat cells inhibited mitochondrial membrane permeability transition, leading to resistance against Fas-induced apoptosis. Tumor necrosis factor-alpha-induced apoptosis was also suppressed in ECRG4-overexpressing Jurkat cells. Immunoprecipitation assay demonstrated that ECRG4 is associated with procaspase-8. The inhibitory mechanism included the inhibition of caspase-8 activity and Bid cleavage. Since ECRG4 expression is downregulated in activated T cells, our results suggest that ECRG4 is a novel antiapoptotic gene which is involved in the negative regulation of caspase-8-mediated apoptosis in T cells.

  16. Negative regulation of glucose metabolism in human myotubes by supraphysiological doses of 17β-estradiol or testosterone.

    PubMed

    Garrido, Pablo; Salehzadeh, Firoozeh; Duque-Guimaraes, Daniella E; Al-Khalili, Lubna

    2014-09-01

    Exposure of skeletal muscle to high levels of testosterone or estrogen induces insulin resistance, but evidence regarding the direct role of either sex hormone on metabolism is limited. Therefore, the aim of this study was to investigate the direct effect of acute sex hormone exposure on glucose metabolism in skeletal muscle. Differentiated human skeletal myotubes were exposed to either 17β-estradiol or testosterone and metabolic characteristics were assessed. Glucose incorporation into glycogen, glucose oxidation, palmitate oxidation, and phosphorylation of key signaling proteins were determined. Treatment of myotubes with either 17β-estradiol or testosterone decreased glucose incorporation into glycogen. Exposure of myotubes to 17β-estradiol reduced glucose oxidation under basal and insulin-stimulated conditions. However, testosterone treatment enhanced basal palmitate oxidation and prevented insulin action on glucose and palmitate oxidation. Acute stimulation of myotubes with testosterone reduced phosphorylation of S6K1 and p38 MAPK. Exposure of myotubes to either 17β-estradiol or testosterone augmented phosphorylation GSK3β(Ser9) and PKCδ(Thr505), two negative regulators of glycogen synthesis. Treatment of myotubes with a PKC specific inhibitor (GFX) restored the effect of either sex hormone on glycogen synthesis. PKCδ silencing restored glucose incorporation into glycogen to baseline in response to 17β-estradiol, but not testosterone treatment. An acute exposure to supraphysiological doses of either 17β-estradiol or testosterone regulates glucose metabolism, possibly via PKC signaling pathways. Furthermore, testosterone treatment elicits additional alterations in serine/threonine kinase signaling, including the ribosomal protein S6K1 and p38 MAPK. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. MicroRNA-181b negatively regulates the proliferation of human epidermal keratinocytes in psoriasis through targeting TLR4.

    PubMed

    Feng, Cheng; Bai, Ming; Yu, Nan-Ze; Wang, Xiao-Jun; Liu, Zeng

    2017-02-01

    Our study aims to explore the role of microRNA-181b (miR-181b) and TLR in the regulation of cell proliferation of human epidermal keratinocytes (HEKs) in psoriasis. Twenty-eight patients diagnosed with psoriasis vulgaris were selected as a case group with their lesional and non-lesional skin tissues collected. A control group consisted of 20 patients who underwent plastic surgery with their healthy skin tissues collected. Real-time quantitative fluorescence polymerase chain reaction (RT-qPCR), in situ hybridization and immunohistochemistry were used to detect the expressions of miR-181b and TLR4 in HEKs of healthy skin, psoriatic lesional skin and non-lesional skin respectively. The 3' untranslated region (3'UTR) of TLR4 combined with miR-181b was verified by a dual-luciferase reporter assay. Western blotting and bromodeoxyuridine were applied for corresponding detection of TLR4 expression and cell mitosis. The expression of miR-181b in HEKs of psoriatic lesional skin was less than healthy skin and psoriatic non-lesional skin. In psoriatic lesional and non-lesional skin, TLR4-positive cell rates and the number of positive cells per square millimetre were higher than healthy skin. The dual-luciferase reporter assay verified that miR-181b targets TLR4. HEKs transfected with miR-181b mimics had decreased expression of TLR4, along with the decrease of mitotic indexes and Brdu labelling indexes. However, HEKs transfected with miR-181b inhibitors showed increased TLR4 expression, mitotic indexes and Brdu labelling indexes. HEKs transfected with both miR-181b inhibitors and siTLR4 had decreased mitotic indexes and Brdu labelling indexes. These results indicate that miR-181b can negatively regulate the proliferation of HEKs in psoriasis by targeting TLR4.

  18. Negative and Positive mRNA Splicing Elements Act Competitively To Regulate Human Immunodeficiency Virus Type 1 Vif Gene Expression▿

    PubMed Central

    Exline, C. M.; Feng, Z.; Stoltzfus, C. M.

    2008-01-01

    Over 40 different human immunodeficiency virus type 1 (HIV-1) mRNAs are produced by alternative splicing of the primary HIV-1 RNA transcripts. In addition, approximately half of the viral RNA remains unspliced and is used as genomic RNA and as mRNA for the Gag and Pol gene products. Regulation of splicing at the HIV-1 3′ splice sites (3′ss) requires suboptimal polypyrimidine tracts, and positive or negative regulation occurs through the binding of cellular factors to cis-acting splicing regulatory elements. We have previously shown that splicing at HIV-1 3′ss A1, which produces single-spliced vif mRNA and promotes the inclusion of HIV exon 2 into both completely and incompletely spliced viral mRNAs, is increased by optimizing the 5′ splice site (5′ss) downstream of exon 2 (5′ss D2). Here we show that the mutations within 5′ss D2 that are predicted to lower or increase the affinity of the 5′ss for U1 snRNP result in reduced or increased Vif expression, respectively. Splicing at 5′ss D2 was not necessary for the effect of 5′ss D2 on Vif expression. In addition, we have found that mutations of the GGGG motif proximal to the 5′ss D2 increase exon 2 inclusion and Vif expression. Finally, we report the presence of a novel exonic splicing enhancer (ESE) element within the 5′-proximal region of exon 2 that facilitates both exon inclusion and Vif expression. This ESE binds specifically to the cellular SR protein SRp75. Our results suggest that the 5′ss D2, the proximal GGGG silencer, and the ESE act competitively to determine the level of vif mRNA splicing and Vif expression. We propose that these positive and negative splicing elements act together to allow the accumulation of vif mRNA and unspliced HIV-1 mRNA, compatible with optimal virus replication. PMID:18272582

  19. Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli.

    PubMed

    Stone, D M; Murone, M; Luoh, S; Ye, W; Armanini, M P; Gurney, A; Phillips, H; Brush, J; Goddard, A; de Sauvage, F J; Rosenthal, A

    1999-12-01

    Drosophila Suppressor of fused (Su(fu)) encodes a novel 468-amino-acid cytoplasmic protein which, by genetic analysis, functions as a negative regulator of the Hedgehog segment polarity pathway. Here we describe the primary structure, tissue distribution, biochemical and functional analyses of a human Su(fu) (hSu(fu)). Two alternatively spliced isoforms of hSu(fu) were identified, predicting proteins of 433 and 484 amino acids, with a calculated molecular mass of 48 and 54 kDa, respectively. The two proteins differ only by the inclusion or exclusion of a 52-amino-acid extension at the carboxy terminus. Both isoforms were expressed in multiple embryonic and adult tissues, and exhibited a developmental profile consistent with a role in Hedgehog signaling. The hSu(fu) contains a high-scoring PEST-domain, and exhibits an overall 37% sequence identity (63% similarity) with the Drosophila protein and 97% sequence identity with the mouse Su(fu). The hSu(fu) locus mapped to chromosome 10q24-q25, a region which is deleted in glioblastomas, prostate cancer, malignant melanoma and endometrial cancer. HSu(fu) was found to repress activity of the zinc-finger transcription factor Gli, which mediates Hedgehog signaling in vertebrates, and to physically interact with Gli, Gli2 and Gli3 as well as with Slimb, an F-box containing protein which, in the fly, suppresses the Hedgehog response, in part by stimulating the degradation of the fly Gli homologue. Coexpression of Slimb with Su(fu) potentiated the Su(fu)-mediated repression of Gli. Taken together, our data provide biochemical and functional evidence for the hypothesis that Su(fu) is a key negative regulator in the vertebrate Hedgehog signaling pathway. The data further suggest that Su(fu) can act by binding to Gli and inhibiting Gli-mediated transactivation as well as by serving as an adaptor protein, which links Gli to the Slimb-dependent proteasomal degradation pathway.

  20. Negative regulators of cell proliferation

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Cell proliferation is governed by the influence of both mitogens and inhibitors. Although cell contact has long been thought to play a fundamental role in cell cycling regulation, and negative regulators have long been suspected to exist, their isolation and purification has been complicated by a variety of technical difficulties. Nevertheless, over recent years an ever-expanding list of putative negative regulators have emerged. In many cases, their biological inhibitory activities are consistent with density-dependent growth inhibition. Most likely their interactions with mitogenic agents, at an intracellular level, are responsible for either mitotic arrest or continued cell cycling. A review of naturally occurring cell growth inhibitors is presented with an emphasis on those factors shown to be residents of the cell surface membrane. Particular attention is focused on a cell surface sialoglycopeptide, isolated from intact bovine cerebral cortex cells, which has been shown to inhibit the proliferation of an unusually wide range of target cells. The glycopeptide arrest cells obtained from diverse species, both fibroblasts and epithelial cells, and a broad variety of transformed cells. Signal transduction events and a limited spectrum of cells that are refractory to the sialoglycopeptide have provided insight into the molecular events mediated by this cell surface inhibitor.

  1. Interferon-inducible IFI16, a negative regulator of cell growth, down-regulates expression of human telomerase reverse transcriptase (hTERT) gene.

    PubMed

    Song, Lynda Li; Ponomareva, Larissa; Shen, Hui; Duan, Xin; Alimirah, Fatouma; Choubey, Divaker

    2010-01-05

    Increased levels of interferon (IFN)-inducible IFI16 protein (encoded by the IFI16 gene located at 1q22) in human normal prostate epithelial cells and diploid fibroblasts (HDFs) are associated with the onset of cellular senescence. However, the molecular mechanisms by which the IFI16 protein contributes to cellular senescence-associated cell growth arrest remain to be elucidated. Here, we report that increased levels of IFI16 protein in normal HDFs and in HeLa cells negatively regulate the expression of human telomerase reverse transcriptase (hTERT) gene. We optimized conditions for real-time PCR, immunoblotting, and telomere repeat amplification protocol (TRAP) assays to detect relatively low levels of hTERT mRNA, protein, and telomerase activity that are found in HDFs. Using the optimized conditions, we report that treatment of HDFs with inhibitors of cell cycle progression, such as aphidicolin or CGK1026, which resulted in reduced steady-state levels of IFI16 mRNA and protein, was associated with increases in hTERT mRNA and protein levels and telomerase activity. In contrast, knockdown of IFI16 expression in cells increased the expression of c-Myc, a positive regulator of hTERT expression. Additionally, over-expression of IFI16 protein in cells inhibited the c-Myc-mediated stimulation of the activity of hTERT-luc-reporter and reduced the steady-state levels of c-Myc and hTERT. These data demonstrated that increased levels of IFI16 protein in HDFs down-regulate the expression of hTERT gene. Our observations will serve basis to understand how increased cellular levels of the IFI16 protein may contribute to certain aging-dependent diseases.

  2. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    SciTech Connect

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  3. FRNK negatively regulates IL-4-mediated inflammation.

    PubMed

    Sharma, Ritu; Colarusso, Pina; Zhang, Hong; Stevens, Katarzyna M; Patel, Kamala D

    2015-02-15

    Focal adhesion kinase (FAK)-related nonkinase (PTK2 isoform 6 in humans, hereafter referred to as FRNK) is a cytoskeletal regulatory protein that has recently been shown to dampen lung fibrosis, yet its role in inflammation is unknown. Here, we show for the first time that expression of FRNK negatively regulates IL-4-mediated inflammation in a human model of eosinophil recruitment. Mechanistically, FRNK blocks eosinophil accumulation, firm adhesion and transmigration by preventing transcription and protein expression of VCAM-1 and CCL26. IL-4 activates STAT6 to induce VCAM-1 and CCL26 transcription. We now show that IL-4 also increases GATA6 to induce VCAM-1 expression. FRNK blocks IL-4-induced GATA6 transcription but has little effect on GATA6 protein expression and no effect on STAT6 activation. FRNK can block FAK or Pyk2 signaling and we, thus, downregulated these proteins using siRNA to determine whether signaling from either protein is involved in the regulation of VCAM-1 and CCL26. Knockdown of FAK, Pyk2 or both had no effect on VCAM-1 or CCL26 expression, which suggests that FRNK acts independently of FAK and Pyk2 signaling. Finally, we found that IL-4 induces the late expression of endogenous FRNK. In summary, FRNK represents a novel mechanism to negatively regulate IL-4-mediated inflammation.

  4. A double-negative feedback loop between E2F3b and miR- 200b regulates docetaxel chemosensitivity of human lung adenocarcinoma cells

    PubMed Central

    Gao, Yanping; Chen, Longbang; Song, Haizhu; Chen, Yitian; Wang, Rui; Feng, Bing

    2016-01-01

    MicroRNAs (miRNAs) are non-coding small RNAs which negatively regulate gene expressions mainly through 3′-untranslated region (3′-UTR) binding of target mRNAs. Recent studies have highlighted the feedback loops between miRNAs and their target genes in physiological and pathological processes including chemoresistance of cancers. Our previous study identified miR-200b/E2F3 axis as a chemosensitivity restorer of human lung adenocarcinoma (LAD) cells. Moreover, E2F3b was bioinformatically proved to be a potential transcriptional regulator of pre-miR-200b gene promoter. The existance of this double-negative feedback minicircuitry comprising E2F3b and miR-200b was confirmed by chromatin immunoprecipitation (ChIP) assay, site-specific mutation and luciferase reporter assay. And the underlying regulatory mechanisms of this feedback loop on docetaxel resistance of LAD cells were further investigated by applying in vitro chemosensitivity assay, colony formation assay, flow cytometric analysis of cell cycle and apoptosis, as well as mice xenograft model. In conclusion, our results suggest that the double-negative feedback loop between E2F3b and miR-200b regulates docetaxel chemosensitivity of human LAD cells mainly through cell proliferation, cell cycle distribution and apoptosis. PMID:27027446

  5. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1.

    PubMed

    Bitterman, Kevin J; Anderson, Rozalyn M; Cohen, Haim Y; Latorre-Esteves, Magda; Sinclair, David A

    2002-11-22

    The Saccharomyces cerevisiae Sir2 protein is an NAD(+)-dependent histone deacetylase that plays a critical role in transcriptional silencing, genome stability, and longevity. A human homologue of Sir2, SIRT1, regulates the activity of the p53 tumor suppressor and inhibits apoptosis. The Sir2 deacetylation reaction generates two products: O-acetyl-ADP-ribose and nicotinamide, a precursor of nicotinic acid and a form of niacin/vitamin B(3). We show here that nicotinamide strongly inhibits yeast silencing, increases rDNA recombination, and shortens replicative life span to that of a sir2 mutant. Nicotinamide abolishes silencing and leads to an eventual delocalization of Sir2 even in G(1)-arrested cells, demonstrating that silent heterochromatin requires continual Sir2 activity. We show that physiological concentrations of nicotinamide noncompetitively inhibit both Sir2 and SIRT1 in vitro. The degree of inhibition by nicotinamide (IC(50) < 50 microm) is equal to or better than the most effective known synthetic inhibitors of this class of proteins. We propose a model whereby nicotinamide inhibits deacetylation by binding to a conserved pocket adjacent to NAD(+), thereby blocking NAD(+) hydrolysis. We discuss the possibility that nicotinamide is a physiologically relevant regulator of Sir2 enzymes.

  6. TIPE2 protein negatively regulates HBV-specific CD8⁺ T lymphocyte functions in humans.

    PubMed

    Zhang, Wenqian; Zhang, Jiao; Zhao, Lianying; Shao, Jie; Cui, Jian; Guo, Chun; Zhu, Faliang; Chen, Youhai H; Liu, Suxia

    2015-03-01

    Cytotoxic T cell-mediated killing of virus-infected hepatocytes is an important pathogenic process of hepatitis B. However, its underlying molecular mechanisms are not fully understood. TNFAIP8L2 (TIPE2) is a newly described anti-inflammatory protein that is essential for maintaining immune homeostasis. In this study, we found that the protein levels of TIPE2 in PBMCs of hepatitis B patients were significantly reduced and negatively correlated with the sera values of aminotransferases. Importantly, TIPE2 protein was downregulated preferentially in cytotoxic CD8(+) T cells, not CD4(+) helper T cells. The CD8(+) T cells with low TIPE2 expression were more activated and produced higher levels of perforin, granzyme B, and IFN-γ. As a result, their cytolytic activity was markedly enhanced. Interestingly, HBc18-27 peptide stimulation could reduce TIPE2 expression in PBMCs. These results indicate that TIPE2 plays an important role in regulating HBV-specific CD8(+) T cell functions in patients with hepatitis B.

  7. Regulator of G Protein Signaling 17 as a Negative Modulator of GPCR Signaling in Multiple Human Cancers.

    PubMed

    Hayes, Michael P; Roman, David L

    2016-05-01

    Regulators of G protein signaling (RGS) proteins modulate G protein-coupled receptor (GPCR) signaling networks by terminating signals produced by active Gα subunits. RGS17, a member of the RZ subfamily of RGS proteins, is typically only expressed in appreciable amounts in the human central nervous system, but previous works have shown that RGS17 expression is selectively upregulated in a number of malignancies, including lung, breast, prostate, and hepatocellular carcinoma. In addition, this upregulation of RGS17 is associated with a more aggressive cancer phenotype, as increased proliferation, migration, and invasion are observed. Conversely, decreased RGS17 expression diminishes the response of ovarian cancer cells to agents commonly used during chemotherapy. These somewhat contradictory roles of RGS17 in cancer highlight the need for selective, high-affinity inhibitors of RGS17 to use as chemical probes to further the understanding of RGS17 biology. Based on current evidence, these compounds could potentially have clinical utility as novel chemotherapeutics in the treatment of lung, prostate, breast, and liver cancers. Recent advances in screening technologies to identify potential inhibitors coupled with increasing knowledge of the structural requirements of RGS-Gα protein-protein interaction inhibitors make the future of drug discovery efforts targeting RGS17 promising. This review highlights recent findings related to RGS17 as both a canonical and atypical RGS protein, its role in various human disease states, and offers insights on small molecule inhibition of RGS17.

  8. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer

    PubMed Central

    Hollmén, Maija; Karaman, Sinem; Schwager, Simon; Lisibach, Angela; Christiansen, Ailsa J.; Maksimow, Mikael; Varga, Zsuzsanna; Jalkanen, Sirpa; Detmar, Michael

    2016-01-01

    ABSTRACT Tumor-associated macrophages (TAMs) have been implicated in the promotion of breast cancer growth and metastasis, and a strong infiltration by TAMs has been associated with estrogen receptor (ER)-negative tumors and poor prognosis. However, the molecular mechanisms behind these observations are unclear. We investigated macrophage activation in response to co-culture with several breast cancer cell lines (T47D, MCF-7, BT-474, SKBR-3, Cal-51 and MDA-MB-231) and found that high granulocyte colony-stimulating factor (G-CSF) secretion by the triple-negative breast cancer (TNBC) cell line MDA-MB-231 gave rise to immunosuppressive HLA-DRlo macrophages that promoted migration of breast cancer cells via secretion of TGF-α. In human breast cancer samples (n = 548), G-CSF was highly expressed in TNBC (p < 0.001) and associated with CD163+ macrophages (p < 0.0001), poorer overall survival (OS) (p = 0.021) and significantly increased numbers of TGF-α+ cells. While G-CSF blockade in the 4T1 mammary tumor model promoted maturation of MHCIIhi blood monocytes and TAMs and significantly reduced lung metastasis, anti-CSF-1R treatment promoted MHCIIloF4/80hiMRhi anti-inflammatory TAMs and enhanced lung metastasis in the presence of high G-CSF levels. Combined anti-G-CSF and anti-CSF-1R therapy significantly increased lymph node metastases, possibly via depletion of the so-called “gate-keeper” subcapsular sinus macrophages. These results indicate that G-CSF promotes the anti-inflammatory phenotype of tumor-induced macrophages when CSF-1R is inhibited and therefore caution against the use of M-CSF/CSF-1R targeting agents in tumors with high G-CSF expression. PMID:27141367

  9. Basal and stress-inducible expression of HSPA6 in human keratinocytes is regulated by negative and positive promoter regions.

    PubMed

    Ramirez, Vincent P; Stamatis, Michael; Shmukler, Anastasia; Aneskievich, Brian J

    2015-01-01

    Epidermal keratinocytes serve as the primary barrier between the body and environmental stressors. They are subjected to numerous stress events and are likely to respond with a repertoire of heat shock proteins (HSPs). HSPA6 (HSP70B') is described in other cell types with characteristically low to undetectable basal expression, but is highly stress induced. Despite this response in other cells, little is known about its control in keratinocytes. We examined endogenous human keratinocyte HSPA6 expression and localized some responsible transcription factor sites in a cloned HSPA6 3 kb promoter. Using promoter 5' truncations and deletions, negative and positive regulatory regions were found throughout the 3 kb promoter. A region between -346 and -217 bp was found to be crucial to HSPA6 basal expression and stress inducibility. Site-specific mutations and DNA-binding studies show that a previously uncharacterized AP1 site contributes to the basal expression and maximal stress induction of HSPA6. Additionally, a new heat shock element (HSE) within this region was defined. While this element mediates increased transcriptional response in thermally stressed HaCaT keratinocytes, it preferentially binds a stress-inducible factor other than heat shock factor (HSF)1 or HSF2. Intriguingly, this newly characterized HSPA6 HSE competes HSF1 binding a consensus HSE and binds both HSF1 and HSF2 from other epithelial cells. Taken together, our results demonstrate that the HSPA6 promoter contains essential negative and positive promoter regions and newly identified transcription factor targets, which are key to the basal and stress-inducible expression of HSPA6. Furthermore, these results suggest that an HSF-like factor may preferentially bind this newly identified HSPA6 HSE in HaCaT cells.

  10. MicroRNA-544 down-regulates both Bcl6 and Stat3 to inhibit tumor growth of human triple negative breast cancer.

    PubMed

    Zhu, Zhengzhi; Wang, Shengying; Zhu, Jinhai; Yang, Qifeng; Dong, Huiming; Huang, Jiankang

    2016-10-01

    Triple negative breast cancer lacking estrogen receptor (ER), progesterone receptor and Her2 account for account for the majority of the breast cancer deaths, due to the lack of specific gene targeted therapy. Our current study aimed to investigate the role of miR-544 in triple negative breast cancer. Endogenous levels of miR-544 were significantly lower in breast cancer cell lines than in human breast non-tumorigenic and mammary epithelial cell lines. We found that miR-544 directly targeted the 3'-untranslated region (UTR) on both Bcl6 and Stat3 mRNAs, and overexpression of miR-544 in triple negative breast cancer cells significantly down-regulated expressions of Bcl6 and Stat3, which in turn severely inhibited cancer cell proliferation, migration and invasion in vitro. Employing a mouse xenograft model to examine the in vivo function of miR-544, we found that expression of miR-544 significantly repressed the growth of xenograft tumors. Our current study reported miR-544 as a tumor-suppressor microRNA particularly in triple negative breast cancer. Our data supported the role of miR-544 as a potential biomarker in developing gene targeted therapies in the clinical treatment of triple negative breast cancer.

  11. Pulmonary surfactant protein A and surfactant lipids upregulate IRAK-M, a negative regulator of TLR-mediated inflammation in human macrophages

    PubMed Central

    Nguyen, Huy A.; Rajaram, Murugesan V. S.; Meyer, Douglas A.

    2012-01-01

    Alveolar macrophages (AMs) are exposed to frequent challenges from inhaled particulates and microbes and function as a first line of defense with a highly regulated immune response because of their unique biology as prototypic alternatively activated macrophages. Lung collectins, particularly surfactant protein A (SP-A), contribute to this activation state by fine-tuning the macrophage inflammatory response. During short-term (10 min–2 h) exposure, SP-A's regulation of human macrophage responses occurs through decreased activity of kinases required for proinflammatory cytokine production. However, AMs are continuously exposed to surfactant, and the biochemical pathways underlying long-term reduction of proinflammatory cytokine activity are not known. We investigated the molecular mechanism(s) underlying SP-A- and surfactant lipid-mediated suppression of proinflammatory cytokine production in response to Toll-like receptor (TLR) 4 (TLR4) activation over longer time periods. We found that exposure of human macrophages to SP-A for 6–24 h upregulates expression of IL-1 receptor-associated kinase M (IRAK-M), a negative regulator of TLR-mediated NF-κB activation. Exposure to Survanta, a natural bovine lung extract lacking SP-A, also enhances IRAK-M expression, but at lower magnitude and for a shorter duration than SP-A. Surfactant-mediated upregulation of IRAK-M in macrophages suppresses TLR4-mediated TNF-α and IL-6 production in response to LPS, and IRAK-M knockdown by small interfering RNA reverses this suppression. In contrast to TNF-α and IL-6, the surfactant components upregulate LPS-mediated immunoregulatory IL-10 production, an effect reversed by IRAK-M knockdown. In conclusion, these data identify an important signaling regulator in human macrophages that is used by surfactant to control the long-term alveolar inflammatory response, i.e., enhanced IRAK-M activity. PMID:22886503

  12. Triple Negative Breast Cancer and Metabolic Regulation

    DTIC Science & Technology

    2014-08-01

    AWARD NUMBER: W81XWH-13-1-0167 TITLE: Triple Negative Breast Cancer and Metabolic Regulation... Breast Cancer and Metabolic Regulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0167 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Amy...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Triple negative breast cancer (TNBC) represents 20-25% of sporadic breast

  13. LINGO-1 negatively regulates myelination by oligodendrocytes.

    PubMed

    Mi, Sha; Miller, Robert H; Lee, Xinhua; Scott, Martin L; Shulag-Morskaya, Svetlane; Shao, Zhaohui; Chang, Jufang; Thill, Greg; Levesque, Melissa; Zhang, Mingdi; Hession, Cathy; Sah, Dinah; Trapp, Bruce; He, Zhigang; Jung, Vincent; McCoy, John M; Pepinsky, R Blake

    2005-06-01

    The control of myelination by oligodendrocytes in the CNS is poorly understood. Here we show that LINGO-1 is an important negative regulator of this critical process. LINGO-1 is expressed in oligodendrocytes. Attenuation of its function by dominant-negative LINGO-1, LINGO-1 RNA-mediated interference (RNAi) or soluble human LINGO-1 (LINGO-1-Fc) leads to differentiation and increased myelination competence. Attenuation of LINGO-1 results in downregulation of RhoA activity, which has been implicated in oligodendrocyte differentiation. Conversely, overexpression of LINGO-1 leads to activation of RhoA and inhibition of oligodendrocyte differentiation and myelination. Treatment of oligodendrocyte and neuron cocultures with LINGO-1-Fc resulted in highly developed myelinated axons that have internodes and well-defined nodes of Ranvier. The contribution of LINGO-1 to myelination was verified in vivo through the analysis of LINGO-1 knockout mice. The ability to recapitulate CNS myelination in vitro using LINGO-1 antagonists and the in vivo effects seen in the LINGO-1 knockout indicate that LINGO-1 signaling may be critical for CNS myelination.

  14. Identification of a novel human MD-2 splice variant that negatively regulates LPS-induced Toll-like receptor 4 signaling

    PubMed Central

    Gray, Pearl; Michelsen, Kathrin S.; Sirois, Cherilyn M.; Lowe, Emily; Shimada, Kenichi; Crother, Timothy R.; Chen, Shuang; Brikos, Constantinos; Bulut, Yonca; Latz, Eicke; Underhill, David; Arditi, Moshe

    2011-01-01

    Myeloid differentiation factor 2 (MD-2) is a secreted glycoprotein that assembles with Toll-like receptor 4 (TLR4) to form a functional signaling receptor for bacterial lipopolysaccharide (LPS). In this study we have identified a novel alternatively spliced isoform of human MD-2, termed MD-2 short (MD-2s), which lacks the region encoded by exon 2 of the MD-2 gene. Similar to MD-2, MD-2s is glycosylated and secreted. MD-2s also interacted with LPS and TLR4, but failed to mediate LPS-induced NF-κB activation and interleukin-8 production. We show that MD-2s is upregulated upon IFN-γ, IL-6 and TLR stimulation and negatively regulates LPS-mediated TLR4 signaling. Furthermore, MD-2s competitively inhibited binding of MD-2 to TLR4. Our study therefore pinpoints a mechanism that may be employed to regulate TLR4 activation at the onset of signaling and identifies MD-2s as a potential therapeutic candidate to treat human diseases characterized by an overly exuberant or chronic immune response to LPS. PMID:20435923

  15. The glucocorticoid receptor binds to a sequence overlapping the TATA box of the human osteocalcin promoter: a potential mechanism for negative regulation.

    PubMed Central

    Strömstedt, P E; Poellinger, L; Gustafsson, J A; Carlstedt-Duke, J

    1991-01-01

    Expression of the human osteocalcin promoter is negatively regulated by glucocorticoids in vivo. In vitro DNase I and exonuclease III footprinting analysis showed binding of purified glucocorticoid receptor in close proximity to and overlapping with the TATA box of the osteocalcin gene. These results imply competition or interference with binding of the TATA box-binding transcription factor IID as a mechanism of repression of this gene by glucocorticoids. In support of this notion, point mutation analysis of the receptor binding site indicated that flanking nucleotides and not the TATA box motif per se were important for receptor interaction. Moreover, DNA binding competition assays showed specific binding of the receptor only to the TATA box region of the osteocalcin gene and not to the corresponding region of an immunoglobulin heavy-chain promoter. Images PMID:2038339

  16. The hypoxia-inducible miR-429 regulates hypoxia-inducible factor-1α expression in human endothelial cells through a negative feedback loop

    PubMed Central

    Bartoszewska, Sylwia; Kochan, Kinga; Piotrowski, Arkadiusz; Kamysz, Wojciech; Ochocka, Renata J.; Collawn, James F.; Bartoszewski, Rafal

    2015-01-01

    Hypoxia-inducible factors (HIFs) 1 and 2 are dimeric α/β transcription factors that regulate cellular responses to low oxygen. HIF-1 is induced first, whereas HIF-2 is associated with chronic hypoxia. To determine how HIF1A mRNA, the inducible subunit of HIF-1, is regulated during hypoxia, we followed HIF1A mRNA levels in primary HUVECs over 24 hours using quantitative PCR. HIF1A and VEGF A (VEGFA) mRNA, a transcriptional target of HIF-1, increased ∼2.5- and 8-fold at 2–4 hours, respectively. To determine how the mRNAs were regulated, we identified a microRNA (miRNA), miR-429, that destabilized HIF1A message and decreased VEGFA mRNA by inhibiting HIF1A. Target protector analysis, which interferes with miRNA-mRNA complex formation, confirmed that miR-429 targeted HIF1A message. Desferoxamine treatment, which inhibits the hydroxylases that promote HIF-1α protein degradation, stabilized HIF-1 activity during normoxic conditions and elevated miR-429 levels, demonstrating that HIF-1 promotes miR-429 expression. RNA-sequencing-based transcriptome analysis indicated that inhibition of miRNA-429 in HUVECs up-regulated 209 mRNAs, a number of which regulate angiogenesis. The results demonstrate that HIF-1 is in a negative regulatory loop with miR-429, that miR-429 attenuates HIF-1 activity by decreasing HIF1A message during the early stages of hypoxia before HIF-2 is activated, and this regulatory network helps explain the HIF-1 transition to HIF-2 during chronic hypoxia in endothelial cells.—Bartoszewska, S., Kochan, K., Piotrowski, A., Kamysz, W., Ochocka, R. J., Collawn, J. F., Bartoszewski, R. The hypoxia-inducible miR-429 regulates hypoxia hypoxia-inducible factor-1α expression in human endothelial cells through a negative feedback loop. PMID:25550463

  17. Human papillomavirus 16 (HPV16) enhances tumor growth and cancer stemness of HPV-negative oral/oropharyngeal squamous cell carcinoma cells via miR-181 regulation.

    PubMed

    Lee, Sung Hee; Lee, Chang-Ryul; Rigas, Nicole Kristina; Kim, Reuben H; Kang, Mo K; Park, No-Hee; Shin, Ki-Hyuk

    2015-12-01

    High-risk human papillomaviruses (e.g., HPV16, HPV18) are closely associated with the development of head and neck cancers including oral/oropharyngeal squamous cell carcinoma (OSCC). We previously demonstrated immortalization of normal human oral keratinocytes by introducing high-risk HPV whole genome, suggesting that HPV infection plays an important role in the early stage of oral carcinogenesis. Although HPV infection may occur in different stages of cancer development, roles of HPV in exacerbating malignant phenotypes in already-transformed cells in the context of cancer stemness are not clearly defined. In this study, we investigated the role of HPV16 in promoting the virulence of HPV-negative OSCC. Introducing HPV16 whole genome in HPV-negative OSCC increased malignant growth and self-renewal capacity, a key characteristic of cancer stem cells (CSCs). HPV16 also enhanced other CSC properties, including aldehyde dehydrogenase 1 (ALDH1) activity, migration/invasion, and CSC-related factor expression. Mechanistically, we found that HPV16 inhibited the expression of miR-181a and miR-181d (miR-181a/d) at the transcriptional level. Ectopic expression of miR-181a/d decreased anchorage independent growth and CSC phenotype of HPV16-transfected OSCC. Furthermore, silencing of miR-181a/d target genes, i.e., K-ras and ALDH1, abrogated the effects of HPV16 in HPV16-transfected OSCC, supporting the functional importance of HPV16/miR-181a/d axis in HPV-mediated oral carcinogenesis. Our study suggests that high-risk HPV infection further promotes malignancy in HPV-negative OSCC by enhancing cancer stemness via miR-181a/d regulation. Consequently, miR-181a/d may represent a novel therapeutic agent for the treatment of HPV-positive OSCC.

  18. PTHLH coupling upstream negative regulation of fatty acid biosynthesis and Wnt receptor signal to downstream peptidase activity-induced apoptosis network in human hepatocellular carcinoma by systems-theoretical analysis.

    PubMed

    Huang, Juxiang; Wang, Lin; Jiang, Minghu; Lin, Hong; Qi, Lianxiu; Diao, Haizhen

    2012-10-01

    Studies were done on the analysis of biological processes in the same high expression (fold change ≥ 2) PTHLH-activated feedback negative regulation-mediated apoptosis gene ontology (GO) network of human hepatocellular carcinoma (HCC) compared with the corresponding low expression activated GO network of no-tumor hepatitis/cirrhotic tissues [hepatitis B virus (HBV) or hepatitis C virus (HCV) infection]. We proposed PTHLH-activated network that upstream included the regulation of apoptosis, signal transduction resulting in induction of apoptosis, signal transduction by p53 class mediator resulting in transcription of p21 class mediator, negative regulation of centriole replication, negative regulation of fatty acid biosynthesis, negative regulation of Wnt receptor signaling pathway, anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolism, apoptosis, induction of apoptosis, and negative regulation of phosphorylation. Downstream-network negative regulation of peptidase activity, anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolism, apoptosis, induction of apoptosis and negative regulation of phosphorylation, as a result of coupling upstream negative regulation of fatty acid biosynthesis and Wnt receptor signal to downstream peptidase activity-induced apoptosis in HCC. Our hypothesis was verified by the different PTHLH-activated feedback negative regulation-mediated apoptosis GO network of HCC compared with the corresponding inhibited GO network of no-tumor hepatitis/cirrhotic tissues, or the same compared with the corresponding inhibited GO network of HCC. PTHLH coupling upstream negative regulation of fatty acid biosynthesis and Wnt receptor signal to downstream peptidase activity-induced apoptosis network was constructed that upstream BRCA1, DKK1, BUB1B activated PTHLH, and downstream PTHLH-activated CST6, BUB1B, NTN1, PHLDA2 in HCC from GEO data set using gene regulatory network inference method

  19. Schistosoma mansoni Soluble Egg Antigens Induce Expression of the Negative Regulators SOCS1 and SHP1 in Human Dendritic Cells via Interaction with the Mannose Receptor

    PubMed Central

    Klaver, Elsenoor J.; Kuijk, Loes M.; Lindhorst, Thisbe K.; Cummings, Richard D.; van Die, Irma

    2015-01-01

    Schistosomiasis is a common debilitating human parasitic disease in (sub)tropical areas, however, schistosome infections can also protect against a variety of inflammatory diseases. This has raised broad interest in the mechanisms by which Schistosoma modulate the immune system into an anti-inflammatory and regulatory state. Human dendritic cells (DCs) show many phenotypic changes upon contact with Schistosoma mansoni soluble egg antigens (SEA). We here show that oxidation of SEA glycans, but not heat-denaturation, abrogates the capacity of SEA to suppress both LPS-induced cytokine secretion and DC proliferation, indicating an important role of SEA glycans in these processes. Remarkably, interaction of SEA glycans with DCs results in a strongly increased expression of Suppressor Of Cytokine Signalling1 (SOCS1) and SH2-containing protein tyrosine Phosphatase-1 (SHP1), important negative regulators of TLR4 signalling. In addition, SEA induces the secretion of transforming growth factor β (TGF-β), and the surface expression of the costimulatory molecules Programmed Death Ligand-1 (PD-L1) and OX40 ligand (OX40L), which are known phenotypic markers for the capacity of DCs to polarize naïve T cells into Th2/Treg cell subsets. Inhibition of mannose receptor (MR)-mediated internalization of SEA into DCs by blocking with allyl α-D-mannoside or anti-MR antibodies, significantly reduced SOCS1 and SHP1 expression. In conclusion, we demonstrate that SEA glycans are essential for induction of enhanced SOCS1 and SHP1 levels in DCs via the MR. Our data provide novel mechanistic evidence for the potential of S. mansoni SEA glycans to modulate human DCs, which may contribute to the capacity of SEA to down-regulate inflammatory responses. PMID:25897665

  20. Purinergic P2Y2 Receptor Control of Tissue Factor Transcription in Human Coronary Artery Endothelial Cells: NEW AP-1 TRANSCRIPTION FACTOR SITE AND NEGATIVE REGULATOR.

    PubMed

    Liu, Yiwei; Zhang, Lingxin; Wang, Chuan; Roy, Shama; Shen, Jianzhong

    2016-01-22

    We recently reported that the P2Y2 receptor (P2Y2R) is the predominant nucleotide receptor expressed in human coronary artery endothelial cells (HCAEC) and that P2Y2R activation by ATP or UTP induces dramatic up-regulation of tissue factor (TF), a key initiator of the coagulation cascade. However, the molecular mechanism of this P2Y2R-TF axis remains unclear. Here, we report the role of a newly identified AP-1 consensus sequence in the TF gene promoter and its original binding components in P2Y2R regulation of TF transcription. Using bioinformatics tools, we found that a novel AP-1 site at -1363 bp of the human TF promoter region is highly conserved across multiple species. Activation of P2Y2R increased TF promoter activity and mRNA expression in HCAEC. Truncation, deletion, and mutation of this distal AP-1 site all significantly suppressed TF promoter activity in response to P2Y2R activation. EMSA and ChIP assays further confirmed that upon P2Y2R activation, c-Jun, ATF-2, and Fra-1, but not the typical c-Fos, bound to the new AP-1 site. In addition, loss-of-function studies using siRNAs confirmed a positive transactivation role of c-Jun and ATF-2 but unexpectedly revealed a strong negative role of Fra-1 in P2Y2R-induced TF up-regulation. Furthermore, we found that P2Y2R activation promoted ERK1/2 phosphorylation through Src, leading to Fra-1 activation, whereas Rho/JNK mediated P2Y2R-induced activation of c-Jun and ATF-2. These findings reveal the molecular basis for P2Y G protein-coupled receptor control of endothelial TF expression and indicate that targeting the P2Y2R-Fra-1-TF pathway may be an attractive new strategy for controlling vascular inflammation and thrombogenicity associated with endothelial dysfunction. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Placental endoplasmic reticulum stress negatively regulates transcription of placental growth factor via ATF4 and ATF6β: implications for the pathophysiology of human pregnancy complications.

    PubMed

    Mizuuchi, Masahito; Cindrova-Davies, Tereza; Olovsson, Matts; Charnock-Jones, D Stephen; Burton, Graham J; Yung, Hong Wa

    2016-03-01

    Low maternal circulating concentrations of placental growth factor (PlGF) are one of the hallmarks of human pregnancy complications, including fetal growth restriction (FGR) and early-onset pre-eclampsia (PE). Currently, PlGF is used clinically with other biomarkers to screen for high-risk cases, although the mechanisms underlying its regulation are largely unknown. Placental endoplasmic reticulum (ER) stress has recently been found to be elevated in cases of FGR, and to an even greater extent in early-onset PE complicated with FGR. ER stress activates the unfolded protein response (UPR); attenuation of protein translation and a reduction in cell growth and proliferation play crucial roles in the pathophysiology of these complications of pregnancy. In this study, we further identified that ER stress regulates release of PlGF. We first observed that down-regulation of PlGF protein was associated with nuclear localization of ATF4, ATF6α and ATF6β in the syncytiotrophoblast of placentae from PE patients. Transcript analysis showed a decrease of PlGF mRNA, and an increase from genes encoding those UPR transcription factors in placentae from cases of early-onset PE, but not of late-onset (>34 weeks) PE, compared to term controls. Further investigations indicated a strong correlation between ATF4 and PlGF mRNA levels only (r = - 0.73, p < 0.05). These results could be recapitulated in trophoblast-like cells exposed to chemical inducers of ER stress or hypoxia-reoxygenation. The stability of PlGF transcripts was unchanged. The use of small interfering RNA specific for transcription factors in the UPR pathways revealed that ATF4 and ATF6β, but not ATF6α, modulate PlGF transcription. To conclude, ATF4 and ATF6β act synergistically in the negative regulation of PlGF mRNA expression, resulting in reduced PlGF secretion by the trophoblast in response to stress. Therefore, these results further support the targeting of placental ER stress as a potential new therapeutic

  2. SIGIRR, a negative regulator of colon tumorigenesis

    PubMed Central

    Zhao, Junjie; Zepp, Jarod; Bulek, Katarzyna; Li, Xiaoxia

    2012-01-01

    Inappropriate activation of the Toll-IL-1R (TL-IL-1) signaling by commensal bacteria contributes to the pathogenesis of inflammatory bowel diseases and colitis-associated cancer. Recent studies have identified SIGIRR as a negative regulator of TL-IL-1 signaling. It dampens intestinal inflammation and tumorigenesis in the colon. In this review, we will discuss the role of SIGIRR in different cell types and the mechanisms underlying its tumor suppressor function. PMID:22529873

  3. SIGIRR, a negative regulator of colon tumorigenesis.

    PubMed

    Zhao, Junjie; Zepp, Jarod; Bulek, Katarzyna; Li, Xiaoxia

    2011-01-01

    Inappropriate activation of the Toll-IL-1R (TL-IL-1) signaling by commensal bacteria contributes to the pathogenesis of inflammatory bowel diseases and colitis-associated cancer. Recent studies have identified SIGIRR as a negative regulator of TL-IL-1 signaling. It dampens intestinal inflammation and tumorigenesis in the colon. In this review, we will discuss the role of SIGIRR in different cell types and the mechanisms underlying its tumor suppressor function.

  4. Rhizobial gibberellin negatively regulates host nodule number

    PubMed Central

    Tatsukami, Yohei; Ueda, Mitsuyoshi

    2016-01-01

    In legume–rhizobia symbiosis, the nodule number is controlled to ensure optimal growth of the host. In Lotus japonicus, the nodule number has been considered to be tightly regulated by host-derived phytohormones and glycopeptides. However, we have discovered a symbiont-derived phytohormonal regulation of nodule number in Mesorhizobium loti. In this study, we found that M. loti synthesized gibberellic acid (GA) under symbiosis. Hosts inoculated with a GA-synthesis-deficient M. loti mutant formed more nodules than those inoculated with the wild-type form at four weeks post inoculation, indicating that GA from already-incorporated rhizobia prevents new nodule formation. Interestingly, the genes for GA synthesis are only found in rhizobial species that inhabit determinate nodules. Our findings suggest that the already-incorporated rhizobia perform GA-associated negative regulation of nodule number to prevent delayed infection by other rhizobia. PMID:27307029

  5. Negative regulators of brown adipose tissue (BAT)-mediated thermogenesis.

    PubMed

    Sharma, Bal Krishan; Patil, Mallikarjun; Satyanarayana, Ande

    2014-12-01

    Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence thermogenesis either positively or negatively through regulating the expression or transcriptional activity of PGC1α. Therefore, BAT activation can be achieved by either inducing the expression of positive regulators of PGC1α or by inhibiting the repressors of the PGC1α/UCP1 pathway. Here, we review the most important negative regulators of PGC1α/UCP1 signaling and their mechanism of action in BAT-mediated thermogenesis. © 2014 Wiley Periodicals, Inc.

  6. Inflammation, Prostate Cancer and Negative Regulation of Androgen Receptor Expression

    DTIC Science & Technology

    2009-05-01

    activity, 2) microRNA -mediated regulation of prostate cancer cell proliferation. My data establish that the human AR level is negatively regulated by... cancer , scanning of the cancer microRNA array shows that miR-454 is up regulated in androgen-independent C4-2 cells and overexpression of miR-454...TERMS Androgen receptor, prostate cancer , TNF-α, NF-κB, microRNA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF

  7. Baicalin Downregulates Porphyromonas gingivalis Lipopolysaccharide-Upregulated IL-6 and IL-8 Expression in Human Oral Keratinocytes by Negative Regulation of TLR Signaling

    PubMed Central

    Luo, Wei; Wang, Cun-Yu; Jin, Lijian

    2012-01-01

    Periodontal (gum) disease is one of the main global oral health burdens and severe periodontal disease (periodontitis) is a leading cause of tooth loss in adults globally. It also increases the risk of cardiovascular disease and diabetes mellitus. Porphyromonas gingivalis lipopolysaccharide (LPS) is a key virulent attribute that significantly contributes to periodontal pathogenesis. Baicalin is a flavonoid from Scutellaria radix, an herb commonly used in traditional Chinese medicine for treating inflammatory diseases. The present study examined the modulatory effect of baicalin on P. gingivalis LPS-induced expression of IL-6 and IL-8 in human oral keratinocytes (HOKs). Cells were pre-treated with baicalin (0–80 µM) for 24 h, and subsequently treated with P. gingivalis LPS at 10 µg/ml with or without baicalin for 3 h. IL-6 and IL-8 transcripts and proteins were detected by real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The expression of nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) proteins was analyzed by western blot. A panel of genes related to toll-like receptor (TLR) signaling was examined by PCR array. We found that baicalin significantly downregulated P. gingivalis LPS-stimulated expression of IL-6 and IL-8, and inhibited P. gingivalis LPS-activated NF-κB, p38 MAPK and JNK. Furthermore, baicalin markedly downregulated P. gingivalis LPS-induced expression of genes associated with TLR signaling. In conclusion, the present study shows that baicalin may significantly downregulate P. gingivalis LPS-upregulated expression of IL-6 and IL-8 in HOKs via negative regulation of TLR signaling. PMID:23239998

  8. Binding STAT2 by the acidic domain of human cytomegalovirus IE1 promotes viral growth and is negatively regulated by SUMO.

    PubMed

    Huh, Yong Ho; Kim, Young Eui; Kim, Eui Tae; Park, Jung Jin; Song, Moon Jung; Zhu, Hua; Hayward, Gary S; Ahn, Jin-Hyun

    2008-11-01

    The human cytomegalovirus (HCMV) 72-kDa immediate-early 1 (IE1) protein is thought to modulate cellular antiviral functions impacting on promyelocytic leukemia (PML) nuclear bodies and signal transducer and activator of transcription (STAT) signaling. IE1 consists of four distinct regions: an amino-terminal region required for nuclear localization, a large central hydrophobic region responsible for PML targeting and transactivation activity, an acidic domain, and a carboxyl-terminal chromatin tethering domain. We found that the acidic domain of IE1 is required for binding to STAT2. A mutant HCMV encoding IE1(Delta421-475) with the acidic domain deleted was generated. In mutant virus-infected cells, IE1(Delta421-475) failed to bind to STAT2. The growth of mutant virus was only slightly delayed at a high multiplicity of infection (MOI) but was severely impaired at a low MOI with low-level accumulation of viral proteins. When cells were pretreated with beta interferon, the mutant virus showed an additional 1,000-fold reduction in viral growth, even at a high MOI, compared to the wild type. The inhibition of STAT2 loading on the target promoter upon infection was markedly reduced with mutant virus. Furthermore, sumoylation of IE1 at this acidic domain was found to abolish the activity of IE1 to bind to STAT2 and repress the interferon-stimulated genes. Our results provide genetic evidence that IE1 binding to STAT2 requires the 55-amino-acid acidic domain and promotes viral growth by interfering with interferon signaling and demonstrate that this viral activity is negatively regulated by a cellular sumoylation pathway.

  9. Nitric oxide negatively regulates mammalian adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  10. Retinoids suppress cysteine-rich protein 61 (CCN1), a negative regulator of collagen homeostasis, in skin equivalent cultures and aged human skin in vivo.

    PubMed

    Quan, Taihao; Qin, Zhaoping; Shao, Yuan; Xu, Yiru; Voorhees, John J; Fisher, Gary J

    2011-07-01

    Alterations in connective tissue collagen are prominent features of both chronologically aged and photoaged (ageing because of sun exposure) human skin. These age-related abnormalities are mediated in part by cysteine-rich protein 61 (CCN1). CCN1 is elevated in the dermis of both chronologically aged and photoaged human skin in vivo and promotes aberrant collagen homeostasis by down-regulating type I collagen, the major structural protein in skin, and promoting collagen degradation. Vitamin A and its metabolites have been shown to improve chronologically aged and photoaged skin by promoting deposition of new collagen and preventing its degradation. Here, we investigated regulation of CCN1 expression by retinoids in skin equivalent cultures and chronologically aged and photoaged human skin in vivo. In skin equivalent cultures, all-trans retinoic acid (RA), the major bioactive form of vitamin A in skin, significantly increased type I procollagen and reduced collagenase (matrix metalloproteinases-1, MMP-1). Addition of recombinant human CCN1 to skin equivalent cultures significantly reduced type I procollagen and increased MMP-1. Importantly, RA significantly reduced CCN1 expression in skin equivalent cultures. Topical treatment with retinol (vitamin A, 0.4%) for 7days significantly reduced CCN1 mRNA and protein expression in both chronologically aged (80+years) and photoaged human skin in vivo, compared to vehicle-treated skin. These data indicate that the mechanism by which retinoids improve aged skin, through increased collagen production, involves down-regulation of CCN1.

  11. Tyrosine kinase FYN negatively regulates NOX4 in cardiac remodeling

    PubMed Central

    Matsushima, Shouji; Kuroda, Junya; Zhai, Peiyong; Liu, Tong; Ikeda, Shohei; Nagarajan, Narayani; Yokota, Takashi; Kinugawa, Shintaro; Hsu, Chiao-Po; Li, Hong; Tsutsui, Hiroyuki

    2016-01-01

    NADPH oxidases (Noxes) produce ROS that regulate cell growth and death. NOX4 expression in cardiomyocytes (CMs) plays an important role in cardiac remodeling and injury, but the posttranslational mechanisms that modulate this enzyme are poorly understood. Here, we determined that FYN, a Src family tyrosine kinase, interacts with the C-terminal domain of NOX4. FYN and NOX4 colocalized in perinuclear mitochondria, ER, and nuclear fractions in CMs, and FYN expression negatively regulated NOX4-induced O2– production and apoptosis in CMs. Mechanistically, we found that direct phosphorylation of tyrosine 566 on NOX4 was critical for this FYN-mediated negative regulation. Transverse aortic constriction activated FYN in the left ventricle (LV), and FYN-deficient mice displayed exacerbated cardiac hypertrophy and dysfunction and increased ROS production and apoptosis. Deletion of Nox4 rescued the exaggerated LV remodeling in FYN-deficient mice. Furthermore, FYN expression was markedly decreased in failing human hearts, corroborating its role as a regulator of cardiac cell death and ROS production. In conclusion, FYN is activated by oxidative stress and serves as a negative feedback regulator of NOX4 in CMs during cardiac remodeling. PMID:27525436

  12. FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells

    PubMed Central

    Hamurcu, Zuhal; Ashour, Ahmed; Kahraman, Nermin; Ozpolat, Bulent

    2016-01-01

    Eukaryotic elongation factor 2 kinase (eEF2K), an emerging molecular target for cancer therapy, contributes to cancer proliferation, cell survival, tumorigenesis, and invasion, disease progression and drug resistance. Although eEF2K is highly up-regulated in various cancers, the mechanism of gene regulation has not been elucidated. In this study, we examined the role of Forkhead Box M1 (FOXM1) proto-oncogenic transcription factor in triple negative breast cancer (TNBC) cells and the regulation of eEF2K. We found that FOXM1 is highly upregulated in TNBC and its knockdown by RNA interference (siRNA) significantly inhibited eEF2K expression and suppressed cell proliferation, colony formation, migration, invasion and induced apoptotic cell death, recapitulating the effects of eEF2K inhibition. Knockdown of FOXM1 inhibited regulators of cell cycle, migration/invasion and survival, including cyclin D1, Src and MAPK-ERK signaling pathways, respectively. We also demonstrated that FOXM1 (1B and 1C isoforms) directly binds to and transcriptionally regulates eEF2K gene expression by chromatin immunoprecipitation (ChIP) and luciferase gene reporter assays. Furthermore, in vivo inhibition of FOXM1 by liposomal siRNA-nanoparticles suppressed growth of MDA-MB-231 TNBC tumor xenografts in orthotopic models. In conclusion, our study provides the first evidence about the transcriptional regulation of eEF2K in TNBC and the role of FOXM1 in mediating breast cancer cell proliferation, survival, migration/invasion, progression and tumorgenesis and highlighting the potential of FOXM1/eEF2K axis as a molecular target in breast and other cancers. PMID:26918606

  13. XPLN is modulated by HDAC inhibitors and negatively regulates SPARC expression by targeting mTORC2 in human lung fibroblasts.

    PubMed

    Kamio, Koichiro; Azuma, Arata; Usuki, Jiro; Matsuda, Kuniko; Inomata, Minoru; Nishijima, Nobuhiko; Itakura, Shioto; Hayashi, Hiroki; Kashiwada, Takeru; Kokuho, Nariaki; Atsumi, Kenichiro; Yamaguchi, Tomoyoshi; Fujita, Kazue; Saito, Yoshinobu; Abe, Shinji; Kubota, Kaoru; Gemma, Akihiko

    2017-06-01

    Pathogenesis of idiopathic pulmonary fibrosis (IPF) remains unclear. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that participates in the assembly and turnover of the extracellular matrix, whose expression is regulated by transforming growth factor (TGF)-β1 through activation of mammalian target of rapamycin complex 2 (mTORC2). Exchange factor found in platelets, leukemic, and neuronal tissues (XPLN) is an endogenous inhibitor of mTORC2. However, whether XPLN modulates SPARC expression remains unknown. Herein, we investigated the regulatory mechanisms of XPLN in human lung fibroblasts. Effect of XPLN on mTORC2 activity was evaluated by silencing XPLN in human foetal lung fibroblasts (HFL-1 cells), using small interfering RNA. SPARC expression was quantified by quantitative real-time RT-PCR and western blotting. Fibroblasts were treated with TGF-β1, histone deacetylase (HDAC) inhibitors, entinostat, or vorinostat, to assess their effects on XPLN expression. Moreover, the effect of mTORC1 inhibition on SPARC and XPLN was examined. XPLN depletion stimulated SPARC expression and Akt phosphorylation on Ser473. TGF-β1 treatment down-regulated XPLN via Smad 2/3. XPLN mRNA expression was up-regulated upon treatment with HDAC inhibitors in a concentration-dependent manner, and TGF-β1-induced SPARC expression was reversed by entinostat treatment. mTORC1 inhibition by rapamycin and Raptor depletion stimulated SPARC expression. In conclusion, this is the first study describing the involvement of XPLN in the regulation of SPARC. These findings may help uncover the regulatory mechanisms of the mTORC2-SPARC axis. The up-regulation of XPLN by HDAC inhibitors may be a novel therapeutic approach in patients with IPF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback.

    PubMed

    Rance, Naomi E

    2009-01-01

    Menopause is characterized by depletion of ovarian follicles, a reduction of ovarian hormones to castrate levels and elevated levels of serum gonadotropins. Rather than degenerating, the reproductive neuroendocrine axis in postmenopausal women is intact and responds robustly to the removal of ovarian hormones. Studies in both human and non-human primates provide evidence that the gonadotropin hypersecretion in postmenopausal women is secondary to increased gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus. In addition, menopause is accompanied by hypertrophy of neurons in the infundibular (arcuate) nucleus expressing KiSS-1, neurokinin B (NKB), substance P, dynorphin and estrogen receptor alpha (ERalpha) mRNA. Ovariectomy in experimental animals induces nearly identical findings, providing evidence that these changes are a compensatory response to ovarian failure. The anatomical site of the hypertrophied neurons, as well as the extensive data implicating kisspeptin, NKB and dynorphin in the regulation of GnRH secretion, provide compelling evidence that these neurons are part of the neural network responsible for the increased levels of serum gonadotropins in postmenopausal women. We propose that neurons expressing KiSS-1, NKB, substance P, dynorphin and ERalpha mRNA in the infundibular nucleus play an important role in sex-steroid feedback on gonadotropin secretion in the human.

  15. Menopause and the Human Hypothalamus: Evidence for the Role of Kisspeptin/Neurokinin B Neurons in the Regulation of Estrogen Negative Feedback

    PubMed Central

    Rance, Naomi E.

    2009-01-01

    Menopause is characterized by depletion of ovarian follicles, a reduction of ovarian hormones to castrate levels and elevated levels of serum gonadotropins. Rather than degenerating, the reproductive neuroendocrine axis in postmenopausal women is intact and responds robustly to the removal of ovarian hormones. Studies in both humans and non-human primates provide evidence that the gonadotropin hypersecretion in postmenopausal women is secondary to increased gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus. In addition, menopause is accompanied by hypertrophy of neurons in the infundibular (arcuate) nucleus expressing KiSS-1, neurokinin B (NKB), substance P, dynorphin and estrogen receptor α (ERα) mRNA. Ovariectomy in experimental animals induces nearly identical findings, providing evidence that these changes are a compensatory response to ovarian failure. The anatomical site of the hypertrophied neurons, as well as the extensive data implicating kisspeptin, NKB and dynorphin in the regulation of GnRH secretion, provide compelling evidence that these neurons are part of the neural network responsible for the increased levels of serum gonadotropins in postmenopausal women. We propose that neurons expressing KiSS-1, NKB, substance P, dynorphin and ERα mRNA in the infundibular nucleus play an important role in sex-steroid feedback on gonadotropin secretion in the human. PMID:18614256

  16. PDE11A negatively regulates lithium responsivity

    PubMed Central

    Pathak, G.; Agostino, M.J.; Bishara, K.; Capell, W.R.; Fisher, J.L.; Hegde, S.; Ibrahim, B.A.; Pilarzyk, Kaitlyn; Sabin, C.; Tuczkewycz, Taras; Wilson, Steven; Kelly, M.P.

    2016-01-01

    Lithium responsivity in patients with bipolar disorder has been genetically associated with Phosphodiesterase 11A (PDE11A), and lithium decreases PDE11A mRNA in IPSC-derived hippocampal neurons originating from lithium responsive patients. PDE11 is an enzyme uniquely enriched in the hippocampus that breaks down cAMP and cGMP. Here, we determined if decreasing PDE11A expression is sufficient to increase lithium responsivity in mice. In dorsal hippocampus (DHIPP) and ventral hippocampus (VHIPP), lithium-responsive C57BL/6J and 129S6/SvEvTac mice show decreased PDE11A4 protein expression relative to lithium-unresponsive BALB/cJ mice. In VHIPP, C57BL/6J mice also show differences in PDE11A4 compartmentalization relative to BALB/cJ mice. In contrast, neither PDE2A nor PDE10A expression differ among the strains. The compartment-specific differences in PDE11A4 protein expression are explained by a coding SNP at amino acid 499, which falls within the GAF-B homodimerization domain. Relative to the BALB/cJ 499T, the C57BL/6J 499A decreases PDE11A4 homodimerization, which removes PDE11A4 from the membrane. Consistent with the observation that lower PDE11A4 expression correlates with better lithium responsiveness, we found that Pde11a KO mice given 0.4% lithium chow for 3+ weeks exhibit greater lithium responsivity relative to WT littermates in tail suspension, an antidepressant predictive assay, and amphetamine hyperlocomotion, an anti-manic predictive assay. Reduced PDE11A4 expression may represent a lithium-sensitive pathophysiology, because both C57BL/6J and Pde11a KO mice show increased expression of the pro-inflammatory cytokine IL-6 relative to BALB/cJ and PDE11A WT mice, respectively. Our finding that PDE11A4 negatively regulates lithium responsivity in mice suggests that the PDE11A SNPs identified in patients may be functionally relevant. PMID:27646265

  17. The balance of positive and negative effects of TGF-β signaling regulates the development of hematopoietic and endothelial progenitors in human pluripotent stem cells.

    PubMed

    Bai, Hao; Xie, Yin-Liang; Gao, Yong-Xing; Cheng, Tao; Wang, Zack Z

    2013-10-15

    Derived from mesoderm precursors, hemangioblasts are bipotential common progenitors of hematopoietic cells and endothelial cells. The regulatory events controlling hematopoietic and endothelial lineage specification are largely unknown, especially in humans. In this study, we establish a serum-free and feeder-free system with a high-efficient embryoid body (EB) generation to investigate the signals that direct differentiation of human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs). Consistent with previous studies, the CD34(+)CD31(+)VE-cadherin(+) (VEC(+)) cells derived from hPSCs contain hematopoietic and endothelial progenitors. In the presence of hematopoietic and endothelial growth factors, some of CD34(+)CD31(+)VEC(+) cells give rise to blast colony-forming cells (BL-CFCs), which have been used to characterize bipotential hemangioblasts. We found that the level of the transforming growth factor beta (TGF-β) 1 protein is increased during hPSC differentiation, and that TGF-β signaling has the double-edged effect on hematopoietic and endothelial lineage differentiation in hPSCs. An addition of TGF-β to hPSC differentiation before mesoderm induction promotes the development of mesoderm and the generation of CD34(+)CD31(+)VEC(+) cells. An addition of TGF-β inhibitor, SB431542, before mesoderm induction downregulates the expression of mesodermal markers and reduces the number of CD34(+)CD31(+)VEC(+) progenitor cells. However, inhibition of TGF-β signaling after mesoderm induction increases CD34(+)CD31(+)VEC(+) progenitors and BL-CFCs. These data provide evidence that a balance of positive and negative effects of TGF-β signaling at the appropriate timing is critical, and potential means to improve hematopoiesis and vasculogenesis from hPSCs.

  18. Human choice under schedules of negative reinforcement.

    PubMed

    Alessandri, Jérôme; Cançado, Carlos R X

    2015-12-01

    The generalized matching equation provides a good description of response allocation in concurrent schedules of positive reinforcement in nonhumans as well as in humans. The present experiment was conducted to further investigate the allocation of responding under concurrent schedules of negative reinforcement (i.e., timeouts from pressing a force cell) in humans. Each of three participants was exposed to different reinforcement ratios (9:1, 1:1 and 1:9) in the terminal links of a concurrent-chains schedule of negative reinforcement. The allocation of responding under this schedule was well described by the generalized matching equation, for each participant. These results replicate previous findings obtained with nonhumans and humans under concurrent schedules of positive reinforcement. In addition, they extend the results reported by Alessandri and Rivière (2013) showing that human behavior maintained by timeouts from an effortful response is sensitive to changes in relative reinforcement ratios as well as relative delays of reinforcement.

  19. Cultural differences in hedonic emotion regulation after a negative event.

    PubMed

    Miyamoto, Yuri; Ma, Xiaoming; Petermann, Amelia G

    2014-08-01

    Beliefs about emotions can influence how people regulate their emotions. The present research examined whether Eastern dialectical beliefs about negative emotions lead to cultural differences in how people regulate their emotions after experiencing a negative event. We hypothesized that, because of dialectical beliefs about negative emotions prevalent in Eastern culture, Easterners are less motivated than Westerners to engage in hedonic emotion regulation-up-regulation of positive emotions and down-regulation of negative emotions. By assessing online reactions to a recent negative event, Study 1 found that European Americans are more motivated to engage in hedonic emotion regulation. Furthermore, consistent with the reported motivation to regulate emotion hedonically, European Americans show a steeper decline in negative emotions 1 day later than do Asians. By examining retrospective memory of reactions to a past negative event, Study 2 further showed that cultural differences in hedonic emotion regulation are mediated by cultural differences in dialectical beliefs about motivational and cognitive utility of negative emotions, but not by personal deservingness or self-efficacy beliefs. These findings demonstrate the role of cultural beliefs in shaping emotion regulation and emotional experiences.

  20. Glycogen Synthase Kinase-3β (GSK3β) Negatively Regulates PTTG1/Human Securin Protein Stability, and GSK3β Inactivation Correlates with Securin Accumulation in Breast Tumors*

    PubMed Central

    Mora-Santos, Mar; Limón-Mortés, M. Cristina; Giráldez, Servando; Herrero-Ruiz, Joaquín; Sáez, Carmen; Japón, Miguel Á.; Tortolero, Maria; Romero, Francisco

    2011-01-01

    PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCFβTrCP E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers. PMID:21757741

  1. Glycogen synthase kinase-3beta (GSK3beta) negatively regulates PTTG1/human securin protein stability, and GSK3beta inactivation correlates with securin accumulation in breast tumors.

    PubMed

    Mora-Santos, Mar; Limón-Mortés, M Cristina; Giráldez, Servando; Herrero-Ruiz, Joaquín; Sáez, Carmen; Japón, Miguel Á; Tortolero, Maria; Romero, Francisco

    2011-08-26

    PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCF(βTrCP) E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers.

  2. RelA-Induced Interferon Response Negatively Regulates Proliferation

    PubMed Central

    Kochupurakkal, Bose S.; Wang, Zhigang C.; Hua, Tony; Culhane, Aedin C.; Rodig, Scott J.; Rajkovic-Molek, Koraljka; Lazaro, Jean-Bernard; Richardson, Andrea L.; Biswas, Debajit K.; Iglehart, J. Dirk

    2015-01-01

    Both oncogenic and tumor-suppressor activities are attributed to the Nuclear Factor kappa B (NF-kB) pathway. Moreover, NF-kB may positively or negatively regulate proliferation. The molecular determinants of these opposing roles of NF-kB are unclear. Using primary human mammary epithelial cells (HMEC) as a model, we show that increased RelA levels and consequent increase in basal transcriptional activity of RelA induces IRF1, a target gene. Induced IRF1 upregulates STAT1 and IRF7, and in consort, these factors induce the expression of interferon response genes. Activation of the interferon pathway down-regulates CDK4 and up-regulates p27 resulting in Rb hypo-phosphorylation and cell cycle arrest. Stimulation of HMEC with IFN-γ elicits similar phenotypic and molecular changes suggesting that basal activity of RelA and IFN-γ converge on IRF1 to regulate proliferation. The anti-proliferative RelA-IRF1-CDK4 signaling axis is retained in ER+/HER2- breast tumors analyzed by The Cancer Genome Atlas (TCGA). Using immuno-histochemical analysis of breast tumors, we confirm the negative correlation between RelA levels and proliferation rate in ER+/HER2- breast tumors. These findings attribute an anti-proliferative tumor-suppressor role to basal RelA activity. Inactivation of Rb, down-regulation of RelA or IRF1, or upregulation of CDK4 or IRF2 rescues the RelA-IRF1-CDK4 induced proliferation arrest in HMEC and are points of disruption in aggressive tumors. Activity of the RelA-IRF1-CDK4 axis may explain favorable response to CDK4/6 inhibition observed in patients with ER+ Rb competent tumors. PMID:26460486

  3. Dynein-mediated trafficking negatively regulates LET-23 EGFR signaling

    PubMed Central

    Skorobogata, Olga; Meng, Jassy; Gauthier, Kimberley; Rocheleau, Christian E.

    2016-01-01

    Epidermal growth factor receptor (EGFR) signaling is essential for animal development, and increased signaling underlies many human cancers. Identifying the genes and cellular processes that regulate EGFR signaling in vivo will help to elucidate how this pathway can become inappropriately activated. Caenorhabditis elegans vulva development provides an in vivo model to genetically dissect EGFR signaling. Here we identified a mutation in dhc-1, the heavy chain of the cytoplasmic dynein minus end–directed microtubule motor, in a genetic screen for regulators of EGFR signaling. Despite the many cellular functions of dynein, DHC-1 is a strong negative regulator of EGFR signaling during vulva induction. DHC-1 is required in the signal-receiving cell and genetically functions upstream or in parallel to LET-23 EGFR. LET-23 EGFR accumulates in cytoplasmic foci in dhc-1 mutants, consistent with mammalian cell studies in which dynein is shown to regulate late endosome trafficking of EGFR with the Rab7 GTPase. However, we found different distributions of LET-23 EGFR foci in rab-7 versus dhc-1 mutants, suggesting that dynein functions at an earlier step of LET-23 EGFR trafficking to the lysosome than RAB-7. Our results demonstrate an in vivo role for dynein in limiting LET-23 EGFR signaling via endosomal trafficking. PMID:27654944

  4. Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum

    PubMed Central

    Devescovi, Giulia; Kojic, Milan; Covaceuszach, Sonia; Cámara, Miguel; Williams, Paul; Bertani, Iris; Subramoni, Sujatha; Venturi, Vittorio

    2017-01-01

    In Chromobacteium violaceum, the purple pigment violacein is under positive regulation by the N-acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control. PMID:28326068

  5. Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum.

    PubMed

    Devescovi, Giulia; Kojic, Milan; Covaceuszach, Sonia; Cámara, Miguel; Williams, Paul; Bertani, Iris; Subramoni, Sujatha; Venturi, Vittorio

    2017-01-01

    In Chromobacteium violaceum, the purple pigment violacein is under positive regulation by the N-acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control.

  6. MicroRNA-762 is upregulated in human corneal epithelial cells in response to tear fluid and Pseudomonas aeruginosa antigens and negatively regulates the expression of host defense genes encoding RNase7 and ST2.

    PubMed

    Mun, James; Tam, Connie; Chan, Gary; Kim, Jong Hun; Evans, David; Fleiszig, Suzanne

    2013-01-01

    Mucosal surfaces regulate defenses against infection and excessive inflammation. We previously showed that human tears upregulated epithelial expression of genes encoding RNase7 and ST2, which inhibited Pseudomonas aeruginosa invasion of human corneal epithelial cells. Here, microRNA microarrays were used to show that a combination of tear fluid exposure (16 h) then P. aeruginosa antigens (3 h) upregulated miR-762 and miR-1207, and down-regulated miR-92 and let-7b (all > 2-fold) in human corneal epithelial cells compared to P. aeruginosa antigens alone. RT-PCR confirmed miR-762 upregulation ∼ 3-fold in tear-antigen exposed cells. Without tears or antigens, an antagomir reduced miR-762 expression relative to scrambled controls by ∼50%, increased expression of genes encoding RNase7 (∼80 %), ST2 (∼58%) and Rab5a (∼75%), without affecting P. aeruginosa internalization. However, P. aeruginosa invasion was increased > 3-fold by a miR-762 mimic which reduced RNase7 and ST2 gene expression. Tear fluid alone also induced miR-762 expression ∼ 4-fold, which was reduced by the miR-762 antagomir. Combination of tear fluid and miR-762 antagomir increased RNase7 and ST2 gene expression. These data show that mucosal fluids, such as tears, can modulate epithelial microRNA expression to regulate innate defense genes, and that miR-762 negatively regulates RNase7, ST2 and Rab5a genes. Since RNase7 and ST2 inhibit P. aeruginosa internalization, and are upregulated by tear fluid, other tear-induced mechanisms must counteract inhibitory effects of miR-762 to regulate resistance to bacteria. These data also suggest a complex relationship between tear induction of miR-762, its modulation of innate defense genes, and P. aeruginosa internalization.

  7. Human immunodeficiency virus-negative plasmablastic lymphoma

    PubMed Central

    Lin, Li; Zhang, Xudong; Dong, Meng; Li, Ling; Wang, Xinhua; Zhang, Lei; Fu, Xiaorui; Sun, Zhenchang; Wu, Jingjing; Li, Zhaoming; Chang, Yu; Wang, Yingjun; Zhou, Zhiyuan; Zhang, Mingzhi; Chen, Qingjiang

    2017-01-01

    Abstract Rationale: Plasmablastic lymphoma (PBL) is a rare subtype of human immunodeficiency virus (HIV)-related non-Hodgkin's lymphoma that predominantly manifests in the oral cavity. Patient concerns: Three cases of HIV-negative PBL were reported. Diagnoses: HIV-negative PBL Interventions: The patient had undergone chemotherapy. Outcomes: Clinical outcomes were very poor in Cases 1 and 3; Case 2, whose diagnosis suggested no bone marrow involvement, is still alive. Lessons subsections: These cases served to broaden the reported clinical spectrum of HIV-negative PBL. Clinicians and pathologists need to be familiar with lymphoma in the identified extra-oral PBL variation and there levant differential diagnosis procedures for this particular disease. PMID:28207555

  8. Negative regulation of human megakaryocytopoiesis by human platelet factor 4 and beta thromboglobulin: comparative analysis in bone marrow cultures from normal individuals and patients with essential thrombocythaemia and immune thrombocytopenic purpura.

    PubMed

    Han, Z C; Bellucci, S; Tenza, D; Caen, J P

    1990-04-01

    The effect of human platelet factor 4 (PF4) and beta-thromboglobulin (BTG) on megakaryocyte colony formation in normal subjects as well as in essential thrombocythaemia (ET) and in immune thrombocytopenic purpura (ITP) was studied. Both PF4 and BTG were found to be capable of inhibiting the development of isolated megakaryocytes and their colonies in normal marrow cultures in a dose-dependent fashion. A significant 50% inhibition was seen at a PF4 or BTG concentration of 1-2.5 micrograms/ml, and complete inhibition in the range of 5-10 micrograms PF4 or BTG/ml. The two platelet proteins had similar effects on megakaryocyte development. A combination of PF4 and BTG resulted in an additive effect. Antibodies against PF4 or BTG could effectively neutralize the inhibitory effect of PF4 or BTG respectively. In ET and ITP, in vitro megakaryocyte development was also inhibited by PF4 and BTG in a similar way to that seen in normal subjects, suggesting that the responsiveness of megakaryocyte progenitors to PF4 and BTG is normal in these two disorders. PF4 and BTG did not affect the growth of colony forming units granulocyte-macrophage (CFU-GM) except at very high concentration (greater than or equal to 10 micrograms/ml) but they did inhibit erythroid colony formation by normal and ET burst forming units erythroid (BFU-E). However, the inhibition of BFU-E by PF4 and BTG was dose-related, and a 50% inhibition required a PF4 or BTG dose ranging from 5 to 10 micrograms/ml. These results indicate that PF4 and BTG are involved in negative regulation of normal and pathologic megakaryocytopoiesis and that their inhibition acts predominantly on the megakaryocytic lineage.

  9. Tropomodulins are negative regulators of neurite outgrowth

    PubMed Central

    Fath, Thomas; Fischer, Robert S.; Dehmelt, Leif; Halpain, Shelley; Fowler, Velia M.

    2010-01-01

    Regulation of the actin cytoskeleton is critical for neurite formation. Tropomodulins (Tmods) regulate polymerization at actin filament pointed ends. Previous experiments using a mouse model deficient for the neuron specific isoform Tmod2 suggested a role for Tmods in neuronal function by impacting processes underlying learning and memory. However, the role of Tmods in neuronal function on the cellular level remains unknown. Immunofluorescence localization of the neuronal isoforms Tmod1 and Tmod2 in cultured rat primary hippocampal neurons revealed that Tmod1 is enriched along the proximal part of F-actin bundles in lamellipodia of spreading cells and in growth cones of extending neurites, while Tmod2 appears largely cytoplasmic. Functional analysis of these Tmod isoforms in a mouse neuroblastoma N2a cell line showed that knockdown of Tmod2 resulted in a significant increase in number of neurite-forming cells and in neurite length. While N2a cells compensated for Tmod2 knockdown by increasing Tmod1 levels, over-expression of exogenous Tmod1 had no effect on neurite outgrowth. Moreover, knockdown of Tmod1 increased the number of neurites formed per cell, without effect on number of neurite-forming cells or neurite length. Taken together, these results indicate that Tmod1 and Tmod2 have mechanistically distinct inhibitory roles in neurite formation, likely mediated via different effects on F-actin dynamics and via differential localizations during early neuritogenesis. PMID:21146252

  10. Human activation-induced cytidine deaminase is induced by IL-4 and negatively regulated by CD45: implication of CD45 as a Janus kinase phosphatase in antibody diversification.

    PubMed

    Zhou, Cheng; Saxon, Andrew; Zhang, Ke

    2003-02-15

    Activation-induced cytidine deaminase (AID) plays critical roles in Ig class switch recombination and V(H) gene somatic hypermutation. We investigated the role of IL-4 in AID mRNA induction, the signaling transduction involved in IL-4-mediated AID induction, and the effect of CD45 on IL-4-dependent AID expression in human B cells. IL-4 was able to induce AID expression in human primary B cells and B cell lines, and IL-4-induced AID expression was further enhanced by CD40 signaling. IL-4-dependent AID induction was inhibited by a dominant-negative STAT6, indicating that IL-4 induced AID expression via the Janus kinase (JAK)/STAT6 signaling pathway. Moreover, triggering of CD45 with anti-CD45 Abs can inhibit IL-4-induced AID expression, and this CD45-mediated AID inhibition correlated with the ability of anti-CD45 to suppress IL-4-activated JAK1, JAK3, and STAT6 phosphorylations. Thus, in humans, IL-4 alone is sufficient to drive AID expression, and CD40 signaling is required for optimal AID production; IL-4-induced AID expression is mediated via the JAK/STAT signaling pathway, and can be negatively regulated by the JAK phosphatase activity of CD45. This study indicates that the JAK phosphatase activity of CD45 can be induced by anti-CD45 Ab treatment, and this principle may find clinical application in modulation of JAK activation in immune-mediated diseases.

  11. Negative Regulation of p21Waf1/Cip1 by Human INO80 Chromatin Remodeling Complex Is Implicated in Cell Cycle Phase G2/M Arrest and Abnormal Chromosome Stability.

    PubMed

    Cao, Lingling; Ding, Jian; Dong, Liguo; Zhao, Jiayao; Su, Jiaming; Wang, Lingyao; Sui, Yi; Zhao, Tong; Wang, Fei; Jin, Jingji; Cai, Yong

    2015-01-01

    We previously identified an ATP-dependent human Ino80 (INO80) chromatin remodeling complex which shares a set of core subunits with yeast Ino80 complex. Although research evidence has suggested that INO80 complex functions in gene transcription and genome stability, the precise mechanism remains unclear. Herein, based on gene expression profiles from the INO80 complex-knockdown in HeLa cells, we first demonstrate that INO80 complex negatively regulates the p21Waf1/Cip1 (p21) expression in a p53-mediated mechanism. In chromatin immunoprecipitation (ChIP) and a sequential ChIP (Re-ChIP) assays, we determined that the INO80 complex and p53 can bind to the same promoter region of p21 gene (-2.2 kb and -1.0 kb upstream of the p21 promoter region), and p53 is required for the recruitment of the INO80 complex to the p21 promoter. RNAi knockdown strategies of INO80 not only led to prolonged progression of cell cycle phase G2/M to G1, but it also resulted in abnormal chromosome stability. Interestingly, high expression of p21 was observed in most morphologically-changed cells, suggesting that negative regulation of p21 by INO80 complex might be implicated in maintaining the cell cycle process and chromosome stability. Together, our findings will provide a theoretical basis to further elucidate the cellular mechanisms of the INO80 complex.

  12. Negative Regulation of p21Waf1/Cip1 by Human INO80 Chromatin Remodeling Complex Is Implicated in Cell Cycle Phase G2/M Arrest and Abnormal Chromosome Stability

    PubMed Central

    Cao, Lingling; Ding, Jian; Dong, Liguo; Zhao, Jiayao; Su, Jiaming; Wang, Lingyao; Sui, Yi; Zhao, Tong; Wang, Fei; Jin, Jingji; Cai, Yong

    2015-01-01

    We previously identified an ATP-dependent human Ino80 (INO80) chromatin remodeling complex which shares a set of core subunits with yeast Ino80 complex. Although research evidence has suggested that INO80 complex functions in gene transcription and genome stability, the precise mechanism remains unclear. Herein, based on gene expression profiles from the INO80 complex-knockdown in HeLa cells, we first demonstrate that INO80 complex negatively regulates the p21Waf1/Cip1 (p21) expression in a p53-mediated mechanism. In chromatin immunoprecipitation (ChIP) and a sequential ChIP (Re-ChIP) assays, we determined that the INO80 complex and p53 can bind to the same promoter region of p21 gene (-2.2kb and -1.0kb upstream of the p21 promoter region), and p53 is required for the recruitment of the INO80 complex to the p21 promoter. RNAi knockdown strategies of INO80 not only led to prolonged progression of cell cycle phase G2/M to G1, but it also resulted in abnormal chromosome stability. Interestingly, high expression of p21 was observed in most morphologically-changed cells, suggesting that negative regulation of p21 by INO80 complex might be implicated in maintaining the cell cycle process and chromosome stability. Together, our findings will provide a theoretical basis to further elucidate the cellular mechanisms of the INO80 complex. PMID:26340092

  13. Negative regulation of RelA phosphorylation: emerging players and their roles in cancer.

    PubMed

    Lu, Xinyuan; Yarbrough, Wendell G

    2015-02-01

    NF-κB signaling contributes to human disease processes, notably inflammatory diseases and cancer. Many advances have been made in understanding mechanisms responsible for abnormal NF-κB activation with RelA post-translational modification, particularly phosphorylation, proven to be critical for RelA function. While the majority of studies have focused on identifying kinases responsible for NF-κB phosphorylation and pathway activation, recently progress has also been made in understanding the negative regulators important for restraining RelA activity. Here we summarize negative regulators of RelA phosphorylation, their targeting sites in RelA and biological functions through negative regulation of RelA activation. Finally, we emphasize the tumor suppressor-like roles that these negative regulators can assume in human cancers.

  14. RGS10 Negatively Regulates Platelet Activation and Thrombogenesis

    PubMed Central

    Druey, Kirk M.; Tansey, Malú G.; Khasawneh, Fadi T.

    2016-01-01

    Regulators of G protein signaling (RGS) proteins act as GTPase activating proteins to negatively regulate G protein-coupled receptor (GPCR) signaling. Although several RGS proteins including RGS2, RGS16, RGS10, and RGS18 are expressed in human and mouse platelets, the respective unique function(s) of each have not been fully delineated. RGS10 is a member of the D/R12 subfamily of RGS proteins and is expressed in microglia, macrophages, megakaryocytes, and platelets. We used a genetic approach to examine the role(s) of RGS10 in platelet activation in vitro and hemostasis and thrombosis in vivo. GPCR-induced aggregation, secretion, and integrin activation was much more pronounced in platelets from Rgs10-/- mice relative to wild type (WT). Accordingly, these mice had markedly reduced bleeding times and were more susceptible to vascular injury-associated thrombus formation than control mice. These findings suggest a unique, non-redundant role of RGS10 in modulating the hemostatic and thrombotic functions of platelets in mice. RGS10 thus represents a potential therapeutic target to control platelet activity and/or hypercoagulable states. PMID:27829061

  15. Celastrol negatively regulates cell invasion and migration ability of human osteosarcoma via downregulation of the PI3K/Akt/NF-κB signaling pathway in vitro

    PubMed Central

    Yu, Xiaolong; Wang, Qiang; Zhou, Xin; Fu, Changlin; Cheng, Ming; Guo, Runsheng; Liu, Hucheng; Zhang, Bin; Dai, Min

    2016-01-01

    Osteosarcoma (OS) is a primary malignant tumor of the bone, with a tendency to metastasize early. Despite the advances in treatment options, more than 30% of patients develop distant metastases, and the prognosis of these patients with metastases is extremely poor. Celastrol has been demonstrated to manifest multiple pharmacological activities, including induction of apoptosis in numerous types of cancer cell lines. Our previous studies have also suggested that Celastrol is capable of inducing apoptosis of human osteosarcoma cells via the mitochondrial-dependent pathway. The purpose of this study was to investigate the effects of Celastrol on the migration and invasion of human osteosarcoma U-2OS cells in vitro. Cell migration and invasion were investigated using wound healing and Boyden chamber Transwell assays. We observed that Celastrol suppressed cell invasion and migration in human osteosarcoma U-2OS cells. Furthermore, protein expression levels of phosphorylated phosphatidylinositol 3-kinase (PI3K), Akt, inhibitor of κB kinase α/β, inhibitor of κB α, nuclear factor-κB (NF-κB subunit p65) and matrix metalloproteinase (MMP)-2 and −9 were measured by western blot analysis. We observed that the PI3K/Akt/NF-κB signaling pathway was inhibited following Celastrol treatment. In addition, the expression levels of MMP-2 and −9 proteins were also reduced significantly following Celastrol treatment. Therefore, we confirmed that Celastrol suppressed osteosarcoma U-2OS cell metastasis via downregulation of the PI3K/Akt/NF-κB signaling pathway in vitro. PMID:27900015

  16. Positive and negative elements regulate a melanocyte-specific promoter.

    PubMed Central

    Lowings, P; Yavuzer, U; Goding, C R

    1992-01-01

    Melanocytes are specialized cells residing in the hair follicles, the eye, and the basal layer of the human epidermis whose primary function is the production of the pigment melanin, giving rise to skin, hair, and eye color. Melanogenesis, a process unique to melanocytes that involves the processing of tyrosine by a number of melanocyte-specific enzymes, including tyrosinase and tyrosinase-related protein 1 (TRP-1), occurs only after differentiation from the melanocyte precursor, the melanoblast. In humans, melanogenesis is inducible by UV irradiation, with melanin being transferred from the melanocyte in the epidermis to the surrounding keratinocytes as protection from UV-induced damage. Excessive exposure to UV, however, is the primary cause of malignant melanoma, an increasingly common and highly aggressive disease. As an initial approach to understanding the regulation of melanocyte differentiation and melanocyte-specific transcription, we have isolated the gene encoding TRP-1 and examined the cis- and trans-acting factors required for cell-type-specific expression. We find that the TRP-1 promoter comprises both positive and negative regulatory elements which confer efficient expression in a TRP-1-expressing, pigmented melanoma cell line but not in NIH 3T3 or JEG3 cells and that a minimal promoter extending between -44 and +107 is sufficient for cell-type-specific expression. Assays for DNA-protein interactions coupled with extensive mutagenesis identified three factors, whose binding correlated with the function of two positive and one negative regulatory element. One of these factors, termed M-box-binding factor 1, binds to an 11-bp motif, the M box, which acts as a positive regulatory element both in TRP-1-expressing and -nonexpressing cell lines, despite being entirely conserved between the melanocyte-specific tyrosinase and TRP-1 promoters. The possible mechanisms underlying melanocyte-specific gene expression are discussed. Images PMID:1321344

  17. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer.

    PubMed

    Matsuzaki, Junko; Gnjatic, Sacha; Mhawech-Fauceglia, Paulette; Beck, Amy; Miller, Austin; Tsuji, Takemasa; Eppolito, Cheryl; Qian, Feng; Lele, Shashikant; Shrikant, Protul; Old, Lloyd J; Odunsi, Kunle

    2010-04-27

    NY-ESO-1 is a "cancer-testis" antigen frequently expressed in epithelial ovarian cancer (EOC) and is among the most immunogenic tumor antigens defined to date. In an effort to understand in vivo tolerance mechanisms, we assessed the phenotype and function of NY-ESO-1-specific CD8(+) T cells derived from peripheral blood lymphocytes (PBLs), tumor-infiltrating lymphocytes (TILs), and tumor-associated lymphocytes (TALs) of EOC patients with NY-ESO-1-expressing tumors, with or without humoral immunity to NY-ESO-1. Whereas NY-ESO-1-specific CD8(+) T cells were readily detectable ex vivo with tetramers in TILs and TALs of seropositive patients, they were only detectable in PBLs following in vitro stimulation. Compared with PBLs, tumor-derived NY-ESO-1-specific CD8(+) T cells demonstrated impaired effector function, preferential usage of dominant T-cell receptor, and enriched coexpression of inhibitory molecules LAG-3 and PD-1. Expression of LAG-3 and PD-1 on CD8(+) T cells was up-regulated by IL-10, IL-6 (cytokines found in tumor ascites), and tumor-derived antigen-presenting cells. Functionally, CD8(+)LAG-3(+)PD-1(+) T cells were more impaired in IFN-gamma/TNF-alpha production compared with LAG-3(+)PD-1(-) or LAG-3(-)PD-1(-) subsets. Dual blockade of LAG-3 and PD-1 during T-cell priming efficiently augmented proliferation and cytokine production by NY-ESO-1-specific CD8(+) T cells, indicating that antitumor function of NY-ESO-1-specific CD8(+) T cells could potentially be improved by therapeutic targeting of these inhibitory receptors.

  18. Berberine Decreased Inducible Nitric Oxide Synthase mRNA Stability through Negative Regulation of Human Antigen R in Lipopolysaccharide-Induced Macrophages.

    PubMed

    Shin, Ji-Sun; Choi, Hye-Eun; Seo, SeungHwan; Choi, Jung-Hye; Baek, Nam-In; Lee, Kyung-Tae

    2016-07-01

    Berberine, a major isoquinoline alkaloid found in medicinal herbs, has been reported to possess anti-inflammatory effects; however, the underlying mechanisms responsible for its actions are poorly understood. In the present study, we investigated the inhibitory effects of berberine and the molecular mechanisms involved in lipopolysaccharide (LPS)-treated RAW 264.7 and THP-1 macrophages and its effects in LPS-induced septic shock in mice. In both macrophage cell types, berberine inhibited the LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) protein expression, but it had no effect on iNOS mRNA transcription. Suppression of LPS-induced iNOS protein expression by berberine occurred via a human antigen R (HuR)-mediated reduction of iNOS mRNA stability. Molecular data revealed that the suppression on the LPS-induced HuR binding to iNOS mRNA by berberine was accompanied by a reduction in nucleocytoplasmic HuR shuttling. Pretreatment with berberine reduced LPS-induced iNOS protein expression and the cytoplasmic translocation of HuR in liver tissues and increased the survival rate of mice with LPS-induced endotoxemia. These results show that the suppression of iNOS protein expression by berberine under LPS-induced inflammatory conditions is associated with a reduction in iNOS mRNA stability resulting from inhibition of the cytoplasmic translocation of HuR. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  19. GATA4 negatively regulates bone sialoprotein expression in osteoblasts

    PubMed Central

    Song, Insun; Jeong, Byung-chul; Choi, Yong Jun; Chung, Yoon-Sok; Kim, Nacksung

    2016-01-01

    GATA4 has been reported to act as a negative regulator in osteoblast differentiation by inhibiting the Dlx5 transactivation of Runx2 via the attenuation of the binding ability of Dlx5 to the Runx2 promoter region. Here, we determine the role of GATA4 in the regulation of bone sialoprotein (Bsp) in osteoblasts. We observed that the overexpression of Runx2 or Sox9 induced the Bsp expression in osteoblastic cells. Silencing GATA4 further enhanced the Runx2- and Sox9-mediated Bsp promoter activity, whereas GATA4 overexpression down-regulated Bsp promoter activity mediated by Runx2 and Sox9. GATA4 also interacted with Runx2 and Sox9, by attenuating the binding ability of Runx2 and Sox9 to the Bsp promoter region. Our data suggest that GATA4 acts as a negative regulator of Bsp expression in osteoblasts. [BMB Reports 2016; 49(6): 343-348] PMID:26973342

  20. Spontaneous Emotion Regulation to Positive and Negative Stimuli

    ERIC Educational Resources Information Center

    Volokhov, Rachael N.; Demaree, Heath A.

    2010-01-01

    The ability to regulate one's emotions is an integral part of human social behavior. One antecedent emotion regulation strategy, known as reappraisal, is characterized by cognitively evaluating an emotional stimulus to alter its emotional impact and one response-focused strategy, suppression, is aimed at reducing behavioral output. People are…

  1. Ribosomal Protein S14 Negatively Regulates c-Myc Activity*

    PubMed Central

    Zhou, Xiang; Hao, Qian; Liao, Jun-ming; Liao, Peng; Lu, Hua

    2013-01-01

    The ribosomal gene RPS14 is associated with the cancer-prone 5q-syndrome, which is caused by an interstitial deletion of the long arm of human chromosome 5. Previously, we found that ribosomal protein S14 (RPS14) binds to and inactivates MDM2, consequently leading to p53-dependent cell-cycle arrest and growth inhibition. However, it remains elusive whether RPS14 regulates cell proliferation in a p53-independent manner. Here, we show that RPS14 interacts with the Myc homology box II (MBII) and the C-terminal basic helix-loop-helix leucine zipper (bHLH-LZ) domains of the oncoprotein c-Myc. Further, RPS14 inhibited c-Myc transcriptional activity by preventing the recruitment of c-Myc and its cofactor, TRRAP, to the target gene promoters, as thus suppressing c-Myc-induced cell proliferation. Also, siRNA-mediated RPS14 depletion elevated c-Myc transcriptional activity determined by its target gene, Nucleolin, expression. Interestingly, RPS14 depletion also resulted in the induction of c-Myc mRNA and subsequent protein levels. Consistent with this, RPS14 promoted c-Myc mRNA turnover through an Argonaute 2 (Ago2)- and microRNA-mediated pathway. Taken together, our study demonstrates that RPS14 negates c-Myc functions by directly inhibiting its transcriptional activity and mediating its mRNA degradation via miRNA. PMID:23775087

  2. HDAC2 negatively regulates memory formation and synaptic plasticity

    PubMed Central

    Guan, Ji-Song; Haggarty, Stephen J.; Giacometti, Emanuela; Dannenberg, Jan-Hermen; Joseph, Nadine; Gao, Jun; Nieland, Thomas J.F.; Zhou, Ying; Wang, Xinyu; Mazitschek, Ralph; Bradner, James E.; DePinho, Ronald A.; Jaenisch, Rudolf; Tsai, Li-Huei

    2012-01-01

    Chromatin modifications, especially histone-tail acetylation, have been implicated in memory formation. Increased histone-tail acetylation induced by inhibitors of histone deacetylases (HDACis) facilitates learning and memory in wildtype mice as well as in mouse models of neurodegeneration. Harnessing the therapeutic potential of HDACi requires knowledge of the specific HDAC family member(s) linked to cognitive enhancement. Here we show that neuron-specific overexpression of HDAC2, but not HDAC1, reduced dendritic spine density, synapse number, synaptic plasticity, and memory formation. Conversely, HDAC2 deficiency resulted in increased synapse number and memory facilitation, similar to chronic HDACi treatment in mice. Notably, reduced synapse number and learning impairment of HDAC2-overexpressing mice were ameliorated by chronic HDACi treatment. Correspondingly, HDACi treatment failed to further facilitate memory formation in HDAC2-deficient mice. Furthermore, analysis of promoter occupancy revealed association of HDAC2 with the promoters of genes implicated in synaptic plasticity and memory formation. Together, our results suggest that HDAC2 plays a role in modulating synaptic plasticity and long-lasting changes of neural circuits, which in turn negatively regulates learning and memory. These observations encourage the development and testing of HDAC2-selective inhibitors for human diseases associated with memory impairment. PMID:19424149

  3. Architecture and regulation of negative-strand viral enzymatic machinery

    PubMed Central

    Kranzusch, Philip J.; Whelan, Sean P.J.

    2012-01-01

    Negative-strand (NS) RNA viruses initiate infection with a unique polymerase complex that mediates both mRNA transcription and subsequent genomic RNA replication. For nearly all NS RNA viruses, distinct enzymatic domains catalyzing RNA polymerization and multiple steps of 5′ mRNA cap formation are contained within a single large polymerase protein (L). While NS RNA viruses include a variety of emerging human and agricultural pathogens, the enzymatic machinery driving viral replication and gene expression remains poorly understood. Recent insights with Machupo virus and vesicular stomatitis virus have provided the first structural information of viral L proteins, and revealed how the various enzymatic domains are arranged into a conserved architecture shared by both segmented and nonsegmented NS RNA viruses. In vitro systems reconstituting RNA synthesis from purified components provide new tools to understand the viral replicative machinery, and demonstrate the arenavirus matrix protein regulates RNA synthesis by locking a polymerase–template complex. Inhibition of gene expression by the viral matrix protein is a distinctive feature also shared with influenza A virus and nonsegmented NS RNA viruses, possibly illuminating a conserved mechanism for coordination of viral transcription and polymerase packaging PMID:22767259

  4. Autophagy negatively regulates cancer cell proliferation via selectively targeting VPRBP.

    PubMed

    Wang, Bo-Shi; Liu, Yi-Zhen; Yang, Yang; Zhang, Yu; Hao, Jia-Jie; Yang, Hai; Wang, Xiao-Min; Zhang, Zi-Qiang; Zhan, Qi-Min; Wang, Ming-Rong

    2013-02-01

    There have been multiple lines of evidence suggesting that autophagy selectively targets signalling proteins and regulates cancer cell signalling in addition to bulk clearance of long-lived proteins and organelles. Protein degradation through autophagy requires receptor protein LC3B to sequester the substrates into the autophagosome. In the present study, we screened LC3B (light-chain 3B)-binding partners and identified autophagic substrates in cancer cells. With lung cancer NCI-H1975 and oesophageal cancer KYSE30 cell lines as models, we found that VPRBP (viral protein R-binding protein) was a novel LC3B-binding protein through GST (glutathione transferase)-LC3B pull-down combined with LC-MS/MS (liquid chromatography-tandem MS) methods. Co-immunoprecipitation assay showed that VPRBP-LC3/p62 were in the same protein complex as the two cell lines. Induction of autophagy led to a down-regulation of VPRPB, which could be rescued by the inhibition of autophagy degradation by BFA1 (bafilomycin A1) and by the disruption of autophagy through ATG5-knockdown. We also found that induction of autophagy promotes VPRBP-LC3/p62 interaction. Immunohistochemical examination of human NSCLC (non-small cell lung cancer) tissues showed that VPRBP was positively correlated with p62 and negatively correlated with LC3B. Moreover, p62 and VPRBP were associated with poor prognosis in lung ADC (adenocarcinoma) (p62, P=0.019; VPRBP, P=0.005). Patients with low expression of both p62 and VPRBP showed the best prognosis.

  5. Autophagy triggered by magnolol derivative negatively regulates angiogenesis

    PubMed Central

    Kumar, S; Guru, S K; Pathania, A S; Kumar, A; Bhushan, S; Malik, F

    2013-01-01

    Angiogenesis has a key role in the tumor progression and metastasis; targeting endothelial cell proliferation has emerged as a promising therapeutic strategy for the prevention of cancer. Previous studies have revealed a complex association between the process of angiogenesis and autophagy and its outcome on tumorigenesis. Autophagy, also known as type-II cell death, has been identified as an alternative way of cell killing in apoptotic-resistant cancer cells. However, its involvement in chemoresistance and tumor promotion is also well known. In this study, we used a derivate of natural product magnolol (Ery5), a potent autophagy inducer, to study the association between the autophagy and angiogenesis in both in vitro and in vivo model system. We found that the robust autophagy triggered by Ery5, inhibited angiogenesis and caused cell death independent of the apoptosis in human umbilical cord vein endothelial cells and PC-3 cells. Ery5 induced autophagy effectively inhibited cell proliferation, migration, invasion and tube formation. We further demonstrated that Ery5-mediated autophagy and subsequent inhibition of angiogenesis was reversed when autophagy was inhibited through 3-methyl adenine and knocking down of key autophagy proteins ATG7 and microtubule-associated protein light chain 3. While evaluating the negative regulation of autophagy on angiogenesis, it was interesting to find that angiogenic environment produced by the treatment of VEGF and CoCl2 remarkably downregulated the autophagy and autophagic cell death induced by Ery5. These studies, while disclosing the vital role of autophagy in the regulation of angiogenesis, also suggest that the potent modulators of autophagy can lead to the development of effective therapeutics in apoptosis-resistant cancer. PMID:24176847

  6. How Novice EFL Teachers Regulate Their Negative Emotions

    ERIC Educational Resources Information Center

    Arizmendi Tejeda, Silvia; Gillings de González, Barbara Scholes; López Martínez, Cecilio Luis de Jesús

    2016-01-01

    This research report shares the findings that emerged from a qualitative study in which the main objective was to discover whether or not novice English as a foreign language teachers regulate their negative emotions during their initial teaching practice, and if so, how they do this. The data were collected by semi-structured interviews and…

  7. Emotional Competence in Children with Down Syndrome: Negativity and Regulation

    ERIC Educational Resources Information Center

    Jahromi, Laudan B.; Gulsrud, Amanda; Kasari, Connie

    2008-01-01

    Although often described as temperamentally "easy" and sociable, children with Down syndrome also exhibit behavior problems. Affective development is important for social and behavioral competence. We examined negative affective expressions and a range of emotion regulation/coping strategies during a frustrating task in a sample of children with…

  8. Regulating positive and negative emotions in daily life.

    PubMed

    Nezlek, John B; Kuppens, Peter

    2008-06-01

    The present study examined how people regulate their emotions in daily life and how such regulation is related to their daily affective experience and psychological adjustment. Each day for an average of 3 weeks, participants described how they had regulated their emotions in terms of the reappraisal and suppression (inhibiting the expression) of positive and negative emotions, and they described their emotional experience, self-esteem, and psychological adjustment in terms of Beck's triadic model of depression. Reappraisal was used more often than suppression, and suppressing positive emotions was used less than the other three strategies. In general, regulation through reappraisal was found to be beneficial, whereas regulation by suppression was not. Reappraisal of positive emotions was associated with increases in positive affect, self-esteem, and psychological adjustment, whereas suppressing positive emotions was associated with decreased positive emotion, self-esteem, and psychological adjustment, and increased negative emotions. Moreover, relationships between reappraisal and psychological adjustment and self-esteem were mediated by experienced positive affect, whereas relationships between suppression of positive emotions and self-esteem adjustment were mediated by negative affect.

  9. Histone deacetylase 9 is a negative regulator of adipogenic differentiation.

    PubMed

    Chatterjee, Tapan K; Idelman, Gila; Blanco, Victor; Blomkalns, Andra L; Piegore, Mark G; Weintraub, Daniel S; Kumar, Santosh; Rajsheker, Srinivas; Manka, David; Rudich, Steven M; Tang, Yaoliang; Hui, David Y; Bassel-Duby, Rhonda; Olson, Eric N; Lingrel, Jerry B; Ho, Shuk-Mei; Weintraub, Neal L

    2011-08-05

    Differentiation of preadipocytes into mature adipocytes capable of efficiently storing lipids is an important regulatory mechanism in obesity. Here, we examined the involvement of histone deacetylases (HDACs) and histone acetyltransferases (HATs) in the regulation of adipogenesis. We find that among the various members of the HDAC and HAT families, only HDAC9 exhibited dramatic down-regulation preceding adipogenic differentiation. Preadipocytes from HDAC9 gene knock-out mice exhibited accelerated adipogenic differentiation, whereas HDAC9 overexpression in 3T3-L1 preadipocytes suppressed adipogenic differentiation, demonstrating its direct role as a negative regulator of adipogenesis. HDAC9 expression was higher in visceral as compared with subcutaneous preadipocytes, negatively correlating with their potential to undergo adipogenic differentiation in vitro. HDAC9 localized in the nucleus, and its negative regulation of adipogenesis segregates with the N-terminal nuclear targeting domain, whereas the C-terminal deacetylase domain is dispensable for this function. HDAC9 co-precipitates with USF1 and is recruited with USF1 at the E-box region of the C/EBPα gene promoter in preadipocytes. Upon induction of adipogenic differentiation, HDAC9 is down-regulated, leading to its dissociation from the USF1 complex, whereas p300 HAT is up-regulated to allow its association with USF1 and accumulation at the E-box site of the C/EBPα promoter in differentiated adipocytes. This reciprocal regulation of HDAC9 and p300 HAT in the USF1 complex is associated with increased C/EBPα expression, a master regulator of adipogenic differentiation. These findings provide new insights into mechanisms of adipogenic differentiation and document a critical regulatory role for HDAC9 in adipogenic differentiation through a deacetylase-independent mechanism.

  10. Myostatin negatively regulates satellite cell activation and self-renewal.

    PubMed

    McCroskery, Seumas; Thomas, Mark; Maxwell, Linda; Sharma, Mridula; Kambadur, Ravi

    2003-09-15

    Satellite cells are quiescent muscle stem cells that promote postnatal muscle growth and repair. Here we show that myostatin, a TGF-beta member, signals satellite cell quiescence and also negatively regulates satellite cell self-renewal. BrdU labeling in vivo revealed that, among the Myostatin-deficient satellite cells, higher numbers of satellite cells are activated as compared with wild type. In contrast, addition of Myostatin to myofiber explant cultures inhibits satellite cell activation. Cell cycle analysis confirms that Myostatin up-regulated p21, a Cdk inhibitor, and decreased the levels and activity of Cdk2 protein in satellite cells. Hence, Myostatin negatively regulates the G1 to S progression and thus maintains the quiescent status of satellite cells. Immunohistochemical analysis with CD34 antibodies indicates that there is an increased number of satellite cells per unit length of freshly isolated Mstn-/- muscle fibers. Determination of proliferation rate suggests that this elevation in satellite cell number could be due to increased self-renewal and delayed expression of the differentiation gene (myogenin) in Mstn-/- adult myoblasts. Taken together, these results suggest that Myostatin is a potent negative regulator of satellite cell activation and thus signals the quiescence of satellite cells.

  11. Transcription dynamics of inducible genes modulated by negative regulations.

    PubMed

    Li, Yanyan; Tang, Moxun; Yu, Jianshe

    2015-06-01

    Gene transcription is a stochastic process in single cells, in which genes transit randomly between active and inactive states. Transcription of many inducible genes is also tightly regulated: It is often stimulated by extracellular signals, activated through signal transduction pathways and later repressed by negative regulations. In this work, we study the nonlinear dynamics of the mean transcription level of inducible genes modulated by the interplay of the intrinsic transcriptional randomness and the repression by negative regulations. In our model, we integrate negative regulations into gene activation process, and make the conventional assumption on the production and degradation of transcripts. We show that, whether or not the basal transcription is temporarily terminated when cells are stimulated, the mean transcription level grows in the typical up and down pattern commonly observed in immune response genes. With the help of numerical simulations, we clarify the delicate impact of the system parameters on the transcription dynamics, and demonstrate how our model generates the distinct temporal gene-induction patterns in mouse fibroblasts discerned in recent experiments.

  12. Human Concept Formation: Negative Instances. Final Report.

    ERIC Educational Resources Information Center

    Shumway, Richard J.

    The role of negative instances in the acquisition of the mathematical concepts of distributivity and homomorphism was examined. Two treatment levels for distributivity (positive instances and positive and negative instances) and the same treatment levels for homomorphism were crossed to form a 2 x 2 factorial design with 23 subjects per cell.…

  13. PINOID functions in root phototropism as a negative regulator.

    PubMed

    Haga, Ken; Sakai, Tatsuya

    2015-01-01

    The PINOID (PID) family, which belongs to AGCVIII kinases, is known to be involved in the regulation of auxin efflux transporter PIN-formed (PIN) proteins through changes in the phosphorylation status. Recently, we demonstrated that the PID family is necessary for phytochrome-mediated phototropic enhancement in Arabidopsis hypocotyls and that the downregulation of PID expression by red-light pretreatment results in the promotion of the PIN-mediated auxin gradient during phototropic responses. However, whether PID participates in root phototropism in Arabidopsis seedlings has not been well studied. Here, we demonstrated that negative root phototropic responses are enhanced in the pid quadruple mutant and are severely impaired in transgenic plants expressing PID constitutively. The results indicate that the PID family functions in a negative root phototropism as a negative regulator. On the other hand, analysis with PID fused to a yellow fluorescent protein, VENUS, showed that unilateral blue-light irradiation causes a lower accumulation of PID proteins on the shaded side than on the irradiated side. This result suggests that the blue-light-mediated asymmetrical distribution of PID proteins may be one of the critical responses in phototropin-mediated signals during a negative root phototropism. Alternatively, such a transverse gradient of PID proteins may result from gravitropic stimulation produced by phototropic bending.

  14. PINOID functions in root phototropism as a negative regulator

    PubMed Central

    Haga, Ken; Sakai, Tatsuya

    2015-01-01

    The PINOID (PID) family, which belongs to AGCVIII kinases, is known to be involved in the regulation of auxin efflux transporter PIN-FORMED (PIN) proteins through changes in the phosphorylation status. Recently, we demonstrated that the PID family is necessary for phytochrome-mediated phototropic enhancement in Arabidopsis hypocotyls and that the downregulation of PID expression by red-light pretreatment results in the promotion of the PIN-mediated auxin gradient during phototropic responses. However, whether PID participates in root phototropism in Arabidopsis seedlings has not been well studied. Here, we demonstrated that negative root phototropic responses are enhanced in the pid quadruple mutant and are severely impaired in transgenic plants expressing PID constitutively. The results indicate that the PID family functions in a negative root phototropism as a negative regulator. On the other hand, analysis with PID fused to a yellow fluorescent protein, VENUS, showed that unilateral blue-light irradiation causes a lower accumulation of PID proteins on the shaded side than on the irradiated side. This result suggests that the blue-light-mediated asymmetrical distribution of PID proteins may be one of the critical responses in phototropin-mediated signals during a negative root phototropism. Alternatively, such a transverse gradient of PID proteins may result from gravitropic stimulation produced by phototropic bending. PMID:26039488

  15. CD23 can negatively regulate B-cell receptor signaling

    PubMed Central

    Liu, Chaohong; Richard, Katharina; Wiggins, Melvin; Zhu, Xiaoping; Conrad, Daniel H.; Song, Wenxia

    2016-01-01

    CD23 has been implicated as a negative regulator of IgE and IgG antibody responses. However, whether CD23 has any role in B-cell activation remains unclear. We examined the expression of CD23 in different subsets of peripheral B cells and the impact of CD23 expression on the early events of B-cell receptor (BCR) activation using CD23 knockout (KO) mice. We found that in addition to marginal zone B cells, mature follicular B cells significantly down regulate the surface expression level of CD23 after undergoing isotype switch and memory B-cell differentiation. Upon stimulation with membrane-associated antigen, CD23 KO causes significant increases in the area of B cells contacting the antigen-presenting membrane and the magnitude of BCR clustering. This enhanced cell spreading and BCR clustering is concurrent with increases in the levels of phosphorylation of tyrosine and Btk, as well as the levels of F-actin and phosphorylated Wiskott Aldrich syndrome protein, an actin nucleation promoting factor, in the contract zone of CD23 KO B cells. These results reveal a role of CD23 in the negative regulation of BCR signaling in the absence of IgE immune complex and suggest that CD23 down-regulates BCR signaling by influencing actin-mediated BCR clustering and B-cell morphological changes. PMID:27181049

  16. USP13 negatively regulates antiviral responses by deubiquitinating STING

    PubMed Central

    Sun, He; Zhang, Qiang; Jing, Ying-Ying; Zhang, Man; Wang, Hai-Ying; Cai, Zeng; Liuyu, Tianzi; Zhang, Zhi-Dong; Xiong, Tian-Chen; Wu, Yan; Zhu, Qi-Yun; Yao, Jing; Shu, Hong-Bing; Lin, Dandan; Zhong, Bo

    2017-01-01

    STING (also known as MITA) is critical for host defence against viruses and the activity of STING is regulated by ubiquitination. However, the deubiquitination of STING is not fully understood. Here, we show that ubiquitin-specific protease 13 (USP13) is a STING-interacting protein that catalyses deubiquitination of STING. Knockdown or knockout of USP13 potentiates activation of IRF3 and NF-κB and expression of downstream genes after HSV-1 infection or transfection of DNA ligands. USP13 deficiency results in impaired replication of HSV-1. Consistently, USP13 deficient mice are more resistant than wild-type littermates to lethal HSV-1 infection. Mechanistically, USP13 deconjugates polyubiquitin chains from STING and prevents the recruitment of TBK1 to the signalling complex, thereby negatively regulating cellular antiviral responses. Our study thus uncovers a function of USP13 in innate antiviral immunity and provides insight into the regulation of innate immunity. PMID:28534493

  17. Negative Regulation of TLR4 Signaling by RP105

    PubMed Central

    Divanovic, Senad; Trompette, Aurelien; Atabani, Sowsan F.; Madan, Rajat; Golenbock, Douglas T.; Visintin, Alberto; Finberg, Robert W.; Tarakhovsky, Alexander; Vogel, Stefanie N.; Belkaid, Yasmine; Kurt-Jones, Evelyn A.; Karp, Christopher L.

    2006-01-01

    Activation of Toll-like receptor (TLR) signaling by microbial signatures is critical to the induction of immune responses. Such responses demand tight regulation. RP105 is a TLR homolog, thought to be largely B cell-specific, which lacks a signaling domain. We report that RP105 expression is wide, directly mirroring that of TLR4 on antigen presenting cells. We further show that RP105 is a specific inhibitor of TLR4 signaling in HEK293 cells, a function conferred by its extracellular domain. Notably, RP105 and its helper molecule, MD-1, interacted directly with the TLR4 signaling complex, inhibiting its ability to bind microbial ligand. Finally, we demonstrate that RP105 regulates TLR4 signaling in dendritic cells, as well as endotoxin responses in vivo. Thus, these results identify RP105 as a physiological negative regulator of TLR4 responses. PMID:15852007

  18. NUMB negatively regulates the epithelial-mesenchymal transition of triple-negative breast cancer by antagonizing Notch signaling

    PubMed Central

    Zhang, Jianchao; Shao, Ximing; Sun, Haiyan; Liu, Ke; Ding, Zhihao; Chen, Juntao; Fang, Lijing; Su, Wu; Hong, Yang; Li, Huashun; Li, Hongchang

    2016-01-01

    Triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer with higher rates of early relapse and metastasis, is frequently associated with aberrant activation of epithelial-mesenchymal transition (EMT). Nonetheless, how EMT is initiated and regulated during TNBC progression is not well understood. Here, we report that NUMB is a negative regulator of EMT in both human mammary epithelial cells and breast cancer cells. Reduced NUMB expression was significantly associated with elevated EMT in TNBC. Conversely, overexpression of NUMB strongly attenuated the EMT program and metastasis of TNBC cell lines. Interestingly, we showed that NUMB employs different molecular mechanisms to regulate EMT. In normal mammary epithelial cells and breast cancer cells expressing wild-type p53, NUMB suppressed EMT by stabilizing p53. However, in TNBC cells, loss of NUMB facilitated the EMT program by activating Notch signaling. Consistent with these findings, low NUMB expression and high Notch activity were significantly correlated with the TNBC subtype in patients. Collectively, these findings reveal novel molecular mechanisms of NUMB in the regulation of breast tumor EMT, especially in TNBC. PMID:27506933

  19. Regulation of positive and negative emotion: effects of sociocultural context

    PubMed Central

    Snyder, Sara A.; Heller, S. Megan; Lumian, Daniel S.; McRae, Kateri

    2013-01-01

    Previous research has demonstrated that the use of emotion regulation strategies can vary by sociocultural context. In a previous study, we reported changes in the use of two different emotion regulation strategies at an annual alternative cultural event, Burning Man (McRae et al., 2011). In this sociocultural context, as compared to typically at home, participants reported less use of expressive suppression (a strategy generally associated with maladaptive outcomes), and greater use of cognitive reappraisal (a strategy generally associated with adaptive outcomes). What remained unclear was whether these changes in self-reported emotion regulation strategy use were characterized by changes in the regulation of positive emotion, negative emotion, or both. We addressed this issue in the current study by asking Burning Man participants separate questions about positive and negative emotion. Using multiple datasets, we replicated our previous findings, and found that the decreased use of suppression is primarily driven by reports of decreased suppression of positive emotion at Burning Man. By contrast, the increased use of reappraisal is not characterized by differential reappraisal of positive and negative emotion at Burning Man. Moreover, we observed novel individual differences in the magnitude of these effects. The contextual changes in self-reported suppression that we observe are strongest for men and younger participants. For those who had previously attended Burning Man, we observed lower levels of self-reported suppression in both sociocultural contexts: Burning Man and typically at home. These findings have implications for understanding the ways in which certain sociocultural contexts may decrease suppression, and possibly minimize its associated maladaptive effects. PMID:23840191

  20. Regulations against the human nature

    NASA Astrophysics Data System (ADS)

    Elizondo-Garza, Fernando J.

    2004-05-01

    The discussion around the concept of the addiction to noise has evidenced the importance of noise for the human being and explains why in some cases the regulations fail to control the noise in cities. In this presentation the different uses, consciously or unconsciously, of the noise will be analyzed, uses that go from habits to maybe addictions. Also discussed are the implications of establishing regulations against the human nature as well as the importance of education to manage the noise and design acoustically instead of trying to ban the noise in some social circumstances.

  1. DR3 Regulates Negative Selection during Thymocyte Development

    PubMed Central

    Wang, Eddie C. Y.; Thern, Anette; Denzel, Angela; Kitson, Jeremy; Farrow, Stuart N.; Owen, Michael J.

    2001-01-01

    DR3 (Ws1, Apo3, LARD, TRAMP, TNFSFR12) is a member of the death domain-containing tumor necrosis factor receptor (TNFR) superfamily, members of which mediate a variety of developmental events including the regulation of cell proliferation, differentiation, and apoptosis. We have investigated the in vivo role(s) of DR3 by generating mice congenitally deficient in the expression of the DR3 gene. We show that negative selection and anti-CD3-induced apoptosis are significantly impaired in DR3-null mice. In contrast, both superantigen-induced negative selection and positive selection are normal. The pre-T-cell receptor-mediated checkpoint, which is dependent on TNFR signaling, is also unaffected in DR3-deficient mice. These data reveal a nonredundant in vivo role for this TNF receptor family member in the removal of self-reactive T cells in the thymus. PMID:11313471

  2. RAGE, Receptor of Advanced Glycation Endoproducts, Negatively Regulates Chondrocytes Differentiation

    PubMed Central

    Kurosaka, Yuko; Nishimura, Haruka; Tanabe, Motoki; Takakura, Yuuki; Iwai, Keisuke; Waki, Takuya; Fujita, Takashi

    2014-01-01

    RAGE, receptor for advanced glycation endoproducts (AGE), has been characterized as an activator of osteoclastgenesis. However, whether RAGE directly regulates chondrocyte proliferation and differentiation is unclear. Here, we show that RAGE has an inhibitory role in chondrocyte differentiation. RAGE expression was observed in chondrocytes from the prehypertrophic to hypertrophic regions. In cultured cells, overexpression of RAGE or dominant-negative-RAGE (DN-RAGE) demonstrated that RAGE inhibited cartilaginous matrix production, while DN-RAGE promoted production. Additionally, RAGE regulated Ihh and Col10a1 negatively but upregulated PTHrP receptor. Ihh promoter analysis and real-time PCR analysis suggested that downregulation of Cdxs was the key for RAGE-induced inhibition of chondrocyte differentiation. Overexpression of the NF-κB inhibitor I-κB-SR inhibited RAGE-induced NF-κB activation, but did not influence inhibition of cartilaginous matrix production by RAGE. The inhibitory action of RAGE was restored by the Rho family GTPases inhibitor Toxin B. Furthermore, inhibitory action on Ihh, Col10a1 and Cdxs was reproduced by constitutively active forms, L63RhoA, L61Rac, and L61Cdc42, but not by I-κB-SR. Cdx1 induced Ihh and Col10a1 expressions and directly interacted with Ihh promoter. Retinoic acid (RA) partially rescued the inhibitory action of RAGE. These data combined suggests that RAGE negatively regulates chondrocyte differentiation at the prehypertrophic stage by modulating NF-κB-independent and Rho family GTPases-dependent mechanisms. PMID:25275461

  3. Intrinsic and extrinsic negative regulators of nuclear protein transport processes

    PubMed Central

    Sekimoto, Toshihiro; Yoneda, Yoshihiro

    2012-01-01

    The nuclear–cytoplasmic protein transport is a critical process in cellular events. The identification of transport signals (nuclear localization signal and nuclear export signal) and their receptors has facilitated our understanding of this expanding field. Nuclear transport must be appropriately regulated to deliver proteins through the nuclear pore when their functions are required in the nucleus, and to export them into the cytoplasm when they are not needed in the nucleus. Altered nuclear transport processes have been observed in stressed cells, which would change gene expressions. Some viruses interfere with nuclear transport in host cells to evade immune defense. Moreover, certain transport factors negatively regulate nuclear protein transport in cells. Understanding the regulatory mechanisms of nuclear–cytoplasmic trafficking not only provides important information about cellular processes, but also is of use for developing specific inhibitors for transport pathways. PMID:22672474

  4. E3 ubiquitin ligase TRIM32 negatively regulates tumor suppressor p53 to promote tumorigenesis.

    PubMed

    Liu, Ju; Zhang, C; Wang, X L; Ly, P; Belyi, V; Xu-Monette, Z Y; Young, K H; Hu, W; Feng, Z

    2014-11-01

    Tumor suppressor p53 has a key role in maintaining genomic stability and preventing tumorigenesis through its regulation of cellular stress responses, including apoptosis, cell cycle arrest and senescence. To ensure its proper levels and functions in cells, p53 is tightly regulated mainly through post-translational modifications, such as ubiquitination. Here, we identified E3 ubiquitin ligase TRIM32 as a novel p53 target gene and negative regulator to regulate p53-mediated stress responses. In response to stress, such as DNA damage, p53 binds to the p53 responsive element in the promoter of the TRIM32 gene and transcriptionally induces the expression of TRIM32 in cells. In turn, TRIM32 interacts with p53 and promotes p53 degradation through ubiquitination. Thus, TRIM32 negatively regulates p53-mediated apoptosis, cell cycle arrest and senescence in response to stress. TRIM32 is frequently overexpressed in different types of human tumors. TRIM32 overexpression promotes cell oncogenic transformation and tumorigenesis in mice in a largely p53-dependent manner. Taken together, our results demonstrated that as a novel p53 target and a novel negative regulator for p53, TRIM32 has an important role in regulation of p53 and p53-mediated cellular stress responses. Furthermore, our results also revealed that impairing p53 function is a novel mechanism for TRIM32 in tumorigenesis.

  5. Positive and Negative Regulation of Poly(A) Nuclease

    PubMed Central

    Mangus, David A.; Evans, Matthew C.; Agrin, Nathan S.; Smith, Mandy; Gongidi, Preetam; Jacobson, Allan

    2004-01-01

    PAN, a yeast poly(A) nuclease, plays an important nuclear role in the posttranscriptional maturation of mRNA poly(A) tails. The activity of this enzyme is dependent on its Pan2p and Pan3p subunits, as well as the presence of poly(A)-binding protein (Pab1p). We have identified and characterized the associated network of factors controlling the maturation of mRNA poly(A) tails in yeast and defined its relevant protein-protein interactions. Pan3p, a positive regulator of PAN activity, interacts with Pab1p, thus providing substrate specificity for this nuclease. Pab1p also regulates poly(A) tail trimming by interacting with Pbp1p, a factor that appears to negatively regulate PAN. Pan3p and Pbp1p both interact with themselves and with the C terminus of Pab1p. However, the domains required for Pan3p and Pbp1p binding on Pab1p are distinct. Single amino acid changes that disrupt Pan3p interaction with Pab1p have been identified and define a binding pocket in helices 2 and 3 of Pab1p's carboxy terminus. The importance of these amino acids for Pab1p-Pan3p interaction, and poly(A) tail regulation, is underscored by experiments demonstrating that strains harboring substitutions in these residues accumulate mRNAs with long poly(A) tails in vivo. PMID:15169912

  6. Runx3 negatively regulates Osterix expression in dental pulp cells.

    PubMed

    Zheng, Li; Iohara, Koichiro; Ishikawa, Masaki; Into, Takeshi; Takano-Yamamoto, Teruko; Matsushita, Kenji; Nakashima, Misako

    2007-07-01

    Osterix, a zinc-finger-containing transcription factor, is required for osteoblast differentiation and bone formation. Osterix is also expressed in dental mesenchymal cells of the tooth germ. However, transcriptional regulation by Osterix in tooth development is not clear. Genetic studies in osteogenesis place Osterix downstream of Runx2 (Runt-related 2). The expression of Osterix in odontoblasts overlaps with Runx3 during terminal differentiation in vivo. Runx3 down-regulates Osterix expression in mouse DPCs (dental pulp cells). Therefore the regulatory role of Runx3 on Osterix expression in tooth development was investigated. Enforced expression of Runx3 down-regulated the activity of the Osterix promoter in the human embryonic kidney 293 cell line. When the Runx3 responsive element on the Osterix promoter, located at -713 to -707 bp (site 3, AGTGGTT) relative to the cap site, was mutated, this down-regulation was abrogated. Furthermore, electrophoretic mobility-shift assay and chromatin immunoprecipitation assays in mouse DPCs demonstrated direct functional binding of Runx3 to the Osterix promoter. These results demonstrate the transcriptional regulation of Osterix expression by Runx3 during differentiation of dental pulp cells into odontoblasts during tooth development.

  7. Flg22-Triggered Immunity Negatively Regulates Key BR Biosynthetic Genes.

    PubMed

    Jiménez-Góngora, Tamara; Kim, Seong-Ki; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-01-01

    In plants, activation of growth and activation of immunity are opposing processes that define a trade-off. In the past few years, the growth-promoting hormones brassinosteroids (BR) have emerged as negative regulators of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), promoting growth at the expense of defense. The crosstalk between BR and PTI signaling was described as negative and unidirectional, since activation of PTI does not affect several analyzed steps in the BR signaling pathway. In this work, we describe that activation of PTI by the bacterial PAMP flg22 results in the reduced expression of BR biosynthetic genes. This effect does not require BR perception or signaling, and occurs within 15 min of flg22 treatment. Since the described PTI-induced repression of gene expression may result in a reduction in BR biosynthesis, the crosstalk between PTI and BR could actually be negative and bidirectional, a possibility that should be taken into account when considering the interaction between these two pathways.

  8. Focal adhesion kinase negatively regulates neuronal insulin resistance.

    PubMed

    Gupta, Amit; Bisht, Bharti; Dey, Chinmoy Sankar

    2012-06-01

    Focal adhesion kinase (FAK), a non-receptor protein kinase, is known to be a phosphatidyl inositol 3-kinase (PI3K) pathway activator and thus widely implicated in regulation of cell survival and cancer. In recent years FAK has also been strongly implicated as a crucial regulator of insulin resistance in peripheral tissues like skeletal muscle and liver, where decrease in its expression/activity has been shown to lead to insulin resistance. However, in the present study we report an altogether different role of FAK in regulation of insulin/PI3K signaling in neurons, the post-mitotic cells. An aberrant increase in FAK tyrosine phosphorylation was observed in insulin resistant Neuro-2a (N2A) cells. Downregulation of FAK expression utilizing RNAi mediated gene silencing in insulin resistant N2A cells completely ameliorated the impaired insulin/PI3K signaling and glucose uptake. FAK silencing in primary cortical neurons also showed marked enhancement in glucose uptake. The results thus suggest that in neurons FAK acts as a negative regulator of insulin/PI3K signaling. Interestingly, the available literature also demonstrates cell-type specific functions of FAK in neurons. FAK that is well known for its cell survival effects has been shown to be involved in neurodegeneration. Along with these previous reports, present findings highlight a novel and critical role of FAK in neurons. Moreover, as this implicates differential regulation of insulin/PI3K pathway by FAK in peripheral tissues and neuronal cells, it strongly suggests precaution while considering FAK modulators as possible therapeutics.

  9. Arabidopsis RGL1 Encodes a Negative Regulator of Gibberellin Responses

    PubMed Central

    Wen, Chi-Kuang; Chang, Caren

    2002-01-01

    In Arabidopsis, the DELLA subfamily of GRAS regulatory genes consists of GAI, RGA, RGA-LIKE1 (RGL1), RGL2, and RGL3. GAI and RGA are known to be negative regulators of gibberellin (GA) responses. We found that RGL1 is a similar repressor of GA responses, as revealed by RGL1 gain-of-function and loss-of-function phenotypes. Repression of GA responses in Arabidopsis was conferred by a dominant 35S-rgl1 transgene carrying a DELLA domain deletion analogous to the GA-insensitive gai-1 mutation. As in GA-deficient Arabidopsis, the transgenic plants were dark green dwarfs with underdeveloped trichomes and flowers. Expression levels of GA4, a feedback-regulated GA biosynthetic gene, were increased correspondingly. Conversely, a loss-of-function rgl1 line had reduced GA4 expression and exhibited GA-independent activation of seed germination, leaf expansion, flowering, stem elongation, and floral development, as detected by resistance to the GA biosynthesis inhibitor paclobutrazol. RGL1 plays a greater role in seed germination than do GAI and RGA. The expression profile of RGL1 differed from those of the four other DELLA homologs. RGL1 message levels were predominant in flowers, with transcripts detected in developing ovules and anthers. As with RGA, green fluorescent protein (GFP)–tagged RGL1 protein was localized to the nucleus, but unlike GFP-RGA, there was no degradation after GA treatment. These findings indicate that RGL1 is a partially redundant, but distinct, negative regulator of GA responses and suggest that all DELLA subfamily members might possess separate as well as overlapping roles in GA signaling. PMID:11826301

  10. Intracellular LINGO-1 negatively regulates Trk neurotrophin receptor signaling.

    PubMed

    Meabon, James S; de Laat, Rian; Ieguchi, Katsuaki; Serbzhinsky, Dmitry; Hudson, Mark P; Huber, B Russel; Wiley, Jesse C; Bothwell, Mark

    2016-01-01

    Neurotrophins, essential regulators of many aspects of neuronal differentiation and function, signal via four receptors, p75, TrkA, TrkB and TrkC. The three Trk paralogs are members of the LIG superfamily of membrane proteins, which share extracellular domains consisting of leucine-rich repeat and C2 Ig domains. Another LIG protein, LINGO-1 has been reported to bind and influence signaling of p75 as well as TrkA, TrkB and TrkC. Here we examine the manner in which LINGO-1 influences the function of TrkA, TrkB and TrkC. We report that Trk activation promotes Trk association with LINGO-1, and that this association promotes Trk degradation by a lysosomal mechanism. This mechanism resembles the mechanism by which another LIG protein, LRIG1, promotes lysosomal degradation of receptor tyrosine kinases such as the EGF receptor. We present evidence indicating that the Trk/LINGO-1 interaction occurs, in part, within recycling endosomes. We show that a mutant form of LINGO-1, with much of the extracellular domain deleted, has the capacity to enhance TrkA signaling in PC12 cells, possibly by acting as an inhibitor of Trk down-regulation by full length LINGO-1. We propose that LINGO-1 functions as a negative feedback regulator of signaling by cognate receptor tyrosine kinases including TrkA, TrkB and TrkC.

  11. CHIP promotes Runx2 degradation and negatively regulates osteoblast differentiation

    PubMed Central

    Li, Xueni; Huang, Mei; Zheng, Huiling; Wang, Yinyin; Ren, Fangli; Shang, Yu; Zhai, Yonggong; Irwin, David M.; Shi, Yuguang; Chen, Di; Chang, Zhijie

    2008-01-01

    Runx2, an essential transactivator for osteoblast differentiation, is tightly regulated at both the transcriptional and posttranslational levels. In this paper, we report that CHIP (C terminus of Hsc70-interacting protein)/STUB1 regulates Runx2 protein stability via a ubiquitination-degradation mechanism. CHIP interacts with Runx2 in vitro and in vivo. In the presence of increased Runx2 protein levels, CHIP expression decreases, whereas the expression of other E3 ligases involved in Runx2 degradation, such as Smurf1 or WWP1, remains constant or increases during osteoblast differentiation. Depletion of CHIP results in the stabilization of Runx2, enhances Runx2-mediated transcriptional activation, and promotes osteoblast differentiation in primary calvarial cells. In contrast, CHIP overexpression in preosteoblasts causes Runx2 degradation, inhibits osteoblast differentiation, and instead enhances adipogenesis. Our data suggest that negative regulation of the Runx2 protein by CHIP is critical in the commitment of precursor cells to differentiate into the osteoblast lineage. PMID:18541707

  12. Quantifying negative feedback regulation by micro-RNAs

    NASA Astrophysics Data System (ADS)

    Wang, Shangying; Raghavachari, Sridhar

    2011-10-01

    Micro-RNAs (miRNAs) play a crucial role in post-transcriptional gene regulation by pairing with target mRNAs to repress protein production. It has been shown that over one-third of human genes are targeted by miRNA. Although hundreds of miRNAs have been identified in mammalian genomes, the function of miRNA-based repression in the context of gene regulation networks still remains unclear. In this study, we explore the functional roles of feedback regulation by miRNAs. In a model where repression of translation occurs by sequestration of mRNA by miRNA, we find that miRNA and mRNA levels are anti-correlated, resulting in larger fluctuation in protein levels than theoretically expected assuming no correlation between miRNA and mRNA levels. If miRNA repression is due to a catalytic suppression of translation rates, we analytically show that the protein fluctuations can be strongly repressed with miRNA regulation. We also discuss how either of these modes may be relevant for cell function.

  13. When death is not a problem: Regulating implicit negative affect under mortality salience.

    PubMed

    Lüdecke, Christina; Baumann, Nicola

    2015-12-01

    Terror management theory assumes that death arouses existential anxiety in humans which is suppressed in focal attention. Whereas most studies provide indirect evidence for negative affect under mortality salience by showing cultural worldview defenses and self-esteem strivings, there is only little direct evidence for implicit negative affect under mortality salience. In the present study, we assume that this implicit affective reaction towards death depends on people's ability to self-regulate negative affect as assessed by the personality dimension of action versus state orientation. Consistent with our expectations, action-oriented participants judged artificial words to express less negative affect under mortality salience compared to control conditions whereas state-oriented participants showed the reversed pattern. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  14. ERK5 negatively regulates tobacco smoke-induced pulmonary epithelial–mesenchymal transition

    PubMed Central

    Liang, Zhaofeng; Xie, Wei; Wu, Rui; Geng, Hao; Zhao, Li; Xie, Chunfeng; Li, Xiaoting; Huang, Cong; Zhu, Jianyun; Zhu, Mingming; Zhu, Weiwei; Wu, Jieshu; Geng, Shanshan; Zhong, Caiyun

    2015-01-01

    As the primary cause of lung cancer, tobacco smoke (TS) promotes the initiation and progression of lung tumorigenesis. Epithelial-mesenchymal transition (EMT) is a crucial process involved in cell malignant transformation. The role of ERK5, the lesser studied member of MAPKs family, in regulating TS-triggered pulmonary EMT has not been investigated. Normal human bronchial epithelial cells and BALB/c mice were used as in vitro and in vivo TS exposure models. Exposure of normal human bronchial epithelial cells to TS for 7 days induced morphological change, enhanced migratory and invasive capacities, reduced epithelial marker expression and increased mesenchymal marker expression. Importantly, we demonstrated for the first time that ERK5 negatively regulated TS-mediated lung epithelial EMT, as evidenced by the findings that TS suppressed ERK5 activation, and that TS-triggered EMT was mimicked with ERK5 inhibition and reversed by ERK5 overexpression. The negative regulation of ERK5 on pulmonary EMT was further confirmed in mice exposed to TS for 12 weeks. Taken together, our data suggest that ERK5 negatively regulates TS-mediated pulmonary EMT. These findings provide new insight into the molecular mechanisms of TS-associated lung tumorigenesis and may open up new avenues in the search for potential target of lung cancer intervention. PMID:25965818

  15. Negative regulation of the inflammasome: keeping inflammation under control.

    PubMed

    Pedraza-Alva, Gustavo; Pérez-Martínez, Leonor; Valdez-Hernández, Laura; Meza-Sosa, Karla F; Ando-Kuri, Masami

    2015-05-01

    In addition to its roles in controlling infection and tissue repair, inflammation plays a critical role in diverse and distinct chronic diseases, such as cancer, metabolic syndrome, and neurodegenerative disorders, underscoring the harmful effect of an uncontrolled inflammatory response. Regardless of the nature of the stimulus, initiation of the inflammatory response is mediated by assembly of a multimolecular protein complex called the inflammasome, which is responsible for the production of inflammatory cytokines, such as interleukin-1β (IL-1β) and IL-18. The different stimuli and mechanisms that control inflammasome activation are fairly well understood, but the mechanisms underlying the control of undesired inflammasome activation and its inactivation remain largely unknown. Here, we review recent advances in our understanding of the molecular mechanisms that negatively regulate inflammasome activation to prevent unwanted activation in the resting state, as well as those involved in terminating the inflammatory response after a specific insult to maintain homeostasis.

  16. T cell-based functional cDNA library screening identified SEC14-like 1a carboxy-terminal domain as a negative regulator of human immunodeficiency virus replication.

    PubMed

    Urano, Emiko; Ichikawa, Reiko; Morikawa, Yuko; Yoshida, Takeshi; Koyanagi, Yoshio; Komano, Jun

    2010-05-26

    Genome-wide screening of host factors that regulate HIV-1 replication has been attempted using numerous experimental approaches. However, there has been limited success using T cell-based cDNA library screening to identify genes that regulate HIV-1 replication. We have established a genetic screening strategy using the human T cell line MT-4 and a replication-competent HIV-1. With this system, we identified the C-terminal domain (CTD) of SEC14-like 1a (SEC14L1a) as a novel inhibitor of HIV-1 replication. Our T cell-based cDNA screening system provides an alternative tool for identifying novel regulators of HIV-1 replication.

  17. Phosphofructokinase-1 Negatively Regulates Neurogenesis from Neural Stem Cells.

    PubMed

    Zhang, Fengyun; Qian, Xiaodan; Qin, Cheng; Lin, Yuhui; Wu, Haiyin; Chang, Lei; Luo, Chunxia; Zhu, Dongya

    2016-06-01

    Phosphofructokinase-1 (PFK-1), a major regulatory glycolytic enzyme, has been implicated in the functions of astrocytes and neurons. Here, we report that PFK-1 negatively regulates neurogenesis from neural stem cells (NSCs) by targeting pro-neural transcriptional factors. Using in vitro assays, we found that PFK-1 knockdown enhanced, and PFK-1 overexpression inhibited the neuronal differentiation of NSCs, which was consistent with the findings from NSCs subjected to 5 h of hypoxia. Meanwhile, the neurogenesis induced by PFK-1 knockdown was attributed to the increased proliferation of neural progenitors and the commitment of NSCs to the neuronal lineage. Similarly, in vivo knockdown of PFK-1 also increased neurogenesis in the dentate gyrus of the hippocampus. Finally, we demonstrated that the neurogenesis mediated by PFK-1 was likely achieved by targeting mammalian achaete-scute homologue-1 (Mash 1), neuronal differentiation factor (NeuroD), and sex-determining region Y (SRY)-related HMG box 2 (Sox2). All together, our results reveal PFK-1 as an important regulator of neurogenesis.

  18. FANCI is a negative regulator of Akt activation.

    PubMed

    Zhang, Xiaoshan; Lu, Xiaoyan; Akhter, Shamima; Georgescu, Maria-Magdalena; Legerski, Randy J

    2016-01-01

    Akt is a critical mediator of the oncogenic PI3K pathway, and its activation is regulated by kinases and phosphatases acting in opposition. We report here the existence of a novel protein complex that is composed minimally of Akt, PHLPP1, PHLPP2, FANCI, FANCD2, USP1 and UAF1. Our studies show that depletion of FANCI, but not FANCD2 or USP1, results in increased phosphorylation and activation of Akt. This activation is due to a reduction in the interaction between PHLPP1 and Akt in the absence of FANCI. In response to DNA damage or growth factor treatment, the interactions between Akt, PHLPP1 and FANCI are reduced consistent with the known phosphorylation of Akt in response to these stimuli. Furthermore, depletion of FANCI results in reduced apoptosis after DNA damage in accord with its role as a negative regular of Akt. Our findings describe an unexpected function for FANCI in the regulation of Akt and define a previously unrecognized intersection between the PI3K-Akt and FA pathways.

  19. HUA ENHANCER1 is involved in posttranscriptional regulation of positive and negative regulators in Arabidopsis photomorphogenesis.

    PubMed

    Tsai, Huang-Lung; Li, Yi-Hang; Hsieh, Wen-Ping; Lin, Meng-Chun; Ahn, Ji Hoon; Wu, Shu-Hsing

    2014-07-01

    Light regulates growth and developmental processes in plants via global transcriptome adjustment, translational control, and multilayered posttranslational modification of proteins. The transcriptional activation and repression of light-responsive genes has been well documented; however, the impact of posttranscriptional regulation on conveying light signals has been less addressed. Here, we examined whether optimal photomorphogenesis in Arabidopsis thaliana requires the proper biogenesis of small regulatory RNAs that play pivotal roles in the posttranscriptional regulation of gene expression. Arabidopsis carrying a mutation in HUA ENHANCER1 (HEN1), required for stabilization of small regulatory RNAs, showed defects in multiple aspects of photomorphogenic and skotomorphogenic development. HEN1 negatively regulated Arabidopsis photomorphogenesis. Light-activated HEN1 expression depended on the photoreceptors phytochrome A (phyA), phyB, cryptochrome 1 (cry1), and cry2 and key transcriptional regulators ELONGATED HYPOCOTYL5 (HY5) and HY5-HOMOLOG. We also demonstrate the involvement of the small regulatory RNAs miR157d and miR319 in modulating the expression of a positive regulator, HY5, and negative regulators TEOSINTE BRANCHED1, CYCLOIDEA AND PCF family proteins, respectively, for optimal photomorphogenic development in Arabidopsis.

  20. Human morphology and temperature regulation

    NASA Astrophysics Data System (ADS)

    Anderson, G. S.

    For nearly a century individuals have believed that there is a link between human morphology and one's thermoregulatory response in adverse environments. Most early research was focussed on the rate of core cooling in a male adult population and the role of subcutaneous adipose tissue, surface area and the surface-area-to-mass ratio in one's ability to withstand varying degrees of cold stress. More recently research has addressed heat tolerance in various populations, exploring the role of subcutaneous adipose tissue, surface area and the surface-area-to-mass ratio in one's ability to maintain thermal equilibrium in warm and hot, dry and humid environments. Since the late 1970s an emphasis has been placed on the role of muscle and muscle perfusion in total-body thermal insulation. Yet, despite the history of research pertaining to human morphology and temperature regulation there is little consensus as to the impact of variations in human morphology on thermoregulatory responses. Individuals differing in body size, shape and composition appear to respond quantitatively differently to variations in both ambient and core temperatures but the interrelations between morphological components and temperature regulation are complex. It is the purpose of this paper to examine the literature pertaining to the impact of variations in muscularity, adipose tissue thickness and patterning, surface area and the surface-area-to-mass ratio on thermoregulation and thermal stability in response to both heat and cold stress.

  1. Human papillomaviruses in epigenetic regulations.

    PubMed

    Durzynska, Julia; Lesniewicz, Krzysztof; Poreba, Elzbieta

    Human Papillomaviruses (HPVs) are double-stranded DNA viruses, that infect epithelial cells and are etiologically involved in the development of human cancer. Today, over 200 types of human papillomaviruses are known. They are divided into low-risk and high-risk HPVs depending on their potential to induce carcinogenesis, driven by two major viral oncoproteins, E6 and E7. By interacting with cellular partners, these proteins are involved in interdependent viral and cell cycles in stratified differentiating epithelium, and concomitantly induce epigenetic changes in infected cells and those undergoing malignant transformation. E6 and E7 oncoproteins interact with and/or modulate expression of many proteins involved in epigenetic regulation, including DNA methyltransferases, histone-modifying enzymes and subunits of chromatin remodeling complexes, thereby influencing host cell transcription program. Furthermore, HPV oncoproteins modulate expression of cellular micro RNAs. Most of these epigenetic actions in a complex dynamic interplay participate in the maintenance of persistent infection, cell transformation, and development of invasive cancer by a considerable deregulation of tumor suppressor and oncogenes. In this study, we have undertaken to discuss a number of studies concerning epigenetic regulations in HPV-dependent cells and to focus on those that have biological relevance to cancer progression. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Regulation of muscle protein synthesis in humans.

    PubMed

    Phillips, Bethan E; Hill, Derek S; Atherton, Philip J

    2012-01-01

    Investigations into the regulation of muscle protein synthesis (MPS) are a cornerstone of understanding the control of muscle mass. Rates of MPS are finely tuned according to levels of activity, nutrient availability and health status. For instance, rates of MPS are positively regulated by exercise and nutrition, and negatively regulated by inactivity (e.g. disuse), ageing (i.e. sarcopenia) and in muscle-wasting related diseases (e.g. cancer). Skeletal muscles display a high degree of intrinsic regulation. Increases in MPS after exercise occur independently of the systemic milieu for example growth hormone/testosterone concentrations. In the absence of exercise, increases in MPS after feeding are of finite duration despite enduring precursor availability; that is muscles can sense they are 'full'. Intriguingly, exercise delays this 'muscle-full' response to allow for building and repair. In contrast, muscle-wasting conditions exhibit a premature 'muscle-full' response to nutrition and exercise (i.e. anabolic resistance), which may cause atrophy. Observations of 'dissociations' between MPS and anabolic signalling pathways have cast doubt on how much we understand of the molecular regulation of human MPS. Anabolic and anticatabolic interventions in health and disease should be aimed at manipulating the 'muscle-full' set point to maximize muscle maintenance/hypertrophy.

  3. Beta-PIX and Rac1 GTPase mediate trafficking and negative regulation of NOD2.

    PubMed

    Eitel, Julia; Krüll, Matthias; Hocke, Andreas C; N'Guessan, Philippe Dje; Zahlten, Janine; Schmeck, Bernd; Slevogt, Hortense; Hippenstiel, Stefan; Suttorp, Norbert; Opitz, Bastian

    2008-08-15

    The nucleotide-binding domain and leucine-rich repeat containing protein NOD2 serves as a cytoplasmic pattern recognition molecule sensing bacterial muramyl dipeptide (MDP), whereas TLR2 mediates cell surface recognition of bacterial lipopeptides. In this study, we show that NOD2 stimulation activated Rac1 in human THP-1 cells and primary human monocytes. Rac1 inhibition or knock-down, or actin cytoskeleton disruption increased MDP-stimulated IL-8 secretion and NF-kappaB activation, whereas TLR2-dependent cell activation was suppressed by Rac1 inhibition. p21-activated kinase [Pak]-interacting exchange factor (beta-PIX) plays a role in this negative regulation, because knock-down of beta-PIX also led to increased NOD2-mediated but not TLR2-mediated IL-8 secretion, and coimmunoprecipitation experiments demonstrated that NOD2 interacted with beta-PIX as well as Rac1 upon MDP stimulation. Moreover, knock-down of beta-PIX or Rac1 abrogated membrane recruitment of NOD2, and interaction of NOD2 with its negative regulator Erbin. Overall, our data indicate that beta-PIX and Rac1 mediate trafficking and negative regulation of NOD2-dependent signaling which is different from Rac1's positive regulatory role in TLR2 signaling.

  4. N-WASP Is Essential for the Negative Regulation of B Cell Receptor Signaling

    PubMed Central

    Liu, Chaohong; Bai, Xiaoming; Wu, Junfeng; Sharma, Shruti; Upadhyaya, Arpita; Dahlberg, Carin I. M.; Westerberg, Lisa S.; Snapper, Scott B.; Zhao, Xiaodong; Song, Wenxia

    2013-01-01

    Negative regulation of receptor signaling is essential for controlling cell activation and differentiation. In B-lymphocytes, the down-regulation of B-cell antigen receptor (BCR) signaling is critical for suppressing the activation of self-reactive B cells; however, the mechanism underlying the negative regulation of signaling remains elusive. Using genetically manipulated mouse models and total internal reflection fluorescence microscopy, we demonstrate that neuronal Wiskott–Aldrich syndrome protein (N-WASP), which is coexpressed with WASP in all immune cells, is a critical negative regulator of B-cell signaling. B-cell–specific N-WASP gene deletion causes enhanced and prolonged BCR signaling and elevated levels of autoantibodies in the mouse serum. The increased signaling in N-WASP knockout B cells is concurrent with increased accumulation of F-actin at the B-cell surface, enhanced B-cell spreading on the antigen-presenting membrane, delayed B-cell contraction, inhibition in the merger of signaling active BCR microclusters into signaling inactive central clusters, and a blockage of BCR internalization. Upon BCR activation, WASP is activated first, followed by N-WASP in mouse and human primary B cells. The activation of N-WASP is suppressed by Bruton's tyrosine kinase-induced WASP activation, and is restored by the activation of SH2 domain-containing inositol 5-phosphatase that inhibits WASP activation. Our results reveal a new mechanism for the negative regulation of BCR signaling and broadly suggest an actin-mediated mechanism for signaling down-regulation. PMID:24223520

  5. Plexin-A4 negatively regulates T lymphocyte responses.

    PubMed

    Yamamoto, Midori; Suzuki, Kazuhiro; Okuno, Tatsusada; Ogata, Takehiro; Takegahara, Noriko; Takamatsu, Hyota; Mizui, Masayuki; Taniguchi, Masahiko; Chédotal, Alain; Suto, Fumikazu; Fujisawa, Hajime; Kumanogoh, Atsushi; Kikutani, Hitoshi

    2008-03-01

    Semaphorins and their receptors play crucial roles not only in axon guidance during neuronal development but also in the regulation of immune responses. Plexin-A4, a member of the plexin-A subfamily, forms a receptor complex with neuropilins and transduces signals for class III semaphorins in the nervous system. Although plexin-A4 is also expressed in the lymphoid tissues, the involvement of plexin-A4 in immune responses remains unknown. To explore the role of plexin-A4 in the immune system, we analyzed immune responses in plexin-A4-deficient (plexin-A4-/-) mice. Among immune cells, plexin-A4 mRNA was detected in T cells, dendritic cells and macrophages but not in B cells and NK cells. Plexin-A4-/- mice had normal numbers and cell surface markers for each lymphocyte subset, suggesting that plexin-A4 is not essential for lymphocyte development. However, plexin-A4-/- mice exhibited enhanced antigen-specific T cell responses and heightened sensitivity to experimental autoimmune encephalomyelitis. Plexin-A4-/- T cells exhibited hyperproliferative responses to anti-CD3 stimulation and to allogeneic dendritic cells in vitro. Furthermore, this hyperproliferation was also observed in both T cells from neuropilin-1 mutant (npn-1(Sema-)) mice, in which the binding site of class III semaphorins is disrupted, and T cells from Sema3A-deficient (Sema-3A-/-) mice. Collectively, these results suggest that plexin-A4, as a component of the receptor complex for class III semaphorins, negatively regulates T cell-mediated immune responses.

  6. MEIS1 functions as a potential AR negative regulator

    SciTech Connect

    Cui, Liang; Yang, Yutao; Hang, Xingyi; Cui, Jiajun; Gao, Jiangping

    2014-10-15

    The androgen receptor (AR) plays critical roles in human prostate carcinoma progression and transformation. However, the activation of AR is regulated by co-regulators. MEIS1 protein, the homeodomain transcription factor, exhibited a decreased level in poor-prognosis prostate tumors. In this study, we investigated a potential interaction between MEIS1 and AR. We found that overexpression of MEIS1 inhibited the AR transcriptional activity and reduced the expression of AR target gene. A potential protein–protein interaction between AR and MEIS1 was identified by the immunoprecipitation and GST pull-down assays. Furthermore, MEIS1 modulated AR cytoplasm/nucleus translocation and the recruitment to androgen response element in prostate specific antigen (PSA) gene promoter sequences. In addition, MEIS1 promoted the recruitment of NCoR and SMRT in the presence of R1881. Finally, MEIS1 inhibited the proliferation and anchor-independent growth of LNCaP cells. Taken together, our data suggests that MEIS1 functions as a novel AR co-repressor. - Highlights: • A potential interaction was identified between MEIS1 and AR signaling. • Overexpression of MEIS1 reduced the expression of AR target gene. • MEIS1 modulated AR cytoplasm/nucleus translocation. • MEIS1 inhibited the proliferation and anchor-independent growth of LNCaP cells.

  7. Pebble/ECT2 RhoGEF negatively regulates the Wingless/Wnt signaling pathway.

    PubMed

    Greer, Elisabeth R; Chao, Anna T; Bejsovec, Amy

    2013-12-01

    Wingless (Wg)/Wnt signaling is essential for patterning invertebrate and vertebrate embryos, and inappropriate Wnt activity is associated with a variety of human cancers. Despite intensive study, Wnt pathway mechanisms are not fully understood. We have discovered a new mechanism for regulating the Wnt pathway: activity of a Rho guanine nucleotide exchange factor (GEF) encoded by pebble (pbl) in Drosophila and ECT2 in humans. This RhoGEF has an essential role in cytokinesis, but also plays an unexpected, conserved role in inhibiting Wg/Wnt activity. Loss and gain of pbl function in Drosophila embryos cause pattern defects that indicate altered Wg activity. Both Pbl and ECT2 repress Wg/Wnt target gene expression in cultured Drosophila and human cells. The GEF activity is required for Wnt regulation, whereas other protein domains important for cytokinesis are not. Unlike most negative regulators of Wnt activity, Pbl/ECT2 functions downstream of Armadillo (Arm)/beta-catenin stabilization. Our results indicate GTPase regulation at a novel point in Wg/Wnt signal transduction, and provide new insight into the categorization of ECT2 as a human proto-oncogene.

  8. Pebble/ECT2 RhoGEF negatively regulates the Wingless/Wnt signaling pathway

    PubMed Central

    Greer, Elisabeth R.; Chao, Anna T.; Bejsovec, Amy

    2013-01-01

    Wingless (Wg)/Wnt signaling is essential for patterning invertebrate and vertebrate embryos, and inappropriate Wnt activity is associated with a variety of human cancers. Despite intensive study, Wnt pathway mechanisms are not fully understood. We have discovered a new mechanism for regulating the Wnt pathway: activity of a Rho guanine nucleotide exchange factor (GEF) encoded by pebble (pbl) in Drosophila and ECT2 in humans. This RhoGEF has an essential role in cytokinesis, but also plays an unexpected, conserved role in inhibiting Wg/Wnt activity. Loss and gain of pbl function in Drosophila embryos cause pattern defects that indicate altered Wg activity. Both Pbl and ECT2 repress Wg/Wnt target gene expression in cultured Drosophila and human cells. The GEF activity is required for Wnt regulation, whereas other protein domains important for cytokinesis are not. Unlike most negative regulators of Wnt activity, Pbl/ECT2 functions downstream of Armadillo (Arm)/beta-catenin stabilization. Our results indicate GTPase regulation at a novel point in Wg/Wnt signal transduction, and provide new insight into the categorization of ECT2 as a human proto-oncogene. PMID:24198276

  9. Organelle acidification negatively regulates vacuole membrane fusion in vivo

    PubMed Central

    Desfougères, Yann; Vavassori, Stefano; Rompf, Maria; Gerasimaite, Ruta; Mayer, Andreas

    2016-01-01

    The V-ATPase is a proton pump consisting of a membrane-integral V0 sector and a peripheral V1 sector, which carries the ATPase activity. In vitro studies of yeast vacuole fusion and evidence from worms, flies, zebrafish and mice suggested that V0 interacts with the SNARE machinery for membrane fusion, that it promotes the induction of hemifusion and that this activity requires physical presence of V0 rather than its proton pump activity. A recent in vivo study in yeast has challenged these interpretations, concluding that fusion required solely lumenal acidification but not the V0 sector itself. Here, we identify the reasons for this discrepancy and reconcile it. We find that acute pharmacological or physiological inhibition of V-ATPase pump activity de-acidifies the vacuole lumen in living yeast cells within minutes. Time-lapse microscopy revealed that de-acidification induces vacuole fusion rather than inhibiting it. Cells expressing mutated V0 subunits that maintain vacuolar acidity were blocked in this fusion. Thus, proton pump activity of the V-ATPase negatively regulates vacuole fusion in vivo. Vacuole fusion in vivo does, however, require physical presence of a fusion-competent V0 sector. PMID:27363625

  10. Bone marrow adipocytes as negative regulators of the hematopoietic microenvironment

    PubMed Central

    Naveiras, Olaia; Nardi, Valentina; Wenzel, Pamela L.; Fahey, Frederic; Daley, George Q.

    2009-01-01

    Osteoblasts and endothelium constitute functional niches that support hematopoietic stem cells (HSC) in mammalian bone marrow (BM) 1,2,3 . Adult BM also contains adipocytes, whose numbers correlate inversely with the hematopoietic activity of the marrow. Fatty infiltration of hematopoietic red marrow follows irradiation or chemotherapy and is a diagnostic feature in biopsies from patients with marrow aplasia 4. To explore whether adipocytes influence hematopoiesis or simply fill marrow space, we compared the hematopoietic activity of distinct regions of the mouse skeleton that differ in adiposity. By flow cytometry, colony forming activity, and competitive repopulation assay, HSCs and short-term progenitors are reduced in frequency in the adipocyte-rich vertebrae of the mouse tail relative to the adipocyte-free vertebrae of the thorax. In lipoatrophic A-ZIP/F1 “fatless” mice, which are genetically incapable of forming adipocytes8, and in mice treated with the PPARγ inhibitor Bisphenol-A-DiGlycidyl-Ether (BADGE), which inhibits adipogenesis9, post-irradiation marrow engraftment is accelerated relative to wild type or untreated mice. These data implicate adipocytes as predominantly negative regulators of the bone marrow microenvironment, and suggest that antagonizingmarrow adipogenesis may enhance hematopoietic recovery in clinical bone marrow transplantation. PMID:19516257

  11. Catalases negatively regulate methyl jasmonate signaling in guard cells.

    PubMed

    Jannat, Rayhanur; Uraji, Misugi; Hossain, Mohammad Anowar; Islam, Mohammad Muzahidul; Nakamura, Yoshimasa; Mori, Izumi C; Murata, Yoshiyuki

    2012-07-01

    Methyl jasmonate (MeJA)-induced stomatal closure is accompanied by the accumulation of hydrogen peroxide (H₂O₂) in guard cells. In this study, we investigated the roles of catalases (CATs) in MeJA-induced stomatal closure using cat mutants cat2, cat3-1 and cat1 cat3, and the CAT inhibitor, 3-aminotriazole (AT). When assessed with 2',7'-dichlorodihydrofluorescein, the reduction of catalase activity by means of mutations and the inhibitor accumulated higher basal levels of H₂O₂ in guard cells whereas they did not affect stomatal aperture in the absence of MeJA. In contrast, the cat mutations and the treatment with AT potentiated MeJA-induced stomatal closure and MeJA-induced H₂O₂ production. These results indicate that CATs negatively regulate H₂O₂ accumulation in guard cells and suggest that inducible H₂O₂ production rather than constitutive elevation modulates stomatal apertures in Arabidopsis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Phosphorylation regulates human OCT4.

    PubMed

    Brumbaugh, Justin; Hou, Zhonggang; Russell, Jason D; Howden, Sara E; Yu, Pengzhi; Ledvina, Aaron R; Coon, Joshua J; Thomson, James A

    2012-05-08

    The transcription factor OCT4 is fundamental to maintaining pluripotency and self-renewal. To better understand protein-level regulation of OCT4, we applied liquid chromatography-MS to identify 14 localized sites of phosphorylation, 11 of which were previously unknown. Functional analysis of two sites, T234 and S235, suggested that phosphorylation within the homeobox region of OCT4 negatively regulates its activity by interrupting sequence-specific DNA binding. Mutating T234 and S235 to mimic constitutive phosphorylation at these sites reduces transcriptional activation from an OCT4-responsive reporter and decreases reprogramming efficiency. We also cataloged 144 unique phosphopeptides on known OCT4 interacting partners, including SOX2 and SALL4, that copurified during immunoprecipitation. These proteins were enriched for phosphorylation at motifs associated with ERK signaling. Likewise, OCT4 harbored several putative ERK phosphorylation sites. Kinase assays confirmed that ERK2 phosphorylated these sites in vitro, providing a direct link between ERK signaling and the transcriptional machinery that governs pluripotency.

  13. Phosphorylation regulates human OCT4

    PubMed Central

    Brumbaugh, Justin; Russell, Jason D.; Howden, Sara E.; Yu, Pengzhi; Ledvina, Aaron R.; Coon, Joshua J.; Thomson, James A.

    2012-01-01

    The transcription factor OCT4 is fundamental to maintaining pluripotency and self-renewal. To better understand protein-level regulation of OCT4, we applied liquid chromatography–MS to identify 14 localized sites of phosphorylation, 11 of which were previously unknown. Functional analysis of two sites, T234 and S235, suggested that phosphorylation within the homeobox region of OCT4 negatively regulates its activity by interrupting sequence-specific DNA binding. Mutating T234 and S235 to mimic constitutive phosphorylation at these sites reduces transcriptional activation from an OCT4-responsive reporter and decreases reprogramming efficiency. We also cataloged 144 unique phosphopeptides on known OCT4 interacting partners, including SOX2 and SALL4, that copurified during immunoprecipitation. These proteins were enriched for phosphorylation at motifs associated with ERK signaling. Likewise, OCT4 harbored several putative ERK phosphorylation sites. Kinase assays confirmed that ERK2 phosphorylated these sites in vitro, providing a direct link between ERK signaling and the transcriptional machinery that governs pluripotency. PMID:22474382

  14. Architecture and RNA binding of the human negative elongation factor

    PubMed Central

    Vos, Seychelle M; Pöllmann, David; Caizzi, Livia; Hofmann, Katharina B; Rombaut, Pascaline; Zimniak, Tomasz; Herzog, Franz; Cramer, Patrick

    2016-01-01

    Transcription regulation in metazoans often involves promoter-proximal pausing of RNA polymerase (Pol) II, which requires the 4-subunit negative elongation factor (NELF). Here we discern the functional architecture of human NELF through X-ray crystallography, protein crosslinking, biochemical assays, and RNA crosslinking in cells. We identify a NELF core subcomplex formed by conserved regions in subunits NELF-A and NELF-C, and resolve its crystal structure. The NELF-AC subcomplex binds single-stranded nucleic acids in vitro, and NELF-C associates with RNA in vivo. A positively charged face of NELF-AC is involved in RNA binding, whereas the opposite face of the NELF-AC subcomplex binds NELF-B. NELF-B is predicted to form a HEAT repeat fold, also binds RNA in vivo, and anchors the subunit NELF-E, which is confirmed to bind RNA in vivo. These results reveal the three-dimensional architecture and three RNA-binding faces of NELF. DOI: http://dx.doi.org/10.7554/eLife.14981.001 PMID:27282391

  15. miR-34a negatively regulates efferocytosis by tissue macrophages in part via SIRT1

    PubMed Central

    McCubbrey, Alexandra L; Nelson, Joshua D.; Stolberg, Valerie R.; Blakely, Pennelope K.; McCloskey, Lisa; Janssen, William J.; Freeman, Christine M.; Curtis, Jeffrey L.

    2015-01-01

    Apoptotic cell (AC) clearance (“efferocytosis”) is an evolutionarily conserved process essential for immune health, particularly to maintain self-tolerance. Despite identification of many recognition receptors and intracellular signaling components of efferocytosis, its negative regulation remains incompletely understood, and has not previously been known to involve microRNAs (miRs). Here we show that miR-34a (gene ID 407040), well-recognized as a p53-dependent tumor suppressor, mediates coordinated negative regulation of efferocytosis by resident murine and human tissue macrophages (Mø). miR-34a expression varied greatly between Mø from different tissues, correlating inversely with their capacity for AC uptake. Transient or genetic knockdown of miR-34a increased efferocytosis, whereas miR-34a over-expression decreased efferocytosis, without altering recognition of live, necrotic or Ig-opsonized cells. The inhibitory effect of miR-34a was mediated both by reduced expression of Axl, a receptor tyrosine kinase known to recognize AC, and of the deacetylase SIRT1, which had not previously been linked to efferocytosis by tissue Mø. Exposure to AC down-regulated Mø miR-34a expression, resulting in a positive feedback loop that increased subsequent capacity to engulf AC. These findings demonstrate that miR-34a both specifically regulates and is regulated by efferocytosis. Given the ability of efferocytosis to polarize ingesting Mø uniquely and to reduce their host-defense functions, dynamic negative regulation by miR-34a provides one means of fine-tuning Mø behavior towards AC in specific tissue environments with differing potentials for microbial exposure. PMID:26718338

  16. TRIM65 negatively regulates p53 through ubiquitination

    SciTech Connect

    Li, Yang; Ma, Chengyuan; Zhou, Tong; Liu, Ying; Sun, Luyao; Yu, Zhenxiang

    2016-04-22

    Tripartite-motif protein family member 65 (TRIM65) is an important protein involved in white matter lesion. However, the role of TRIM65 in human cancer remains less understood. Through the Cancer Genome Atlas (TCGA) gene alteration database, we found that TRIM65 is upregulated in a significant portion of non-small cell lung carcinoma (NSCLC) patients. Our cell growth assay revealed that TRIM65 overexpression promotes cell proliferation, while knockdown of TRIM65 displays opposite effect. Mechanistically, TRIM65 binds to p53, one of the most critical tumor suppressors, and serves as an E3 ligase toward p53. Consequently, TRIM65 inactivates p53 through facilitating p53 poly-ubiquitination and proteasome-mediated degradation. Notably, chemotherapeutic reagent cisplatin induction of p53 is markedly attenuated in response to ectopic expression of TRIM65. Cell growth inhibition by TRIM65 knockdown is more significant in p53 positive H460 than p53 negative H1299 cells, and knockdown of p53 in H460 cells also shows compromised cell growth inhibition by TRIM65 knockdown, indicating that p53 is required, at least in part, for TRIM65 function. Our findings demonstrate TRIM65 as a potential oncogenic protein, highly likely through p53 inactivation, and provide insight into development of novel approaches targeting TRIM65 for NSCLC treatment, and also overcoming chemotherapy resistance. - Highlights: • TRIM65 expression is elevated in NSCLC. • TRIM65 inactivates p53 through mediating p53 ubiquitination and degradation. • TRIM65 attenuates the response of NSCLC cells to cisplatin.

  17. Cryptococcus neoformans Mediator Protein Ssn8 Negatively Regulates Diverse Physiological Processes and Is Required for Virulence

    PubMed Central

    Wang, Lin-Ing; Lin, Yu-Sheng; Liu, Kung-Hung; Jong, Ambrose Y.; Shen, Wei-Chiang

    2011-01-01

    Cryptococcus neoformans is a ubiquitously distributed human pathogen. It is also a model system for studying fungal virulence, physiology and differentiation. Light is known to inhibit sexual development via the evolutionarily conserved white collar proteins in C. neoformans. To dissect molecular mechanisms regulating this process, we have identified the SSN8 gene whose mutation suppresses the light-dependent CWC1 overexpression phenotype. Characterization of sex-related phenotypes revealed that Ssn8 functions as a negative regulator in both heterothallic a-α mating and same-sex mating processes. In addition, Ssn8 is involved in the suppression of other physiological processes including invasive growth, and production of capsule and melanin. Interestingly, Ssn8 is also required for the maintenance of cell wall integrity and virulence. Our gene expression studies confirmed that deletion of SSN8 results in de-repression of genes involved in sexual development and melanization. Epistatic and yeast two hybrid studies suggest that C. neoformans Ssn8 plays critical roles downstream of the Cpk1 MAPK cascade and Ste12 and possibly resides at one of the major branches downstream of the Cwc complex in the light-mediated sexual development pathway. Taken together, our studies demonstrate that the conserved Mediator protein Ssn8 functions as a global regulator which negatively regulates diverse physiological and developmental processes and is required for virulence in C. neoformans. PMID:21559476

  18. [Moving sound source discrimination in humans (mismatch negativity and psychophysics)].

    PubMed

    Vasilenko, Iu A; Shestopalova, L B

    2010-01-01

    Ability to discriminate the moving sound sources with different dynamic properties was studied in humans. The auditory motion was simulated by introducing variable interaural time differences into the deviant stimuli. The electrophysiological experiment explored mismatch negativity elicited by the abrupt sound shift taken as deviant against gradual sound motion taken as standard. The psychoacoustic procedure revealed that these stimuli were not differentiated behaviorally. Nevertheless, the significant mismatch negativities were obtained. It was also established that the mismatch negativity was not influenced by the direction of sound motion. The results obtained are discussed from the point of view of actual theories of moving sound localization. The findings are in line with the hypothesis that mismatch negativity should not be considered as a direct index of behavioral discrimination accuracy.

  19. RNase L is a negative regulator of cell migration.

    PubMed

    Banerjee, Shuvojit; Li, Geqiang; Li, Yize; Gaughan, Christina; Baskar, Danika; Parker, Yvonne; Lindner, Daniel J; Weiss, Susan R; Silverman, Robert H

    2015-12-29

    RNase L is a regulated endoribonuclease that functions in the interferon antiviral response. Activation of RNase L by 2', 5'-oligoadenylates has been linked to apoptosis, autophagy and inflammation. Genetic studies have also suggested the possible involvement of the RNase L gene (RNASEL) on chromosome 1q25.3 in several types of cancer. Here we report that ablation of RNase L in human prostate cancer PC3 cells by CRISPR/Cas9 gene editing technology enhanced cell migration as determined both by transwell assays and scratch wound healing assays. In addition, RNase L knockdown by means of RNAi increased migration of PC3 and DU145 cells in response to either fibronectin or serum stimulation, as did homozygous disruption of the RNase L gene in mouse embryonic fibroblasts. Serum or fibronectin stimulation of focal adhesion kinase (FAK) autophosphorylation on tyrosine-397 was increased by either knockdown or ablation of RNase L. In contrast, a missense mutant RNase L (R667A) lacking catalytic activity failed to suppress cell migration in PC3 cells. However, a nuclease-inactive mutant mouse RNase L (W630A) was able to partially inhibit migration of mouse fibroblasts. Consistent with a role for the catalytic activity of RNase L, transfection of PC3 cells with the RNase L activator, 2', 5'-oligoadenylate, suppressed cell migration. RNase L knockdown in PC3 cells enhanced tumor growth and metastasis following implantation in the mouse prostate. Our results suggest that naturally occurring mutations in the RNase L gene might promote enhanced cell migration and metastasis.

  20. RNase L is a negative regulator of cell migration

    PubMed Central

    Banerjee, Shuvojit; Li, Geqiang; Li, Yize; Gaughan, Christina; Baskar, Danika; Parker, Yvonne; Lindner, Daniel J.; Weiss, Susan R.; Silverman, Robert H.

    2015-01-01

    RNase L is a regulated endoribonuclease that functions in the interferon antiviral response. Activation of RNase L by 2′, 5′-oligoadenylates has been linked to apoptosis, autophagy and inflammation. Genetic studies have also suggested the possible involvement of the RNase L gene (RNASEL) on chromosome 1q25.3 in several types of cancer. Here we report that ablation of RNase L in human prostate cancer PC3 cells by CRISPR/Cas9 gene editing technology enhanced cell migration as determined both by transwell assays and scratch wound healing assays. In addition, RNase L knockdown by means of RNAi increased migration of PC3 and DU145 cells in response to either fibronectin or serum stimulation, as did homozygous disruption of the RNase L gene in mouse embryonic fibroblasts. Serum or fibronectin stimulation of focal adhesion kinase (FAK) autophosphorylation on tyrosine-397 was increased by either knockdown or ablation of RNase L. In contrast, a missense mutant RNase L (R667A) lacking catalytic activity failed to suppress cell migration in PC3 cells. However, a nuclease-inactive mutant mouse RNase L (W630A) was able to partially inhibit migration of mouse fibroblasts. Consistent with a role for the catalytic activity of RNase L, transfection of PC3 cells with the RNase L activator, 2′, 5′-oligoadenylate, suppressed cell migration. RNase L knockdown in PC3 cells enhanced tumor growth and metastasis following implantation in the mouse prostate. Our results suggest that naturally occurring mutations in the RNase L gene might promote enhanced cell migration and metastasis. PMID:26517238

  1. MiR-155 negatively regulates c-Jun expression at the post-transcriptional level in human dermal fibroblasts in vitro: implications in UVA irradiation-induced photoaging.

    PubMed

    Song, Jianwen; Liu, Ping; Yang, Zhensheng; Li, Linli; Su, Hui; Lu, Ning; Peng, Zhenhui

    2012-01-01

    C-Jun plays a critical role in ultraviolet A (UVA) irradiation-induced photoaging. The exact mechanisms by which UVA irradiation up-regulates c-Jun expression in human dermal fibroblasts (HDFs) are still not completely understood. We undertook this study to investigate whether microRNA-155 (miR-155) directly regulates the expression of c-Jun in HDFs in vitro. Expression of c-Jun mRNA and protein and miR-155 in UVA-irradiated HDFs were detected using quantitative real-time RT-PCR and Western blotting. Luciferase reporter assays were performed to examine whether a miR-155 binding site in the 3'-untranslated region (3'-UTR) of the c-Jun gene is responsible for miR-155-mediated c-Jun regulation in HEK293A cells, and expression of c-Jun mRNA and protein in UVA non-exposed and exposed HDFs trasfected with a miR-155 mimic or a miR-155 inhibitor was detected by quantitative real-time RT-PCR and Western blotting. Expression of miR-155 was markedly reduced and that of c-Jun mRNA and protein was significantly up-regulated in UVA-irradiated HDFs. Luciferase reporter assays indicated that c-Jun is a direct target of miR-155 in HEK293A cells. In both UVA non-exposed and exposed HDFs, miR-155 mimic decreased c-Jun protein levels, while miR-155 inhibitor increased c-Jun protein levels, but both had no effect on c-Jun mRNA expression, which suggest that miR-155-induced c-Jun inhibition occurs at the post-transcriptional level. Our results demonstrate that miR-155 directly controls c-Jun expression in HDFs at the post-transcriptional level and might function as a protective miRNA in HDFs. Copyright © 2012 S. Karger AG, Basel.

  2. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens

    PubMed Central

    Casson, Cierra N.; Yu, Janet; Reyes, Valeria M.; Taschuk, Frances O.; Yadav, Anjana; Copenhaver, Alan M.; Nguyen, Hieu T.; Collman, Ronald G.; Shin, Sunny

    2015-01-01

    Inflammasomes are critical for host defense against bacterial pathogens. In murine macrophages infected by gram-negative bacteria, the canonical inflammasome activates caspase-1 to mediate pyroptotic cell death and release of IL-1 family cytokines. Additionally, a noncanonical inflammasome controlled by caspase-11 induces cell death and IL-1 release. However, humans do not encode caspase-11. Instead, humans encode two putative orthologs: caspase-4 and caspase-5. Whether either ortholog functions similar to caspase-11 is poorly defined. Therefore, we sought to define the inflammatory caspases in primary human macrophages that regulate inflammasome responses to gram-negative bacteria. We find that human macrophages activate inflammasomes specifically in response to diverse gram-negative bacterial pathogens that introduce bacterial products into the host cytosol using specialized secretion systems. In primary human macrophages, IL-1β secretion requires the caspase-1 inflammasome, whereas IL-1α release and cell death are caspase-1–independent. Instead, caspase-4 mediates IL-1α release and cell death. Our findings implicate human caspase-4 as a critical regulator of noncanonical inflammasome activation that initiates defense against bacterial pathogens in primary human macrophages. PMID:25964352

  3. PINK1 Is a Negative Regulator of Growth and the Warburg Effect in Glioblastoma.

    PubMed

    Agnihotri, Sameer; Golbourn, Brian; Huang, Xi; Remke, Marc; Younger, Susan; Cairns, Rob A; Chalil, Alan; Smith, Christian A; Krumholtz, Stacey-Lynn; Mackenzie, Danielle; Rakopoulos, Patricia; Ramaswamy, Vijay; Taccone, Michael S; Mischel, Paul S; Fuller, Gregory N; Hawkins, Cynthia; Stanford, William L; Taylor, Michael D; Zadeh, Gelareh; Rutka, James T

    2016-08-15

    Proliferating cancer cells are characterized by high rates of glycolysis, lactate production, and altered mitochondrial metabolism. This metabolic reprogramming provides important metabolites for proliferation of tumor cells, including glioblastoma. These biological processes, however, generate oxidative stress that must be balanced through detoxification of reactive oxygen species (ROS). Using an unbiased retroviral loss-of-function screen in nontransformed human astrocytes, we demonstrate that mitochondrial PTEN-induced kinase 1 (PINK1) is a regulator of the Warburg effect and negative regulator of glioblastoma growth. We report that loss of PINK1 contributes to the Warburg effect through ROS-dependent stabilization of hypoxia-inducible factor-1A and reduced pyruvate kinase muscle isozyme 2 activity, both key regulators of aerobic glycolysis. Mechanistically, PINK1 suppresses ROS and tumor growth through FOXO3a, a master regulator of oxidative stress and superoxide dismutase 2. These findings highlight the importance of PINK1 and ROS balance in normal and tumor cells. PINK1 loss was observed in a significant number of human brain tumors including glioblastoma (n > 900) and correlated with poor patient survival. PINK1 overexpression attenuates in vivo glioblastoma growth in orthotopic mouse xenograft models and a transgenic glioblastoma model in Drosophila Cancer Res; 76(16); 4708-19. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Long noncoding RNA LINP1 regulates double strand DNA break repair in triple negative breast cancer

    PubMed Central

    Zhang, Youyou; He, Qun; Hu, Zhongyi; Feng, Yi; Fan, Lingling; Tang, Zhaoqing; Yuan, Jiao; Shan, Weiwei; Li, Chunsheng; Hu, Xiaowen; Tanyi, Janos L; Fan, Yi; Huang, Qihong; Montone, Kathleen; Dang, Chi V; Zhang, Lin

    2016-01-01

    Long noncoding RNAs (lncRNAs), which are transcripts that are larger than 200 nucleotides but do not appear to have protein-coding potential, play critical roles during tumorigenesis by functioning as scaffolds to regulate protein-protein, protein-DNA or protein-RNA interactions. Using a clinically guided genetic screening approach, we identified (lncRNA in Non-homologous end joining [NHEJ] pathway 1) as a lncRNA that is overexpressed in human triple-negative breast cancer. We found that LINP1 enhances double-strand DNA break repair by serving as a scaffold that links Ku80 and DNA-PKcs, thereby coordinating the NHEJ pathway. Importantly, blocking LINP1, which is regulated by the p53 and epidermal growth factor receptor (EGFR) signaling, increases sensitivity of tumor cell response to radiotherapy in breast cancer. PMID:27111890

  5. Human testis-specific genes are under relaxed negative selection.

    PubMed

    Pierron, Denis; Razafindrazaka, Harilanto; Rocher, Christophe; Letellier, Thierry; Grossman, Lawrence I

    2014-02-01

    Recent studies have suggested that selective forces and constraints acting on genes varied during human evolution depending on the organ in which they are expressed. To gain insight into the evolution of organ determined negative selection forces, we compared the non-synonymous SNP diversity of genes expressed in different organs. Based on a HAPMAP dataset, we determined for each SNP its frequency in 11 human populations and, in each case, predicted whether or not the change it produces is deleterious. We have shown that, for all organs under study, SNPs predicted to be deleterious are present at a significantly lower frequency than SNPs predicted to be tolerated. However, testis-specific genes contain a higher proportion of deleterious SNPs than other organs. This study shows that negative selection is acting on the whole human genome, but that the action of negative selection is relaxed on testis-specific genes. This result adds to and expands the hypothesis of a recent evolutionary change in the human male reproductive system and its behavior.

  6. Suppressor of IKKɛ is an essential negative regulator of pathological cardiac hypertrophy

    PubMed Central

    Deng, Ke-Qiong; Wang, Aibing; Ji, Yan-Xiao; Zhang, Xiao-Jing; Fang, Jing; Zhang, Yan; Zhang, Peng; Jiang, Xi; Gao, Lu; Zhu, Xue-Yong; Zhao, Yichao; Gao, Lingchen; Yang, Qinglin; Zhu, Xue-Hai; Wei, Xiang; Pu, Jun; Li, Hongliang

    2016-01-01

    Although pathological cardiac hypertrophy represents a leading cause of morbidity and mortality worldwide, our understanding of the molecular mechanisms underlying this disease is still poor. Here, we demonstrate that suppressor of IKKɛ (SIKE), a negative regulator of the interferon pathway, attenuates pathological cardiac hypertrophy in rodents and non-human primates in a TANK-binding kinase 1 (TBK1)/AKT-dependent manner. Sike-deficient mice develop cardiac hypertrophy and heart failure, whereas Sike-overexpressing transgenic (Sike-TG) mice are protected from hypertrophic stimuli. Mechanistically, SIKE directly interacts with TBK1 to inhibit the TBK1-AKT signalling pathway, thereby achieving its anti-hypertrophic action. The suppression of cardiac remodelling by SIKE is further validated in rats and monkeys. Collectively, these findings identify SIKE as a negative regulator of cardiac remodelling in multiple animal species due to its inhibitory regulation of the TBK1/AKT axis, suggesting that SIKE may represent a therapeutic target for the treatment of cardiac hypertrophy and heart failure. PMID:27249321

  7. Astrocyte Ca2+ Influx Negatively Regulates Neuronal Activity

    PubMed Central

    Ormerod, Kiel G.

    2017-01-01

    Abstract Maintenance of neural circuit activity requires appropriate regulation of excitatory and inhibitory synaptic transmission. Recently, glia have emerged as key partners in the modulation of neuronal excitability; however, the mechanisms by which glia regulate neuronal signaling are still being elucidated. Here, we describe an analysis of how Ca2+ signals within Drosophila astrocyte-like glia regulate excitability in the nervous system. We find that Drosophila astrocytes exhibit robust Ca2+ oscillatory activity manifested by fast, recurrent microdomain Ca2+ fluctuations within processes that infiltrate the synaptic neuropil. Unlike the enhanced neuronal activity and behavioral seizures that were previously observed during manipulations that trigger Ca2+ influx into Drosophila cortex glia, we find that acute induction of astrocyte Ca2+ influx leads to a rapid onset of behavioral paralysis and a suppression of neuronal activity. We observe that Ca2+ influx triggers rapid endocytosis of the GABA transporter (GAT) from astrocyte plasma membranes, suggesting that increased synaptic GABA levels contribute to the neuronal silencing and paralysis. We identify Rab11 as a novel regulator of GAT trafficking that is required for this form of activity regulation. Suppression of Rab11 function strongly offsets the reduction of neuronal activity caused by acute astrocyte Ca2+ influx, likely by inhibiting GAT endocytosis. Our data provide new insights into astrocyte Ca2+ signaling and indicate that distinct glial subtypes in the Drosophila brain can mediate opposing effects on neuronal excitability. PMID:28303263

  8. Control and regulation of pathways via negative feedback

    PubMed Central

    2017-01-01

    The biochemical networks found in living organisms include a huge variety of control mechanisms at multiple levels of organization. While the mechanistic and molecular details of many of these control mechanisms are understood, their exact role in driving cellular behaviour is not. For example, yeast glycolysis has been studied for almost 80 years but it is only recently that we have come to understand the systemic role of the multitude of feedback and feed-forward controls that exist in this pathway. In this article, control theory is discussed as an approach to dissect the control logic of complex pathways. One of the key issues is distinguishing between the terms control and regulation and how these concepts are applied to regulated enzymes such as phosphofructokinase. In doing so, one of the paradoxes in metabolic regulation can be resolved where enzymes such as phosphofructokinase have little control but, nevertheless, possess significant regulatory influence. PMID:28202588

  9. Children's Negative Emotionality Combined with Poor Self-Regulation Affects Allostatic Load in Adolescence

    ERIC Educational Resources Information Center

    Dich, Nadya; Doan, Stacey; Evans, Gary

    2015-01-01

    The present study examined the concurrent and prospective, longitudinal effects of childhood negative emotionality and self-regulation on allostatic load (AL), a physiological indicator of chronic stress. We hypothesized that negative emotionality in combination with poor self-regulation would predict elevated AL. Mothers reported on children's…

  10. Children's Negative Emotionality Combined with Poor Self-Regulation Affects Allostatic Load in Adolescence

    ERIC Educational Resources Information Center

    Dich, Nadya; Doan, Stacey; Evans, Gary

    2015-01-01

    The present study examined the concurrent and prospective, longitudinal effects of childhood negative emotionality and self-regulation on allostatic load (AL), a physiological indicator of chronic stress. We hypothesized that negative emotionality in combination with poor self-regulation would predict elevated AL. Mothers reported on children's…

  11. [The regulation of negative and positive emotions during picture viewing: an ERP study].

    PubMed

    Reva, N V; Pavlov, S V; Korenek, V V; Loktev, K V; Tumialis, A V; Brak, I V; Aftanas, L I

    2015-01-01

    The study examines the effects of cognitive reappraisal on the event-related potentials (ERPs) to affective stimuli. Participants (n = 53) were asked either to attend affective images, or to down-regulate negative affect, or to up-regulate positive affect. Reappraisal of negative images was associated with attenuation of the P300 and late positive potential (LPP) over parietal regions, whereas reappraisal of positive images had no significant effect on ERP components. The weak P300 reduction correlated with high personality scores of negative affectivity. We assume that only down-regulation of negative emotions is associated with the changes in primary appraisals, and so far reflected in ERP modulation.

  12. LINE1 family member is negative regulator of HLA-G expression

    PubMed Central

    Ikeno, Masashi; Suzuki, Nobutaka; Kamiya, Megumi; Takahashi, Yuji; Kudoh, Jun; Okazaki, Tsuneko

    2012-01-01

    Class Ia molecules of human leucocyte antigen (HLA-A, -B and -C) are widely expressed and play a central role in the immune system by presenting peptides derived from the lumen of the endoplasmic reticulum. In contrast, class Ib molecules such as HLA-G serve novel functions. The distribution of HLA-G is mostly limited to foetal trophoblastic tissues and some tumour tissues. The mechanism required for the tissue-specific regulation of the HLA-G gene has not been well understood. Here, we investigated the genomic regulation of HLA-G by manipulating one copy of a genomic DNA fragment on a human artificial chromosome. We identified a potential negative regulator of gene expression in a sequence upstream of HLA-G that overlapped with the long interspersed element (LINE1); silencing of HLA-G involved a DNA secondary structure generated in LINE1. The presence of a LINE1 gene silencer may explain the limited expression of HLA-G compared with other class I genes. PMID:23002136

  13. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    SciTech Connect

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.

  14. Chromatin associated SETD3 negatively regulates VEGF expression

    PubMed Central

    Cohn, Ofir; Feldman, Michal; Weil, Lital; Kublanovsky, Margarita; Levy, Dan

    2016-01-01

    SETD3 is a member of the protein lysine methyltransferase (PKMT) family, which catalyzes the addition of methyl group to lysine residues. Accumulating data suggest that PKMTs are involved in the regulation of a broad spectrum of biological processes by targeting histone and non-histone proteins. Using a proteomic approach, we have identified 172 new SETD3 interacting proteins. We show that SETD3 binds and methylates the transcription factor FoxM1, which has been previously shown to be associated with the regulation of VEGF expression. We further demonstrate that under hypoxic conditions SETD3 is down-regulated. Mechanistically, we find that under basal conditions, SETD3 and FoxM1 are enriched on the VEGF promoter. Dissociation of both SETD3 and FoxM1 from the VEGF promoter under hypoxia correlates with elevated expression of VEGF. Taken together, our data reveal a new SETD3-dependent methylation-based signaling pathway at chromatin that regulates VEGF expression under normoxic and hypoxic conditions. PMID:27845446

  15. Expectancies for Negative Mood Regulation, Coping, and Dysphoria among College Students.

    ERIC Educational Resources Information Center

    Catanzaro, Salvatore J.; Greenwood, Gregory

    1994-01-01

    College students (n=222) completed measures of negative mood regulation (NMR) expectancies, negative life events, coping responses, dysphoria, and somatic symptoms. Weeks later, they completed same questionnaires but with daily hassles replacing life events. NMR expectancies were positively related to active coping and negatively related to…

  16. Caenorhabditis elegans Myotubularin MTM-1 Negatively Regulates the Engulfment of Apoptotic Cells

    PubMed Central

    Zhao, Dongfeng; Li, Weida; Mapes, James; Xie, Yuting; Wang, Xiaochen

    2009-01-01

    During programmed cell death, apoptotic cells are recognized and rapidly engulfed by phagocytes. Although a number of genes have been identified that promote cell corpse engulfment, it is not well understood how phagocytosis of apoptotic cells is negatively regulated. Here we have identified Caenorhabditis elegans myotubularin MTM-1 as a negative regulator of cell corpse engulfment. Myotubularins (MTMs) constitute a large, highly conserved family of lipid phosphatases. MTM gene mutations are associated with various human diseases, but the cellular functions of MTM proteins are not clearly defined. We found that inactivation of MTM-1 caused significant reduction in cell corpses in strong loss-of-function mutants of ced-1, ced-6, ced-7, and ced-2, but not in animals deficient in the ced-5, ced-12, or ced-10 genes. In contrast, overexpression of MTM-1 resulted in accumulation of cell corpses. This effect is dependent on the lipid phosphatase activity of MTM-1. We show that loss of mtm-1 function accelerates the clearance of cell corpses by promoting their internalization. Importantly, the reduction of cell corpses caused by mtm-1 RNAi not only requires the activities of CED-5, CED-12, and CED-10, but also needs the functions of the phosphatidylinositol 3-kinases (PI3Ks) VPS-34 and PIKI-1. We found that MTM-1 localizes to the plasma membrane in several known engulfing cell types and may modulate the level of phosphatidylinositol 3-phosphate (PtdIns(3)P) in vivo. We propose that MTM-1 negatively regulates cell corpse engulfment through the CED-5/CED-12/CED-10 module by dephosphorylating PtdIns(3)P on the plasma membrane. PMID:19816564

  17. Caenorhabditis elegans myotubularin MTM-1 negatively regulates the engulfment of apoptotic cells.

    PubMed

    Zou, Wei; Lu, Qun; Zhao, Dongfeng; Li, Weida; Mapes, James; Xie, Yuting; Wang, Xiaochen

    2009-10-01

    During programmed cell death, apoptotic cells are recognized and rapidly engulfed by phagocytes. Although a number of genes have been identified that promote cell corpse engulfment, it is not well understood how phagocytosis of apoptotic cells is negatively regulated. Here we have identified Caenorhabditis elegans myotubularin MTM-1 as a negative regulator of cell corpse engulfment. Myotubularins (MTMs) constitute a large, highly conserved family of lipid phosphatases. MTM gene mutations are associated with various human diseases, but the cellular functions of MTM proteins are not clearly defined. We found that inactivation of MTM-1 caused significant reduction in cell corpses in strong loss-of-function mutants of ced-1, ced-6, ced-7, and ced-2, but not in animals deficient in the ced-5, ced-12, or ced-10 genes. In contrast, overexpression of MTM-1 resulted in accumulation of cell corpses. This effect is dependent on the lipid phosphatase activity of MTM-1. We show that loss of mtm-1 function accelerates the clearance of cell corpses by promoting their internalization. Importantly, the reduction of cell corpses caused by mtm-1 RNAi not only requires the activities of CED-5, CED-12, and CED-10, but also needs the functions of the phosphatidylinositol 3-kinases (PI3Ks) VPS-34 and PIKI-1. We found that MTM-1 localizes to the plasma membrane in several known engulfing cell types and may modulate the level of phosphatidylinositol 3-phosphate (PtdIns(3)P) in vivo. We propose that MTM-1 negatively regulates cell corpse engulfment through the CED-5/CED-12/CED-10 module by dephosphorylating PtdIns(3)P on the plasma membrane.

  18. All-trans retinoic acid negatively regulates cytotoxic activities of nature killer cell line 92

    SciTech Connect

    Li Ang . E-mail: liang3829@sina.com.cn; He Meilan; Wang Hui; Qiao Bin; Chen Ping; Gu Hua; Zhang Mengjie; He Shengxiang

    2007-01-05

    NK cells are key components of innate immune systems and their activities are regulated by cytokines and hormones. All-trans retinoic acid (ATRA), as a metabolite of vitamin A and an immunomodulatory hormone, plays an important role in regulating immune responses. In the present study, we investigated the effect of ATRA on human NK cell line NK92. We found that ATRA dose-dependently suppressed cytotoxic activities of NK92 cells without affecting their proliferation. To explore the mechanisms underlying the ATRA influence on NK92 cells, we examined the production of cytokines (TNF-{alpha}, IFN-{gamma}), gene expression of cytotoxic-associated molecules (perforin, granzyme B, nature killer receptors (NCRs), and NKG2D), and the activation of NF-{kappa}B pathways related with immune response. Our results demonstrated that ATRA suppressed NF-{kappa}B activity and prevented I{kappa}B{alpha} degradation in a dose-dependent way, inhibited IFN-{gamma} production and gene expression of granzyme B and NKp46. Our findings suggest that ATRA is a negative regulator of NK92 cell activation and may act as a potential regulator of anti-inflammatory functions in vivo.

  19. Mesolimbic leptin signaling negatively regulates cocaine-conditioned reward

    PubMed Central

    Shen, M; Jiang, C; Liu, P; Wang, F; Ma, L

    2016-01-01

    The regulatory mechanisms underlying the response to addictive drugs are complex, and increasing evidence indicates that there is a role for appetite-regulating pathways in substance abuse. Leptin, an important adipose hormone that regulates energy balance and appetite, exerts its physiological functions via leptin receptors. However, the role of leptin signaling in regulating the response to cocaine remains unclear. Here we examined the potential role of leptin signaling in cocaine reward using a conditioned place preference (CPP) procedure. Our results showed that inhibition of leptin signaling by intracerebroventricular infusion of the leptin receptor (LepR) antagonist SMLA during cocaine conditioning increased the cocaine-CPP and upregulated the level of dopamine and its metabolites in the nucleus accumbens (NAc). We then selectively knocked down the LepR in the mesolimbic ventral tegmental area (VTA), NAc core and central amygdala (CeA) by injecting AAV-Cre into Leprflox/flox mice. LepR deletion in the VTA increased the dopamine levels in the NAc and enhanced the cocaine-conditioned reward. LepR deletion in the NAc core enhanced the cocaine-conditioned reward and impaired the effect of the D2-dopamine receptor on cocaine-CPP, whereas LepR deletion in the CeA had no effect on cocaine-CPP but increased the anxiety level of mice. In addition, prior exposure to saccharin increased LepR mRNA and STAT3 phosphorylation in the NAc and VTA and impaired cocaine-CPP. These results indicate that leptin signaling is critically involved in cocaine-conditioned reward and the regulation of drug reward by a natural reward and that these effects are dependent on mesolimbic LepR. PMID:27922639

  20. Mesolimbic leptin signaling negatively regulates cocaine-conditioned reward.

    PubMed

    Shen, M; Jiang, C; Liu, P; Wang, F; Ma, L

    2016-12-06

    The regulatory mechanisms underlying the response to addictive drugs are complex, and increasing evidence indicates that there is a role for appetite-regulating pathways in substance abuse. Leptin, an important adipose hormone that regulates energy balance and appetite, exerts its physiological functions via leptin receptors. However, the role of leptin signaling in regulating the response to cocaine remains unclear. Here we examined the potential role of leptin signaling in cocaine reward using a conditioned place preference (CPP) procedure. Our results showed that inhibition of leptin signaling by intracerebroventricular infusion of the leptin receptor (LepR) antagonist SMLA during cocaine conditioning increased the cocaine-CPP and upregulated the level of dopamine and its metabolites in the nucleus accumbens (NAc). We then selectively knocked down the LepR in the mesolimbic ventral tegmental area (VTA), NAc core and central amygdala (CeA) by injecting AAV-Cre into Lepr(flox/flox) mice. LepR deletion in the VTA increased the dopamine levels in the NAc and enhanced the cocaine-conditioned reward. LepR deletion in the NAc core enhanced the cocaine-conditioned reward and impaired the effect of the D2-dopamine receptor on cocaine-CPP, whereas LepR deletion in the CeA had no effect on cocaine-CPP but increased the anxiety level of mice. In addition, prior exposure to saccharin increased LepR mRNA and STAT3 phosphorylation in the NAc and VTA and impaired cocaine-CPP. These results indicate that leptin signaling is critically involved in cocaine-conditioned reward and the regulation of drug reward by a natural reward and that these effects are dependent on mesolimbic LepR.

  1. Emotion Regulation Moderates the Association Between Proximal Negative Affect and Intimate Partner Violence Perpetration.

    PubMed

    Shorey, Ryan C; McNulty, James K; Moore, Todd M; Stuart, Gregory L

    2015-08-01

    Negative affect is a central component of many theories of aggressive behavior. Though understudied, it is likely that proximal negative affect increases the odds of aggression perpetration when individuals have poor emotion regulation, but not when individuals have more adaptive emotion regulation. Thus, the current study examined (1) the proximal effect of various indicators of negative affect (e.g., anger, hostility, depression) on intimate partner violence (IPV) perpetration and (2) whether poor emotion regulation moderated these associations. For up to 90 consecutive days, male college students (N = 67) in a current dating relationship completed daily surveys on their negative affect and IPV perpetration. Results demonstrated that emotion regulation moderated many of the associations between proximal negative affect and physical aggression perpetration, such that negative affect was associated with increased odds of violence when poor emotion regulation was high but not low. This is the first study to demonstrate the moderating role of emotion regulation in the link between proximal negative affect and IPV perpetration. As such, these findings have important implications for existing theories of IPV and emotion regulation and suggest that interventions may effectively reduce IPV by targeting emotion regulation.

  2. Negative emotion can enhance human motor cortical plasticity.

    PubMed

    Koganemaru, Satoko; Domen, Kazuhisa; Fukuyama, Hidenao; Mima, Tatsuya

    2012-05-01

    Although emotion often primes us for action, its effects on the human motor system are not well understood. The relationship between emotion and motor plasticity also remains unclear, despite the close link between emotion and memory formation. Here, we tested the hypothesis that emotion modulates the plasticity of the human primary motor cortex, using the International Affective Picture System and transcranial magnetic stimulation. Intermittent theta-burst stimulation was applied to the primary motor cortex to produce long-term potentiation-like changes in normal volunteers experimentally. Primary motor cortex plasticity was enhanced and sustained in both excitatory and inhibitory systems only when intermittent theta-burst stimulation was combined with the presentation of pictures that induced negative, but not positive or neutral, emotion. Moreover, negative emotion was found to enhance the inhibitory networks within the primary motor cortex, and to improve motor behavior during the choice reaction-time task. Our findings indicate that negative emotion can increase primary motor cortex plasticity by modulating the intracortical GABAergic system, as well as N-methyl-d-aspartic acid receptor-dependent changes. These findings could help to explain the physiological basis of abnormal motor symptoms in psychogenic movement disorders following emotional events. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Galangin Abrogates Ovalbumin-Induced Airway Inflammation via Negative Regulation of NF-κB.

    PubMed

    Zha, Wang-Jian; Qian, Yan; Shen, Yi; Du, Qiang; Chen, Fei-Fei; Wu, Zhen-Zhen; Li, Xiao; Huang, Mao

    2013-01-01

    Persistent activation of nuclear factor κB (NF-κB) has been associated with the development of asthma. Galangin, the active pharmacological ingredient from Alpinia galanga, is reported to have a variety of anti-inflammatory properties in vitro via negative regulation of NF-κB. This study aimed to investigate whether galangin can abrogate ovalbumin- (OVA-) induced airway inflammation by negative regulation of NF-κB. BALB/c mice sensitized and challenged with OVA developed airway hyperresponsiveness (AHR) and inflammation. Galangin dose dependently inhibited OVA-induced increases in total cell counts, eosinophil counts, and interleukin-(IL-) 4, IL-5, and IL-13 levels in bronchoalveolar lavage fluid, and reduced serum level of OVA-specific IgE. Galangin also attenuated AHR, reduced eosinophil infiltration and goblet cell hyperplasia, and reduced expression of inducible nitric oxide synthase and vascular cell adhesion protein-1 (VCAM-1) levels in lung tissue. Additionally, galangin blocked inhibitor of κB degradation, phosphorylation of the p65 subunit of NF-κB, and p65 nuclear translocation from lung tissues of OVA-sensitized mice. Similarly, in normal human airway smooth muscle cells, galangin blocked tumor necrosis factor-α induced p65 nuclear translocation and expression of monocyte chemoattractant protein-1, eotaxin, CXCL10, and VCAM-1. These results suggest that galangin can attenuate ovalbumin-induced airway inflammation by inhibiting the NF-κB pathway.

  4. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing.

    PubMed

    Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang; Choi, Kang-Yell

    2015-06-29

    Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5(-/-) mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)-Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. © 2015 Lee et al.

  5. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing

    PubMed Central

    Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang

    2015-01-01

    Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5−/− mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)–Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. PMID:26056233

  6. Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging

    PubMed Central

    Wang, Rui-Hong; Zhao, Tingrui; Cui, Kairong; Hu, Gangqing; Chen, Qiang; Chen, Weiping; Wang, Xin-Wei; Soto-Gutierrez, Alejandro; Zhao, Keji; Deng, Chu-Xia

    2016-01-01

    Sirtuin 1 (SIRT1) is involved in both aging and circadian-clock regulation, yet the link between the two processes in relation to SIRT1 function is not clear. Using Sirt1-deficient mice, we found that Sirt1 and Period 2 (Per2) constitute a reciprocal negative regulation loop that plays important roles in modulating hepatic circadian rhythmicity and aging. Sirt1-deficient mice exhibited profound premature aging and enhanced acetylation of histone H4 on lysine16 (H4K16) in the promoter of Per2, the latter of which leads to its overexpression; in turn, Per2 suppresses Sirt1 transcription through binding to the Sirt1 promoter at the Clock/Bmal1 site. This negative reciprocal relationship between SIRT1 and PER2 was also observed in human hepatocytes. We further demonstrated that the absence of Sirt1 or the ectopic overexpression of Per2 in the liver resulted in a dysregulated pace of the circadian rhythm. The similar circadian rhythm was also observed in aged wild type mice. The interplay between Sirt1 and Per2 modulates aging gene expression and circadian-clock maintenance. PMID:27346580

  7. Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging.

    PubMed

    Wang, Rui-Hong; Zhao, Tingrui; Cui, Kairong; Hu, Gangqing; Chen, Qiang; Chen, Weiping; Wang, Xin-Wei; Soto-Gutierrez, Alejandro; Zhao, Keji; Deng, Chu-Xia

    2016-06-27

    Sirtuin 1 (SIRT1) is involved in both aging and circadian-clock regulation, yet the link between the two processes in relation to SIRT1 function is not clear. Using Sirt1-deficient mice, we found that Sirt1 and Period 2 (Per2) constitute a reciprocal negative regulation loop that plays important roles in modulating hepatic circadian rhythmicity and aging. Sirt1-deficient mice exhibited profound premature aging and enhanced acetylation of histone H4 on lysine16 (H4K16) in the promoter of Per2, the latter of which leads to its overexpression; in turn, Per2 suppresses Sirt1 transcription through binding to the Sirt1 promoter at the Clock/Bmal1 site. This negative reciprocal relationship between SIRT1 and PER2 was also observed in human hepatocytes. We further demonstrated that the absence of Sirt1 or the ectopic overexpression of Per2 in the liver resulted in a dysregulated pace of the circadian rhythm. The similar circadian rhythm was also observed in aged wild type mice. The interplay between Sirt1 and Per2 modulates aging gene expression and circadian-clock maintenance.

  8. Parental reactions to children's negative emotions: relationships with emotion regulation in children with an anxiety disorder.

    PubMed

    Hurrell, Katherine E; Hudson, Jennifer L; Schniering, Carolyn A

    2015-01-01

    Research has demonstrated that parental reactions to children's emotions play a significant role in the development of children's emotion regulation (ER) and adjustment. This study compared parent reactions to children's negative emotions between families of anxious and non-anxious children (aged 7-12) and examined associations between parent reactions and children's ER. Results indicated that children diagnosed with an anxiety disorder had significantly greater difficulty regulating a range of negative emotions and were regarded as more emotionally negative and labile by their parents. Results also suggested that mothers of anxious children espoused less supportive parental emotional styles when responding to their children's negative emotions. Supportive and non-supportive parenting reactions to children's negative emotions related to children's emotion regulation skills, with father's non-supportive parenting showing a unique relationship to children's negativity/lability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Muscles do more positive than negative work in human locomotion

    PubMed Central

    DeVita, Paul; Helseth, Joseph; Hortobagyi, Tibor

    2008-01-01

    Summary Muscle work during level walking and ascent and descent ramp and stairway walking was assessed in order to explore the proposition that muscles perform more positive than negative work during these locomotion tasks. Thirty four healthy human adults were tested while maintaining a constant average walking velocity in the five gait conditions. Ground reaction force and sagittal plane kinematic data were obtained during the stance phases of these gaits and used in inverse dynamic analyses to calculate joint torques and powers at the hip, knee and ankle. Muscle work was derived as the area under the joint power vs time curves and was partitioned into positive, negative and net components. Dependent t-tests were used to compare positive and negative work in level walking and net joint work between ascent and descent gaits on the ramp and stairs (P<0.010). Total negative and positive work in level walking was −34 J and 50 J, respectively, with the difference in magnitude being statistically significant (P<0.001). Level walking was therefore performed with 16 J of net positive muscle work per step. The magnitude of the net work in ramp ascent was 25% greater than the magnitude of net work in ramp descent (89 vs −71 J m−1, P<0.010). Similarly, the magnitude of the net work in stair ascent was 43% greater than the magnitude of net work in stair descent (107 vs −75 J step−1, P<0.000). We identified three potential causes for the reduced negative vs positive work in these locomotion tasks: (1) the larger magnitude of the accelerations induced by the larger ground reaction forces in descending compared to ascending gaits elicited greater energy dissipation in non-muscular tissues, (2) the ground reaction force vector was directed closer to the joint centers in ramp and stair descent compared to ascent, which reduced the load on the muscular tissues and their energy dissipating response, and (3) despite the need to produce negative muscle work in descending

  10. Analysis of phosphatases in ER-negative breast cancers identifies DUSP4 as a critical regulator of growth and invasion.

    PubMed

    Mazumdar, Abhijit; Poage, Graham M; Shepherd, Jonathan; Tsimelzon, Anna; Hartman, Zachary C; Den Hollander, Petra; Hill, Jamal; Zhang, Yun; Chang, Jenny; Hilsenbeck, Susan G; Fuqua, Suzanne; Kent Osborne, C; Mills, Gordon B; Brown, Powel H

    2016-08-01

    Estrogen receptor (ER)-negative cancers have a poor prognosis, and few targeted therapies are available for their treatment. Our previous analyses have identified potential kinase targets critical for the growth of ER-negative, progesterone receptor (PR)-negative and HER2-negative, or "triple-negative" breast cancer (TNBC). Because phosphatases regulate the function of kinase signaling pathways, in this study, we investigated whether phosphatases are also differentially expressed in ER-negative compared to those in ER-positive breast cancers. We compared RNA expression in 98 human breast cancers (56 ER-positive and 42 ER-negative) to identify phosphatases differentially expressed in ER-negative compared to those in ER-positive breast cancers. We then examined the effects of one selected phosphatase, dual specificity phosphatase 4 (DUSP4), on proliferation, cell growth, migration and invasion, and on signaling pathways using protein microarray analyses of 172 proteins, including phosphoproteins. We identified 48 phosphatase genes are significantly differentially expressed in ER-negative compared to those in ER-positive breast tumors. We discovered that 31 phosphatases were more highly expressed, while 11 were underexpressed specifically in ER-negative breast cancers. The DUSP4 gene is underexpressed in ER-negative breast cancer and is deleted in approximately 50 % of breast cancers. Induced DUSP4 expression suppresses both in vitro and in vivo growths of breast cancer cells. Our studies show that induced DUSP4 expression blocks the cell cycle at the G1/S checkpoint; inhibits ERK1/2, p38, JNK1, RB, and NFkB p65 phosphorylation; and inhibits invasiveness of TNBC cells. These results suggest that that DUSP4 is a critical regulator of the growth and invasion of triple-negative breast cancer cells.

  11. The Temporal Deployment of Emotion Regulation Strategies During Negative Emotional Episodes.

    PubMed

    Kalokerinos, Elise K; Résibois, Maxime; Verduyn, Philippe; Kuppens, Peter

    2016-11-07

    Time is given a central place in theoretical models of emotion regulation (Gross, 1998, 2015), but key questions regarding the role of time remain unanswered. We investigated 2 such unanswered questions. First, we explored when different emotion regulation strategies were used within the course of an emotional episode in daily life. Second, we investigated the association between the temporal deployment of strategies and negative emotional experience. We conducted a daily diary study in which participants (N = 74) drew an intensity profile depicting the temporal unfolding of their negative emotional experience across daily events (N = 480), and mapped their usage of emotion regulation strategies onto this intensity profile. Strategies varied in their temporal deployment, with suppression and rumination occurring more at the beginning of the episode, and reappraisal and distraction occurring more toward the end of the episode. Strategies also varied in their association with negative emotion: rumination was positively associated with negative emotion, and reappraisal and distraction were negatively associated with negative emotion. Finally, both rumination and reappraisal interacted with time to predict negative emotional experience. Rumination was more strongly positively associated with negative emotions at the end of the episode than the beginning, but reappraisal was more strongly negatively associated with negative emotion at the beginning of the episode than the end. These findings highlight the importance of accounting for timing in the study of emotion regulation, as well as the necessity of studying these temporal processes in daily life. (PsycINFO Database Record

  12. Phosphatidylinositol 4-phosphate negatively regulates chloroplast division in Arabidopsis.

    PubMed

    Okazaki, Kumiko; Miyagishima, Shin-ya; Wada, Hajime

    2015-03-01

    Chloroplast division is performed by the constriction of envelope membranes at the division site. Although constriction of a ring-like protein complex has been shown to be involved in chloroplast division, it remains unknown how membrane lipids participate in the process. Here, we show that phosphoinositides with unknown function in envelope membranes are involved in the regulation of chloroplast division in Arabidopsis thaliana. PLASTID DIVISION1 (PDV1) and PDV2 proteins interacted specifically with phosphatidylinositol 4-phosphate (PI4P). Inhibition of phosphatidylinositol 4-kinase (PI4K) decreased the level of PI4P in chloroplasts and accelerated chloroplast division. Knockout of PI4Kβ2 expression or downregulation of PI4Kα1 expression resulted in decreased levels of PI4P in chloroplasts and increased chloroplast numbers. PI4Kα1 is the main contributor to PI4P synthesis in chloroplasts, and the effect of PI4K inhibition was largely abolished in the pdv1 mutant. Overexpression of DYNAMIN-RELATED PROTEIN5B (DRP5B), another component of the chloroplast division machinery, which is recruited to chloroplasts by PDV1 and PDV2, enhanced the effect of PI4K inhibition, whereas overexpression of PDV1 and PDV2 had additive effects. The amount of DRP5B that associated with chloroplasts increased upon PI4K inhibition. These findings suggest that PI4P is a regulator of chloroplast division in a PDV1- and DRP5B-dependent manner. © 2015 American Society of Plant Biologists. All rights reserved.

  13. Negative regulation of FAK signaling by SOCS proteins

    PubMed Central

    Liu, Enbo; Côté, Jean-François; Vuori, Kristiina

    2003-01-01

    Focal adhesion kinase (FAK) becomes activated upon integrin-mediated cell adhesion and controls cellular responses to the engagement of integrins, including cell migration and survival. We show here that a coordinated signaling by integrins and growth factor receptors induces expression of suppressor of cytokine signaling-3 (SOCS-3) and subsequent interaction between endogenous FAK and SOCS-3 proteins in 3T3 fibroblasts. Cotransfection studies demonstrated that SOCS-3, and also SOCS-1, interact with FAK in a FAK-Y397-dependent manner, and that both the Src homology 2 (SH2) and the kinase inhibitory region (KIR) domains of the SOCS proteins contribute to FAK binding. SOCS-1 and SOCS-3 were found to inhibit FAK-associated kinase activity in vitro and tyrosine phosphorylation of FAK in cells. The SOCS proteins also promoted polyubiquitination and degradation of FAK in a SOCS box-dependent manner and inhibited FAK-dependent signaling events, such as cell motility on fibronectin. These studies suggest a negative role of SOCS proteins in FAK signaling, and for a previously unidentified regulatory mechanism for FAK function. PMID:14517242

  14. Temperature: Human Regulating, Ants Conforming

    ERIC Educational Resources Information Center

    Clopton, Joe R.

    2007-01-01

    Biological processes speed up as temperature rises. Procedures for demonstrating this with ants traveling on trails, and data gathered by students on the Argentine ant ("Linepithema humile") are presented. The concepts of temperature regulation and conformity are detailed with a focus on the processes rather than on terms that label the organisms.

  15. Temperature: Human Regulating, Ants Conforming

    ERIC Educational Resources Information Center

    Clopton, Joe R.

    2007-01-01

    Biological processes speed up as temperature rises. Procedures for demonstrating this with ants traveling on trails, and data gathered by students on the Argentine ant ("Linepithema humile") are presented. The concepts of temperature regulation and conformity are detailed with a focus on the processes rather than on terms that label the organisms.

  16. Toddler Emotion Regulation with Mothers and Fathers: Temporal Associations Between Negative Affect and Behavioral Strategies

    PubMed Central

    Ekas, Naomi V.; Braungart-Rieker, Julia M.; Lickenbrock, Diane M.; Zentall, Shannon R.; Maxwell, Scott M.

    2010-01-01

    The present study investigated temporal associations between putative emotion regulation strategies and negative affect in 20-month-old toddlers. Toddlers’ parent-focused, self-distraction, and toy-focused strategies, as well as negative affect, were rated on a second-by-second basis during laboratory parent-toddler interactions. Longitudinal mixed-effects models were conducted to determine the degree to which behavioral strategy use predicts subsequent negative affect and negative affect predicts subsequent strategy use. Results with mother-toddler and father-toddler dyads indicated that parent-focused strategies with an unresponsive parent were followed by increases in negative affect, whereas toy-focused strategies were followed by decreases in negative affect. Results also indicated that toddler negative affect serves to regulate behavioral strategy use within both parent contexts. PMID:21552335

  17. NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma

    PubMed Central

    Zhao, S; Kurenbekova, L; Gao, Y; Roos, A; Creighton, CJ; Rao, P; Hicks, J; Man, T-K; Lau, C; Brown, AMC; Jones, SN; Lazar, AJ; Ingram, D; Lev, D; Donehower, LA; Yustein, JT

    2016-01-01

    Osteosarcoma (OS) is the most frequent pediatric malignant bone tumor that has a high propensity for metastases. Through osteoblast-specific alteration of p53 status, we developed a genetically engineered mouse model of localized and metastatic OS to gain an understanding into the molecular pathogenesis of OS. Microarray analysis of both localized tumors and metastatic tumors identified the downregulation of the naked cuticle homolog 2 (NKD2) gene, a negative regulator of Wnt signaling. Overexpression of NKD2 in metastatic human and mouse OS cells significantly decreases cell proliferation, migration and invasion ability in vitro and drastically diminishes OS tumor growth and metastasis in vivo, whereas downregulation enhances migratory and invasive potential. Evaluation of NKD2-overexpressing tumors revealed upregulation of tumor-suppressor genes and downregulation of molecules involved in blood vessel formation and cell migration. Furthermore, assessment of primary human OS revealed downregulation of NKD2 in metastatic and recurrent OS. Finally, we provide biological evidence that use of small-molecule inhibitors targeting the Wnt pathway can have therapeutic efficacy in decreasing metastatic properties in OS. Our studies provide compelling evidence that downregulation of NKD2 expression and alterations in associated regulated pathways have a significant role in driving OS tumor growth and metastasis. PMID:25579177

  18. Phenotypic screening identifies Axl kinase as a negative regulator of an alveolar epithelial cell phenotype.

    PubMed

    Fujino, Naoya; Kubo, Hiroshi; Maciewicz, Rose A

    2017-09-01

    Loss of epithelial barrier integrity is implicated in a number of human lung diseases. However, the molecular pathways underlying this process are poorly understood. In a phenotypic screen, we identified Axl kinase as a negative regulator of epithelial phenotype and function. Furthermore, suppression of Axl activity by a small molecule kinase inhibitor or downregulation of Axl expression by small interfering RNA led to: (1) the increase in epithelial surfactant protein expression; (2) a cell morphology transition from front-rear polarity to cuboidal shape; (3) the cytoskeletal re-organization resulting in decreased cell mobility; and (4) the acquisition of epithelial junctions. Loss of Axl activity reduced activation of the Axl canonical pathway members, Akt and extracellular signal-regulated kinase-1/2 and resulted in the loss of gene expression of a unique profile of epithelial-to-mesenchymal transition transcription factors including SNAI2, HOXA5, TBX2 or TBX3. Finally, we observed that Axl was activated in hyperplasia of epithelial cells in idiopathic pulmonary fibrosis where epithelial barrier integrity was lost. These results suggest that the Axl kinase signaling pathway is associated with the loss integrity of alveolar epithelium in pathological remodeling of human lung diseases.

  19. Muscle lim protein isoform negatively regulates striated muscle actin dynamics and differentiation.

    PubMed

    Vafiadaki, Elizabeth; Arvanitis, Demetrios A; Papalouka, Vasiliki; Terzis, Gerasimos; Roumeliotis, Theodoros I; Spengos, Konstantinos; Garbis, Spiros D; Manta, Panagiota; Kranias, Evangelia G; Sanoudou, Despina

    2014-07-01

    Muscle lim protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, whereas aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically, it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/cofilin-2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components, including α-actinin, T-cap and MLP. The findings of the present study unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, as well as in differentiated striated muscles as a contributor to sarcomeric integrity. © 2014 FEBS.

  20. Muscle Lim Protein isoform negatively regulates striated muscle actin dynamics and differentiation

    PubMed Central

    Vafiadaki, Elizabeth; Arvanitis, Demetrios A.; Papalouka, Vasiliki; Terzis, Gerasimos; Roumeliotis, Theodoros I.; Spengos, Konstantinos; Garbis, Spiros D.; Manta, Panagiota; Kranias, Evangelia G.; Sanoudou, Despina

    2015-01-01

    Muscle Lim Protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, while aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/CFL2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components including α-actinin, T-cap and MLP. Our findings unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, and in differentiated striated muscles as a contributor to sarcomeric integrity. PMID:24860983

  1. The trans-kingdom identification of negative regulators of pathogen hypervirulence.

    PubMed

    Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E

    2016-01-01

    Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen-host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed.

  2. Chondroitin sulfate addition to CD44H negatively regulates hyaluronan binding

    SciTech Connect

    Ruffell, Brian; Johnson, Pauline . E-mail: pauline@interchange.ubc.ca

    2005-08-26

    CD44 is a widely expressed cell adhesion molecule that binds hyaluronan, an extracellular matrix glycosaminoglycan, in a tightly regulated manner. This regulated interaction has been implicated in inflammation and tumor metastasis. CD44 exists in the standard form, CD44H, or as higher molecular mass isoforms due to alternative splicing. Here, we identify serine 180 in human CD44H as the site of chondroitin sulfate addition and show that lack of chondroitin sulfate addition at this site enhances hyaluronan binding by CD44. A CD44H-immunoglobulin fusion protein expressed in HEK293 cells, and CD44H expressed in murine L fibroblast cells were modified by chondroitin sulfate, as determined by reduced sulfate incorporation after chondroitinase ABC treatment. Mutation of serine 180 or glycine 181 in CD44H reduced chondroitin sulfate addition and increased hyaluronan binding, indicating that serine 180 is the site for chondroitin sulfate addition in CD44H and that this negatively regulates hyaluronan binding.

  3. Maf1 is a negative regulator of transcription in Trypanosoma brucei.

    PubMed

    Romero-Meza, Gabriela; Vélez-Ramírez, Daniel E; Florencio-Martínez, Luis E; Román-Carraro, Fiordaliso C; Manning-Cela, Rebeca; Hernández-Rivas, Rosaura; Martínez-Calvillo, Santiago

    2017-02-01

    RNA polymerase III (Pol III) produces small RNA molecules that play essential roles in mRNA processing and translation. Maf1, originally described as a negative regulator of Pol III transcription, has been studied from yeast to human. Here we characterized Maf1 in the parasitic protozoa Trypanosoma brucei (TbMaf1), representing the first report to analyse Maf1 in an early-diverged eukaryote. While Maf1 is generally encoded by a single-copy gene, the T. brucei genome contains two almost identical TbMaf1 genes. The TbMaf1 protein has the three conserved sequences and is predicted to fold into a globular structure. Unlike in yeast, TbMaf1 localizes to the nucleus in procyclic forms of T. brucei under normal growth conditions. Cell lines that either downregulate or overexpress TbMaf1 were generated, and growth curve analysis with them suggested that TbMaf1 participates in the regulation of cell growth of T. brucei. Nuclear run-on and chromatin immunoprecipitation analyses demonstrated that TbMaf1 represses Pol III transcription of tRNA and U2 snRNA genes by associating with their promoters. Interestingly, 5S rRNA levels do not change after TbMaf1 ablation or overexpression. Notably, our data also revealed that TbMaf1 regulates Pol I transcription of procyclin gene and Pol II transcription of SL RNA genes.

  4. Genomic regulation of invasion by STAT3 in triple negative breast cancer.

    PubMed

    McDaniel, Joy M; Varley, Katherine E; Gertz, Jason; Savic, Daniel S; Roberts, Brian S; Bailey, Sarah K; Shevde, Lalita A; Ramaker, Ryne C; Lasseigne, Brittany N; Kirby, Marie K; Newberry, Kimberly M; Partridge, E Christopher; Jones, Angela L; Boone, Braden; Levy, Shawn E; Oliver, Patsy G; Sexton, Katherine C; Grizzle, William E; Forero, Andres; Buchsbaum, Donald J; Cooper, Sara J; Myers, Richard M

    2017-01-31

    Breast cancer is a heterogeneous disease comprised of four molecular subtypes defined by whether the tumor-originating cells are luminal or basal epithelial cells. Breast cancers arising from the luminal mammary duct often express estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth receptor 2 (HER2). Tumors expressing ER and/or PR are treated with anti-hormonal therapies, while tumors overexpressing HER2 are targeted with monoclonal antibodies. Immunohistochemical detection of ER, PR, and HER2 receptors/proteins is a critical step in breast cancer diagnosis and guided treatment. Breast tumors that do not express these proteins are known as "triple negative breast cancer" (TNBC) and are typically basal-like. TNBCs are the most aggressive subtype, with the highest mortality rates and no targeted therapy, so there is a pressing need to identify important TNBC tumor regulators. The signal transducer and activator of transcription 3 (STAT3) transcription factor has been previously implicated as a constitutively active oncogene in TNBC. However, its direct regulatory gene targets and tumorigenic properties have not been well characterized. By integrating RNA-seq and ChIP-seq data from 2 TNBC tumors and 5 cell lines, we discovered novel gene signatures directly regulated by STAT3 that were enriched for processes involving inflammation, immunity, and invasion in TNBC. Functional analysis revealed that STAT3 has a key role regulating invasion and metastasis, a characteristic often associated with TNBC. Our findings suggest therapies targeting STAT3 may be important for preventing TNBC metastasis.

  5. SMARCAL1 Negatively Regulates C-Myc Transcription By Altering The Conformation Of The Promoter Region.

    PubMed

    Sharma, Tapan; Bansal, Ritu; Haokip, Dominic Thangminlen; Goel, Isha; Muthuswami, Rohini

    2015-12-09

    SMARCAL1, a member of the SWI2/SNF2 protein family, stabilizes replication forks during DNA damage. In this manuscript, we provide the first evidence that SMARCAL1 is also a transcriptional co-regulator modulating the expression of c-Myc, a transcription factor that regulates 10-15% genes in the human genome. BRG1, SMARCAL1 and RNAPII were found localized onto the c-myc promoter. When HeLa cells were serum starved, the occupancy of SMARCAL1 on the c-myc promoter increased while that of BRG1 and RNAPII decreased correlating with repression of c-myc transcription. Using Active DNA-dependent ATPase A Domain (ADAAD), the bovine homolog of SMARCAL1, we show that the protein can hydrolyze ATP using a specific region upstream of the CT element of the c-myc promoter as a DNA effector. The energy, thereby, released is harnessed to alter the conformation of the promoter DNA. We propose that SMARCAL1 negatively regulates c-myc transcription by altering the conformation of its promoter region during differentiation.

  6. PKC{eta} is a negative regulator of AKT inhibiting the IGF-I induced proliferation

    SciTech Connect

    Shahaf, Galit; Rotem-Dai, Noa; Koifman, Gabriela; Raveh-Amit, Hadas; Frost, Sigal A.; Livneh, Etta

    2012-04-15

    The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKC{eta} isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKC{eta}-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKC{eta}-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKT Ser473. While PKC{eta} exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKC{eta} and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKC{eta} expression, suggesting that PKC{eta} acts through a different route to increase cell survival. Hence, our studies show that PKC{eta} provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.

  7. SUMOylation Negatively Regulates Angiogenesis by Targeting Endothelial NOTCH Signaling.

    PubMed

    Zhu, Xiaolong; Ding, Sha; Qiu, Cong; Shi, Yanna; Song, Lin; Wang, Yueyue; Wang, Yuewen; Li, Jinying; Wang, Yiran; Sun, Yi; Qin, Lingfeng; Chen, Jun; Simons, Michael; Min, Wang; Yu, Luyang

    2017-09-01

    The highly conserved NOTCH (neurogenic locus notch homolog protein) signaling pathway functions as a key cell-cell interaction mechanism controlling cell fate and tissue patterning, whereas its dysregulation is implicated in a variety of developmental disorders and cancers. The pivotal role of endothelial NOTCH in regulation of angiogenesis is widely appreciated; however, little is known about what controls its signal transduction. Our previous study indicated the potential role of post-translational SUMO (small ubiquitin-like modifier) modification (SUMOylation) in vascular disorders. The aim of this study was to investigate the role of SUMOylation in endothelial NOTCH signaling and angiogenesis. Endothelial SENP1 (sentrin-specific protease 1) deletion, in newly generated endothelial SENP1 (the major protease of the SUMO system)-deficient mice, significantly delayed retinal vascularization by maintaining prolonged NOTCH1 signaling, as confirmed in cultured endothelial cells. An in vitro SUMOylation assay and immunoprecipitation revealed that when SENP1 associated with N1ICD (NOTCH1 intracellular domain), it functions as a deSUMOylase of N1ICD SUMOylation on conserved lysines. Immunoblot and immunoprecipitation analyses and dual-luciferase assays of natural and SUMO-conjugated/nonconjugated NOTCH1 forms demonstrated that SUMO conjugation facilitated NOTCH1 cleavage. This released N1ICD from the membrane and stabilized it for translocation to the nucleus where it functions as a cotranscriptional factor. Functionally, SENP1-mediated NOTCH1 deSUMOylation was required for NOTCH signal activation in response to DLL4 (Delta-like 4) stimulation. This in turn suppressed VEGF (vascular endothelial growth factor) receptor signaling and angiogenesis, as evidenced by immunoblotted signaling molecules and in vitro angiogenesis assays. These results establish reversible NOTCH1 SUMOylation as a regulatory mechanism in coordinating endothelial angiogenic signaling; SENP1 acts as a

  8. Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer

    PubMed Central

    Hua, Rui-Xi; Du, Yi-Qun; Huang, Ming-Zhu; Liu, Yong; Cheng, Yu Fang; Guo, Wei-Jian

    2016-01-01

    Mel-18, a polycomb group protein, has been reported to act as a tumor suppressor and be down-regulated in several human cancers including gastric cancer. It was also found that Mel-18 negatively regulates self-renewal of hematopoietic stem cells and breast cancer stem cells (CSCs). This study aimed to clarify its role in gastric CSCs and explore the mechanisms. We found that low-expression of Mel-18 was correlated with poor prognosis and negatively correlated with overexpression of stem cell markers Oct4, Sox2, and Gli1 in 101 gastric cancer tissues. Mel-18 was down-regulated in cultured spheroid cells, which possess CSCs, and overexpression of Mel-18 inhibits cells sphere-forming ability and tumor growth in vivo. Besides, Mel-18 was lower-expressed in ovary metastatic lesions compared with that in primary lesions of gastric cancer, and Mel-18 overexpression inhibited the migration ability of gastric cancer cells. Interestingly, overexpression of Mel-18 resulted in down-regulation of miR-21 in gastric cancer cells and the expression of Mel-18 was negatively correlated with the expression of miR-21 in gastric cancer tissues. Furthermore, miR-21 overexpression partially restored sphere-forming ability, migration potential and chemo-resistance in Mel-18 overexpressing gastric cancer cells. These results suggests Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer cells. PMID:27542229

  9. Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer.

    PubMed

    Wang, Xiao-Feng; Zhang, Xiao-Wei; Hua, Rui-Xi; Du, Yi-Qun; Huang, Ming-Zhu; Liu, Yong; Cheng, Yu Fang; Guo, Wei-Jian

    2016-09-27

    Mel-18, a polycomb group protein, has been reported to act as a tumor suppressor and be down-regulated in several human cancers including gastric cancer. It was also found that Mel-18 negatively regulates self-renewal of hematopoietic stem cells and breast cancer stem cells (CSCs). This study aimed to clarify its role in gastric CSCs and explore the mechanisms. We found that low-expression of Mel-18 was correlated with poor prognosis and negatively correlated with overexpression of stem cell markers Oct4, Sox2, and Gli1 in 101 gastric cancer tissues. Mel-18 was down-regulated in cultured spheroid cells, which possess CSCs, and overexpression of Mel-18 inhibits cells sphere-forming ability and tumor growth in vivo. Besides, Mel-18 was lower-expressed in ovary metastatic lesions compared with that in primary lesions of gastric cancer, and Mel-18 overexpression inhibited the migration ability of gastric cancer cells. Interestingly, overexpression of Mel-18 resulted in down-regulation of miR-21 in gastric cancer cells and the expression of Mel-18 was negatively correlated with the expression of miR-21 in gastric cancer tissues. Furthermore, miR-21 overexpression partially restored sphere-forming ability, migration potential and chemo-resistance in Mel-18 overexpressing gastric cancer cells. These results suggests Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer cells.

  10. Expression of Tyrosine Hydroxylase is Negatively Regulated Via Prion Protein.

    PubMed

    da Luz, Marcio Henrique Mello; Glezer, Isaias; Xavier, Andre Machado; da Silva, Marcelo Alberti Paiva; Pino, Jessica Monteiro Volejnik; Zamith, Thiago Panaro; Vieira, Taynara Fernanda; Antonio, Bruno Brito; Antunes, Hanna Karen Moreira; Martins, Vilma Regina; Lee, Kil Sun

    2016-07-01

    Cellular prion protein (PrP(C)) is a glycoprotein of the plasma membrane that plays pleiotropic functions by interacting with multiple signaling complexes at the cell surface. Recently, a number of studies have reported the involvement of PrP(C) in dopamine metabolism and signaling, including its interactions with tyrosine hydroxylase (TH) and dopamine receptors. However, the outcomes reported by independent studies are still debatable. Therefore in this study, we investigated the effects of PrP(C) on the TH expression during the differentiation of N2a cells with dibutyryl-cAMP, a well-known cAMP analog that activates TH transcription. Upon differentiation, TH was induced with concomitant reduction of PrP(C) at protein level, but not at mRNA level. shRNA-mediated PrP(C) reduction increased the basal level of TH at both mRNA and protein levels without dibutyryl-cAMP treatment. This phenotype was reversed by re-expression of PrP(C). PrP(C) knockdown also potentiated the effect of dibutyryl-cAMP on TH expression. Our findings suggest that PrP(C) has suppressive effects on TH expression. As a consequence, altered PrP(C) functions may affect the regulation of dopamine metabolism and related neurological disorders.

  11. Somatostatin negatively regulates parasite burden and granulomatous responses in cysticercosis.

    PubMed

    Khumbatta, Mitra; Firozgary, Bahrom; Tweardy, David John; Weinstock, Joel; Firozgary, Gohar; Bhatena, Zal; Bulsara, Tushar; Siller, Ricardo; Robinson, Prema

    2014-01-01

    Cysticercosis is an infection of tissues with the larval cysts of the cestode, Taenia solium. While live parasites elicit little or no inflammation, dying parasites initiate a granulomatous reaction presenting as painful muscle nodules or seizures when cysts are located in the brain. We previously showed in the T. crassiceps murine model of cysticercosis that substance P (SP), a neuropeptide, was detected in early granulomas and was responsible for promoting granuloma formation, while somatostatin (SOM), another neuropeptide and immunomodulatory hormone, was detected in late granulomas; SOM's contribution to granuloma formation was not examined. In the current studies, we used somatostatin knockout (SOM(-/-)) mice to examine the hypothesis that SOM downmodulates granulomatous inflammation in cysticercosis, thereby promoting parasite growth. Our results demonstrated that parasite burden was reduced 5.9-fold in SOM(-/-) mice compared to WT mice (P < 0.05). This reduction in parasite burden in SOM(-/-) mice was accompanied by a 95% increase in size of their granulomas (P < 0.05), which contained a 1.5-fold increase in levels of IFN-γ and a 26-fold decrease in levels of IL-1β (P < 0.05 for both) compared to granulomas from WT mice. Thus, SOM regulates both parasite burden and granulomatous inflammation perhaps through modulating granuloma production of IFN-γ and IL-1β.

  12. Quantum structure of negation and conjunction in human thought.

    PubMed

    Aerts, Diederik; Sozzo, Sandro; Veloz, Tomas

    2015-01-01

    We analyze in this paper the data collected in a set of experiments investigating how people combine natural concepts. We study the mutual influence of conceptual conjunction and negation by measuring the membership weights of a list of exemplars with respect to two concepts, e.g., Fruits and Vegetables, and their conjunction Fruits And Vegetables, but also their conjunction when one or both concepts are negated, namely, Fruits And Not Vegetables, Not Fruits And Vegetables, and Not Fruits And Not Vegetables. Our findings sharpen and advance existing analysis on conceptual combinations, revealing systematic deviations from classical (fuzzy set) logic and probability theory. And, more important, our results give further considerable evidence to the validity of our quantum-theoretic framework for the combination of two concepts. Indeed, the representation of conceptual negation naturally arises from the general assumptions of our two-sector Fock space model, and this representation faithfully agrees with the collected data. In addition, we find a new significant and a priori unexpected deviation from classicality, which can exactly be explained by assuming that human reasoning is the superposition of an "emergent reasoning" and a "logical reasoning," and that these two processes are represented in a Fock space algebraic structure.

  13. Quantum structure of negation and conjunction in human thought

    PubMed Central

    Aerts, Diederik; Sozzo, Sandro; Veloz, Tomas

    2015-01-01

    We analyze in this paper the data collected in a set of experiments investigating how people combine natural concepts. We study the mutual influence of conceptual conjunction and negation by measuring the membership weights of a list of exemplars with respect to two concepts, e.g., Fruits and Vegetables, and their conjunction Fruits And Vegetables, but also their conjunction when one or both concepts are negated, namely, Fruits And Not Vegetables, Not Fruits And Vegetables, and Not Fruits And Not Vegetables. Our findings sharpen and advance existing analysis on conceptual combinations, revealing systematic deviations from classical (fuzzy set) logic and probability theory. And, more important, our results give further considerable evidence to the validity of our quantum-theoretic framework for the combination of two concepts. Indeed, the representation of conceptual negation naturally arises from the general assumptions of our two-sector Fock space model, and this representation faithfully agrees with the collected data. In addition, we find a new significant and a priori unexpected deviation from classicality, which can exactly be explained by assuming that human reasoning is the superposition of an “emergent reasoning” and a “logical reasoning,” and that these two processes are represented in a Fock space algebraic structure. PMID:26483715

  14. Mechanisms of JAK/STAT pathway negative regulation by the short coreceptor Eye Transformer/Latran.

    PubMed

    Fisher, Katherine H; Stec, Wojciech; Brown, Stephen; Zeidler, Martin P

    2016-02-01

    Transmembrane receptors interact with extracellular ligands to transduce intracellular signaling cascades, modulate target gene expression, and regulate processes such as proliferation, apoptosis, differentiation, and homeostasis. As a consequence, aberrant signaling events often underlie human disease. Whereas the vertebrate JAK/STAT signaling cascade is transduced via multiple receptor combinations, the Drosophila pathway has only one full-length signaling receptor, Domeless (Dome), and a single negatively acting receptor, Eye Transformer/Latran (Et/Lat). Here we investigate the molecular mechanisms underlying Et/Lat activity. We demonstrate that Et/Lat negatively regulates the JAK/STAT pathway activity and can bind to Dome, thus reducing Dome:Dome homodimerization by creating signaling-incompetent Dome:Et/Lat heterodimers. Surprisingly, we find that Et/Lat is able to bind to both JAK and STAT92E but, despite the presence of putative cytokine-binding motifs, does not detectably interact with pathway ligands. We find that Et/Lat is trafficked through the endocytic machinery for lysosomal degradation but at a much slower rate than Dome, a difference that may enhance its ability to sequester Dome into signaling-incompetent complexes. Our data offer new insights into the molecular mechanism and regulation of Et/Lat in Drosophila that may inform our understanding of how short receptors function in other organisms. © 2016 Fisher et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Mood regulation and quality of life in social anxiety disorder: An examination of generalized expectancies for negative mood regulation

    PubMed Central

    Sung, Sharon C.; Porter, Eliora; Robinaugh, Donald J.; Marks, Elizabeth H.; Marques, Luana M.; Otto, Michael W.; Pollack, Mark H.; Simon, Naomi M.

    2014-01-01

    The present study examined negative mood regulation expectancies, anxiety symptom severity, and quality of life in a sample of 167 patients with social anxiety disorder (SAD) and 165 healthy controls with no DSM-IV Axis I disorders. Participants completed the Generalized Expectancies for Negative Mood Regulation Scale (NMR), the Beck Anxiety Inventory, and the Quality of Life Enjoyment and Satisfaction Questionnaire. SAD symptom severity was assessed using the Liebowitz Social Anxiety Scale. Individuals with SAD scored significantly lower than controls on the NMR. Among SAD participants, NMR scores were negatively correlated with anxiety symptoms and SAD severity, and positively correlated with quality of life. NMR expectancies positively predicted quality of life even after controlling for demographic variables, comorbid diagnoses, anxiety symptoms, and SAD severity. Individuals with SAD may be less likely to engage in emotion regulating strategies due to negative beliefs regarding their effectiveness, thereby contributing to poorer quality of life. PMID:22343166

  16. Mood regulation and quality of life in social anxiety disorder: an examination of generalized expectancies for negative mood regulation.

    PubMed

    Sung, Sharon C; Porter, Eliora; Robinaugh, Donald J; Marks, Elizabeth H; Marques, Luana M; Otto, Michael W; Pollack, Mark H; Simon, Naomi M

    2012-04-01

    The present study examined negative mood regulation expectancies, anxiety symptom severity, and quality of life in a sample of 167 patients with social anxiety disorder (SAD) and 165 healthy controls with no DSM-IV Axis I disorders. Participants completed the Generalized Expectancies for Negative Mood Regulation Scale (NMR), the Beck Anxiety Inventory, and the Quality of Life Enjoyment and Satisfaction Questionnaire. SAD symptom severity was assessed using the Liebowitz Social Anxiety Scale. Individuals with SAD scored significantly lower than controls on the NMR. Among SAD participants, NMR scores were negatively correlated with anxiety symptoms and SAD severity, and positively correlated with quality of life. NMR expectancies positively predicted quality of life even after controlling for demographic variables, comorbid diagnoses, anxiety symptoms, and SAD severity. Individuals with SAD may be less likely to engage in emotion regulating strategies due to negative beliefs regarding their effectiveness, thereby contributing to poorer quality of life.

  17. The aging systemic milieu negatively regulates neurogenesis and cognitive function

    PubMed Central

    Villeda, Saul A.; Luo, Jian; Mosher, Kira I.; Zou, Bende; Britschgi, Markus; Bieri, Gregor; Stan, Trisha M.; Fainberg, Nina; Ding, Zhaoqing; Eggel, Alexander; Lucin, Kurt M.; Czirr, Eva; Park, Jeong-Soo; Couillard-Després, Sebastien; Aigner, Ludwig; Li, Ge; Peskind, Elaine R.; Kaye, Jeffrey A.; Quinn, Joseph F.; Galasko, Douglas R.; Xie, Xinmin S.; Rando, Thomas A.; Wyss-Coray, Tony

    2011-01-01

    Summary In the central nervous system (CNS), aging results in a precipitous decline in adult neural stem/progenitor cells (NPCs) and neurogenesis, with concomitant impairments in cognitive functions1. Interestingly, such impairments can be ameliorated through systemic perturbations such as exercise1. Here, using heterochronic parabiosis we show that blood-borne factors present in the systemic milieu can inhibit or promote adult neurogenesis in an age dependent fashion in mice. Accordingly, exposing a young animal to an old systemic environment, or to plasma from old mice, decreased synaptic plasticity and impaired contextual fear conditioning and spatial learning and memory. We identify chemokines - including CCL11/Eotaxin – whose plasma levels correlate with reduced neurogenesis in heterochronic parabionts and aged mice, and whose levels are increased in plasma and cerebral spinal fluid of healthy aging humans. Finally, increasing peripheral CCL11 chemokine levels in vivo in young mice decreased adult neurogenesis and impaired learning and memory. Together our data indicate that the decline in neurogenesis, and cognitive impairments, observed during aging can be in part attributed to changes in blood-borne factors. PMID:21886162

  18. Negative regulation of NaF-induced apoptosis by Bad-CAII complex.

    PubMed

    Otsuki, S; Sugiyama, K; Amano, O; Yasui, T; Sakagami, H

    2011-09-05

    Fluoride is used to prevent caries in dentistry. However, its mechanism of cytotoxicity induction is unclear. This study was undertaken to determine whether sodium fluoride (NaF) induces apoptosis in human oral cells and if so, whether Bad protein is involved in the process. NaF showed higher cytotoxicity and apoptosis-inducing activity against human oral squamous cell carcinoma cells (HSC-2) than against human gingival fibroblasts (HGF). Western blot analysis showed that NaF enhanced the expression and dephosphorylation of Bad protein. This study demonstrates for the first time that Bad protein forms a complex with carbonic anhydrase II (CAII), and NaF stimulates the detachment of CAII from the Bad-CAII complex and the replacement by the formation of Bad-Bcl-2 complex. Knockdown of Bad and CAII mRNA by siRNA inhibited and enhanced the NaF-induced caspase activation, respectively. The present study suggests that CAII negatively regulates the NaF-induced apoptosis by forming a complex with Bad.

  19. PCDH10 Interacts With hTERT and Negatively Regulates Telomerase Activity

    PubMed Central

    Zhou, Li-Na; Hua, Xing; Deng, Wu-Quan; Wu, Qi-Nan; Mei, Hao; Chen, Bing

    2015-01-01

    Abstract Telomerase catalyzes telomeric DNA synthesis, an essential process to maintain the length of telomere for continuous cell proliferation and genomic stability. Telomerase is activated in gametes, stem cells, and most tumor cells, and its activity is tightly controlled by a catalytic human telomerase reverse transcriptase (hTERT) subunit and a collection of associated proteins. In the present work, normal human testis tissue was used for the first time to identify proteins involved in the telomerase regulation under normal physiological conditions. Immunoprecipitation was performed using total protein lysates from the normal testis tissue and the proteins of interest were identified by microfluidic high-performance liquid chromatography and tandem mass spectrometry (HPLC-Chip-MS/MS). The regulatory role of PCDH10 in telomerase activity was confirmed by a telomeric repeat amplification protocol (TRAP) assay, and the biological functions of it were characterized by in vitro proliferation, migration, and invasion assays. A new in vivo hTERT interacting protein, protocadherin 10 (PCDH10), was identified. Overexpression of PCDH10 in pancreatic cancer cells impaired telomere elongation by inhibiting telomerase activity while having no obvious effect on hTERT expression at mRNA and protein levels. As a result of this critical function in telomerase regulation, PCDH10 was found to inhibit cell proliferation, migration, and invasion, suggesting a tumor suppressive role of this protein. Our data suggested that PCDH10 played a critical role in cancer cell growth, by negatively regulating telomerase activity, implicating a potential value in future therapeutic development against cancer. PMID:26683936

  20. Epigenetic regulation of human retinoblastoma.

    PubMed

    Singh, Usha; Malik, Manzoor Ahmad; Goswami, Sandeep; Shukla, Swati; Kaur, Jasbir

    2016-11-01

    Retinoblastoma is a rare type of eye cancer of the retina that commonly occurs in early childhood and mostly affects the children before the age of 5. It occurs due to the mutations in the retinoblastoma gene (RB1) which inactivates both alleles of the RB1. RB1 was first identified as a tumor suppressor gene, which regulates cell cycle components and associated with retinoblastoma. Previously, genetic alteration was known as the major cause of its occurrence, but later, it is revealed that besides genetic changes, epigenetic changes also play a significant role in the disease. Initiation and progression of retinoblastoma could be due to independent or combined genetic and epigenetic events. Remarkable work has been done in understanding retinoblastoma pathogenesis in terms of genetic alterations, but not much in the context of epigenetic modification. Epigenetic modifications that silence tumor suppressor genes and activate oncogenes include DNA methylation, chromatin remodeling, histone modification and noncoding RNA-mediated gene silencing. Epigenetic changes can lead to altered gene function and transform normal cell into tumor cells. This review focuses on important epigenetic alteration which occurs in retinoblastoma and its current state of knowledge. The critical role of epigenetic regulation in retinoblastoma is now an emerging area, and better understanding of epigenetic changes in retinoblastoma will open the door for future therapy and diagnosis.

  1. Mothers' responses to children's negative emotions and child emotion regulation: the moderating role of vagal suppression.

    PubMed

    Perry, Nicole B; Calkins, Susan D; Nelson, Jackie A; Leerkes, Esther M; Marcovitch, Stuart

    2012-07-01

    The current study examined the moderating effect of children's cardiac vagal suppression on the association between maternal socialization of negative emotions (supportive and nonsupportive responses) and children's emotion regulation behaviors. One hundred and ninety-seven 4-year-olds and their mothers participated. Mothers reported on their reactions to children's negative emotions and children's regulatory behaviors. Observed distraction, an adaptive self-regulatory strategy, and vagal suppression were assessed during a laboratory task designed to elicit frustration. Results indicated that children's vagal suppression moderated the association between mothers' nonsupportive emotion socialization and children's emotion regulation behaviors such that nonsupportive reactions to negative emotions predicted lower observed distraction and lower reported emotion regulation behaviors when children displayed lower levels of vagal suppression. No interaction was found between supportive maternal emotion socialization and vagal suppression for children's emotion regulation behaviors. Results suggest physiological regulation may serve as a buffer against nonsupportive emotion socialization.

  2. Immune Reconstitution Reactions in Human Immunodeficiency Virus–Negative Patients

    PubMed Central

    Scharschmidt, Tiffany C.; Amerson, Erin H.; Rosenberg, Oren S.; Jacobs, Richard A.; McCalmont, Timothy H.; Shinkai, Kanade

    2013-01-01

    Background Immune reconstitution inflammatory syndrome (IRIS) is a phenomenon initially described in patients with human immunodeficiency virus. Upon initiation of combination antiretroviral therapy, recovery of cellular immunity triggers inflammation to a preexisting infection or antigen that causes paradoxical worsening of clinical disease. A similar phenomenon can occur in human immunodeficiency virus–negative patients, including pregnant women, neutropenic hosts, solidorgan or stem cell transplant recipients, and patients receiving tumor necrosis factor inhibitors. Observations We report a case of leprosy unmasking and downgrading reaction after stem cell transplantation that highlights some of the challenges inherent to the diagnosis of IRIS, especially in patients without human immunodeficiency virus infection, as well as review the spectrum of previously reported cases of IRIS reactions in this population. Conclusions The mechanism of immune reconstitution reactions is complex and variable, depending on the underlying antigen and the mechanism of immunosuppression or shift in immune status. Use of the term IRIS can aid our recognition of an important phenomenon that occurs in the setting of immunosuppression or shifts in immunity but should not deter us from thinking critically about the distinct processes that underlie this heterogeneous group of conditions. PMID:23324760

  3. The Role of Depression and Negative Affect Regulation Expectancies in Tobacco Smoking among College Students

    ERIC Educational Resources Information Center

    Schleicher, Holly E.; Harris, Kari Jo; Catley, Delwyn; Nazir, Niaman

    2009-01-01

    Objective: Expectancies about nicotine's ability to alleviate negative mood states may play a role in the relationship between smoking and depression. The authors examined the role of negative affect regulation expectancies as a potential mediator of depression (history of depression and depressive symptoms) and smoking among college students.…

  4. Toddler Emotion Regulation with Mothers and Fathers: Temporal Associations between Negative Affect and Behavioral Strategies

    ERIC Educational Resources Information Center

    Ekas, Naomi V.; Braungart-Rieker, Julia M.; Lickenbrock, Diane M.; Zentall, Shannon R.; Maxwell, Scott M.

    2011-01-01

    The present study investigated temporal associations between putative emotion regulation strategies and negative affect in 20-month-old toddlers. Toddlers' parent-focused, self-distraction, and toy-focused strategies, as well as negative affect, were rated on a second-by-second basis during laboratory parent-toddler interactions. Longitudinal…

  5. The Role of Depression and Negative Affect Regulation Expectancies in Tobacco Smoking among College Students

    ERIC Educational Resources Information Center

    Schleicher, Holly E.; Harris, Kari Jo; Catley, Delwyn; Nazir, Niaman

    2009-01-01

    Objective: Expectancies about nicotine's ability to alleviate negative mood states may play a role in the relationship between smoking and depression. The authors examined the role of negative affect regulation expectancies as a potential mediator of depression (history of depression and depressive symptoms) and smoking among college students.…

  6. N-cadherin negatively regulates collective Drosophila glial migration through actin cytoskeleton remodeling.

    PubMed

    Kumar, Arun; Gupta, Tripti; Berzsenyi, Sara; Giangrande, Angela

    2015-03-01

    Cell migration is an essential and highly regulated process. During development, glia cells and neurons migrate over long distances - in most cases collectively - to reach their final destination and build the sophisticated architecture of the nervous system, the most complex tissue of the body. Collective migration is highly stereotyped and efficient, defects in the process leading to severe human diseases that include mental retardation. This dynamic process entails extensive cell communication and coordination, hence, the real challenge is to analyze it in the entire organism and at cellular resolution. We here investigate the impact of the N-cadherin adhesion molecule on collective glial migration, by using the Drosophila developing wing and cell-type specific manipulation of gene expression. We show that N-cadherin timely accumulates in glial cells and that its levels affect migration efficiency. N-cadherin works as a molecular brake in a dosage-dependent manner, by negatively controlling actin nucleation and cytoskeleton remodeling through α/β catenins. This is the first in vivo evidence for N-cadherin negatively and cell autonomously controlling collective migration.

  7. The recurrence of negatively reinforced responding of humans.

    PubMed

    Alessandri, Jérôme; Lattal, Kennon A; Cançado, Carlos R X

    2015-11-01

    The recurrence of negatively reinforced responding of humans was studied in three experiments. In each experiment during Baseline, key-pressing produced 3-s timeouts from a requirement to exert finger pressure on a force cell according to variable- or fixed-ratio schedules of reinforcement. In Experiment 1, resurgence was studied by arranging a differential-reinforcement-of-other-behavior schedule in the second phase, and extinction in the Test phase. In Experiment 2, ABA renewal was studied by extinguishing responding in the second phase in a different context and, in the Test phase, by presenting the Baseline-phase context when extinction still was in effect. In Experiment 3, reinstatement was studied by arranging extinction in the second phase, followed by the delivery of response-independent timeouts in the Test phase. Resurgence and renewal occurred consistently for each participant in Experiments 1 and 2, respectively. In Experiment 3, reinstatement was observed less consistently in four participants. The results of these experiments replicate and extend to negatively reinforced responding previous findings of the resurgence and renewal of positively reinforced responding obtained mainly with nonhuman animals.

  8. Mothers' Socialization of Emotion Regulation: The Moderating Role of Children's Negative Emotional Reactivity

    ERIC Educational Resources Information Center

    Mirabile, Scott P.; Scaramella, Laura V.; Sohr-Preston, Sara L.; Robison, Sarah D.

    2009-01-01

    During the toddler period, children begin to shift from being primarily dependent on parents to regulate their emotions to managing their emotions independently. The present study considers how children's propensity towards negative emotional arousal interacts with mothers' efforts to socialize emotion regulation. Fifty-five low income mothers and…

  9. Trait and neurobiological underpinnings of negative emotion regulation in gambling disorder.

    PubMed

    Navas, Juan F; Contreras-Rodríguez, Oren; Verdejo-Román, Juan; Perandrés-Gómez, Ana; Albein-Urios, Natalia; Verdejo-García, Antonio; Perales, José C

    2017-06-01

    Gambling disorder is characterized by poor regulation of negative emotions and impulsive behaviours. This study aimed to (1) compare gambling disorder patients (GDPs) and healthy controls (HCs) in self-report and brain activation measures of emotion regulation; and (2) establish its relationship with negative emotion-driven impulsivity. Two cross-sectional case-control studies including GDPs and HCs. GDPs and HCs were recruited from specialized gambling clinics in Andalusia (Spain), where they were following out-patient treatment, and from the community, respectively. Study 1 included 41 GDPs and 45 HCs [All males; Mage  = 35.22, 33.22; standard deviation (SD) = 11.16, 8.18; respectively]. Study 2 included 17 GDPs and 21 HCs (16/20 males; Mage  = 32.94, 31.00; SD = 7.77, 4.60; respectively). In study 1, we compared both groups on suppression and re-appraisal emotion regulation strategies [Emotion Regulation Questionnaire (ERQ)]. In study 2, we compared GDPs with HCs on brain activation associated with down-regulation of negative emotions in a cognitive re-appraisal task, measured with functional magnetic resonance imaging (fMRI). In both studies, we correlated the measures of emotion regulation with mood-related impulsivity indicated by negative urgency (UPPS-P impulsive behaviour scale). GDPs relative to HCs showed higher levels of emotional suppression [F = 4.525; P = 0.036; means difference MHCs -MGDPs  = -2.433, 95% confidence interval (CI) = -4.706, -0.159] and higher activation of the premotor cortex and middle frontal gyrus during negative emotion regulation in the fMRI task [P ≤ 0.005, cluster size (CS) > 50 voxels]. Negative urgency correlated positively with emotional suppression (r = 0.399, 95% CI = 0.104, 0.629, one-tailed P = 0.005) and middle frontal gyrus activation during negative emotion regulation (P ≤ 0.005, CS > 50) in GDPs. Gambling disorder is associated with greater use of emotional suppression and stronger

  10. Negative Regulators of JAK/STAT Signaling in Rheumatoid Arthritis and Osteoarthritis

    PubMed Central

    Malemud, Charles J.

    2017-01-01

    Elevated levels of pro-inflammatory cytokines are generally thought to be responsible for driving the progression of synovial joint inflammation in rheumatoid arthritis (RA) and osteoarthritis (OA). These cytokines activate several signal transduction pathways, including the Janus kinase/Signal Transducers and Activators of Transcription (JAK/STAT), Stress-Activated/Mitogen-Activated Protein Kinase (SAPK/MAPK) and phosphatidylinositol-3-kinase/Akt/mechanistic target of rapamycin (PI3K/Akt/mTOR) pathways which regulate numerous cellular responses. However, cytokine gene expression, matrix metalloproteinase gene expression and aberrant immune cell and synoviocyte survival via reduced apoptosis are most critical in the context of inflammation characteristic of RA and OA. Negative regulation of JAK/STAT signaling is controlled by Suppressor of Cytokine Signaling (SOCS) proteins. SOCS is produced at lower levels in RA and OA. In addition, gaining further insight into the role played in RA and OA pathology by the inhibitors of the apoptosis protein family, cellular inhibitor of apoptosis protein-1, -2 (c-IAP1, c-IAP2), X (cross)-linked inhibitor of apoptosis protein (XIAP), protein inhibitor of activated STAT (PIAS), and survivin (human) as well as SOCS appears to be a worthy endeavor going forward. PMID:28245561

  11. JMJD6 Promotes Colon Carcinogenesis through Negative Regulation of p53 by Hydroxylation

    PubMed Central

    Wang, Feng; He, Lin; Huangyang, Peiwei; Liang, Jing; Si, Wenzhe; Yan, Ruorong; Han, Xiao; Liu, Shumeng; Gui, Bin; Li, Wanjin; Miao, Di; Jing, Chao; Liu, Zhihua; Pei, Fei; Sun, Luyang; Shang, Yongfeng

    2014-01-01

    Jumonji domain-containing 6 (JMJD6) is a member of the Jumonji C domain-containing family of proteins. Compared to other members of the family, the cellular activity of JMJD6 is still not clearly defined and its biological function is still largely unexplored. Here we report that JMJD6 is physically associated with the tumor suppressor p53. We demonstrated that JMJD6 acts as an α-ketoglutarate– and Fe(II)-dependent lysyl hydroxylase to catalyze p53 hydroxylation. We found that p53 indeed exists as a hydroxylated protein in vivo and that the hydroxylation occurs mainly on lysine 382 of p53. We showed that JMJD6 antagonizes p53 acetylation, promotes the association of p53 with its negative regulator MDMX, and represses transcriptional activity of p53. Depletion of JMJD6 enhances p53 transcriptional activity, arrests cells in the G1 phase, promotes cell apoptosis, and sensitizes cells to DNA damaging agent-induced cell death. Importantly, knockdown of JMJD6 represses p53-dependent colon cell proliferation and tumorigenesis in vivo, and significantly, the expression of JMJD6 is markedly up-regulated in various types of human cancer especially in colon cancer, and high nuclear JMJD6 protein is strongly correlated with aggressive clinical behaviors of colon adenocarcinomas. Our results reveal a novel posttranslational modification for p53 and support the pursuit of JMJD6 as a potential biomarker for colon cancer aggressiveness and a potential target for colon cancer intervention. PMID:24667498

  12. PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia.

    PubMed

    Kleppe, Maria; Soulier, Jean; Asnafi, Vahid; Mentens, Nicole; Hornakova, Tekla; Knoops, Laurent; Constantinescu, Stefan; Sigaux, François; Meijerink, Jules P; Vandenberghe, Peter; Tartaglia, Marco; Foa, Robin; Macintyre, Elizabeth; Haferlach, Torsten; Cools, Jan

    2011-06-30

    We have recently reported inactivation of the tyrosine phosphatase PTPN2 (also known as TC-PTP) through deletion of the entire gene locus in ∼ 6% of T-cell acute lymphoblastic leukemia (T-ALL) cases. T-ALL is an aggressive disease of the thymocytes characterized by the stepwise accumulation of chromosomal abnormalities and gene mutations. In the present study, we confirmed the strong association of the PTPN2 deletion with TLX1 and NUP214-ABL1 expression. In addition, we found cooperation between PTPN2 deletion and activating JAK1 gene mutations. Activating mutations in JAK1 kinase occur in ∼ 10% of human T-ALL cases, and aberrant kinase activity has been shown to confer proliferation and survival advantages. Our results reveal that some JAK1 mutation-positive T-ALLs harbor deletions of the tyrosine phosphatase PTPN2, a known negative regulator of the JAK/STAT pathway. We provide evidence that down-regulation of Ptpn2 sensitizes lymphoid cells to JAK1-mediated transformation and reduces their sensitivity to JAK inhibition.

  13. Platelet factor 4 is a negative autocrine in vivo regulator of megakaryopoiesis: clinical and therapeutic implications

    PubMed Central

    Lambert, Michele P.; Rauova, Lubica; Bailey, Matthew; Sola-Visner, Martha C.; Kowalska, M. Anna

    2007-01-01

    Platelet factor 4 (PF4) is a negative regulator of megakaryopoiesis in vitro. We have now examined whether PF4 regulates megakaryopoiesis in vivo by studying PF4 knockout mice and transgenic mice that overexpress human (h) PF4. Steady-state platelet count and thrombocrit in these animals was inversely related to platelet PF4 content. Growth of megakaryocyte colonies was also inversely related to platelet PF4 content. Function-blocking anti-PF4 antibody reversed this inhibition of megakaryocyte colony growth, indicating the importance of local PF4 released from developing megakaryocytes. The effect of megakaryocyte damage and release of PF4 on 5-fluorouracil–induced marrow failure was then examined. Severity of thrombocytopenia and time to recovery of platelet counts were inversely related to initial PF4 content. Recovery was faster and more extensive, especially in PF4-overexpressing mice, after treatment with anti-PF4 blocking antibodies, suggesting a means to limit the duration of such a chemotherapy-induced thrombocytopenia, especially in individuals with high endogenous levels of PF4. We found that approximately 8% of 250 healthy adults have elevated (> 2 times average) platelet PF4 content. These individuals with high levels of platelet PF4 may be especially sensitive to developing thrombocytopenia after bone marrow injury and may benefit from approaches that block the effects of released PF4. PMID:17495129

  14. ERK8 is a negative regulator of O-GalNAc glycosylation and cell migration

    PubMed Central

    Chia, Joanne; Tham, Keit Min; Gill, David James; Bard-Chapeau, Emilie Anne; Bard, Frederic A

    2014-01-01

    ER O-glycosylation can be induced through relocalisation GalNAc-Transferases from the Golgi. This process markedly stimulates cell migration and is constitutively activated in more than 60% of breast carcinomas. How this activation is achieved remains unclear. Here, we screened 948 signalling genes using RNAi and imaging. We identified 12 negative regulators of O-glycosylation that all control GalNAc-T sub-cellular localisation. ERK8, an atypical MAPK with high basal kinase activity, is a strong hit and is partially localised at the Golgi. Its inhibition induces the relocation of GalNAc-Ts, but not of KDEL receptors, revealing the existence of two separate COPI-dependent pathways. ERK8 down-regulation, in turn, activates cell motility. In human breast and lung carcinomas, ERK8 expression is reduced while ER O-glycosylation initiation is hyperactivated. In sum, ERK8 appears as a constitutive brake on GalNAc-T relocalisation, and the loss of its expression could drive cancer aggressivity through increased cell motility. DOI: http://dx.doi.org/10.7554/eLife.01828.001 PMID:24618899

  15. Tetraspanin CD151 Is a Negative Regulator of FcεRI-Mediated Mast Cell Activation.

    PubMed

    Abdala-Valencia, Hiam; Bryce, Paul J; Schleimer, Robert P; Wechsler, Joshua B; Loffredo, Lucas F; Cook-Mills, Joan M; Hsu, Chia-Lin; Berdnikovs, Sergejs

    2015-08-15

    Mast cells are critical in the pathogenesis of allergic disease due to the release of preformed and newly synthesized mediators, yet the mechanisms controlling mast cell activation are not well understood. Members of the tetraspanin family are recently emerging as modulators of FcεRI-mediated mast cell activation; however, mechanistic understanding of their function is currently lacking. The tetraspanin CD151 is a poorly understood member of this family and is specifically induced on mouse and human mast cells upon FcεRI aggregation but its functional effects are unknown. In this study, we show that CD151 deficiency significantly exacerbates the IgE-mediated late phase inflammation in a murine model of passive cutaneous anaphylaxis. Ex vivo, FcεRI stimulation of bone marrow-derived mast cells from CD151(-/-) mice resulted in significantly enhanced expression of proinflammatory cytokines IL-4, IL-13, and TNF-α compared with wild-type controls. However, FcεRI-induced mast cell degranulation was unaffected. At the molecular signaling level, CD151 selectively regulated IgE-induced activation of ERK1/2 and PI3K, associated with cytokine production, but had no effect on the phospholipase Cγ1 signaling, associated with degranulation. Collectively, our data indicate that CD151 exerts negative regulation over IgE-induced late phase responses and cytokine production in mast cells.

  16. IL-22 Negatively Regulates Helicobacter pylori-Induced CCL20 Expression in Gastric Epithelial Cells

    PubMed Central

    Chen, Jia-Perng; Wu, Ming-Shiang; Kuo, Sung-Hsin; Liao, Fang

    2014-01-01

    Helicobacter pylori is a Gram-negative bacterium that infects the human gastric mucosa and causes various gastric diseases. H. pylori infection induces the production of inflammatory chemokine CCL20 in gastric mucosa and leads to gastric inflammation. Given that the IL-22/IL-22R axis plays a critical role in the regulation of homeostasis and inflammation of epithelial cells at barrier surfaces, we investigated the effect of IL-22 on CCL20 expression induced by H. pylori. We demonstrated that H. pylori infection of the gastric epithelia-derived AGS cells significantly induced CCL20 expression and the induction was inhibited by IL-22. Functional analysis of the CCL20 promoter revealed that the H. pylori-induced CCL20 expression required the activation of NF-κB, and that IL-22 inhibited the induction by attenuating NF-κB activation. Knockdown of endogenous STAT3 by either short interfering RNAs or a short hairpin RNA significantly reduced the inhibitory effect of IL-22. Furthermore, STAT3 phosphorylation elicited by IL-22 was crucial for the inhibition of H. pylori-induced CCL20 expression. Consistent with the in vitro data showing that IL-22 negatively regulated H. pylori-induced CCL20 expression in gastric epithelial cells, studies on the tissue sections from patients with H. pylori infection also revealed an inverse association of IL-22 expression and CCL20 expression in vivo. Together, our findings suggest that IL-22 plays a role in the control of overproduction of the inflammatory chemokine and thus may protect the gastric mucosa from inflammation-mediated damage. PMID:24824519

  17. Automatic control of negative emotions: evidence that structured practice increases the efficiency of emotion regulation.

    PubMed

    Christou-Champi, Spyros; Farrow, Tom F D; Webb, Thomas L

    2015-01-01

    Emotion regulation (ER) is vital to everyday functioning. However, the effortful nature of many forms of ER may lead to regulation being inefficient and potentially ineffective. The present research examined whether structured practice could increase the efficiency of ER. During three training sessions, comprising a total of 150 training trials, participants were presented with negatively valenced images and asked either to "attend" (control condition) or "reappraise" (ER condition). A further group of participants did not participate in training but only completed follow-up measures. Practice increased the efficiency of ER as indexed by decreased time required to regulate emotions and increased heart rate variability (HRV). Furthermore, participants in the ER condition spontaneously regulated their negative emotions two weeks later and reported being more habitual in their use of ER. These findings indicate that structured practice can facilitate the automatic control of negative emotions and that these effects persist beyond training.

  18. Metacognitive emotion regulation: children's awareness that changing thoughts and goals can alleviate negative emotions.

    PubMed

    Davis, Elizabeth L; Levine, Linda J; Lench, Heather C; Quas, Jodi A

    2010-08-01

    Metacognitive emotion regulation strategies involve deliberately changing thoughts or goals to alleviate negative emotions. Adults commonly engage in this type of emotion regulation, but little is known about the developmental roots of this ability. Two studies were designed to assess whether 5- and 6-year-old children can generate such strategies and, if so, the types of metacognitive strategies they use. In Study 1, children described how story protagonists could alleviate negative emotions. In Study 2, children recalled times that they personally had felt sad, angry, and scared and described how they had regulated their emotions. In contrast to research suggesting that young children cannot use metacognitive regulation strategies, the majority of children in both studies described such strategies. Children were surprisingly sophisticated in their suggestions for how to cope with negative emotions and tailored their regulatory responses to specific emotional situations.

  19. Metacognitive Emotion Regulation: Children’s Awareness that Changing Thoughts and Goals Can Alleviate Negative Emotions

    PubMed Central

    Davis, Elizabeth L.; Levine, Linda J.; Lench, Heather C.; Quas, Jodi A.

    2010-01-01

    Metacognitive emotion regulation strategies involve deliberately changing thoughts or goals to alleviate negative emotions. Adults commonly engage in this type of emotion regulation, but little is known about the developmental roots of this ability. Two studies were designed to assess whether 5- and 6-year-old children can generate such strategies and, if so, the types of metacognitive strategies they employ. In Study 1, children described how story protagonists could alleviate negative emotions. In Study 2, children recalled times that they personally had felt sad, angry, and scared, and described how they had regulated their emotions. In contrast to research suggesting that young children cannot use metacognitive regulation strategies, the majority of children in both studies described such strategies. Children were surprisingly sophisticated in their suggestions for how to cope with negative emotions and tailored their regulatory responses to specific emotional situations. PMID:20677867

  20. Control your anger! The neural basis of aggression regulation in response to negative social feedback.

    PubMed

    Achterberg, Michelle; van Duijvenvoorde, Anna C K; Bakermans-Kranenburg, Marian J; Crone, Eveline A

    2016-05-01

    Negative social feedback often generates aggressive feelings and behavior. Prior studies have investigated the neural basis of negative social feedback, but the underlying neural mechanisms of aggression regulation following negative social feedback remain largely undiscovered. In the current study, participants viewed pictures of peers with feedback (positive, neutral or negative) to the participant's personal profile. Next, participants responded to the peer feedback by pressing a button, thereby producing a loud noise toward the peer, as an index of aggression. Behavioral analyses showed that negative feedback led to more aggression (longer noise blasts). Conjunction neuroimaging analyses revealed that both positive and negative feedback were associated with increased activity in the medial prefrontal cortex (PFC) and bilateral insula. In addition, more activation in the right dorsal lateral PFC (dlPFC) during negative feedback vs neutral feedback was associated with shorter noise blasts in response to negative social feedback, suggesting a potential role of dlPFC in aggression regulation, or top-down control over affective impulsive actions. This study demonstrates a role of the dlPFC in the regulation of aggressive social behavior.

  1. Cell cycle specific distribution of killin: evidence for negative regulation of both DNA and RNA synthesis.

    PubMed

    Qiao, Man; Luo, Dan; Kuang, Yi; Feng, Haiyan; Luo, Guangping; Liang, Peng

    2015-01-01

    p53 tumor-suppressor gene is a master transcription factor which controls cell cycle progression and apoptosis. killin was discovered as one of the p53 target genes implicated in S-phase control coupled to cell death. Due to its extreme proximity to pten tumor-suppressor gene on human chromosome 10, changes in epigenetic modification of killin have also been linked to Cowden syndrome as well as other human cancers. Previous studies revealed that Killin is a high-affinity DNA-binding protein with preference to single-stranded DNA, and it inhibits DNA synthesis in vitro and in vivo. Here, co-localization studies of RFP-Killin with either GFP-PCNA or endogenous single-stranded DNA binding protein RPA during S-phase show that Killin always adopts a mutually exclusive punctuated nuclear expression pattern with the 2 accessory proteins in DNA replication. In contrast, when cells are not in S-phase, RFP-Killin largely congregates in the nucleolus where rRNA transcription normally occurs. Both of these cell cycle specific localization patterns of RFP-Killin are stable under high salt condition, consistent with Killin being tightly associated with nucleic acids within cell nuclei. Together, these cell biological results provide a molecular basis for Killin in competitively inhibiting the formation of DNA replication forks during S-phase, as well as potentially negatively regulate RNA synthesis during other cell cycle phases.

  2. G6PC2: A Negative Regulator of Basal Glucose-Stimulated Insulin Secretion

    PubMed Central

    Pound, Lynley D.; Oeser, James K.; O’Brien, Tracy P.; Wang, Yingda; Faulman, Chandler J.; Dadi, Prasanna K.; Jacobson, David A.; Hutton, John C.; McGuinness, Owen P.; Shiota, Masakazu; O’Brien, Richard M.

    2013-01-01

    Elevated fasting blood glucose (FBG) is associated with increased risk for the development of type 2 diabetes and cardiovascular-associated mortality. Genome-wide association studies (GWAS) have linked polymorphisms in G6PC2 with variations in FBG and body fat, although not insulin sensitivity or glucose tolerance. G6PC2 encodes an islet-specific, endoplasmic reticulum–resident glucose-6-phosphatase catalytic subunit. A combination of in situ perfused pancreas, in vitro isolated islet, and in vivo analyses were used to explore the function of G6pc2 in mice. G6pc2 deletion had little effect on insulin sensitivity and glucose tolerance, whereas body fat was reduced in female G6pc2 knockout (KO) mice on both a chow and high-fat diet, observations that are all consistent with human GWAS data. G6pc2 deletion resulted in a leftward shift in the dose-response curve for glucose-stimulated insulin secretion (GSIS). As a consequence, under fasting conditions in which plasma insulin levels were identical, blood glucose levels were reduced in G6pc2 KO mice, again consistent with human GWAS data. Glucose-6-phosphatase activity was reduced, whereas basal cytoplasmic calcium levels were elevated in islets isolated from G6pc2 KO mice. These data suggest that G6pc2 represents a novel, negative regulator of basal GSIS that acts by hydrolyzing glucose-6-phosphate, thereby reducing glycolytic flux. PMID:23274894

  3. G6PC2: a negative regulator of basal glucose-stimulated insulin secretion.

    PubMed

    Pound, Lynley D; Oeser, James K; O'Brien, Tracy P; Wang, Yingda; Faulman, Chandler J; Dadi, Prasanna K; Jacobson, David A; Hutton, John C; McGuinness, Owen P; Shiota, Masakazu; O'Brien, Richard M

    2013-05-01

    Elevated fasting blood glucose (FBG) is associated with increased risk for the development of type 2 diabetes and cardiovascular-associated mortality. Genome-wide association studies (GWAS) have linked polymorphisms in G6PC2 with variations in FBG and body fat, although not insulin sensitivity or glucose tolerance. G6PC2 encodes an islet-specific, endoplasmic reticulum-resident glucose-6-phosphatase catalytic subunit. A combination of in situ perfused pancreas, in vitro isolated islet, and in vivo analyses were used to explore the function of G6pc2 in mice. G6pc2 deletion had little effect on insulin sensitivity and glucose tolerance, whereas body fat was reduced in female G6pc2 knockout (KO) mice on both a chow and high-fat diet, observations that are all consistent with human GWAS data. G6pc2 deletion resulted in a leftward shift in the dose-response curve for glucose-stimulated insulin secretion (GSIS). As a consequence, under fasting conditions in which plasma insulin levels were identical, blood glucose levels were reduced in G6pc2 KO mice, again consistent with human GWAS data. Glucose-6-phosphatase activity was reduced, whereas basal cytoplasmic calcium levels were elevated in islets isolated from G6pc2 KO mice. These data suggest that G6pc2 represents a novel, negative regulator of basal GSIS that acts by hydrolyzing glucose-6-phosphate, thereby reducing glycolytic flux.

  4. PRKCI negatively regulates autophagy via PIK3CA/AKT–MTOR signaling

    SciTech Connect

    Qu, Liujing; Li, Ge; Xia, Dan; Hongdu, Beiqi; Xu, Chentong; Lin, Xin; Chen, Yingyu

    2016-02-05

    The atypical protein kinase C isoform PRKC iota (PRKCI) plays a key role in cell proliferation, differentiation, and carcinogenesis, and it has been shown to be a human oncogene. Here, we show that PRKCI overexpression in U2OS cells impaired functional autophagy in normal or cell stress conditions, as characterized by decreased levels of light chain 3B-II protein (LC3B-II) and weakened degradation of endogenous and exogenous autophagic substrates. Conversely, PRKCI knockdown by small interference RNA resulted in opposite effects. Additionally, we identified two novel PRKCI mutants, PRKCI{sup L485M} and PRKCI{sup P560R}, which induced autophagy and exhibited dominant negative effects. Further studies indicated that PRKCI knockdown–mediated autophagy was associated with the inactivation of phosphatidylinositol 3-kinase alpha/AKT–mammalian target of rapamycin (PIK3CA/AKT–MTOR) signaling. These data underscore the importance of PRKCI in the regulation of autophagy. Moreover, the finding may be useful in treating PRKCI-overexpressing carcinomas that are characterized by increased levels of autophagy. - Highlights: • The atypical protein kinase C iota isoform (PRKCI) is a human oncogene. • PRKCI overexpression impairs functional autophagy in U2OS cells. • It reduces LC3B-II levels and weakens SQSTM1 and polyQ80 aggregate degradation. • PRKCI knockdown has the opposite effect. • The effect of PRKCI knockdown is related to PIK3CA/AKT–MTOR signaling inactivation.

  5. The peripheral clock regulates human pigmentation.

    PubMed

    Hardman, Jonathan A; Tobin, Desmond J; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Al-Nuaimi, Yusur; Grimaldi, Benedetto; Paus, Ralf

    2015-04-01

    Although the regulation of pigmentation is well characterized, it remains unclear whether cell-autonomous controls regulate the cyclic on-off switching of pigmentation in the hair follicle (HF). As human HFs and epidermal melanocytes express clock genes and proteins, and given that core clock genes (PER1, BMAL1) modulate human HF cycling, we investigated whether peripheral clock activity influences human HF pigmentation. We found that silencing BMAL1 or PER1 in human HFs increased HF melanin content. Furthermore, tyrosinase expression and activity, as well as TYRP1 and TYRP2 mRNA levels, gp100 protein expression, melanocyte dendricity, and the number gp100+ HF melanocytes, were all significantly increased in BMAL1 and/or PER1-silenced HFs. BMAL1 or PER1 silencing also increased epidermal melanin content, gp100 protein expression, and tyrosinase activity in human skin. These effects reflect direct modulation of melanocytes, as BMAL1 and/or PER1 silencing in isolated melanocytes increased tyrosinase activity and TYRP1/2 expression. Mechanistically, BMAL1 knockdown reduces PER1 transcription, and PER1 silencing induces phosphorylation of the master regulator of melanogenesis, microphthalmia-associated transcription factor, thus stimulating human melanogenesis and melanocyte activity in situ and in vitro. Therefore, the molecular clock operates as a cell-autonomous modulator of human pigmentation and may be targeted for future therapeutic strategies.

  6. miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection

    PubMed Central

    Niu, Dongdong; Lii, Yifan E.; Chellappan, Padmanabhan; Lei, Lei; Peralta, Karl; Jiang, Chunhao; Guo, Jianhua; Coaker, Gitta; Jin, Hailing

    2016-01-01

    Plant small RNAs play important roles in gene regulation during pathogen infection. Here we show that miR863-3p is induced by the bacterial pathogen Pseudomonas syringae carrying various effectors. Early during infection, miR863-3p silences two negative regulators of plant defence, atypical receptor-like pseudokinase1 (ARLPK1) and ARLPK2, both lacking extracellular domains and kinase activity, through mRNA degradation to promote immunity. ARLPK1 associates with, and may function through another negative immune regulator ARLPK1-interacting receptor-like kinase 1 (AKIK1), an active kinase with an extracellular domain. Later during infection, miR863-3p silences SERRATE, which is essential for miRNA accumulation and positively regulates defence, through translational inhibition. This results in decreased miR863-3p levels, thus forming a negative feedback loop to attenuate immune responses after successful defence. This is an example of a miRNA that sequentially targets both negative and positive regulators of immunity through two modes of action to fine-tune the timing and amplitude of defence responses. PMID:27108563

  7. C5orf30 is a negative regulator of tissue damage in rheumatoid arthritis

    PubMed Central

    Muthana, Munitta; Hawtree, Sarah; Wilshaw, Adam; Linehan, Eimear; Roberts, Hannah; Khetan, Sachin; Adeleke, Gbadebo; Wright, Fiona; Akil, Mohammed; Fearon, Ursula; Veale, Douglas; Ciani, Barbara; Wilson, Anthony G.

    2015-01-01

    The variant rs26232, in the first intron of the chromosome 5 open reading frame 30 (C5orf30) locus, has recently been associated with both risk of developing rheumatoid arthritis (RA) and severity of tissue damage. The biological activities of human C5orf30 are unknown, and neither the gene nor protein show significant homology to any other characterized human sequences. The C5orf30 gene is present only in vertebrate genomes with a high degree of conservation, implying a central function in these organisms. Here, we report that C5orf30 is highly expressed in the synovium of RA patients compared with control synovial tissue, and that it is predominately expressed by synovial fibroblast (RASF) and macrophages in the lining and sublining layer of the tissue. These cells play a central role in the initiation and perpetuation of RA and are implicated in cartilage destruction. RASFs lacking C5orf30 exhibit increased cell migration and invasion in vitro, and gene profiling following C5orf30 inhibition confirmed up-regulation of genes involved in cell migration, adhesion, angiogenesis, and immune and inflammatory pathways. Importantly, loss of C5orf30 contributes to the pathology of inflammatory arthritis in vivo, because inhibition of C5orf30 in the collagen-induced arthritis model markedly accentuated joint inflammation and tissue damage. Our study reveal C5orf30 to be a previously unidentified negative regulator of tissue damage in RA, and this protein may act by modulating the autoaggressive phenotype that is characteristic of RASFs. PMID:26316022

  8. Human Herpesvirus 8 LANA Interacts with Proteins of the mSin3 Corepressor Complex and Negatively Regulates Epstein-Barr Virus Gene Expression in Dually Infected PEL Cells

    PubMed Central

    Krithivas, Anita; Young, David B.; Liao, Gangling; Greene, Deborah; Hayward, S. Diane

    2000-01-01

    The human herpesvirus 8 (HHV-8) latency-associated nuclear antigen (LANA) is expressed in all latently HHV-8 infected cells and in HHV-8-associated tumors, including primary effusion lymphoma (PEL). To better understand the contribution of LANA to tumorigenesis and to the PEL phenotype, we performed a yeast two-hybrid screen which identified the corepressor protein SAP30 as a LANA binding protein. SAP30 is a constituent of a large multicomponent complex that brings histone deacetylases to the promoter. Glutathione S-transferase affinity assays confirmed interaction between LANA and SAP30 and also demonstrated interactions between LANA and two other members of the corepressor complex, mSin3A and CIR. The corepressors bound to the amino-terminal 340-amino-acid domain of LANA. In transient expression assays, this same domain of LANA mediated repression when targeted to a 5×Gal4tk-CAT reporter as a GAL4-LANA fusion. PEL cells have the unusual feature that they are frequently dually infected with both HHV-8 and Epstein-Barr virus (EBV). We found that EBV EBNA-1 expression is downregulated in PEL cells at both the RNA and protein levels. In transient expression assays, LANA repressed activated expression from the EBV Qp and Cp latency promoters. Reduction of endogenous Qp activity could also be demonstrated in EBV-infected Rael cells transfected with a LANA expression plasmid. In contrast to the effect of LANA on EBV latency promoters, LANA activated expression from its own promoter. The data indicate that LANA can mediate transcriptional repression through recruitment of an mSin3 corepressor complex and further that LANA-mediated repression is likely to contribute to the low level of EBV latency gene expression seen in dually infected PEL cells. PMID:11000236

  9. The neural correlates of regulating positive and negative emotions in medication-free major depression

    PubMed Central

    Greening, Steven G.; Osuch, Elizabeth A.; Williamson, Peter C.

    2014-01-01

    Depressive cognitive schemas play an important role in the emergence and persistence of major depressive disorder (MDD). The current study adapted emotion regulation techniques to reflect elements of cognitive behavioural therapy (CBT) and related psychotherapies to delineate neurocognitive abnormalities associated with modulating the negative cognitive style in MDD. Nineteen non-medicated patients with MDD and 19 matched controls reduced negative or enhanced positive feelings elicited by emotional scenes while undergoing functional magnetic resonance imaging. Although both groups showed significant emotion regulation success as measured by subjective ratings of affect, the controls were significantly better at modulating both negative and positive emotion. Both groups recruited regions of dorsolateral prefrontal cortex and ventrolateral prefrontal cortex (VLPFC) when regulating negative emotions. Only in controls was this accompanied by reduced activity in sensory cortices and amygdala. Similarly, both groups showed enhanced activity in VLPFC and ventral striatum when enhancing positive affect; however, only in controls was ventral striatum activity correlated with regulation efficacy. The results suggest that depression is associated with both a reduced capacity to achieve relief from negative affect despite recruitment of ventral and dorsal prefrontal cortical regions implicated in emotion regulation, coupled with a disconnect between activity in reward-related regions and subjective positive affect. PMID:23482626

  10. The neural correlates of regulating positive and negative emotions in medication-free major depression.

    PubMed

    Greening, Steven G; Osuch, Elizabeth A; Williamson, Peter C; Mitchell, Derek G V

    2014-05-01

    Depressive cognitive schemas play an important role in the emergence and persistence of major depressive disorder (MDD). The current study adapted emotion regulation techniques to reflect elements of cognitive behavioural therapy (CBT) and related psychotherapies to delineate neurocognitive abnormalities associated with modulating the negative cognitive style in MDD. Nineteen non-medicated patients with MDD and 19 matched controls reduced negative or enhanced positive feelings elicited by emotional scenes while undergoing functional magnetic resonance imaging. Although both groups showed significant emotion regulation success as measured by subjective ratings of affect, the controls were significantly better at modulating both negative and positive emotion. Both groups recruited regions of dorsolateral prefrontal cortex and ventrolateral prefrontal cortex (VLPFC) when regulating negative emotions. Only in controls was this accompanied by reduced activity in sensory cortices and amygdala. Similarly, both groups showed enhanced activity in VLPFC and ventral striatum when enhancing positive affect; however, only in controls was ventral striatum activity correlated with regulation efficacy. The results suggest that depression is associated with both a reduced capacity to achieve relief from negative affect despite recruitment of ventral and dorsal prefrontal cortical regions implicated in emotion regulation, coupled with a disconnect between activity in reward-related regions and subjective positive affect.

  11. Signaling hierarchy regulating human endothelial cell development

    USDA-ARS?s Scientific Manuscript database

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  12. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators.

    PubMed

    Le Mercier, Isabelle; Lines, J Louise; Noelle, Randolph J

    2015-01-01

    In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.

  13. Rethinking emotion: cognitive reappraisal is an effective positive and negative emotion regulation strategy in bipolar disorder.

    PubMed

    Gruber, June; Hay, Aleena C; Gross, James J

    2014-04-01

    Bipolar disorder involves difficulties with emotion regulation, yet the precise nature of these emotion regulatory difficulties is unclear. The current study examined whether individuals with remitted bipolar I disorder (n = 23) and healthy controls (n = 23) differ in their ability to use one effective and common form of emotion regulation, cognitive reappraisal. Positive, negative, and neutral films were used to elicit emotion, and participants were cued to watch the film carefully (i.e., uninstructed condition) or reappraise while measures of affect, behavior, and psychophysiology were obtained. Results showed that reappraisal was associated with reductions in emotion reactivity across subjective (i.e., positive and negative affect), behavioral (i.e., positive facial displays), and physiological (i.e., skin conductance) response domains across all participants. Results suggest that reappraisal may be an effective regulation strategy for both negative and positive emotion across both healthy adults and individuals with bipolar disorder. Discussion focuses on clinical and treatment implications for bipolar disorder.

  14. Transcription factor Foxo1 is a negative regulator of natural killer cell maturation and function.

    PubMed

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-03-17

    Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes by upregulating CD62L expression and inhibited late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21(+/-) mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions.

  15. A dose-response curve for the negative bias pressure of an intrathoracic pressure regulator during CPR.

    PubMed

    Babbs, Charles F; Yannopoulos, Demetris

    2006-12-01

    An intrathoracic pressure regulator (ITPR) is a device that can be added to the external end of a tracheal tube to create controlled negative airway pressure between positive pressure ventilations. The resulting downward bias of the airway pressure baseline promotes increased venous return and enhanced circulation during CPR and also during hypovolemic shock. In the present study, we exercised a mathematical model of the human cardiopulmonary system, including airways, lungs, a four chambered heart, great vessels, peripheral vascular beds, and the biomechanics of chest compression and recoil, to determine the relationship between systemic perfusion pressure during CPR and the value of baseline negative airway pressure in an ITPR. Perfusion pressure increases approximately 50% as baseline airway pressure falls from zero to -10 cm H2O. Thereafter perfusion pressure plateaus. Negative bias pressures exceeding -10 cm H2O are not needed in ITPR-CPR.

  16. Opposing roles of primate areas 25 and 32 and their putative rodent homologs in the regulation of negative emotion.

    PubMed

    Wallis, Chloe U; Cardinal, Rudolf N; Alexander, Laith; Roberts, Angela C; Clarke, Hannah F

    2017-05-16

    Disorders of dysregulated negative emotion such as depression and anxiety also feature increased cardiovascular mortality and decreased heart-rate variability (HRV). These disorders are correlated with dysfunction within areas 25 and 32 of the ventromedial prefrontal cortex (vmPFC), but a causal relationship between dysregulation of these areas and such symptoms has not been demonstrated. Furthermore, cross-species translation is limited by inconsistent findings between rodent fear extinction and human neuroimaging studies of negative emotion. To reconcile these literatures, we applied an investigative approach to the brain-body interactions at the core of negative emotional dysregulation. We show that, in marmoset monkeys (a nonhuman primate that has far greater vmPFC homology to humans than rodents), areas 25 and 32 have causal yet opposing roles in regulating the cardiovascular and behavioral correlates of negative emotion. In novel Pavlovian fear conditioning and extinction paradigms, pharmacological inactivation of area 25 decreased the autonomic and behavioral correlates of negative emotion expectation, whereas inactivation of area 32 increased them via generalization. Area 25 inactivation also increased resting HRV. These findings are inconsistent with current theories of rodent/primate prefrontal functional similarity, and provide insight into the role of these brain regions in affective disorders. They demonstrate that area 32 hypoactivity causes behavioral generalization relevant to anxiety, and that area 25 is a causal node governing the emotional and cardiovascular symptomatology relevant to anxiety and depression.

  17. No fear, no panic: probing negation as a means for emotion regulation.

    PubMed

    Herbert, Cornelia; Deutsch, Roland; Platte, Petra; Pauli, Paul

    2013-08-01

    This electroencephalographic study investigated if negating one's emotion results in paradoxical effects or leads to effective emotional downregulation. Healthy participants were asked to downregulate their emotions to happy and fearful faces by using negated emotional cue words (e.g., no fun, no fear). Cue words were congruent with the emotion depicted in the face and presented prior to each face. Stimuli were presented in blocks of happy and fearful faces. Blocks of passive stimulus viewing served as control condition. Active regulation reduced amplitudes of early event-related brain potentials (early posterior negativity, but not N170) and the late positive potential for fearful faces. A fronto-central negativity peaking at about 250 ms after target face onset showed larger amplitude modulations during downregulation of fearful and happy faces. Behaviorally, negating was more associated with reappraisal than with suppression. Our results suggest that in an emotional context, negation processing could be quite effective for emotional downregulation but that its effects depend on the type of the negated emotion (pleasant vs unpleasant). Results are discussed in the context of dual process models of cognition and emotion regulation.

  18. Rab35, acting through ACAP2 switching off Arf6, negatively regulates oligodendrocyte differentiation and myelination

    PubMed Central

    Miyamoto, Yuki; Yamamori, Natsuki; Torii, Tomohiro; Tanoue, Akito; Yamauchi, Junji

    2014-01-01

    Oligodendrocyte precursor cells differentiate to produce myelin sheaths that insulate axons to ensure fast propagation of action potentials. Many aspects of differentiation are regulated by multiple extracellular signals. However, their intracellular signalings remain elusive. We show that Rab35 and its effector, ACAP2, a GTPase-activating protein that switches off Arf6 activity, negatively regulate oligodendrocyte morphological differentiation. Knockdown of Rab35 or ACAP2 with their respective small interfering RNAs promotes differentiation. As differentiation initiates, the activities of Rab35 and ACAP2 are down-regulated. The activity of Arf6, in contrast, is up-regulated. Arf6 knockdown inhibits differentiation, indicating that Rab35 and ACAP2 negatively regulate differentiation by down-regulating Arf6. Importantly, as differentiation proceeds, the activity of cytohesin-2, a guanine nucleotide exchange factor that switches on Arf6 activity, is up-regulated. Pharmacological inhibition of cytohesin-2 inhibits differentiation, suggesting that cytohesin-2 promotes differentiation by activating Arf6. Furthermore, using oligodendrocyte-neuronal cocultures, we find that knockdown of Rab35 or ACAP2 promotes myelination, whereas inhibition of cytohesin-2 or knockdown of Arf6 inhibits myelination. Thus Rab35/ACAP2 and cytohesin-2 antagonistically control oligodendrocyte differentiation and myelination through Arf6 regulation, presenting a unique small GTPase on/off switching mechanism. PMID:24600047

  19. The trans-kingdom identification of negative regulators of pathogen hypervirulence

    PubMed Central

    Brown, Neil A.; Urban, Martin; Hammond-Kosack, Kim E.

    2015-01-01

    Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen–host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed. PMID:26468211

  20. TRIF Is a Critical Negative Regulator of TLR Agonist Mediated Activation of Dendritic Cells In Vivo

    PubMed Central

    Appledorn, Daniel M.; Aylsworth, Charles F.; Godbehere, Sarah; Liu, Chyong-Jy Joyce; Quiroga, Dionisia; Amalfitano, Andrea

    2011-01-01

    Despite recent advances in developing and licensing adjuvants, there is a great need for more potent formulations to enhance immunogenicity of vaccines. An Eimeria tenella derived antigen (rEA) augments immune responses against several pathogens in animal models and recently was confirmed to be safe for human use. In this study, we have analyzed the molecular mechanisms underlying rEA activity in mice, and confirmed that rEA activates multiple immune cell types, including DCs, macrophages, NK, B, and T cells. The rEA adjuvant also elicits the induction of pleiotropic pro-inflammatory cytokines, responses that completely depend upon the presence of the TLR adaptor protein MyD88. Surprisingly, we also found that the TRIF adaptor protein acts as a potent negative regulator of TLR agonist-triggered immune responses. For example, IL12 production and the induction of co-stimulatory molecule expression by DCs and IFNγ production by NK cells in vivo were significantly increased in rEA-treated TRIF-KO mice. Importantly, however, TRIF suppressive effects were not restricted to rEA-mediated responses, but were apparent in LPS- or ODN2006-activated DCs as well. Taken together, our findings confirm that rEA is a potent adjuvant, triggering robust activation of the innate immune system, in a manner that is augmented by MyD88 and inhibited by TRIF; thereby unveiling the potential complexities of modulating TLR activity to augment vaccine efficacy. PMID:21760953

  1. Insulin receptor substrate 2 is a negative regulator of memory formation

    PubMed Central

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O’Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, K. Peter

    2015-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1- receptors to downstream signaling pathways. Here, we have deleted Irs2, either in the whole brain or selectively in the forebrain, using the nestin Cre- or D6 Cre- deleter mouse lines respectively. We show that brain- and forebrain-specific Irs2 knockout mice have enhanced hippocampal spatial reference memory. Furthermore, NesCreIrs2KO mice have enhanced spatial working memory and contextual- and cued-fear memory. Deletion of Irs2 in the brain also increases PSD-95 expression and the density of dendritic spines in hippocampal area CA1, possibly reflecting an increase in the number of excitatory synapses per neuron in the hippocampus that can become activated during memory formation. This increase in activated excitatory synapses might underlie the improved hippocampal memory formation observed in NesCreIrs2KO mice. Overall, these results suggest that Irs2 acts as a negative regulator on memory formation by restricting dendritic spine generation. PMID:21597043

  2. NLRP12 negatively regulates proinflammatory cytokine production and host defense against Brucella abortus.

    PubMed

    Silveira, Tatiana N; Gomes, Marco Túlio R; Oliveira, Luciana S; Campos, Priscila C; Machado, Gabriela G; Oliveira, Sergio C

    2017-01-01

    Brucella abortus is the causative agent of brucellosis, which causes abortion in domestic animals and undulant fever in humans. This bacterium infects and proliferates mainly in macrophages and dendritic cells, where it is recognized by pattern recognition receptors (PRRs) including Nod-like receptors (NLRs). Our group recently demonstrated the role of AIM2 and NLRP3 in Brucella recognition. Here, we investigated the participation of NLRP12 in innate immune response to B. abortus. We show that NLRP12 inhibits the early production of IL-12 by bone marrow-derived macrophages upon B. abortus infection. We also observed that NLRP12 suppresses in vitro NF-κB and MAPK signaling in response to Brucella. Moreover, we show that NLRP12 modulates caspase-1 activation and IL-1β secretion in B. abortus infected-macrophages. Furthermore, we show that mice lacking NLRP12 are more resistant in the early stages of B. abortus infection: NLRP12(-/-) infected-mice have reduced bacterial burdens in the spleens and increased production of IFN-γ and IL-1β compared with wild-type controls. In addition, NLRP12 deficiency leads to reduction in granuloma number and size in mouse livers. Altogether, our findings suggest that NLRP12 plays an important role in negatively regulating the early inflammatory responses against B. abortus.

  3. BpsR modulates Bordetella biofilm formation by negatively regulating the expression of the Bps polysaccharide.

    PubMed

    Conover, Matt S; Redfern, Crystal J; Ganguly, Tridib; Sukumar, Neelima; Sloan, Gina; Mishra, Meenu; Deora, Rajendar

    2012-01-01

    Bordetella bacteria are Gram-negative respiratory pathogens of animals, birds, and humans. A hallmark feature of some Bordetella species is their ability to efficiently survive in the respiratory tract even after vaccination. Bordetella bronchiseptica and Bordetella pertussis form biofilms on abiotic surfaces and in the mouse respiratory tract. The Bps exopolysaccharide is one of the critical determinants for biofilm formation and the survival of Bordetella in the murine respiratory tract. In order to gain a better understanding of regulation of biofilm formation, we sought to study the mechanism by which Bps expression is controlled in Bordetella. Expression of bpsABCD (bpsA-D) is elevated in biofilms compared with levels in planktonically grown cells. We found that bpsA-D is expressed independently of BvgAS. Subsequently, we identified an open reading frame (ORF), BB1771 (designated here bpsR), that is located upstream of and in the opposite orientation to the bpsA-D locus. BpsR is homologous to the MarR family of transcriptional regulators. Measurement of bpsA and bpsD transcripts and the Bps polysaccharide levels from the wild-type and the ΔbpsR strains suggested that BpsR functions as a repressor. Consistent with enhanced production of Bps, the bpsR mutant displayed considerably more structured biofilms. We mapped the bpsA-D promoter region and showed that purified BpsR protein specifically bound to the bpsA-D promoter. Our results provide mechanistic insights into the regulatory strategy employed by Bordetella for control of the production of the Bps polysaccharide and biofilm formation.

  4. BpsR Modulates Bordetella Biofilm Formation by Negatively Regulating the Expression of the Bps Polysaccharide

    PubMed Central

    Conover, Matt S.; Redfern, Crystal J.; Ganguly, Tridib; Sukumar, Neelima; Sloan, Gina; Mishra, Meenu

    2012-01-01

    Bordetella bacteria are Gram-negative respiratory pathogens of animals, birds, and humans. A hallmark feature of some Bordetella species is their ability to efficiently survive in the respiratory tract even after vaccination. Bordetella bronchiseptica and Bordetella pertussis form biofilms on abiotic surfaces and in the mouse respiratory tract. The Bps exopolysaccharide is one of the critical determinants for biofilm formation and the survival of Bordetella in the murine respiratory tract. In order to gain a better understanding of regulation of biofilm formation, we sought to study the mechanism by which Bps expression is controlled in Bordetella. Expression of bpsABCD (bpsA-D) is elevated in biofilms compared with levels in planktonically grown cells. We found that bpsA-D is expressed independently of BvgAS. Subsequently, we identified an open reading frame (ORF), BB1771 (designated here bpsR), that is located upstream of and in the opposite orientation to the bpsA-D locus. BpsR is homologous to the MarR family of transcriptional regulators. Measurement of bpsA and bpsD transcripts and the Bps polysaccharide levels from the wild-type and the ΔbpsR strains suggested that BpsR functions as a repressor. Consistent with enhanced production of Bps, the bpsR mutant displayed considerably more structured biofilms. We mapped the bpsA-D promoter region and showed that purified BpsR protein specifically bound to the bpsA-D promoter. Our results provide mechanistic insights into the regulatory strategy employed by Bordetella for control of the production of the Bps polysaccharide and biofilm formation. PMID:22056934

  5. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    PubMed Central

    Stekel, Dov J; Jenkins, Dafyd J

    2008-01-01

    Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors

  6. Strong negative self regulation of prokaryotic transcription factors increases the intrinsic noise of protein expression.

    PubMed

    Stekel, Dov J; Jenkins, Dafyd J

    2008-01-18

    Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors.

  7. Conditioned flavour preference negatively reinforced by caffeine in human volunteers.

    PubMed

    Yeomans, M R; Spetch, H; Rogers, P J

    1998-06-01

    This study examined whether 100 mg caffeine could reinforce preference for the flavour of a novel drink in moderate caffeine users, both after overnight caffeine abstinence and 2 h after receiving 100 mg caffeine, using a two-stage between-groups procedure with 36 volunteers. In the first stage, liking for a test drink (fruit tea) was assessed at breakfast following overnight caffeine abstinence, with half the subjects receiving caffeine. Liking for the tea increased significantly over four trials for subjects receiving caffeine, and decreased significantly in those without caffeine. These effects were greatest in subjects who rated the drink as highly novel. In stage two, subjects evaluated a second drink (fruit-juice) 2 h after receiving the tea, and again half the subjects received caffeine Those subjects who received caffeine in stage two but not stage one showed a significant increase in liking for the fruit-juice over the 4 test days, whereas subjects who did not receive caffeine at either stage showed a progressive decrease in liking for this drink. In contrast, no significant change in liking for the fruit-juice was seen at stage two for subjects who had received caffeine in stage one, regardless of the presence or absence of caffeine at stage two. Caffeine at breakfast increased ratings of energetic and lively, and energetic ratings also increased following caffeine in the fruit-juice in subjects who had not had caffeine at breakfast. Overall, these data are consistent with a negative reinforcement model of caffeine reinforcement, and demonstrate further the utility of the conditioned flavour preference method for evaluating reinforcing effects of drugs in humans.

  8. Emotion regulation strategies mediate the associations of positive and negative affect to upper extremity physical function.

    PubMed

    Talaei-Khoei, Mojtaba; Nemati-Rezvani, Hora; Fischerauer, Stefan F; Ring, David; Chen, Neal; Vranceanu, Ana-Maria

    2017-05-01

    The Gross process model of emotion regulation holds that emotion-eliciting situations (e.g. musculoskeletal illness) can be strategically regulated to determine the final emotional and behavioral response. Also, there is some evidence that innate emotional traits may predispose an individual to a particular regulating coping style. We enrolled 107 patients with upper extremity musculoskeletal illness in this cross-sectional study. They completed self-report measures of positive and negative affect, emotion regulation strategies (cognitive reappraisal and expressive suppression), upper extremity physical function, pain intensity, and demographics. We used Preacher and Hayes' bootstrapping approach to process analysis to infer the direct effect of positive and negative affect on physical function as well as their indirect effects through activation of emotion regulation strategies. Negative affect was associated with decreased physical function. The association was partly mediated by expressive suppression (b (SE)=-.10 (.05), 95% BCa CI [-.21, -.02]). Positive affect was associated with increased physical function. Cognitive reappraisal partially mediated this association (b (SE)=.11 (.05), 95% BCa CI [.03, .24]). After controlling for pain intensity, the ratio of the mediated effect to total effect grew even larger in controlled model comparing to uncontrolled model (33% vs. 26% for expressive suppression and 32% vs. 30% for cognitive reappraisal). The relationships between affect, emotion regulation strategies and physical function appear to be more dependent on the emotional response to an orthopedic condition rather than the intensity of the nociceptive stimulation of the pain. Findings support integration of emotion regulation training in skill-based psychotherapy in this population to mitigate the effect of negative affect and enhance the influence of positive affect on physical function. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. NLRX1 Sequesters STING to Negatively Regulate the Interferon Response, Thereby Facilitating the Replication of HIV-1 and DNA Viruses.

    PubMed

    Guo, Haitao; König, Renate; Deng, Meng; Riess, Maximilian; Mo, Jinyao; Zhang, Lu; Petrucelli, Alex; Yoh, Sunnie M; Barefoot, Brice; Samo, Melissa; Sempowski, Gregory D; Zhang, Aiping; Colberg-Poley, Anamaris M; Feng, Hui; Lemon, Stanley M; Liu, Yong; Zhang, Yanping; Wen, Haitao; Zhang, Zhigang; Damania, Blossom; Tsao, Li-Chung; Wang, Qi; Su, Lishan; Duncan, Joseph A; Chanda, Sumit K; Ting, Jenny P-Y

    2016-04-13

    Understanding the negative regulators of antiviral immune responses will be critical for advancing immune-modulated antiviral strategies. NLRX1, an NLR protein that negatively regulates innate immunity, was previously identified in an unbiased siRNA screen as required for HIV infection. We find that NLRX1 depletion results in impaired nuclear import of HIV-1 DNA in human monocytic cells. Additionally, NLRX1 was observed to reduce type-I interferon (IFN-I) and cytokines in response to HIV-1 reverse-transcribed DNA. NLRX1 sequesters the DNA-sensing adaptor STING from interaction with TANK-binding kinase 1 (TBK1), which is a requisite for IFN-1 induction in response to DNA. NLRX1-deficient cells generate an amplified STING-dependent host response to cytosolic DNA, c-di-GMP, cGAMP, HIV-1, and DNA viruses. Accordingly, Nlrx1(-/-) mice infected with DNA viruses exhibit enhanced innate immunity and reduced viral load. Thus, NLRX1 is a negative regulator of the host innate immune response to HIV-1 and DNA viruses.

  10. Evidence that dendritic mitochondria negatively regulate dendritic branching in pyramidal neurons in the neocortex.

    PubMed

    Kimura, Toshiya; Murakami, Fujio

    2014-05-14

    The precise branching patterns of dendritic arbors have a profound impact on information processing in individual neurons and the brain. These patterns are established by positive and negative regulation of the dendritic branching. Although the mechanisms for positive regulation have been extensively investigated, little is known about those for negative regulation. Here, we present evidence that mitochondria located in developing dendrites are involved in the negative regulation of dendritic branching. We visualized mitochondria in pyramidal neurons of the mouse neocortex during dendritic morphogenesis using in utero electroporation of a mitochondria-targeted fluorescent construct. We altered the mitochondrial distribution in vivo by overexpressing Mfn1, a mitochondrial shaping protein, or the Miro-binding domain of TRAK2 (TRAK2-MBD), a truncated form of a motor-adaptor protein. We found that dendritic mitochondria were preferentially targeted to the proximal portion of dendrites only during dendritic morphogenesis. Overexpression of Mfn1 or TRAK2-MBD depleted mitochondria from the dendrites, an effect that was accompanied by increased branching of the proximal portion of the dendrites. This dendritic abnormality cannot be accounted for by changes in the distribution of membrane trafficking organelles since the overexpression of Mfn1 did not alter the distributions of the endoplasmic reticulum, Golgi, or endosomes. Additionally, neither did these constructs impair neuronal viability or mitochondrial function. Therefore, our results suggest that dendritic mitochondria play a critical role in the establishment of the precise branching pattern of dendritic arbors by negatively affecting dendritic branching.

  11. MHC Class I negatively regulates synapse density during the establishment of cortical connections

    PubMed Central

    Glynn, Marian W.; Elmer, Bradford M.; Garay, Paula A.; Liu, Xiao-Bo; Needleman, Leigh A.; El-Sabeawy, Faten; McAllister, A. Kimberley

    2011-01-01

    Major histocompatibility complex class I (MHCI) molecules modulate activity-dependent refinement and plasticity. Here, we show that MHCI also negatively regulates the density and function of cortical synapses during their initial establishment both in vitro and in vivo. MHCI molecules are expressed in cortical neurons before and during synaptogenesis. In vitro, decreasing surface MHCI (sMHCI) on neurons increases glutamatergic and GABAergic synapse density, while overexpression decreases it. In vivo, synapse density is higher throughout development in β2m−/ − mice. MHCI also negatively regulates mEPSC, but not mIPSC, amplitude and controls the balance of excitation and inhibition onto cortical neurons. sMHCI levels are modulated by activity and are necessary for activity to negatively regulate glutamatergic synapse density. Finally, acute changes in sMHCI and activity alter synapse density exclusively in early postnatal development. These results identify a novel function for immune proteins in negatively regulating the initial establishment and function of cortical connections. PMID:21358642

  12. Attachment's Links With Adolescents' Social Emotions: The Roles of Negative Emotionality and Emotion Regulation.

    PubMed

    Murphy, Tia Panfile; Laible, Deborah J; Augustine, Mairin; Robeson, Lindsay

    2015-01-01

    Recent research has attempted to explain the mechanisms through which parental attachment affects social and emotional outcomes (e.g., Burnette, Taylor, Worthington, & Forsyth, 2007 ; Panfile & Laible, 2012 ). The authors' goal was to examine negative emotionality and emotion regulation as mediators of the associations that attachment has with empathy, forgiveness, guilt, and jealousy. One hundred forty-eight adolescents reported their parental attachment security, general levels of negative emotionality and abilities to regulate emotional responses, and tendencies to feel empathy, forgiveness, guilt, and jealousy. Results revealed that attachment security was associated with higher levels of empathy, forgiveness, and guilt, but lower levels of jealousy. In addition, emotion regulation mediated the links attachment shared with both empathy and guilt, such that higher levels of attachment security were linked with greater levels of emotion regulation, which led to greater levels of empathy and guilt. Alternatively, negative emotionality mediated the links attachment shared with both forgiveness and jealousy, such that higher levels of attachment security were associated with lower levels of negative emotionality, which in turn was linked to lower levels of forgiveness and higher levels of jealousy. This study provides a general picture of how attachment security may play a role in shaping an individual's levels of social emotions.

  13. Regulation of pyruvate metabolism and human disease.

    PubMed

    Gray, Lawrence R; Tompkins, Sean C; Taylor, Eric B

    2014-07-01

    Pyruvate is a keystone molecule critical for numerous aspects of eukaryotic and human metabolism. Pyruvate is the end-product of glycolysis, is derived from additional sources in the cellular cytoplasm, and is ultimately destined for transport into mitochondria as a master fuel input undergirding citric acid cycle carbon flux. In mitochondria, pyruvate drives ATP production by oxidative phosphorylation and multiple biosynthetic pathways intersecting the citric acid cycle. Mitochondrial pyruvate metabolism is regulated by many enzymes, including the recently discovered mitochondria pyruvate carrier, pyruvate dehydrogenase, and pyruvate carboxylase, to modulate overall pyruvate carbon flux. Mutations in any of the genes encoding for proteins regulating pyruvate metabolism may lead to disease. Numerous cases have been described. Aberrant pyruvate metabolism plays an especially prominent role in cancer, heart failure, and neurodegeneration. Because most major diseases involve aberrant metabolism, understanding and exploiting pyruvate carbon flux may yield novel treatments that enhance human health.

  14. Btn3 is a negative regulator of Btn2-mediated endosomal protein trafficking and prion curing in yeast

    PubMed Central

    Kanneganti, Vydehi; Kama, Rachel; Gerst, Jeffrey E.

    2011-01-01

    Yeast Btn2 facilitates the retrieval of specific proteins from late endosomes (LEs) to the Golgi, a process that may be adversely affected in Batten disease patients. We isolated the putative yeast orthologue of a human complex I deficiency gene, designated here as BTN3, as encoding a Btn2-interacting protein and negative regulator. First, yeast overexpressing BTN3 phenocopy the deletion of BTN2 and mislocalize certain trans-Golgi proteins, like Kex2 and Yif1, to the LE and vacuole, respectively. In contrast, the deletion of BTN3 results in a tighter pattern of protein localization to the Golgi. Second, BTN3 overexpression alters Btn2 localization from the IPOD compartment, which correlates with a sharp reduction in Btn2-mediated [URE3] prion curing. Third, Btn3 and the Snc1 v-SNARE compete for the same binding domain on Btn2, and this competition controls Btn2 localization and function. The inhibitory effects upon protein retrieval and prion curing suggest that Btn3 sequesters Btn2 away from its substrates, thus down-regulating protein trafficking and aggregation. Therefore Btn3 is a novel negative regulator of intracellular protein sorting, which may be of importance in the onset of complex I deficiency and Batten disease in humans. PMID:21441304

  15. Individual differences in positive and negative emotion regulation: Which strategies explain variability in loneliness?

    PubMed

    Kearns, Sinead M; Creaven, Ann-Marie

    2017-02-01

    Loneliness is the distressing feeling accompanying the perception that one's social needs are not being met by one's social relationships. Conceptual models point to a role for cognitive factors in this experience. Because research on determinants of loneliness is sparse, this study investigates associations between individual differences in emotion regulation (ER) and loneliness. Participants (N = 116) completed measures of loneliness, and a vignette-based measure of adaptive and maladaptive ER in response to positive and negative scenarios. Regression analyses indicated that the regulation of positive and negative emotions explained comparable variance in loneliness, and associations were only partially reduced by the inclusion of social support. The specific strategies positive reappraisal, being present and negative mental time travel explained the most variance in loneliness. The findings are consistent with both the cognitive and the social needs models of loneliness and suggest that variability in ER strategies should be considered relevant to loneliness. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Merlin negative regulation by miR-146a promotes cell transformation.

    PubMed

    Pérez-García, Erick I; Meza-Sosa, Karla F; López-Sevilla, Yaxem; Camacho-Concha, Nohemi; Sánchez, Nilda C; Pérez-Martínez, Leonor; Pedraza-Alva, Gustavo

    2015-12-25

    Inactivation of the tumor suppressor Merlin, by deleterious mutations or by protein degradation via sustained growth factor receptor signaling-mediated mechanisms, results in cell transformation and tumor development. In addition to these mechanisms, here we show that, miRNA-dependent negative regulation of Merlin protein levels also promotes cell transformation. We provide experimental evidences showing that miR-146a negatively regulates Merlin protein levels through its interaction with an evolutionary conserved sequence in the 3´ untranslated region of the NF2 mRNA. Merlin downregulation by miR-146a in A549 lung epithelial cells resulted in enhanced cell proliferation, migration and tissue invasion. Accordingly, stable miR-146a-transfectant cells formed tumors with metastatic capacity in vivo. Together our results uncover miRNAs as yet another negative mechanism controlling Merlin tumor suppressor functions.

  17. Merlin negative regulation by miR-146a promotes cell transformation

    SciTech Connect

    Pérez-García, Erick I.; Meza-Sosa, Karla F.; López-Sevilla, Yaxem; Camacho-Concha, Nohemi; Sánchez, Nilda C.; Pérez-Martínez, Leonor; Pedraza-Alva, Gustavo

    2015-12-25

    Inactivation of the tumor suppressor Merlin, by deleterious mutations or by protein degradation via sustained growth factor receptor signaling-mediated mechanisms, results in cell transformation and tumor development. In addition to these mechanisms, here we show that, miRNA-dependent negative regulation of Merlin protein levels also promotes cell transformation. We provide experimental evidences showing that miR-146a negatively regulates Merlin protein levels through its interaction with an evolutionary conserved sequence in the 3´ untranslated region of the NF2 mRNA. Merlin downregulation by miR-146a in A549 lung epithelial cells resulted in enhanced cell proliferation, migration and tissue invasion. Accordingly, stable miR-146a-transfectant cells formed tumors with metastatic capacity in vivo. Together our results uncover miRNAs as yet another negative mechanism controlling Merlin tumor suppressor functions.

  18. Negative auto-regulation increases the input dynamic-range of the arabinose system of Escherichia coli.

    PubMed

    Madar, Daniel; Dekel, Erez; Bren, Anat; Alon, Uri

    2011-07-12

    Gene regulation networks are made of recurring regulatory patterns, called network motifs. One of the most common network motifs is negative auto-regulation, in which a transcription factor represses its own production. Negative auto-regulation has several potential functions: it can shorten the response time (time to reach halfway to steady-state), stabilize expression against noise, and linearize the gene's input-output response curve. This latter function of negative auto-regulation, which increases the range of input signals over which downstream genes respond, has been studied by theory and synthetic gene circuits. Here we ask whether negative auto-regulation preserves this function also in the context of a natural system, where it is embedded within many additional interactions. To address this, we studied the negative auto-regulation motif in the arabinose utilization system of Escherichia coli, in which negative auto-regulation is part of a complex regulatory network. We find that when negative auto-regulation is disrupted by placing the regulator araC under constitutive expression, the input dynamic range of the arabinose system is reduced by 10-fold. The apparent Hill coefficient of the induction curve changes from about n = 1 with negative auto-regulation, to about n = 2 when it is disrupted. We present a mathematical model that describes how negative auto-regulation can increase input dynamic-range, by coupling the transcription factor protein level to the input signal. Here we demonstrate that the negative auto-regulation motif in the native arabinose system of Escherichia coli increases the range of arabinose signals over which the system can respond. In this way, negative auto-regulation may help to increase the input dynamic-range while maintaining the specificity of cooperative regulatory systems. This function may contribute to explaining the common occurrence of negative auto-regulation in biological systems.

  19. Negative auto-regulation increases the input dynamic-range of the arabinose system of Escherichia coli

    PubMed Central

    2011-01-01

    Background Gene regulation networks are made of recurring regulatory patterns, called network motifs. One of the most common network motifs is negative auto-regulation, in which a transcription factor represses its own production. Negative auto-regulation has several potential functions: it can shorten the response time (time to reach halfway to steady-state), stabilize expression against noise, and linearize the gene's input-output response curve. This latter function of negative auto-regulation, which increases the range of input signals over which downstream genes respond, has been studied by theory and synthetic gene circuits. Here we ask whether negative auto-regulation preserves this function also in the context of a natural system, where it is embedded within many additional interactions. To address this, we studied the negative auto-regulation motif in the arabinose utilization system of Escherichia coli, in which negative auto-regulation is part of a complex regulatory network. Results We find that when negative auto-regulation is disrupted by placing the regulator araC under constitutive expression, the input dynamic range of the arabinose system is reduced by 10-fold. The apparent Hill coefficient of the induction curve changes from about n = 1 with negative auto-regulation, to about n = 2 when it is disrupted. We present a mathematical model that describes how negative auto-regulation can increase input dynamic-range, by coupling the transcription factor protein level to the input signal. Conclusions Here we demonstrate that the negative auto-regulation motif in the native arabinose system of Escherichia coli increases the range of arabinose signals over which the system can respond. In this way, negative auto-regulation may help to increase the input dynamic-range while maintaining the specificity of cooperative regulatory systems. This function may contribute to explaining the common occurrence of negative auto-regulation in biological systems. PMID

  20. Improved wound management by regulated negative pressure-assisted wound therapy and regulated, oxygen- enriched negative pressure-assisted wound therapy through basic science research and clinical assessment.

    PubMed

    Topaz, Moris

    2012-05-01

    Regulated negative pressure-assisted wound therapy (RNPT) should be regarded as a state-of-the-art technology in wound treatment and the most important physical, nonpharmaceutical, platform technology developed and applied for wound healing in the last two decades. RNPT systems maintain the treated wound's environment as a semi-closed, semi-isolated system applying external physical stimulations to the wound, leading to biological and biochemical effects, with the potential to substantially influence wound-host interactions, and when properly applied may enhance wound healing. RNPT is a simple, safe, and affordable tool that can be utilized in a wide range of acute and chronic conditions, with reduced need for complicated surgical procedures, and antibiotic treatment. This technology has been shown to be effective and safe, saving limbs and lives on a global scale. Regulated, oxygen-enriched negative pressure-assisted wound therapy (RO-NPT) is an innovative technology, whereby supplemental oxygen is concurrently administered with RNPT for their synergistic effect on treatment and prophylaxis of anaerobic wound infection and promotion of wound healing. Understanding the basic science, modes of operation and the associated risks of these technologies through their fundamental clinical mechanisms is the main objective of this review.

  1. Wheat CBL-interacting protein kinase 25 negatively regulates salt tolerance in transgenic wheat

    PubMed Central

    Jin, Xia; Sun, Tao; Wang, Xiatian; Su, Peipei; Ma, Jingfei; He, Guangyuan; Yang, Guangxiao

    2016-01-01

    CBL-interacting protein kinases are involved in plant responses to abiotic stresses, including salt stress. However, the negative regulating mechanism of this gene family in response to salinity is less reported. In this study, we evaluated the role of TaCIPK25 in regulating salt response in wheat. Under conditions of high salinity, TaCIPK25 expression was markedly down-regulated in roots. Overexpression of TaCIPK25 resulted in hypersensitivity to Na+ and superfluous accumulation of Na+ in transgenic wheat lines. TaCIPK25 expression did not decline in transgenic wheat and remained at an even higher level than that in wild-type wheat controls under high-salinity treatment. Furthermore, transmembrane Na+/H+ exchange was impaired in the root cells of transgenic wheat. These results suggested that TaCIPK25 negatively regulated salt response in wheat. Additionally, yeast-one-hybrid, β-glucuronidase activity and DNA-protein-interaction-enzyme-linked-immunosorbent assays showed that the transcription factor TaWRKY9 bound W-box in the TaCIPK25 promoter region. Quantitative real-time polymerase chain reaction assays showed concomitantly inverted expression patterns of TaCIPK25 and TaWRKY9 in wheat roots under salt treatment, ABA application and inhibition of endogenous ABA condition. Overall, based on our results, in a salt stress condition, the negative salt response in wheat involved TaCIPK25 with the expression regulated by TaWRKY9. PMID:27358166

  2. CREB is a key negative regulator of carbonic anhydrase IX (CA9) in gastric cancer.

    PubMed

    Wang, Guanqiao; Cheng, Zhenguo; Liu, Funan; Zhang, Hongyan; Li, Jiabin; Li, Feng

    2015-07-01

    Carbonic anhydrase IX(CA9)is a member of the carbonic anhydrase family that catalyzes the reversible hydration of carbon dioxide, and plays a key role in the regulation of pH. Although a large number of studies have shown that CA9 is strongly up-regulated by HIF1-α, little is known about the negative regulation mechanism of CA9 in cancer cells. Here we find that CREB is a key negative regulator of CA9 in gastric cancer. Over-expression of CREB can significantly repress the expression of CA9. Treating with anisomycin (ANS), an activator of p38, the phosphorylation and nuclear translocation of CREB are both promoted, while the transcription of CA9 is repressed. Besides, our results firstly identify that CREB can recruit SIRT1 (class III HDACS) by adaptor protein p300, then repress the expression of CA9. These findings may contribute to understand the negative regulation mechanisms of CA9 in gastric cancer.

  3. An atlas of human kinase regulation.

    PubMed

    Ochoa, David; Jonikas, Mindaugas; Lawrence, Robert T; El Debs, Bachir; Selkrig, Joel; Typas, Athanasios; Villén, Judit; Santos, Silvia Dm; Beltrao, Pedro

    2016-12-01

    The coordinated regulation of protein kinases is a rapid mechanism that integrates diverse cues and swiftly determines appropriate cellular responses. However, our understanding of cellular decision-making has been limited by the small number of simultaneously monitored phospho-regulatory events. Here, we have estimated changes in activity in 215 human kinases in 399 conditions derived from a large compilation of phosphopeptide quantifications. This atlas identifies commonly regulated kinases as those that are central in the signaling network and defines the logic relationships between kinase pairs. Co-regulation along the conditions predicts kinase-complex and kinase-substrate associations. Additionally, the kinase regulation profile acts as a molecular fingerprint to identify related and opposing signaling states. Using this atlas, we identified essential mediators of stem cell differentiation, modulators of Salmonella infection, and new targets of AKT1. This provides a global view of human phosphorylation-based signaling and the necessary context to better understand kinase-driven decision-making. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  4. LINGO-1 negatively regulates TrkB phosphorylation after ocular hypertension.

    PubMed

    Fu, Qing-Ling; Hu, Bing; Li, Xin; Shao, Zhaohui; Shi, Jian-Bo; Wu, Wutian; So, Kwok-Fai; Mi, Sha

    2010-03-01

    The antagonism of LINGO-1, a CNS-specific negative regulator of neuronal survival, was shown to promote short-term survival of retinal ganglion cell (RGC) in an ocular hypertension model. LINGO-1 antagonists, combined with brain-derived neurotrophic factor (BDNF), can increase the length of neuron survival through an unclear molecular mechanism. To determine the relationship between LINGO-1 and BDNF/TrkB receptor in neuronal protection, we show here that LINGO-1 forms a receptor complex with TrkB and negatively regulates its activation in the retina after ocular hypertension injury. LINGO-1 antagonist antibody 1A7 or soluble LINGO-1 (LINGO-1-Fc) treatment upregulates phospho-TrkB phosphorylation and leads to RGC survival after high intraocular pressure injury. This neuronal protective effect was blocked by anti-BDNF antibody. LINGO-1 antagonism therefore promotes RGC survival by regulating the BDNF and TrkB signaling pathway after ocular hypertension.

  5. Fbxw7β, E3 ubiquitin ligase, negative regulation of primary myoblast differentiation, proliferation and migration.

    PubMed

    Shin, Kyungshin; Hwang, Sang-Gu; Choi, Ik Joon; Ko, Young-Gyu; Jeong, Jaemin; Kwon, Heechung

    2017-04-01

    Satellite cells attached to skeletal muscle fibers play a crucial role in skeletal muscle regeneration. During regeneration, the satellite cells proliferate, migrate to the damaged region, and fuse to each other. Although it is important to determine the cellular mechanisms controlling myoblast behavior, their regulators are not well understood. In this study, we evaluated the roles of Fbxw7 in primary myoblasts and determined its potential as a therapeutic target for muscle disease. We originally found that Fbxw7β, one of the E3 ubiquitin ligase Fbxw7 subtypes, negatively regulates differentiation, proliferation and migration of myoblasts and satellite cells on muscle fiber. However, these phenomena were not observed in myoblasts expressing a dominant-negative, F-box deleted Fbxw7β, mutant. Our results suggest that myoblast differentiation potential and muscle regeneration can be regulated by Fbxw7β.

  6. Negative regulation of neuronal cell differentiation by INHAT subunit SET/TAF-Iβ.

    PubMed

    Kim, Dong-Wook; Kim, Kee-Beom; Kim, Ji-Young; Lee, Kyu-Sun; Seo, Sang-Beom

    2010-09-24

    Epigenetic modification plays an important role in transcriptional regulation. As a subunit of the INHAT (inhibitor of histone acetyltransferases) complex, SET/TAF-Iβ evidences transcriptional repression activity. In this study, we demonstrate that SET/TAF-Iβ is abundantly expressed in neuronal tissues of Drosophila embryos. It is expressed at high levels prior to and in early stages of neuronal development, and gradually reduced as differentiation proceeds. SET/TAF-Iβ binds to the promoters of a subset of neuronal development markers and negatively regulates the transcription of these genes. The results of this study show that the knockdown of SET/TAF-Iβ by si-RNA induces neuronal cell differentiation, thus implicating SET/TAF-Iβ as a negative regulator of neuronal development.

  7. Chaperone-mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activation.

    PubMed

    Valdor, Rut; Mocholi, Enric; Botbol, Yair; Guerrero-Ros, Ignacio; Chandra, Dinesh; Koga, Hiroshi; Gravekamp, Claudia; Cuervo, Ana Maria; Macian, Fernando

    2014-11-01

    Chaperone-mediated autophagy (CMA) targets soluble proteins for lysosomal degradation. Here we found that CMA was activated in T cells in response to engagement of the T cell antigen receptor (TCR), which induced expression of the CMA-related lysosomal receptor LAMP-2A. In activated T cells, CMA targeted the ubiquitin ligase Itch and the calcineurin inhibitor RCAN1 for degradation to maintain activation-induced responses. Consequently, deletion of the gene encoding LAMP-2A in T cells caused deficient in vivo responses to immunization or infection with Listeria monocytogenes. Impaired CMA activity also occurred in T cells with age, which negatively affected their function. Restoration of LAMP-2A in T cells from old mice resulted in enhancement of activation-induced responses. Our findings define a role for CMA in regulating T cell activation through the targeted degradation of negative regulators of T cell activation.

  8. Regulation of core clock genes in human islets.

    PubMed

    Stamenkovic, Jelena A; Olsson, Anders H; Nagorny, Cecilia L; Malmgren, Siri; Dekker-Nitert, Marloes; Ling, Charlotte; Mulder, Hindrik

    2012-07-01

    Nearly all mammalian cells express a set of genes known as clock genes. These regulate the circadian rhythm of cellular processes by means of negative and positive autoregulatory feedback loops of transcription and translation. Recent genomewide association studies have demonstrated an association between a polymorphism near the circadian clock gene CRY2 and elevated fasting glucose. To determine whether clock genes could play a pathogenetic role in the disease, we examined messenger RNA (mRNA) expression of core clock genes in human islets from donors with or without type 2 diabetes mellitus. Microarray and quantitative real-time polymerase chain reaction analyses were used to assess expression of the core clock genes CLOCK, BMAL-1, PER1 to 3, and CRY1 and 2 in human islets. Insulin secretion and insulin content in human islets were measured by radioimmunoassay. The mRNA levels of PER2, PER3, and CRY2 were significantly lower in islets from donors with type 2 diabetes mellitus. To investigate the functional relevance of these clock genes, we correlated their expression to insulin content and glycated hemoglobin levels: mRNA levels of PER2 (ρ = 0.33, P = .012), PER3 (ρ = 0.30, P = .023), and CRY2 (ρ = 0.37, P = .0047) correlated positively with insulin content. Of these genes, expression of PER3 and CRY2 correlated negatively with glycated hemoglobin levels (ρ = -0.44, P = .0012; ρ = -0.28, P = .042). Furthermore, in an in vitro model mimicking pathogenetic conditions, the PER3 mRNA level was reduced in human islets exposed to 16.7 mmol/L glucose per 1 mmol/L palmitate for 48 hours (P = .003). Core clock genes are regulated in human islets. The data suggest that perturbations of circadian clock components may contribute to islet pathophysiology in human type 2 diabetes mellitus. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Negative air ion effects on human performance and physiological condition.

    PubMed

    Buckalew, L W; Rizzuto, A P

    1984-08-01

    Beneficial effects of exposure to negative air ions have been suggested, to include improved performance, mood, attention, and physiological condition. Existing support is clouded by methodological problems of control and standardization in treatment and equipment. This study investigated effects of negative ions produced by a commercially marketed air purification device on grip magnitude, coding, motor dexterity, reaction time, tracking, pulse, blood pressure, and temperature. Two groups of 12 males were exposed to 6 continuous h of either negative or "normal" ion environments under a double blind condition. Repeated measures (0,3,6 h) on each variable were obtained. MANOVA applied to change scores revealed no differences between groups, and 0 vs. 3 and 0 vs. 6-h group differences showed no significant alteration in any measure. Negative ions generated by an air purification device were concluded to produce no general or specific alteration of cognitive or psychomotor performance or physiological condition.

  10. SIRT1 is regulated by a PPARγ–SIRT1 negative feedback loop associated with senescence

    PubMed Central

    Zhou, Rui; Niu, Jing; McNutt, Michael A.; Wang, Pan; Tong, Tanjun

    2010-01-01

    Human Silent Information Regulator Type 1 (SIRT1) is an NAD+-dependent deacetylase protein which is an intermediary of cellular metabolism in gene silencing and aging. SIRT1 has been extensively investigated and shown to delay senescence; however, less is known about the regulation of SIRT1 during aging. In this study, we show that the peroxisome proliferator-activated receptor-γ (PPARγ), which is a ligand-regulated modular nuclear receptor that governs adipocyte differentiation and inhibits cellular proliferation, inhibits SIRT1 expression at the transcriptional level. Moreover, both PPARγ and SIRT1 can bind the SIRT1 promoter. PPARγ directly interacts with SIRT1 and inhibits SIRT1 activity, forming a negative feedback and self-regulation loop. In addition, our data show that acetylation of PPARγ increased with increasing cell passage number. We propose that PPARγ is subject to regulation by acetylation and deacetylation via p300 and SIRT1 in cellular senescence. These results demonstrate a mutual regulation between PPARγ and SIRT1 and identify a new posttranslational modification that affects cellular senescence. PMID:20660480

  11. Instrumental Motives in Negative Emotion Regulation in Daily Life: Frequency, Consistency, and Predictors.

    PubMed

    Kalokerinos, Elise K; Tamir, Maya; Kuppens, Peter

    2016-12-19

    People regulate their emotions not only for hedonic reasons but also for instrumental reasons, to attain the potential benefits of emotions beyond pleasure and pain. However, such instrumental motives have rarely been examined outside the laboratory as they naturally unfold in daily life. To assess whether and how instrumental motives operate outside the laboratory, it is necessary to examine them in response to real and personally relevant stimuli in ecologically valid contexts. In this research, we assessed the frequency, consistency, and predictors of instrumental motives in negative emotion regulation in daily life. Participants (N = 114) recalled the most negative event of their day each evening for 7 days and reported their instrumental motives and negative emotion goals in that event. Participants endorsed performance motives in approximately 1 in 3 events and social, eudaimonic, and epistemic motives in approximately 1 in 10 events. Instrumental motives had substantially higher within- than between-person variance, indicating that they were context-dependent. Indeed, although we found few associations between instrumental motives and personality traits, relationships between instrumental motives and contextual variables were more extensive. Performance, social, and eudaimonic motives were each predicted by a unique pattern of contextual appraisals. Our data demonstrate that instrumental motives play a role in daily negative emotion regulation as people encounter situations that pose unique regulatory demands. (PsycINFO Database Record

  12. Maternal Attachment Style and Responses to Adolescents’ Negative Emotions: The Mediating Role of Maternal Emotion Regulation

    PubMed Central

    Jones, Jason D.; Brett, Bonnie E.; Ehrlich, Katherine B.; Lejuez, Carl W.; Cassidy, Jude

    2014-01-01

    SYNOPSIS Objective Previous research has examined the developmental consequences, particularly in early childhood, of parents’ supportive and unsupportive responses to children’s negative emotions. Much less is known about factors that explain why parents respond in ways that may support or undermine their children’s emotions, and even less is known about how these parenting processes unfold with adolescents. We examined the associations between mothers’ attachment styles and their distress, harsh, and supportive responses to their adolescents’ negative emotions two years later and whether these links were mediated by maternal emotion regulation difficulties. Design Mothers in a longitudinal study (n = 230) reported on their attachment style, difficulties regulating their emotions, and their hypothetical responses to their adolescents’ negative emotions, respectively, at consecutive laboratory visits one year apart. Results Mothers who reported greater attachment-related avoidance and anxiety reported having greater difficulties with emotion regulation one year later. Emotion dysregulation, in turn, predicted more distressed, harsher, and less supportive maternal responses to adolescents’ negative emotions the following year. In addition, greater avoidance directly predicted harsher maternal responses two years later. Conclusions These findings extend previous research by identifying maternal attachment style as a predictor of responses to adolescent distress and by documenting the underlying role of emotion dysregulation in the link between adult attachment style and parenting. PMID:25568638

  13. DDIT4/REDD1/RTP801 Is a Novel Negative Regulator of Schwann Cell Myelination

    PubMed Central

    Noseda, Roberta; Belin, Sophie; Piguet, Françoise; Vaccari, Ilaria; Scarlino, Stefania; Brambilla, Paola; Boneschi, Filippo Martinelli; Feltri, Maria Laura; Wrabetz, Lawrence; Quattrini, Angelo; Feinstein, Elena; Huganir, Richard L.

    2013-01-01

    Signals that promote myelination must be tightly modulated to adjust myelin thickness to the axonal diameter. In the peripheral nervous system, axonal neuregulin 1 type III promotes myelination by activating erbB2/B3 receptors and the PI3K/AKT/mTOR pathway in Schwann cells. Conversely, PTEN (phosphatase and tensin homolog on chromosome 10) dephosphorylates PtdIns(3,4,5)P3 and negatively regulates the AKT pathway and myelination. Recently, the DLG1/SAP97 scaffolding protein was described to interact with PTEN to enhance PIP3 dephosphorylation. Here we now report that nerves from mice with conditional inactivation of Dlg1 in Schwann cells display only a transient increase in myelin thickness during development, suggesting that DLG1 is a transient negative regulator of myelination. Instead, we identified DDIT4/RTP801/REDD1 as a sustained negative modulator of myelination. We show that DDIT4 is expressed in Schwann cells and its maximum expression level precedes the peak of AKT activation and of DLG1 activity in peripheral nerves. Moreover, loss of DDIT4 expression both in vitro and in vivo in Ddit4-null mice provokes sustained hypermyelination and enhanced mTORC1 activation, thus suggesting that this molecule is a novel negative regulator of PNS myelination. PMID:24048858

  14. [Regulation of Positive and Negative Emotions as Mediator between Maternal Emotion Socialization and Child Problem Behavior].

    PubMed

    Fäsche, Anika; Gunzenhauser, Catherine; Friedlmeier, Wolfgang; von Suchodoletz, Antje

    2015-01-01

    The present study investigated five to six year old children's ability to regulate negative and positive emotions in relation to psychosocial problem behavior (N=53). It was explored, whether mothers' supportive and nonsupportive strategies of emotion socialization influence children's problem behavior by shaping their emotion regulation ability. Mothers reported on children's emotion regulation and internalizing and externalizing problem behavior via questionnaire, and were interviewed about their preferences for socialization strategies in response to children's expression of negative affect. Results showed that children with more adaptive expression of adequate positive emotions had less internalizing behavior problems. When children showed more control of inadequate negative emotions, children were less internalizing as well as externalizing in their behavior. Furthermore, results indicated indirect relations of mothers' socialization strategies with children's problem behavior. Control of inadequate negative emotions mediated the link between non-supportive strategies on externalizing problem behavior. Results suggest that emotion regulatory processes should be part of interventions to reduce the development of problematic behavior in young children. Parents should be trained in dealing with children's emotions in a constructive way.

  15. Maternal Attachment Style and Responses to Adolescents' Negative Emotions: The Mediating Role of Maternal Emotion Regulation.

    PubMed

    Jones, Jason D; Brett, Bonnie E; Ehrlich, Katherine B; Lejuez, Carl W; Cassidy, Jude

    2014-01-01

    Previous research has examined the developmental consequences, particularly in early childhood, of parents' supportive and unsupportive responses to children's negative emotions. Much less is known about factors that explain why parents respond in ways that may support or undermine their children's emotions, and even less is known about how these parenting processes unfold with adolescents. We examined the associations between mothers' attachment styles and their distress, harsh, and supportive responses to their adolescents' negative emotions two years later and whether these links were mediated by maternal emotion regulation difficulties. Mothers in a longitudinal study (n = 230) reported on their attachment style, difficulties regulating their emotions, and their hypothetical responses to their adolescents' negative emotions, respectively, at consecutive laboratory visits one year apart. Mothers who reported greater attachment-related avoidance and anxiety reported having greater difficulties with emotion regulation one year later. Emotion dysregulation, in turn, predicted more distressed, harsher, and less supportive maternal responses to adolescents' negative emotions the following year. In addition, greater avoidance directly predicted harsher maternal responses two years later. These findings extend previous research by identifying maternal attachment style as a predictor of responses to adolescent distress and by documenting the underlying role of emotion dysregulation in the link between adult attachment style and parenting.

  16. ExsE Is a Negative Regulator for T3SS Gene Expression in Vibrio alginolyticus

    PubMed Central

    Liu, Jinxin; Lu, Shao-Yeh; Orfe, Lisa H.; Ren, Chun-Hua; Hu, Chao-Qun; Call, Douglas R.; Avillan, Johannetsy J.; Zhao, Zhe

    2016-01-01

    Type III secretion systems (T3SSs) contribute to microbial pathogenesis of Vibrio species, but the regulatory mechanisms are complex. We determined if the classic ExsACDE protein-protein regulatory model from Pseudomonas aeruginosa applies to Vibrio alginolyticus. Deletion mutants in V. alginolyticus demonstrated that, as expected, the T3SS is positively regulated by ExsA and ExsC and negatively regulated by ExsD and ExsE. Interestingly, deletion of exsE enhanced the ability of V. alginolyticus to induce host-cell death while cytotoxicity was inhibited by in trans complementation of this gene in a wild-type strain, a result that differs from a similar experiment with Vibrio parahaemolyticus ExsE. We further showed that ExsE is a secreted protein that does not contribute to adhesion to Fathead minnow epithelial cells. An in vitro co-immunoprecipitation assay confirmed that ExsE binds to ExsC to exert negative regulatory effect on T3SS genes. T3SS in V. alginolyticus can be activated in the absence of physical contact with host cells and a separate regulatory pathway appears to contribute to the regulation of ExsA. Consequently, like ExsE from P. aeruginosa, ExsE is a negative regulator for T3SS gene expression in V. alginolyticus. Unlike the V. parahaemolyticus orthologue, however, deletion of exsE from V. alginolyticus enhanced in vitro cytotoxicity. PMID:27999769

  17. Cut! that’s a wrap: regulating negative emotion by ending emotion-eliciting situations

    PubMed Central

    Vujovic, Lara; Opitz, Philipp C.; Birk, Jeffrey L.; Urry, Heather L.

    2014-01-01

    Little is known about the potentially powerful set of emotion regulation (ER) processes that target emotion-eliciting situations. We thus studied the decision to end emotion-eliciting situations in the laboratory. We hypothesized that people would try to end negative situations more frequently than neutral situations to regulate distress. In addition, motivated by the selection, optimization, and compensation with ER framework, we hypothesized that failed attempts to end the situation would prompt either (a) greater negative emotion or (b) compensatory use of a different ER process, attentional deployment (AD). Fifty-eight participants (18–26 years old, 67% women) viewed negative and neutral pictures and pressed a key whenever they wished to stop viewing them. After key press, the picture disappeared (“success”) or stayed (“failure”) on screen. To index emotion, we measured corrugator and electrodermal activity, heart rate, and self-reported arousal. To index overt AD, we measured eye gaze. As their reason for ending the situation, participants more frequently reported being upset by high- than low-arousal negative pictures; they more frequently reported being bored by low- than high-arousal neutral pictures. Nevertheless, participants’ negative emotional responding did not increase in the context of ER failure nor did they use overt AD as a compensatory ER strategy. We conclude that situation-targeted ER processes are used to regulate emotional responses to high-arousal negative and low-arousal neutral situations; ER processes other than overt AD may be used to compensate for ER failure in this context. PMID:24592251

  18. Maternal Self-Regulation, Relationship Adjustment, and Home Chaos: Contributions to Infant Negative Emotionality

    PubMed Central

    Bridgett, David J.; Burt, Nicole M.; Laake, Lauren M.; Oddi, Kate B.

    2013-01-01

    There has been increasing interest in the direct and indirect effects of parental self-regulation on children’s outcomes. In the present investigation, the effects of maternal self-regulation, home chaos, and inter-parental relationship adjustment on broad and specific indicators of infant negative emotionality (NE) were examined. A sample of maternal caregivers and their 4-month-old infants (N = 85) from a rural community participated. Results demonstrated that better maternal self-regulation was associated with lower infant NE broadly, as well as with lower infant sadness and distress to limitations/frustration and better falling reactivity (i.e. emotion regulation), specifically. Maternal self-regulation also predicted less chaotic home environments and better maternal inter-parental relationship adjustment. Findings also supported the indirect effects of maternal self-regulation on broad and specific indicators of infant NE through home chaos and maternal relationship adjustment. Some differential effects were also identified. Elevated home chaos appeared to specifically affect infant frustration/distress to limitations whereas maternal relationship adjustment affected broad infant NE, as well as several specific indicators of infant NE: frustration/distress to limitations, sadness, and falling reactivity. In conjunction with other recent investigations that have reported the effects of maternal self-regulation on parenting, the findings in the present investigation suggest that parental self-regulation may influence children’s outcomes through several proximal environmental pathways. PMID:23748168

  19. Maternal self-regulation, relationship adjustment, and home chaos: contributions to infant negative emotionality.

    PubMed

    Bridgett, David J; Burt, Nicole M; Laake, Lauren M; Oddi, Kate B

    2013-12-01

    There has been increasing interest in the direct and indirect effects of parental self-regulation on children's outcomes. In the present investigation, the effects of maternal self-regulation, home chaos, and inter-parental relationship adjustment on broad and specific indicators of infant negative emotionality (NE) were examined. A sample of maternal caregivers and their 4-month-old infants (N = 85) from a rural community participated. Results demonstrated that better maternal self-regulation was associated with lower infant NE broadly, as well as with lower infant sadness and distress to limitations/frustration and better falling reactivity (i.e., emotion regulation), specifically. Maternal self-regulation also predicted less chaotic home environments and better maternal inter-parental relationship adjustment. Findings also supported the indirect effects of maternal self-regulation on broad and specific indicators of infant NE through home chaos and maternal relationship adjustment. Some differential effects were also identified. Elevated home chaos appeared to specifically affect infant frustration/distress to limitations whereas maternal relationship adjustment affected broad infant NE, as well as several specific indicators of infant NE: frustration/distress to limitations, sadness, and falling reactivity. In conjunction with other recent investigations that have reported the effects of maternal self-regulation on parenting, the findings in the present investigation suggest that parental self-regulation may influence children's outcomes through several proximal environmental pathways.

  20. Nanoparticles, human health hazard and regulation

    PubMed Central

    Seaton, Anthony; Tran, Lang; Aitken, Robert; Donaldson, Kenneth

    2010-01-01

    New developments in technology usually entail some hazard as well as advantage to a society. Hazard of a material translates into risk by exposure of humans and/or their environment to the agent in question, and risk is reduced by control of exposure, usually guided by regulation based on understanding of the mechanisms of harm. We illustrate risks relating to the causation of diseases associated with exposure to aerosols of combustion particles and asbestos, leading to paradigms of particle toxicity, and discuss analogies with potential exposure to manufactured nanoparticles (NPs). We review the current understanding of the hazard of NPs derived from the new science of nanotoxicology and the limited research to date into human exposure to these particles. We identify gaps in knowledge relating to the properties of NPs that might determine toxicity and in understanding the most appropriate ways both to measure this in the laboratory and to assess it in the workplace. Nevertheless, we point out that physical principles governing the behaviour of such particles allow determination of practical methods of protecting those potentially exposed. Finally, we discuss the early steps towards regulation and the difficulties facing regulators in controlling potentially harmful exposures in the absence of sufficient scientific evidence. PMID:19726441

  1. The RNA-binding protein Tristetraprolin (TTP) is a critical negative regulator of the NLRP3 inflammasome.

    PubMed

    Haneklaus, Moritz; O'Neil, John D; Clark, Andrew R; Masters, Seth L; O'Neill, Luke A J

    2017-03-16

    The NLRP3 inflammasome is a central regulator of inflammation in many common diseases, including atherosclerosis and Type 2 diabetes, driving the production of pro-inflammatory mediators such as IL-1β and IL-18. Due to its function as an inflammatory gatekeeper, expression and activation of NLRP3 need to be tightly regulated. In this study, we highlight novel post-transcriptional mechanisms that can modulate NLRP3 expression. We have identified the RNA-binding protein Tristetraprolin (TTP) as a negative regulator of NLRP3 in human macrophages. TTP targets AU-rich elements in the NLRP3 3' untranslated region (UTR) and represses NLRP3 expression. Knocking down TTP in primary macrophages leads to an increased induction of NLRP3 by LPS, which is also accompanied by increased Caspase-1 and IL-1β cleavage upon NLRP3, but not AIM2 or NLRC4 inflammasome activation. Furthermore, we found that human NLRP3 can be alternatively polyadenylated, producing a short 3'UTR isoform that excludes regulatory elements, including the TTP and miRNA-223 binding sites. Since TTP also represses IL-1β expression, it is a dual inhibitor of the IL-1β system, regulating expression of the cytokine and the upstream controller NLRP3.

  2. Epigenetic Regulation of microRNA Expression: Targeting the Triple-Negative Breast Cancer Phenotype

    DTIC Science & Technology

    2011-10-01

    CTCE-9908 inhibits breast cancer metastasis to lung and bone, Oncol. Rep. 21 (2009) 761–767. [36] N.T. Holm, F. Abreo, L.W. Johnson, B.D. Li, Q.D. Chu...Kawai, T. Inoue, H. Ito, M. Oshimura, T. Ochiya, MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13...cancers with increased potential for metastasis and recurrence (2). Basal-like breast carcinomas express genes associated with an EMT phenotype and

  3. MicroRNA-378 Alleviates Cerebral Ischemic Injury by Negatively Regulating Apoptosis Executioner Caspase-3

    PubMed Central

    Zhang, Nan; Zhong, Jie; Han, Song; Li, Yun; Yin, Yanling; Li, Junfa

    2016-01-01

    miRNAs have been linked to many human diseases, including ischemic stroke, and are being pursued as clinical diagnostics and therapeutic targets. Among the aberrantly expressed miRNAs in our previous report using large-scale microarray screening, the downregulation of miR-378 in the peri-infarct region of middle cerebral artery occluded (MCAO) mice can be reversed by hypoxic preconditioning (HPC). In this study, the role of miR-378 in the ischemic injury was further explored. We found that miR-378 levels significantly decreased in N2A cells following oxygen-glucose deprivation (OGD) treatment. Overexpression of miR-378 significantly enhanced cell viability, decreased TUNEL-positive cells and the immunoreactivity of cleaved-caspase-3. Conversely, downregulation of miR-378 aggravated OGD-induced apoptosis and ischemic injury. By using bioinformatic algorithms, we discovered that miR-378 may directly bind to the predicted 3′-untranslated region (UTR) of Caspase-3 gene. The protein level of caspase-3 increased significantly upon OGD treatment, and can be downregulated by pri-miR-378 transfection. The luciferase reporter assay confirmed the binding of miR-378 to the 3′-UTR of Caspase-3 mRNA and repressed its translation. In addition, miR-378 agomir decreased cleaved-caspase-3 ratio, reduced infarct volume and neural cell death induced by MCAO. Furthermore, caspase-3 knockdown could reverse anti-miR-378 mediated neuronal injury. Taken together, our data demonstrated that miR-378 attenuated ischemic injury by negatively regulating the apoptosis executioner, caspase-3, providing a potential therapeutic target for ischemic stroke. PMID:27598143

  4. TRIM45 negatively regulates NF-{kappa}B-mediated transcription and suppresses cell proliferation

    SciTech Connect

    Shibata, Mio; Sato, Tomonobu; Nukiwa, Ryota; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer NF-{kappa}B plays an important role in cell survival and carcinogenesis. Black-Right-Pointing-Pointer TRIM45 negatively regulates TNF{alpha}-induced NF-{kappa}B-mediated transcription. Black-Right-Pointing-Pointer TRIM45 overexpression suppresses cell growth. Black-Right-Pointing-Pointer TRIM45 acts as a repressor for the NF-{kappa}B signal and regulates cell growth. -- Abstract: The NF-{kappa}B signaling pathway plays an important role in cell survival, immunity, inflammation, carcinogenesis, and organogenesis. Activation of NF-{kappa}B is regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. The NF-{kappa}B signaling pathway is activated by two distinct signaling mechanisms and is strictly modulated by the ubiquitin-proteasome system. It has been reported that overexpression of TRIM45, one of the TRIM family ubiquitin ligases, suppresses transcriptional activities of Elk-1 and AP-1, which are targets of the MAPK signaling pathway. In this study, we showed that TRIM45 also negatively regulates TNF{alpha}-induced NF-{kappa}B-mediated transcription by a luciferase reporter assay and that TRIM45 lacking a RING domain also has an activity to inhibit the NF-{kappa}B signal. Moreover, we found that TRIM45 overexpression suppresses cell growth. These findings suggest that TRIM45 acts as a repressor for the NF-{kappa}B signal and regulates cell growth.

  5. Plk1 negatively regulates PRC1 to prevent premature midzone formation before cytokinesis

    PubMed Central

    Hu, Chi-Kuo; Özlü, Nurhan; Coughlin, Margaret; Steen, Judith J.; Mitchison, Timothy J.

    2012-01-01

    To achieve mitosis and cytokinesis, microtubules must assemble into distinct structures at different stages of cell division—mitotic spindles to segregate the chromosomes before anaphase and midzones to keep sister genomes apart and guide the cleavage furrow after anaphase. This temporal regulation is believed to involve Cdk1 kinase, which is inactivated in a switch-like way after anaphase. We found that inhibiting Plk1 caused premature assembly of midzones in cells still in metaphase, breaking the temporal regulation of microtubules. The antiparallel microtubule-bundling protein PRC1 plays a key role in organizing the midzone complex. We found that Plk1 negatively regulates PRC1 through phosphorylation of a single site, Thr-602, near the C-terminus of PRC1. We also found that microtubules stimulated Thr-602 phosphorylation by Plk1. This creates a potential negative feedback loop controlling PRC1 activity. It also made the extent of Thr-602 phosphorylation during mitotic arrest dependent on the mechanism of the arresting drug. Unexpectedly, we could not detect a preanaphase regulatory role for Cdk1 sites on PRC1. We suggest that PRC1 is regulated by Plk1, rather than Cdk1 as previously proposed, because its activity must be spatiotemporally regulated both preanaphase and postanaphase, and Cdk1 activity is too binary for this purpose. PMID:22621898

  6. Plk1 negatively regulates PRC1 to prevent premature midzone formation before cytokinesis.

    PubMed

    Hu, Chi-Kuo; Ozlü, Nurhan; Coughlin, Margaret; Steen, Judith J; Mitchison, Timothy J

    2012-07-01

    To achieve mitosis and cytokinesis, microtubules must assemble into distinct structures at different stages of cell division-mitotic spindles to segregate the chromosomes before anaphase and midzones to keep sister genomes apart and guide the cleavage furrow after anaphase. This temporal regulation is believed to involve Cdk1 kinase, which is inactivated in a switch-like way after anaphase. We found that inhibiting Plk1 caused premature assembly of midzones in cells still in metaphase, breaking the temporal regulation of microtubules. The antiparallel microtubule-bundling protein PRC1 plays a key role in organizing the midzone complex. We found that Plk1 negatively regulates PRC1 through phosphorylation of a single site, Thr-602, near the C-terminus of PRC1. We also found that microtubules stimulated Thr-602 phosphorylation by Plk1. This creates a potential negative feedback loop controlling PRC1 activity. It also made the extent of Thr-602 phosphorylation during mitotic arrest dependent on the mechanism of the arresting drug. Unexpectedly, we could not detect a preanaphase regulatory role for Cdk1 sites on PRC1. We suggest that PRC1 is regulated by Plk1, rather than Cdk1 as previously proposed, because its activity must be spatiotemporally regulated both preanaphase and postanaphase, and Cdk1 activity is too binary for this purpose.

  7. A Structural View of Negative Regulation of the Toll-like Receptor-Mediated Inflammatory Pathway.

    PubMed

    Guven-Maiorov, Emine; Keskin, Ozlem; Gursoy, Attila; Nussinov, Ruth

    2015-09-15

    Even though the Toll-like receptor (TLR) pathway is integral to inflammatory defense mechanisms, its excessive signaling may be devastating. Cells have acquired a cascade of strategies to regulate TLR signaling by targeting protein-protein interactions, or ubiquitin chains, but the details of the inhibition mechanisms are still unclear. Here, we provide the structural basis for the regulation of TLR signaling by constructing architectures of protein-protein interactions. Structural data suggest that 1) Toll/IL-1R (TIR) domain-containing regulators (BCAP, SIGIRR, and ST2) interfere with TIR domain signalosome formation; 2) major deubiquitinases such as A20, CYLD, and DUBA prevent association of TRAF6 and TRAF3 with their partners, in addition to removing K63-linked ubiquitin chains that serve as a docking platform for downstream effectors; 3) alternative downstream pathways of TLRs also restrict signaling by competing to bind common partners through shared binding sites. We also performed in silico mutagenesis analysis to characterize the effects of oncogenic mutations on the negative regulators and to observe the cellular outcome (whether there is/is not inflammation). Missense mutations that fall on interfaces and nonsense/frameshift mutations that result in truncated negative regulators disrupt the interactions with the targets, thereby enabling constitutive activation of the nuclear factor-kappa B, and contributing to chronic inflammation, autoimmune diseases, and oncogenesis. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. A Structural View of Negative Regulation of the Toll-like Receptor-Mediated Inflammatory Pathway

    PubMed Central

    Guven-Maiorov, Emine; Keskin, Ozlem; Gursoy, Attila; Nussinov, Ruth

    2015-01-01

    Even though the Toll-like receptor (TLR) pathway is integral to inflammatory defense mechanisms, its excessive signaling may be devastating. Cells have acquired a cascade of strategies to regulate TLR signaling by targeting protein-protein interactions, or ubiquitin chains, but the details of the inhibition mechanisms are still unclear. Here, we provide the structural basis for the regulation of TLR signaling by constructing architectures of protein-protein interactions. Structural data suggest that 1) Toll/IL-1R (TIR) domain-containing regulators (BCAP, SIGIRR, and ST2) interfere with TIR domain signalosome formation; 2) major deubiquitinases such as A20, CYLD, and DUBA prevent association of TRAF6 and TRAF3 with their partners, in addition to removing K63-linked ubiquitin chains that serve as a docking platform for downstream effectors; 3) alternative downstream pathways of TLRs also restrict signaling by competing to bind common partners through shared binding sites. We also performed in silico mutagenesis analysis to characterize the effects of oncogenic mutations on the negative regulators and to observe the cellular outcome (whether there is/is not inflammation). Missense mutations that fall on interfaces and nonsense/frameshift mutations that result in truncated negative regulators disrupt the interactions with the targets, thereby enabling constitutive activation of the nuclear factor-kappa B, and contributing to chronic inflammation, autoimmune diseases, and oncogenesis. PMID:26276688

  9. Optomotor-Blind Negatively Regulates Drosophila Eye Development by Blocking Jak/STAT Signaling

    PubMed Central

    Tsai, Yu-Chen; Grimm, Stefan; Chao, Ju-Lan; Wang, Shih-Chin; Hofmeyer, Kerstin; Shen, Jie; Eichinger, Fred; Michalopoulou, Theoni; Yao, Chi-Kuang; Chang, Chih-Hsuan; Lin, Shih-Han; Sun, Y. Henry; Pflugfelder, Gert O.

    2015-01-01

    Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired. PMID:25781970

  10. Optomotor-blind negatively regulates Drosophila eye development by blocking Jak/STAT signaling.

    PubMed

    Tsai, Yu-Chen; Grimm, Stefan; Chao, Ju-Lan; Wang, Shih-Chin; Hofmeyer, Kerstin; Shen, Jie; Eichinger, Fred; Michalopoulou, Theoni; Yao, Chi-Kuang; Chang, Chih-Hsuan; Lin, Shih-Han; Sun, Y Henry; Pflugfelder, Gert O

    2015-01-01

    Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired.

  11. Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer.

    PubMed

    Zhang, Youyou; He, Qun; Hu, Zhongyi; Feng, Yi; Fan, Lingling; Tang, Zhaoqing; Yuan, Jiao; Shan, Weiwei; Li, Chunsheng; Hu, Xiaowen; Tanyi, Janos L; Fan, Yi; Huang, Qihong; Montone, Kathleen; Dang, Chi V; Zhang, Lin

    2016-06-01

    Long noncoding RNAs (lncRNAs) play critical roles during tumorigenesis by functioning as scaffolds that regulate protein-protein, protein-DNA or protein-RNA interactions. Using a clinically guided genetic screening approach, we identified lncRNA in nonhomologous end joining (NHEJ) pathway 1 (LINP1), which is overexpressed in human triple-negative breast cancer. We found that LINP1 enhances repair of DNA double-strand breaks by serving as a scaffold linking Ku80 and DNA-PKcs, thereby coordinating the NHEJ pathway. Importantly, blocking LINP1, which is regulated by p53 and epidermal growth factor receptor (EGFR) signaling, increases the sensitivity of the tumor-cell response to radiotherapy in breast cancer.

  12. Cell type-specific expression of JC virus early promoter is determined by positive and negative regulation.

    PubMed

    Tada, H; Lashgari, M; Rappaport, J; Khalili, K

    1989-01-01

    We analyzed control sequences of the human papovavirus JC virus (JCV) to define the cis-acting elements that regulate specific expression of the viral early region genes in glial cells. Nuclear run-on transcription, S1 analysis, and chloramphenicol acetyltransferase enzyme activity in a transient transfection assay established that the cell type-specific expression of JCV early genes is determined at the transcriptional level. Using DNase footprinting analysis of nuclear proteins prepared from glial and nonglial cells, we located four regions within the JCV control sequences that specifically interacted with the proteins. In glial cells, all four domains contributed to the specific expression of a heterologous promoter, whereas in nonglial cells, two protein-binding regions showed no effect on basal transcriptional activity and the other two domains significantly downregulated transcription of the promoter. We conclude that cell type-specific transcription of the JCV early promoter is under both positive and negative regulation in eucaryotic cells.

  13. Sensitivity control through attenuation of signal transfer efficiency by negative regulation of cellular signalling.

    PubMed

    Toyoshima, Yu; Kakuda, Hiroaki; Fujita, Kazuhiro A; Uda, Shinsuke; Kuroda, Shinya

    2012-03-13

    Sensitivity is one of the hallmarks of biological and pharmacological responses. However, the principle of controlling sensitivity remains unclear. Here we theoretically analyse a simple biochemical reaction and find that the signal transfer efficiency of the transient peak amplitude attenuates depending on the strength of negative regulation. We experimentally find that many signalling pathways in various cell lines, including the Akt and ERK pathways, can be approximated by simple biochemical reactions and that the same property of the attenuation of signal transfer efficiency was observed for such pathways. Because of this property, a downstream molecule should show higher sensitivity to an activator and lower sensitivity to an inhibitor than an upstream molecule. Indeed, we experimentally verify that S6, which lies downstream of Akt, shows lower sensitivity to an epidermal growth factor receptor inhibitor than Akt. Thus, cells can control downstream sensitivity through the attenuation of signal transfer efficiency by changing the expression level of negative regulators.

  14. Negative regulators of the PHO system in Saccharomyces cerevisiae: isolation and structural characterization of PHO85.

    PubMed Central

    Uesono, Y; Tanaka, K; Toh-e, A

    1987-01-01

    One of the negative regulators of the PHO system of Saccharomyces cerevisiae, PHO85, has been isolated by transformation and complementation of a pho85 strain. The complementing activity was delimited within a 1258 bp DNA segment and this region has been sequenced. The largest open reading frame found in this region can encode a protein of 302 amino acid residues. A pho85 mutant resulted from disruption of the chromosomal counterpart of the open reading frame described above. Therefore, we concluded that the gene we have cloned is PHO85. This result also indicates that PHO85 is nonessential. Northern analysis revealed that the size of the PHO85 message is 1.1 kb. No similarity was found between the putative amino acid sequences of two negative regulators, the PHO80 and PHO85 proteins. Images PMID:3320965

  15. Negative regulation of IL-17-mediated signaling and inflammation by ubiquitin-specific protease 25

    PubMed Central

    Zhong, Bo; Liu, Xikui; Wang, Xiaohu; Chang, Seon Hee; Liu, Xindong; Wang, Aibo; Reynolds, Joseph M.; Dong, Chen

    2012-01-01

    Interleukin 17 (IL-17) plays an important role in infection and autoimmunity; how it signals remains poorly understood. In this study, we identified ubiquitin-specific protease 25 (USP25) as a negative regulator of IL-17-mediated signaling and inflammation. Overexpression of USP25 inhibited IL-17-triggered signaling, while USP25 deficiency resulted in increased phosphorylation of IκBα and Jnk, increased expression of chemokines and cytokines as well as prolonged half-life of Cxcl1 mRNA following IL-17 treatment. Consistently, Usp25-/- mice exhibited increased sensitivity to IL-17-dependent inflammation and autoimmunity in vivo. Mechanistically, IL-17 stimulation induced the association of USP25 with TRAF5 and TRAF6 and USP25 induced removal of Act1-mediated K63-linked ubiquitination in TRAF5 and TRAF6. Thus, our results demonstrate that USP25 is a deubiquitinating enzyme (DUB) that negatively regulates IL-17-triggered signaling. PMID:23042150

  16. CARD9 negatively regulates NLRP3-induced IL-1β production on Salmonella infection of macrophages

    PubMed Central

    Pereira, Milton; Tourlomousis, Panagiotis; Wright, John; P. Monie, Tom; Bryant, Clare E.

    2016-01-01

    Interleukin-1β (IL-1β) is a proinflammatory cytokine required for host control of bacterial infections, and its production must be tightly regulated to prevent excessive inflammation. Here we show that caspase recruitment domain-containing protein 9 (CARD9), a protein associated with induction of proinflammatory cytokines by fungi, has a negative role on IL-1β production during bacterial infection. Specifically, in response to activation of the nucleotide oligomerization domain receptor pyrin-domain containing protein 3 (NLRP3) by Salmonella infection, CARD9 negatively regulates IL-1β by fine-tuning pro-IL-1β expression, spleen tyrosine kinase (SYK)-mediated NLRP3 activation and repressing inflammasome-associated caspase-8 activity. CARD9 is suppressed during Salmonella enterica serovar Typhimurium infection, facilitating increased IL-1β production. CARD9 is, therefore, a central signalling hub that coordinates a pathogen-specific host inflammatory response. PMID:27670879

  17. Enterovirus 71 Infection Cleaves a Negative Regulator for Viral Internal Ribosomal Entry Site-Driven Translation

    PubMed Central

    Chen, Li-Lien; Kung, Yu-An; Weng, Kuo-Feng; Lin, Jing-Yi; Horng, Jim-Tong

    2013-01-01

    Far-upstream element-binding protein 2 (FBP2) is an internal ribosomal entry site (IRES) trans-acting factor (ITAF) that negatively regulates enterovirus 71 (EV71) translation. This study shows that EV71 infection cleaved FBP2. Live EV71 and the EV71 replicon (but not UV-inactivated virus particles) induced FBP2 cleavage, suggesting that viral replication results in FBP2 cleavage. The results also showed that virus-induced proteasome, autophagy, and caspase activity co-contribute to EV71-induced FBP2 cleavage. Using FLAG-fused FBP2, we mapped the potential cleavage fragments of FBP2 in infected cells. We also found that FBP2 altered its function when its carboxyl terminus was cleaved. This study presents a mechanism for virus-induced cellular events to cleave a negative regulator for viral IRES-driven translation. PMID:23345520

  18. CARD9 negatively regulates NLRP3-induced IL-1β production on Salmonella infection of macrophages.

    PubMed

    Pereira, Milton; Tourlomousis, Panagiotis; Wright, John; P Monie, Tom; Bryant, Clare E

    2016-09-27

    Interleukin-1β (IL-1β) is a proinflammatory cytokine required for host control of bacterial infections, and its production must be tightly regulated to prevent excessive inflammation. Here we show that caspase recruitment domain-containing protein 9 (CARD9), a protein associated with induction of proinflammatory cytokines by fungi, has a negative role on IL-1β production during bacterial infection. Specifically, in response to activation of the nucleotide oligomerization domain receptor pyrin-domain containing protein 3 (NLRP3) by Salmonella infection, CARD9 negatively regulates IL-1β by fine-tuning pro-IL-1β expression, spleen tyrosine kinase (SYK)-mediated NLRP3 activation and repressing inflammasome-associated caspase-8 activity. CARD9 is suppressed during Salmonella enterica serovar Typhimurium infection, facilitating increased IL-1β production. CARD9 is, therefore, a central signalling hub that coordinates a pathogen-specific host inflammatory response.

  19. SEL-10/Fbw7-dependent negative feedback regulation of LIN-45/Braf signaling in C. elegans via a conserved phosphodegron

    PubMed Central

    de la Cova, Claire; Greenwald, Iva

    2012-01-01

    The conserved E3 ubiquitin ligase component named SEL-10 in Caenorhabditis elegans and Fbw7 in mammals targets substrates for ubiquitin-mediated degradation through a high-affinity binding site called a Cdc4 phosphodegron (CPD). As many known substrates of Fbw7 are oncoproteins, the identification of new substrates may offer insight into cancer biology as well as aspects of proteome regulation. Here, we evaluated whether the presence of an evolutionarily conserved CPD would be a feasible complement to proteomics-based approaches for identifying new potential substrates. For functional assessments, we focused on LIN-45, a component of the signal transduction pathway underlying vulval induction and the ortholog of human Braf, an effector of Ras in numerous cancers. Our analysis demonstrates that LIN-45 behaves as a bona fide substrate of SEL-10, with mutation of the CPD or loss of sel-10 resulting in increased activity and protein stability in vivo. Furthermore, during vulval induction, the downstream kinase MPK-1/ERK is also required for LIN-45 protein degradation in a negative feedback loop, resulting in degradation of LIN-45 where ERK is highly active. As the CPD consensus sequence is conserved in human Braf, we propose that Fbw7 may also regulate Braf stability in some cell contexts. We discuss the implications of our findings for vulval development in C. elegans, the potential applicability to human Braf, and the value of a CPD-based predictive approach for human Fbw7 substrates. PMID:23154983

  20. SEL-10/Fbw7-dependent negative feedback regulation of LIN-45/Braf signaling in C. elegans via a conserved phosphodegron.

    PubMed

    de la Cova, Claire; Greenwald, Iva

    2012-11-15

    The conserved E3 ubiquitin ligase component named SEL-10 in Caenorhabditis elegans and Fbw7 in mammals targets substrates for ubiquitin-mediated degradation through a high-affinity binding site called a Cdc4 phosphodegron (CPD). As many known substrates of Fbw7 are oncoproteins, the identification of new substrates may offer insight into cancer biology as well as aspects of proteome regulation. Here, we evaluated whether the presence of an evolutionarily conserved CPD would be a feasible complement to proteomics-based approaches for identifying new potential substrates. For functional assessments, we focused on LIN-45, a component of the signal transduction pathway underlying vulval induction and the ortholog of human Braf, an effector of Ras in numerous cancers. Our analysis demonstrates that LIN-45 behaves as a bona fide substrate of SEL-10, with mutation of the CPD or loss of sel-10 resulting in increased activity and protein stability in vivo. Furthermore, during vulval induction, the downstream kinase MPK-1/ERK is also required for LIN-45 protein degradation in a negative feedback loop, resulting in degradation of LIN-45 where ERK is highly active. As the CPD consensus sequence is conserved in human Braf, we propose that Fbw7 may also regulate Braf stability in some cell contexts. We discuss the implications of our findings for vulval development in C. elegans, the potential applicability to human Braf, and the value of a CPD-based predictive approach for human Fbw7 substrates.

  1. A loss-of-function screen for phosphatases that regulate neurite outgrowth identifies PTPN12 as a negative regulator of TrkB tyrosine phosphorylation.

    PubMed

    Ambjørn, Malene; Dubreuil, Véronique; Miozzo, Federico; Nigon, Fabienne; Møller, Bente; Issazadeh-Navikas, Shohreh; Berg, Jacob; Lees, Michael; Sap, Jan

    2013-01-01

    Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely result from activation of its tyrosine kinase receptor TrkB. Although intracellular neurotrophin (NT) signaling presumably reflects the combined action of kinases and phosphatases, little is known about the contributions of the latter to TrkB regulation. The issue is complicated by the fact that phosphatases belong to multiple independently evolved families, which are rarely studied together. We undertook a loss-of-function RNA-interference-based screen of virtually all known (254) human phosphatases to understand their function in BDNF/TrkB-mediated neurite outgrowth in differentiated SH-SY5Y cells. This approach identified phosphatases from diverse families, which either positively or negatively modulate BDNF-TrkB-mediated neurite outgrowth, and most of which have little or no previously established function related to NT signaling. "Classical" protein tyrosine phosphatases (PTPs) accounted for 13% of the candidate regulatory phosphatases. The top classical PTP identified as a negative regulator of BDNF-TrkB-mediated neurite outgrowth was PTPN12 (also called PTP-PEST). Validation and follow-up studies showed that endogenous PTPN12 antagonizes tyrosine phosphorylation of TrkB itself, and the downstream activation of ERK1/2. We also found PTPN12 to negatively regulate phosphorylation of p130cas and FAK, proteins with previously described functions related to cell motility and growth cone behavior. Our data provide the first comprehensive survey of phosphatase function in NT signaling and neurite outgrowth. They reveal the complexity of phosphatase control, with several evolutionarily unrelated phosphatase families cooperating to affect this biological response, and hence the

  2. A Loss-of-Function Screen for Phosphatases that Regulate Neurite Outgrowth Identifies PTPN12 as a Negative Regulator of TrkB Tyrosine Phosphorylation

    PubMed Central

    Ambjørn, Malene; Dubreuil, Véronique; Miozzo, Federico; Nigon, Fabienne; Møller, Bente; Issazadeh-Navikas, Shohreh; Berg, Jacob; Lees, Michael; Sap, Jan

    2013-01-01

    Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely result from activation of its tyrosine kinase receptor TrkB. Although intracellular neurotrophin (NT) signaling presumably reflects the combined action of kinases and phosphatases, little is known about the contributions of the latter to TrkB regulation. The issue is complicated by the fact that phosphatases belong to multiple independently evolved families, which are rarely studied together. We undertook a loss-of-function RNA-interference-based screen of virtually all known (254) human phosphatases to understand their function in BDNF/TrkB-mediated neurite outgrowth in differentiated SH-SY5Y cells. This approach identified phosphatases from diverse families, which either positively or negatively modulate BDNF-TrkB-mediated neurite outgrowth, and most of which have little or no previously established function related to NT signaling. “Classical” protein tyrosine phosphatases (PTPs) accounted for 13% of the candidate regulatory phosphatases. The top classical PTP identified as a negative regulator of BDNF-TrkB-mediated neurite outgrowth was PTPN12 (also called PTP-PEST). Validation and follow-up studies showed that endogenous PTPN12 antagonizes tyrosine phosphorylation of TrkB itself, and the downstream activation of ERK1/2. We also found PTPN12 to negatively regulate phosphorylation of p130cas and FAK, proteins with previously described functions related to cell motility and growth cone behavior. Our data provide the first comprehensive survey of phosphatase function in NT signaling and neurite outgrowth. They reveal the complexity of phosphatase control, with several evolutionarily unrelated phosphatase families cooperating to affect this biological response, and hence

  3. Ceramide and ceramide 1-phosphate are negative regulators of TNF-α production induced by lipopolysaccharide.

    PubMed

    Józefowski, Szczepan; Czerkies, Maciej; Łukasik, Anna; Bielawska, Alicja; Bielawski, Jacek; Kwiatkowska, Katarzyna; Sobota, Andrzej

    2010-12-01

    LPS is a constituent of cell walls of Gram-negative bacteria that, acting through the CD14/TLR4 receptor complex, causes strong proinflammatory activation of macrophages. In murine peritoneal macrophages and J774 cells, LPS at 1-2 ng/ml induced maximal TNF-α and MIP-2 release, and higher LPS concentrations were less effective, which suggested a negative control of LPS action. While studying the mechanism of this negative regulation, we found that in J774 cells, LPS activated both acid sphingomyelinase and neutral sphingomyelinase and moderately elevated ceramide, ceramide 1-phosphate, and sphingosine levels. Lowering of the acid sphingomyelinase and neutral sphingomyelinase activities using inhibitors or gene silencing upregulated TNF-α and MIP-2 production in J774 cells and macrophages. Accordingly, treatment of those cells with exogenous C8-ceramide diminished TNF-α and MIP-2 production after LPS stimulation. Exposure of J774 cells to bacterial sphingomyelinase or interference with ceramide hydrolysis using inhibitors of ceramidases also lowered the LPS-induced TNF-α production. The latter result indicates that ceramide rather than sphingosine suppresses TNF-α and MIP-2 production. Of these two cytokines, only TNF-α was negatively regulated by ceramide 1-phosphate as was indicated by upregulated TNF-α production after silencing of ceramide kinase gene expression. None of the above treatments diminished NO or RANTES production induced by LPS. Together the data indicate that ceramide negatively regulates production of TNF-α and MIP-2 in response to LPS with the former being sensitive to ceramide 1-phosphate as well. We hypothesize that the ceramide-mediated anti-inflammatory pathway may play a role in preventing endotoxic shock and in limiting inflammation.

  4. Negative feedback regulation of thyrotropin subunits and pituitary deiodinases in red drum, Sciaenops ocellatus.

    PubMed

    Jones, R A; Cohn, W B; Wilkes, A A; MacKenzie, D S

    2017-01-01

    Thyroxine (T4) undergoes dynamic daily cycles in the perciform fish the red drum, Sciaenops ocellatus, that are inversely timed to cycles of thyrotropin (TSH) subunit mRNA expression in the pituitary gland. We have proposed that these daily cycles are regulated by negative feedback of circulating T4 on expression of pituitary thyroid hormone deiodinase type 3 (Dio3), such that elevated circulating T4 results in diminished pituitary thyroid hormone catabolism and consequent increased negative feedback on expression of TSH subunits during the day. To determine whether thyroid hormones function to modulate expression of pituitary deiodinase enzymes we developed an immersion technique to administer physiological doses of T3 and T4in vivo. Immersion in T4 or T3 significantly inhibited the mRNA expression of the TSH α and β subunits from 4 to 66h of immersion. Pituitary Dio3 expression was significantly diminished by T3 and T4 at 22h. These results indicate that both T4 and T3 are capable of negative feedback regulation of TSH subunit expression in red drum at physiological concentrations and on a time scale consistent with the T4 daily cycle. Furthermore, thyroid hormones negatively regulate Dio3 expression in the pituitary in a manner suggesting that negative thyroxine feedback on Dio3 promotes the release of TSH subunits from TH inhibition and may be an important mechanism for generating daily thyroid hormone cycles. These results highlight a potentially important role for D3 in mediating thyroid hormone feedback on TSH expression, not previously described in other species.

  5. PTEN, a widely known negative regulator of insulin/PI3K signaling, positively regulates neuronal insulin resistance

    PubMed Central

    Gupta, Amit; Dey, Chinmoy Sankar

    2012-01-01

    Lipid and protein tyrosine phosphatase, phosphatase and tension homologue (PTEN), is a widely known negative regulator of insulin/phosphoinositide 3-kinase signaling. Down-regulation of PTEN is thus widely documented to ameliorate insulin resistance in peripheral tissues such as skeletal muscle and adipose. However, not much is known about its exact role in neuronal insulin signaling and insulin resistance. Moreover, alterations of PTEN in neuronal systems have led to discovery of several unexpected outcomes, including in the neurodegenerative disorder Alzheimer's disease (AD), which is increasingly being recognized as a brain-specific form of diabetes. In addition, contrary to expectations, its neuron-specific deletion in mice resulted in development of diet-sensitive obesity. The present study shows that PTEN, paradoxically, positively regulates neuronal insulin signaling and glucose uptake. Its down-regulation exacerbates neuronal insulin resistance. The positive role of PTEN in neuronal insulin signaling is likely due to its protein phosphatase actions, which prevents the activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK), the kinases critically involved in neuronal energy impairment and neurodegeneration. Results suggest that PTEN acting through FAK, the direct protein substrate of PTEN, prevents ERK activation. Our findings provide an explanation for unexpected outcomes reported earlier with PTEN alterations in neuronal systems and also suggest a novel molecular pathway linking neuronal insulin resistance and AD, the two pathophysiological states demonstrated to be closely linked. PMID:22875989

  6. Maternal depression and anxiety, social synchrony, and infant regulation of negative and positive emotions.

    PubMed

    Granat, Adi; Gadassi, Reuma; Gilboa-Schechtman, Eva; Feldman, Ruth

    2017-02-01

    Maternal postpartum depression (PPD) exerts long-term negative effects on infants; yet the mechanisms by which PPD disrupts emotional development are not fully clear. Utilizing an extreme-case design, 971 women reported symptoms of depression and anxiety following childbirth and 215 high and low on depressive symptomatology reported again at 6 months. Of these, mothers diagnosed with major depressive disorder (n = 22), anxiety disorders (n = 19), and controls (n = 59) were visited at 9 months. Mother-infant interaction was microcoded for maternal and infant's social behavior and synchrony. Infant negative and positive emotional expression and self-regulation were tested in 4 emotion-eliciting paradigms: anger with mother, anger with stranger, joy with mother, and joy with stranger. Infants of depressed mothers displayed less social gaze and more gaze aversion. Gaze and touch synchrony were lowest for depressed mothers, highest for anxious mothers, and midlevel among controls. Infants of control and anxious mothers expressed less negative affect with mother compared with stranger; however, maternal presence failed to buffer negative affect in the depressed group. Maternal depression chronicity predicted increased self-regulatory behavior during joy episodes, and touch synchrony moderated the effects of PPD on infant self-regulation. Findings describe subtle microlevel processes by which maternal depression across the postpartum year disrupts the development of infant emotion regulation and suggest that diminished social synchrony, low differentiation of attachment and nonattachment contexts, and increased self-regulation during positive moments may chart pathways for the cross-generational transfer of emotional maladjustment from depressed mothers to their infants. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis.

    PubMed

    Chien, Pei-Shan; Nam, Hong Gil; Chen, Yet-Ran

    2015-08-01

    High salinity has negative impacts on plant growth through altered water uptake and ion-specific toxicities. Plants have therefore evolved an intricate regulatory network in which plant hormones play significant roles in modulating physiological responses to salinity. However, current understanding of the plant peptides involved in this regulatory network remains limited. Here, we identified a salt-regulated peptide in Arabidopsis. The peptide was 11 aa and was derived from the C terminus of a cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily. This peptide was found by searching homologues in Arabidopsis using the precursor of a tomato CAP-derived peptide (CAPE) that was initially identified as an immune signal. In searching for a CAPE involved in salt responses, we screened CAPE precursor genes that showed salt-responsive expression and found that the PROAtCAPE1 (AT4G33730) gene was regulated by salinity. We confirmed the endogenous Arabidopsis CAP-derived peptide 1 (AtCAPE1) by mass spectrometry and found that a key amino acid residue in PROAtCAPE1 is critical for AtCAPE1 production. Moreover, although PROAtCAPE1 was expressed mainly in the roots, AtCAPE1 was discovered to be upregulated systemically upon salt treatment. The salt-induced AtCAPE1 negatively regulated salt tolerance by suppressing several salt-tolerance genes functioning in the production of osmolytes, detoxification, stomatal closure control, and cell membrane protection. This discovery demonstrates that AtCAPE1, a homologue of tomato immune regulator CAPE1, plays an important role in the regulation of salt stress responses. Our discovery thus suggests that the peptide may function in a trade-off between pathogen defence and salt tolerance.

  8. A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis

    PubMed Central

    Chien, Pei-Shan; Nam, Hong Gil; Chen, Yet-Ran

    2015-01-01

    High salinity has negative impacts on plant growth through altered water uptake and ion-specific toxicities. Plants have therefore evolved an intricate regulatory network in which plant hormones play significant roles in modulating physiological responses to salinity. However, current understanding of the plant peptides involved in this regulatory network remains limited. Here, we identified a salt-regulated peptide in Arabidopsis. The peptide was 11 aa and was derived from the C terminus of a cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily. This peptide was found by searching homologues in Arabidopsis using the precursor of a tomato CAP-derived peptide (CAPE) that was initially identified as an immune signal. In searching for a CAPE involved in salt responses, we screened CAPE precursor genes that showed salt-responsive expression and found that the PROAtCAPE1 (AT4G33730) gene was regulated by salinity. We confirmed the endogenous Arabidopsis CAP-derived peptide 1 (AtCAPE1) by mass spectrometry and found that a key amino acid residue in PROAtCAPE1 is critical for AtCAPE1 production. Moreover, although PROAtCAPE1 was expressed mainly in the roots, AtCAPE1 was discovered to be upregulated systemically upon salt treatment. The salt-induced AtCAPE1 negatively regulated salt tolerance by suppressing several salt-tolerance genes functioning in the production of osmolytes, detoxification, stomatal closure control, and cell membrane protection. This discovery demonstrates that AtCAPE1, a homologue of tomato immune regulator CAPE1, plays an important role in the regulation of salt stress responses. Our discovery thus suggests that the peptide may function in a trade-off between pathogen defence and salt tolerance. PMID:26093145

  9. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex.

    PubMed

    Zhang, Wenjing; Gao, Yijun; Li, Peixue; Shi, Zhubing; Guo, Tong; Li, Fei; Han, Xiangkun; Feng, Yan; Zheng, Chao; Wang, Zuoyun; Li, Fuming; Chen, Haiquan; Zhou, Zhaocai; Zhang, Lei; Ji, Hongbin

    2014-03-01

    Lung cancer is one of the most devastating diseases worldwide with high incidence and mortality. Hippo (Hpo) pathway is a conserved regulator of organ size in both Drosophila and mammals. Emerging evidence has suggested the significance of Hpo pathway in cancer development. In this study, we identify VGLL4 as a novel tumor suppressor in lung carcinogenesis through negatively regulating the formation of YAP-TEAD complex, the core component of Hpo pathway. Our data show that VGLL4 is frequently observed to be lowly expressed in both mouse and human lung cancer specimens. Ectopic expression of VGLL4 significantly suppresses the growth of lung cancer cells in vitro. More importantly, VGLL4 significantly inhibits lung cancer progression in de novo mouse model. We further find that VGLL4 inhibits the activity of the YAP-TEAD transcriptional complex. Our data show that VGLL4 directly competes with YAP in binding to TEADs and executes its growth-inhibitory function through two TDU domains. Collectively, our study demonstrates that VGLL4 is a novel tumor suppressor for lung cancer through negatively regulating the YAP-TEAD complex formation and thus the Hpo pathway.

  10. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex

    PubMed Central

    Zhang, Wenjing; Gao, Yijun; Li, Peixue; Shi, Zhubing; Guo, Tong; Li, Fei; Han, Xiangkun; Feng, Yan; Zheng, Chao; Wang, Zuoyun; Li, Fuming; Chen, Haiquan; Zhou, Zhaocai; Zhang, Lei; Ji, Hongbin

    2014-01-01

    Lung cancer is one of the most devastating diseases worldwide with high incidence and mortality. Hippo (Hpo) pathway is a conserved regulator of organ size in both Drosophila and mammals. Emerging evidence has suggested the significance of Hpo pathway in cancer development. In this study, we identify VGLL4 as a novel tumor suppressor in lung carcinogenesis through negatively regulating the formation of YAP-TEAD complex, the core component of Hpo pathway. Our data show that VGLL4 is frequently observed to be lowly expressed in both mouse and human lung cancer specimens. Ectopic expression of VGLL4 significantly suppresses the growth of lung cancer cells in vitro. More importantly, VGLL4 significantly inhibits lung cancer progression in de novo mouse model. We further find that VGLL4 inhibits the activity of the YAP-TEAD transcriptional complex. Our data show that VGLL4 directly competes with YAP in binding to TEADs and executes its growth-inhibitory function through two TDU domains. Collectively, our study demonstrates that VGLL4 is a novel tumor suppressor for lung cancer through negatively regulating the YAP-TEAD complex formation and thus the Hpo pathway. PMID:24458094

  11. Germ-Cell-Specific Inflammasome Component NLRP14 Negatively Regulates Cytosolic Nucleic Acid Sensing to Promote Fertilization.

    PubMed

    Abe, Takayuki; Lee, Albert; Sitharam, Ramaswami; Kesner, Jordan; Rabadan, Raul; Shapira, Sagi D

    2017-04-18

    Cytosolic sensing of nucleic acids initiates tightly regulated programs to limit infection. Oocyte fertilization represents a scenario wherein inappropriate responses to exogenous yet non-pathogen-derived nucleic acids would have negative consequences. We hypothesized that germ cells express negative regulators of nucleic acid sensing (NAS) in steady state and applied an integrated data-mining and functional genomics approach to identify a rheostat of DNA and RNA sensing-the inflammasome component NLRP14. We demonstrated that NLRP14 interacted physically with the nucleic acid sensing pathway and targeted TBK1 (TANK binding kinase 1) for ubiquitination and degradation. We further mapped domains in NLRP14 and TBK1 that mediated the inhibitory function. Finally, we identified a human nonsense germline variant associated with male sterility that results in loss of NLRP14 function and hyper-responsiveness to nucleic acids. The discovery points to a mechanism of nucleic acid sensing regulation that may be of particular importance in fertilization. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The interaction of positive and negative sensory feedback loops in dynamic regulation of a motor pattern.

    PubMed

    Ausborn, Jessica; Wolf, Harald; Stein, Wolfgang

    2009-10-01

    In many rhythmic behaviors, phasic sensory feedback modifies the motor pattern. This modification is assumed to depend on feedback sign (positive vs. negative). While on a phenomenological level feedback sign is well defined, many sensory pathways also process antagonistic, and possibly contradictory, sensory information. We here model the locust flight pattern generator and proprioceptive feedback provided by the tegula wing receptor to test the functional significance of sensory pathways processing antagonistic information. We demonstrate that the tegula provides delayed positive feedback via interneuron 301, while all other pathways provide negative feedback. Contradictory to previous assumptions, the increase of wing beat frequency when the tegula is activated during flight is due to the positive feedback. By use of an abstract model we reveal that the regulation of motor pattern frequency by sensory feedback critically depends on the interaction of positive and negative feedback, and thus on the weighting of antagonistic pathways.

  13. OsGF14b Positively Regulates Panicle Blast Resistance but Negatively Regulates Leaf Blast Resistance in Rice.

    PubMed

    Liu, Qing; Yang, Jianyuan; Zhang, Shaohong; Zhao, Junliang; Feng, Aiqing; Yang, Tifeng; Wang, Xiaofei; Mao, Xinxue; Dong, Jingfang; Zhu, Xiaoyuan; Leung, Hei; Leach, Jan E; Liu, Bin

    2016-01-01

    Although 14-3-3 proteins have been reported to be involved in responses to biotic stresses in plants, their functions in rice blast, the most destructive disease in rice, are largely unknown. Only GF14e has been confirmed to negatively regulate leaf blast. We report that GF14b is highly expressed in seedlings and panicles during blast infection. Rice plants overexpressing GF14b show enhanced resistance to panicle blast but are susceptible to leaf blast. In contrast, GF14b-silenced plants show increased susceptibility to panicle blast but enhanced resistance to leaf blast. Yeast one-hybrid assays demonstrate that WRKY71 binds to the promoter of GF14b and modulates its expression. Overexpression of GF14b induces expression of jasmonic acid (JA) synthesis-related genes but suppresses expression of salicylic acid (SA) synthesis-related genes. In contrast, suppressed GF14b expression causes decreased expression of JA synthesis-related genes but activation of SA synthesis-related genes. These results suggest that GF14b positively regulates panicle blast resistance but negatively regulates leaf blast resistance, and that GF14b-mediated disease resistance is associated with the JA- and SA-dependent pathway. The different functions for 14-3-3 proteins in leaf and panicle blast provide new evidence that leaf and panicle blast resistance are controlled by different mechanisms.

  14. Resveratrol suppresses NTHi-induced inflammation via up-regulation of the negative regulator MyD88 short

    PubMed Central

    Andrews, Carla S.; Matsuyama, Shingo; Lee, Byung-Cheol; Li, Jian-Dong

    2016-01-01

    Upper respiratory tract inflammatory diseases such as asthma and chronic obstructive pulmonary diseases (COPD) affect more than one-half billion people globally and are characterized by chronic inflammation that is often exacerbated by respiratory pathogens such as nontypeable Haemophilus influenzae (NTHi). The increasing numbers of antibiotic-resistant bacterial strains and the limited success of currently available pharmaceuticals used to manage the symptoms of these diseases present an urgent need for the development of novel anti-inflammatory therapeutic agents. Resveratrol has long been thought as an interesting therapeutic agent for various diseases including inflammatory diseases. However, the molecular mechanisms underlying its anti-inflammatory properties remain largely unknown. Here we show for the first time that resveratrol decreases expression of pro-inflammatory mediators in airway epithelial cells and in the lung of mice by enhancing NTHi-induced MyD88 short, a negative regulator of inflammation, via inhibition of ERK1/2 activation. Furthermore, resveratrol inhibits NTHi-induced ERK1/2 phosphorylation by increasing MKP-1 expression via a cAMP-PKA-dependent signaling pathway. Finally, we show that resveratrol has anti-inflammatory effects post NTHi infection, thereby demonstrating its therapeutic potential. Together these data reveal a novel mechanism by which resveratrol alleviates NTHi-induced inflammation in airway disease by up-regulating the negative regulator of inflammation MyD88s. PMID:27677845

  15. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    SciTech Connect

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo

    2013-07-15

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.

  16. Down-regulation of negative emotional processing by transcranial direct current stimulation: effects of personality characteristics.

    PubMed

    Peña-Gómez, Cleofé; Vidal-Piñeiro, Dídac; Clemente, Immaculada C; Pascual-Leone, Álvaro; Bartrés-Faz, David

    2011-01-01

    Evidence from neuroimaging and electrophysiological studies indicates that the left dorsolateral prefrontal cortex (DLPFC) is a core region in emotional processing, particularly during down-regulation of negative emotional conditions. However, emotional regulation is a process subject to major inter-individual differences, some of which may be explained by personality traits. In the present study we used transcranial direct current stimulation (tDCS) over the left DLPFC to investigate whether transiently increasing the activity of this region resulted in changes in the ratings of positive, neutral and negative emotional pictures. Results revealed that anodal, but not cathodal, tDCS reduced the perceived degree of emotional valence for negative stimuli, possibly due to an enhancement of cognitive control of emotional expression. We also aimed to determine whether personality traits (extraversion and neuroticism) might condition the impact of tDCS. We found that individuals with higher scores on the introversion personality dimension were more permeable than extraverts to the modulatory effects of the stimulation. The present study underlines the role of the left DLPFC in emotional regulation, and stresses the importance of considering individual personality characteristics as a relevant variable, although replication is needed given the limited sample size of our study.

  17. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    SciTech Connect

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.

  18. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    PubMed Central

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  19. Neuronal pentraxin 1 negatively regulates excitatory synapse density and synaptic plasticity.

    PubMed

    Figueiro-Silva, Joana; Gruart, Agnès; Clayton, Kevin Bernard; Podlesniy, Petar; Abad, Maria Alba; Gasull, Xavier; Delgado-García, José María; Trullas, Ramon

    2015-04-08

    In mature neurons, the number of synapses is determined by a neuronal activity-dependent dynamic equilibrium between positive and negative regulatory factors. We hypothesized that neuronal pentraxin (NP1), a proapoptotic protein induced by low neuronal activity, could be a negative regulator of synapse density because it is found in dystrophic neurites in Alzheimer's disease-affected brains. Here, we report that knockdown of NP1 increases the number of excitatory synapses and neuronal excitability in cultured rat cortical neurons and enhances excitatory drive and long-term potentiation in the hippocampus of behaving mice. Moreover, we found that NP1 regulates the surface expression of the Kv7.2 subunit of the Kv7 family of potassium channels that control neuronal excitability. Furthermore, pharmacological activation of Kv7 channels prevents, whereas inhibition mimics, the increase in synaptic proteins evoked by the knockdown of NP1. These results indicate that NP1 negatively regulates excitatory synapse number by modulating neuronal excitability and show that NP1 restricts excitatory synaptic plasticity. Copyright © 2015 the authors 0270-6474/15/355504-18$15.00/0.

  20. Down-Regulation of Negative Emotional Processing by Transcranial Direct Current Stimulation: Effects of Personality Characteristics

    PubMed Central

    Peña-Gómez, Cleofé; Vidal-Piñeiro, Dídac; Clemente, Immaculada C.; Pascual-Leone, Álvaro; Bartrés-Faz, David

    2011-01-01

    Evidence from neuroimaging and electrophysiological studies indicates that the left dorsolateral prefrontal cortex (DLPFC) is a core region in emotional processing, particularly during down-regulation of negative emotional conditions. However, emotional regulation is a process subject to major inter-individual differences, some of which may be explained by personality traits. In the present study we used transcranial direct current stimulation (tDCS) over the left DLPFC to investigate whether transiently increasing the activity of this region resulted in changes in the ratings of positive, neutral and negative emotional pictures. Results revealed that anodal, but not cathodal, tDCS reduced the perceived degree of emotional valence for negative stimuli, possibly due to an enhancement of cognitive control of emotional expression. We also aimed to determine whether personality traits (extraversion and neuroticism) might condition the impact of tDCS. We found that individuals with higher scores on the introversion personality dimension were more permeable than extraverts to the modulatory effects of the stimulation. The present study underlines the role of the left DLPFC in emotional regulation, and stresses the importance of considering individual personality characteristics as a relevant variable, although replication is needed given the limited sample size of our study. PMID:21829522

  1. miR-367 promotes proliferation and invasion of hepatocellular carcinoma cells by negatively regulating PTEN

    SciTech Connect

    Meng, Xiangrui; Lu, Peng; Fan, Qingxia

    2016-01-29

    MicroRNAs play important roles in the carcinogenesis of many types of cancers by inhibiting gene expression at posttranscriptional level. However, the roles of microRNAs in hepatocellular carcinoma, are still unclear. Here, we identified that miR-367 promotes hepatocellular carcinoma (HCC) cell proliferation by negatively regulates its target gene PTEN. The expression of miR-367 and PTEN are significantly inverse correlated in 35 HCC patients. In HCC cell line, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-367, while miR-367 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-367 mimics significantly promoted the migration and invasion of HCC cells, whereas miR-367 inhibitors significantly reduced cell migration and invasion. Luciferase assays confirmed that miR-367 directly bound to the 3'untranslated region of PTEN, and western blotting showed that miR-367 suppressed the expression of PTEN at the protein levels. This study indicated that miR-367 negatively regulates PTEN and promotes proliferation and invasion of HCC cells. Thus, miR-367 may represent a potential therapeutic target for HCC intervention. - Highlights: • miR-367 mimics promote the proliferation and invasion of HCC cells. • miR-367 inhibitors inhibit the proliferation and invasion of HCC cells. • miR-367 targets 3′UTR of PTEN in HCC cells. • miR-367 negatively regulates PTEN in HCC cells.

  2. PP6 controls T cell development and homeostasis by negatively regulating distal TCR signaling.

    PubMed

    Ye, Jian; Shi, Hao; Shen, Ye; Peng, Chao; Liu, Yan; Li, Chenyu; Deng, Kejing; Geng, Jianguo; Xu, Tian; Zhuang, Yuan; Zheng, Biao; Tao, Wufan

    2015-02-15

    T cell development and homeostasis are both regulated by TCR signals. Protein phosphorylation and dephosphorylation, which are catalyzed by protein kinases and phosphatases, respectively, serve as important switches controlling multiple downstream pathways triggered by TCR recognition of Ags. It has been well documented that protein tyrosine phosphatases are involved in negative regulation of proximal TCR signaling. However, how TCR signals are terminated or attenuated in the distal TCR signaling pathways is largely unknown. We investigated the function of Ser/Thr protein phosphatase (PP) 6 in TCR signaling. T cell lineage-specific ablation of PP6 in mice resulted in enhanced thymic positive and negative selection, and preferential expansion of fetal-derived, IL-17-producing Vγ6Vδ1(+) T cells. Both PP6-deficient peripheral CD4(+) helper and CD8(+) cytolytic cells could not maintain a naive state and became fast-proliferating and short-lived effector cells. PP6 deficiency led to profound hyperactivation of multiple distal TCR signaling molecules, including MAPKs, AKT, and NF-κB. Our studies demonstrate that PP6 acts as a critical negative regulator, not only controlling both αβ and γδ lineage development, but also maintaining naive T cell homeostasis by preventing their premature activation before Ag stimulation.

  3. Mindfulness in schizophrenia: Associations with self-reported motivation, emotion regulation, dysfunctional attitudes, and negative symptoms.

    PubMed

    Tabak, Naomi T; Horan, William P; Green, Michael F

    2015-10-01

    Mindfulness-based interventions are gaining empirical support as alternative or adjunctive treatments for a variety of mental health conditions, including anxiety, depression, and substance use disorders. Emerging evidence now suggests that mindfulness-based treatments may also improve clinical features of schizophrenia, including negative symptoms. However, no research has examined the construct of mindfulness and its correlates in schizophrenia. In this study, we examined self-reported mindfulness in patients (n=35) and controls (n=25) using the Five-Facet Mindfulness Questionnaire. We examined correlations among mindfulness, negative symptoms, and psychological constructs associated with negative symptoms and adaptive functioning, including motivation, emotion regulation, and dysfunctional attitudes. As hypothesized, patients endorsed lower levels of mindfulness than controls. In patients, mindfulness was unrelated to negative symptoms, but it was associated with more adaptive emotion regulation (greater reappraisal) and beliefs (lower dysfunctional attitudes). Some facets of mindfulness were also associated with self-reported motivation (behavioral activation and inhibition). These patterns of correlations were similar in patients and controls. Findings from this initial study suggest that schizophrenia patients may benefit from mindfulness-based interventions because they (a) have lower self-reported mindfulness than controls and (b) demonstrate strong relationships between mindfulness and psychological constructs related to adaptive functioning.

  4. Mindfulness in schizophrenia: Associations with self-reported motivation, emotion regulation, dysfunctional attitudes, and negative symptoms

    PubMed Central

    Tabak, Naomi T.; Horan, William P.; Green, Michael F.

    2015-01-01

    Mindfulness-based interventions are gaining empirical support as alternative or adjunctive treatments for a variety of mental health conditions, including anxiety, depression, and substance use disorders. Emerging evidence now suggests that mindfulness-based treatments may also improve clinical features of schizophrenia, including negative symptoms. However, no research has examined the construct of mindfulness and its correlates in schizophrenia. In this study, we examined self-reported mindfulness in patients (n=35) and controls (n=25) using the Five-Facet Mindfulness Questionnaire. We examined correlations among mindfulness, negative symptoms, and psychological constructs associated with negative symptoms and adaptive functioning, including motivation, emotion regulation, and dysfunctional attitudes. As hypothesized, patients endorsed lower levels of mindfulness than controls. In patients, mindfulness was unrelated to negative symptoms, but it was associated with more adaptive emotion regulation (greater reappraisal) and beliefs (lower dysfunctional attitudes). Some facets of mindfulness were also associated with self-reported motivation (behavioral activation and inhibition). These patterns of correlations were similar in patients and controls. Findings from this initial study suggest that schizophrenia patients may benefit from mindfulness-based interventions because they (a) have lower self-reported mindfulness than controls and (b) demonstrate strong relationships between mindfulness and psychological constructs related to adaptive functioning. PMID:26232242

  5. Coping with Emotions Past: The Neural Bases of Regulating Affect Associated with Negative Autobiographical Memories

    PubMed Central

    Kross, Ethan; Davidson, Matthew; Weber, Jochen; Ochsner, Kevin

    2009-01-01

    Background Although the ability to adaptively reflect on negative autobiographical experiences without ruminating is critical to mental health, to our knowledge no research has directly examined the neural systems underlying this process. Methods Sixteen participants were scanned using functional magnetic resonance imaging (fMRI) as they focused on negative autobiographical memories using cognitive strategies designed to facilitate (feel strategy) versus undermine (analyze and accept strategies) rumination. Results Two key findings were obtained. First, consistent with prior emotion regulation research using image-based stimuli, left prefrontal activity was observed during the implementation of all three strategies. Second, activity in a network of regions involved in self-referential processing and emotion, including subgenual anterior cingulate cortex and medial prefrontal cortex, was highest in response to the feel strategy and lowest for the accept strategy. This pattern of activation mirrored participants’ self-reports of negative affect when engaging in each strategy. Conclusions These findings shed light on the brain regions that distinguish adaptive versus maladaptive forms of reflecting on negative autobiographical memories and offer a novel, ecologically valid route to exploring the neural bases of emotion regulation using fMRI. PMID:19058792

  6. Coping with emotions past: the neural bases of regulating affect associated with negative autobiographical memories.

    PubMed

    Kross, Ethan; Davidson, Matthew; Weber, Jochen; Ochsner, Kevin

    2009-03-01

    Although the ability to adaptively reflect on negative autobiographical experiences without ruminating is critical to mental health, to our knowledge no research has directly examined the neural systems underlying this process. Sixteen participants were scanned using functional magnetic resonance imaging (fMRI) as they focused on negative autobiographical memories using cognitive strategies designed to facilitate (feel strategy) versus undermine (analyze and accept strategies) rumination. Two key findings were obtained. First, consistent with prior emotion regulation research using image-based stimuli, left prefrontal activity was observed during the implementation of all three strategies. Second, activity in a network of regions involved in self-referential processing and emotion, including subgenual anterior cingulate cortex and medial prefrontal cortex, was highest in response to the feel strategy and lowest for the accept strategy. This pattern of activation mirrored participants' self-reports of negative affect when engaging in each strategy. These findings shed light on the brain regions that distinguish adaptive versus maladaptive forms of reflecting on negative autobiographical memories and offer a novel, ecologically valid route to exploring the neural bases of emotion regulation using fMRI.

  7. MecA Protein Acts as a Negative Regulator of Genetic Competence in Streptococcus mutans

    PubMed Central

    Tian, Xiao-Lin; Dong, Gaofeng; Liu, Tianlei; Gomez, Zubelda A.; Wahl, Astrid; Hols, Pascal

    2013-01-01

    Streptococcus mutans develops competence for genetic transformation through a complex network that receives inputs from at least two signaling peptides, competence-stimulating peptide (CSP) and sigX-inducing peptide (XIP). The key step of competence induction is the transcriptional activation of comX, which encodes an alternative sigma factor, SigX (σX), controlling the expression of late competence genes essential for DNA uptake and recombination. In this study, we provide evidence that MecA acts as a negative regulator in the posttranslational regulation of SigX in S. mutans. Using luxAB transcriptional reporter strains, we demonstrate that MecA represses the expression of late competence genes in S. mutans grown in a complex medium that is subpermissive for competence induction by CSP. The negative regulation of competence by MecA requires the presence of a functional SigX. Accordingly, inactivation of MecA results in a prolonged competence state of S. mutans under this condition. We have also found that the AAA+ protease ClpC displays a similar repressing effect on late competence genes, suggesting that both MecA and ClpC function coordinately to regulate competence in the same regulatory circuit in S. mutans. This suggestion is strongly supported by the results of bacterial two-hybrid assays, which demonstrate that MecA interacts with both SigX and ClpC, forming a ternary SigX-MecA-ClpC complex. Western blot analysis also confirms that inactivation of MecA or ClpC results in the intracellular accumulation of the SigX in S. mutans. Together, our data support the notion that MecA mediates the formation of a ternary SigX-MecA-ClpC complex that sequesters SigX and thereby negatively regulates genetic competence in S. mutans. PMID:24039267

  8. HapX Positively and Negatively Regulates the Transcriptional Response to Iron Deprivation in Cryptococcus neoformans

    PubMed Central

    Jung, Won Hee; Saikia, Sanjay; Hu, Guanggan; Wang, Joyce; Fung, Carlen Ka-Yin; D'Souza, Cletus; White, Rick; Kronstad, James W.

    2010-01-01

    The fungal pathogen Cryptococcus neoformans is a major cause of illness in immunocompromised individuals such as AIDS patients. The ability of the fungus to acquire nutrients during proliferation in host tissue and the ability to elaborate a polysaccharide capsule are critical determinants of disease outcome. We previously showed that the GATA factor, Cir1, is a major regulator both of the iron uptake functions needed for growth in host tissue and the key virulence factors such as capsule, melanin and growth at 37°C. We are interested in further defining the mechanisms of iron acquisition from inorganic and host-derived iron sources with the goal of understanding the nutritional adaptation of C. neoformans to the host environment. In this study, we investigated the roles of the HAP3 and HAPX genes in iron utilization and virulence. As in other fungi, the C. neoformans Hap proteins negatively influence the expression of genes encoding respiratory and TCA cycle functions under low-iron conditions. However, we also found that HapX plays both positive and negative roles in the regulation of gene expression, including a positive regulatory role in siderophore transporter expression. In addition, HapX also positively regulated the expression of the CIR1 transcript. This situation is in contrast to the negative regulation by HapX of genes encoding GATA iron regulatory factors in Aspergillus nidulans and Schizosaccharomyces pombe. Although both hapX and hap3 mutants were defective in heme utilization in culture, only HapX made a contribution to virulence, and loss of HapX in a strain lacking the high-affinity iron uptake system did not cause further attenuation of disease. Therefore, HapX appears to have a minimal role during infection of mammalian hosts and instead may be an important regulator of environmental iron uptake functions. Overall, these results indicated that C. neoformans employs multiple strategies for iron acquisition during infection. PMID:21124817

  9. Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts

    PubMed Central

    Gupta, Manoj K.; Teo, Adrian Kee Keong; Rao, Tata Nageswara; Bhatt, Shweta; Kleinridders, Andre; Shirakawa, Jun; Takatani, Tomozumi; Hu, Jiang; De Jesus, Dario F.; Windmueller, Rebecca; Wagers, Amy J.

    2015-01-01

    The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. Significance The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells. PMID:26253715

  10. Gene expression in human thyrocytes and autonomous adenomas reveals suppression of negative feedbacks in tumorigenesis

    PubMed Central

    van Staveren, Wilma C. G.; Solís, David Weiss; Delys, Laurent; Venet, David; Cappello, Matteo; Andry, Guy; Dumont, Jacques E.; Libert, Frédérick; Detours, Vincent; Maenhaut, Carine

    2006-01-01

    The cAMP signaling pathway regulates growth of many cell types, including somatotrophs, thyrocytes, melanocytes, ovarian follicular granulosa cells, adrenocortical cells, and keratinocytes. Mutations of partners from the cAMP signaling cascade are involved in tumor formation. Thyroid-stimulating hormone (TSH) receptor and Gsα activating mutations have been detected in thyroid autonomous adenomas, Gsα mutations in growth hormone-secreting pituitary adenomas, and PKAR1A mutations in Carney complex, a multiple neoplasia syndrome. To gain more insight into the role of cAMP signaling in tumor formation, human primary cultures of thyrocytes were treated for different times (1.5, 3, 16, 24, and 48 h) with TSH to characterize modulations in gene expression using cDNA microarrays. This kinetic study showed a clear difference in expression, early (1.5 and 3 h) and late (16–48 h) after the onset of TSH stimulation. This result suggests a progressive sequential process leading to a change of cell program. The gene expression profile of the long-term stimulated cultures resembled the autonomous adenomas, but not papillary carcinomas. The molecular phenotype of the adenomas thus confirms the role of long-term stimulation of the TSH–cAMP cascade in the pathology. TSH induced a striking up-regulation of different negative feedback modulators of the cAMP cascade, presumably insuring the one-shot effect of the stimulus. Some were down- or nonregulated in adenomas, suggesting a loss of negative feedback control in the tumors. These results suggest that in tumorigenesis, activation of proliferation pathways may be complemented by suppression of multiple corresponding negative feedbacks, i.e., specific tumor suppressors. PMID:16381821

  11. The proteasome activator PA28γ, a negative regulator of p53, is transcriptionally up-regulated by p53.

    PubMed

    Wan, Zhen-Xing; Yuan, Dong-Mei; Zhuo, Yi-Ming; Yi, Xin; Zhou, Ji; Xu, Zao-Xu; Zhou, Jian-Lin

    2014-02-13

    PA28γ (also called REGγ, 11Sγ or PSME3) negatively regulates p53 activity by promoting its nuclear export and/or degradation. Here, using the RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) method, we identified the transcription start site of the PA28γ gene. Assessment with the luciferase assay demonstrated that the sequence -193 to +16 is the basal promoter. Three p53 binding sites were found within the PA28γ promoter utilizing a bioinformatics approach and were confirmed by chromatin immunoprecipitation and biotinylated DNA affinity precipitation experiments. The p53 protein promotes PA28γ transcription, and p53-stimulated transcription of PA28γ can be inhibited by PA28γ itself. Our results suggest that PA28γ and p53 form a negative feedback loop, which maintains the balance of p53 and PA28γ in cells.

  12. The Proteasome Activator PA28γ, a Negative Regulator of p53, Is Transcriptionally Up-Regulated by p53

    PubMed Central

    Wan, Zhen-Xing; Yuan, Dong-Mei; Zhuo, Yi-Ming; Yi, Xin; Zhou, Ji; Xu, Zao-Xu; Zhou, Jian-Lin

    2014-01-01

    PA28γ (also called REGγ, 11Sγ or PSME3) negatively regulates p53 activity by promoting its nuclear export and/or degradation. Here, using the RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) method, we identified the transcription start site of the PA28γ gene. Assessment with the luciferase assay demonstrated that the sequence −193 to +16 is the basal promoter. Three p53 binding sites were found within the PA28γ promoter utilizing a bioinformatics approach and were confirmed by chromatin immunoprecipitation and biotinylated DNA affinity precipitation experiments. The p53 protein promotes PA28γ transcription, and p53-stimulated transcription of PA28γ can be inhibited by PA28γ itself. Our results suggest that PA28γ and p53 form a negative feedback loop, which maintains the balance of p53 and PA28γ in cells. PMID:24531141

  13. Negative feedback regulation of auxin signaling by ATHB8/ACL5-BUD2 transcription module.

    PubMed

    Baima, Simona; Forte, Valentina; Possenti, Marco; Peñalosa, Andrés; Leoni, Guido; Salvi, Sergio; Felici, Barbara; Ruberti, Ida; Morelli, Giorgio

    2014-06-01

    The role of auxin as main regulator of vascular differentiation is well established, and a direct correlation between the rate of xylem differentiation and the amount of auxin reaching the (pro)cambial cells has been proposed. It has been suggested that thermospermine produced by ACAULIS5 (ACL5) and bushy and dwarf2 (BUD2) is one of the factors downstream to auxin contributing to the regulation of this process in Arabidopsis. Here, we provide an in-depth characterization of the mechanism through which ACL5 modulates xylem differentiation. We show that an increased level of ACL5 slows down xylem differentiation by negatively affecting the expression of homeodomain-leucine zipper (HD-ZIP) III and key auxin signaling genes. This mechanism involves the positive regulation of thermospermine biosynthesis by the HD-ZIP III protein Arabidopsis thaliana homeobox8 tightly controlling the expression of ACL5 and BUD2. In addition, we show that the HD-ZIP III protein REVOLUTA contributes to the increased leaf vascularization and long hypocotyl phenotype of acl5 likely by a direct regulation of auxin signaling genes such as like auxin resistant2 (LAX2) and LAX3. We propose that proper formation and differentiation of xylem depend on a balance between positive and negative feedback loops operating through HD-ZIP III genes.

  14. A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis.

    PubMed

    Wang, Xu; Wang, Qin; Han, Yun-Jeong; Liu, Qing; Gu, Lianfeng; Yang, Zhaohe; Su, Jun; Liu, Bobin; Zuo, Zecheng; He, Wenjin; Wang, Jian; Liu, Bin; Matsui, Minami; Kim, Jeong-Il; Oka, Yoshito; Lin, Chentao

    2017-08-22

    Cryptochromes are blue light receptors that regulate various light responses in plants. Arabidopsis cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2) mediate blue light inhibition of hypocotyl elongation and long-day (LD) promotion of floral initiation. It has been reported recently that two negative regulators of Arabidopsis cryptochromes, Blue light Inhibitors of Cryptochromes 1 and 2 (BIC1 and BIC2), inhibit cryptochrome function by blocking blue light-dependent cryptochrome dimerization. However, it remained unclear how cryptochromes regulate the BIC gene activity. Here we show that cryptochromes mediate light activation of transcription of the BIC genes, by suppressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), resulting in activation of the transcription activator ELONGATED HYPOCOTYL 5 (HY5) that is associated with chromatins of the BIC promoters. These results demonstrate a CRY-BIC negative-feedback circuitry that regulates the activity of each other. Surprisingly, phytochromes also mediate light activation of BIC transcription, suggesting a novel photoreceptor co-action mechanism to sustain blue light sensitivity of plants under the broad spectra of solar radiation in nature. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. Btg2 is a Negative Regulator of Cardiomyocyte Hypertrophy through a Decrease in Cytosolic RNA

    PubMed Central

    Masumura, Yuki; Higo, Shuichiro; Asano, Yoshihiro; Kato, Hisakazu; Yan, Yi; Ishino, Saki; Tsukamoto, Osamu; Kioka, Hidetaka; Hayashi, Takaharu; Shintani, Yasunori; Yamazaki, Satoru; Minamino, Tetsuo; Kitakaze, Masafumi; Komuro, Issei; Takashima, Seiji; Sakata, Yasushi

    2016-01-01

    Under hypertrophic stimulation, cardiomyocytes enter a hypermetabolic state and accelerate biomass accumulation. Although the molecular pathways that regulate protein levels are well-studied, the functional implications of RNA accumulation and its regulatory mechanisms in cardiomyocytes remain elusive. Here, we have elucidated the quantitative kinetics of RNA in cardiomyocytes through single cell imaging and c-Myc (Myc)-mediated hypermetabolic analytical model using cultured cardiomyocytes. Nascent RNA labeling combined with single cell imaging demonstrated that Myc protein significantly increased the amount of global RNA production per cardiomyocyte. Chromatin immunoprecipitation with high-throughput sequencing clarified that overexpressed Myc bound to a specific set of genes and recruits RNA polymerase II. Among these genes, we identified Btg2 as a novel target of Myc. Btg2 overexpression significantly reduced cardiomyocyte surface area. Conversely, shRNA-mediated knockdown of Btg2 accelerated adrenergic stimulus-induced hypertrophy. Using mass spectrometry analysis, we determined that Btg2 binds a series of proteins that comprise mRNA deadenylation complexes. Intriguingly, Btg2 specifically suppresses cytosolic, but not nuclear, RNA levels. Btg2 knockdown further enhances cytosolic RNA accumulation in cardiomyocytes under adrenergic stimulation, suggesting that Btg2 negatively regulates reactive hypertrophy by negatively regulating RNA accumulation. Our findings provide insight into the functional significance of the mechanisms regulating RNA levels in cardiomyocytes. PMID:27346836

  16. YmoA Negatively Regulates Expression of Invasin from Yersinia enterocolitica

    PubMed Central

    Ellison, Damon W.; Young, Briana; Nelson, Kristin; Miller, Virginia L.

    2003-01-01

    inv encodes invasin, which is the primary invasion factor of Yersinia enterocolitica. inv expression in vitro is regulated in response to temperature, pH, and growth phase. In vitro, inv is maximally expressed at 26°C and repressed at 37°C at neutral pH but, when the pH of the media is adjusted to 5.5, levels of inv expression at 37°C are comparable to those at 26°C. A previous genetic screen for regulators of inv identified RovA, which was found to be required for activation of inv in vitro under all conditions tested as well as in vivo. Here we describe a screen that has identified a negative regulator of inv expression, ymoA. The ymoBA locus was identified by transposon mutagenesis as a repressor of inv expression in vitro at 37°C at neutral pH. This mutant shows increased inv expression at 37°C. The mutant can be fully complemented for inv expression by a plasmid expressing ymoA. These results indicate that YmoA plays a role in the negative regulation of inv. PMID:14645275

  17. Arabidopsis cold shock domain protein 2 influences ABA accumulation in seed and negatively regulates germination.

    PubMed

    Sasaki, Kentaro; Kim, Myung-Hee; Kanno, Yuri; Seo, Mitsunori; Kamiya, Yuji; Imai, Ryozo

    2015-01-02

    The cold shock domain (CSD) is the most conserved nucleic acid binding domain and is distributed from bacteria to animals and plants. CSD proteins are RNA chaperones that destabilize RNA secondary structures to regulate stress tolerance and development. AtCSP2 is one of the four CSD proteins in Arabidopsis and is up-regulated in response to cold. Since AtCSP2 negatively regulates freezing tolerance, it was proposed to be a modulator of freezing tolerance during cold acclimation. Here, we examined the function of AtCSP2 in seed germination. We found that AtCSP2-overexpressing lines demonstrated retarded germination as compared with the wild type, with or without stress treatments. The ABA levels in AtCSP2-overexpressing seeds were higher than those in the wild type. In addition, overexpression of AtCSP2 reduced the expression of an ABA catabolic gene (CYP707A2) and gibberellin biosynthesis genes (GA20ox and GA3ox). These results suggest that AtCSP2 negatively regulates seed germination by controlling ABA and GA levels.

  18. Platelet-derived thrombospondin-1 is a critical negative regulator and potential biomarker of angiogenesis

    PubMed Central

    Zaslavsky, Alexander; Baek, Kwan-Hyuck; Lynch, Ryan C.; Short, Sarah; Grillo, Jenny; Folkman, Judah; Italiano, Joseph E.

    2010-01-01

    The sequential events leading to tumor progression include a switch to the angiogenic phenotype, dependent on a shift in the balance between positive and negative angiogenic regulators produced by tumor and stromal cells. Although the biologic properties of many angiogenesis regulatory proteins have been studied in detail, the mechanisms of their transport and delivery in vivo during pathologic angiogenesis are not well understood. Here, we demonstrate that expression of one of the most potent angiogenesis inhibitors, thrombospondin-1, is up-regulated in the platelets of tumor-bearing mice. We establish that this up-regulation is a consequence of both increased levels of thrombospondin-1 mRNA in megakaryocytes, as well as increased numbers of megakaryocytes in the bone marrow of tumor-bearing mice. Through the use of mouse tumor models and bone marrow transplantations, we show that platelet-derived thrombospondin-1 is a critical negative regulator during the early stages of tumor angiogenesis. Collectively, our data suggest that the production and delivery of the endogenous angiogenesis inhibitor thrombospondin-1 by platelets may be a critical host response to suppress tumor growth through inhibiting tumor angiogenesis. Further, this work implicates the use of thrombospondin-1 levels in platelets as an indicator of tumor growth and regression. PMID:20086246

  19. Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells

    SciTech Connect

    Yap, Chui Sun; Sinha, Rohit Anthony; Ota, Sho; Katsuki, Masahito; Yen, Paul Michael

    2013-11-01

    Highlights: •Thyroid hormone induces miR-181d expression in human hepatic cells and mouse livers. •Thyroid hormone downregulates CDX2 and SOAT2 (or ACAT2) via miR-181d. •miR-181d reduces cholesterol output from human hepatic cells. -- Abstract: Thyroid hormones (THs) regulate transcription of many metabolic genes in the liver through its nuclear receptors (TRs). Although the molecular mechanisms for positive regulation of hepatic genes by TH are well understood, much less is known about TH-mediated negative regulation. Recently, several nuclear hormone receptors were shown to downregulate gene expression via miRNAs. To further examine the potential role of miRNAs in TH-mediated negative regulation, we used a miRNA microarray to identify miRNAs that were directly regulated by TH in a human hepatic cell line. In our screen, we discovered that miRNA-181d is a novel hepatic miRNA that was regulated by TH in hepatic cell culture and in vivo. Furthermore, we identified and characterized two novel TH-regulated target genes that were downstream of miR-181d signaling: caudal type homeobox 2 (CDX2) and sterol O-acyltransferase 2 (SOAT2 or ACAT2). CDX2, a known positive regulator of hepatocyte differentiation, was regulated by miR-181d and directly activated SOAT2 gene expression. Since SOAT2 is an enzyme that generates cholesteryl esters that are packaged into lipoproteins, our results suggest miR-181d plays a significant role in the negative regulation of key metabolic genes by TH in the liver.

  20. HIP-55 negatively regulates myocardial contractility at the single-cell level.

    PubMed

    Xing, Rui; Li, Shanshan; Liu, Kai; Yuan, Yuan; Li, Qing; Deng, Hao; Yang, Chengzhi; Huang, Jianyong; Zhang, Youyi; Fang, Jing; Xiong, Chunyang; Li, Zijian

    2014-08-22

    Myocardial contractility is crucial for cardiac output and heart function. But the detailed mechanisms of regulation remain unclear. In the present study, we found that HIP-55, an actin binding protein, negatively regulates myocardial contractility at the single-cell level. HIP-55 was overexpressed and knocked down in cardiomyocytes with an adenovirus infection. The traction forces exerted by single cardiomyocyte were measured using cell traction force microscopy. The results showed that HIP-55 knockdown significantly increased the contractility of the cardiomyocytes and HIP-55 overexpression could markedly reverse this process. Furthermore, HIP-55 was obviously co-localized with F-actin in cardiomyocytes, suggesting that HIP-55 regulated cardiac contractile function through the interaction between HIP-55 and F-actin. This study reveals the regulatory mechanisms of myocardial contractility and provides a new target for preventing and treating cardiovascular disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. RIP1 negatively regulates basal autophagic flux through TFEB to control sensitivity to apoptosis

    PubMed Central

    Yonekawa, Tohru; Gamez, Graciela; Kim, Jihye; Tan, Aik Choon; Thorburn, Jackie; Gump, Jacob; Thorburn, Andrew; Morgan, Michael J

    2015-01-01

    In a synthetic lethality/viability screen, we identified the serine–threonine kinase RIP1 (RIPK1) as a gene whose knockdown is highly selected against during growth in normal media, in which autophagy is not critical, but selected for in conditions that increase reliance on basal autophagy. RIP1 represses basal autophagy in part due to its ability to regulate the TFEB transcription factor, which controls the expression of autophagy-related and lysosomal genes. RIP1 activates ERK, which negatively regulates TFEB though phosphorylation of serine 142. Thus, in addition to other pro-death functions, RIP1 regulates cellular sensitivity to pro-death stimuli by modulating basal autophagy. PMID:25908842

  2. The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling

    PubMed Central

    Raja, Erna; Edlund, Karolina; Kahata, Kaoru; Zieba, Agata; Morén, Anita; Watanabe, Yukihide; Voytyuk, Iryna; Botling, Johan; Söderberg, Ola; Micke, Patrick; Pyrowolakis, George; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    The protein kinase LKB1 regulates cell metabolism and growth and is implicated in intestinal and lung cancer. Bone morphogenetic protein (BMP) signaling regulates cell differentiation during development and tissue homeostasis. We demonstrate that LKB1 physically interacts with BMP type I receptors and requires Smad7 to promote downregulation of the receptor. Accordingly, LKB1 suppresses BMP-induced osteoblast differentiation and affects BMP signaling in Drosophila wing longitudinal vein morphogenesis. LKB1 protein expression and Smad1 phosphorylation analysis in a cohort of non-small cell lung cancer patients demonstrated a negative correlation predominantly in a subset enriched in adenocarcinomas. Lung cancer patient data analysis indicated strong correlation between LKB1 loss-of-function mutations and high BMP2 expression, and these two events further correlated with expression of a gene subset functionally linked to apoptosis and migration. This new mechanism of BMP receptor regulation by LKB1 has ramifications in physiological organogenesis and disease. PMID:26701726

  3. A comparison of autonomous regulation and negative self-evaluative emotions as predictors of smoking behavior change among college students.

    PubMed

    Lee, Hyoung S; Catley, Delwyn; Harris, Kari Jo

    2012-05-01

    This study compared autonomous self-regulation and negative self-evaluative emotions as predictors of smoking behavior change in college student smokers (N = 303) in a smoking cessation intervention study. Although the two constructs were moderately correlated, latent growth curve modeling revealed that only autonomous regulation, but not negative self-evaluative emotions, was negatively related to the number of days smoked. Results suggest that the two variables tap different aspects of motivation to change smoking behaviors, and that autonomous regulation predicts smoking behavior change better than negative self-evaluative emotions.

  4. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice.

    PubMed

    Fang, Yujie; Xie, Kabin; Xiong, Lizhong

    2014-05-01

    MicroRNAs constitute a large group of endogenous small RNAs of ~22 nt that emerge as vital regulators, mainly by targeting mRNAs for post-transcriptional repression. Previous studies have revealed that the miR164 family in Arabidopsis is comprised of three members which guide the cleavage of the mRNAs of five NAC genes to modulate developmental processes. However, the functions of the miR164-targeted NAC genes in crops are poorly deciphered. In this study, the conserved features of six miR164-targeted NAC genes (OMTN1-OMTN6) in rice are described, and evidence is provided that four of them confer a negative regulatory role in drought resistance. OMTN proteins have the characteristics of typical NAC transcriptional factors. The miR164 recognition sites of the OMTN genes are highly conserved in rice germplasms. Deletion of the recognition sites impaired the transactivation activity, indicating that the conserved recognition sites play a crucial role in maintaining the function of the OMTN proteins. The OMTN genes were responsive to abiotic stresses, and showed diverse spatio-temporal expression patterns in rice. Overexpression of OMTN2, OMTN3, OMTN4, and OMTN6 in rice led to negative effects on drought resistance at the reproductive stage. The expression of numerous genes related to stress response, development, and metabolism was altered in OMTN2-, OMTN3-, OMTN4-, and OMTN6-overexpressing plants. Most of the up-regulated genes in the OMTN-overexpressing plants were down-regulated by drought stress. The results suggest that the conserved miR164-targeted NAC genes may be negative regulators of drought tolerance in rice, in addition to their reported roles in development.

  5. Complex Negative Regulation of TLR9 by Multiple Proteolytic Cleavage Events.

    PubMed

    Sinha, Siddhartha S; Cameron, Jody; Brooks, James C; Leifer, Cynthia A

    2016-08-15

    TLR9 is an innate immune receptor important for recognizing DNA of host and foreign origin. A mechanism proposed to prevent excessive response to host DNA is the requirement for proteolytic cleavage of TLR9 in endosomes to generate a mature form of the receptor (TLR9(471-1032)). We previously described another cleavage event in the juxtamembrane region of the ectodomain that generated a dominant-negative form of TLR9. Thus, there are at least two independent cleavage events that regulate TLR9. In this study, we investigated whether an N-terminal fragment of TLR9 could be responsible for regulation of the mature or negative-regulatory form. We show that TLR9(471-1032), corresponding to the proteolytically cleaved form, does not function on its own. Furthermore, activity is not rescued by coexpression of the N-terminal fragment (TLR9(1-440)), inclusion of the hinge region (TLR9(441-1032)), or overexpression of UNC93B1, the last of which is critical for trafficking and cleavage of TLR9. TLR9(1-440) coimmunoprecipitates with full-length TLR9 and TLR9(471-1032) but does not rescue the native glycosylation pattern; thus, inappropriate trafficking likely explains why TLR9(471-1032) is nonfunctional. Lastly, we show that TLR9(471-1032) is also a dominant-negative regulator of TLR9 signaling. Together, these data provide a new perspective on the complexity of TLR9 regulation by proteolytic cleavage and offer potential ways to inhibit activity through this receptor, which may dampen autoimmune inflammation.

  6. Cell Cycle Regulators during Human Atrial Development

    PubMed Central

    Kim, Won Ho; Joo, Chan Uhng; Ku, Ja Hong; Ryu, Chul Hee; Koh, Keum Nim; Koh, Gou Young; Ko, Jae Ki

    1998-01-01

    Objectives The molecular mechanisms that regulate cardiomyocyte cell cycle and terminal differentiation in humans remain largely unknown. To determine which cyclins, cyclin dependent kinases (CDKs) and cyclin kinase inhibitors (CKIs) are important for cardiomyocyte proliferation, we have examined protein levels of cyclins, CDKs and CKIs during normal atrial development in humans. Methods Atrial tissues were obtained in the fetus from inevitable abortion and in the adult during surgery, Cyclin and CDK proteins were determined by Western blot analysis, CDK activities were determined by phosphorylation amount using specific substrate. Results Most cyclins and CDKs were high during the fetal period and their levels decreased at different rates during the adult period. While the protein levels of cyclin D1, cyclin D3, CDK4, CDK6 and CDK2 were still detectable in adult atria, the protein levels of cyclin E, cyclin A, cyclin B, cdc2 and PCNA were not detectable. Interestingly, p27KIP 1 protein increased markedly in the adult period, while p21C IP 1 protein in atria was detectable only in the fetal period. While the activities of CDK6, CDK2 and cdc2 decreased markedly, the activity of CDK4 did not change from the fetal period to the adult period. Conclusion These findings indicate that marked reduction of protein levels and activities of cyclins and CDKs, and marked induction of p27KIP 1 in atria, are associated with the withdrawal of cardiac cell cycle in adult humans. PMID:9735660

  7. Regulation of ovulation by human pheromones.

    PubMed

    Stern, K; McClintock, M K

    1998-03-12

    Pheromones are airborne chemical signals that are released by an individual into the environment and which affect the physiology or behaviour of other members of the same species. The idea that humans produce pheromones has excited the imagination of scientists and the public, leading to widespread claims for their existence, which, however, has remained unproven. Here we investigate whether humans produce compounds that regulate a specific neuroendocrine mechanism in other people without being consciously detected as odours (thereby fulfilling the classic definition of a pheromone). We found that odourless compounds from the armpits of women in the late follicular phase of their menstrual cycles accelerated the preovulatory surge of luteinizing hormone of recipient women and shortened their menstrual cycles. Axillary (underarm) compounds from the same donors which were collected later in the menstrual cycle (at ovulation) had the opposite effect: they delayed the luteinizing-hormone surge of the recipients and lengthened their menstrual cycles. By showing in a fully controlled experiment that the timing of ovulation can be manipulated, this study provides definitive evidence of human pheromones.

  8. Sonic hedgehog acts as a negative regulator of {beta}-catenin signaling in the adult tongue epithelium.

    PubMed

    Schneider, Fabian T; Schänzer, Anne; Czupalla, Cathrin J; Thom, Sonja; Engels, Knut; Schmidt, Mirko H H; Plate, Karl H; Liebner, Stefan

    2010-07-01

    Wnt/beta-catenin signaling has been implicated in taste papilla development; however, its role in epithelial maintenance and tumor progression in the adult tongue remains elusive. We show Wnt/beta-catenin pathway activation in reporter mice and by nuclear beta-catenin staining in the epithelium and taste papilla of adult mouse and human tongues. beta-Catenin activation in APC(min/+) mice, which carry a mutation in adenomatous poliposis coli (APC), up-regulates Sonic hedgehog (Shh) and Jagged-2 (JAG2) in the tongue epithelium without formation of squamous cell carcinoma (SCC). We demonstrate that Shh suppresses beta-catenin transcriptional activity in a signaling-dependent manner in vitro and in vivo. A similar regulation and function was observed for JAG2, suggesting that both pathways negatively regulate beta-catenin, thereby preventing SCC formation in the tongue. This was supported by reduced nuclear beta-catenin in the tongue epithelium of Patched(+/-) mice, exhibiting dominant active Shh signaling. At the invasive front of human tongue cancer, nuclear beta-catenin and Shh were increased, suggesting their participation in tumor progression. Interestingly, Shh but not JAG2 was able to reduce beta-catenin signaling in SCC cells, arguing for a partial loss of negative feedback on beta-catenin transcription in tongue cancer. We show for the first time that the putative Wnt/beta-catenin targets Shh and JAG2 control beta-catenin signaling in the adult tongue epithelium, a function that is partially lost in lingual SCC.

  9. Sonic Hedgehog Acts as a Negative Regulator of β-Catenin Signaling in the Adult Tongue Epithelium

    PubMed Central

    Schneider, Fabian T.; Schänzer, Anne; Czupalla, Cathrin J.; Thom, Sonja; Engels, Knut; Schmidt, Mirko H.H.; Plate, Karl H.; Liebner, Stefan

    2010-01-01

    Wnt/β-catenin signaling has been implicated in taste papilla development; however, its role in epithelial maintenance and tumor progression in the adult tongue remains elusive. We show Wnt/β-catenin pathway activation in reporter mice and by nuclear β-catenin staining in the epithelium and taste papilla of adult mouse and human tongues. β-Catenin activation in APCmin/+ mice, which carry a mutation in adenomatous poliposis coli (APC), up-regulates Sonic hedgehog (Shh) and Jagged-2 (JAG2) in the tongue epithelium without formation of squamous cell carcinoma (SCC). We demonstrate that Shh suppresses β-catenin transcriptional activity in a signaling-dependent manner in vitro and in vivo. A similar regulation and function was observed for JAG2, suggesting that both pathways negatively regulate β-catenin, thereby preventing SCC formation in the tongue. This was supported by reduced nuclear β-catenin in the tongue epithelium of Patched+/− mice, exhibiting dominant active Shh signaling. At the invasive front of human tongue cancer, nuclear β-catenin and Shh were increased, suggesting their participation in tumor progression. Interestingly, Shh but not JAG2 was able to reduce β-catenin signaling in SCC cells, arguing for a partial loss of negative feedback on β-catenin transcription in tongue cancer. We show for the first time that the putative Wnt/β-catenin targets Shh and JAG2 control β-catenin signaling in the adult tongue epithelium, a function that is partially lost in lingual SCC. PMID:20508033

  10. Drosophila protein kinase N (Pkn) is a negative regulator of actin-myosin activity during oogenesis.

    PubMed

    Ferreira, Tânia; Prudêncio, Pedro; Martinho, Rui Gonçalo

    2014-10-15

    Nurse cell dumping is an actin-myosin based process, where 15 nurse cells of a given egg chamber contract and transfer their cytoplasmic content through the ring canals into the growing oocyte. We isolated two mutant alleles of protein kinase N (pkn) and showed that Pkn negatively-regulates activation of the actin-myosin cytoskeleton during the onset of dumping. Using live-cell imaging analysis we observed that nurse cell dumping rates sharply increase during the onset of fast dumping. Such rate increase was severely impaired in pkn mutant nurse cells due to excessive nurse cell actin-myosin activity and/or loss of tissue integrity. Our work demonstrates that the transition between slow and fast dumping is a discrete event, with at least a five to six-fold dumping rate increase. We show that Pkn negatively regulates nurse cell actin-myosin activity. This is likely to be important for directional cytoplasmic flow. We propose Pkn provides a negative feedback loop to help avoid excessive contractility after local activation of Rho GTPase.

  11. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    SciTech Connect

    Mayi, Therese Hervee; Rigamonti, Elena; Pattou, Francois; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  12. PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris.

    PubMed

    Arthikala, Manoj-Kumar; Montiel, Jesús; Nava, Noreide; Santana, Olivia; Sánchez-López, Rosana; Cárdenas, Luis; Quinto, Carmen

    2013-08-01

    Plant NADPH oxidases (RBOHs) regulate the early stages of rhizobial infection in Phaseolus vulgaris and affect nodule function in Medicago truncatula. In contrast, the role of RBOHs in the plant-arbuscular mycorrhizal (AM) symbiosis and in the regulation of reactive oxygen species (ROS) production during the establishment of the AM interaction is largely unknown. In this study, we assessed the role of P. vulgaris Rboh (PvRbohB) during the symbiosis with the AM fungus, Rhizophagus irregularis. Our results indicate that the PvRbohB transcript is significantly up-regulated in the mycorrhized roots of P. vulgaris. Further, the PvRbohB promoter was found to be active during the invasion of R. irregularis. Down-regulation of PvRbohB transcription by RNAi (RNA interference) silencing resulted in diminished ROS levels in the transgenic mycorrhized roots and induced early hyphal root colonization. Interestingly, the size of appressoria increased in PvRbohB-RNAi roots (760 ± 70.1 µm) relative to controls (251 ± 73.2 µm). Finally, the overall level of mycorrhizal colonization significantly increased in PvRbohB-RNAi roots [48.1 ± 3.3% root length colonization (RLC)] compared with controls (29.4 ± 1.9% RLC). We propose that PvRbohB negatively regulates AM colonization in P. vulgaris.

  13. Positive and negative regulation of T-cell activation through kinases and phosphatases.

    PubMed Central

    Mustelin, Tomas; Taskén, Kjetil

    2003-01-01

    The sequence of events in T-cell antigen receptor (TCR) signalling leading to T-cell activation involves regulation of a number of protein tyrosine kinases (PTKs) and the phosphorylation status of many of their substrates. Proximal signalling pathways involve PTKs of the Src, Syk, Csk and Tec families, adapter proteins and effector enzymes in a highly organized tyrosine-phosphorylation cascade. In intact cells, tyrosine phosphorylation is rapidly reversible and generally of a very low stoichiometry even under induced conditions due to the fact that the enzymes removing phosphate from tyrosine-phosphorylated substrates, the protein tyrosine phosphatases (PTPases), have a capacity that is several orders of magnitude higher than that of the PTKs. It follows that a relatively minor change in the PTK/PTPase balance can have a major impact on net tyrosine phosphorylation and thereby on activation and proliferation of T-cells. This review focuses on the involvement of PTKs and PTPases in positive and negative regulation of T-cell activation, the emerging theme of reciprocal regulation of each type of enzyme by the other, as well as regulation of phosphotyrosine turnover by Ser/Thr phosphorylation and regulation of localization of signal components. PMID:12485116

  14. Hepatocyte nuclear factor 1b is a novel negative regulator of white adipocyte differentiation.

    PubMed

    Wang, Xin; Wu, Hao; Yu, Weihua; Liu, Jiangzheng; Peng, Jie; Liao, Nai; Zhang, Jieling; Zhang, Xiaodi; Hai, Chunxu

    2017-09-01

    Hepatocyte nuclear factor 1b (HNF1b) is a transcription factor belonging to the HNF family. We aimed to investigate the role of HNF1b in white adipocyte differentiation. The expression of HNF1b was reduced in white adipose tissue (WAT) of both diet-induced and genetic obese mice and decreased during the process of 3T3-L1 adipocyte differentiation. Downregulation of HNF1b enhanced 3T3-L1 adipocyte differentiation and upregulation of HNF1b inhibited this process. Upregulation of HNF1b inhibited peroxisome proliferator-activated receptor γ (PPARγ) and its target gene expression, while downregulation of HNF1b increased those genes expression. Overexpression of PPARγ suppressed HNF1b upregulation-induced inhibition of adipocyte differentiation. HNF1b can directly bind with the promoter of PPARγ in 3T3-L1 cells, which was decreased after adipogenic differentiation. HNF1b promoted apoptotic and autophagic cell death in early differentiated adipocytes through regulation of cell cycle progress and cell death-related factors, and thus inhibited the process of mitotic clonal expansion (MCE). HNF1b acted as an antioxidant regulator through regulating various antioxidant enzymes via binding with antioxidant response element. Oxidant treatment suppressed HNF1b upregulation-induced inhibition of adipocyte differentiation. Overall, our results suggest that HNF1b is a novel negative regulator of adipocyte differentiation through regulation of PPARγ signaling, MCE and redox state.

  15. Integral role of transcription factor 8 in the negative regulation of tumor angiogenesis.

    PubMed

    Inuzuka, Takayuki; Tsuda, Masumi; Tanaka, Shinya; Kawaguchi, Hideaki; Higashi, Yujiro; Ohba, Yusuke

    2009-02-15

    Angiogenesis is involved in various physiologic and pathological conditions, including tumor growth, and is tightly regulated by the orchestration of proangiogenic and antiangiogenic factors. Inhibition of vascular endothelial growth factor (VEGF), the best-established antiangiogenic treatment in cancer, has shown some effectiveness; however, the identification of novel regulators, whose function is independent of VEGF, is required to achieve better outcomes. Here, we show that transcription factor 8 (TCF8) is up-regulated in endothelial cells during angiogenesis, acting as a negative regulator. Furthermore, TCF8 is specifically expressed in the endothelium of tumor vessels. Tcf8-heterozygous knockout mice are more permissive than wild-type mice to the formation of tumor blood vessels in s.c. implanted melanoma, which seems to contribute to the more aggressive growth and the lung metastases of the tumor in mutant mice. Suppression of TCF8 facilitates angiogenesis in both in vitro and ex vivo models, and displays comprehensive cellular phenotypes, including enhanced cell invasion, impaired cell adhesion, and increased cell monolayer permeability due to, at least partly, MMP1 overexpression, attenuation of focal adhesion formation, and insufficient VE-cadherin recruitment, respectively. Taken together, our findings define a novel, integral role for TCF8 in the regulation of pathologic angiogenesis, and propose TCF8 as a target for therapeutic intervention in cancer.

  16. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy.

    PubMed

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo

    2013-07-15

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α1-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. Copyright © 2013. Published by Elsevier Inc.

  17. SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response.

    PubMed

    Qin, Feng; Kodaira, Ken-Suke; Maruyama, Kyonoshin; Mizoi, Junya; Tran, Lam-Son Phan; Fujita, Yasunari; Morimoto, Kyoko; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-12-01

    The SPINDLY (SPY) gene was first identified as a negative regulator of plant gibberellic acid (GA) signaling because mutation of this gene phenocopies plants treated with an overdose of bioactive GA and results in insensitivity to a GA inhibitor during seed germination. The SPY gene encodes an O-linked N-acetylglucosamine transferase that can modify the target protein and modulate the protein activity in cells. In this study, we describe the strong salt and drought tolerance phenotypes of Arabidopsis (Arabidopsis thaliana) spy-1 and spy-3 mutants in addition to their GA-related phenotypes. SPY gene expression was found to be drought stress inducible and slightly responsive to salt stress. Transcriptome analysis of spy-3 revealed that many GA-responsive genes were up-regulated, which could explain the GA-overdosed phenotype of spy-3. Some stress-inducible genes were found to be up-regulated in spy-3, such as genes encoding late embryogenesis abundant proteins, Responsive to Dehydration20, and AREB1-like transcription factor, which may confer stress tolerance on spy-3. CKX3, a cytokinin (CK) catabolism gene, was up-regulated in spy-3; this up-regulation indicates that the mutant possesses reduced CK signaling, which is consistent with a positive role for SPY in CK signaling. Moreover, overexpression of SPY in transgenics (SPY overexpressing [SPY-OX]) impaired plant drought stress tolerance, opposite to the phenotype of spy. The expression levels of several genes, such as DREB1E/DDF1 and SNH1/WIN1, were decreased in SPY-OX but increased in spy-3. Taken together, these data indicate that SPY plays a negative role in plant abiotic stress tolerance, probably by integrating environmental stress signals via GA and CK cross talk.

  18. Positive and negative regulation of a SNARE protein by control of intracellular localization.

    PubMed

    Nakanishi, Hideki; de los Santos, Pablo; Neiman, Aaron M

    2004-04-01

    In Saccharomyces cerevisiae, the developmentally regulated Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein Spo20p mediates the fusion of vesicles with the prospore membrane, which is required for the formation of spores. Spo20p is subject to both positive and negative regulation by separate sequences in its aminoterminal domain. We report that the positive activity is conferred by a short, amphipathic helix that is sufficient to confer plasma membrane or prospore membrane localization to green fluorescent protein. In vitro, this helix binds to acidic phospholipids, and mutations that reduce or eliminate phospholipid binding in vitro inactivate Spo20p in vivo. Genetic manipulation of phospholipid pools indicates that the likely in vivo ligand of this domain is phosphatidic acid. The inhibitory activity is a nuclear targeting signal, which confers nuclear localization in vegetative cells and in cells entering meiosis. However, as cells initiate spore formation, fusions containing the inhibitory domain exit the nucleus and localize to the nascent prospore membrane. Thus, the SNARE Spo20p is both positively and negatively regulated by control of its intracellular localization.

  19. NLK-mediated phosphorylation of HDAC1 negatively regulates Wnt signaling

    PubMed Central

    Masoumi, Katarzyna Chmielarska; Daams, Renée; Sime, Wondossen; Siino, Valentina; Ke, Hengning; Levander, Fredrik; Massoumi, Ramin

    2017-01-01

    The Wnt signaling pathway is essential in regulating various cellular processes. Different mechanisms of inhibition for Wnt signaling have been proposed. Besides β-catenin degradation through the proteasome, nemo-like kinase (NLK) is another molecule that is known to negatively regulate Wnt signaling. However, the mechanism by which NLK mediates the inhibition of Wnt signaling was not known. In the present study, we used primary embryonic fibroblast cells isolated from NLK-deficient mice and showed that these cells proliferate faster and have a shorter cell cycle than wild-type cells. In NLK-knockout cells, we observed sustained interaction between Lef1 and β-catenin, leading to elevated luciferase reporter of β-catenin/Lef1–mediated transcriptional activation. The mechanism for the reduced β-catenin/Lef1 promoter activation was explained by phosphorylation of HDAC1 at serine 421 via NLK. The phosphorylation of HDAC1 was achieved only in the presence of wild-type NLK because a catalytically inactive mutant of NLK was unable to phosphorylate HDAC1 and reduced the luciferase reporter of β-catenin/Lef1–mediated transcriptional activation. This result suggests that NLK and HDAC1 together negatively regulate Wnt signaling, which is vital in preventing aberrant proliferation of nontransformed primary fibroblast cells. PMID:27903773

  20. Nucleosome remodelling, DNA repair and transcriptional regulation build negative feedback loops in cancer and cellular ageing.

    PubMed

    Watanabe, Reiko; Kanno, Shin-Ichiro; Mohammadi Roushandeh, Amaneh; Ui, Ayako; Yasui, Akira

    2017-10-05

    Nucleosome remodelling (NR) regulates transcription in an ATP-dependent manner, and influences gene expression required for development and cellular functions, including those involved in anti-cancer and anti-ageing processes. ATP-utilizing chromatin assembly and remodelling factor (ACF) and Brahma-associated factor (BAF) complexes, belonging to the ISWI and SWI/SNF families, respectively, are involved in various types of DNA repair. Suppression of several BAF factors makes U2OS cells significantly sensitive to X-rays, UV and especially to cisplatin, and these BAF factors contribute to the accumulation of repair proteins at various types of DNA damage and to DNA repair. Recent cancer genome sequencing and expression analysis has shown that BAF factors are frequently mutated or, more frequently, silenced in various types of cancer cells. Thus, those cancer cells are potentially X-ray- and especially cisplatin-sensitive, suggesting a way of optimizing current cancer therapy. Recent single-stem cell analysis suggests that mutations and epigenetic changes influence stem cell functionality leading to cellular ageing. Genetic and epigenetic changes in the BAF factors diminish DNA repair as well as transcriptional regulation activities, and DNA repair defects in turn negatively influence NR and transcriptional regulation. Thus, they build negative feedback loops, which accelerate both cellular senescence and transformation as common and rare cellular events, respectively, causing cellular ageing.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Author(s).

  1. Social anxiety and emotion regulation in daily life: spillover effects on positive and negative social events.

    PubMed

    Farmer, Antonina Savostyanova; Kashdan, Todd B

    2012-01-01

    To minimize the possibility of scrutiny, people with social anxiety difficulties exert great effort to manage their emotions, particularly during social interactions. We examined how the use of two emotion regulation strategies, emotion suppression and cognitive reappraisal, predict the generation of emotions and social events in daily life. Over 14 consecutive days, 89 participants completed daily diary entries on emotions, positive and negative social events, and their regulation of emotions. Using multilevel modeling, we found that when people high in social anxiety relied more on positive emotion suppression, they reported fewer positive social events and less positive emotion on the subsequent day. In contrast, people low in social anxiety reported fewer negative social events on days subsequent to using cognitive reappraisal to reduce distress; the use of cognitive reappraisal did not influence the daily lives of people high in social anxiety. Our findings support theories of emotion regulation difficulties associated with social anxiety. In particular, for people high in social anxiety, maladaptive strategy use contributed to diminished reward responsiveness.

  2. Checkpoint kinase 2 (CHK2) negatively regulates androgen sensitivity and prostate cancer cell growth

    PubMed Central

    Ta, Huy Q; Ivey, Melissa L; Frierson, Henry F; Conaway, Mark R; Dziegielewski, Jaroslaw; Larner, James M; Gioeli, Daniel

    2015-01-01

    Prostate cancer (PCa) is the second leading cause of cancer death in American men, and curing metastatic disease remains a significant challenge. Nearly all patients with disseminated PCa initially respond to androgen deprivation therapy (ADT), but virtually all patient will relapse and develop incurable castration-resistant prostate cancer (CRPC). A high-throughput RNAi screen to identify signaling pathways regulating PCa cell growth led to our discovery that Checkpoint Kinase 2 (CHK2) knockdown dramatically increased PCa growth and hypersensitized cells to low androgen levels. Mechanistic investigations revealed that the effects of CHK2 were dependent on the downstream signaling proteins CDC25C and CDK1. Moreover, CHK2 depletion increased androgen receptor (AR) transcriptional activity on androgen-regulated genes, substantiating the finding that CHK2 affects PCa proliferation, partly, through the AR. Remarkably, we further show that CHK2 is a novel AR-repressed gene, suggestive of a negative feedback loop between CHK2 and AR. Additionally, we provide evidence that CHK2 physically associates with the AR, and that cell cycle inhibition increased this association. Finally, immunohistochemical analysis of CHK2 in prostate cancer patient samples demonstrated a decrease in CHK2 expression in high-grade tumors. In conclusion, we propose that CHK2 is a negative regulator of androgen sensitivity and PCa growth, and that CHK2 signaling is lost during prostate cancer progression to castration resistance. Thus, perturbing CHK2 signaling may offer a new therapeutic approach for sensitizing CRPC to ADT and radiation. PMID:26573794

  3. Social anxiety and emotion regulation in daily life: Spillover effects on positive and negative social events

    PubMed Central

    Farmer, Antonina Savostyanova; Kashdan, Todd B.

    2012-01-01

    To minimize the possibility of scrutiny, people with social anxiety difficulties exert great effort to manage their emotions, particularly during social interactions. We examined how the use of two emotion regulation strategies, emotion suppression and cognitive reappraisal, predict the generation of emotions and social events in daily life. Over 14 consecutive days, 89 participants completed daily diary entries on emotions, positive and negative social events, and their regulation of emotions. Using multilevel modeling, we found that when people high in social anxiety relied more on positive emotion suppression, they reported fewer positive social events and less positive emotion on the subsequent day. In contrast, people low in social anxiety reported fewer negative social events on days subsequent to using cognitive reappraisal to reduce distress; the use of cognitive reappraisal did not influence the daily lives of people high in social anxiety. Our findings support theories of emotion regulation difficulties associated with social anxiety. In particular, for people high in social anxiety, maladaptive strategy use contributes to diminished reward responsiveness. PMID:22428662

  4. The A-kinase anchor protein AKAP121 is a negative regulator of cardiomyocyte hypertrophy.

    PubMed

    Abrenica, Bernard; AlShaaban, Mohamed; Czubryt, Michael P

    2009-05-01

    Pathologic cardiac hypertrophy imposes a significant clinical burden on patients, yet the precise intracellular mechanisms responsible for its induction are only partially understood. We examined a potential role for AKAP121 to regulate cardiomyocyte hypertrophy, since recent reports have implicated other AKAPs in this process. We report here that knockdown of AKAP121 expression in isolated neonatal rat cardiomyocytes results in pronounced cellular hypertrophy. Loss of AKAP121 expression is associated with dephosphorylation and nuclear localization of NFATc3, a downstream effector of the hypertrophic phosphatase calcineurin. We also demonstrate that over-expression of AKAP121 in cardiac myocytes reduces basal cell size, and blocks hypertrophy induced by isoproterenol, indicating that AKAP121 negatively regulates the hypertrophic process. Co-immunoprecipitation data indicates that AKAP121 and calcineurin directly interact. Our findings are consistent with a model in which loss of AKAP121 expression leads to the release of an active pool of calcineurin, in turn causing nuclear translocation of NFATc3 and activation of the hypertrophic gene program. These results are the first to identify AKAP121 as a negative regulator of cardiomyocyte hypertrophy, and highlight AKAP121 as a potential target for therapeutic exploitation.

  5. The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1.

    PubMed

    Couto, Daniel; Niebergall, Roda; Liang, Xiangxiu; Bücherl, Christoph A; Sklenar, Jan; Macho, Alberto P; Ntoukakis, Vardis; Derbyshire, Paul; Altenbach, Denise; Maclean, Dan; Robatzek, Silke; Uhrig, Joachim; Menke, Frank; Zhou, Jian-Min; Zipfel, Cyril

    2016-08-01

    Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component.

  6. The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1

    PubMed Central

    Liang, Xiangxiu; Bücherl, Christoph A.; Sklenar, Jan; Macho, Alberto P.; Ntoukakis, Vardis; Derbyshire, Paul; Altenbach, Denise; Robatzek, Silke; Uhrig, Joachim; Menke, Frank; Zhou, Jian-Min

    2016-01-01

    Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component. PMID:27494702

  7. Hfq negatively regulates type III secretion in EHEC and several other pathogens

    PubMed Central

    Shakhnovich, Elizabeth A.; Davis, Brigid M.; Waldor, Matthew K.

    2009-01-01

    Summary Hfq is a conserved RNA-binding protein that regulates diverse cellular processes through post-transcriptional control of gene expression, often by functioning as a chaperone for regulatory sRNAs. Here, we explored the role of Hfq in enterohaemorrhagic E. coli (EHEC), a group of non-invasive intestinal pathogens. EHEC virulence is dependent on a Type III secretion system encoded in the LEE pathogenicity island. The abundance of transcripts for all 41 LEE genes and more than half of confirmed non-LEE-encoded T3 effectors were elevated in an EHEC hfq deletion mutant. Thus, Hfq promotes coordinated expression of the LEE-encoded T3S apparatus and both LEE- and non-LEE-encoded effectors. Increased transcript levels led to the formation of functional secretion complexes capable of secreting high quantities of effectors into the supernatant. The increase in LEE-derived transcripts and proteins was dependent on Ler, the LEE-encoded transcriptional activator, and the ler transcript appears to be a direct target of Hfq-mediated negative regulation. Finally, we found that Hfq contributes to the negative regulation of T3SSs in several other pathogens, suggesting that Hfq, potentially along with species-specific sRNAs, underlies a common means to prevent unfettered expression of T3SSs. PMID:19703108

  8. Genetic regulation of human immunodeficiency virus.

    PubMed Central

    Steffy, K; Wong-Staal, F

    1991-01-01

    Human immunodeficiency virus (HIV) has a complex life cycle in which both cellular and virus-encoded factors participate to determine the level of virus production. Two of the viral genes, tat and rev, are essential for virus replication and encode novel trans-activators that interact specifically with their cognate RNA target elements. Elucidation of their mechanisms of action is likely to expand our knowledge of gene regulation at transcriptional and posttranscriptional levels in the eukaryotic cell. Several viral genes (vif, vpu, and vpr) facilitate virus infection and/or release and may play a role in target cell tropism and infection in vivo. The functions of yet other viral genes (nef, vpt) remain unclear. Recent data also suggest that the tat gene product may have a role in HIV pathogenesis that goes beyond trans-activating virus expression. It can potentially impact on uninfected cells as a diffusible molecule and alter the growth of different cell types. PMID:1886517

  9. Regulation of gene expression in human tendinopathy

    PubMed Central

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  10. Human immunodeficiency virus type 1 negative factor is a transcriptional silencer.

    PubMed

    Niederman, T M; Thielan, B J; Ratner, L

    1989-02-01

    The negative factor (nef) of human immunodeficiency virus (HIV) type 1 acts to down-regulate virus replication. To decipher the step in the virus life cycle affected by nef, functional proviral clones with (pHIV F-) or without (pHIV F+) a deletion mutation in the nef gene were constructed. In CD4+ cells, 30- to 50-fold more virus was produced over the course of 18-20 days with cultures infected with F- compared to F+ virus. In CD4- cell lines, 2- to 10-fold greater virus production was found from cultures transfected with pHIV F- than those transfected with pHIV F+. The negative regulatory effects of nef on pHIV F- could be supplied in trans with a plasmid expressing only the nef gene product. Virus produced by COS-1 cells transfected with pHIV F- or pHIV F+ showed similar binding, uptake, uncoating, and reverse transcription. Analysis of HIV-1 RNA and structural protein levels and rates of viral RNA synthesis in CD4- cells also showed 2- to 10-fold higher levels in cells transfected with pHIV F- compared to pHIV F+. The activity of a HIV-1-chloramphenicol acetyltransferase (CAT) plasmid was also suppressed by nef, whereas other CAT plasmids were unaffected. These findings demonstrate that nef acts as a specific silencer of HIV-1 transcription. This activity may be critical for maintenance of HIV-1 latency in vivo.

  11. Dietary Methanol Regulates Human Gene Activity

    PubMed Central

    Komarova, Tatiana V.; Sheshukova, Ekaterina V.; Kosorukov, Vyacheslav S.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH to formaldehyde (FA), which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling. PMID:25033451

  12. Impact of physical maltreatment on the regulation of negative affect and aggression

    PubMed Central

    SHACKMAN, JESSICA E.; POLLAK, SETH D.

    2015-01-01

    Physically maltreated children are at risk for developing externalizing behavioral problems characterized by reactive aggression. The current experiment tested the relationships between individual differences in a neural index of social information processing, histories of child maltreatment, child negative affect, and aggressive behavior. Fifty boys (17 maltreated) performed an emotion recognition task while the P3b component of the event-related potential was recorded to index attention allocation to angry faces. Children then participated in a peer-directed aggression task. Negative affect was measured by recording facial electromyography, and aggression was indexed by the feedback that children provided to a putative peer. Physically maltreated children exhibited greater negative affect and more aggressive behavior, compared to nonmaltreated children, and this relationship was mediated by children’s allocation of attention to angry faces. These data suggest that physical maltreatment leads to inappropriate regulation of both negative affect and aggression, which likely place maltreated children at increased risk for the development and maintenance of externalizing behavior disorders. PMID:24914736

  13. Impact of physical maltreatment on the regulation of negative affect and aggression.

    PubMed

    Shackman, Jessica E; Pollak, Seth D

    2014-11-01

    Physically maltreated children are at risk for developing externalizing behavioral problems characterized by reactive aggression. The current experiment tested the relationships between individual differences in a neural index of social information processing, histories of child maltreatment, child negative affect, and aggressive behavior. Fifty boys (17 maltreated) performed an emotion recognition task while the P3b component of the event-related potential was recorded to index attention allocation to angry faces. Children then participated in a peer-directed aggression task. Negative affect was measured by recording facial electromyography, and aggression was indexed by the feedback that children provided to a putative peer. Physically maltreated children exhibited greater negative affect and more aggressive behavior, compared to nonmaltreated children, and this relationship was mediated by children's allocation of attention to angry faces. These data suggest that physical maltreatment leads to inappropriate regulation of both negative affect and aggression, which likely place maltreated children at increased risk for the development and maintenance of externalizing behavior disorders.

  14. Integrative regulation of human brain blood flow

    PubMed Central

    Willie, Christopher K; Tzeng, Yu-Chieh; Fisher, Joseph A; Ainslie, Philip N

    2014-01-01

    Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1) the effect of blood gases and neuronal metabolism on CBF; (2) buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3) the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1) that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60–150 mmHg; (2) that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3) that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4) that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research. PMID:24396059

  15. Regulation of negative affect in schizophrenia: the effectiveness of acceptance versus reappraisal and suppression.

    PubMed

    Perry, Yael; Henry, Julie D; Nangle, Matthew R; Grisham, Jessica R

    2012-01-01

    Although general emotion coping difficulties are well documented in schizophrenia, there has been limited study of specific regulatory strategies such as suppression, reappraisal, and acceptance. In the present study, clinical and control participants were asked to watch video clips selected to elicit negative affect while engaging in one of these three different emotion regulation strategies (counterbalanced), versus a passive viewing condition. The experiential and expressive components of emotion were quantified using self-report and facial electromyography, respectively. A major finding was that, in contrast to control participants, individuals with schizophrenia did not report a greater willingness to reexperience negative emotion after engaging in acceptance. These data are discussed in the context of evidence highlighting the potentially important role of acceptance in understanding affective abnormalities in clinical conditions such as schizophrenia.

  16. Negative mood regulation expectancies moderate the relationship between psychological abuse and avoidant coping.

    PubMed

    Shepherd-McMullen, Cassandra; Mearns, Jack; Stokes, Julie E; Mechanic, Mindy B

    2015-05-01

    This study explored the relationships among psychological abuse, attitudes about intimate partner violence (IPV), negative mood regulation expectancies (NMRE), and coping. Participants were 126 female college students in dating, cohabitating, or married relationships within the previous year. In one single session, they completed self-report scales measuring IPV, NMRE, and coping. Results indicated that women reporting higher levels of psychological abuse reported less negative attitudes toward IPV, engaged in less-active coping responses, and had lower NMRE. Psychological abuse was a significant predictor of avoidant coping, while NMRE significantly predicted both active and avoidant coping. In addition, the interaction of NMRE × Psychological abuse added incremental prediction of avoidant coping. Implications for research and practice are discussed.

  17. MiR-21 promoted proliferation and migration in hepatocellular carcinoma through negative regulation of Navigator-3

    SciTech Connect

    Wang, Zhipeng; Yang, Huan; Ren, Lei

    2015-09-04

    MicroRNA-21 (miR-21) has been well-established and found to be over-expressed in various human cancers and has been associated with hepatocellular carcinoma (HCC) progression. However, the underlying mechanism of miR-21 involvement in the development and progression of HCC remains to be understood. In the present study, we firstly identified that the Navigator-3 (NAV-3) gene as a novel direct target of miR-21. Knock-down of NAV-3 using shRNA can rescue the effects of anti-miR-21 inhibitor in HCC cell lines, whereas re-expression of miR-21 using transfection with miR-21 mimics phenocopied the NAV-3 knock-down model. Additionally, miR-21 levels inversely correlated with NAV-3 both in HCC cells and tissues. Knock-down of NAV-3 promoted both the proliferation and migration in HCC cells. Together, our findings suggest an important role for miR-21 in the progression of HCC, which negatively regulated Navigator-3 in the migration of HCC. - Highlights: • Navigator-3 (NAV-3) suppresses proliferation, migration and tumorigenesis of HCC cells. • NAV-3 was a novel target of miR-21. • MiR-21 negatively regulates NAV-3 in HCC.

  18. The atypical Guanine-nucleotide exchange factor, dock7, negatively regulates schwann cell differentiation and myelination.

    PubMed

    Yamauchi, Junji; Miyamoto, Yuki; Hamasaki, Hajime; Sanbe, Atsushi; Kusakawa, Shinji; Nakamura, Akane; Tsumura, Hideki; Maeda, Masahiro; Nemoto, Noriko; Kawahara, Katsumasa; Torii, Tomohiro; Tanoue, Akito

    2011-08-31

    In development of the peripheral nervous system, Schwann cells proliferate, migrate, and ultimately differentiate to form myelin sheath. In all of the myelination stages, Schwann cells continuously undergo morphological changes; however, little is known about their underlying molecular mechanisms. We previously cloned the dock7 gene encoding the atypical Rho family guanine-nucleotide exchange factor (GEF) and reported the positive role of Dock7, the target Rho GTPases Rac/Cdc42, and the downstream c-Jun N-terminal kinase in Schwann cell migration (Yamauchi et al., 2008). We investigated the role of Dock7 in Schwann cell differentiation and myelination. Knockdown of Dock7 by the specific small interfering (si)RNA in primary Schwann cells promotes dibutyryl cAMP-induced morphological differentiation, indicating the negative role of Dock7 in Schwann cell differentiation. It also results in a shorter duration of activation of Rac/Cdc42 and JNK, which is the negative regulator of myelination, and the earlier activation of Rho and Rho-kinase, which is the positive regulator of myelination. To obtain the in vivo evidence, we generated Dock7 short hairpin (sh)RNA transgenic mice. They exhibited a decreased expression of Dock7 in the sciatic nerves and enhanced myelin thickness, consistent with in vitro observation. The effects of the in vivo knockdown on the signals to Rho GTPases are similar to those of the in vitro knockdown. Collectively, the signaling through Dock7 negatively regulates Schwann cell differentiation and the onset of myelination, demonstrating the unexpected role of Dock7 in the interplay between Schwann cell migration and myelination.

  19. CDK inhibitor p57Kip2 is negatively regulated by COP9 signalosome subunit 6

    PubMed Central

    Chen, Bo; Zhao, Ruiying; Su, Chun-Hui; Linan, Monica; Tseng, Chieh; Phan, Liem; Fang, Lekuan; Yang, Heng-Yin; Yang, Huiling; Wang, Wenqian; Xu, Xiaoyin; Jiang, Nan; Cai, Shouliang; Jin, Feng; Yeung, Sai-Ching J.; Lee, Mong-Hong

    2012-01-01

    Subunit 6 of the COP9 signalosome complex, CSN6, is known to be critical to the regulation of the MDM2-p53 axis for cell proliferation and anti-apoptosis, but its many targets remain unclear. Here we show that p57Kip2 is a target of CSN6, and that CSN6 is a negative regulator of p57Kip2. CSN6 associates with p57Kip2, and its overexpression can decrease the steady-state expression of p57Kip2; accordingly, CSN6 deficiency leads to p57Kip2 stabilization. Mechanistic studies show that CSN6 associates with p57Kip2 and Skp2, a component of the E3 ligase, which, in turn, facilitates Skp2-mediated protein ubiquitination of p57Kip2. Loss of Skp2 compromised CSN6-mediated p57Kip2 destabilization, suggesting collaboration between Skp2 and CSN6 in degradation of p57Kip2. CSN6’s negative impact on p57Kip2 elevation translates into cell growth promotion, cell cycle deregulation and potentiated transformational activity. Significantly, univariate Kaplan-Meier analysis of tumor samples demonstrates that high CSN6 expression or low p57 expression is associated with poor overall survival. These data suggest that CSN6 is an important negative regulator of p57Kip2, and that overexpression of CSN6 in many types of cancer could lead to decreased expression of p57Kip2 and result in promoted cancer cell growth. PMID:23187808

  20. High mobility group protein DSP1 negatively regulates HSP70 transcription in Crassostrea hongkongensis

    SciTech Connect

    Miao, Zongyu; Xu, Delin; Cui, Miao; Zhang, Qizhong

    2016-06-10

    HSP70 acts mostly as a molecular chaperone and plays important roles in facilitating the folding of nascent peptides as well as the refolding or degradation of the denatured proteins. Under stressed conditions, the expression level of HSP70 is upregulated significantly and rapidly, as is known to be achieved by various regulatory factors controlling the transcriptional level. In this study, a high mobility group protein DSP1 was identified by DNA-affinity purification from the nuclear extracts of Crassostrea hongkongensis using the ChHSP70 promoter as a bait. The specific interaction between the prokaryotically expressed ChDSP1 and the FITC-labeled ChHSP70 promoter was confirmed by EMSA analysis. ChDSP1 was shown to negatively regulate ChHSP70 promoter expression by Luciferase Reporter Assay in the heterologous HEK293T cells. Both ChHSP70 and ChDSP1 transcriptions were induced by either thermal or CdCl{sub 2} stress, while the accumulated expression peaks of ChDSP1 were always slightly delayed when compared with that of ChHSP70. This indicates that ChDSP1 is involved, very likely to exert its suppressive role, in the recovery of the ChHSP70 expression from the induced level to its original state. This study is the first to report negative regulator of HSP70 gene transcription, and provides novel insights into the mechanisms controlling heat shock protein expression. -- Highlights: •HMG protein ChDSP1 shows affinity to ChHSP70 promoter in Crassostrea hongkongensis. •ChDSP1 negatively regulates ChHSP70 transcription. •ChHSP70 and ChDSP1 transcriptions were coordinately induced by thermal/Cd stress. •ChDSP1 may contribute to the recovery of the induced ChHSP70 to its original state. •This is the first report regarding negative regulator of HSP70 transcription.

  1. Regulating the use of human bodily material.

    PubMed

    Skene, Loane

    2013-12-01

    The articles in this special issue consider recent developments in the law regulating the use of human bodily material and the wider implications of those developments. For some time, the law has accepted that a person who has undertaken "work and skill" on excised bodily material may obtain at least a possessory right; but the person from whom the material came did not have such a right. Now, however, the law has recognised that people may have some legal rights regarding their own bodily material. What is the nature and source of those rights? Should they be expanded? If so, what legal principles are best to do that? The most frequent suggestion is the law of property but many other areas of law are also relevant: the law of contract; tort (bailment and consent); criminal law (e.g., forensic testing); gifts; custodianship and others. These regulatory options are outlined in this editorial and discussed by lawyers and other contributors in their articles in this special issue. There are also stimulating philosophical reflections on the nature of human bodily material.

  2. E3 ubiquitin ligase Hades negatively regulates the exonuclear function of p53

    PubMed Central

    Jung, J H; Bae, S; Lee, J Y; Woo, S R; Cha, H J; Yoon, Y; Suh, K-S; Lee, S-J; Park, I-C; Jin, Y-W; Lee, K-H; An, S; Lee, J H

    2011-01-01

    Following DNA damage, p53 translocates to the cytoplasm and mitochondria, where it triggers transcription-independent apoptosis by binding to Bcl-2 family proteins. However, little is known about how this exonuclear function of p53 is regulated. Here, we identify and characterize a p53-interacting protein called Hades, an E3 ligase that interacts with p53 in the mitochondria. Hades reduces p53 stability via a mechanism that requires its RING-finger domain with ubiquitin ligase activity. Hades polyubiquitinates p53 in vitro independent of Mdm2 and targets a critical lysine residue in p53 (lysine 24) distinct from those targeted by Mdm2. Hades inhibits a p53-dependent mitochondrial cell death pathway by inhibiting p53 and Bcl-2 interactions. These findings show that Hades-mediated p53 ubiquitination is a novel mechanism for negatively regulating the exonuclear function of p53. PMID:21597459

  3. E3 ubiquitin ligase Hades negatively regulates the exonuclear function of p53.

    PubMed

    Jung, J H; Bae, S; Lee, J Y; Woo, S R; Cha, H J; Yoon, Y; Suh, K-S; Lee, S-J; Park, I-C; Jin, Y-W; Lee, K-H; An, S; Lee, J H

    2011-12-01

    Following DNA damage, p53 translocates to the cytoplasm and mitochondria, where it triggers transcription-independent apoptosis by binding to Bcl-2 family proteins. However, little is known about how this exonuclear function of p53 is regulated. Here, we identify and characterize a p53-interacting protein called Hades, an E3 ligase that interacts with p53 in the mitochondria. Hades reduces p53 stability via a mechanism that requires its RING-finger domain with ubiquitin ligase activity. Hades polyubiquitinates p53 in vitro independent of Mdm2 and targets a critical lysine residue in p53 (lysine 24) distinct from those targeted by Mdm2. Hades inhibits a p53-dependent mitochondrial cell death pathway by inhibiting p53 and Bcl-2 interactions. These findings show that Hades-mediated p53 ubiquitination is a novel mechanism for negatively regulating the exonuclear function of p53.

  4. The Emerging Regulation of VEGFR-2 in Triple-Negative Breast Cancer

    PubMed Central

    Zhu, Xiaoxia; Zhou, Wen

    2015-01-01

    Vascular endothelial growth factor-A (VEGF) signals vascular development and angiogenesis mainly by binding to VEGF receptor family member 2 (VEGFR-2). Adaptor proteins mediate many VEGFR-2’s functions in the development of blood vessels. Cancer cells secrete VEGF to activate VEGFR-2 pathway in their neighboring endothelial cells in the process of cancer-related angiogenesis. Interestingly, activation of VEGFR-2 signaling is found in breast cancer cells, but its role and regulation are not clear. We highlighted research advances of VEGFR-2, with a focus on VEGFR-2’s regulation by mutant p53 in breast cancer. In addition, we reviewed recent Food and Drug Administration-approved tyrosine kinase inhibitor drugs that can inhibit the function of VEGFR-2. Ongoing preclinical and clinical studies might prove that pharmaceutically targeting VEGFR-2 could be an effective therapeutic strategy in treating triple-negative breast cancer. PMID:26500608

  5. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis.

    PubMed

    Hardie, D Grahame

    2015-04-01

    The AMP-activated protein kinase (AMPK) is a sensor of energy status that, when activated by metabolic stress, maintains cellular energy homeostasis by switching on catabolic pathways and switching off ATP-consuming processes. Recent results suggest that activation of AMPK by the upstream kinase LKB1 in response to nutrient lack occurs at the surface of the lysosome. AMPK is also crucial in regulation of whole body energy balance, particularly by mediating effects of hormones acting on the hypothalamus. Recent crystal structures of complete AMPK heterotrimers have illuminated its complex mechanisms of activation, involving both allosteric activation and increased net phosphorylation mediated by effects on phosphorylation and dephosphorylation. Finally, AMPK is negatively regulated by phosphorylation of the 'ST loop' within the catalytic subunit.

  6. Antennally mediated negative feedback regulation of pheromone production in the pine engraver beetle, Ips pini

    NASA Astrophysics Data System (ADS)

    Ginzel, Matthew D.; Bearfield, Jeremy C.; Keeling, Christopher I.; McCormack, Colin C.; Blomquist, Gary J.; Tittiger, Claus

    2007-01-01

    Bark beetles use monoterpenoid aggregation pheromones to coordinate host colonization and mating. These chemical signals are produced de novo in midgut cells via the mevalonate pathway, and pheromone production may be regulated by a negative feedback system mediated through the antennae. In this study, we explored the effect of antennectomy on pheromone production and transcript levels of key mevalonate pathway genes in juvenile hormone III-treated male pine engraver beetles, Ips pini (Say). Antennectomized males produced significantly greater amounts of pheromone than podectomized males and those with intact antennae. Likewise, mRNA levels of three mevalonate pathway genes important in pheromone biosynthesis were measured by quantitative real-time PCR and found to be induced to a greater extent with antennectomy, suggesting a transcriptional regulation of pheromone production.

  7. Penta-EF-Hand Protein Peflin Is a Negative Regulator of ER-To-Golgi Transport.

    PubMed

    Rayl, Mariah; Truitt, Mishana; Held, Aaron; Sargeant, John; Thorsen, Kevin; Hay, Jesse C

    2016-01-01

    Luminal calcium regulates vesicle transport early in the secretory pathway. In ER-to-Golgi transport, depletion of luminal calcium leads to significantly reduced transport and a buildup of budding and newly budded COPII vesicles and vesicle proteins. Effects of luminal calcium on transport may be mediated by cytoplasmic calcium sensors near ER exits sites (ERES). The penta-EF-hand (PEF) protein apoptosis-linked gene 2 (ALG-2) stabilizes sec31A at ER exit sites (ERES) and promotes the assembly of inner and outer shell COPII components. However, in vitro and intact cell approaches have not determined whether ALG-2 is a negative or positive regulator, or a regulator at all, under basal physiological conditions. ALG-2 interacts with another PEF protein, peflin, to form cytosolic heterodimers that dissociate in response to calcium. However, a biological function for peflin has not been demonstrated and whether peflin and the ALG-2/peflin interaction modulates transport has not been investigated. Using an intact, single cell, morphological assay for ER-to-Golgi transport in normal rat kidney (NRK) cells, we found that depletion of peflin using siRNA resulted in significantly faster transport of the membrane cargo VSV-G. Double depletion of peflin and ALG-2 blocked the increased transport resulting from peflin depletion, demonstrating a role for ALG-2 in the increased transport. Furthermore, peflin depletion caused increased targeting of ALG-2 to ERES and increased ALG-2/sec31A interactions, suggesting that peflin may normally inhibit transport by preventing ALG-2/sec31A interactions. This work identifies for the first time a clear steady state role for a PEF protein in ER-to-Golgi transport-peflin is a negative regulator of transport.

  8. HDAC3 Is a Critical Negative Regulator of Long-Term Memory Formation

    PubMed Central

    McQuown, Susan C.; Barrett, Ruth M.; Matheos, Dina P.; Post, Rebecca J.; Rogge, George A.; Alenghat, Theresa; Mullican, Shannon E.; Jones, Steven; Rusche, James R.; Lazar, Mitchell A.; Wood, Marcelo A.

    2011-01-01

    Gene expression is dynamically regulated by chromatin modifications on histone tails, such as acetylation. In general, histone acetylation promotes transcription, whereas histone deacetylation negatively regulates transcription. The interplay between histone acetyl-transerases and histone deacetylases (HDACs) is pivotal for the regulation of gene expression required for long-term memory processes. Currently, very little is known about the role of individual HDACs in learning and memory. We examined the role of HDAC3 in long-term memory using a combined genetic and pharmacologic approach. We used HDAC3–FLOX genetically modified mice in combination with adeno-associated virus-expressing Cre recombinase to generate focal homozygous deletions of Hdac3 in area CA1 of the dorsal hippocampus. To complement this approach, we also used a selective inhibitor of HDAC3, RGFP136 [N-(6-(2-amino-4-fluorophenylamino)-6-oxohexyl)-4-methylbenzamide]. Immunohistochemistry showed that focal deletion or intrahippocampal delivery of RGFP136 resulted in increased histone acetylation. Both the focal deletion of HDAC3 as well as HDAC3 inhibition via RGFP136 significantly enhanced long-term memory in a persistent manner. Next we examined expression of genes implicated in long-term memory from dorsal hippocampal punches using quantitative reverse transcription-PCR. Expression of nuclear receptor subfamily 4 group A, member 2 (Nr4a2) and c-fos was significantly increased in the hippocampus of HDAC3–FLOX mice compared with wild-type controls. Memory enhancements observed in HDAC3–FLOX mice were abolished by intrahippocampal delivery of Nr4a2 small interfering RNA, suggesting a mechanism by which HDAC3 negatively regulates memory formation. Together, these findings demonstrate a critical role for HDAC3 in the molecular mechanisms underlying long-term memory formation. PMID:21228185

  9. The R3-MYB gene GhCPC negatively regulates cotton fiber elongation.

    PubMed

    Liu, Bingliang; Zhu, Yichao; Zhang, Tianzhen

    2015-01-01

    Cotton (Gossypium spp.) fibers are single-cell trichomes that arise from the outer epidermal layer of seed coat. Here, we isolated a R3-MYB gene GhCPC, identified by cDNA microarray analysis. The only conserved R3 motif and different expression between TM-1 and fuzzless-lintless mutants suggested that it might be a negative regulator in fiber development. Transgenic evidence showed that GhCPC overexpression not only delayed fiber initiation but also led to significant decreases in fiber length. Interestingly, Yeast two-hybrid analysis revealed an interaction complex, in which GhCPC and GhTTG1/4 separately interacted with GhMYC1. In transgenic plants, Q-PCR analysis showed that GhHOX3 (GL2) and GhRDL1 were significantly down regulated in -1-5 DPA ovules and fibers. In addition, Yeast one-hybrid analysis demonstrated that GhMYC1 could bind to the E-box cis-elements and the promoter of GhHOX3. These results suggested that GhHOX3 (GL2) might be downstream gene of the regulatory complex. Also, overexpression of GhCPC in tobacco led to differential loss of pigmentation. Taken together, the results suggested that GhCPC might negatively regulate cotton fiber initiation and early elongation by a potential CPC-MYC1-TTG1/4 complex. Although the fibers were shorter in transgenic cotton lines than in the wild type, no significant difference was detected in stem or leaf trichomes, even in cotton mutants (five naked seed or fuzzless), suggesting that fiber and trichome development might be regulated by two sets of genes sharing a similar model.

  10. Penta-EF-Hand Protein Peflin Is a Negative Regulator of ER-To-Golgi Transport

    PubMed Central

    Held, Aaron; Sargeant, John; Thorsen, Kevin; Hay, Jesse C.

    2016-01-01

    Luminal calcium regulates vesicle transport early in the secretory pathway. In ER-to-Golgi transport, depletion of luminal calcium leads to significantly reduced transport and a buildup of budding and newly budded COPII vesicles and vesicle proteins. Effects of luminal calcium on transport may be mediated by cytoplasmic calcium sensors near ER exits sites (ERES). The penta-EF-hand (PEF) protein apoptosis-linked gene 2 (ALG-2) stabilizes sec31A at ER exit sites (ERES) and promotes the assembly of inner and outer shell COPII components. However, in vitro and intact cell approaches have not determined whether ALG-2 is a negative or positive regulator, or a regulator at all, under basal physiological conditions. ALG-2 interacts with another PEF protein, peflin, to form cytosolic heterodimers that dissociate in response to calcium. However, a biological function for peflin has not been demonstrated and whether peflin and the ALG-2/peflin interaction modulates transport has not been investigated. Using an intact, single cell, morphological assay for ER-to-Golgi transport in normal rat kidney (NRK) cells, we found that depletion of peflin using siRNA resulted in significantly faster transport of the membrane cargo VSV-G. Double depletion of peflin and ALG-2 blocked the increased transport resulting from peflin depletion, demonstrating a role for ALG-2 in the increased transport. Furthermore, peflin depletion caused increased targeting of ALG-2 to ERES and increased ALG-2/sec31A interactions, suggesting that peflin may normally inhibit transport by preventing ALG-2/sec31A interactions. This work identifies for the first time a clear steady state role for a PEF protein in ER-to-Golgi transport—peflin is a negative regulator of transport. PMID:27276012

  11. Importin beta negatively regulates nuclear membrane fusion and nuclear pore complex assembly.

    PubMed

    Harel, Amnon; Chan, Rene C; Lachish-Zalait, Aurelie; Zimmerman, Ella; Elbaum, Michael; Forbes, Douglass J

    2003-11-01

    Assembly of a eukaryotic nucleus involves three distinct events: membrane recruitment, fusion to form a double nuclear membrane, and nuclear pore complex (NPC) assembly. We report that importin beta negatively regulates two of these events, membrane fusion and NPC assembly. When excess importin beta is added to a full Xenopus nuclear reconstitution reaction, vesicles are recruited to chromatin but their fusion is blocked. The importin beta down-regulation of membrane fusion is Ran-GTP reversible. Indeed, excess RanGTP (RanQ69L) alone stimulates excessive membrane fusion, leading to intranuclear membrane tubules and cytoplasmic annulate lamellae-like structures. We propose that a precise balance of importin beta to Ran is required to create a correct double nuclear membrane and simultaneously to repress undesirable fusion events. Interestingly, truncated importin beta 45-462 allows membrane fusion but produces nuclei lacking any NPCs. This reveals distinct importin beta-regulation of NPC assembly. Excess full-length importin beta and beta 45-462 act similarly when added to prefused nuclear intermediates, i.e., both block NPC assembly. The importin beta NPC block, which maps downstream of GTPgammaS and BAPTA-sensitive steps in NPC assembly, is reversible by cytosol. Remarkably, it is not reversible by 25 microM RanGTP, a concentration that easily reverses fusion inhibition. This report, using a full reconstitution system and natural chromatin substrates, significantly expands the repertoire of importin beta. Its roles now encompass negative regulation of two of the major events of nuclear assembly: membrane fusion and NPC assembly.

  12. Osa-miR169 Negatively Regulates Rice Immunity against the Blast Fungus Magnaporthe oryzae

    PubMed Central

    Li, Yan; Zhao, Sheng-Li; Li, Jin-Lu; Hu, Xiao-Hong; Wang, He; Cao, Xiao-Long; Xu, Yong-Ju; Zhao, Zhi-Xue; Xiao, Zhi-Yuan; Yang, Nan; Fan, Jing; Huang, Fu; Wang, Wen-Ming

    2017-01-01

    miR169 is a conserved microRNA (miRNA) family involved in plant development and stress-induced responses. However, how miR169 functions in rice immunity remains unclear. Here, we show that miR169 acts as a negative regulator in rice immunity against the blast fungus Magnaporthe oryzae by repressing the expression of nuclear factor Y-A (NF-YA) genes. The accumulation of miR169 was significantly increased in a susceptible accession but slightly fluctuated in a resistant accession upon M. oryzae infection. Consistently, the transgenic lines overexpressing miR169a became hyper-susceptible to different M. oryzae strains associated with reduced expression of defense-related genes and lack of hydrogen peroxide accumulation at the infection site. Consequently, the expression of its target genes, the NF-YA family members, was down-regulated by the overexpression of miR169a at either transcriptional or translational level. On the contrary, overexpression of a target mimicry that acts as a sponge to trap miR169a led to enhanced resistance to M. oryzae. In addition, three of miR169’s target genes were also differentially up-regulated in the resistant accession upon M. oryzae infection. Taken together, our data indicate that miR169 negatively regulates rice immunity against M. oryzae by differentially repressing its target genes and provide the potential to engineer rice blast resistance via a miRNA. PMID:28144248

  13. MBSR vs aerobic exercise in social anxiety: fMRI of emotion regulation of negative self-beliefs.

    PubMed

    Goldin, Philippe; Ziv, Michal; Jazaieri, Hooria; Hahn, Kevin; Gross, James J

    2013-01-01

    Mindfulness-based stress reduction (MBSR) is thought to reduce emotional reactivity and enhance emotion regulation in patients with social anxiety disorder (SAD). The goal of this study was to examine the neural correlates of deploying attention to regulate responses to negative self-beliefs using functional magnetic resonance imaging. Participants were 56 patients with generalized SAD in a randomized controlled trial who were assigned to MBSR or a comparison aerobic exercise (AE) stress reduction program. Compared to AE, MBSR yielded greater (i) reductions in negative emotion when implementing regulation and (ii) increases in attention-related parietal cortical regions. Meditation practice was associated with decreases in negative emotion and social anxiety symptom severity, and increases in attention-related parietal cortex neural responses when implementing attention regulation of negative self-beliefs. Changes in attention regulation during MBSR may be an important psychological factor that helps to explain how mindfulness meditation training benefits patients with anxiety disorders.

  14. Astrocytes negatively regulate neurogenesis through the Jagged1-mediated Notch pathway.

    PubMed

    Wilhelmsson, Ulrika; Faiz, Maryam; de Pablo, Yolanda; Sjöqvist, Marika; Andersson, Daniel; Widestrand, Asa; Potokar, Maja; Stenovec, Matjaž; Smith, Peter L P; Shinjyo, Noriko; Pekny, Tulen; Zorec, Robert; Ståhlberg, Anders; Pekna, Marcela; Sahlgren, Cecilia; Pekny, Milos

    2012-10-01

    Adult neurogenesis is regulated by a number of cellular players within the neurogenic niche. Astrocytes participate actively in brain development, regulation of the mature central nervous system (CNS), and brain plasticity. They are important regulators of the local environment in adult neurogenic niches through the secretion of diffusible morphogenic factors, such as Wnts. Astrocytes control the neurogenic niche also through membrane-associated factors, however, the identity of these factors and the mechanisms involved are largely unknown. In this study, we sought to determine the mechanisms underlying our earlier finding of increased neuronal differentiation of neural progenitor cells when cocultured with astrocytes lacking glial fibrillary acidic protein (GFAP) and vimentin (GFAP(-/-) Vim(-/-) ). We used primary astrocyte and neurosphere cocultures to demonstrate that astrocytes inhibit neuronal differentiation through a cell-cell contact. GFAP(-/-) Vim(-/-) astrocytes showed reduced endocytosis of Notch ligand Jagged1, reduced Notch signaling, and increased neuronal differentiation of neurosphere cultures. This effect of GFAP(-/-) Vim(-/-) astrocytes was abrogated in the presence of immobilized Jagged1 in a manner dependent on the activity of γ-secretase. Finally, we used GFAP(-/-) Vim(-/-) mice to show that in the absence of GFAP and vimentin, hippocampal neurogenesis under basal conditions as well as after injury is increased. We conclude that astrocytes negatively regulate neurogenesis through the Notch pathway, and endocytosis of Notch ligand Jagged1 in astrocytes and Notch signaling from astrocytes to neural stem/progenitor cells depends on the intermediate filament proteins GFAP and vimentin. Copyright © 2012 AlphaMed Press.

  15. Sef is a negative regulator of fiber cell differentiation in the ocular lens.

    PubMed

    Newitt, Peter; Boros, Jessica; Madakashira, Bhavani P; Robinson, Michael L; Reneker, Lixing W; McAvoy, John W; Lovicu, Frank J

    2010-07-01

    Growth factor signaling, mediated via receptor tyrosine kinases (RTKs), needs to be tightly regulated in many developmental systems to ensure a physiologically appropriate biological outcome. At one level this regulation may involve spatially and temporally ordered patterns of expression of specific RTK signaling antagonists, such as Sef (similar expression to fgfs). Growth factors, notably FGFs, play important roles in development of the vertebrate ocular lens. FGF induces lens cell proliferation and differentiation at progressively higher concentrations and there is compelling evidence that a gradient of FGF signaling in the eye determines lens polarity and growth patterns. We have recently identified the presence of Sef in the lens, with strongest expression in the epithelial cells. Given the important role for FGFs in lens developmental biology, we employed transgenic mouse strategies to determine if Sef could be involved in regulating lens cell behaviour. Over-expressing Sef specifically in the lens of transgenic mice led to impaired lens and eye development that resulted in microphthalmia. Sef inhibited primary lens fiber cell elongation and differentiation, as well as increased apoptosis, consistent with a block in FGFR-mediated signaling during lens morphogenesis. These results are consistent with growth factor antagonists, such as Sef, being important negative regulators of growth factor signaling. Moreover, the lens provides a useful paradigm as to how opposing gradients of a growth factor and its antagonist could work together to determine and stabilise tissue patterning during development and growth.

  16. microRNAs are differentially regulated between MDM2-positive and negative malignant pleural mesothelioma

    PubMed Central

    Walter, Robert Fred Henry; Vollbrecht, Claudia; Werner, Robert; Wohlschlaeger, Jeremias; Christoph, Daniel Christian; Schmid, Kurt Werner; Mairinger, Fabian Dominik

    2016-01-01

    Background Malignant pleural mesothelioma (MPM) is a highly aggressive tumour first-line treated with a combination of cisplatin and pemetrexed. MDM2 and P14/ARF (CDKN2A) are upstream regulators of TP53 and may contribute to its inactivation. In the present study, we now aimed to define the impact of miRNA expression on this mechanism. Material and Methods 24 formalin-fixed paraffin-embedded (FFPE) tumour specimens were used for miRNA expression analysis of the 800 most important miRNAs using the nCounter technique (NanoString). Significantly deregulated miRNAs were identified before a KEGG-pathway analysis was performed. Results 17 miRNAs regulating TP53, 18 miRNAs regulating MDM2, and 11 miRNAs directly regulating CDKN2A are significantly downregulated in MDM2-expressing mesotheliomas. TP53 is downregulated in MDM2-negative tumours through miRNAs with a miSVR prediction score of 11.67, RB1 with a prediction score of 8.02, MDM2 with a prediction score of 4.50 and CDKN2A with a prediction score of 1.27. Conclusion MDM2 expression seems to impact miRNA expression levels in MPM. Especially, miRNAs involved in TP53-signaling are strongly decreased in MDM2-positive mesotheliomas. A better understanding of its tumour biology may open the chance for new therapeutic approaches and thereby augment patients' outcome. PMID:26918730

  17. Receptor protein tyrosine phosphatase PTPRB negatively regulates FGF2-dependent branching morphogenesis.

    PubMed

    Soady, Kelly J; Tornillo, Giusy; Kendrick, Howard; Meniel, Valerie; Olijnyk-Dallis, Daria; Morris, Joanna S; Stein, Torsten; Gusterson, Barry A; Isacke, Clare M; Smalley, Matthew J

    2017-09-04

    PTPRB is a transmembrane protein tyrosine phosphatase known to regulate blood vessel remodelling and angiogenesis. Here we demonstrate that PTPRB negatively regulates branching morphogenesis in the mammary epithelium. We show that Ptprb is highly expressed in adult mammary stem cells and also, although at lower levels, in estrogen receptor positive luminal cells. During mammary development Ptprb expression is down-regulated during puberty, a period of extensive of ductal outgrowth and branching. In vivo shRNA knockdown of Ptprb in the cleared mammary fat pad transplant assay resulted in smaller epithelial outgrowths with an increased branching density and also increased branching in an in vitro organoid assay. Organoid branching was dependent on stimulation by FGF2, and Ptprb knockdown in mammary epithelial cells resulted in a higher level of FGFR activation and ERK1/2 phosphorylation, both at baseline and following FGF2 stimulation. Therefore, PTPRB regulates branching morphogenesis in the mammary epithelium by modulating the response of the FGFR signalling pathway to FGF stimulation. Considering the importance of branching morphogenesis in multiple taxa, our findings have general importance outside mammary developmental biology. © 2017. Published by The Company of Biologists Ltd.

  18. TRIM27 Negatively Regulates NOD2 by Ubiquitination and Proteasomal Degradation

    PubMed Central

    Zurek, Birte; Schoultz, Ida; Neerincx, Andreas; Napolitano, Luisa M.; Birkner, Katharina; Bennek, Eveline; Sellge, Gernot; Lerm, Maria; Meroni, Germana; Söderholm, Johan D.; Kufer, Thomas A.

    2012-01-01

    NOD2, the nucleotide-binding domain and leucine-rich repeat containing gene family (NLR) member 2 is involved in mediating antimicrobial responses. Dysfunctional NOD2 activity can lead to severe inflammatory disorders, but the regulation of NOD2 is still poorly understood. Recently, proteins of the tripartite motif (TRIM) protein family have emerged as regulators of innate immune responses by acting as E3 ubiquitin ligases. We identified TRIM27 as a new specific binding partner for NOD2. We show that NOD2 physically interacts with TRIM27 via the nucleotide-binding domain, and that NOD2 activation enhances this interaction. Dependent on functional TRIM27, ectopically expressed NOD2 is ubiquitinated with K48-linked ubiquitin chains followed by proteasomal degradation. Accordingly, TRIM27 affects NOD2-mediated pro-inflammatory responses. NOD2 mutations are linked to susceptibility to Crohn's disease. We found that TRIM27 expression is increased in Crohn's disease patients, underscoring a physiological role of TRIM27 in regulating NOD2 signaling. In HeLa cells, TRIM27 is partially localized in the nucleus. We revealed that ectopically expressed NOD2 can shuttle to the nucleus in a Walker A dependent manner, suggesting that NOD2 and TRIM27 might functionally cooperate in the nucleus. We conclude that TRIM27 negatively regulates NOD2-mediated signaling by degradation of NOD2 and suggest that TRIM27 could be a new target for therapeutic intervention in NOD2-associated diseases. PMID:22829933

  19. TAZ Protein Accumulation Is Negatively Regulated by YAP Abundance in Mammalian Cells*

    PubMed Central

    Finch-Edmondson, Megan L.; Strauss, Robyn P.; Passman, Adam M.; Sudol, Marius; Yeoh, George C.; Callus, Bernard A.

    2015-01-01

    The mammalian Hippo signaling pathway regulates cell growth and survival and is frequently dysregulated in cancer. YAP and TAZ are transcriptional coactivators that function as effectors of this signaling pathway. Aberrant YAP and TAZ activity is reported in several human cancers, and normally the expression and nuclear localization of these proteins is tightly regulated. We sought to establish whether a direct relationship exists between YAP and TAZ. Using knockdown and overexpression experiments we show YAP inversely regulates the abundance of TAZ protein by proteasomal degradation. Interestingly this phenomenon was uni-directional since TAZ expression did not affect YAP abundance. Structure/function analyses suggest that YAP-induced TAZ degradation is a consequence of YAP-targeted gene transcription involving TEAD factors. Subsequent investigation of known regulators of TAZ degradation using specific inhibitors revealed a role for heat shock protein 90 and glycogen synthase kinase 3 but not casein kinase 1 nor LATS in YAP-mediated TAZ loss. Importantly, this phenomenon is conserved from mouse to human; however, interestingly, different YAP isoforms varied in their ability to degrade TAZ. Since shRNA-mediated TAZ depletion in HeLa and D645 cells caused apoptotic cell death, we propose that isoform-specific YAP-mediated TAZ degradation may contribute to the contradicting roles reported for YAP overexpression. This study identifies a novel mechanism of TAZ regulation by YAP, which has significant implications for our understanding of Hippo pathway regulation, YAP-isoform specific signaling, and the role of these proteins in cell proliferation, apoptosis, and tumorigenesis. PMID:26432639

  20. Soybean Homologs of MPK4 Negatively Regulate Defense Responses and Positively Regulate Growth and Development1[W][OA

    PubMed Central

    Liu, Jian-Zhong; Horstman, Heidi D.; Braun, Edward; Graham, Michelle A.; Zhang, Chunquan; Navarre, Duroy; Qiu, Wen-Li; Lee, Yeunsook; Nettleton, Dan; Hill, John H.; Whitham, Steven A.

    2011-01-01

    Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly down-regulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species. PMID:21878550

  1. Enhanced Mucosal Defense and Reduced Tumor Burden in Mice with the Compromised Negative Regulator IRAK-M.

    PubMed

    Rothschild, Daniel E; Zhang, Yao; Diao, Na; Lee, Christina K; Chen, Keqiang; Caswell, Clayton C; Slade, Daniel J; Helm, Richard F; LeRoith, Tanya; Li, Liwu; Allen, Irving C

    2017-02-01

    Aberrant inflammation is a hallmark of inflammatory bowel disease (IBD) and colorectal cancer. IRAK-M is a critical negative regulator of TLR signaling and overzealous inflammation. Here we utilize data from human studies and Irak-m(-/-) mice to elucidate the role of IRAK-M in the modulation of gastrointestinal immune system homeostasis. In human patients, IRAK-M expression is up-regulated during IBD and colorectal cancer. Further functional studies in mice revealed that Irak-m(-/-) animals are protected against colitis and colitis associated tumorigenesis. Mechanistically, our data revealed that the gastrointestinal immune system of Irak-m(-/-) mice is highly efficient at eliminating microbial translocation following epithelial barrier damage. This attenuation of pathogenesis is associated with expanded areas of gastrointestinal associated lymphoid tissue (GALT), increased neutrophil migration, and enhanced T-cell recruitment. Further evaluation of Irak-m(-/-) mice revealed a splice variant that robustly activates NF-κB signaling. Together, these data identify IRAK-M as a potential target for future therapeutic intervention.

  2. The Histidine Kinase BinK Is a Negative Regulator of Biofilm Formation and Squid Colonization

    PubMed Central

    Brooks, John F.

    2016-01-01

    ABSTRACT Bacterial colonization of animal epithelial tissue is a dynamic process that relies on precise molecular communication. Colonization of Euprymna scolopes bobtail squid by Vibrio fischeri bacteria requires bacterial aggregation in host mucus as the symbiont transitions from a planktonic lifestyle in seawater to a biofilm-associated state in the host. We have identified a gene, binK (biofilm inhibitor kinase; VF_A0360), which encodes an orphan hybrid histidine kinase that negatively regulates the V. fischeri symbiotic biofilm (Syp) in vivo and in vitro. We identified binK mutants as exhibiting a colonization advantage in a global genetic screen, a phenotype that we confirmed in controlled competition experiments. Bacterial biofilm aggregates in the host are larger in strains lacking BinK, whereas overexpression of BinK suppresses biofilm formation and squid colonization. Signaling through BinK is required for temperature modulation of biofilm formation at 28°C. Furthermore, we present evidence that BinK acts upstream of SypG, the σ54-dependent transcriptional regulator of the syp biofilm locus. The BinK effects are dependent on intact signaling in the RscS-Syp biofilm pathway. Therefore, we propose that BinK antagonizes the signal from RscS and serves as an integral component in V. fischeri biofilm regulation. IMPORTANCE Bacterial lifestyle transitions underlie the colonization of animal hosts from environmental reservoirs. Formation of matrix-enclosed, surface-associated aggregates (biofilms) is common in beneficial and pathogenic associations, but investigating the genetic basis of biofilm development in live animal hosts remains a significant challenge. Using the bobtail squid light organ as a model, we analyzed putative colonization factors and identified a histidine kinase that negatively regulates biofilm formation at the host interface. This work reveals a novel in vivo biofilm regulator that influences the transition of bacteria from their

  3. The Histidine Kinase BinK Is a Negative Regulator of Biofilm Formation and Squid Colonization.

    PubMed

    Brooks, John F; Mandel, Mark J

    2016-10-01

    Bacterial colonization of animal epithelial tissue is a dynamic process that relies on precise molecular communication. Colonization of Euprymna scolopes bobtail squid by Vibrio fischeri bacteria requires bacterial aggregation in host mucus as the symbiont transitions from a planktonic lifestyle in seawater to a biofilm-associated state in the host. We have identified a gene, binK (biofilm inhibitor kinase; VF_A0360), which encodes an orphan hybrid histidine kinase that negatively regulates the V. fischeri symbiotic biofilm (Syp) in vivo and in vitro We identified binK mutants as exhibiting a colonization advantage in a global genetic screen, a phenotype that we confirmed in controlled competition experiments. Bacterial biofilm aggregates in the host are larger in strains lacking BinK, whereas overexpression of BinK suppresses biofilm formation and squid colonization. Signaling through BinK is required for temperature modulation of biofilm formation at 28°C. Furthermore, we present evidence that BinK acts upstream of SypG, the σ(54)-dependent transcriptional regulator of the syp biofilm locus. The BinK effects are dependent on intact signaling in the RscS-Syp biofilm pathway. Therefore, we propose that BinK antagonizes the signal from RscS and serves as an integral component in V. fischeri biofilm regulation. Bacterial lifestyle transitions underlie the colonization of animal hosts from environmental reservoirs. Formation of matrix-enclosed, surface-associated aggregates (biofilms) is common in beneficial and pathogenic associations, but investigating the genetic basis of biofilm development in live animal hosts remains a significant challenge. Using the bobtail squid light organ as a model, we analyzed putative colonization factors and identified a histidine kinase that negatively regulates biofilm formation at the host interface. This work reveals a novel in vivo biofilm regulator that influences the transition of bacteria from their planktonic state in

  4. HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis.

    PubMed

    Nawkar, Ganesh M; Kang, Chang Ho; Maibam, Punyakishore; Park, Joung Hun; Jung, Young Jun; Chae, Ho Byoung; Chi, Yong Hun; Jung, In Jung; Kim, Woe Yeon; Yun, Dae-Jin; Lee, Sang Yeol

    2017-02-21

    Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box-like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression.

  5. Suppressor of Cytokine Signaling 2 Negatively Regulates NK Cell Differentiation by Inhibiting JAK2 Activity

    PubMed Central

    Kim, Won Sam; Kim, Mi Jeong; Kim, Dong Oh; Byun, Jae-Eun; Huy, Hangsak; Song, Hae Young; Park, Young-Jun; Kim, Tae-Don; Yoon, Suk Ran; Choi, Eun-Ji; Jung, Haiyoung; Choi, Inpyo

    2017-01-01

    Suppressor of cytokine signaling (SOCS) proteins are negative regulators of cytokine responses. Although recent reports have shown regulatory roles for SOCS proteins in innate and adaptive immunity, their roles in natural killer (NK) cell development are largely unknown. Here, we show that SOCS2 is involved in NK cell development. SOCS2−/− mice showed a high frequency of NK cells in the bone marrow and spleen. Knockdown of SOCS2 was associated with enhanced differentiation of NK cells in vitro, and the transplantation of hematopoietic stem cells (HSCs) into congenic mice resulted in enhanced differentiation in SOCS2−/− HSCs. We found that SOCS2 could inhibit Janus kinase 2 (JAK2) activity and JAK2-STAT5 signaling pathways via direct interaction with JAK2. Furthermore, SOCS2−/− mice showed a reduction in lung metastases and an increase in survival following melanoma challenge. Overall, our findings suggest that SOCS2 negatively regulates the development of NK cells by inhibiting JAK2 activity via direct interaction. PMID:28383049

  6. Protein kinase Gin4 negatively regulates flippase function and controls plasma membrane asymmetry.

    PubMed

    Roelants, Françoise M; Su, Brooke M; von Wulffen, Joachim; Ramachandran, Subramaniam; Sartorel, Elodie; Trott, Amy E; Thorner, Jeremy

    2015-02-02

    Plasma membrane function requires distinct leaflet lipid compositions. Two of the P-type ATPases (flippases) in yeast, Dnf1 and Dnf2, translocate aminoglycerophospholipids from the outer to the inner leaflet, stimulated via phosphorylation by cortically localized protein kinase Fpk1. By monitoring Fpk1 activity in vivo, we found that Fpk1 was hyperactive in cells lacking Gin4, a protein kinase previously implicated in septin collar assembly. Gin4 colocalized with Fpk1 at the cortical site of future bud emergence and phosphorylated Fpk1 at multiple sites, which we mapped. As judged by biochemical and phenotypic criteria, a mutant (Fpk1(11A)), in which 11 sites were mutated to Ala, was hyperactive, causing increased inward transport of phosphatidylethanolamine. Thus, Gin4 is a negative regulator of Fpk1 and therefore an indirect negative regulator of flippase function. Moreover, we found that decreasing flippase function rescued the growth deficiency of four different cytokinesis mutants, which suggests that the primary function of Gin4 is highly localized control of membrane lipid asymmetry and is necessary for optimal cytokinesis. © 2015 Roelants et al.

  7. Plasma glutamate carboxypeptidase is a negative regulator in liver cancer metastasis

    PubMed Central

    Lee, Jae-Hye; Cho, Hyun-Soo; Lee, Jeong-Ju; Jun, Soo Young; Ahn, Jun-Ho; Min, Ju-Sik; Yoon, Ji-Yong; Choi, Min-Hyuk; Jeon, Su-Jin; Lim, Jung Hwa; Jung, Cho-Rok; Kim, Dae-Soo; Kim, Hyun-Taek; Factor, Valentina M.; Lee, Yun-Han; Thorgeirsson, Snorri S.; Kim, Cheol-Hee; Kim, Nam-Soon

    2016-01-01

    Tumor metastasis is the leading cause of cancer death. In the metastatic process, EMT is a unique phenotypic change that plays an important role in cell invasion and changes in cell morphology. Despite the clinical significance, the mechanism underlying tumor metastasis is still poorly understood. Here we report a novel mechanism by which secreted plasma glutamate carboxypeptidase(PGCP) negatively involves Wnt/β-catenin signaling by DKK4 regulation in liver cancer metastasis. Pathway analysis of the RNA sequencing data showed that PGCP knockdown in liver cancer cell lines enriched the functions of cell migration, motility and mesenchymal cell differentiation. Depletion of PGCP promoted cell migration and invasion via activation of Wnt/β-catenin signaling pathway components such as phospho-LRP6 and β-catenin. Also, addition of DKK4 antagonized the Wnt/β-catenin signaling cascade in a thyroxine (T4)-dependent manner. In an in vivo study, metastatic nodules were observed in the lungs of the mice after injection of shPGCP stable cell lines. Our findings suggest that PGCP negatively associates with Wnt/β-catenin signaling during metastasis. Targeting this regulation may represent a novel and effective therapeutic option for liver cancer by preventing metastatic activity of primary tumor cells. PMID:27806330

  8. MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula

    PubMed Central

    Ryu, Hojin; Laffont, Carole; Frugier, Florian; Hwang, Ildoo

    2017-01-01

    Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula. The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN. We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors. PMID:28152300

  9. HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis

    PubMed Central

    Nawkar, Ganesh M.; Kang, Chang Ho; Maibam, Punyakishore; Park, Joung Hun; Jung, Young Jun; Chae, Ho Byoung; Chi, Yong Hun; Jung, In Jung; Kim, Woe Yeon; Yun, Dae-Jin; Lee, Sang Yeol

    2017-01-01

    Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box–like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression. PMID:28167764

  10. HDAC3 is a negative regulator of cocaine-context associated memory formation

    PubMed Central

    Rogge, George A.; Singh, Harsimran; Dang, Richard; Wood, Marcelo A.

    2013-01-01

    Cocaine-induced neuroplasticity mediated by histone acetylating and deacetylating enzymes may contribute to addiction-like behaviors. For example, over expression of histone deacetylases (HDACs) 4 or 5 in the nucleus accumbens (NAc) suppresses cocaine-induced conditioned place preference (CPP) acquisition in mice. HDAC4 and HDAC5 are known to interact with HDAC3, but the role of HDAC3 in cocaine-induced behaviors has never been examined. In this study, we address the hypothesis that HDAC3 is a negative regulator of cocaine-context associated memory formation in mice. We examined the role of HDAC3 during the conditioning phase of CPP, when the mouse has the opportunity to form an associative memory between the cocaine-paired context and the subjective effects of cocaine. To address this hypothesis, Hdac3flox/flox and Hdac3+/+ mice (generated from a C57B/L6 background) were infused intra-NAc with AAV-Cre recombinase to create focal, homozygous Hdac3 deletions. Hdac3flox/flox mice exhibit significantly enhanced CPP acquisition, which correlates with increased gene expression during the consolidation phase of acquisition. Increased gene expression of c-Fos and Nr4a2 correlated with decreased HDAC3 occupancy and increased histone H4 lysine 8 (H4K8) acetylation at their promoters. Together, results from this study demonstrate that HDAC3 negatively regulates cocaine-induced CPP acquisition. PMID:23575859

  11. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation.

    PubMed

    Gual, Philippe; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2005-01-01

    This review will provide insight on the current understanding of the regulation of insulin signaling in both physiological and pathological conditions through modulations that occur with regards to the functions of the insulin receptor substrate 1 (IRS1). While the phosphorylation of IRS1 on tyrosine residue is required for insulin-stimulated responses, the phosphorylation of IRS1 on serine residues has a dual role, either to enhance or to terminate the insulin effects. The activation of PKB in response to insulin propagates insulin signaling and promotes the phosphorylation of IRS1 on serine residue in turn generating a positive-feedback loop for insulin action. Insulin also activates several kinases and these kinases act to induce the phosphorylation of IRS1 on specific sites and inhibit its functions. This is part of the negative-feedback control mechanism induced by insulin that leads to termination of its action. Agents such as free fatty acids, cytokines, angiotensin II, endothelin-1, amino acids, cellular stress and hyperinsulinemia, which induce insulin resistance, lead to both activation of several serine/threonine kinases and phosphorylation of IRS1. These agents negatively regulate the IRS1 functions by phosphorylation but also via others molecular mechanisms (SOCS expression, IRS degradation, O-linked glycosylation) as summarized in this review. Understanding how these agents inhibit IRS1 functions as well as identification of kinases involved in these inhibitory effects may provide novel targets for development of strategies to prevent insulin resistance.

  12. Interleukin-17A negatively regulates lymphangiogenesis in T helper 17 cell-mediated inflammation.

    PubMed

    Park, H J; Yuk, C M; Shin, K; Lee, S-H

    2017-09-20

    During inflammation lymphatic vessels (LVs) are enlarged and their density is increased to facilitate the migration of activated immune cells and antigens. However, after antigen clearance, the expanded LVs shrink to maintain homeostasis. Here we show that interleukin (IL)-17A, secreted from T helper type 17 (TH17) cells, is a negative regulator of lymphangiogenesis during the resolution phase of TH17-mediated immune responses. Moreover, IL-17A suppresses the expression of major lymphatic markers in lymphatic endothelial cells and decreases in vitro LV formation. To investigate the role of IL-17A in vivo, we utilized a cholera toxin-mediated inflammation model and identified inflammation and resolution phases based on the numbers of recruited immune cells. IL-17A, markedly produced by TH17 cells even after the peak of inflammation, was found to participate in the negative regulation of LV formation. Moreover, blockade of IL-17A resulted in not only increased density of LVs in tissues but also their enhanced function. Taken together, these findings improve the current understanding of the relationship between LVs and inflammatory cytokines in pathologic conditions.Mucosal Immunology advance online publication 20 September 2017; doi:10.1038/mi.2017.76.

  13. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

    NASA Astrophysics Data System (ADS)

    Makino, Yuichi; Cao, Renhai; Svensson, Kristian; Bertilsson, Göran; Asman, Mikael; Tanaka, Hirotoshi; Cao, Yihai; Berkenstam, Anders; Poellinger, Lorenz

    2001-11-01

    Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs). Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

  14. Up-Regulation of RFC3 Promotes Triple Negative Breast Cancer Metastasis and is Associated With Poor Prognosis Via EMT.

    PubMed

    He, Zhen-Yu; Wu, San-Gang; Peng, Fang; Zhang, Qun; Luo, Ying; Chen, Ming; Bao, Yong

    2017-02-01

    Triple-negative breast cancer (TNBC) was regarded as the most aggressive and mortal subtype of breast cancer (BC) since the molecular subtype system has been established. Abundant studies have revealed that epithelial-mesenchymal transition (EMT) played a pivotal role during breast cancer metastasis and progression, especially in TNBC. Herein, we showed that inhibition the expression of replication factor C subunit 3 (RFC3) significantly attenuated TNBC metastasis and progression, which was associated with EMT signal pathway. In TNBC cells, knockdown of RFC3 can down-regulate mesenchymal markers and up-regulate epithelial markers, significantly attenuated cell proliferation, migration and invasion. Additionally, silencing RFC3 expression can decrease nude mice tumor volume, weight and relieve lung metastasis in vivo. Furthermore, we also demonstrated that overexpression of RFC3 in TNBC showed increased metastasis, progression and poor prognosis. We confirmed all of these results by immunohistochemistry analysis in 127 human TNBC tissues and found that RFC3 expression was significantly associated with poor prognosis in TNBC. Taken all these findings into consideration, we can conclude that up-regulation of RFC3 promotes TNBC progression through EMT signal pathway. Therefore, RFC3 could be an independent prognostic factor and therapeutic target for TNBC.

  15. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages

    SciTech Connect

    Sung, Nak-Yun; Yang, Mi-So; Song, Du-Sub; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon; Park, Hyun-Jin; Kim, Jae-Hun; Byun, Eui-Baek; Byun, Eui-Hong

    2013-08-16

    Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-κB through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development

  16. Negative regulation of TGFβ-induced lens epithelial to mesenchymal transition (EMT) by RTK antagonists.

    PubMed

    Zhao, Guannan; Wojciechowski, Magdalena C; Jee, Seonah; Boros, Jessica; McAvoy, John W; Lovicu, Frank J

    2015-03-01

    An eclectic range of ocular growth factors with differing actions are present within the aqueous and vitreous humors that bathe the lens. Growth factors that exert their actions via receptor tyrosine kinases (RTKs), such as FGF, play a normal regulatory role in lens; whereas other factors, such as TGFβ, can lead to an epithelial to mesenchymal transition (EMT) that underlies several forms of cataract. The respective downstream intracellular signaling pathways of these factors are in turn tightly regulated. One level of negative regulation is thought to be through RTK-antagonists, namely, Sprouty (Spry), Sef and Spred that are all expressed in the lens. In this study, we tested these different negative regulators and compared their ability to block TGFβ-induced EMT in rat lens epithelial cells. Spred expression within the rodent eye was confirmed using RT-PCR, western blotting and immunofluorescence. Rat lens epithelial explants were used to examine the morphological changes associated with TGFβ-induced EMT over 3 days of culture, as well as α-smooth muscle actin (α-sma) immunolabeling. Cells in lens epithelial explants were transfected with either a reporter (EGFP) vector (pLXSG), or with plasmids also coding for different RTK-antagonists (i.e. pLSXG-Spry1, pLSXG-Spry2, pLXSG-Sef, pLSXG-Spred1, pLSXG-Spred2, pLSXG-Spred3), before treating with TGFβ for up to 3 days. The percentages of transfected cells that underwent TGFβ-induced morphological changes consistent with an EMT were determined using cell counts and validated with a paired two-tailed t-test. Explants transfected with pLXSG demonstrated a distinct transition in cell morphology after TGFβ treatment, with ∼60% of the cells undergoing fibrotic-like cell elongation. This percentage was significantly reduced in cells overexpressing the different antagonists, indicative of a block in lens EMT. Of the antagonists tested under these in vitro conditions, Spred1 was the most potent demonstrating the

  17. Ligand Binding to WW Tandem Domains of YAP2 Transcriptional Regulator Is Under Negative Cooperativity

    PubMed Central

    Schuchardt, Brett J.; Mikles, David C.; Hoang, Lawrence M.; Bhat, Vikas; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad

    2014-01-01

    YAP2 transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well-documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. PMID:25283809

  18. Negative regulation in correct tissue-specific expression of mouse mammary tumor virus in transgenic mice.

    PubMed Central

    Ross, S R; Hsu, C L; Choi, Y; Mok, E; Dudley, J P

    1990-01-01

    Mouse mammary tumor virus (MMTV) is an endogenous murine retrovirus that is expressed in the epithelial cells of the mammary and salivary glands, lungs, kidneys, and seminal vesicles and in the lymphoid cells of the spleen and thymus. Several studies have shown that the long terminal repeat (LTR) of this virus can direct the expression of reporter genes to the same tissues in transgenic mice. To determine whether multiple regulatory elements within the LTR are involved in this tissue-specific expression, we have established lines of transgenic mice containing transgenes that have deletions in the MMTV LTR. Deletions of all LTR sequences upstream of -364 or of LTR sequences from -165 to -665 both result in the expression of linked reporter genes such as the simian virus 40 early region or the bacterial enzyme chloramphenicol acetyltransferase in novel sites, such as the heart, brain, and skeletal muscle; expression of endogenous MMTV and transgenes containing the full-length LTR is not detected in these organs. Negative regulation appears to involve more than one region, since deletion of sequences between either -201 and -471 or -201 and -344, as well as sequences upstream of -364, results in inappropriate expression in heart, brain, and skeletal muscle. Therefore, a negative regulatory element(s) in the MMTV LTR can suppress transcription from the viral promoter in several different organs. This represents the first example of generalized negative regulatory elements that act in many different tissues in transgenic mice to prevent inappropriate expression of a gene. Images PMID:1700274

  19. Ligand binding to WW tandem domains of YAP2 transcriptional regulator is under negative cooperativity.

    PubMed

    Schuchardt, Brett J; Mikles, David C; Hoang, Lawrence M; Bhat, Vikas; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad

    2014-12-01

    YES-associated protein 2 (YAP2) transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of the WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules.

  20. Tetratricopeptide Repeat Domain 9A Negatively Regulates Estrogen Receptor Alpha Activity

    PubMed Central

    Shrestha, Smeeta; Sun, Yang; Lufkin, Thomas; Kraus, Petra; Or, Yuzuan; Garcia, Yenni A.; Guy, Naihsuan; Ramos, Paola; Cox, Marc B.; Tay, Fiona; Lin, Valerie CL

    2015-01-01

    Tetratricopeptide repeat domain 9A (TTC9A) is a target gene of estrogen and progesterone. It is over-expressed in breast cancer. However, little is known about the physiological function of TTC9A. The objectives of this study were to establish a Ttc9a knockout mouse model and to study the consequence of Ttc9a gene inactivation. The Ttc9a targeting vector was generated by replacing the Ttc9a exon 1 with a neomycin cassette. The mice homozygous for Ttc9a exon 1 deletion appear to grow normally and are fertile. However, further characterization of the female mice revealed that Ttc9a deficiency is associated with greater body weight, bigger thymus and better mammary development in post-pubertal mice. Furthermore, Ttc9a deficient mammary gland was more responsive to estrogen treatment with greater mammary ductal lengthening, ductal branching and estrogen target gene induction. Since Ttc9a is induced by estrogen in estrogen target tissues, these results suggest that Ttc9a is a negative regulator of estrogen function through a negative feedback mechanism. This is supported by in vitro evidence that TTC9A over-expression attenuated ERα activity in MCF-7 cells. Although TTC9A does not bind to ERα or its chaperone protein Hsp90 directly, TTC9A strongly interacts with FKBP38 and FKBP51, both of which interact with ERα and Hsp90 and modulate ERα activity. It is plausible therefore that TTC9A negatively regulates ERα activity through interacting with co-chaperone proteins such as FKBP38 and FKBP51. PMID:25798063

  1. Tetratricopeptide repeat domain 9A negatively regulates estrogen receptor alpha activity.

    PubMed

    Shrestha, Smeeta; Sun, Yang; Lufkin, Thomas; Kraus, Petra; Or, Yuzuan; Garcia, Yenni A; Guy, Naihsuan; Ramos, Paola; Cox, Marc B; Tay, Fiona; Lin, Valerie C L

    2015-01-01

    Tetratricopeptide repeat domain 9A (TTC9A) is a target gene of estrogen and progesterone. It is over-expressed in breast cancer. However, little is known about the physiological function of TTC9A. The objectives of this study were to establish a Ttc9a knockout mouse model and to study the consequence of Ttc9a gene inactivation. The Ttc9a targeting vector was generated by replacing the Ttc9a exon 1 with a neomycin cassette. The mice homozygous for Ttc9a exon 1 deletion appear to grow normally and are fertile. However, further characterization of the female mice revealed that Ttc9a deficiency is associated with greater body weight, bigger thymus and better mammary development in post-pubertal mice. Furthermore, Ttc9a deficient mammary gland was more responsive to estrogen treatment with greater mammary ductal lengthening, ductal branching and estrogen target gene induction. Since Ttc9a is induced by estrogen in estrogen target tissues, these results suggest that Ttc9a is a negative regulator of estrogen function through a negative feedback mechanism. This is supported by in vitro evidence that TTC9A over-expression attenuated ERα activity in MCF-7 cells. Although TTC9A does not bind to ERα or its chaperone protein Hsp90 directly, TTC9A strongly interacts with FKBP38 and FKBP51, both of which interact with ERα and Hsp90 and modulate ERα activity. It is plausible therefore that TTC9A negatively regulates ERα activity through interacting with co-chaperone proteins such as FKBP38 and FKBP51.

  2. Forskolin-inducible cAMP pathway negatively regulates T-cell proliferation by uncoupling the interleukin-2 receptor complex.

    PubMed

    Rodriguez, Georgialina; Ross, Jeremy A; Nagy, Zsuzsanna S; Kirken, Robert A

    2013-03-08

    Cytokine-mediated regulation of T-cell activity involves a complex interplay between key signal transduction pathways. Determining how these signaling pathways cross-talk is essential to understanding T-cell function and dysfunction. In this work, we provide evidence that cross-talk exists between at least two signaling pathways: the Jak3/Stat5 and cAMP-mediated cascades. The adenylate cyclase activator forskolin (Fsk) significantly increased intracellular cAMP levels and reduced proliferation of the human T-cells via inhibition of cell cycle regulatory genes but did not induce apoptosis. To determine this inhibitory mechanism, effects of Fsk on IL-2 signaling was investigated. Fsk treatment of MT-2 and Kit 225 T-cells inhibited IL-2-induced Stat5a/b tyrosine and serine phosphorylation, nuclear translocation, and DNA binding activity. Fsk treatment also uncoupled IL-2 induced association of the IL-2Rβ and γc chain, consequently blocking Jak3 activation. Interestingly, phosphoamino acid analysis revealed that Fsk-treated cells resulted in elevated serine phosphorylation of Jak3 but not Stat5, suggesting that Fsk can negatively regulate Jak3 activity possibly mediated through PKA. Indeed, in vitro kinase assays and small molecule inhibition studies indicated that PKA can directly serine phosphorylate and functionally inactivate Jak3. Taken together, these findings suggest that Fsk activation of adenylate cyclase and PKA can negatively regulate IL-2 signaling at multiple levels that include IL-2R complex formation and Jak3/Stat5 activation.

  3. P. brasiliensis Virulence Is Affected by SconC, the Negative Regulator of Inorganic Sulfur Assimilation

    PubMed Central

    Menino, João Filipe; Saraiva, Margarida; Gomes-Rezende, Jéssica; Sturme, Mark; Pedrosa, Jorge; Castro, António Gil; Ludovico, Paula; Goldman, Gustavo H.; Rodrigues, Fernando

    2013-01-01

    Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37°C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis. PMID:24066151

  4. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis.

    PubMed

    Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  5. sfrp1 promotes cardiomyocyte differentiation in Xenopus via negative-feedback regulation of Wnt signalling

    PubMed Central

    Gibb, Natalie; Lavery, Danielle L.; Hoppler, Stefan

    2013-01-01

    Wnt signalling is a key regulator of vertebrate he