Sample records for neighbor query processing

  1. Secure Nearest Neighbor Query on Crowd-Sensing Data

    PubMed Central

    Cheng, Ke; Wang, Liangmin; Zhong, Hong

    2016-01-01

    Nearest neighbor queries are fundamental in location-based services, and secure nearest neighbor queries mainly focus on how to securely and quickly retrieve the nearest neighbor in the outsourced cloud server. However, the previous big data system structure has changed because of the crowd-sensing data. On the one hand, sensing data terminals as the data owner are numerous and mistrustful, while, on the other hand, in most cases, the terminals find it difficult to finish many safety operation due to computation and storage capability constraints. In light of they Multi Owners and Multi Users (MOMU) situation in the crowd-sensing data cloud environment, this paper presents a secure nearest neighbor query scheme based on the proxy server architecture, which is constructed by protocols of secure two-party computation and secure Voronoi diagram algorithm. It not only preserves the data confidentiality and query privacy but also effectively resists the collusion between the cloud server and the data owners or users. Finally, extensive theoretical and experimental evaluations are presented to show that our proposed scheme achieves a superior balance between the security and query performance compared to other schemes. PMID:27669253

  2. Secure Nearest Neighbor Query on Crowd-Sensing Data.

    PubMed

    Cheng, Ke; Wang, Liangmin; Zhong, Hong

    2016-09-22

    Nearest neighbor queries are fundamental in location-based services, and secure nearest neighbor queries mainly focus on how to securely and quickly retrieve the nearest neighbor in the outsourced cloud server. However, the previous big data system structure has changed because of the crowd-sensing data. On the one hand, sensing data terminals as the data owner are numerous and mistrustful, while, on the other hand, in most cases, the terminals find it difficult to finish many safety operation due to computation and storage capability constraints. In light of they Multi Owners and Multi Users (MOMU) situation in the crowd-sensing data cloud environment, this paper presents a secure nearest neighbor query scheme based on the proxy server architecture, which is constructed by protocols of secure two-party computation and secure Voronoi diagram algorithm. It not only preserves the data confidentiality and query privacy but also effectively resists the collusion between the cloud server and the data owners or users. Finally, extensive theoretical and experimental evaluations are presented to show that our proposed scheme achieves a superior balance between the security and query performance compared to other schemes.

  3. Enhanced Approximate Nearest Neighbor via Local Area Focused Search.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, Antonio; Blazier, Nicholas Paul

    Approximate Nearest Neighbor (ANN) algorithms are increasingly important in machine learning, data mining, and image processing applications. There is a large family of space- partitioning ANN algorithms, such as randomized KD-Trees, that work well in practice but are limited by an exponential increase in similarity comparisons required to optimize recall. Additionally, they only support a small set of similarity metrics. We present Local Area Fo- cused Search (LAFS), a method that enhances the way queries are performed using an existing ANN index. Instead of a single query, LAFS performs a number of smaller (fewer similarity comparisons) queries and focuses onmore » a local neighborhood which is refined as candidates are identified. We show that our technique improves performance on several well known datasets and is easily extended to general similarity metrics using kernel projection techniques.« less

  4. Competitive code-based fast palmprint identification using a set of cover trees

    NASA Astrophysics Data System (ADS)

    Yue, Feng; Zuo, Wangmeng; Zhang, David; Wang, Kuanquan

    2009-06-01

    A palmprint identification system recognizes a query palmprint image by searching for its nearest neighbor from among all the templates in a database. When applied on a large-scale identification system, it is often necessary to speed up the nearest-neighbor searching process. We use competitive code, which has very fast feature extraction and matching speed, for palmprint identification. To speed up the identification process, we extend the cover tree method and propose to use a set of cover trees to facilitate the fast and accurate nearest-neighbor searching. We can use the cover tree method because, as we show, the angular distance used in competitive code can be decomposed into a set of metrics. Using the Hong Kong PolyU palmprint database (version 2) and a large-scale palmprint database, our experimental results show that the proposed method searches for nearest neighbors faster than brute force searching.

  5. A Big Spatial Data Processing Framework Applying to National Geographic Conditions Monitoring

    NASA Astrophysics Data System (ADS)

    Xiao, F.

    2018-04-01

    In this paper, a novel framework for spatial data processing is proposed, which apply to National Geographic Conditions Monitoring project of China. It includes 4 layers: spatial data storage, spatial RDDs, spatial operations, and spatial query language. The spatial data storage layer uses HDFS to store large size of spatial vector/raster data in the distributed cluster. The spatial RDDs are the abstract logical dataset of spatial data types, and can be transferred to the spark cluster to conduct spark transformations and actions. The spatial operations layer is a series of processing on spatial RDDs, such as range query, k nearest neighbor and spatial join. The spatial query language is a user-friendly interface which provide people not familiar with Spark with a comfortable way to operation the spatial operation. Compared with other spatial frameworks, it is highlighted that comprehensive technologies are referred for big spatial data processing. Extensive experiments on real datasets show that the framework achieves better performance than traditional process methods.

  6. A Search Strategy of Level-Based Flooding for the Internet of Things

    PubMed Central

    Qiu, Tie; Ding, Yanhong; Xia, Feng; Ma, Honglian

    2012-01-01

    This paper deals with the query problem in the Internet of Things (IoT). Flooding is an important query strategy. However, original flooding is prone to cause heavy network loads. To address this problem, we propose a variant of flooding, called Level-Based Flooding (LBF). With LBF, the whole network is divided into several levels according to the distances (i.e., hops) between the sensor nodes and the sink node. The sink node knows the level information of each node. Query packets are broadcast in the network according to the levels of nodes. Upon receiving a query packet, sensor nodes decide how to process it according to the percentage of neighbors that have processed it. When the target node receives the query packet, it sends its data back to the sink node via random walk. We show by extensive simulations that the performance of LBF in terms of cost and latency is much better than that of original flooding, and LBF can be used in IoT of different scales. PMID:23112594

  7. Agent-Based Framework for Discrete Entity Simulations

    DTIC Science & Technology

    2006-11-01

    Postgres database server for environment queries of neighbors and continuum data. As expected for raw database queries (no database optimizations in...form. Eventually the code was ported to GNU C++ on the same single Intel Pentium 4 CPU running RedHat Linux 9.0 and Postgres database server...Again Postgres was used for environmental queries, and the tool remained relatively slow because of the immense number of queries necessary to assess

  8. The Limitations of Term Co-Occurrence Data for Query Expansion in Document Retrieval Systems.

    ERIC Educational Resources Information Center

    Peat, Helen J.; Willett, Peter

    1991-01-01

    Identifies limitations in the use of term co-occurrence data as a basis for automatic query expansion in natural language document retrieval systems. The use of similarity coefficients to calculate the degree of similarity between pairs of terms is explained, and frequency and discriminatory characteristics for nearest neighbors of query terms are…

  9. A Novel Quantum Solution to Privacy-Preserving Nearest Neighbor Query in Location-Based Services

    NASA Astrophysics Data System (ADS)

    Luo, Zhen-yu; Shi, Run-hua; Xu, Min; Zhang, Shun

    2018-04-01

    We present a cheating-sensitive quantum protocol for Privacy-Preserving Nearest Neighbor Query based on Oblivious Quantum Key Distribution and Quantum Encryption. Compared with the classical related protocols, our proposed protocol has higher security, because the security of our protocol is based on basic physical principles of quantum mechanics, instead of difficulty assumptions. Especially, our protocol takes single photons as quantum resources and only needs to perform single-photon projective measurement. Therefore, it is feasible to implement this protocol with the present technologies.

  10. Identification of candidate genes in Populus cell wall biosynthesis using text-mining, co-expression network and comparative genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaohan; Ye, Chuyu; Bisaria, Anjali

    2011-01-01

    Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of ethanol from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidences supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database and additionalmore » genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional genomics in relation to cell wall biosynthesis.« less

  11. Fast Query-Optimized Kernel-Machine Classification

    NASA Technical Reports Server (NTRS)

    Mazzoni, Dominic; DeCoste, Dennis

    2004-01-01

    A recently developed algorithm performs kernel-machine classification via incremental approximate nearest support vectors. The algorithm implements support-vector machines (SVMs) at speeds 10 to 100 times those attainable by use of conventional SVM algorithms. The algorithm offers potential benefits for classification of images, recognition of speech, recognition of handwriting, and diverse other applications in which there are requirements to discern patterns in large sets of data. SVMs constitute a subset of kernel machines (KMs), which have become popular as models for machine learning and, more specifically, for automated classification of input data on the basis of labeled training data. While similar in many ways to k-nearest-neighbors (k-NN) models and artificial neural networks (ANNs), SVMs tend to be more accurate. Using representations that scale only linearly in the numbers of training examples, while exploring nonlinear (kernelized) feature spaces that are exponentially larger than the original input dimensionality, KMs elegantly and practically overcome the classic curse of dimensionality. However, the price that one must pay for the power of KMs is that query-time complexity scales linearly with the number of training examples, making KMs often orders of magnitude more computationally expensive than are ANNs, decision trees, and other popular machine learning alternatives. The present algorithm treats an SVM classifier as a special form of a k-NN. The algorithm is based partly on an empirical observation that one can often achieve the same classification as that of an exact KM by using only small fraction of the nearest support vectors (SVs) of a query. The exact KM output is a weighted sum over the kernel values between the query and the SVs. In this algorithm, the KM output is approximated with a k-NN classifier, the output of which is a weighted sum only over the kernel values involving k selected SVs. Before query time, there are gathered statistics about how misleading the output of the k-NN model can be, relative to the outputs of the exact KM for a representative set of examples, for each possible k from 1 to the total number of SVs. From these statistics, there are derived upper and lower thresholds for each step k. These thresholds identify output levels for which the particular variant of the k-NN model already leans so strongly positively or negatively that a reversal in sign is unlikely, given the weaker SV neighbors still remaining. At query time, the partial output of each query is incrementally updated, stopping as soon as it exceeds the predetermined statistical thresholds of the current step. For an easy query, stopping can occur as early as step k = 1. For more difficult queries, stopping might not occur until nearly all SVs are touched. A key empirical observation is that this approach can tolerate very approximate nearest-neighbor orderings. In experiments, SVs and queries were projected to a subspace comprising the top few principal- component dimensions and neighbor orderings were computed in that subspace. This approach ensured that the overhead of the nearest-neighbor computations was insignificant, relative to that of the exact KM computation.

  12. Query-Adaptive Reciprocal Hash Tables for Nearest Neighbor Search.

    PubMed

    Liu, Xianglong; Deng, Cheng; Lang, Bo; Tao, Dacheng; Li, Xuelong

    2016-02-01

    Recent years have witnessed the success of binary hashing techniques in approximate nearest neighbor search. In practice, multiple hash tables are usually built using hashing to cover more desired results in the hit buckets of each table. However, rare work studies the unified approach to constructing multiple informative hash tables using any type of hashing algorithms. Meanwhile, for multiple table search, it also lacks of a generic query-adaptive and fine-grained ranking scheme that can alleviate the binary quantization loss suffered in the standard hashing techniques. To solve the above problems, in this paper, we first regard the table construction as a selection problem over a set of candidate hash functions. With the graph representation of the function set, we propose an efficient solution that sequentially applies normalized dominant set to finding the most informative and independent hash functions for each table. To further reduce the redundancy between tables, we explore the reciprocal hash tables in a boosting manner, where the hash function graph is updated with high weights emphasized on the misclassified neighbor pairs of previous hash tables. To refine the ranking of the retrieved buckets within a certain Hamming radius from the query, we propose a query-adaptive bitwise weighting scheme to enable fine-grained bucket ranking in each hash table, exploiting the discriminative power of its hash functions and their complement for nearest neighbor search. Moreover, we integrate such scheme into the multiple table search using a fast, yet reciprocal table lookup algorithm within the adaptive weighted Hamming radius. In this paper, both the construction method and the query-adaptive search method are general and compatible with different types of hashing algorithms using different feature spaces and/or parameter settings. Our extensive experiments on several large-scale benchmarks demonstrate that the proposed techniques can significantly outperform both the naive construction methods and the state-of-the-art hashing algorithms.

  13. Privacy-Preserving Location-Based Services

    ERIC Educational Resources Information Center

    Chow, Chi Yin

    2010-01-01

    Location-based services (LBS for short) providers require users' current locations to answer their location-based queries, e.g., range and nearest-neighbor queries. Revealing personal location information to potentially untrusted service providers could create privacy risks for users. To this end, our objective is to design a privacy-preserving…

  14. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  15. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.

    2013-01-01

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719

  16. An evaluation of multi-probe locality sensitive hashing for computing similarities over web-scale query logs.

    PubMed

    Cormode, Graham; Dasgupta, Anirban; Goyal, Amit; Lee, Chi Hoon

    2018-01-01

    Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users' queries from commercial search engines), computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and evaluate four variants in a distributed computing environment (specifically, Hadoop). We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with "vanilla" LSH, even when using the same amount of space.

  17. FoldMiner and LOCK 2: protein structure comparison and motif discovery on the web.

    PubMed

    Shapiro, Jessica; Brutlag, Douglas

    2004-07-01

    The FoldMiner web server (http://foldminer.stanford.edu/) provides remote access to methods for protein structure alignment and unsupervised motif discovery. FoldMiner is unique among such algorithms in that it improves both the motif definition and the sensitivity of a structural similarity search by combining the search and motif discovery methods and using information from each process to enhance the other. In a typical run, a query structure is aligned to all structures in one of several databases of single domain targets in order to identify its structural neighbors and to discover a motif that is the basis for the similarity among the query and statistically significant targets. This process is fully automated, but options for manual refinement of the results are available as well. The server uses the Chime plugin and customized controls to allow for visualization of the motif and of structural superpositions. In addition, we provide an interface to the LOCK 2 algorithm for rapid alignments of a query structure to smaller numbers of user-specified targets.

  18. G-Hash: Towards Fast Kernel-based Similarity Search in Large Graph Databases.

    PubMed

    Wang, Xiaohong; Smalter, Aaron; Huan, Jun; Lushington, Gerald H

    2009-01-01

    Structured data including sets, sequences, trees and graphs, pose significant challenges to fundamental aspects of data management such as efficient storage, indexing, and similarity search. With the fast accumulation of graph databases, similarity search in graph databases has emerged as an important research topic. Graph similarity search has applications in a wide range of domains including cheminformatics, bioinformatics, sensor network management, social network management, and XML documents, among others.Most of the current graph indexing methods focus on subgraph query processing, i.e. determining the set of database graphs that contains the query graph and hence do not directly support similarity search. In data mining and machine learning, various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models for supervised learning, graph kernel functions have (i) high computational complexity and (ii) non-trivial difficulty to be indexed in a graph database.Our objective is to bridge graph kernel function and similarity search in graph databases by proposing (i) a novel kernel-based similarity measurement and (ii) an efficient indexing structure for graph data management. Our method of similarity measurement builds upon local features extracted from each node and their neighboring nodes in graphs. A hash table is utilized to support efficient storage and fast search of the extracted local features. Using the hash table, a graph kernel function is defined to capture the intrinsic similarity of graphs and for fast similarity query processing. We have implemented our method, which we have named G-hash, and have demonstrated its utility on large chemical graph databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Most importantly, the new similarity measurement and the index structure is scalable to large database with smaller indexing size, faster indexing construction time, and faster query processing time as compared to state-of-the-art indexing methods such as C-tree, gIndex, and GraphGrep.

  19. An evaluation of multi-probe locality sensitive hashing for computing similarities over web-scale query logs

    PubMed Central

    2018-01-01

    Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users’ queries from commercial search engines), computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and evaluate four variants in a distributed computing environment (specifically, Hadoop). We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with “vanilla” LSH, even when using the same amount of space. PMID:29346410

  20. Collaborative Supervised Learning for Sensor Networks

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Rebbapragada, Umaa; Lane, Terran

    2011-01-01

    Collaboration methods for distributed machine-learning algorithms involve the specification of communication protocols for the learners, which can query other learners and/or broadcast their findings preemptively. Each learner incorporates information from its neighbors into its own training set, and they are thereby able to bootstrap each other to higher performance. Each learner resides at a different node in the sensor network and makes observations (collects data) independently of the other learners. After being seeded with an initial labeled training set, each learner proceeds to learn in an iterative fashion. New data is collected and classified. The learner can then either broadcast its most confident classifications for use by other learners, or can query neighbors for their classifications of its least confident items. As such, collaborative learning combines elements of both passive (broadcast) and active (query) learning. It also uses ideas from ensemble learning to combine the multiple responses to a given query into a single useful label. This approach has been evaluated against current non-collaborative alternatives, including training a single classifier and deploying it at all nodes with no further learning possible, and permitting learners to learn from their own most confident judgments, absent interaction with their neighbors. On several data sets, it has been consistently found that active collaboration is the best strategy for a distributed learner network. The main advantages include the ability for learning to take place autonomously by collaboration rather than by requiring intervention from an oracle (usually human), and also the ability to learn in a distributed environment, permitting decisions to be made in situ and to yield faster response time.

  1. An automated algorithm for determining photometric redshifts of quasars

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Zhang, Yanxia; Zhao, Yongheng

    2010-07-01

    We employ k-nearest neighbor algorithm (KNN) for photometric redshift measurement of quasars with the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). KNN is an instance learning algorithm where the result of new instance query is predicted based on the closest training samples. The regressor do not use any model to fit and only based on memory. Given a query quasar, we find the known quasars or (training points) closest to the query point, whose redshift value is simply assigned to be the average of the values of its k nearest neighbors. Three kinds of different colors (PSF, Model or Fiber) and spectral redshifts are used as input parameters, separatively. The combination of the three kinds of colors is also taken as input. The experimental results indicate that the best input pattern is PSF + Model + Fiber colors in all experiments. With this pattern, 59.24%, 77.34% and 84.68% of photometric redshifts are obtained within ▵z < 0.1, 0.2 and 0.3, respectively. If only using one kind of colors as input, the model colors achieve the best performance. However, when using two kinds of colors, the best result is achieved by PSF + Fiber colors. In addition, nearest neighbor method (k = 1) shows its superiority compared to KNN (k ≠ 1) for the given sample.

  2. GEMINI: a computationally-efficient search engine for large gene expression datasets.

    PubMed

    DeFreitas, Timothy; Saddiki, Hachem; Flaherty, Patrick

    2016-02-24

    Low-cost DNA sequencing allows organizations to accumulate massive amounts of genomic data and use that data to answer a diverse range of research questions. Presently, users must search for relevant genomic data using a keyword, accession number of meta-data tag. However, in this search paradigm the form of the query - a text-based string - is mismatched with the form of the target - a genomic profile. To improve access to massive genomic data resources, we have developed a fast search engine, GEMINI, that uses a genomic profile as a query to search for similar genomic profiles. GEMINI implements a nearest-neighbor search algorithm using a vantage-point tree to store a database of n profiles and in certain circumstances achieves an [Formula: see text] expected query time in the limit. We tested GEMINI on breast and ovarian cancer gene expression data from The Cancer Genome Atlas project and show that it achieves a query time that scales as the logarithm of the number of records in practice on genomic data. In a database with 10(5) samples, GEMINI identifies the nearest neighbor in 0.05 sec compared to a brute force search time of 0.6 sec. GEMINI is a fast search engine that uses a query genomic profile to search for similar profiles in a very large genomic database. It enables users to identify similar profiles independent of sample label, data origin or other meta-data information.

  3. An Improvement To The k-Nearest Neighbor Classifier For ECG Database

    NASA Astrophysics Data System (ADS)

    Jaafar, Haryati; Hidayah Ramli, Nur; Nasir, Aimi Salihah Abdul

    2018-03-01

    The k nearest neighbor (kNN) is a non-parametric classifier and has been widely used for pattern classification. However, in practice, the performance of kNN often tends to fail due to the lack of information on how the samples are distributed among them. Moreover, kNN is no longer optimal when the training samples are limited. Another problem observed in kNN is regarding the weighting issues in assigning the class label before classification. Thus, to solve these limitations, a new classifier called Mahalanobis fuzzy k-nearest centroid neighbor (MFkNCN) is proposed in this study. Here, a Mahalanobis distance is applied to avoid the imbalance of samples distribition. Then, a surrounding rule is employed to obtain the nearest centroid neighbor based on the distributions of training samples and its distance to the query point. Consequently, the fuzzy membership function is employed to assign the query point to the class label which is frequently represented by the nearest centroid neighbor Experimental studies from electrocardiogram (ECG) signal is applied in this study. The classification performances are evaluated in two experimental steps i.e. different values of k and different sizes of feature dimensions. Subsequently, a comparative study of kNN, kNCN, FkNN and MFkCNN classifier is conducted to evaluate the performances of the proposed classifier. The results show that the performance of MFkNCN consistently exceeds the kNN, kNCN and FkNN with the best classification rates of 96.5%.

  4. A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality.

    PubMed

    Wang, Xueyi

    2012-02-08

    The k-nearest neighbors (k-NN) algorithm is a widely used machine learning method that finds nearest neighbors of a test object in a feature space. We present a new exact k-NN algorithm called kMkNN (k-Means for k-Nearest Neighbors) that uses the k-means clustering and the triangle inequality to accelerate the searching for nearest neighbors in a high dimensional space. The kMkNN algorithm has two stages. In the buildup stage, instead of using complex tree structures such as metric trees, kd-trees, or ball-tree, kMkNN uses a simple k-means clustering method to preprocess the training dataset. In the searching stage, given a query object, kMkNN finds nearest training objects starting from the nearest cluster to the query object and uses the triangle inequality to reduce the distance calculations. Experiments show that the performance of kMkNN is surprisingly good compared to the traditional k-NN algorithm and tree-based k-NN algorithms such as kd-trees and ball-trees. On a collection of 20 datasets with up to 10(6) records and 10(4) dimensions, kMkNN shows a 2-to 80-fold reduction of distance calculations and a 2- to 60-fold speedup over the traditional k-NN algorithm for 16 datasets. Furthermore, kMkNN performs significant better than a kd-tree based k-NN algorithm for all datasets and performs better than a ball-tree based k-NN algorithm for most datasets. The results show that kMkNN is effective for searching nearest neighbors in high dimensional spaces.

  5. Query-Adaptive Hash Code Ranking for Large-Scale Multi-View Visual Search.

    PubMed

    Liu, Xianglong; Huang, Lei; Deng, Cheng; Lang, Bo; Tao, Dacheng

    2016-10-01

    Hash-based nearest neighbor search has become attractive in many applications. However, the quantization in hashing usually degenerates the discriminative power when using Hamming distance ranking. Besides, for large-scale visual search, existing hashing methods cannot directly support the efficient search over the data with multiple sources, and while the literature has shown that adaptively incorporating complementary information from diverse sources or views can significantly boost the search performance. To address the problems, this paper proposes a novel and generic approach to building multiple hash tables with multiple views and generating fine-grained ranking results at bitwise and tablewise levels. For each hash table, a query-adaptive bitwise weighting is introduced to alleviate the quantization loss by simultaneously exploiting the quality of hash functions and their complement for nearest neighbor search. From the tablewise aspect, multiple hash tables are built for different data views as a joint index, over which a query-specific rank fusion is proposed to rerank all results from the bitwise ranking by diffusing in a graph. Comprehensive experiments on image search over three well-known benchmarks show that the proposed method achieves up to 17.11% and 20.28% performance gains on single and multiple table search over the state-of-the-art methods.

  6. Randomized Approaches for Nearest Neighbor Search in Metric Space When Computing the Pairwise Distance Is Extremely Expensive

    NASA Astrophysics Data System (ADS)

    Wang, Lusheng; Yang, Yong; Lin, Guohui

    Finding the closest object for a query in a database is a classical problem in computer science. For some modern biological applications, computing the similarity between two objects might be very time consuming. For example, it takes a long time to compute the edit distance between two whole chromosomes and the alignment cost of two 3D protein structures. In this paper, we study the nearest neighbor search problem in metric space, where the pair-wise distance between two objects in the database is known and we want to minimize the number of distances computed on-line between the query and objects in the database in order to find the closest object. We have designed two randomized approaches for indexing metric space databases, where objects are purely described by their distances with each other. Analysis and experiments show that our approaches only need to compute O(logn) objects in order to find the closest object, where n is the total number of objects in the database.

  7. Secure image retrieval with multiple keys

    NASA Astrophysics Data System (ADS)

    Liang, Haihua; Zhang, Xinpeng; Wei, Qiuhan; Cheng, Hang

    2018-03-01

    This article proposes a secure image retrieval scheme under a multiuser scenario. In this scheme, the owner first encrypts and uploads images and their corresponding features to the cloud; then, the user submits the encrypted feature of the query image to the cloud; next, the cloud compares the encrypted features and returns encrypted images with similar content to the user. To find the nearest neighbor in the encrypted features, an encryption with multiple keys is proposed, in which the query feature of each user is encrypted by his/her own key. To improve the key security and space utilization, global optimization and Gaussian distribution are, respectively, employed to generate multiple keys. The experiments show that the proposed encryption can provide effective and secure image retrieval for each user and ensure confidentiality of the query feature of each user.

  8. CUFID-query: accurate network querying through random walk based network flow estimation.

    PubMed

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive performance evaluation based on biological networks with known functional modules, we show that CUFID-query outperforms the existing state-of-the-art algorithms in terms of prediction accuracy and biological significance of the predictions.

  9. Large margin nearest neighbor classifiers.

    PubMed

    Domeniconi, Carlotta; Gunopulos, Dimitrios; Peng, Jing

    2005-07-01

    The nearest neighbor technique is a simple and appealing approach to addressing classification problems. It relies on the assumption of locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with a finite number of examples due to the curse of dimensionality. Severe bias can be introduced under these conditions when using the nearest neighbor rule. The employment of a locally adaptive metric becomes crucial in order to keep class conditional probabilities close to uniform, thereby minimizing the bias of estimates. We propose a technique that computes a locally flexible metric by means of support vector machines (SVMs). The decision function constructed by SVMs is used to determine the most discriminant direction in a neighborhood around the query. Such a direction provides a local feature weighting scheme. We formally show that our method increases the margin in the weighted space where classification takes place. Moreover, our method has the important advantage of online computational efficiency over competing locally adaptive techniques for nearest neighbor classification. We demonstrate the efficacy of our method using both real and simulated data.

  10. Application of kernel functions for accurate similarity search in large chemical databases.

    PubMed

    Wang, Xiaohong; Huan, Jun; Smalter, Aaron; Lushington, Gerald H

    2010-04-29

    Similarity search in chemical structure databases is an important problem with many applications in chemical genomics, drug design, and efficient chemical probe screening among others. It is widely believed that structure based methods provide an efficient way to do the query. Recently various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models, graph kernel functions can not be applied to large chemical compound database due to the high computational complexity and the difficulties in indexing similarity search for large databases. To bridge graph kernel function and similarity search in chemical databases, we applied a novel kernel-based similarity measurement, developed in our team, to measure similarity of graph represented chemicals. In our method, we utilize a hash table to support new graph kernel function definition, efficient storage and fast search. We have applied our method, named G-hash, to large chemical databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Moreover, the similarity measurement and the index structure is scalable to large chemical databases with smaller indexing size, and faster query processing time as compared to state-of-the-art indexing methods such as Daylight fingerprints, C-tree and GraphGrep. Efficient similarity query processing method for large chemical databases is challenging since we need to balance running time efficiency and similarity search accuracy. Our previous similarity search method, G-hash, provides a new way to perform similarity search in chemical databases. Experimental study validates the utility of G-hash in chemical databases.

  11. New Capabilities in the Astrophysics Multispectral Archive Search Engine

    NASA Astrophysics Data System (ADS)

    Cheung, C. Y.; Kelley, S.; Roussopoulos, N.

    The Astrophysics Multispectral Archive Search Engine (AMASE) uses object-oriented database techniques to provide a uniform multi-mission and multi-spectral interface to search for data in the distributed archives. We describe our experience of porting AMASE from Illustra object-relational DBMS to the Informix Universal Data Server. New capabilities and utilities have been developed, including a spatial datablade that supports Nearest Neighbor queries.

  12. Using an image-extended relational database to support content-based image retrieval in a PACS.

    PubMed

    Traina, Caetano; Traina, Agma J M; Araújo, Myrian R B; Bueno, Josiane M; Chino, Fabio J T; Razente, Humberto; Azevedo-Marques, Paulo M

    2005-12-01

    This paper presents a new Picture Archiving and Communication System (PACS), called cbPACS, which has content-based image retrieval capabilities. The cbPACS answers range and k-nearest- neighbor similarity queries, employing a relational database manager extended to support images. The images are compared through their features, which are extracted by an image-processing module and stored in the extended relational database. The database extensions were developed aiming at efficiently answering similarity queries by taking advantage of specialized indexing methods. The main concept supporting the extensions is the definition, inside the relational manager, of distance functions based on features extracted from the images. An extension to the SQL language enables the construction of an interpreter that intercepts the extended commands and translates them to standard SQL, allowing any relational database server to be used. By now, the system implemented works on features based on color distribution of the images through normalized histograms as well as metric histograms. Metric histograms are invariant regarding scale, translation and rotation of images and also to brightness transformations. The cbPACS is prepared to integrate new image features, based on texture and shape of the main objects in the image.

  13. Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Hao, Liang; Zhao, Lian-Jie

    2011-08-01

    We present a modified protocol for the realization of a quantum private query process on a classical database. Using one-qubit query and CNOT operation, the query process can be realized in a two-mode database. In the query process, the data privacy is preserved as the sender would not reveal any information about the database besides her query information, and the database provider cannot retain any information about the query. We implement the quantum private query protocol in a nuclear magnetic resonance system. The density matrix of the memory registers are constructed.

  14. CLEARPOND: Cross-Linguistic Easy-Access Resource for Phonological and Orthographic Neighborhood Densities

    PubMed Central

    Marian, Viorica; Bartolotti, James; Chabal, Sarah; Shook, Anthony

    2012-01-01

    Past research has demonstrated cross-linguistic, cross-modal, and task-dependent differences in neighborhood density effects, indicating a need to control for neighborhood variables when developing and interpreting research on language processing. The goals of the present paper are two-fold: (1) to introduce CLEARPOND (Cross-Linguistic Easy-Access Resource for Phonological and Orthographic Neighborhood Densities), a centralized database of phonological and orthographic neighborhood information, both within and between languages, for five commonly-studied languages: Dutch, English, French, German, and Spanish; and (2) to show how CLEARPOND can be used to compare general properties of phonological and orthographic neighborhoods across languages. CLEARPOND allows researchers to input a word or list of words and obtain phonological and orthographic neighbors, neighborhood densities, mean neighborhood frequencies, word lengths by number of phonemes and graphemes, and spoken-word frequencies. Neighbors can be defined by substitution, deletion, and/or addition, and the database can be queried separately along each metric or summed across all three. Neighborhood values can be obtained both within and across languages, and outputs can optionally be restricted to neighbors of higher frequency. To enable researchers to more quickly and easily develop stimuli, CLEARPOND can also be searched by features, generating lists of words that meet precise criteria, such as a specific range of neighborhood sizes, lexical frequencies, and/or word lengths. CLEARPOND is freely-available to researchers and the public as a searchable, online database and for download at http://clearpond.northwestern.edu. PMID:22916227

  15. Enhanced Freight Tracking System: Increased Visibility for the Future

    DTIC Science & Technology

    2009-11-01

    personnel queried the Enhanced Freight Tracking System ( EFTS ). The EFTS records showed that the items arrived at the port of a neighboring country two weeks...humanitarian missions to continue uninterrupted, potentially saving hundreds of lives. Because the EFTS provides precise shipment status data to mission...33 billion. In addition to materiel coming from Department of Defense (DOD) stock , the U.S. Government (USG) is procuring from domestic and

  16. A traveling salesman approach for predicting protein functions.

    PubMed

    Johnson, Olin; Liu, Jing

    2006-10-12

    Protein-protein interaction information can be used to predict unknown protein functions and to help study biological pathways. Here we present a new approach utilizing the classic Traveling Salesman Problem to study the protein-protein interactions and to predict protein functions in budding yeast Saccharomyces cerevisiae. We apply the global optimization tool from combinatorial optimization algorithms to cluster the yeast proteins based on the global protein interaction information. We then use this clustering information to help us predict protein functions. We use our algorithm together with the direct neighbor algorithm 1 on characterized proteins and compare the prediction accuracy of the two methods. We show our algorithm can produce better predictions than the direct neighbor algorithm, which only considers the immediate neighbors of the query protein. Our method is a promising one to be used as a general tool to predict functions of uncharacterized proteins and a successful sample of using computer science knowledge and algorithms to study biological problems.

  17. A traveling salesman approach for predicting protein functions

    PubMed Central

    Johnson, Olin; Liu, Jing

    2006-01-01

    Background Protein-protein interaction information can be used to predict unknown protein functions and to help study biological pathways. Results Here we present a new approach utilizing the classic Traveling Salesman Problem to study the protein-protein interactions and to predict protein functions in budding yeast Saccharomyces cerevisiae. We apply the global optimization tool from combinatorial optimization algorithms to cluster the yeast proteins based on the global protein interaction information. We then use this clustering information to help us predict protein functions. We use our algorithm together with the direct neighbor algorithm [1] on characterized proteins and compare the prediction accuracy of the two methods. We show our algorithm can produce better predictions than the direct neighbor algorithm, which only considers the immediate neighbors of the query protein. Conclusion Our method is a promising one to be used as a general tool to predict functions of uncharacterized proteins and a successful sample of using computer science knowledge and algorithms to study biological problems. PMID:17147783

  18. Efficient protein structure search using indexing methods

    PubMed Central

    2013-01-01

    Understanding functions of proteins is one of the most important challenges in many studies of biological processes. The function of a protein can be predicted by analyzing the functions of structurally similar proteins, thus finding structurally similar proteins accurately and efficiently from a large set of proteins is crucial. A protein structure can be represented as a vector by 3D-Zernike Descriptor (3DZD) which compactly represents the surface shape of the protein tertiary structure. This simplified representation accelerates the searching process. However, computing the similarity of two protein structures is still computationally expensive, thus it is hard to efficiently process many simultaneous requests of structurally similar protein search. This paper proposes indexing techniques which substantially reduce the search time to find structurally similar proteins. In particular, we first exploit two indexing techniques, i.e., iDistance and iKernel, on the 3DZDs. After that, we extend the techniques to further improve the search speed for protein structures. The extended indexing techniques build and utilize an reduced index constructed from the first few attributes of 3DZDs of protein structures. To retrieve top-k similar structures, top-10 × k similar structures are first found using the reduced index, and top-k structures are selected among them. We also modify the indexing techniques to support θ-based nearest neighbor search, which returns data points less than θ to the query point. The results show that both iDistance and iKernel significantly enhance the searching speed. In top-k nearest neighbor search, the searching time is reduced 69.6%, 77%, 77.4% and 87.9%, respectively using iDistance, iKernel, the extended iDistance, and the extended iKernel. In θ-based nearest neighbor serach, the searching time is reduced 80%, 81%, 95.6% and 95.6% using iDistance, iKernel, the extended iDistance, and the extended iKernel, respectively. PMID:23691543

  19. Efficient protein structure search using indexing methods.

    PubMed

    Kim, Sungchul; Sael, Lee; Yu, Hwanjo

    2013-01-01

    Understanding functions of proteins is one of the most important challenges in many studies of biological processes. The function of a protein can be predicted by analyzing the functions of structurally similar proteins, thus finding structurally similar proteins accurately and efficiently from a large set of proteins is crucial. A protein structure can be represented as a vector by 3D-Zernike Descriptor (3DZD) which compactly represents the surface shape of the protein tertiary structure. This simplified representation accelerates the searching process. However, computing the similarity of two protein structures is still computationally expensive, thus it is hard to efficiently process many simultaneous requests of structurally similar protein search. This paper proposes indexing techniques which substantially reduce the search time to find structurally similar proteins. In particular, we first exploit two indexing techniques, i.e., iDistance and iKernel, on the 3DZDs. After that, we extend the techniques to further improve the search speed for protein structures. The extended indexing techniques build and utilize an reduced index constructed from the first few attributes of 3DZDs of protein structures. To retrieve top-k similar structures, top-10 × k similar structures are first found using the reduced index, and top-k structures are selected among them. We also modify the indexing techniques to support θ-based nearest neighbor search, which returns data points less than θ to the query point. The results show that both iDistance and iKernel significantly enhance the searching speed. In top-k nearest neighbor search, the searching time is reduced 69.6%, 77%, 77.4% and 87.9%, respectively using iDistance, iKernel, the extended iDistance, and the extended iKernel. In θ-based nearest neighbor serach, the searching time is reduced 80%, 81%, 95.6% and 95.6% using iDistance, iKernel, the extended iDistance, and the extended iKernel, respectively.

  20. DichroMatch at the protein circular dichroism data bank (DM@PCDDB): A web-based tool for identifying protein nearest neighbors using circular dichroism spectroscopy.

    PubMed

    Whitmore, Lee; Mavridis, Lazaros; Wallace, B A; Janes, Robert W

    2018-01-01

    Circular dichroism spectroscopy is a well-used, but simple method in structural biology for providing information on the secondary structure and folds of proteins. DichroMatch (DM@PCDDB) is an online tool that is newly available in the Protein Circular Dichroism Data Bank (PCDDB), which takes advantage of the wealth of spectral and metadata deposited therein, to enable identification of spectral nearest neighbors of a query protein based on four different methods of spectral matching. DM@PCDDB can potentially provide novel information about structural relationships between proteins and can be used in comparison studies of protein homologs and orthologs. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  1. A Framework for WWW Query Processing

    NASA Technical Reports Server (NTRS)

    Wu, Binghui Helen; Wharton, Stephen (Technical Monitor)

    2000-01-01

    Query processing is the most common operation in a DBMS. Sophisticated query processing has been mainly targeted at a single enterprise environment providing centralized control over data and metadata. Submitting queries by anonymous users on the web is different in such a way that load balancing or DBMS' accessing control becomes the key issue. This paper provides a solution by introducing a framework for WWW query processing. The success of this framework lies in the utilization of query optimization techniques and the ontological approach. This methodology has proved to be cost effective at the NASA Goddard Space Flight Center Distributed Active Archive Center (GDAAC).

  2. Distributed query plan generation using multiobjective genetic algorithm.

    PubMed

    Panicker, Shina; Kumar, T V Vijay

    2014-01-01

    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability.

  3. Distributed Query Plan Generation Using Multiobjective Genetic Algorithm

    PubMed Central

    Panicker, Shina; Vijay Kumar, T. V.

    2014-01-01

    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability. PMID:24963513

  4. Model-based query language for analyzing clinical processes.

    PubMed

    Barzdins, Janis; Barzdins, Juris; Rencis, Edgars; Sostaks, Agris

    2013-01-01

    Nowadays large databases of clinical process data exist in hospitals. However, these data are rarely used in full scope. In order to perform queries on hospital processes, one must either choose from the predefined queries or develop queries using MS Excel-type software system, which is not always a trivial task. In this paper we propose a new query language for analyzing clinical processes that is easily perceptible also by non-IT professionals. We develop this language based on a process modeling language which is also described in this paper. Prototypes of both languages have already been verified using real examples from hospitals.

  5. The Amordad database engine for metagenomics.

    PubMed

    Behnam, Ehsan; Smith, Andrew D

    2014-10-15

    Several technical challenges in metagenomic data analysis, including assembling metagenomic sequence data or identifying operational taxonomic units, are both significant and well known. These forms of analysis are increasingly cited as conceptually flawed, given the extreme variation within traditionally defined species and rampant horizontal gene transfer. Furthermore, computational requirements of such analysis have hindered content-based organization of metagenomic data at large scale. In this article, we introduce the Amordad database engine for alignment-free, content-based indexing of metagenomic datasets. Amordad places the metagenome comparison problem in a geometric context, and uses an indexing strategy that combines random hashing with a regular nearest neighbor graph. This framework allows refinement of the database over time by continual application of random hash functions, with the effect of each hash function encoded in the nearest neighbor graph. This eliminates the need to explicitly maintain the hash functions in order for query efficiency to benefit from the accumulated randomness. Results on real and simulated data show that Amordad can support logarithmic query time for identifying similar metagenomes even as the database size reaches into the millions. Source code, licensed under the GNU general public license (version 3) is freely available for download from http://smithlabresearch.org/amordad andrewds@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Towards Hybrid Online On-Demand Querying of Realtime Data with Stateful Complex Event Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qunzhi; Simmhan, Yogesh; Prasanna, Viktor K.

    Emerging Big Data applications in areas like e-commerce and energy industry require both online and on-demand queries to be performed over vast and fast data arriving as streams. These present novel challenges to Big Data management systems. Complex Event Processing (CEP) is recognized as a high performance online query scheme which in particular deals with the velocity aspect of the 3-V’s of Big Data. However, traditional CEP systems do not consider data variety and lack the capability to embed ad hoc queries over the volume of data streams. In this paper, we propose H2O, a stateful complex event processing framework,more » to support hybrid online and on-demand queries over realtime data. We propose a semantically enriched event and query model to address data variety. A formal query algebra is developed to precisely capture the stateful and containment semantics of online and on-demand queries. We describe techniques to achieve the interactive query processing over realtime data featured by efficient online querying, dynamic stream data persistence and on-demand access. The system architecture is presented and the current implementation status reported.« less

  7. Robust hashing with local models for approximate similarity search.

    PubMed

    Song, Jingkuan; Yang, Yi; Li, Xuelong; Huang, Zi; Yang, Yang

    2014-07-01

    Similarity search plays an important role in many applications involving high-dimensional data. Due to the known dimensionality curse, the performance of most existing indexing structures degrades quickly as the feature dimensionality increases. Hashing methods, such as locality sensitive hashing (LSH) and its variants, have been widely used to achieve fast approximate similarity search by trading search quality for efficiency. However, most existing hashing methods make use of randomized algorithms to generate hash codes without considering the specific structural information in the data. In this paper, we propose a novel hashing method, namely, robust hashing with local models (RHLM), which learns a set of robust hash functions to map the high-dimensional data points into binary hash codes by effectively utilizing local structural information. In RHLM, for each individual data point in the training dataset, a local hashing model is learned and used to predict the hash codes of its neighboring data points. The local models from all the data points are globally aligned so that an optimal hash code can be assigned to each data point. After obtaining the hash codes of all the training data points, we design a robust method by employing l2,1 -norm minimization on the loss function to learn effective hash functions, which are then used to map each database point into its hash code. Given a query data point, the search process first maps it into the query hash code by the hash functions and then explores the buckets, which have similar hash codes to the query hash code. Extensive experimental results conducted on real-life datasets show that the proposed RHLM outperforms the state-of-the-art methods in terms of search quality and efficiency.

  8. Portal to the GALEX Data Archive

    NASA Astrophysics Data System (ADS)

    Smith, M. A.; Conti, A.; Shiao, B.; Volpicelli, C. A.

    2004-05-01

    In early February MAST began its hosting of the GALEX public "Early Release Observations" images (40,000 objects) and spectra (1000 objects). MAST will host a much larger "first release," the GALEX DR1, in October, 2004. In this poster we describe features of our on-line website at http://galex.stsci.edu for researchers interested in downloading and browsing GALEX UV image and spectral data. The site, is based on MS .NET technology and user queries are entered for classes of objects or sky regions on a "MAST-like" query forms or with detailed queries written in SQL. In the latter case examples are provided to tailor a query to a user's specifications. The site provides novel features, such as tooltips that return keyword definitions, "active images" that return object classification and coordinate information in a 2.5 arcmin radius around the selected object, self-documentation of terms and tables, and of course a tutorial for new navigators. The GALEX database employs a Hierarchial Triangular Mesh system for rapid data discovery, neighbor searches, and cross correlations with other catalogs. Our "GMAX" tool allows a coplotting of object positions for objects observed by GALEX and other US-NVO compliant mission websites such as Sloan, 2MASS, FIRST.... As a member of the new Skynode network, GALEX has reported its web services to the US-NVO registry. This permits users to generate queries from other sites to cross-correlate, compare, and plot GALEX data using US-NVO protocols. Future plans for limited on-line data analysis and footprint services are described.

  9. Distributed Computation of the knn Graph for Large High-Dimensional Point Sets

    PubMed Central

    Plaku, Erion; Kavraki, Lydia E.

    2009-01-01

    High-dimensional problems arising from robot motion planning, biology, data mining, and geographic information systems often require the computation of k nearest neighbor (knn) graphs. The knn graph of a data set is obtained by connecting each point to its k closest points. As the research in the above-mentioned fields progressively addresses problems of unprecedented complexity, the demand for computing knn graphs based on arbitrary distance metrics and large high-dimensional data sets increases, exceeding resources available to a single machine. In this work we efficiently distribute the computation of knn graphs for clusters of processors with message passing. Extensions to our distributed framework include the computation of graphs based on other proximity queries, such as approximate knn or range queries. Our experiments show nearly linear speedup with over one hundred processors and indicate that similar speedup can be obtained with several hundred processors. PMID:19847318

  10. Processing SPARQL queries with regular expressions in RDF databases

    PubMed Central

    2011-01-01

    Background As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users’ requests for extracting information from the RDF data as well as the lack of users’ knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. Results In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Conclusions Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns. PMID:21489225

  11. Processing SPARQL queries with regular expressions in RDF databases.

    PubMed

    Lee, Jinsoo; Pham, Minh-Duc; Lee, Jihwan; Han, Wook-Shin; Cho, Hune; Yu, Hwanjo; Lee, Jeong-Hoon

    2011-03-29

    As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users' requests for extracting information from the RDF data as well as the lack of users' knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns.

  12. Magnetic Fields for All: The GPIPS Community Web-Access Portal

    NASA Astrophysics Data System (ADS)

    Carveth, Carol; Clemens, D. P.; Pinnick, A.; Pavel, M.; Jameson, K.; Taylor, B.

    2007-12-01

    The new GPIPS website portal provides community users with an intuitive and powerful interface to query the data products of the Galactic Plane Infrared Polarization Survey. The website, which was built using PHP for the front end and MySQL for the database back end, allows users to issue queries based on galactic or equatorial coordinates, GPIPS-specific identifiers, polarization information, magnitude information, and several other attributes. The returns are presented in HTML tables, with the added option of either downloading or being emailed an ASCII file including the same or more information from the database. Other functionalities of the website include providing details of the status of the Survey (which fields have been observed or are planned to be observed), techniques involved in data collection and analysis, and descriptions of the database contents and names. For this initial launch of the website, users may access the GPIPS polarization point source catalog and the deep coadd photometric point source catalog. Future planned developments include a graphics-based method for querying the database, as well as tools to combine neighboring GPIPS images into larger image files for both polarimetry and photometry. This work is partially supported by NSF grant AST-0607500.

  13. Rapid and Robust Cross-Correlation-Based Seismic Phase Identification Using an Approximate Nearest Neighbor Method

    NASA Astrophysics Data System (ADS)

    Tibi, R.; Young, C. J.; Gonzales, A.; Ballard, S.; Encarnacao, A. V.

    2016-12-01

    The matched filtering technique involving the cross-correlation of a waveform of interest with archived signals from a template library has proven to be a powerful tool for detecting events in regions with repeating seismicity. However, waveform correlation is computationally expensive, and therefore impractical for large template sets unless dedicated distributed computing hardware and software are used. In this study, we introduce an Approximate Nearest Neighbor (ANN) approach that enables the use of very large template libraries for waveform correlation without requiring a complex distributed computing system. Our method begins with a projection into a reduced dimensionality space based on correlation with a randomized subset of the full template archive. Searching for a specified number of nearest neighbors is accomplished by using randomized K-dimensional trees. We used the approach to search for matches to each of 2700 analyst-reviewed signal detections reported for May 2010 for the IMS station MKAR. The template library in this case consists of a dataset of more than 200,000 analyst-reviewed signal detections for the same station from 2002-2014 (excluding May 2010). Of these signal detections, 60% are teleseismic first P, and 15% regional phases (Pn, Pg, Sn, and Lg). The analyses performed on a standard desktop computer shows that the proposed approach performs the search of the large template libraries about 20 times faster than the standard full linear search, while achieving recall rates greater than 80%, with the recall rate increasing for higher correlation values. To decide whether to confirm a match, we use a hybrid method involving a cluster approach for queries with two or more matches, and correlation score for single matches. Of the signal detections that passed our confirmation process, 52% were teleseismic first P, and 30% were regional phases.

  14. RiPPAS: A Ring-Based Privacy-Preserving Aggregation Scheme in Wireless Sensor Networks

    PubMed Central

    Zhang, Kejia; Han, Qilong; Cai, Zhipeng; Yin, Guisheng

    2017-01-01

    Recently, data privacy in wireless sensor networks (WSNs) has been paid increased attention. The characteristics of WSNs determine that users’ queries are mainly aggregation queries. In this paper, the problem of processing aggregation queries in WSNs with data privacy preservation is investigated. A Ring-based Privacy-Preserving Aggregation Scheme (RiPPAS) is proposed. RiPPAS adopts ring structure to perform aggregation. It uses pseudonym mechanism for anonymous communication and uses homomorphic encryption technique to add noise to the data easily to be disclosed. RiPPAS can handle both sum() queries and min()/max() queries, while the existing privacy-preserving aggregation methods can only deal with sum() queries. For processing sum() queries, compared with the existing methods, RiPPAS has advantages in the aspects of privacy preservation and communication efficiency, which can be proved by theoretical analysis and simulation results. For processing min()/max() queries, RiPPAS provides effective privacy preservation and has low communication overhead. PMID:28178197

  15. DISPAQ: Distributed Profitable-Area Query from Big Taxi Trip Data.

    PubMed

    Putri, Fadhilah Kurnia; Song, Giltae; Kwon, Joonho; Rao, Praveen

    2017-09-25

    One of the crucial problems for taxi drivers is to efficiently locate passengers in order to increase profits. The rapid advancement and ubiquitous penetration of Internet of Things (IoT) technology into transportation industries enables us to provide taxi drivers with locations that have more potential passengers (more profitable areas) by analyzing and querying taxi trip data. In this paper, we propose a query processing system, called Distributed Profitable-Area Query ( DISPAQ ) which efficiently identifies profitable areas by exploiting the Apache Software Foundation's Spark framework and a MongoDB database. DISPAQ first maintains a profitable-area query index (PQ-index) by extracting area summaries and route summaries from raw taxi trip data. It then identifies candidate profitable areas by searching the PQ-index during query processing. Then, it exploits a Z-Skyline algorithm, which is an extension of skyline processing with a Z-order space filling curve, to quickly refine the candidate profitable areas. To improve the performance of distributed query processing, we also propose local Z-Skyline optimization, which reduces the number of dominant tests by distributing killer profitable areas to each cluster node. Through extensive evaluation with real datasets, we demonstrate that our DISPAQ system provides a scalable and efficient solution for processing profitable-area queries from huge amounts of big taxi trip data.

  16. DISPAQ: Distributed Profitable-Area Query from Big Taxi Trip Data †

    PubMed Central

    Putri, Fadhilah Kurnia; Song, Giltae; Rao, Praveen

    2017-01-01

    One of the crucial problems for taxi drivers is to efficiently locate passengers in order to increase profits. The rapid advancement and ubiquitous penetration of Internet of Things (IoT) technology into transportation industries enables us to provide taxi drivers with locations that have more potential passengers (more profitable areas) by analyzing and querying taxi trip data. In this paper, we propose a query processing system, called Distributed Profitable-Area Query (DISPAQ) which efficiently identifies profitable areas by exploiting the Apache Software Foundation’s Spark framework and a MongoDB database. DISPAQ first maintains a profitable-area query index (PQ-index) by extracting area summaries and route summaries from raw taxi trip data. It then identifies candidate profitable areas by searching the PQ-index during query processing. Then, it exploits a Z-Skyline algorithm, which is an extension of skyline processing with a Z-order space filling curve, to quickly refine the candidate profitable areas. To improve the performance of distributed query processing, we also propose local Z-Skyline optimization, which reduces the number of dominant tests by distributing killer profitable areas to each cluster node. Through extensive evaluation with real datasets, we demonstrate that our DISPAQ system provides a scalable and efficient solution for processing profitable-area queries from huge amounts of big taxi trip data. PMID:28946679

  17. An index-based algorithm for fast on-line query processing of latent semantic analysis

    PubMed Central

    Li, Pohan; Wang, Wei

    2017-01-01

    Latent Semantic Analysis (LSA) is widely used for finding the documents whose semantic is similar to the query of keywords. Although LSA yield promising similar results, the existing LSA algorithms involve lots of unnecessary operations in similarity computation and candidate check during on-line query processing, which is expensive in terms of time cost and cannot efficiently response the query request especially when the dataset becomes large. In this paper, we study the efficiency problem of on-line query processing for LSA towards efficiently searching the similar documents to a given query. We rewrite the similarity equation of LSA combined with an intermediate value called partial similarity that is stored in a designed index called partial index. For reducing the searching space, we give an approximate form of similarity equation, and then develop an efficient algorithm for building partial index, which skips the partial similarities lower than a given threshold θ. Based on partial index, we develop an efficient algorithm called ILSA for supporting fast on-line query processing. The given query is transformed into a pseudo document vector, and the similarities between query and candidate documents are computed by accumulating the partial similarities obtained from the index nodes corresponds to non-zero entries in the pseudo document vector. Compared to the LSA algorithm, ILSA reduces the time cost of on-line query processing by pruning the candidate documents that are not promising and skipping the operations that make little contribution to similarity scores. Extensive experiments through comparison with LSA have been done, which demonstrate the efficiency and effectiveness of our proposed algorithm. PMID:28520747

  18. An index-based algorithm for fast on-line query processing of latent semantic analysis.

    PubMed

    Zhang, Mingxi; Li, Pohan; Wang, Wei

    2017-01-01

    Latent Semantic Analysis (LSA) is widely used for finding the documents whose semantic is similar to the query of keywords. Although LSA yield promising similar results, the existing LSA algorithms involve lots of unnecessary operations in similarity computation and candidate check during on-line query processing, which is expensive in terms of time cost and cannot efficiently response the query request especially when the dataset becomes large. In this paper, we study the efficiency problem of on-line query processing for LSA towards efficiently searching the similar documents to a given query. We rewrite the similarity equation of LSA combined with an intermediate value called partial similarity that is stored in a designed index called partial index. For reducing the searching space, we give an approximate form of similarity equation, and then develop an efficient algorithm for building partial index, which skips the partial similarities lower than a given threshold θ. Based on partial index, we develop an efficient algorithm called ILSA for supporting fast on-line query processing. The given query is transformed into a pseudo document vector, and the similarities between query and candidate documents are computed by accumulating the partial similarities obtained from the index nodes corresponds to non-zero entries in the pseudo document vector. Compared to the LSA algorithm, ILSA reduces the time cost of on-line query processing by pruning the candidate documents that are not promising and skipping the operations that make little contribution to similarity scores. Extensive experiments through comparison with LSA have been done, which demonstrate the efficiency and effectiveness of our proposed algorithm.

  19. Rapid and Robust Cross-Correlation-Based Seismic Signal Identification Using an Approximate Nearest Neighbor Method

    DOE PAGES

    Tibi, Rigobert; Young, Christopher; Gonzales, Antonio; ...

    2017-07-04

    The matched filtering technique that uses the cross correlation of a waveform of interest with archived signals from a template library has proven to be a powerful tool for detecting events in regions with repeating seismicity. However, waveform correlation is computationally expensive and therefore impractical for large template sets unless dedicated distributed computing hardware and software are used. In this paper, we introduce an approximate nearest neighbor (ANN) approach that enables the use of very large template libraries for waveform correlation. Our method begins with a projection into a reduced dimensionality space, based on correlation with a randomized subset ofmore » the full template archive. Searching for a specified number of nearest neighbors for a query waveform is accomplished by iteratively comparing it with the neighbors of its immediate neighbors. We used the approach to search for matches to each of ~2300 analyst-reviewed signal detections reported in May 2010 for the International Monitoring System station MKAR. The template library in this case consists of a data set of more than 200,000 analyst-reviewed signal detections for the same station from February 2002 to July 2016 (excluding May 2010). Of these signal detections, 73% are teleseismic first P and 17% regional phases (Pn, Pg, Sn, and Lg). Finally, the analyses performed on a standard desktop computer show that the proposed ANN approach performs a search of the large template libraries about 25 times faster than the standard full linear search and achieves recall rates greater than 80%, with the recall rate increasing for higher correlation thresholds.« less

  20. Rapid and Robust Cross-Correlation-Based Seismic Signal Identification Using an Approximate Nearest Neighbor Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tibi, Rigobert; Young, Christopher; Gonzales, Antonio

    The matched filtering technique that uses the cross correlation of a waveform of interest with archived signals from a template library has proven to be a powerful tool for detecting events in regions with repeating seismicity. However, waveform correlation is computationally expensive and therefore impractical for large template sets unless dedicated distributed computing hardware and software are used. In this paper, we introduce an approximate nearest neighbor (ANN) approach that enables the use of very large template libraries for waveform correlation. Our method begins with a projection into a reduced dimensionality space, based on correlation with a randomized subset ofmore » the full template archive. Searching for a specified number of nearest neighbors for a query waveform is accomplished by iteratively comparing it with the neighbors of its immediate neighbors. We used the approach to search for matches to each of ~2300 analyst-reviewed signal detections reported in May 2010 for the International Monitoring System station MKAR. The template library in this case consists of a data set of more than 200,000 analyst-reviewed signal detections for the same station from February 2002 to July 2016 (excluding May 2010). Of these signal detections, 73% are teleseismic first P and 17% regional phases (Pn, Pg, Sn, and Lg). Finally, the analyses performed on a standard desktop computer show that the proposed ANN approach performs a search of the large template libraries about 25 times faster than the standard full linear search and achieves recall rates greater than 80%, with the recall rate increasing for higher correlation thresholds.« less

  1. Automatic classification and detection of clinically relevant images for diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Xu, Xinyu; Li, Baoxin

    2008-03-01

    We proposed a novel approach to automatic classification of Diabetic Retinopathy (DR) images and retrieval of clinically-relevant DR images from a database. Given a query image, our approach first classifies the image into one of the three categories: microaneurysm (MA), neovascularization (NV) and normal, and then it retrieves DR images that are clinically-relevant to the query image from an archival image database. In the classification stage, the query DR images are classified by the Multi-class Multiple-Instance Learning (McMIL) approach, where images are viewed as bags, each of which contains a number of instances corresponding to non-overlapping blocks, and each block is characterized by low-level features including color, texture, histogram of edge directions, and shape. McMIL first learns a collection of instance prototypes for each class that maximizes the Diverse Density function using Expectation- Maximization algorithm. A nonlinear mapping is then defined using the instance prototypes and maps every bag to a point in a new multi-class bag feature space. Finally a multi-class Support Vector Machine is trained in the multi-class bag feature space. In the retrieval stage, we retrieve images from the archival database who bear the same label with the query image, and who are the top K nearest neighbors of the query image in terms of similarity in the multi-class bag feature space. The classification approach achieves high classification accuracy, and the retrieval of clinically-relevant images not only facilitates utilization of the vast amount of hidden diagnostic knowledge in the database, but also improves the efficiency and accuracy of DR lesion diagnosis and assessment.

  2. Information Network Model Query Processing

    NASA Astrophysics Data System (ADS)

    Song, Xiaopu

    Information Networking Model (INM) [31] is a novel database model for real world objects and relationships management. It naturally and directly supports various kinds of static and dynamic relationships between objects. In INM, objects are networked through various natural and complex relationships. INM Query Language (INM-QL) [30] is designed to explore such information network, retrieve information about schema, instance, their attributes, relationships, and context-dependent information, and process query results in the user specified form. INM database management system has been implemented using Berkeley DB, and it supports INM-QL. This thesis is mainly focused on the implementation of the subsystem that is able to effectively and efficiently process INM-QL. The subsystem provides a lexical and syntactical analyzer of INM-QL, and it is able to choose appropriate evaluation strategies and index mechanism to process queries in INM-QL without the user's intervention. It also uses intermediate result structure to hold intermediate query result and other helping structures to reduce complexity of query processing.

  3. Efficient and Scalable Cross-Matching of (Very) Large Catalogs

    NASA Astrophysics Data System (ADS)

    Pineau, F.-X.; Boch, T.; Derriere, S.

    2011-07-01

    Whether it be for building multi-wavelength datasets from independent surveys, studying changes in objects luminosities, or detecting moving objects (stellar proper motions, asteroids), cross-catalog matching is a technique widely used in astronomy. The need for efficient, reliable and scalable cross-catalog matching is becoming even more pressing with forthcoming projects which will produce huge catalogs in which astronomers will dig for rare objects, perform statistical analysis and classification, or real-time transients detection. We have developed a formalism and the corresponding technical framework to address the challenge of fast cross-catalog matching. Our formalism supports more than simple nearest-neighbor search, and handles elliptical positional errors. Scalability is improved by partitioning the sky using the HEALPix scheme, and processing independently each sky cell. The use of multi-threaded two-dimensional kd-trees adapted to managing equatorial coordinates enables efficient neighbor search. The whole process can run on a single computer, but could also use clusters of machines to cross-match future very large surveys such as GAIA or LSST in reasonable times. We already achieve performances where the 2MASS (˜470M sources) and SDSS DR7 (˜350M sources) can be matched on a single machine in less than 10 minutes. We aim at providing astronomers with a catalog cross-matching service, available on-line and leveraging on the catalogs present in the VizieR database. This service will allow users both to access pre-computed cross-matches across some very large catalogs, and to run customized cross-matching operations. It will also support VO protocols for synchronous or asynchronous queries.

  4. Ontological Approach to Military Knowledge Modeling and Management

    DTIC Science & Technology

    2004-03-01

    federated search mechanism has to reformulate user queries (expressed using the ontology) in the query languages of the different sources (e.g. SQL...ontologies as a common terminology – Unified query to perform federated search • Query processing – Ontology mapping to sources reformulate queries

  5. Interactive content-based image retrieval (CBIR) computer-aided diagnosis (CADx) system for ultrasound breast masses using relevance feedback

    NASA Astrophysics Data System (ADS)

    Cho, Hyun-chong; Hadjiiski, Lubomir; Sahiner, Berkman; Chan, Heang-Ping; Paramagul, Chintana; Helvie, Mark; Nees, Alexis V.

    2012-03-01

    We designed a Content-Based Image Retrieval (CBIR) Computer-Aided Diagnosis (CADx) system to assist radiologists in characterizing masses on ultrasound images. The CADx system retrieves masses that are similar to a query mass from a reference library based on computer-extracted features that describe texture, width-to-height ratio, and posterior shadowing of a mass. Retrieval is performed with k nearest neighbor (k-NN) method using Euclidean distance similarity measure and Rocchio relevance feedback algorithm (RRF). In this study, we evaluated the similarity between the query and the retrieved masses with relevance feedback using our interactive CBIR CADx system. The similarity assessment and feedback were provided by experienced radiologists' visual judgment. For training the RRF parameters, similarities of 1891 image pairs obtained from 62 masses were rated by 3 MQSA radiologists using a 9-point scale (9=most similar). A leave-one-out method was used in training. For each query mass, 5 most similar masses were retrieved from the reference library using radiologists' similarity ratings, which were then used by RRF to retrieve another 5 masses for the same query. The best RRF parameters were chosen based on three simulated observer experiments, each of which used one of the radiologists' ratings for retrieval and relevance feedback. For testing, 100 independent query masses on 100 images and 121 reference masses on 230 images were collected. Three radiologists rated the similarity between the query and the computer-retrieved masses. Average similarity ratings without and with RRF were 5.39 and 5.64 on the training set and 5.78 and 6.02 on the test set, respectively. The average Az values without and with RRF were 0.86+/-0.03 and 0.87+/-0.03 on the training set and 0.91+/-0.03 and 0.90+/-0.03 on the test set, respectively. This study demonstrated that RRF improved the similarity of the retrieved masses.

  6. a Spatiotemporal Aggregation Query Method Using Multi-Thread Parallel Technique Based on Regional Division

    NASA Astrophysics Data System (ADS)

    Liao, S.; Chen, L.; Li, J.; Xiong, W.; Wu, Q.

    2015-07-01

    Existing spatiotemporal database supports spatiotemporal aggregation query over massive moving objects datasets. Due to the large amounts of data and single-thread processing method, the query speed cannot meet the application requirements. On the other hand, the query efficiency is more sensitive to spatial variation then temporal variation. In this paper, we proposed a spatiotemporal aggregation query method using multi-thread parallel technique based on regional divison and implemented it on the server. Concretely, we divided the spatiotemporal domain into several spatiotemporal cubes, computed spatiotemporal aggregation on all cubes using the technique of multi-thread parallel processing, and then integrated the query results. By testing and analyzing on the real datasets, this method has improved the query speed significantly.

  7. a Novel Approach of Indexing and Retrieving Spatial Polygons for Efficient Spatial Region Queries

    NASA Astrophysics Data System (ADS)

    Zhao, J. H.; Wang, X. Z.; Wang, F. Y.; Shen, Z. H.; Zhou, Y. C.; Wang, Y. L.

    2017-10-01

    Spatial region queries are more and more widely used in web-based applications. Mechanisms to provide efficient query processing over geospatial data are essential. However, due to the massive geospatial data volume, heavy geometric computation, and high access concurrency, it is difficult to get response in real time. Spatial indexes are usually used in this situation. In this paper, based on k-d tree, we introduce a distributed KD-Tree (DKD-Tree) suitbable for polygon data, and a two-step query algorithm. The spatial index construction is recursive and iterative, and the query is an in memory process. Both the index and query methods can be processed in parallel, and are implemented based on HDFS, Spark and Redis. Experiments on a large volume of Remote Sensing images metadata have been carried out, and the advantages of our method are investigated by comparing with spatial region queries executed on PostgreSQL and PostGIS. Results show that our approach not only greatly improves the efficiency of spatial region query, but also has good scalability, Moreover, the two-step spatial range query algorithm can also save cluster resources to support a large number of concurrent queries. Therefore, this method is very useful when building large geographic information systems.

  8. A high performance, ad-hoc, fuzzy query processing system for relational databases

    NASA Technical Reports Server (NTRS)

    Mansfield, William H., Jr.; Fleischman, Robert M.

    1992-01-01

    Database queries involving imprecise or fuzzy predicates are currently an evolving area of academic and industrial research. Such queries place severe stress on the indexing and I/O subsystems of conventional database environments since they involve the search of large numbers of records. The Datacycle architecture and research prototype is a database environment that uses filtering technology to perform an efficient, exhaustive search of an entire database. It has recently been modified to include fuzzy predicates in its query processing. The approach obviates the need for complex index structures, provides unlimited query throughput, permits the use of ad-hoc fuzzy membership functions, and provides a deterministic response time largely independent of query complexity and load. This paper describes the Datacycle prototype implementation of fuzzy queries and some recent performance results.

  9. Local classifier weighting by quadratic programming.

    PubMed

    Cevikalp, Hakan; Polikar, Robi

    2008-10-01

    It has been widely accepted that the classification accuracy can be improved by combining outputs of multiple classifiers. However, how to combine multiple classifiers with various (potentially conflicting) decisions is still an open problem. A rich collection of classifier combination procedures -- many of which are heuristic in nature -- have been developed for this goal. In this brief, we describe a dynamic approach to combine classifiers that have expertise in different regions of the input space. To this end, we use local classifier accuracy estimates to weight classifier outputs. Specifically, we estimate local recognition accuracies of classifiers near a query sample by utilizing its nearest neighbors, and then use these estimates to find the best weights of classifiers to label the query. The problem is formulated as a convex quadratic optimization problem, which returns optimal nonnegative classifier weights with respect to the chosen objective function, and the weights ensure that locally most accurate classifiers are weighted more heavily for labeling the query sample. Experimental results on several data sets indicate that the proposed weighting scheme outperforms other popular classifier combination schemes, particularly on problems with complex decision boundaries. Hence, the results indicate that local classification-accuracy-based combination techniques are well suited for decision making when the classifiers are trained by focusing on different regions of the input space.

  10. Hybrid ontology for semantic information retrieval model using keyword matching indexing system.

    PubMed

    Uthayan, K R; Mala, G S Anandha

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology.

  11. Hybrid Ontology for Semantic Information Retrieval Model Using Keyword Matching Indexing System

    PubMed Central

    Uthayan, K. R.; Anandha Mala, G. S.

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology. PMID:25922851

  12. Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.

    In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less

  13. Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric

    DOE PAGES

    Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.; ...

    2015-10-09

    In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less

  14. Query Language for Location-Based Services: A Model Checking Approach

    NASA Astrophysics Data System (ADS)

    Hoareau, Christian; Satoh, Ichiro

    We present a model checking approach to the rationale, implementation, and applications of a query language for location-based services. Such query mechanisms are necessary so that users, objects, and/or services can effectively benefit from the location-awareness of their surrounding environment. The underlying data model is founded on a symbolic model of space organized in a tree structure. Once extended to a semantic model for modal logic, we regard location query processing as a model checking problem, and thus define location queries as hybrid logicbased formulas. Our approach is unique to existing research because it explores the connection between location models and query processing in ubiquitous computing systems, relies on a sound theoretical basis, and provides modal logic-based query mechanisms for expressive searches over a decentralized data structure. A prototype implementation is also presented and will be discussed.

  15. Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants.

    PubMed

    Tanabe, Akifumi S; Toju, Hirokazu

    2013-01-01

    Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used "1-nearest-neighbor" (1-NN) method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to accelerate the registration of reference barcode sequences to apply high-throughput DNA barcoding to genus or species level identification in biodiversity research.

  16. Secure Skyline Queries on Cloud Platform.

    PubMed

    Liu, Jinfei; Yang, Juncheng; Xiong, Li; Pei, Jian

    2017-04-01

    Outsourcing data and computation to cloud server provides a cost-effective way to support large scale data storage and query processing. However, due to security and privacy concerns, sensitive data (e.g., medical records) need to be protected from the cloud server and other unauthorized users. One approach is to outsource encrypted data to the cloud server and have the cloud server perform query processing on the encrypted data only. It remains a challenging task to support various queries over encrypted data in a secure and efficient way such that the cloud server does not gain any knowledge about the data, query, and query result. In this paper, we study the problem of secure skyline queries over encrypted data. The skyline query is particularly important for multi-criteria decision making but also presents significant challenges due to its complex computations. We propose a fully secure skyline query protocol on data encrypted using semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol, which can be also used as a building block for other queries. Finally, we provide both serial and parallelized implementations and empirically study the protocols in terms of efficiency and scalability under different parameter settings, verifying the feasibility of our proposed solutions.

  17. Cognitive search model and a new query paradigm

    NASA Astrophysics Data System (ADS)

    Xu, Zhonghui

    2001-06-01

    This paper proposes a cognitive model in which people begin to search pictures by using semantic content and find a right picture by judging whether its visual content is a proper visualization of the semantics desired. It is essential that human search is not just a process of matching computation on visual feature but rather a process of visualization of the semantic content known. For people to search electronic images in the way as they manually do in the model, we suggest that querying be a semantic-driven process like design. A query-by-design paradigm is prosed in the sense that what you design is what you find. Unlike query-by-example, query-by-design allows users to specify the semantic content through an iterative and incremental interaction process so that a retrieval can start with association and identification of the given semantic content and get refined while further visual cues are available. An experimental image retrieval system, Kuafu, has been under development using the query-by-design paradigm and an iconic language is adopted.

  18. Query-Based Outlier Detection in Heterogeneous Information Networks.

    PubMed

    Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei

    2015-03-01

    Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user's search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks.

  19. Query-Based Outlier Detection in Heterogeneous Information Networks

    PubMed Central

    Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei

    2015-01-01

    Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user’s search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks. PMID:27064397

  20. VPipe: Virtual Pipelining for Scheduling of DAG Stream Query Plans

    NASA Astrophysics Data System (ADS)

    Wang, Song; Gupta, Chetan; Mehta, Abhay

    There are data streams all around us that can be harnessed for tremendous business and personal advantage. For an enterprise-level stream processing system such as CHAOS [1] (Continuous, Heterogeneous Analytic Over Streams), handling of complex query plans with resource constraints is challenging. While several scheduling strategies exist for stream processing, efficient scheduling of complex DAG query plans is still largely unsolved. In this paper, we propose a novel execution scheme for scheduling complex directed acyclic graph (DAG) query plans with meta-data enriched stream tuples. Our solution, called Virtual Pipelined Chain (or VPipe Chain for short), effectively extends the "Chain" pipelining scheduling approach to complex DAG query plans.

  1. Efficient Queries of Stand-off Annotations for Natural Language Processing on Electronic Medical Records.

    PubMed

    Luo, Yuan; Szolovits, Peter

    2016-01-01

    In natural language processing, stand-off annotation uses the starting and ending positions of an annotation to anchor it to the text and stores the annotation content separately from the text. We address the fundamental problem of efficiently storing stand-off annotations when applying natural language processing on narrative clinical notes in electronic medical records (EMRs) and efficiently retrieving such annotations that satisfy position constraints. Efficient storage and retrieval of stand-off annotations can facilitate tasks such as mapping unstructured text to electronic medical record ontologies. We first formulate this problem into the interval query problem, for which optimal query/update time is in general logarithm. We next perform a tight time complexity analysis on the basic interval tree query algorithm and show its nonoptimality when being applied to a collection of 13 query types from Allen's interval algebra. We then study two closely related state-of-the-art interval query algorithms, proposed query reformulations, and augmentations to the second algorithm. Our proposed algorithm achieves logarithmic time stabbing-max query time complexity and solves the stabbing-interval query tasks on all of Allen's relations in logarithmic time, attaining the theoretic lower bound. Updating time is kept logarithmic and the space requirement is kept linear at the same time. We also discuss interval management in external memory models and higher dimensions.

  2. Efficient Queries of Stand-off Annotations for Natural Language Processing on Electronic Medical Records

    PubMed Central

    Luo, Yuan; Szolovits, Peter

    2016-01-01

    In natural language processing, stand-off annotation uses the starting and ending positions of an annotation to anchor it to the text and stores the annotation content separately from the text. We address the fundamental problem of efficiently storing stand-off annotations when applying natural language processing on narrative clinical notes in electronic medical records (EMRs) and efficiently retrieving such annotations that satisfy position constraints. Efficient storage and retrieval of stand-off annotations can facilitate tasks such as mapping unstructured text to electronic medical record ontologies. We first formulate this problem into the interval query problem, for which optimal query/update time is in general logarithm. We next perform a tight time complexity analysis on the basic interval tree query algorithm and show its nonoptimality when being applied to a collection of 13 query types from Allen’s interval algebra. We then study two closely related state-of-the-art interval query algorithms, proposed query reformulations, and augmentations to the second algorithm. Our proposed algorithm achieves logarithmic time stabbing-max query time complexity and solves the stabbing-interval query tasks on all of Allen’s relations in logarithmic time, attaining the theoretic lower bound. Updating time is kept logarithmic and the space requirement is kept linear at the same time. We also discuss interval management in external memory models and higher dimensions. PMID:27478379

  3. Advanced Query Formulation in Deductive Databases.

    ERIC Educational Resources Information Center

    Niemi, Timo; Jarvelin, Kalervo

    1992-01-01

    Discusses deductive databases and database management systems (DBMS) and introduces a framework for advanced query formulation for end users. Recursive processing is described, a sample extensional database is presented, query types are explained, and criteria for advanced query formulation from the end user's viewpoint are examined. (31…

  4. Parallel Index and Query for Large Scale Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Jerry; Wu, Kesheng; Ruebel, Oliver

    2011-07-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing ofmore » a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.« less

  5. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-08-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.

  6. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-01-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS – a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive. PMID:24187650

  7. Cognitive issues in searching images with visual queries

    NASA Astrophysics Data System (ADS)

    Yu, ByungGu; Evens, Martha W.

    1999-01-01

    In this paper, we propose our image indexing technique and visual query processing technique. Our mental images are different from the actual retinal images and many things, such as personal interests, personal experiences, perceptual context, the characteristics of spatial objects, and so on, affect our spatial perception. These private differences are propagated into our mental images and so our visual queries become different from the real images that we want to find. This is a hard problem and few people have tried to work on it. In this paper, we survey the human mental imagery system, the human spatial perception, and discuss several kinds of visual queries. Also, we propose our own approach to visual query interpretation and processing.

  8. Secure Skyline Queries on Cloud Platform

    PubMed Central

    Liu, Jinfei; Yang, Juncheng; Xiong, Li; Pei, Jian

    2017-01-01

    Outsourcing data and computation to cloud server provides a cost-effective way to support large scale data storage and query processing. However, due to security and privacy concerns, sensitive data (e.g., medical records) need to be protected from the cloud server and other unauthorized users. One approach is to outsource encrypted data to the cloud server and have the cloud server perform query processing on the encrypted data only. It remains a challenging task to support various queries over encrypted data in a secure and efficient way such that the cloud server does not gain any knowledge about the data, query, and query result. In this paper, we study the problem of secure skyline queries over encrypted data. The skyline query is particularly important for multi-criteria decision making but also presents significant challenges due to its complex computations. We propose a fully secure skyline query protocol on data encrypted using semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol, which can be also used as a building block for other queries. Finally, we provide both serial and parallelized implementations and empirically study the protocols in terms of efficiency and scalability under different parameter settings, verifying the feasibility of our proposed solutions. PMID:28883710

  9. Searching and Filtering Tweets: CSIRO at the TREC 2012 Microblog Track

    DTIC Science & Technology

    2012-11-01

    stages. We first evaluate the effect of tweet corpus pre- processing in vanilla runs (no query expansion), and then assess the effect of query expansion...Effect of a vanilla run on D4 index (both realtime and non-real-time), and query expansion methods based on the submitted runs for two sets of queries

  10. An approach for heterogeneous and loosely coupled geospatial data distributed computing

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui

    2010-07-01

    Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.

  11. Constraint-based Data Mining

    NASA Astrophysics Data System (ADS)

    Boulicaut, Jean-Francois; Jeudy, Baptiste

    Knowledge Discovery in Databases (KDD) is a complex interactive process. The promising theoretical framework of inductive databases considers this is essentially a querying process. It is enabled by a query language which can deal either with raw data or patterns which hold in the data. Mining patterns turns to be the so-called inductive query evaluation process for which constraint-based Data Mining techniques have to be designed. An inductive query specifies declaratively the desired constraints and algorithms are used to compute the patterns satisfying the constraints in the data. We survey important results of this active research domain. This chapter emphasizes a real breakthrough for hard problems concerning local pattern mining under various constraints and it points out the current directions of research as well.

  12. An adaptable architecture for patient cohort identification from diverse data sources.

    PubMed

    Bache, Richard; Miles, Simon; Taweel, Adel

    2013-12-01

    We define and validate an architecture for systems that identify patient cohorts for clinical trials from multiple heterogeneous data sources. This architecture has an explicit query model capable of supporting temporal reasoning and expressing eligibility criteria independently of the representation of the data used to evaluate them. The architecture has the key feature that queries defined according to the query model are both pre and post-processed and this is used to address both structural and semantic heterogeneity. The process of extracting the relevant clinical facts is separated from the process of reasoning about them. A specific instance of the query model is then defined and implemented. We show that the specific instance of the query model has wide applicability. We then describe how it is used to access three diverse data warehouses to determine patient counts. Although the proposed architecture requires greater effort to implement the query model than would be the case for using just SQL and accessing a data-based management system directly, this effort is justified because it supports both temporal reasoning and heterogeneous data sources. The query model only needs to be implemented once no matter how many data sources are accessed. Each additional source requires only the implementation of a lightweight adaptor. The architecture has been used to implement a specific query model that can express complex eligibility criteria and access three diverse data warehouses thus demonstrating the feasibility of this approach in dealing with temporal reasoning and data heterogeneity.

  13. IJA: an efficient algorithm for query processing in sensor networks.

    PubMed

    Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa

    2011-01-01

    One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm.

  14. IJA: An Efficient Algorithm for Query Processing in Sensor Networks

    PubMed Central

    Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa

    2011-01-01

    One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm. PMID:22319375

  15. A similarity-based data warehousing environment for medical images.

    PubMed

    Teixeira, Jefferson William; Annibal, Luana Peixoto; Felipe, Joaquim Cezar; Ciferri, Ricardo Rodrigues; Ciferri, Cristina Dutra de Aguiar

    2015-11-01

    A core issue of the decision-making process in the medical field is to support the execution of analytical (OLAP) similarity queries over images in data warehousing environments. In this paper, we focus on this issue. We propose imageDWE, a non-conventional data warehousing environment that enables the storage of intrinsic features taken from medical images in a data warehouse and supports OLAP similarity queries over them. To comply with this goal, we introduce the concept of perceptual layer, which is an abstraction used to represent an image dataset according to a given feature descriptor in order to enable similarity search. Based on this concept, we propose the imageDW, an extended data warehouse with dimension tables specifically designed to support one or more perceptual layers. We also detail how to build an imageDW and how to load image data into it. Furthermore, we show how to process OLAP similarity queries composed of a conventional predicate and a similarity search predicate that encompasses the specification of one or more perceptual layers. Moreover, we introduce an index technique to improve the OLAP query processing over images. We carried out performance tests over a data warehouse environment that consolidated medical images from exams of several modalities. The results demonstrated the feasibility and efficiency of our proposed imageDWE to manage images and to process OLAP similarity queries. The results also demonstrated that the use of the proposed index technique guaranteed a great improvement in query processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Object-Oriented Query Language For Events Detection From Images Sequences

    NASA Astrophysics Data System (ADS)

    Ganea, Ion Eugen

    2015-09-01

    In this paper is presented a method to represent the events extracted from images sequences and the query language used for events detection. Using an object oriented model the spatial and temporal relationships between salient objects and also between events are stored and queried. This works aims to unify the storing and querying phases for video events processing. The object oriented language syntax used for events processing allow the instantiation of the indexes classes in order to improve the accuracy of the query results. The experiments were performed on images sequences provided from sport domain and it shows the reliability and the robustness of the proposed language. To extend the language will be added a specific syntax for constructing the templates for abnormal events and for detection of the incidents as the final goal of the research.

  17. Targeted exploration and analysis of large cross-platform human transcriptomic compendia

    PubMed Central

    Zhu, Qian; Wong, Aaron K; Krishnan, Arjun; Aure, Miriam R; Tadych, Alicja; Zhang, Ran; Corney, David C; Greene, Casey S; Bongo, Lars A; Kristensen, Vessela N; Charikar, Moses; Li, Kai; Troyanskaya, Olga G.

    2016-01-01

    We present SEEK (http://seek.princeton.edu), a query-based search engine across very large transcriptomic data collections, including thousands of human data sets from almost 50 microarray and next-generation sequencing platforms. SEEK uses a novel query-level cross-validation-based algorithm to automatically prioritize data sets relevant to the query and a robust search approach to identify query-coregulated genes, pathways, and processes. SEEK provides cross-platform handling, multi-gene query search, iterative metadata-based search refinement, and extensive visualization-based analysis options. PMID:25581801

  18. Graphical modeling and query language for hospitals.

    PubMed

    Barzdins, Janis; Barzdins, Juris; Rencis, Edgars; Sostaks, Agris

    2013-01-01

    So far there has been little evidence that implementation of the health information technologies (HIT) is leading to health care cost savings. One of the reasons for this lack of impact by the HIT likely lies in the complexity of the business process ownership in the hospitals. The goal of our research is to develop a business model-based method for hospital use which would allow doctors to retrieve directly the ad-hoc information from various hospital databases. We have developed a special domain-specific process modelling language called the MedMod. Formally, we define the MedMod language as a profile on UML Class diagrams, but we also demonstrate it on examples, where we explain the semantics of all its elements informally. Moreover, we have developed the Process Query Language (PQL) that is based on MedMod process definition language. The purpose of PQL is to allow a doctor querying (filtering) runtime data of hospital's processes described using MedMod. The MedMod language tries to overcome deficiencies in existing process modeling languages, allowing to specify the loosely-defined sequence of the steps to be performed in the clinical process. The main advantages of PQL are in two main areas - usability and efficiency. They are: 1) the view on data through "glasses" of familiar process, 2) the simple and easy-to-perceive means of setting filtering conditions require no more expertise than using spreadsheet applications, 3) the dynamic response to each step in construction of the complete query that shortens the learning curve greatly and reduces the error rate, and 4) the selected means of filtering and data retrieving allows to execute queries in O(n) time regarding the size of the dataset. We are about to continue developing this project with three further steps. First, we are planning to develop user-friendly graphical editors for the MedMod process modeling and query languages. The second step is to do evaluation of usability the proposed language and tool involving the physicians from several hospitals in Latvia and working with real data from these hospitals. Our third step is to develop an efficient implementation of the query language.

  19. Exploring neighborhoods in the metagenome universe.

    PubMed

    Aßhauer, Kathrin P; Klingenberg, Heiner; Lingner, Thomas; Meinicke, Peter

    2014-07-14

    The variety of metagenomes in current databases provides a rapidly growing source of information for comparative studies. However, the quantity and quality of supplementary metadata is still lagging behind. It is therefore important to be able to identify related metagenomes by means of the available sequence data alone. We have studied efficient sequence-based methods for large-scale identification of similar metagenomes within a database retrieval context. In a broad comparison of different profiling methods we found that vector-based distance measures are well-suitable for the detection of metagenomic neighbors. Our evaluation on more than 1700 publicly available metagenomes indicates that for a query metagenome from a particular habitat on average nine out of ten nearest neighbors represent the same habitat category independent of the utilized profiling method or distance measure. While for well-defined labels a neighborhood accuracy of 100% can be achieved, in general the neighbor detection is severely affected by a natural overlap of manually annotated categories. In addition, we present results of a novel visualization method that is able to reflect the similarity of metagenomes in a 2D scatter plot. The visualization method shows a similarly high accuracy in the reduced space as compared with the high-dimensional profile space. Our study suggests that for inspection of metagenome neighborhoods the profiling methods and distance measures can be chosen to provide a convenient interpretation of results in terms of the underlying features. Furthermore, supplementary metadata of metagenome samples in the future needs to comply with readily available ontologies for fine-grained and standardized annotation. To make profile-based k-nearest-neighbor search and the 2D-visualization of the metagenome universe available to the research community, we included the proposed methods in our CoMet-Universe server for comparative metagenome analysis.

  20. Exploring Neighborhoods in the Metagenome Universe

    PubMed Central

    Aßhauer, Kathrin P.; Klingenberg, Heiner; Lingner, Thomas; Meinicke, Peter

    2014-01-01

    The variety of metagenomes in current databases provides a rapidly growing source of information for comparative studies. However, the quantity and quality of supplementary metadata is still lagging behind. It is therefore important to be able to identify related metagenomes by means of the available sequence data alone. We have studied efficient sequence-based methods for large-scale identification of similar metagenomes within a database retrieval context. In a broad comparison of different profiling methods we found that vector-based distance measures are well-suitable for the detection of metagenomic neighbors. Our evaluation on more than 1700 publicly available metagenomes indicates that for a query metagenome from a particular habitat on average nine out of ten nearest neighbors represent the same habitat category independent of the utilized profiling method or distance measure. While for well-defined labels a neighborhood accuracy of 100% can be achieved, in general the neighbor detection is severely affected by a natural overlap of manually annotated categories. In addition, we present results of a novel visualization method that is able to reflect the similarity of metagenomes in a 2D scatter plot. The visualization method shows a similarly high accuracy in the reduced space as compared with the high-dimensional profile space. Our study suggests that for inspection of metagenome neighborhoods the profiling methods and distance measures can be chosen to provide a convenient interpretation of results in terms of the underlying features. Furthermore, supplementary metadata of metagenome samples in the future needs to comply with readily available ontologies for fine-grained and standardized annotation. To make profile-based k-nearest-neighbor search and the 2D-visualization of the metagenome universe available to the research community, we included the proposed methods in our CoMet-Universe server for comparative metagenome analysis. PMID:25026170

  1. An adaptable architecture for patient cohort identification from diverse data sources

    PubMed Central

    Bache, Richard; Miles, Simon; Taweel, Adel

    2013-01-01

    Objective We define and validate an architecture for systems that identify patient cohorts for clinical trials from multiple heterogeneous data sources. This architecture has an explicit query model capable of supporting temporal reasoning and expressing eligibility criteria independently of the representation of the data used to evaluate them. Method The architecture has the key feature that queries defined according to the query model are both pre and post-processed and this is used to address both structural and semantic heterogeneity. The process of extracting the relevant clinical facts is separated from the process of reasoning about them. A specific instance of the query model is then defined and implemented. Results We show that the specific instance of the query model has wide applicability. We then describe how it is used to access three diverse data warehouses to determine patient counts. Discussion Although the proposed architecture requires greater effort to implement the query model than would be the case for using just SQL and accessing a data-based management system directly, this effort is justified because it supports both temporal reasoning and heterogeneous data sources. The query model only needs to be implemented once no matter how many data sources are accessed. Each additional source requires only the implementation of a lightweight adaptor. Conclusions The architecture has been used to implement a specific query model that can express complex eligibility criteria and access three diverse data warehouses thus demonstrating the feasibility of this approach in dealing with temporal reasoning and data heterogeneity. PMID:24064442

  2. Matching health information seekers' queries to medical terms

    PubMed Central

    2012-01-01

    Background The Internet is a major source of health information but most seekers are not familiar with medical vocabularies. Hence, their searches fail due to bad query formulation. Several methods have been proposed to improve information retrieval: query expansion, syntactic and semantic techniques or knowledge-based methods. However, it would be useful to clean those queries which are misspelled. In this paper, we propose a simple yet efficient method in order to correct misspellings of queries submitted by health information seekers to a medical online search tool. Methods In addition to query normalizations and exact phonetic term matching, we tested two approximate string comparators: the similarity score function of Stoilos and the normalized Levenshtein edit distance. We propose here to combine them to increase the number of matched medical terms in French. We first took a sample of query logs to determine the thresholds and processing times. In the second run, at a greater scale we tested different combinations of query normalizations before or after misspelling correction with the retained thresholds in the first run. Results According to the total number of suggestions (around 163, the number of the first sample of queries), at a threshold comparator score of 0.3, the normalized Levenshtein edit distance gave the highest F-Measure (88.15%) and at a threshold comparator score of 0.7, the Stoilos function gave the highest F-Measure (84.31%). By combining Levenshtein and Stoilos, the highest F-Measure (80.28%) is obtained with 0.2 and 0.7 thresholds respectively. However, queries are composed by several terms that may be combination of medical terms. The process of query normalization and segmentation is thus required. The highest F-Measure (64.18%) is obtained when this process is realized before spelling-correction. Conclusions Despite the widely known high performance of the normalized edit distance of Levenshtein, we show in this paper that its combination with the Stoilos algorithm improved the results for misspelling correction of user queries. Accuracy is improved by combining spelling, phoneme-based information and string normalizations and segmentations into medical terms. These encouraging results have enabled the integration of this method into two projects funded by the French National Research Agency-Technologies for Health Care. The first aims to facilitate the coding process of clinical free texts contained in Electronic Health Records and discharge summaries, whereas the second aims at improving information retrieval through Electronic Health Records. PMID:23095521

  3. Content-based retrieval of historical Ottoman documents stored as textual images.

    PubMed

    Saykol, Ediz; Sinop, Ali Kemal; Güdükbay, Ugur; Ulusoy, Ozgür; Cetin, A Enis

    2004-03-01

    There is an accelerating demand to access the visual content of documents stored in historical and cultural archives. Availability of electronic imaging tools and effective image processing techniques makes it feasible to process the multimedia data in large databases. In this paper, a framework for content-based retrieval of historical documents in the Ottoman Empire archives is presented. The documents are stored as textual images, which are compressed by constructing a library of symbols occurring in a document, and the symbols in the original image are then replaced with pointers into the codebook to obtain a compressed representation of the image. The features in wavelet and spatial domain based on angular and distance span of shapes are used to extract the symbols. In order to make content-based retrieval in historical archives, a query is specified as a rectangular region in an input image and the same symbol-extraction process is applied to the query region. The queries are processed on the codebook of documents and the query images are identified in the resulting documents using the pointers in textual images. The querying process does not require decompression of images. The new content-based retrieval framework is also applicable to many other document archives using different scripts.

  4. Efficient processing of multiple nested event pattern queries over multi-dimensional event streams based on a triaxial hierarchical model.

    PubMed

    Xiao, Fuyuan; Aritsugi, Masayoshi; Wang, Qing; Zhang, Rong

    2016-09-01

    For efficient and sophisticated analysis of complex event patterns that appear in streams of big data from health care information systems and support for decision-making, a triaxial hierarchical model is proposed in this paper. Our triaxial hierarchical model is developed by focusing on hierarchies among nested event pattern queries with an event concept hierarchy, thereby allowing us to identify the relationships among the expressions and sub-expressions of the queries extensively. We devise a cost-based heuristic by means of the triaxial hierarchical model to find an optimised query execution plan in terms of the costs of both the operators and the communications between them. According to the triaxial hierarchical model, we can also calculate how to reuse the results of the common sub-expressions in multiple queries. By integrating the optimised query execution plan with the reuse schemes, a multi-query optimisation strategy is developed to accomplish efficient processing of multiple nested event pattern queries. We present empirical studies in which the performance of multi-query optimisation strategy was examined under various stream input rates and workloads. Specifically, the workloads of pattern queries can be used for supporting monitoring patients' conditions. On the other hand, experiments with varying input rates of streams can correspond to changes of the numbers of patients that a system should manage, whereas burst input rates can correspond to changes of rushes of patients to be taken care of. The experimental results have shown that, in Workload 1, our proposal can improve about 4 and 2 times throughput comparing with the relative works, respectively; in Workload 2, our proposal can improve about 3 and 2 times throughput comparing with the relative works, respectively; in Workload 3, our proposal can improve about 6 times throughput comparing with the relative work. The experimental results demonstrated that our proposal was able to process complex queries efficiently which can support health information systems and further decision-making. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Producing approximate answers to database queries

    NASA Technical Reports Server (NTRS)

    Vrbsky, Susan V.; Liu, Jane W. S.

    1993-01-01

    We have designed and implemented a query processor, called APPROXIMATE, that makes approximate answers available if part of the database is unavailable or if there is not enough time to produce an exact answer. The accuracy of the approximate answers produced improves monotonically with the amount of data retrieved to produce the result. The exact answer is produced if all of the needed data are available and query processing is allowed to continue until completion. The monotone query processing algorithm of APPROXIMATE works within the standard relational algebra framework and can be implemented on a relational database system with little change to the relational architecture. We describe here the approximation semantics of APPROXIMATE that serves as the basis for meaningful approximations of both set-valued and single-valued queries. We show how APPROXIMATE is implemented to make effective use of semantic information, provided by an object-oriented view of the database, and describe the additional overhead required by APPROXIMATE.

  6. Attractor Dynamics and Semantic Neighborhood Density: Processing Is Slowed by Near Neighbors and Speeded by Distant Neighbors

    ERIC Educational Resources Information Center

    Mirman, Daniel; Magnuson, James S.

    2008-01-01

    The authors investigated semantic neighborhood density effects on visual word processing to examine the dynamics of activation and competition among semantic representations. Experiment 1 validated feature-based semantic representations as a basis for computing semantic neighborhood density and suggested that near and distant neighbors have…

  7. Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches.

    PubMed

    Almutairy, Meznah; Torng, Eric

    2018-01-01

    Bioinformatics applications and pipelines increasingly use k-mer indexes to search for similar sequences. The major problem with k-mer indexes is that they require lots of memory. Sampling is often used to reduce index size and query time. Most applications use one of two major types of sampling: fixed sampling and minimizer sampling. It is well known that fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is generally assumed that minimizer sampling will produce faster query times since query k-mers can also be sampled. However, no direct comparison of fixed and minimizer sampling has been performed to verify these assumptions. We systematically compare fixed and minimizer sampling using the human genome as our database. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find all maximal exact matches between our database, the human genome, and three separate query sets, the mouse genome, the chimp genome, and an NGS data set. We reach the following conclusions. First, using larger k-mers reduces query time for both fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same k-mer size for both methods, fixed sampling requires typically half as much space whereas minimizer sampling processes queries only slightly faster. If we are allowed to use any k-mer size for each method, then we can choose a k-mer size such that fixed sampling both uses less space and processes queries faster than minimizer sampling. The reason is that although minimizer sampling is able to sample query k-mers, the number of shared k-mer occurrences that must be processed is much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any application where each shared k-mer occurrence must be processed, fixed sampling is the right sampling method.

  8. Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

    PubMed Central

    Torng, Eric

    2018-01-01

    Bioinformatics applications and pipelines increasingly use k-mer indexes to search for similar sequences. The major problem with k-mer indexes is that they require lots of memory. Sampling is often used to reduce index size and query time. Most applications use one of two major types of sampling: fixed sampling and minimizer sampling. It is well known that fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is generally assumed that minimizer sampling will produce faster query times since query k-mers can also be sampled. However, no direct comparison of fixed and minimizer sampling has been performed to verify these assumptions. We systematically compare fixed and minimizer sampling using the human genome as our database. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find all maximal exact matches between our database, the human genome, and three separate query sets, the mouse genome, the chimp genome, and an NGS data set. We reach the following conclusions. First, using larger k-mers reduces query time for both fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same k-mer size for both methods, fixed sampling requires typically half as much space whereas minimizer sampling processes queries only slightly faster. If we are allowed to use any k-mer size for each method, then we can choose a k-mer size such that fixed sampling both uses less space and processes queries faster than minimizer sampling. The reason is that although minimizer sampling is able to sample query k-mers, the number of shared k-mer occurrences that must be processed is much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any application where each shared k-mer occurrence must be processed, fixed sampling is the right sampling method. PMID:29389989

  9. Automation and integration of components for generalized semantic markup of electronic medical texts.

    PubMed

    Dugan, J M; Berrios, D C; Liu, X; Kim, D K; Kaizer, H; Fagan, L M

    1999-01-01

    Our group has built an information retrieval system based on a complex semantic markup of medical textbooks. We describe the construction of a set of web-based knowledge-acquisition tools that expedites the collection and maintenance of the concepts required for text markup and the search interface required for information retrieval from the marked text. In the text markup system, domain experts (DEs) identify sections of text that contain one or more elements from a finite set of concepts. End users can then query the text using a predefined set of questions, each of which identifies a subset of complementary concepts. The search process matches that subset of concepts to relevant points in the text. The current process requires that the DE invest significant time to generate the required concepts and questions. We propose a new system--called ACQUIRE (Acquisition of Concepts and Queries in an Integrated Retrieval Environment)--that assists a DE in two essential tasks in the text-markup process. First, it helps her to develop, edit, and maintain the concept model: the set of concepts with which she marks the text. Second, ACQUIRE helps her to develop a query model: the set of specific questions that end users can later use to search the marked text. The DE incorporates concepts from the concept model when she creates the questions in the query model. The major benefit of the ACQUIRE system is a reduction in the time and effort required for the text-markup process. We compared the process of concept- and query-model creation using ACQUIRE to the process used in previous work by rebuilding two existing models that we previously constructed manually. We observed a significant decrease in the time required to build and maintain the concept and query models.

  10. Spatial aggregation query in dynamic geosensor networks

    NASA Astrophysics Data System (ADS)

    Yi, Baolin; Feng, Dayang; Xiao, Shisong; Zhao, Erdun

    2007-11-01

    Wireless sensor networks have been widely used for civilian and military applications, such as environmental monitoring and vehicle tracking. In many of these applications, the researches mainly aim at building sensor network based systems to leverage the sensed data to applications. However, the existing works seldom exploited spatial aggregation query considering the dynamic characteristics of sensor networks. In this paper, we investigate how to process spatial aggregation query over dynamic geosensor networks where both the sink node and sensor nodes are mobile and propose several novel improvements on enabling techniques. The mobility of sensors makes the existing routing protocol based on information of fixed framework or the neighborhood infeasible. We present an improved location-based stateless implicit geographic forwarding (IGF) protocol for routing a query toward the area specified by query window, a diameter-based window aggregation query (DWAQ) algorithm for query propagation and data aggregation in the query window, finally considering the location changing of the sink node, we present two schemes to forward the result to the sink node. Simulation results show that the proposed algorithms can improve query latency and query accuracy.

  11. Optimizing a Query by Transformation and Expansion.

    PubMed

    Glocker, Katrin; Knurr, Alexander; Dieter, Julia; Dominick, Friederike; Forche, Melanie; Koch, Christian; Pascoe Pérez, Analie; Roth, Benjamin; Ückert, Frank

    2017-01-01

    In the biomedical sector not only the amount of information produced and uploaded into the web is enormous, but also the number of sources where these data can be found. Clinicians and researchers spend huge amounts of time on trying to access this information and to filter the most important answers to a given question. As the formulation of these queries is crucial, automated query expansion is an effective tool to optimize a query and receive the best possible results. In this paper we introduce the concept of a workflow for an optimization of queries in the medical and biological sector by using a series of tools for expansion and transformation of the query. After the definition of attributes by the user, the query string is compared to previous queries in order to add semantic co-occurring terms to the query. Additionally, the query is enlarged by an inclusion of synonyms. The translation into database specific ontologies ensures the optimal query formulation for the chosen database(s). As this process can be performed in various databases at once, the results are ranked and normalized in order to achieve a comparable list of answers for a question.

  12. What do foreign neighbors say about the mental lexicon?*

    PubMed Central

    VITEVITCH, MICHAEL S.

    2012-01-01

    A corpus analysis of phonological word-forms shows that English words have few phonological neighbors that are Spanish words. Concomitantly, Spanish words have few phonological neighbors that are English words. These observations appear to undermine certain accounts of bilingual language processing, and have significant implications for the processing and representation of word-forms in bilinguals. PMID:23930081

  13. Merging OLTP and OLAP - Back to the Future

    NASA Astrophysics Data System (ADS)

    Lehner, Wolfgang

    When the terms "Data Warehousing" and "Online Analytical Processing" were coined in the 1990s by Kimball, Codd, and others, there was an obvious need for separating data and workload for operational transactional-style processing and decision-making implying complex analytical queries over large and historic data sets. Large data warehouse infrastructures have been set up to cope with the special requirements of analytical query answering for multiple reasons: For example, analytical thinking heavily relies on predefined navigation paths to guide the user through the data set and to provide different views on different aggregation levels.Multi-dimensional queries exploiting hierarchically structured dimensions lead to complex star queries at a relational backend, which could hardly be handled by classical relational systems.

  14. Gazetteer Brokering through Semantic Mediation

    NASA Astrophysics Data System (ADS)

    Hobona, G.; Bermudez, L. E.; Brackin, R.

    2013-12-01

    A gazetteer is a geographical directory containing some information regarding places. It provides names, location and other attributes for places which may include points of interest (e.g. buildings, oilfields and boreholes), and other features. These features can be published via web services conforming to the Gazetteer Application Profile of the Web Feature Service (WFS) standard of the Open Geospatial Consortium (OGC). Against the backdrop of advances in geophysical surveys, there has been a significant increase in the amount of data referenced to locations. Gazetteers services have played a significant role in facilitating access to such data, including through provision of specialized queries such as text, spatial and fuzzy search. Recent developments in the OGC have led to advances in gazetteers such as support for multilingualism, diacritics, and querying via advanced spatial constraints (e.g. search by radial search and nearest neighbor). A challenge remaining however, is that gazetteers produced by different organizations have typically been modeled differently. Inconsistencies from gazetteers produced by different organizations may include naming the same feature in a different way, naming the attributes differently, locating the feature in a different location, and providing fewer or more attributes than the other services. The Gazetteer application profile of the WFS is a starting point to address such inconsistencies by providing a standardized interface based on rules specified in ISO 19112, the international standard for spatial referencing by geographic identifiers. The profile, however, does not provide rules to deal with semantic inconsistencies. The USGS and NGA commissioned research into the potential for a Single Point of Entry Global Gazetteer (SPEGG). The research was conducted by the Cross Community Interoperability thread of the OGC testbed, referenced OWS-9. The testbed prototyped approaches for brokering gazetteers through use of semantic web technologies, including ontologies and a semantic mediator. The semantically-enhanced SPEGG allowed a client to submit a single query (e.g. ';hills') and to retrieve data from two separate gazetteers with different vocabularies (e.g. where one refers to ';summits' another refers to ';hills'). Supporting the SPEGG was a SPARQL server that held the ontologies and processed queries on them. Earth Science surveys and forecast always have a place on Earth. Being able to share the information about a place and solve inconsistencies about that place from different sources will enable geoscientists to better do their research. In the advent of mobile geo computing and location based services (LBS), brokering gazetteers will provide geoscientists with access to gazetteer services rich with information and functionality beyond that offered by current generic gazetteers.

  15. Learning context-sensitive shape similarity by graph transduction.

    PubMed

    Bai, Xiang; Yang, Xingwei; Latecki, Longin Jan; Liu, Wenyu; Tu, Zhuowen

    2010-05-01

    Shape similarity and shape retrieval are very important topics in computer vision. The recent progress in this domain has been mostly driven by designing smart shape descriptors for providing better similarity measure between pairs of shapes. In this paper, we provide a new perspective to this problem by considering the existing shapes as a group, and study their similarity measures to the query shape in a graph structure. Our method is general and can be built on top of any existing shape similarity measure. For a given similarity measure, a new similarity is learned through graph transduction. The new similarity is learned iteratively so that the neighbors of a given shape influence its final similarity to the query. The basic idea here is related to PageRank ranking, which forms a foundation of Google Web search. The presented experimental results demonstrate that the proposed approach yields significant improvements over the state-of-art shape matching algorithms. We obtained a retrieval rate of 91.61 percent on the MPEG-7 data set, which is the highest ever reported in the literature. Moreover, the learned similarity by the proposed method also achieves promising improvements on both shape classification and shape clustering.

  16. Evolution of Query Optimization Methods

    NASA Astrophysics Data System (ADS)

    Hameurlain, Abdelkader; Morvan, Franck

    Query optimization is the most critical phase in query processing. In this paper, we try to describe synthetically the evolution of query optimization methods from uniprocessor relational database systems to data Grid systems through parallel, distributed and data integration systems. We point out a set of parameters to characterize and compare query optimization methods, mainly: (i) size of the search space, (ii) type of method (static or dynamic), (iii) modification types of execution plans (re-optimization or re-scheduling), (iv) level of modification (intra-operator and/or inter-operator), (v) type of event (estimation errors, delay, user preferences), and (vi) nature of decision-making (centralized or decentralized control).

  17. A Simple Blueprint for Automatic Boolean Query Processing.

    ERIC Educational Resources Information Center

    Salton, G.

    1988-01-01

    Describes a new Boolean retrieval environment in which an extended soft Boolean logic is used to automatically construct queries from original natural language formulations provided by users. Experimental results that compare the retrieval effectiveness of this method to conventional Boolean and vector processing are discussed. (27 references)…

  18. Distributional Analysis of the Transposed-Letter Neighborhood Effect on Naming Latency

    ERIC Educational Resources Information Center

    Johnson, Rebecca L.; Staub, Adrian; Fleri, Amanda M.

    2012-01-01

    Printed words that have a transposed-letter (TL) neighbor (e.g., angel has the TL neighbor angle) have been shown to be more difficult to process, in a range of paradigms, than words that do not have a TL neighbor. However, eye movement evidence suggests that this processing difficulty may occur on only a subset of trials. To investigate this…

  19. The nearest neighbor and next nearest neighbor effects on the thermodynamic and kinetic properties of RNA base pair

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Wang, Zhen; Wang, Yanli; Liu, Taigang; Zhang, Wenbing

    2018-01-01

    The thermodynamic and kinetic parameters of an RNA base pair with different nearest and next nearest neighbors were obtained through long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The results indicate that thermodynamic parameters of GC base pair are dependent on the nearest neighbor base pair, and the next nearest neighbor base pair has little effect, which validated the nearest-neighbor model. The closing and opening rates of the GC base pair also showed nearest neighbor dependences. At certain temperature, the closing and opening rates of the GC pair with nearest neighbor AU is larger than that with the nearest neighbor GC, and the next nearest neighbor plays little role. The free energy landscape of the GC base pair with the nearest neighbor GC is rougher than that with nearest neighbor AU.

  20. Querying and Extracting Timeline Information from Road Traffic Sensor Data

    PubMed Central

    Imawan, Ardi; Indikawati, Fitri Indra; Kwon, Joonho; Rao, Praveen

    2016-01-01

    The escalation of traffic congestion in urban cities has urged many countries to use intelligent transportation system (ITS) centers to collect historical traffic sensor data from multiple heterogeneous sources. By analyzing historical traffic data, we can obtain valuable insights into traffic behavior. Many existing applications have been proposed with limited analysis results because of the inability to cope with several types of analytical queries. In this paper, we propose the QET (querying and extracting timeline information) system—a novel analytical query processing method based on a timeline model for road traffic sensor data. To address query performance, we build a TQ-index (timeline query-index) that exploits spatio-temporal features of timeline modeling. We also propose an intuitive timeline visualization method to display congestion events obtained from specified query parameters. In addition, we demonstrate the benefit of our system through a performance evaluation using a Busan ITS dataset and a Seattle freeway dataset. PMID:27563900

  1. Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce.

    PubMed

    Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng

    2013-11-01

    The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS - a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing.

  2. A new method for species identification via protein-coding and non-coding DNA barcodes by combining machine learning with bioinformatic methods.

    PubMed

    Zhang, Ai-bing; Feng, Jie; Ward, Robert D; Wan, Ping; Gao, Qiang; Wu, Jun; Zhao, Wei-zhong

    2012-01-01

    Species identification via DNA barcodes is contributing greatly to current bioinventory efforts. The initial, and widely accepted, proposal was to use the protein-coding cytochrome c oxidase subunit I (COI) region as the standard barcode for animals, but recently non-coding internal transcribed spacer (ITS) genes have been proposed as candidate barcodes for both animals and plants. However, achieving a robust alignment for non-coding regions can be problematic. Here we propose two new methods (DV-RBF and FJ-RBF) to address this issue for species assignment by both coding and non-coding sequences that take advantage of the power of machine learning and bioinformatics. We demonstrate the value of the new methods with four empirical datasets, two representing typical protein-coding COI barcode datasets (neotropical bats and marine fish) and two representing non-coding ITS barcodes (rust fungi and brown algae). Using two random sub-sampling approaches, we demonstrate that the new methods significantly outperformed existing Neighbor-joining (NJ) and Maximum likelihood (ML) methods for both coding and non-coding barcodes when there was complete species coverage in the reference dataset. The new methods also out-performed NJ and ML methods for non-coding sequences in circumstances of potentially incomplete species coverage, although then the NJ and ML methods performed slightly better than the new methods for protein-coding barcodes. A 100% success rate of species identification was achieved with the two new methods for 4,122 bat queries and 5,134 fish queries using COI barcodes, with 95% confidence intervals (CI) of 99.75-100%. The new methods also obtained a 96.29% success rate (95%CI: 91.62-98.40%) for 484 rust fungi queries and a 98.50% success rate (95%CI: 96.60-99.37%) for 1094 brown algae queries, both using ITS barcodes.

  3. Database technology and the management of multimedia data in the Mirror project

    NASA Astrophysics Data System (ADS)

    de Vries, Arjen P.; Blanken, H. M.

    1998-10-01

    Multimedia digital libraries require an open distributed architecture instead of a monolithic database system. In the Mirror project, we use the Monet extensible database kernel to manage different representation of multimedia objects. To maintain independence between content, meta-data, and the creation of meta-data, we allow distribution of data and operations using CORBA. This open architecture introduces new problems for data access. From an end user's perspective, the problem is how to search the available representations to fulfill an actual information need; the conceptual gap between human perceptual processes and the meta-data is too large. From a system's perspective, several representations of the data may semantically overlap or be irrelevant. We address these problems with an iterative query process and active user participating through relevance feedback. A retrieval model based on inference networks assists the user with query formulation. The integration of this model into the database design has two advantages. First, the user can query both the logical and the content structure of multimedia objects. Second, the use of different data models in the logical and the physical database design provides data independence and allows algebraic query optimization. We illustrate query processing with a music retrieval application.

  4. Automatic Depth Extraction from 2D Images Using a Cluster-Based Learning Framework.

    PubMed

    Herrera, Jose L; Del-Blanco, Carlos R; Garcia, Narciso

    2018-07-01

    There has been a significant increase in the availability of 3D players and displays in the last years. Nonetheless, the amount of 3D content has not experimented an increment of such magnitude. To alleviate this problem, many algorithms for converting images and videos from 2D to 3D have been proposed. Here, we present an automatic learning-based 2D-3D image conversion approach, based on the key hypothesis that color images with similar structure likely present a similar depth structure. The presented algorithm estimates the depth of a color query image using the prior knowledge provided by a repository of color + depth images. The algorithm clusters this database attending to their structural similarity, and then creates a representative of each color-depth image cluster that will be used as prior depth map. The selection of the appropriate prior depth map corresponding to one given color query image is accomplished by comparing the structural similarity in the color domain between the query image and the database. The comparison is based on a K-Nearest Neighbor framework that uses a learning procedure to build an adaptive combination of image feature descriptors. The best correspondences determine the cluster, and in turn the associated prior depth map. Finally, this prior estimation is enhanced through a segmentation-guided filtering that obtains the final depth map estimation. This approach has been tested using two publicly available databases, and compared with several state-of-the-art algorithms in order to prove its efficiency.

  5. Real-Time Earthquake Monitoring with Spatio-Temporal Fields

    NASA Astrophysics Data System (ADS)

    Whittier, J. C.; Nittel, S.; Subasinghe, I.

    2017-10-01

    With live streaming sensors and sensor networks, increasingly large numbers of individual sensors are deployed in physical space. Sensor data streams are a fundamentally novel mechanism to deliver observations to information systems. They enable us to represent spatio-temporal continuous phenomena such as radiation accidents, toxic plumes, or earthquakes almost as instantaneously as they happen in the real world. Sensor data streams discretely sample an earthquake, while the earthquake is continuous over space and time. Programmers attempting to integrate many streams to analyze earthquake activity and scope need to write code to integrate potentially very large sets of asynchronously sampled, concurrent streams in tedious application code. In previous work, we proposed the field stream data model (Liang et al., 2016) for data stream engines. Abstracting the stream of an individual sensor as a temporal field, the field represents the Earth's movement at the sensor position as continuous. This simplifies analysis across many sensors significantly. In this paper, we undertake a feasibility study of using the field stream model and the open source Data Stream Engine (DSE) Apache Spark(Apache Spark, 2017) to implement a real-time earthquake event detection with a subset of the 250 GPS sensor data streams of the Southern California Integrated GPS Network (SCIGN). The field-based real-time stream queries compute maximum displacement values over the latest query window of each stream, and related spatially neighboring streams to identify earthquake events and their extent. Further, we correlated the detected events with an USGS earthquake event feed. The query results are visualized in real-time.

  6. Multidatabase Query Processing with Uncertainty in Global Keys and Attribute Values.

    ERIC Educational Resources Information Center

    Scheuermann, Peter; Li, Wen-Syan; Clifton, Chris

    1998-01-01

    Presents an approach for dynamic database integration and query processing in the absence of information about attribute correspondences and global IDs. Defines different types of equivalence conditions for the construction of global IDs. Proposes a strategy based on ranked role-sets that makes use of an automated semantic integration procedure…

  7. Method for localizing and isolating an errant process step

    DOEpatents

    Tobin, Jr., Kenneth W.; Karnowski, Thomas P.; Ferrell, Regina K.

    2003-01-01

    A method for localizing and isolating an errant process includes the steps of retrieving from a defect image database a selection of images each image having image content similar to image content extracted from a query image depicting a defect, each image in the selection having corresponding defect characterization data. A conditional probability distribution of the defect having occurred in a particular process step is derived from the defect characterization data. A process step as a highest probable source of the defect according to the derived conditional probability distribution is then identified. A method for process step defect identification includes the steps of characterizing anomalies in a product, the anomalies detected by an imaging system. A query image of a product defect is then acquired. A particular characterized anomaly is then correlated with the query image. An errant process step is then associated with the correlated image.

  8. Toward a Data Scalable Solution for Facilitating Discovery of Science Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jesse R.; Castellana, Vito G.; Morari, Alessandro

    Science is increasingly motivated by the need to process larger quantities of data. It is facing severe challenges in data collection, management, and processing, so much so that the computational demands of “data scaling” are competing with, and in many fields surpassing, the traditional objective of decreasing processing time. Example domains with large datasets include astronomy, biology, genomics, climate/weather, and material sciences. This paper presents a real-world use case in which we wish to answer queries pro- vided by domain scientists in order to facilitate discovery of relevant science resources. The problem is that the metadata for these science resourcesmore » is very large and is growing quickly, rapidly increasing the need for a data scaling solution. We propose a system – SGEM – designed for answering graph-based queries over large datasets on cluster architectures, and we re- port performance results for queries on the current RDESC dataset of nearly 1.4 billion triples, and on the well-known BSBM SPARQL query benchmark.« less

  9. Semantic based man-machine interface for real-time communication

    NASA Technical Reports Server (NTRS)

    Ali, M.; Ai, C.-S.

    1988-01-01

    A flight expert system (FLES) was developed to assist pilots in monitoring, diagnosing and recovering from in-flight faults. To provide a communications interface between the flight crew and FLES, a natural language interface (NALI) was implemented. Input to NALI is processed by three processors: (1) the semantics parser; (2) the knowledge retriever; and (3) the response generator. First the semantic parser extracts meaningful words and phrases to generate an internal representation of the query. At this point, the semantic parser has the ability to map different input forms related to the same concept into the same internal representation. Then the knowledge retriever analyzes and stores the context of the query to aid in resolving ellipses and pronoun references. At the end of this process, a sequence of retrievel functions is created as a first step in generating the proper response. Finally, the response generator generates the natural language response to the query. The architecture of NALI was designed to process both temporal and nontemporal queries. The architecture and implementation of NALI are described.

  10. Automation and integration of components for generalized semantic markup of electronic medical texts.

    PubMed Central

    Dugan, J. M.; Berrios, D. C.; Liu, X.; Kim, D. K.; Kaizer, H.; Fagan, L. M.

    1999-01-01

    Our group has built an information retrieval system based on a complex semantic markup of medical textbooks. We describe the construction of a set of web-based knowledge-acquisition tools that expedites the collection and maintenance of the concepts required for text markup and the search interface required for information retrieval from the marked text. In the text markup system, domain experts (DEs) identify sections of text that contain one or more elements from a finite set of concepts. End users can then query the text using a predefined set of questions, each of which identifies a subset of complementary concepts. The search process matches that subset of concepts to relevant points in the text. The current process requires that the DE invest significant time to generate the required concepts and questions. We propose a new system--called ACQUIRE (Acquisition of Concepts and Queries in an Integrated Retrieval Environment)--that assists a DE in two essential tasks in the text-markup process. First, it helps her to develop, edit, and maintain the concept model: the set of concepts with which she marks the text. Second, ACQUIRE helps her to develop a query model: the set of specific questions that end users can later use to search the marked text. The DE incorporates concepts from the concept model when she creates the questions in the query model. The major benefit of the ACQUIRE system is a reduction in the time and effort required for the text-markup process. We compared the process of concept- and query-model creation using ACQUIRE to the process used in previous work by rebuilding two existing models that we previously constructed manually. We observed a significant decrease in the time required to build and maintain the concept and query models. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:10566457

  11. Near-Neighbor Algorithms for Processing Bearing Data

    DTIC Science & Technology

    1989-05-10

    neighbor algorithms need not be universally more cost -effective than brute force methods. While the data access time of near-neighbor techniques scales with...the number of objects N better than brute force, the cost of setting up the data structure could scale worse than (Continues) 20...for the near neighbors NN2 1 (i). Depending on the particular NN algorithm, the cost of accessing near neighbors for each ai E S1 scales as either N

  12. Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce

    PubMed Central

    Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng

    2016-01-01

    The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS – a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing. PMID:27617325

  13. The role of organizational research in implementing evidence-based practice: QUERI Series

    PubMed Central

    Yano, Elizabeth M

    2008-01-01

    Background Health care organizations exert significant influence on the manner in which clinicians practice and the processes and outcomes of care that patients experience. A greater understanding of the organizational milieu into which innovations will be introduced, as well as the organizational factors that are likely to foster or hinder the adoption and use of new technologies, care arrangements and quality improvement (QI) strategies are central to the effective implementation of research into practice. Unfortunately, much implementation research seems to not recognize or adequately address the influence and importance of organizations. Using examples from the U.S. Department of Veterans Affairs (VA) Quality Enhancement Research Initiative (QUERI), we describe the role of organizational research in advancing the implementation of evidence-based practice into routine care settings. Methods Using the six-step QUERI process as a foundation, we present an organizational research framework designed to improve and accelerate the implementation of evidence-based practice into routine care. Specific QUERI-related organizational research applications are reviewed, with discussion of the measures and methods used to apply them. We describe these applications in the context of a continuum of organizational research activities to be conducted before, during and after implementation. Results Since QUERI's inception, various approaches to organizational research have been employed to foster progress through QUERI's six-step process. We report on how explicit integration of the evaluation of organizational factors into QUERI planning has informed the design of more effective care delivery system interventions and enabled their improved "fit" to individual VA facilities or practices. We examine the value and challenges in conducting organizational research, and briefly describe the contributions of organizational theory and environmental context to the research framework. Conclusion Understanding the organizational context of delivering evidence-based practice is a critical adjunct to efforts to systematically improve quality. Given the size and diversity of VA practices, coupled with unique organizational data sources, QUERI is well-positioned to make valuable contributions to the field of implementation science. More explicit accommodation of organizational inquiry into implementation research agendas has helped QUERI researchers to better frame and extend their work as they move toward regional and national spread activities. PMID:18510749

  14. STARS 2.0: 2nd-generation open-source archiving and query software

    NASA Astrophysics Data System (ADS)

    Winegar, Tom

    2008-07-01

    The Subaru Telescope is in process of developing an open-source alternative to the 1st-generation software and databases (STARS 1) used for archiving and query. For STARS 2, we have chosen PHP and Python for scripting and MySQL as the database software. We have collected feedback from staff and observers, and used this feedback to significantly improve the design and functionality of our future archiving and query software. Archiving - We identified two weaknesses in 1st-generation STARS archiving software: a complex and inflexible table structure and uncoordinated system administration for our business model: taking pictures from the summit and archiving them in both Hawaii and Japan. We adopted a simplified and normalized table structure with passive keyword collection, and we are designing an archive-to-archive file transfer system that automatically reports real-time status and error conditions and permits error recovery. Query - We identified several weaknesses in 1st-generation STARS query software: inflexible query tools, poor sharing of calibration data, and no automatic file transfer mechanisms to observers. We are developing improved query tools and sharing of calibration data, and multi-protocol unassisted file transfer mechanisms for observers. In the process, we have redefined a 'query': from an invisible search result that can only transfer once in-house right now, with little status and error reporting and no error recovery - to a stored search result that can be monitored, transferred to different locations with multiple protocols, reporting status and error conditions and permitting recovery from errors.

  15. Query Processing for Probabilistic State Diagrams Describing Multiple Robot Navigation in an Indoor Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czejdo, Bogdan; Bhattacharya, Sambit; Ferragut, Erik M

    2012-01-01

    This paper describes the syntax and semantics of multi-level state diagrams to support probabilistic behavior of cooperating robots. The techniques are presented to analyze these diagrams by querying combined robots behaviors. It is shown how to use state abstraction and transition abstraction to create, verify and process large probabilistic state diagrams.

  16. Supporting diagnosis and treatment in medical care based on Big Data processing.

    PubMed

    Lupşe, Oana-Sorina; Crişan-Vida, Mihaela; Stoicu-Tivadar, Lăcrămioara; Bernard, Elena

    2014-01-01

    With information and data in all domains growing every day, it is difficult to manage and extract useful knowledge for specific situations. This paper presents an integrated system architecture to support the activity in the Ob-Gin departments with further developments in using new technology to manage Big Data processing - using Google BigQuery - in the medical domain. The data collected and processed with Google BigQuery results from different sources: two Obstetrics & Gynaecology Departments, the TreatSuggest application - an application for suggesting treatments, and a home foetal surveillance system. Data is uploaded in Google BigQuery from Bega Hospital Timişoara, Romania. The analysed data is useful for the medical staff, researchers and statisticians from public health domain. The current work describes the technological architecture and its processing possibilities that in the future will be proved based on quality criteria to lead to a better decision process in diagnosis and public health.

  17. Hybrid Schema Matching for Deep Web

    NASA Astrophysics Data System (ADS)

    Chen, Kerui; Zuo, Wanli; He, Fengling; Chen, Yongheng

    Schema matching is the process of identifying semantic mappings, or correspondences, between two or more schemas. Schema matching is a first step and critical part of data integration. For schema matching of deep web, most researches only interested in query interface, while rarely pay attention to abundant schema information contained in query result pages. This paper proposed a mixed schema matching technique, which combines attributes that appeared in query structures and query results of different data sources, and mines the matched schemas inside. Experimental results prove the effectiveness of this method for improving the accuracy of schema matching.

  18. Enabling Incremental Query Re-Optimization.

    PubMed

    Liu, Mengmeng; Ives, Zachary G; Loo, Boon Thau

    2016-01-01

    As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs , and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries ; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations.

  19. Enabling Incremental Query Re-Optimization

    PubMed Central

    Liu, Mengmeng; Ives, Zachary G.; Loo, Boon Thau

    2017-01-01

    As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs, and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations. PMID:28659658

  20. FragBag, an accurate representation of protein structure, retrieves structural neighbors from the entire PDB quickly and accurately.

    PubMed

    Budowski-Tal, Inbal; Nov, Yuval; Kolodny, Rachel

    2010-02-23

    Fast identification of protein structures that are similar to a specified query structure in the entire Protein Data Bank (PDB) is fundamental in structure and function prediction. We present FragBag: An ultrafast and accurate method for comparing protein structures. We describe a protein structure by the collection of its overlapping short contiguous backbone segments, and discretize this set using a library of fragments. Then, we succinctly represent the protein as a "bags-of-fragments"-a vector that counts the number of occurrences of each fragment-and measure the similarity between two structures by the similarity between their vectors. Our representation has two additional benefits: (i) it can be used to construct an inverted index, for implementing a fast structural search engine of the entire PDB, and (ii) one can specify a structure as a collection of substructures, without combining them into a single structure; this is valuable for structure prediction, when there are reliable predictions only of parts of the protein. We use receiver operating characteristic curve analysis to quantify the success of FragBag in identifying neighbor candidate sets in a dataset of over 2,900 structures. The gold standard is the set of neighbors found by six state of the art structural aligners. Our best FragBag library finds more accurate candidate sets than the three other filter methods: The SGM, PRIDE, and a method by Zotenko et al. More interestingly, FragBag performs on a par with the computationally expensive, yet highly trusted structural aligners STRUCTAL and CE.

  1. Procura-PALavras (P-PAL): A Web-based interface for a new European Portuguese lexical database.

    PubMed

    Soares, Ana Paula; Iriarte, Álvaro; de Almeida, José João; Simões, Alberto; Costa, Ana; Machado, João; França, Patrícia; Comesaña, Montserrat; Rauber, Andreia; Rato, Anabela; Perea, Manuel

    2018-05-31

    In this article, we present Procura-PALavras (P-PAL), a Web-based interface for a new European Portuguese (EP) lexical database. Based on a contemporary printed corpus of over 227 million words, P-PAL provides a broad range of word attributes and statistics, including several measures of word frequency (e.g., raw counts, per-million word frequency, logarithmic Zipf scale), morpho-syntactic information (e.g., parts of speech [PoSs], grammatical gender and number, dominant PoS, and frequency and relative frequency of the dominant PoS), as well as several lexical and sublexical orthographic (e.g., number of letters; consonant-vowel orthographic structure; density and frequency of orthographic neighbors; orthographic Levenshtein distance; orthographic uniqueness point; orthographic syllabification; and trigram, bigram, and letter type and token frequencies), and phonological measures (e.g., pronunciation, number of phonemes, stress, density and frequency of phonological neighbors, transposed and phonographic neighbors, syllabification, and biphone and phone type and token frequencies) for ~53,000 lemmatized and ~208,000 nonlemmatized EP word forms. To obtain these metrics, researchers can choose between two word queries in the application: (i) analyze words previously selected for specific attributes and/or lexical and sublexical characteristics, or (ii) generate word lists that meet word requirements defined by the user in the menu of analyses. For the measures it provides and the flexibility it allows, P-PAL will be a key resource to support research in all cognitive areas that use EP verbal stimuli. P-PAL is freely available at http://p-pal.di.uminho.pt/tools .

  2. Development of a web-based video management and application processing system

    NASA Astrophysics Data System (ADS)

    Chan, Shermann S.; Wu, Yi; Li, Qing; Zhuang, Yueting

    2001-07-01

    How to facilitate efficient video manipulation and access in a web-based environment is becoming a popular trend for video applications. In this paper, we present a web-oriented video management and application processing system, based on our previous work on multimedia database and content-based retrieval. In particular, we extend the VideoMAP architecture with specific web-oriented mechanisms, which include: (1) Concurrency control facilities for the editing of video data among different types of users, such as Video Administrator, Video Producer, Video Editor, and Video Query Client; different users are assigned various priority levels for different operations on the database. (2) Versatile video retrieval mechanism which employs a hybrid approach by integrating a query-based (database) mechanism with content- based retrieval (CBR) functions; its specific language (CAROL/ST with CBR) supports spatio-temporal semantics of video objects, and also offers an improved mechanism to describe visual content of videos by content-based analysis method. (3) Query profiling database which records the `histories' of various clients' query activities; such profiles can be used to provide the default query template when a similar query is encountered by the same kind of users. An experimental prototype system is being developed based on the existing VideoMAP prototype system, using Java and VC++ on the PC platform.

  3. Efficiency of encounter-controlled reaction between diffusing reactants in a finite lattice: Non-nearest-neighbor effects

    NASA Astrophysics Data System (ADS)

    Bentz, Jonathan L.; Kozak, John J.; Nicolis, Gregoire

    2005-08-01

    The influence of non-nearest-neighbor displacements on the efficiency of diffusion-reaction processes involving one and two mobile diffusing reactants is studied. An exact analytic result is given for dimension d=1 from which, for large lattices, one can recover the asymptotic estimate reported 30 years ago by Lakatos-Lindenberg and Shuler. For dimensions d=2,3 we present numerically exact values for the mean time to reaction, as gauged by the mean walklength before reactive encounter, obtained via the theory of finite Markov processes and supported by Monte Carlo simulations. Qualitatively different results are found between processes occurring on d=1 versus d>1 lattices, and between results obtained assuming nearest-neighbor (only) versus non-nearest-neighbor displacements.

  4. Efficient hemodynamic event detection utilizing relational databases and wavelet analysis

    NASA Technical Reports Server (NTRS)

    Saeed, M.; Mark, R. G.

    2001-01-01

    Development of a temporal query framework for time-oriented medical databases has hitherto been a challenging problem. We describe a novel method for the detection of hemodynamic events in multiparameter trends utilizing wavelet coefficients in a MySQL relational database. Storage of the wavelet coefficients allowed for a compact representation of the trends, and provided robust descriptors for the dynamics of the parameter time series. A data model was developed to allow for simplified queries along several dimensions and time scales. Of particular importance, the data model and wavelet framework allowed for queries to be processed with minimal table-join operations. A web-based search engine was developed to allow for user-defined queries. Typical queries required between 0.01 and 0.02 seconds, with at least two orders of magnitude improvement in speed over conventional queries. This powerful and innovative structure will facilitate research on large-scale time-oriented medical databases.

  5. Multidimensional indexing structure for use with linear optimization queries

    NASA Technical Reports Server (NTRS)

    Bergman, Lawrence David (Inventor); Castelli, Vittorio (Inventor); Chang, Yuan-Chi (Inventor); Li, Chung-Sheng (Inventor); Smith, John Richard (Inventor)

    2002-01-01

    Linear optimization queries, which usually arise in various decision support and resource planning applications, are queries that retrieve top N data records (where N is an integer greater than zero) which satisfy a specific optimization criterion. The optimization criterion is to either maximize or minimize a linear equation. The coefficients of the linear equation are given at query time. Methods and apparatus are disclosed for constructing, maintaining and utilizing a multidimensional indexing structure of database records to improve the execution speed of linear optimization queries. Database records with numerical attributes are organized into a number of layers and each layer represents a geometric structure called convex hull. Such linear optimization queries are processed by searching from the outer-most layer of this multi-layer indexing structure inwards. At least one record per layer will satisfy the query criterion and the number of layers needed to be searched depends on the spatial distribution of records, the query-issued linear coefficients, and N, the number of records to be returned. When N is small compared to the total size of the database, answering the query typically requires searching only a small fraction of all relevant records, resulting in a tremendous speedup as compared to linearly scanning the entire dataset.

  6. Mashups over the Deep Web

    NASA Astrophysics Data System (ADS)

    Hornung, Thomas; Simon, Kai; Lausen, Georg

    Combining information from different Web sources often results in a tedious and repetitive process, e.g. even simple information requests might require to iterate over a result list of one Web query and use each single result as input for a subsequent query. One approach for this chained queries are data-centric mashups, which allow to visually model the data flow as a graph, where the nodes represent the data source and the edges the data flow.

  7. Executing SPARQL Queries over the Web of Linked Data

    NASA Astrophysics Data System (ADS)

    Hartig, Olaf; Bizer, Christian; Freytag, Johann-Christoph

    The Web of Linked Data forms a single, globally distributed dataspace. Due to the openness of this dataspace, it is not possible to know in advance all data sources that might be relevant for query answering. This openness poses a new challenge that is not addressed by traditional research on federated query processing. In this paper we present an approach to execute SPARQL queries over the Web of Linked Data. The main idea of our approach is to discover data that might be relevant for answering a query during the query execution itself. This discovery is driven by following RDF links between data sources based on URIs in the query and in partial results. The URIs are resolved over the HTTP protocol into RDF data which is continuously added to the queried dataset. This paper describes concepts and algorithms to implement our approach using an iterator-based pipeline. We introduce a formalization of the pipelining approach and show that classical iterators may cause blocking due to the latency of HTTP requests. To avoid blocking, we propose an extension of the iterator paradigm. The evaluation of our approach shows its strengths as well as the still existing challenges.

  8. A Natural Language Interface Concordant with a Knowledge Base.

    PubMed

    Han, Yong-Jin; Park, Seong-Bae; Park, Se-Young

    2016-01-01

    The discordance between expressions interpretable by a natural language interface (NLI) system and those answerable by a knowledge base is a critical problem in the field of NLIs. In order to solve this discordance problem, this paper proposes a method to translate natural language questions into formal queries that can be generated from a graph-based knowledge base. The proposed method considers a subgraph of a knowledge base as a formal query. Thus, all formal queries corresponding to a concept or a predicate in the knowledge base can be generated prior to query time and all possible natural language expressions corresponding to each formal query can also be collected in advance. A natural language expression has a one-to-one mapping with a formal query. Hence, a natural language question is translated into a formal query by matching the question with the most appropriate natural language expression. If the confidence of this matching is not sufficiently high the proposed method rejects the question and does not answer it. Multipredicate queries are processed by regarding them as a set of collected expressions. The experimental results show that the proposed method thoroughly handles answerable questions from the knowledge base and rejects unanswerable ones effectively.

  9. Binary Multidimensional Scaling for Hashing.

    PubMed

    Huang, Yameng; Lin, Zhouchen

    2017-10-04

    Hashing is a useful technique for fast nearest neighbor search due to its low storage cost and fast query speed. Unsupervised hashing aims at learning binary hash codes for the original features so that the pairwise distances can be best preserved. While several works have targeted on this task, the results are not satisfactory mainly due to the oversimplified model. In this paper, we propose a unified and concise unsupervised hashing framework, called Binary Multidimensional Scaling (BMDS), which is able to learn the hash code for distance preservation in both batch and online mode. In the batch mode, unlike most existing hashing methods, we do not need to simplify the model by predefining the form of hash map. Instead, we learn the binary codes directly based on the pairwise distances among the normalized original features by Alternating Minimization. This enables a stronger expressive power of the hash map. In the online mode, we consider the holistic distance relationship between current query example and those we have already learned, rather than only focusing on current data chunk. It is useful when the data come in a streaming fashion. Empirical results show that while being efficient for training, our algorithm outperforms state-of-the-art methods by a large margin in terms of distance preservation, which is practical for real-world applications.

  10. Automatic phylogenetic classification of bacterial beta-lactamase sequences including structural and antibiotic substrate preference information.

    PubMed

    Ma, Jianmin; Eisenhaber, Frank; Maurer-Stroh, Sebastian

    2013-12-01

    Beta lactams comprise the largest and still most effective group of antibiotics, but bacteria can gain resistance through different beta lactamases that can degrade these antibiotics. We developed a user friendly tree building web server that allows users to assign beta lactamase sequences to their respective molecular classes and subclasses. Further clinically relevant information includes if the gene is typically chromosomal or transferable through plasmids as well as listing the antibiotics which the most closely related reference sequences are known to target and cause resistance against. This web server can automatically build three phylogenetic trees: the first tree with closely related sequences from a Tachyon search against the NCBI nr database, the second tree with curated reference beta lactamase sequences, and the third tree built specifically from substrate binding pocket residues of the curated reference beta lactamase sequences. We show that the latter is better suited to recover antibiotic substrate assignments through nearest neighbor annotation transfer. The users can also choose to build a structural model for the query sequence and view the binding pocket residues of their query relative to other beta lactamases in the sequence alignment as well as in the 3D structure relative to bound antibiotics. This web server is freely available at http://blac.bii.a-star.edu.sg/.

  11. G4RNA: an RNA G-quadruplex database

    PubMed Central

    Garant, Jean-Michel; Luce, Mikael J.; Scott, Michelle S.

    2015-01-01

    Abstract G-quadruplexes (G4) are tetrahelical structures formed from planar arrangement of guanines in nucleic acids. A simple, regular motif was originally proposed to describe G4-forming sequences. More recently, however, formation of G4 was discovered to depend, at least in part, on the contextual backdrop of neighboring sequences. Prediction of G4 folding is thus becoming more challenging as G4 outlier structures, not described by the originally proposed motif, are increasingly reported. Recent observations thus call for a comprehensive tool, capable of consolidating the expanding information on tested G4s, in order to conduct systematic comparative analyses of G4-promoting sequences. The G4RNA Database we propose was designed to help meet the need for easily-retrievable data on known RNA G4s. A user-friendly, flexible query system allows for data retrieval on experimentally tested sequences, from many separate genes, to assess G4-folding potential. Query output sorts data according to sequence position, G4 likelihood, experimental outcomes and associated bibliographical references. G4RNA also provides an ideal foundation to collect and store additional sequence and experimental data, considering the growing interest G4s currently generate. Database URL: scottgroup.med.usherbrooke.ca/G4RNA PMID:26200754

  12. Applications of Singh-Rajput Mes in Recall Operations of Quantum Associative Memory for a Two- Qubit System

    NASA Astrophysics Data System (ADS)

    Singh, Manu Pratap; Rajput, B. S.

    2016-03-01

    Recall operations of quantum associative memory (QuAM) have been conducted separately through evolutionary as well as non-evolutionary processes in terms of unitary and non- unitary operators respectively by separately choosing our recently derived maximally entangled states (Singh-Rajput MES) and Bell's MES as memory states for various queries and it has been shown that in each case the choices of Singh-Rajput MES as valid memory states are much more suitable than those of Bell's MES. it has been demonstrated that in both the types of recall processes the first and the fourth states of Singh-Rajput MES are most suitable choices as memory states for the queries `11' and `00' respectively while none of the Bell's MES is a suitable choice as valid memory state in these recall processes. It has been demonstrated that all the four states of Singh-Rajput MES are suitable choice as valid memory states for the queries `1?', `?1', `?0' and `0?' while none of the Bell's MES is suitable choice as the valid memory state for these queries also.

  13. Mrs. Malaprop's Neighborhood: Using Word Errors to Reveal Neighborhood Structure

    ERIC Educational Resources Information Center

    Goldrick, Matthew; Folk, Jocelyn R.; Rapp, Brenda

    2010-01-01

    Many theories of language production and perception assume that in the normal course of processing a word, additional non-target words (lexical neighbors) become active. The properties of these neighbors can provide insight into the structure of representations and processing mechanisms in the language processing system. To infer the properties of…

  14. Content-Aware DataGuide with Incremental Index Update using Frequently Used Paths

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Duhan, Neelam; Khattar, Priyanka

    2010-11-01

    Size of the WWW is increasing day by day. Due to the absence of structured data on the Web, it becomes very difficult for information retrieval tools to fully utilize the Web information. As a solution to this problem, XML pages come into play, which provide structural information to the users to some extent. Without efficient indexes, query processing can be quite inefficient due to an exhaustive traversal on XML data. In this paper an improved content-centric approach of Content-Aware DataGuide, which is an indexing technique for XML databases, is being proposed that uses frequently used paths from historical query logs to improve query performance. The index can be updated incrementally according to the changes in query workload and thus, the overhead of reconstruction can be minimized. Frequently used paths are extracted using any Sequential Pattern mining algorithm on subsequent queries in the query workload. After this, the data structures are incrementally updated. This indexing technique proves to be efficient as partial matching queries can be executed efficiently and users can now get the more relevant documents in results.

  15. What Do Foreign Neighbors Say about the Mental Lexicon?

    ERIC Educational Resources Information Center

    Vitevitch, Michael S.

    2012-01-01

    A corpus analysis of phonological word-forms shows that English words have few phonological neighbors that are Spanish words. Concomitantly, Spanish words have few phonological neighbors that are English words. These observations appear to undermine certain accounts of bilingual language processing, and have significant implications for the…

  16. Index Compression and Efficient Query Processing in Large Web Search Engines

    ERIC Educational Resources Information Center

    Ding, Shuai

    2013-01-01

    The inverted index is the main data structure used by all the major search engines. Search engines build an inverted index on their collection to speed up query processing. As the size of the web grows, the length of the inverted list structures, which can easily grow to hundreds of MBs or even GBs for common terms (roughly linear in the size of…

  17. A natural language query system for Hubble Space Telescope proposal selection

    NASA Technical Reports Server (NTRS)

    Hornick, Thomas; Cohen, William; Miller, Glenn

    1987-01-01

    The proposal selection process for the Hubble Space Telescope is assisted by a robust and easy to use query program (TACOS). The system parses an English subset language sentence regardless of the order of the keyword phases, allowing the user a greater flexibility than a standard command query language. Capabilities for macro and procedure definition are also integrated. The system was designed for flexibility in both use and maintenance. In addition, TACOS can be applied to any knowledge domain that can be expressed in terms of a single reaction. The system was implemented mostly in Common LISP. The TACOS design is described in detail, with particular attention given to the implementation methods of sentence processing.

  18. Accelerating Research Impact in a Learning Health Care System

    PubMed Central

    Elwy, A. Rani; Sales, Anne E.; Atkins, David

    2017-01-01

    Background: Since 1998, the Veterans Health Administration (VHA) Quality Enhancement Research Initiative (QUERI) has supported more rapid implementation of research into clinical practice. Objectives: With the passage of the Veterans Access, Choice and Accountability Act of 2014 (Choice Act), QUERI further evolved to support VHA’s transformation into a Learning Health Care System by aligning science with clinical priority goals based on a strategic planning process and alignment of funding priorities with updated VHA priority goals in response to the Choice Act. Design: QUERI updated its strategic goals in response to independent assessments mandated by the Choice Act that recommended VHA reduce variation in care by providing a clear path to implement best practices. Specifically, QUERI updated its application process to ensure its centers (Programs) focus on cross-cutting VHA priorities and specify roadmaps for implementation of research-informed practices across different settings. QUERI also increased funding for scientific evaluations of the Choice Act and other policies in response to Commission on Care recommendations. Results: QUERI’s national network of Programs deploys effective practices using implementation strategies across different settings. QUERI Choice Act evaluations informed the law’s further implementation, setting the stage for additional rigorous national evaluations of other VHA programs and policies including community provider networks. Conclusions: Grounded in implementation science and evidence-based policy, QUERI serves as an example of how to operationalize core components of a Learning Health Care System, notably through rigorous evaluation and scientific testing of implementation strategies to ultimately reduce variation in quality and improve overall population health. PMID:27997456

  19. Automatic Query Formulations in Information Retrieval.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1983-01-01

    Introduces methods designed to reduce role of search intermediaries by generating Boolean search formulations automatically using term frequency considerations from natural language statements provided by system patrons. Experimental results are supplied and methods are described for applying automatic query formulation process in practice.…

  20. Toward a Cognitive Task Analysis for Biomedical Query Mediation

    PubMed Central

    Hruby, Gregory W.; Cimino, James J.; Patel, Vimla; Weng, Chunhua

    2014-01-01

    In many institutions, data analysts use a Biomedical Query Mediation (BQM) process to facilitate data access for medical researchers. However, understanding of the BQM process is limited in the literature. To bridge this gap, we performed the initial steps of a cognitive task analysis using 31 BQM instances conducted between one analyst and 22 researchers in one academic department. We identified five top-level tasks, i.e., clarify research statement, explain clinical process, identify related data elements, locate EHR data element, and end BQM with either a database query or unmet, infeasible information needs, and 10 sub-tasks. We evaluated the BQM task model with seven data analysts from different clinical research institutions. Evaluators found all the tasks completely or semi-valid. This study contributes initial knowledge towards the development of a generalizable cognitive task representation for BQM. PMID:25954589

  1. Toward a cognitive task analysis for biomedical query mediation.

    PubMed

    Hruby, Gregory W; Cimino, James J; Patel, Vimla; Weng, Chunhua

    2014-01-01

    In many institutions, data analysts use a Biomedical Query Mediation (BQM) process to facilitate data access for medical researchers. However, understanding of the BQM process is limited in the literature. To bridge this gap, we performed the initial steps of a cognitive task analysis using 31 BQM instances conducted between one analyst and 22 researchers in one academic department. We identified five top-level tasks, i.e., clarify research statement, explain clinical process, identify related data elements, locate EHR data element, and end BQM with either a database query or unmet, infeasible information needs, and 10 sub-tasks. We evaluated the BQM task model with seven data analysts from different clinical research institutions. Evaluators found all the tasks completely or semi-valid. This study contributes initial knowledge towards the development of a generalizable cognitive task representation for BQM.

  2. A Feature-based Approach to Big Data Analysis of Medical Images

    PubMed Central

    Toews, Matthew; Wachinger, Christian; Estepar, Raul San Jose; Wells, William M.

    2015-01-01

    This paper proposes an inference method well-suited to large sets of medical images. The method is based upon a framework where distinctive 3D scale-invariant features are indexed efficiently to identify approximate nearest-neighbor (NN) feature matches in O(log N) computational complexity in the number of images N. It thus scales well to large data sets, in contrast to methods based on pair-wise image registration or feature matching requiring O(N) complexity. Our theoretical contribution is a density estimator based on a generative model that generalizes kernel density estimation and K-nearest neighbor (KNN) methods. The estimator can be used for on-the-fly queries, without requiring explicit parametric models or an off-line training phase. The method is validated on a large multi-site data set of 95,000,000 features extracted from 19,000 lung CT scans. Subject-level classification identifies all images of the same subjects across the entire data set despite deformation due to breathing state, including unintentional duplicate scans. State-of-the-art performance is achieved in predicting chronic pulmonary obstructive disorder (COPD) severity across the 5-category GOLD clinical rating, with an accuracy of 89% if both exact and one-off predictions are considered correct. PMID:26221685

  3. A Feature-Based Approach to Big Data Analysis of Medical Images.

    PubMed

    Toews, Matthew; Wachinger, Christian; Estepar, Raul San Jose; Wells, William M

    2015-01-01

    This paper proposes an inference method well-suited to large sets of medical images. The method is based upon a framework where distinctive 3D scale-invariant features are indexed efficiently to identify approximate nearest-neighbor (NN) feature matches-in O (log N) computational complexity in the number of images N. It thus scales well to large data sets, in contrast to methods based on pair-wise image registration or feature matching requiring O(N) complexity. Our theoretical contribution is a density estimator based on a generative model that generalizes kernel density estimation and K-nearest neighbor (KNN) methods.. The estimator can be used for on-the-fly queries, without requiring explicit parametric models or an off-line training phase. The method is validated on a large multi-site data set of 95,000,000 features extracted from 19,000 lung CT scans. Subject-level classification identifies all images of the same subjects across the entire data set despite deformation due to breathing state, including unintentional duplicate scans. State-of-the-art performance is achieved in predicting chronic pulmonary obstructive disorder (COPD) severity across the 5-category GOLD clinical rating, with an accuracy of 89% if both exact and one-off predictions are considered correct.

  4. MMDB: Entrez’s 3D-structure database

    PubMed Central

    Wang, Yanli; Anderson, John B.; Chen, Jie; Geer, Lewis Y.; He, Siqian; Hurwitz, David I.; Liebert, Cynthia A.; Madej, Thomas; Marchler, Gabriele H.; Marchler-Bauer, Aron; Panchenko, Anna R.; Shoemaker, Benjamin A.; Song, James S.; Thiessen, Paul A.; Yamashita, Roxanne A.; Bryant, Stephen H.

    2002-01-01

    Three-dimensional structures are now known within many protein families and it is quite likely, in searching a sequence database, that one will encounter a homolog with known structure. The goal of Entrez’s 3D-structure database is to make this information, and the functional annotation it can provide, easily accessible to molecular biologists. To this end Entrez’s search engine provides three powerful features. (i) Sequence and structure neighbors; one may select all sequences similar to one of interest, for example, and link to any known 3D structures. (ii) Links between databases; one may search by term matching in MEDLINE, for example, and link to 3D structures reported in these articles. (iii) Sequence and structure visualization; identifying a homolog with known structure, one may view molecular-graphic and alignment displays, to infer approximate 3D structure. In this article we focus on two features of Entrez’s Molecular Modeling Database (MMDB) not described previously: links from individual biopolymer chains within 3D structures to a systematic taxonomy of organisms represented in molecular databases, and links from individual chains (and compact 3D domains within them) to structure neighbors, other chains (and 3D domains) with similar 3D structure. MMDB may be accessed at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Structure. PMID:11752307

  5. Molecular characterization of the Indian poultry nodular tapeworm, Raillietina echinobothrida (Cestoda: Cyclophyllidea: Davaineidae) based on rDNA internal transcribed spacer 2 region.

    PubMed

    Ramnath; Jyrwa, D B; Dutta, A K; Das, B; Tandon, V

    2014-03-01

    The nodular tapeworm, Raillietina echinobothrida is a well studied avian gastrointestinal parasite of family Davaineidae (Cestoda: Cyclophyllidea). It is reported to be the largest in size and second most prevalent species infecting chicken in north-east India. In the present study, morphometrical methods coupled with the molecular analysis of the second internal transcribed spacer (ITS2) region of ribosomal DNA were employed for precise identification of the parasite. The annotated ITS2 region was found to be 446 bp long and further utilized to elucidate the phylogenetic relationships and its species-interrelationships at the molecular level. In phylogenetic analysis similar topology was observed among the trees obtained by distance-based neighbor-joining as well as character-based maximum parsimony tree building methods. The query sequence R. echinobothrida is well aligned and placed within the Davaineidae group, with all Raillietina species well separated from the other cyclophyllidean (taeniid and hymenolepid) cestodes, while Diphyllobothrium latum (Pseudophyllidea: Diphyllobothriidae) was rooted as an out-group. Sequence similarities indeed confirmed our hypothesis that Raillietina spp. are neighboring the position with other studied species of order Cyclophyllidea against the out-group order Pseudophyllidea. The present study strengthens the potential of ITS2 as a reliable marker for phylogenetic reconstructions.

  6. Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-01-01

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Pinning Stabilizes Neighboring Surface Nanobubbles against Ostwald Ripening.

    PubMed

    Dollet, Benjamin; Lohse, Detlef

    2016-11-01

    Pinning of the contact line and gas oversaturation explain the stability of single surface nanobubbles. In this article, we theoretically show that the pinning also suppresses the Ostwald ripening process between neighboring surface nanobubbles, thus explaining why in a population of neighboring surface nanobubbles different radii of curvature of the nanobubbles can be observed.

  8. Structuring Legacy Pathology Reports by openEHR Archetypes to Enable Semantic Querying.

    PubMed

    Kropf, Stefan; Krücken, Peter; Mueller, Wolf; Denecke, Kerstin

    2017-05-18

    Clinical information is often stored as free text, e.g. in discharge summaries or pathology reports. These documents are semi-structured using section headers, numbered lists, items and classification strings. However, it is still challenging to retrieve relevant documents since keyword searches applied on complete unstructured documents result in many false positive retrieval results. We are concentrating on the processing of pathology reports as an example for unstructured clinical documents. The objective is to transform reports semi-automatically into an information structure that enables an improved access and retrieval of relevant data. The data is expected to be stored in a standardized, structured way to make it accessible for queries that are applied to specific sections of a document (section-sensitive queries) and for information reuse. Our processing pipeline comprises information modelling, section boundary detection and section-sensitive queries. For enabling a focused search in unstructured data, documents are automatically structured and transformed into a patient information model specified through openEHR archetypes. The resulting XML-based pathology electronic health records (PEHRs) are queried by XQuery and visualized by XSLT in HTML. Pathology reports (PRs) can be reliably structured into sections by a keyword-based approach. The information modelling using openEHR allows saving time in the modelling process since many archetypes can be reused. The resulting standardized, structured PEHRs allow accessing relevant data by retrieving data matching user queries. Mapping unstructured reports into a standardized information model is a practical solution for a better access to data. Archetype-based XML enables section-sensitive retrieval and visualisation by well-established XML techniques. Focussing the retrieval to particular sections has the potential of saving retrieval time and improving the accuracy of the retrieval.

  9. Spatial information semantic query based on SPARQL

    NASA Astrophysics Data System (ADS)

    Xiao, Zhifeng; Huang, Lei; Zhai, Xiaofang

    2009-10-01

    How can the efficiency of spatial information inquiries be enhanced in today's fast-growing information age? We are rich in geospatial data but poor in up-to-date geospatial information and knowledge that are ready to be accessed by public users. This paper adopts an approach for querying spatial semantic by building an Web Ontology language(OWL) format ontology and introducing SPARQL Protocol and RDF Query Language(SPARQL) to search spatial semantic relations. It is important to establish spatial semantics that support for effective spatial reasoning for performing semantic query. Compared to earlier keyword-based and information retrieval techniques that rely on syntax, we use semantic approaches in our spatial queries system. Semantic approaches need to be developed by ontology, so we use OWL to describe spatial information extracted by the large-scale map of Wuhan. Spatial information expressed by ontology with formal semantics is available to machines for processing and to people for understanding. The approach is illustrated by introducing a case study for using SPARQL to query geo-spatial ontology instances of Wuhan. The paper shows that making use of SPARQL to search OWL ontology instances can ensure the result's accuracy and applicability. The result also indicates constructing a geo-spatial semantic query system has positive efforts on forming spatial query and retrieval.

  10. Extending the Query Language of a Data Warehouse for Patient Recruitment.

    PubMed

    Dietrich, Georg; Ertl, Maximilian; Fette, Georg; Kaspar, Mathias; Krebs, Jonathan; Mackenrodt, Daniel; Störk, Stefan; Puppe, Frank

    2017-01-01

    Patient recruitment for clinical trials is a laborious task, as many texts have to be screened. Usually, this work is done manually and takes a lot of time. We have developed a system that automates the screening process. Besides standard keyword queries, the query language supports extraction of numbers, time-spans and negations. In a feasibility study for patient recruitment from a stroke unit with 40 patients, we achieved encouraging extraction rates above 95% for numbers and negations and ca. 86% for time spans.

  11. LAILAPS-QSM: A RESTful API and JAVA library for semantic query suggestions.

    PubMed

    Chen, Jinbo; Scholz, Uwe; Zhou, Ruonan; Lange, Matthias

    2018-03-01

    In order to access and filter content of life-science databases, full text search is a widely applied query interface. But its high flexibility and intuitiveness is paid for with potentially imprecise and incomplete query results. To reduce this drawback, query assistance systems suggest those combinations of keywords with the highest potential to match most of the relevant data records. Widespread approaches are syntactic query corrections that avoid misspelling and support expansion of words by suffixes and prefixes. Synonym expansion approaches apply thesauri, ontologies, and query logs. All need laborious curation and maintenance. Furthermore, access to query logs is in general restricted. Approaches that infer related queries by their query profile like research field, geographic location, co-authorship, affiliation etc. require user's registration and its public accessibility that contradict privacy concerns. To overcome these drawbacks, we implemented LAILAPS-QSM, a machine learning approach that reconstruct possible linguistic contexts of a given keyword query. The context is referred from the text records that are stored in the databases that are going to be queried or extracted for a general purpose query suggestion from PubMed abstracts and UniProt data. The supplied tool suite enables the pre-processing of these text records and the further computation of customized distributed word vectors. The latter are used to suggest alternative keyword queries. An evaluated of the query suggestion quality was done for plant science use cases. Locally present experts enable a cost-efficient quality assessment in the categories trait, biological entity, taxonomy, affiliation, and metabolic function which has been performed using ontology term similarities. LAILAPS-QSM mean information content similarity for 15 representative queries is 0.70, whereas 34% have a score above 0.80. In comparison, the information content similarity for human expert made query suggestions is 0.90. The software is either available as tool set to build and train dedicated query suggestion services or as already trained general purpose RESTful web service. The service uses open interfaces to be seamless embeddable into database frontends. The JAVA implementation uses highly optimized data structures and streamlined code to provide fast and scalable response for web service calls. The source code of LAILAPS-QSM is available under GNU General Public License version 2 in Bitbucket GIT repository: https://bitbucket.org/ipk_bit_team/bioescorte-suggestion.

  12. Attractor Dynamics and Semantic Neighborhood Density: Processing Is Slowed by Near Neighbors and Speeded by Distant Neighbors

    PubMed Central

    Mirman, Daniel; Magnuson, James S.

    2008-01-01

    The authors investigated semantic neighborhood density effects on visual word processing to examine the dynamics of activation and competition among semantic representations. Experiment 1 validated feature-based semantic representations as a basis for computing semantic neighborhood density and suggested that near and distant neighbors have opposite effects on word processing. Experiment 2 confirmed these results: Word processing was slower for dense near neighborhoods and faster for dense distant neighborhoods. Analysis of a computational model showed that attractor dynamics can produce this pattern of neighborhood effects. The authors argue for reconsideration of traditional models of neighborhood effects in terms of attractor dynamics, which allow both inhibitory and facilitative effects to emerge. PMID:18194055

  13. Event-related potential correlates of emotional orthographic priming.

    PubMed

    Faïta-Aïnseba, Frédérique; Gobin, Pamela; Bouaffre, Sarah; Mathey, Stéphanie

    2012-09-12

    Event-related potentials were used to explore the underlying mechanisms of masked orthographic priming and to determine whether the emotional valence of a word neighbor prime affects target processing in a lexical decision task. The results showed that the N200 and N400 amplitudes were modified by orthographic priming, which also varied with the emotional valence of the neighbors. These findings provide new evidence that the N400 component is sensitive to orthographic priming and further suggest that the affective content of the neighbor influences target word processing.

  14. Integrated Sensing and Processing (ISP) Phase II: Demonstration and Evaluation for Distributed Sensor Netowrks and Missile Seeker Systems

    DTIC Science & Technology

    2007-02-28

    Shah, D. Waagen, H. Schmitt, S. Bellofiore, A. Spanias, and D. Cochran, 32nd International Conference on Acoustics, Speech , and Signal Processing...Information Exploitation Office kNN k-Nearest Neighbor LEAN Laplacian Eigenmap Adaptive Neighbor LIP Linear Integer Programming ISP

  15. BioFed: federated query processing over life sciences linked open data.

    PubMed

    Hasnain, Ali; Mehmood, Qaiser; Sana E Zainab, Syeda; Saleem, Muhammad; Warren, Claude; Zehra, Durre; Decker, Stefan; Rebholz-Schuhmann, Dietrich

    2017-03-15

    Biomedical data, e.g. from knowledge bases and ontologies, is increasingly made available following open linked data principles, at best as RDF triple data. This is a necessary step towards unified access to biological data sets, but this still requires solutions to query multiple endpoints for their heterogeneous data to eventually retrieve all the meaningful information. Suggested solutions are based on query federation approaches, which require the submission of SPARQL queries to endpoints. Due to the size and complexity of available data, these solutions have to be optimised for efficient retrieval times and for users in life sciences research. Last but not least, over time, the reliability of data resources in terms of access and quality have to be monitored. Our solution (BioFed) federates data over 130 SPARQL endpoints in life sciences and tailors query submission according to the provenance information. BioFed has been evaluated against the state of the art solution FedX and forms an important benchmark for the life science domain. The efficient cataloguing approach of the federated query processing system 'BioFed', the triple pattern wise source selection and the semantic source normalisation forms the core to our solution. It gathers and integrates data from newly identified public endpoints for federated access. Basic provenance information is linked to the retrieved data. Last but not least, BioFed makes use of the latest SPARQL standard (i.e., 1.1) to leverage the full benefits for query federation. The evaluation is based on 10 simple and 10 complex queries, which address data in 10 major and very popular data sources (e.g., Dugbank, Sider). BioFed is a solution for a single-point-of-access for a large number of SPARQL endpoints providing life science data. It facilitates efficient query generation for data access and provides basic provenance information in combination with the retrieved data. BioFed fully supports SPARQL 1.1 and gives access to the endpoint's availability based on the EndpointData graph. Our evaluation of BioFed against FedX is based on 20 heterogeneous federated SPARQL queries and shows competitive execution performance in comparison to FedX, which can be attributed to the provision of provenance information for the source selection. Developing and testing federated query engines for life sciences data is still a challenging task. According to our findings, it is advantageous to optimise the source selection. The cataloguing of SPARQL endpoints, including type and property indexing, leads to efficient querying of data resources over the Web of Data. This could even be further improved through the use of ontologies, e.g., for abstract normalisation of query terms.

  16. Query by example video based on fuzzy c-means initialized by fixed clustering center

    NASA Astrophysics Data System (ADS)

    Hou, Sujuan; Zhou, Shangbo; Siddique, Muhammad Abubakar

    2012-04-01

    Currently, the high complexity of video contents has posed the following major challenges for fast retrieval: (1) efficient similarity measurements, and (2) efficient indexing on the compact representations. A video-retrieval strategy based on fuzzy c-means (FCM) is presented for querying by example. Initially, the query video is segmented and represented by a set of shots, each shot can be represented by a key frame, and then we used video processing techniques to find visual cues to represent the key frame. Next, because the FCM algorithm is sensitive to the initializations, here we initialized the cluster center by the shots of query video so that users could achieve appropriate convergence. After an FCM cluster was initialized by the query video, each shot of query video was considered a benchmark point in the aforesaid cluster, and each shot in the database possessed a class label. The similarity between the shots in the database with the same class label and benchmark point can be transformed into the distance between them. Finally, the similarity between the query video and the video in database was transformed into the number of similar shots. Our experimental results demonstrated the performance of this proposed approach.

  17. Army technology development. IBIS query. Software to support the Image Based Information System (IBIS) expansion for mapping, charting and geodesy

    NASA Technical Reports Server (NTRS)

    Friedman, S. Z.; Walker, R. E.; Aitken, R. B.

    1986-01-01

    The Image Based Information System (IBIS) has been under development at the Jet Propulsion Laboratory (JPL) since 1975. It is a collection of more than 90 programs that enable processing of image, graphical, tabular data for spatial analysis. IBIS can be utilized to create comprehensive geographic data bases. From these data, an analyst can study various attributes describing characteristics of a given study area. Even complex combinations of disparate data types can be synthesized to obtain a new perspective on spatial phenomena. In 1984, new query software was developed enabling direct Boolean queries of IBIS data bases through the submission of easily understood expressions. An improved syntax methodology, a data dictionary, and display software simplified the analysts' tasks associated with building, executing, and subsequently displaying the results of a query. The primary purpose of this report is to describe the features and capabilities of the new query software. A secondary purpose of this report is to compare this new query software to the query software developed previously (Friedman, 1982). With respect to this topic, the relative merits and drawbacks of both approaches are covered.

  18. Representation and alignment of sung queries for music information retrieval

    NASA Astrophysics Data System (ADS)

    Adams, Norman H.; Wakefield, Gregory H.

    2005-09-01

    The pursuit of robust and rapid query-by-humming systems, which search melodic databases using sung queries, is a common theme in music information retrieval. The retrieval aspect of this database problem has received considerable attention, whereas the front-end processing of sung queries and the data structure to represent melodies has been based on musical intuition and historical momentum. The present work explores three time series representations for sung queries: a sequence of notes, a ``smooth'' pitch contour, and a sequence of pitch histograms. The performance of the three representations is compared using a collection of naturally sung queries. It is found that the most robust performance is achieved by the representation with highest dimension, the smooth pitch contour, but that this representation presents a formidable computational burden. For all three representations, it is necessary to align the query and target in order to achieve robust performance. The computational cost of the alignment is quadratic, hence it is necessary to keep the dimension small for rapid retrieval. Accordingly, iterative deepening is employed to achieve both robust performance and rapid retrieval. Finally, the conventional iterative framework is expanded to adapt the alignment constraints based on previous iterations, further expediting retrieval without degrading performance.

  19. Fast Localization in Large-Scale Environments Using Supervised Indexing of Binary Features.

    PubMed

    Youji Feng; Lixin Fan; Yihong Wu

    2016-01-01

    The essence of image-based localization lies in matching 2D key points in the query image and 3D points in the database. State-of-the-art methods mostly employ sophisticated key point detectors and feature descriptors, e.g., Difference of Gaussian (DoG) and Scale Invariant Feature Transform (SIFT), to ensure robust matching. While a high registration rate is attained, the registration speed is impeded by the expensive key point detection and the descriptor extraction. In this paper, we propose to use efficient key point detectors along with binary feature descriptors, since the extraction of such binary features is extremely fast. The naive usage of binary features, however, does not lend itself to significant speedup of localization, since existing indexing approaches, such as hierarchical clustering trees and locality sensitive hashing, are not efficient enough in indexing binary features and matching binary features turns out to be much slower than matching SIFT features. To overcome this, we propose a much more efficient indexing approach for approximate nearest neighbor search of binary features. This approach resorts to randomized trees that are constructed in a supervised training process by exploiting the label information derived from that multiple features correspond to a common 3D point. In the tree construction process, node tests are selected in a way such that trees have uniform leaf sizes and low error rates, which are two desired properties for efficient approximate nearest neighbor search. To further improve the search efficiency, a probabilistic priority search strategy is adopted. Apart from the label information, this strategy also uses non-binary pixel intensity differences available in descriptor extraction. By using the proposed indexing approach, matching binary features is no longer much slower but slightly faster than matching SIFT features. Consequently, the overall localization speed is significantly improved due to the much faster key point detection and descriptor extraction. It is empirically demonstrated that the localization speed is improved by an order of magnitude as compared with state-of-the-art methods, while comparable registration rate and localization accuracy are still maintained.

  20. The Use of Dynamic Segment Scoring for Language-Independent Question Answering

    DTIC Science & Technology

    2001-01-01

    initial window with one sentence is compared to scores corre- his/PRONOUN brother/ CONSANGUINITY like/SIMILARITY his/PRONOUN call/NOMENCLATURE he/PRONOUN...the query processing mod- ule. Using the differences between index numbers to specify phys- ical distance relationships among query keywords, we can

  1. Data Processing on Database Management Systems with Fuzzy Query

    NASA Astrophysics Data System (ADS)

    Şimşek, Irfan; Topuz, Vedat

    In this study, a fuzzy query tool (SQLf) for non-fuzzy database management systems was developed. In addition, samples of fuzzy queries were made by using real data with the tool developed in this study. Performance of SQLf was tested with the data about the Marmara University students' food grant. The food grant data were collected in MySQL database by using a form which had been filled on the web. The students filled a form on the web to describe their social and economical conditions for the food grant request. This form consists of questions which have fuzzy and crisp answers. The main purpose of this fuzzy query is to determine the students who deserve the grant. The SQLf easily found the eligible students for the grant through predefined fuzzy values. The fuzzy query tool (SQLf) could be used easily with other database system like ORACLE and SQL server.

  2. An intelligent user interface for browsing satellite data catalogs

    NASA Technical Reports Server (NTRS)

    Cromp, Robert F.; Crook, Sharon

    1989-01-01

    A large scale domain-independent spatial data management expert system that serves as a front-end to databases containing spatial data is described. This system is unique for two reasons. First, it uses spatial search techniques to generate a list of all the primary keys that fall within a user's spatial constraints prior to invoking the database management system, thus substantially decreasing the amount of time required to answer a user's query. Second, a domain-independent query expert system uses a domain-specific rule base to preprocess the user's English query, effectively mapping a broad class of queries into a smaller subset that can be handled by a commercial natural language processing system. The methods used by the spatial search module and the query expert system are explained, and the system architecture for the spatial data management expert system is described. The system is applied to data from the International Ultraviolet Explorer (IUE) satellite, and results are given.

  3. Data Rods: High Speed, Time-Series Analysis of Massive Cryospheric Data Sets Using Object-Oriented Database Methods

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Gallaher, D. W.; Grant, G.; Lv, Q.

    2011-12-01

    Change over time, is the central driver of climate change detection. The goal is to diagnose the underlying causes, and make projections into the future. In an effort to optimize this process we have developed the Data Rod model, an object-oriented approach that provides the ability to query grid cell changes and their relationships to neighboring grid cells through time. The time series data is organized in time-centric structures called "data rods." A single data rod can be pictured as the multi-spectral data history at one grid cell: a vertical column of data through time. This resolves the long-standing problem of managing time-series data and opens new possibilities for temporal data analysis. This structure enables rapid time- centric analysis at any grid cell across multiple sensors and satellite platforms. Collections of data rods can be spatially and temporally filtered, statistically analyzed, and aggregated for use with pattern matching algorithms. Likewise, individual image pixels can be extracted to generate multi-spectral imagery at any spatial and temporal location. The Data Rods project has created a series of prototype databases to store and analyze massive datasets containing multi-modality remote sensing data. Using object-oriented technology, this method overcomes the operational limitations of traditional relational databases. To demonstrate the speed and efficiency of time-centric analysis using the Data Rods model, we have developed a sea ice detection algorithm. This application determines the concentration of sea ice in a small spatial region across a long temporal window. If performed using traditional analytical techniques, this task would typically require extensive data downloads and spatial filtering. Using Data Rods databases, the exact spatio-temporal data set is immediately available No extraneous data is downloaded, and all selected data querying occurs transparently on the server side. Moreover, fundamental statistical calculations such as running averages are easily implemented against the time-centric columns of data.

  4. Nonmaterialized Relations and the Support of Information Retrieval Applications by Relational Database Systems.

    ERIC Educational Resources Information Center

    Lynch, Clifford A.

    1991-01-01

    Describes several aspects of the problem of supporting information retrieval system query requirements in the relational database management system (RDBMS) environment and proposes an extension to query processing called nonmaterialized relations. User interactions with information retrieval systems are discussed, and nonmaterialized relations are…

  5. Multi-INT Complex Event Processing using Approximate, Incremental Graph Pattern Search

    DTIC Science & Technology

    2012-06-01

    graph pattern search and SPARQL queries . Total execution time for 10 executions each of 5 random pattern searches in synthetic data sets...01/11 1000 10000 100000 RDF triples Time (secs) 10 20 Graph pattern algorithm SPARQL queries Initial Performance Comparisons 09/18/11 2011 Thrust Area

  6. Hybrid Filtering in Semantic Query Processing

    ERIC Educational Resources Information Center

    Jeong, Hanjo

    2011-01-01

    This dissertation presents a hybrid filtering method and a case-based reasoning framework for enhancing the effectiveness of Web search. Web search may not reflect user needs, intent, context, and preferences, because today's keyword-based search is lacking semantic information to capture the user's context and intent in posing the search query.…

  7. Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS.

    PubMed

    Yu, Hwanjo; Kim, Taehoon; Oh, Jinoh; Ko, Ilhwan; Kim, Sungchul; Han, Wook-Shin

    2010-04-16

    Finding relevant articles from PubMed is challenging because it is hard to express the user's specific intention in the given query interface, and a keyword query typically retrieves a large number of results. Researchers have applied machine learning techniques to find relevant articles by ranking the articles according to the learned relevance function. However, the process of learning and ranking is usually done offline without integrated with the keyword queries, and the users have to provide a large amount of training documents to get a reasonable learning accuracy. This paper proposes a novel multi-level relevance feedback system for PubMed, called RefMed, which supports both ad-hoc keyword queries and a multi-level relevance feedback in real time on PubMed. RefMed supports a multi-level relevance feedback by using the RankSVM as the learning method, and thus it achieves higher accuracy with less feedback. RefMed "tightly" integrates the RankSVM into RDBMS to support both keyword queries and the multi-level relevance feedback in real time; the tight coupling of the RankSVM and DBMS substantially improves the processing time. An efficient parameter selection method for the RankSVM is also proposed, which tunes the RankSVM parameter without performing validation. Thereby, RefMed achieves a high learning accuracy in real time without performing a validation process. RefMed is accessible at http://dm.postech.ac.kr/refmed. RefMed is the first multi-level relevance feedback system for PubMed, which achieves a high accuracy with less feedback. It effectively learns an accurate relevance function from the user's feedback and efficiently processes the function to return relevant articles in real time.

  8. Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS

    PubMed Central

    2010-01-01

    Background Finding relevant articles from PubMed is challenging because it is hard to express the user's specific intention in the given query interface, and a keyword query typically retrieves a large number of results. Researchers have applied machine learning techniques to find relevant articles by ranking the articles according to the learned relevance function. However, the process of learning and ranking is usually done offline without integrated with the keyword queries, and the users have to provide a large amount of training documents to get a reasonable learning accuracy. This paper proposes a novel multi-level relevance feedback system for PubMed, called RefMed, which supports both ad-hoc keyword queries and a multi-level relevance feedback in real time on PubMed. Results RefMed supports a multi-level relevance feedback by using the RankSVM as the learning method, and thus it achieves higher accuracy with less feedback. RefMed "tightly" integrates the RankSVM into RDBMS to support both keyword queries and the multi-level relevance feedback in real time; the tight coupling of the RankSVM and DBMS substantially improves the processing time. An efficient parameter selection method for the RankSVM is also proposed, which tunes the RankSVM parameter without performing validation. Thereby, RefMed achieves a high learning accuracy in real time without performing a validation process. RefMed is accessible at http://dm.postech.ac.kr/refmed. Conclusions RefMed is the first multi-level relevance feedback system for PubMed, which achieves a high accuracy with less feedback. It effectively learns an accurate relevance function from the user’s feedback and efficiently processes the function to return relevant articles in real time. PMID:20406504

  9. Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks

    PubMed Central

    Kim, Kwangsoo; Jin, Seong-il

    2015-01-01

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method. PMID:26007734

  10. Branch-based centralized data collection for smart grids using wireless sensor networks.

    PubMed

    Kim, Kwangsoo; Jin, Seong-il

    2015-05-21

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.

  11. Complex Network Structure Influences Processing in Long-Term and Short-Term Memory

    ERIC Educational Resources Information Center

    Vitevitch, Michael S.; Chan, Kit Ying; Roodenrys, Steven

    2012-01-01

    Complex networks describe how entities in systems interact; the structure of such networks is argued to influence processing. One measure of network structure, clustering coefficient, C, measures the extent to which neighbors of a node are also neighbors of each other. Previous psycholinguistic experiments found that the C of phonological…

  12. Is There a Neighborhood Frequency Effect in English?: Evidence from Reading and Lexical Decision

    ERIC Educational Resources Information Center

    Sears, Christopher R.; Campbell, Crystal R.; Lupker, Stephen J.

    2006-01-01

    What is the effect of a word's higher frequency neighbors on its identification time? According to activation-based models of word identification (J. Grainger & A. M. Jacobs, 1996; J. L. McClelland & D. E. Rumelhart, 1981), words with higher frequency neighbors will be processed more slowly than words without higher frequency neighbors because of…

  13. Monotonically improving approximate answers to relational algebra queries

    NASA Technical Reports Server (NTRS)

    Smith, Kenneth P.; Liu, J. W. S.

    1989-01-01

    We present here a query processing method that produces approximate answers to queries posed in standard relational algebra. This method is monotone in the sense that the accuracy of the approximate result improves with the amount of time spent producing the result. This strategy enables us to trade the time to produce the result for the accuracy of the result. An approximate relational model that characterizes appromimate relations and a partial order for comparing them is developed. Relational operators which operate on and return approximate relations are defined.

  14. Private and Efficient Query Processing on Outsourced Genomic Databases.

    PubMed

    Ghasemi, Reza; Al Aziz, Md Momin; Mohammed, Noman; Dehkordi, Massoud Hadian; Jiang, Xiaoqian

    2017-09-01

    Applications of genomic studies are spreading rapidly in many domains of science and technology such as healthcare, biomedical research, direct-to-consumer services, and legal and forensic. However, there are a number of obstacles that make it hard to access and process a big genomic database for these applications. First, sequencing genomic sequence is a time consuming and expensive process. Second, it requires large-scale computation and storage systems to process genomic sequences. Third, genomic databases are often owned by different organizations, and thus, not available for public usage. Cloud computing paradigm can be leveraged to facilitate the creation and sharing of big genomic databases for these applications. Genomic data owners can outsource their databases in a centralized cloud server to ease the access of their databases. However, data owners are reluctant to adopt this model, as it requires outsourcing the data to an untrusted cloud service provider that may cause data breaches. In this paper, we propose a privacy-preserving model for outsourcing genomic data to a cloud. The proposed model enables query processing while providing privacy protection of genomic databases. Privacy of the individuals is guaranteed by permuting and adding fake genomic records in the database. These techniques allow cloud to evaluate count and top-k queries securely and efficiently. Experimental results demonstrate that a count and a top-k query over 40 Single Nucleotide Polymorphisms (SNPs) in a database of 20 000 records takes around 100 and 150 s, respectively.

  15. Private and Efficient Query Processing on Outsourced Genomic Databases

    PubMed Central

    Ghasemi, Reza; Al Aziz, Momin; Mohammed, Noman; Dehkordi, Massoud Hadian; Jiang, Xiaoqian

    2017-01-01

    Applications of genomic studies are spreading rapidly in many domains of science and technology such as healthcare, biomedical research, direct-to-consumer services, and legal and forensic. However, there are a number of obstacles that make it hard to access and process a big genomic database for these applications. First, sequencing genomic sequence is a time-consuming and expensive process. Second, it requires large-scale computation and storage systems to processes genomic sequences. Third, genomic databases are often owned by different organizations and thus not available for public usage. Cloud computing paradigm can be leveraged to facilitate the creation and sharing of big genomic databases for these applications. Genomic data owners can outsource their databases in a centralized cloud server to ease the access of their databases. However, data owners are reluctant to adopt this model, as it requires outsourcing the data to an untrusted cloud service provider that may cause data breaches. In this paper, we propose a privacy-preserving model for outsourcing genomic data to a cloud. The proposed model enables query processing while providing privacy protection of genomic databases. Privacy of the individuals is guaranteed by permuting and adding fake genomic records in the database. These techniques allow cloud to evaluate count and top-k queries securely and efficiently. Experimental results demonstrate that a count and a top-k query over 40 SNPs in a database of 20,000 records takes around 100 and 150 seconds, respectively. PMID:27834660

  16. Titanbrowse: a new paradigm for access, visualization and analysis of hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Penteado, Paulo F.

    2016-10-01

    Currently there are archives and tools to explore remote sensing imaging, but these lack some functionality needed for hyperspectral imagers: 1) Querying and serving only whole datacubes is not enough, since in each cube there is typically a large variation in observation geometry over the spatial pixels. Thus, often the most useful unit for selecting observations of interest is not a whole cube but rather a single spectrum. 2) Pixel-specific geometric data included in the standard pipelines is calculated at only one point per pixel. Particularly for selections of pixels from many different cubes, or observations near the limb, it is necessary to know the actual extent of each pixel. 3) Database queries need not only metadata, but also by the spectral data. For instance, one query might look for atypical values of some band, or atypical relations between bands, denoting spectral features (such as ratios or differences between bands). 4) There is the need to evaluate arbitrary, dynamically-defined, complex functions of the data (beyond just simple arithmetic operations), both for selection in the queries, and for visualization, to interactively tune the queries to the observations of interest. 5) Making the most useful query for some analysis often requires interactive visualization integrated with data selection and processing, because the user needs to explore how different functions of the data vary over the observations without having to download data and import it into visualization software. 6) Complementary to interactive use, an API allowing programmatic access to the system is needed for systematic data analyses. 7) Direct access to calibrated and georeferenced data, without the need to download data and software and learn to process it.We present titanbrowse, a database, exploration and visualization system for Cassini VIMS observations of Titan, designed to fullfill the aforementioned needs. While it originallly ran on data in the user's computer, we are now developing an online version, so that users do not need to download software and data. The server, which we maintain, processes the queries and communicates the results to the client the user runs. http://ppenteado.net/titanbrowse.

  17. ProtPhylo: identification of protein-phenotype and protein-protein functional associations via phylogenetic profiling.

    PubMed

    Cheng, Yiming; Perocchi, Fabiana

    2015-07-01

    ProtPhylo is a web-based tool to identify proteins that are functionally linked to either a phenotype or a protein of interest based on co-evolution. ProtPhylo infers functional associations by comparing protein phylogenetic profiles (co-occurrence patterns of orthology relationships) for more than 9.7 million non-redundant protein sequences from all three domains of life. Users can query any of 2048 fully sequenced organisms, including 1678 bacteria, 255 eukaryotes and 115 archaea. In addition, they can tailor ProtPhylo to a particular kind of biological question by choosing among four main orthology inference methods based either on pair-wise sequence comparisons (One-way Best Hits and Best Reciprocal Hits) or clustering of orthologous proteins across multiple species (OrthoMCL and eggNOG). Next, ProtPhylo ranks phylogenetic neighbors of query proteins or phenotypic properties using the Hamming distance as a measure of similarity between pairs of phylogenetic profiles. Candidate hits can be easily and flexibly prioritized by complementary clues on subcellular localization, known protein-protein interactions, membrane spanning regions and protein domains. The resulting protein list can be quickly exported into a csv text file for further analyses. ProtPhylo is freely available at http://www.protphylo.org. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Evaluation of Potential LSST Spatial Indexing Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaev, S; Abdulla, G; Matzke, R

    2006-10-13

    The LSST requirement for producing alerts in near real-time, and the fact that generating an alert depends on knowing the history of light variations for a given sky position, both imply that the clustering information for all detections is available at any time during the survey. Therefore, any data structure describing clustering of detections in LSST needs to be continuously updated, even as new detections are arriving from the pipeline. We call this use case ''incremental clustering'', to reflect this continuous updating of clustering information. This document describes the evaluation results for several potential LSST incremental clustering strategies, using: (1)more » Neighbors table and zone optimization to store spatial clusters (a.k.a. Jim Grey's, or SDSS algorithm); (2) MySQL built-in R-tree implementation; (3) an external spatial index library which supports a query interface.« less

  19. Characterization of topological structure on complex networks.

    PubMed

    Nakamura, Ikuo

    2003-10-01

    Characterizing the topological structure of complex networks is a significant problem especially from the viewpoint of data mining on the World Wide Web. "Page rank" used in the commercial search engine Google is such a measure of authority to rank all the nodes matching a given query. We have investigated the page-rank distribution of the real Web and a growing network model, both of which have directed links and exhibit a power law distributions of in-degree (the number of incoming links to the node) and out-degree (the number of outgoing links from the node), respectively. We find a concentration of page rank on a small number of nodes and low page rank on high degree regimes in the real Web, which can be explained by topological properties of the network, e.g., network motifs, and connectivities of nearest neighbors.

  20. Neighbor-Dependent Ramachandran Probability Distributions of Amino Acids Developed from a Hierarchical Dirichlet Process Model

    PubMed Central

    Mitra, Rajib; Jordan, Michael I.; Dunbrack, Roland L.

    2010-01-01

    Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1) input data size and criteria for structure inclusion (resolution, R-factor, etc.); 2) filtering of suspect conformations and outliers using B-factors or other features; 3) secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included); 4) the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5) whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately) have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp. PMID:20442867

  1. Labeling RDF Graphs for Linear Time and Space Querying

    NASA Astrophysics Data System (ADS)

    Furche, Tim; Weinzierl, Antonius; Bry, François

    Indices and data structures for web querying have mostly considered tree shaped data, reflecting the view of XML documents as tree-shaped. However, for RDF (and when querying ID/IDREF constraints in XML) data is indisputably graph-shaped. In this chapter, we first study existing indexing and labeling schemes for RDF and other graph datawith focus on support for efficient adjacency and reachability queries. For XML, labeling schemes are an important part of the widespread adoption of XML, in particular for mapping XML to existing (relational) database technology. However, the existing indexing and labeling schemes for RDF (and graph data in general) sacrifice one of the most attractive properties of XML labeling schemes, the constant time (and per-node space) test for adjacency (child) and reachability (descendant). In the second part, we introduce the first labeling scheme for RDF data that retains this property and thus achieves linear time and space processing of acyclic RDF queries on a significantly larger class of graphs than previous approaches (which are mostly limited to tree-shaped data). Finally, we show how this labeling scheme can be applied to (acyclic) SPARQL queries to obtain an evaluation algorithm with time and space complexity linear in the number of resources in the queried RDF graph.

  2. Breaking the polar-nonpolar division in solvation free energy prediction.

    PubMed

    Wang, Bao; Wang, Chengzhang; Wu, Kedi; Wei, Guo-Wei

    2018-02-05

    Implicit solvent models divide solvation free energies into polar and nonpolar additive contributions, whereas polar and nonpolar interactions are inseparable and nonadditive. We present a feature functional theory (FFT) framework to break this ad hoc division. The essential ideas of FFT are as follows: (i) representability assumption: there exists a microscopic feature vector that can uniquely characterize and distinguish one molecule from another; (ii) feature-function relationship assumption: the macroscopic features, including solvation free energy, of a molecule is a functional of microscopic feature vectors; and (iii) similarity assumption: molecules with similar microscopic features have similar macroscopic properties, such as solvation free energies. Based on these assumptions, solvation free energy prediction is carried out in the following protocol. First, we construct a molecular microscopic feature vector that is efficient in characterizing the solvation process using quantum mechanics and Poisson-Boltzmann theory. Microscopic feature vectors are combined with macroscopic features, that is, physical observable, to form extended feature vectors. Additionally, we partition a solvation dataset into queries according to molecular compositions. Moreover, for each target molecule, we adopt a machine learning algorithm for its nearest neighbor search, based on the selected microscopic feature vectors. Finally, from the extended feature vectors of obtained nearest neighbors, we construct a functional of solvation free energy, which is employed to predict the solvation free energy of the target molecule. The proposed FFT model has been extensively validated via a large dataset of 668 molecules. The leave-one-out test gives an optimal root-mean-square error (RMSE) of 1.05 kcal/mol. FFT predictions of SAMPL0, SAMPL1, SAMPL2, SAMPL3, and SAMPL4 challenge sets deliver the RMSEs of 0.61, 1.86, 1.64, 0.86, and 1.14 kcal/mol, respectively. Using a test set of 94 molecules and its associated training set, the present approach was carefully compared with a classic solvation model based on weighted solvent accessible surface area. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Fast Inbound Top-K Query for Random Walk with Restart.

    PubMed

    Zhang, Chao; Jiang, Shan; Chen, Yucheng; Sun, Yidan; Han, Jiawei

    2015-09-01

    Random walk with restart (RWR) is widely recognized as one of the most important node proximity measures for graphs, as it captures the holistic graph structure and is robust to noise in the graph. In this paper, we study a novel query based on the RWR measure, called the inbound top-k (Ink) query. Given a query node q and a number k , the Ink query aims at retrieving k nodes in the graph that have the largest weighted RWR scores to q . Ink queries can be highly useful for various applications such as traffic scheduling, disease treatment, and targeted advertising. Nevertheless, none of the existing RWR computation techniques can accurately and efficiently process the Ink query in large graphs. We propose two algorithms, namely Squeeze and Ripple, both of which can accurately answer the Ink query in a fast and incremental manner. To identify the top- k nodes, Squeeze iteratively performs matrix-vector multiplication and estimates the lower and upper bounds for all the nodes in the graph. Ripple employs a more aggressive strategy by only estimating the RWR scores for the nodes falling in the vicinity of q , the nodes outside the vicinity do not need to be evaluated because their RWR scores are propagated from the boundary of the vicinity and thus upper bounded. Ripple incrementally expands the vicinity until the top- k result set can be obtained. Our extensive experiments on real-life graph data sets show that Ink queries can retrieve interesting results, and the proposed algorithms are orders of magnitude faster than state-of-the-art method.

  4. Recommender System for Learning SQL Using Hints

    ERIC Educational Resources Information Center

    Lavbic, Dejan; Matek, Tadej; Zrnec, Aljaž

    2017-01-01

    Today's software industry requires individuals who are proficient in as many programming languages as possible. Structured query language (SQL), as an adopted standard, is no exception, as it is the most widely used query language to retrieve and manipulate data. However, the process of learning SQL turns out to be challenging. The need for a…

  5. Exploration of Web Users' Search Interests through Automatic Subject Categorization of Query Terms.

    ERIC Educational Resources Information Center

    Pu, Hsiao-tieh; Yang, Chyan; Chuang, Shui-Lung

    2001-01-01

    Proposes a mechanism that carefully integrates human and machine efforts to explore Web users' search interests. The approach consists of a four-step process: extraction of core terms; construction of subject taxonomy; automatic subject categorization of query terms; and observation of users' search interests. Research findings are proved valuable…

  6. Web Searching: A Process-Oriented Experimental Study of Three Interactive Search Paradigms.

    ERIC Educational Resources Information Center

    Dennis, Simon; Bruza, Peter; McArthur, Robert

    2002-01-01

    Compares search effectiveness when using query-based Internet search via the Google search engine, directory-based search via Yahoo, and phrase-based query reformulation-assisted search via the Hyperindex browser by means of a controlled, user-based experimental study of undergraduates at the University of Queensland. Discusses cognitive load,…

  7. Breaking the Curse of Cardinality on Bitmap Indexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kesheng; Wu, Kesheng; Stockinger, Kurt

    2008-04-04

    Bitmap indexes are known to be efficient for ad-hoc range queries that are common in data warehousing and scientific applications. However, they suffer from the curse of cardinality, that is, their efficiency deteriorates as attribute cardinalities increase. A number of strategies have been proposed, but none of them addresses the problem adequately. In this paper, we propose a novel binned bitmap index that greatly reduces the cost to answer queries, and therefore breaks the curse of cardinality. The key idea is to augment the binned index with an Order-preserving Bin-based Clustering (OrBiC) structure. This data structure significantly reduces the I/Omore » operations needed to resolve records that cannot be resolved with the bitmaps. To further improve the proposed index structure, we also present a strategy to create single-valued bins for frequent values. This strategy reduces index sizes and improves query processing speed. Overall, the binned indexes with OrBiC great improves the query processing speed, and are 3 - 25 times faster than the best available indexes for high-cardinality data.« less

  8. Automatic query formulations in information retrieval.

    PubMed

    Salton, G; Buckley, C; Fox, E A

    1983-07-01

    Modern information retrieval systems are designed to supply relevant information in response to requests received from the user population. In most retrieval environments the search requests consist of keywords, or index terms, interrelated by appropriate Boolean operators. Since it is difficult for untrained users to generate effective Boolean search requests, trained search intermediaries are normally used to translate original statements of user need into useful Boolean search formulations. Methods are introduced in this study which reduce the role of the search intermediaries by making it possible to generate Boolean search formulations completely automatically from natural language statements provided by the system patrons. Frequency considerations are used automatically to generate appropriate term combinations as well as Boolean connectives relating the terms. Methods are covered to produce automatic query formulations both in a standard Boolean logic system, as well as in an extended Boolean system in which the strict interpretation of the connectives is relaxed. Experimental results are supplied to evaluate the effectiveness of the automatic query formulation process, and methods are described for applying the automatic query formulation process in practice.

  9. A database de-identification framework to enable direct queries on medical data for secondary use.

    PubMed

    Erdal, B S; Liu, J; Ding, J; Chen, J; Marsh, C B; Kamal, J; Clymer, B D

    2012-01-01

    To qualify the use of patient clinical records as non-human-subject for research purpose, electronic medical record data must be de-identified so there is minimum risk to protected health information exposure. This study demonstrated a robust framework for structured data de-identification that can be applied to any relational data source that needs to be de-identified. Using a real world clinical data warehouse, a pilot implementation of limited subject areas were used to demonstrate and evaluate this new de-identification process. Query results and performances are compared between source and target system to validate data accuracy and usability. The combination of hashing, pseudonyms, and session dependent randomizer provides a rigorous de-identification framework to guard against 1) source identifier exposure; 2) internal data analyst manually linking to source identifiers; and 3) identifier cross-link among different researchers or multiple query sessions by the same researcher. In addition, a query rejection option is provided to refuse queries resulting in less than preset numbers of subjects and total records to prevent users from accidental subject identification due to low volume of data. This framework does not prevent subject re-identification based on prior knowledge and sequence of events. Also, it does not deal with medical free text de-identification, although text de-identification using natural language processing can be included due its modular design. We demonstrated a framework resulting in HIPAA Compliant databases that can be directly queried by researchers. This technique can be augmented to facilitate inter-institutional research data sharing through existing middleware such as caGrid.

  10. A High Speed Mobile Courier Data Access System That Processes Database Queries in Real-Time

    NASA Astrophysics Data System (ADS)

    Gatsheni, Barnabas Ndlovu; Mabizela, Zwelakhe

    A secure high-speed query processing mobile courier data access (MCDA) system for a Courier Company has been developed. This system uses the wireless networks in combination with wired networks for updating a live database at the courier centre in real-time by an offsite worker (the Courier). The system is protected by VPN based on IPsec. There is no system that we know of to date that performs the task for the courier as proposed in this paper.

  11. Generating and Executing Complex Natural Language Queries across Linked Data.

    PubMed

    Hamon, Thierry; Mougin, Fleur; Grabar, Natalia

    2015-01-01

    With the recent and intensive research in the biomedical area, the knowledge accumulated is disseminated through various knowledge bases. Links between these knowledge bases are needed in order to use them jointly. Linked Data, SPARQL language, and interfaces in Natural Language question-answering provide interesting solutions for querying such knowledge bases. We propose a method for translating natural language questions in SPARQL queries. We use Natural Language Processing tools, semantic resources, and the RDF triples description. The method is designed on 50 questions over 3 biomedical knowledge bases, and evaluated on 27 questions. It achieves 0.78 F-measure on the test set. The method for translating natural language questions into SPARQL queries is implemented as Perl module available at http://search.cpan.org/ thhamon/RDF-NLP-SPARQLQuery.

  12. Competition and cooperation among similar representations: toward a unified account of facilitative and inhibitory effects of lexical neighbors.

    PubMed

    Chen, Qi; Mirman, Daniel

    2012-04-01

    One of the core principles of how the mind works is the graded, parallel activation of multiple related or similar representations. Parallel activation of multiple representations has been particularly important in the development of theories and models of language processing, where coactivated representations (neighbors) have been shown to exhibit both facilitative and inhibitory effects on word recognition and production. Researchers generally ascribe these effects to interactive activation and competition, but there is no unified explanation for why the effects are facilitative in some cases and inhibitory in others. We present a series of simulations of a simple domain-general interactive activation and competition model that is broadly consistent with more specialized domain-specific models of lexical processing. The results showed that interactive activation and competition can indeed account for the complex pattern of reversals. Critically, the simulations revealed a core computational principle that determines whether neighbor effects are facilitative or inhibitory: strongly active neighbors exert a net inhibitory effect, and weakly active neighbors exert a net facilitative effect.

  13. Optimizability of OGC Standards Implementations - a Case Study

    NASA Astrophysics Data System (ADS)

    Misev, D.; Baumann, P.

    2012-04-01

    Why do we shop at Amazon? Because they have a unique offering that is nowhere else available? Certainly not. Rather, Amazon offers (i) simple, yet effective search; (ii) very simple payment; (iii) extremely rapid delivery. This is how scientific services will be distinguished in future: not for their data holding (there will be manifold choice), but for their service quality. We are facing the transition from data stewardship to service stewardship. One of the OGC standards which particularly enables flexible retrieval is the Web Coverage Processing Service (WCPS). It defines a high-level query language on large, multi-dimensional raster data, such as 1D timeseries, 2D EO imagery, 3D x/y/t image time series and x/y/z geophysical data, 4D x/y/z/t climate and ocean data. We have implemented WCPS based on an Array Database Management System, rasdaman, which is available in open source. In this demonstration, we study WCPS queries on 2D, 3D, and 4D data sets. Particular emphasis is placed on the computational load queries generate in such on-demand processing and filtering. We look at different techniques and their impact on performance, such as adaptive storage partitioning, query rewriting, and just-in-time compilation. Results show that there is significant potential for effective server-side optimization once a query language is sufficiently high-level and declarative.

  14. The afterlife of interspecific indirect genetic effects: genotype interactions alter litter quality with consequences for decomposition and nutrient dynamics.

    PubMed

    Genung, Mark A; Bailey, Joseph K; Schweitzer, Jennifer A

    2013-01-01

    Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant's phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene-less products of genetic interactions among the species comprising ecological communities.

  15. The Afterlife of Interspecific Indirect Genetic Effects: Genotype Interactions Alter Litter Quality with Consequences for Decomposition and Nutrient Dynamics

    PubMed Central

    Genung, Mark A.; Bailey, Joseph K.; Schweitzer, Jennifer A.

    2013-01-01

    Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant’s phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene-less products of genetic interactions among the species comprising ecological communities. PMID:23349735

  16. Semantic integration of information about orthologs and diseases: the OGO system.

    PubMed

    Miñarro-Gimenez, Jose Antonio; Egaña Aranguren, Mikel; Martínez Béjar, Rodrigo; Fernández-Breis, Jesualdo Tomás; Madrid, Marisa

    2011-12-01

    Semantic Web technologies like RDF and OWL are currently applied in life sciences to improve knowledge management by integrating disparate information. Many of the systems that perform such task, however, only offer a SPARQL query interface, which is difficult to use for life scientists. We present the OGO system, which consists of a knowledge base that integrates information of orthologous sequences and genetic diseases, providing an easy to use ontology-constrain driven query interface. Such interface allows the users to define SPARQL queries through a graphical process, therefore not requiring SPARQL expertise. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Advances in nowcasting influenza-like illness rates using search query logs

    NASA Astrophysics Data System (ADS)

    Lampos, Vasileios; Miller, Andrew C.; Crossan, Steve; Stefansen, Christian

    2015-08-01

    User-generated content can assist epidemiological surveillance in the early detection and prevalence estimation of infectious diseases, such as influenza. Google Flu Trends embodies the first public platform for transforming search queries to indications about the current state of flu in various places all over the world. However, the original model significantly mispredicted influenza-like illness rates in the US during the 2012-13 flu season. In this work, we build on the previous modeling attempt, proposing substantial improvements. Firstly, we investigate the performance of a widely used linear regularized regression solver, known as the Elastic Net. Then, we expand on this model by incorporating the queries selected by the Elastic Net into a nonlinear regression framework, based on a composite Gaussian Process. Finally, we augment the query-only predictions with an autoregressive model, injecting prior knowledge about the disease. We assess predictive performance using five consecutive flu seasons spanning from 2008 to 2013 and qualitatively explain certain shortcomings of the previous approach. Our results indicate that a nonlinear query modeling approach delivers the lowest cumulative nowcasting error, and also suggest that query information significantly improves autoregressive inferences, obtaining state-of-the-art performance.

  18. Measuring Up: Implementing a Dental Quality Measure in the Electronic Health Record Context

    PubMed Central

    Bhardwaj, Aarti; Ramoni, Rachel; Kalenderian, Elsbeth; Neumann, Ana; Hebballi, Nutan B; White, Joel M; McClellan, Lyle; Walji, Muhammad F

    2015-01-01

    Background Quality improvement requires quality measures that are validly implementable. In this work, we assessed the feasibility and performance of an automated electronic Meaningful Use dental clinical quality measure (percentage of children who received fluoride varnish). Methods We defined how to implement the automated measure queries in a dental electronic health record (EHR). Within records identified through automated query, we manually reviewed a subsample to assess the performance of the query. Results The automated query found 71.0% of patients to have had fluoride varnish compared to 77.6% found using the manual chart review. The automated quality measure performance was 90.5% sensitivity, 90.8% specificity, 96.9% positive predictive value, and 75.2% negative predictive value. Conclusions Our findings support the feasibility of automated dental quality measure queries in the context of sufficient structured data. Information noted only in the free text rather than in structured data would require natural language processing approaches to effectively query. Practical Implications To participate in self-directed quality improvement, dental clinicians must embrace the accountability era. Commitment to quality will require enhanced documentation in order to support near-term automated calculation of quality measures. PMID:26562736

  19. Analytics-Driven Lossless Data Compression for Rapid In-situ Indexing, Storing, and Querying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, John; Arkatkar, Isha; Lakshminarasimhan, Sriram

    2013-01-01

    The analysis of scientific simulations is highly data-intensive and is becoming an increasingly important challenge. Peta-scale data sets require the use of light-weight query-driven analysis methods, as opposed to heavy-weight schemes that optimize for speed at the expense of size. This paper is an attempt in the direction of query processing over losslessly compressed scientific data. We propose a co-designed double-precision compression and indexing methodology for range queries by performing unique-value-based binning on the most significant bytes of double precision data (sign, exponent, and most significant mantissa bits), and inverting the resulting metadata to produce an inverted index over amore » reduced data representation. Without the inverted index, our method matches or improves compression ratios over both general-purpose and floating-point compression utilities. The inverted index is light-weight, and the overall storage requirement for both reduced column and index is less than 135%, whereas existing DBMS technologies can require 200-400%. As a proof-of-concept, we evaluate univariate range queries that additionally return column values, a critical component of data analytics, against state-of-the-art bitmap indexing technology, showing multi-fold query performance improvements.« less

  20. Advances in nowcasting influenza-like illness rates using search query logs.

    PubMed

    Lampos, Vasileios; Miller, Andrew C; Crossan, Steve; Stefansen, Christian

    2015-08-03

    User-generated content can assist epidemiological surveillance in the early detection and prevalence estimation of infectious diseases, such as influenza. Google Flu Trends embodies the first public platform for transforming search queries to indications about the current state of flu in various places all over the world. However, the original model significantly mispredicted influenza-like illness rates in the US during the 2012-13 flu season. In this work, we build on the previous modeling attempt, proposing substantial improvements. Firstly, we investigate the performance of a widely used linear regularized regression solver, known as the Elastic Net. Then, we expand on this model by incorporating the queries selected by the Elastic Net into a nonlinear regression framework, based on a composite Gaussian Process. Finally, we augment the query-only predictions with an autoregressive model, injecting prior knowledge about the disease. We assess predictive performance using five consecutive flu seasons spanning from 2008 to 2013 and qualitatively explain certain shortcomings of the previous approach. Our results indicate that a nonlinear query modeling approach delivers the lowest cumulative nowcasting error, and also suggest that query information significantly improves autoregressive inferences, obtaining state-of-the-art performance.

  1. Comparing NetCDF and SciDB on managing and querying 5D hydrologic dataset

    NASA Astrophysics Data System (ADS)

    Liu, Haicheng; Xiao, Xiao

    2016-11-01

    Efficiently extracting information from high dimensional hydro-meteorological modelling datasets requires smart solutions. Traditional methods are mostly based on files, which can be edited and accessed handily. But they have problems of efficiency due to contiguous storage structure. Others propose databases as an alternative for advantages such as native functionalities for manipulating multidimensional (MD) arrays, smart caching strategy and scalability. In this research, NetCDF file based solutions and the multidimensional array database management system (DBMS) SciDB applying chunked storage structure are benchmarked to determine the best solution for storing and querying 5D large hydrologic modelling dataset. The effect of data storage configurations including chunk size, dimension order and compression on query performance is explored. Results indicate that dimension order to organize storage of 5D data has significant influence on query performance if chunk size is very large. But the effect becomes insignificant when chunk size is properly set. Compression of SciDB mostly has negative influence on query performance. Caching is an advantage but may be influenced by execution of different query processes. On the whole, NetCDF solution without compression is in general more efficient than the SciDB DBMS.

  2. Shuttle-Data-Tape XML Translator

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Osborne, Richard N.

    2005-01-01

    JSDTImport is a computer program for translating native Shuttle Data Tape (SDT) files from American Standard Code for Information Interchange (ASCII) format into databases in other formats. JSDTImport solves the problem of organizing the SDT content, affording flexibility to enable users to choose how to store the information in a database to better support client and server applications. JSDTImport can be dynamically configured by use of a simple Extensible Markup Language (XML) file. JSDTImport uses this XML file to define how each record and field will be parsed, its layout and definition, and how the resulting database will be structured. JSDTImport also includes a client application programming interface (API) layer that provides abstraction for the data-querying process. The API enables a user to specify the search criteria to apply in gathering all the data relevant to a query. The API can be used to organize the SDT content and translate into a native XML database. The XML format is structured into efficient sections, enabling excellent query performance by use of the XPath query language. Optionally, the content can be translated into a Structured Query Language (SQL) database for fast, reliable SQL queries on standard database server computers.

  3. Scalable and responsive event processing in the cloud

    PubMed Central

    Suresh, Visalakshmi; Ezhilchelvan, Paul; Watson, Paul

    2013-01-01

    Event processing involves continuous evaluation of queries over streams of events. Response-time optimization is traditionally done over a fixed set of nodes and/or by using metrics measured at query-operator levels. Cloud computing makes it easy to acquire and release computing nodes as required. Leveraging this flexibility, we propose a novel, queueing-theory-based approach for meeting specified response-time targets against fluctuating event arrival rates by drawing only the necessary amount of computing resources from a cloud platform. In the proposed approach, the entire processing engine of a distinct query is modelled as an atomic unit for predicting response times. Several such units hosted on a single node are modelled as a multiple class M/G/1 system. These aspects eliminate intrusive, low-level performance measurements at run-time, and also offer portability and scalability. Using model-based predictions, cloud resources are efficiently used to meet response-time targets. The efficacy of the approach is demonstrated through cloud-based experiments. PMID:23230164

  4. Grammatical constraints on phonological encoding in speech production.

    PubMed

    Heller, Jordana R; Goldrick, Matthew

    2014-12-01

    To better understand the influence of grammatical encoding on the retrieval and encoding of phonological word-form information during speech production, we examine how grammatical class constraints influence the activation of phonological neighbors (words phonologically related to the target--e.g., MOON, TWO for target TUNE). Specifically, we compare how neighbors that share a target's grammatical category (here, nouns) influence its planning and retrieval, assessed by picture naming latencies, and phonetic encoding, assessed by word productions in picture names, when grammatical constraints are strong (in sentence contexts) versus weak (bare naming). Within-category (noun) neighbors influenced planning time and phonetic encoding more strongly in sentence contexts. This suggests that grammatical encoding constrains phonological processing; the influence of phonological neighbors is grammatically dependent. Moreover, effects on planning times could not fully account for phonetic effects, suggesting that phonological interaction affects articulation after speech onset. These results support production theories integrating grammatical, phonological, and phonetic processes.

  5. The Ned IIS project - forest ecosystem management

    Treesearch

    W. Potter; D. Nute; J. Wang; F. Maier; Michael Twery; H. Michael Rauscher; P. Knopp; S. Thomasma; M. Dass; H. Uchiyama

    2002-01-01

    For many years we have held to the notion that an Intelligent Information System (IIS) is composed of a unified knowledge base, database, and model base. The main idea behind this notion is the transparent processing of user queries. The system is responsible for "deciding" which information sources to access in order to fulfil a query regardless of whether...

  6. The Effectiveness of Stemming for Natural-Language Access to Slovene Textual Data.

    ERIC Educational Resources Information Center

    Popovic, Mirko; Willett, Peter

    1992-01-01

    Reports on the use of stemming for Slovene language documents and queries in free-text retrieval systems and demonstrates that an appropriate stemming algorithm results in an increase in retrieval effectiveness when compared with nonstemming processing. A comparison is made with stemming of English versions of the same documents and queries. (24…

  7. Finding Relevant Data in a Sea of Languages

    DTIC Science & Technology

    2016-04-26

    full machine-translated text , unbiased word clouds , query-biased word clouds , and query-biased sentence...and information retrieval to automate language processing tasks so that the limited number of linguists available for analyzing text and spoken...the crime (stock market). The Cross-LAnguage Search Engine (CLASE) has already preprocessed the documents, extracting text to identify the language

  8. A distributed query execution engine of big attributed graphs.

    PubMed

    Batarfi, Omar; Elshawi, Radwa; Fayoumi, Ayman; Barnawi, Ahmed; Sakr, Sherif

    2016-01-01

    A graph is a popular data model that has become pervasively used for modeling structural relationships between objects. In practice, in many real-world graphs, the graph vertices and edges need to be associated with descriptive attributes. Such type of graphs are referred to as attributed graphs. G-SPARQL has been proposed as an expressive language, with a centralized execution engine, for querying attributed graphs. G-SPARQL supports various types of graph querying operations including reachability, pattern matching and shortest path where any G-SPARQL query may include value-based predicates on the descriptive information (attributes) of the graph edges/vertices in addition to the structural predicates. In general, a main limitation of centralized systems is that their vertical scalability is always restricted by the physical limits of computer systems. This article describes the design, implementation in addition to the performance evaluation of DG-SPARQL, a distributed, hybrid and adaptive parallel execution engine of G-SPARQL queries. In this engine, the topology of the graph is distributed over the main memory of the underlying nodes while the graph data are maintained in a relational store which is replicated on the disk of each of the underlying nodes. DG-SPARQL evaluates parts of the query plan via SQL queries which are pushed to the underlying relational stores while other parts of the query plan, as necessary, are evaluated via indexless memory-based graph traversal algorithms. Our experimental evaluation shows the efficiency and the scalability of DG-SPARQL on querying massive attributed graph datasets in addition to its ability to outperform the performance of Apache Giraph, a popular distributed graph processing system, by orders of magnitudes.

  9. Implementing and evaluating a regional strategy to improve testing rates in VA patients at risk for HIV, utilizing the QUERI process as a guiding framework: QUERI Series.

    PubMed

    Goetz, Matthew B; Bowman, Candice; Hoang, Tuyen; Anaya, Henry; Osborn, Teresa; Gifford, Allen L; Asch, Steven M

    2008-03-19

    We describe how we used the framework of the U.S. Department of Veterans Affairs (VA) Quality Enhancement Research Initiative (QUERI) to develop a program to improve rates of diagnostic testing for the Human Immunodeficiency Virus (HIV). This venture was prompted by the observation by the CDC that 25% of HIV-infected patients do not know their diagnosis - a point of substantial importance to the VA, which is the largest provider of HIV care in the United States. Following the QUERI steps (or process), we evaluated: 1) whether undiagnosed HIV infection is a high-risk, high-volume clinical issue within the VA, 2) whether there are evidence-based recommendations for HIV testing, 3) whether there are gaps in the performance of VA HIV testing, and 4) the barriers and facilitators to improving current practice in the VA.Based on our findings, we developed and initiated a QUERI step 4/phase 1 pilot project using the precepts of the Chronic Care Model. Our improvement strategy relies upon electronic clinical reminders to provide decision support; audit/feedback as a clinical information system, and appropriate changes in delivery system design. These activities are complemented by academic detailing and social marketing interventions to achieve provider activation. Our preliminary formative evaluation indicates the need to ensure leadership and team buy-in, address facility-specific barriers, refine the reminder, and address factors that contribute to inter-clinic variances in HIV testing rates. Preliminary unadjusted data from the first seven months of our program show 3-5 fold increases in the proportion of at-risk patients who are offered HIV testing at the VA sites (stations) where the pilot project has been undertaken; no change was seen at control stations. This project demonstrates the early success of the application of the QUERI process to the development of a program to improve HIV testing rates. Preliminary unadjusted results show that the coordinated use of audit/feedback, provider activation, and organizational change can increase HIV testing rates for at-risk patients. We are refining our program prior to extending our work to a small-scale, multi-site evaluation (QUERI step 4/phase 2). We also plan to evaluate the durability/sustainability of the intervention effect, the costs of HIV testing, and the number of newly identified HIV-infected patients. Ultimately, we will evaluate this program in other geographically dispersed stations (QUERI step 4/phases 3 and 4).

  10. Implementing and evaluating a regional strategy to improve testing rates in VA patients at risk for HIV, utilizing the QUERI process as a guiding framework: QUERI Series

    PubMed Central

    Goetz, Matthew B; Bowman, Candice; Hoang, Tuyen; Anaya, Henry; Osborn, Teresa; Gifford, Allen L; Asch, Steven M

    2008-01-01

    Background We describe how we used the framework of the U.S. Department of Veterans Affairs (VA) Quality Enhancement Research Initiative (QUERI) to develop a program to improve rates of diagnostic testing for the Human Immunodeficiency Virus (HIV). This venture was prompted by the observation by the CDC that 25% of HIV-infected patients do not know their diagnosis – a point of substantial importance to the VA, which is the largest provider of HIV care in the United States. Methods Following the QUERI steps (or process), we evaluated: 1) whether undiagnosed HIV infection is a high-risk, high-volume clinical issue within the VA, 2) whether there are evidence-based recommendations for HIV testing, 3) whether there are gaps in the performance of VA HIV testing, and 4) the barriers and facilitators to improving current practice in the VA. Based on our findings, we developed and initiated a QUERI step 4/phase 1 pilot project using the precepts of the Chronic Care Model. Our improvement strategy relies upon electronic clinical reminders to provide decision support; audit/feedback as a clinical information system, and appropriate changes in delivery system design. These activities are complemented by academic detailing and social marketing interventions to achieve provider activation. Results Our preliminary formative evaluation indicates the need to ensure leadership and team buy-in, address facility-specific barriers, refine the reminder, and address factors that contribute to inter-clinic variances in HIV testing rates. Preliminary unadjusted data from the first seven months of our program show 3–5 fold increases in the proportion of at-risk patients who are offered HIV testing at the VA sites (stations) where the pilot project has been undertaken; no change was seen at control stations. Discussion This project demonstrates the early success of the application of the QUERI process to the development of a program to improve HIV testing rates. Preliminary unadjusted results show that the coordinated use of audit/feedback, provider activation, and organizational change can increase HIV testing rates for at-risk patients. We are refining our program prior to extending our work to a small-scale, multi-site evaluation (QUERI step 4/phase 2). We also plan to evaluate the durability/sustainability of the intervention effect, the costs of HIV testing, and the number of newly identified HIV-infected patients. Ultimately, we will evaluate this program in other geographically dispersed stations (QUERI step 4/phases 3 and 4). PMID:18353185

  11. GO2PUB: Querying PubMed with semantic expansion of gene ontology terms

    PubMed Central

    2012-01-01

    Background With the development of high throughput methods of gene analyses, there is a growing need for mining tools to retrieve relevant articles in PubMed. As PubMed grows, literature searches become more complex and time-consuming. Automated search tools with good precision and recall are necessary. We developed GO2PUB to automatically enrich PubMed queries with gene names, symbols and synonyms annotated by a GO term of interest or one of its descendants. Results GO2PUB enriches PubMed queries based on selected GO terms and keywords. It processes the result and displays the PMID, title, authors, abstract and bibliographic references of the articles. Gene names, symbols and synonyms that have been generated as extra keywords from the GO terms are also highlighted. GO2PUB is based on a semantic expansion of PubMed queries using the semantic inheritance between terms through the GO graph. Two experts manually assessed the relevance of GO2PUB, GoPubMed and PubMed on three queries about lipid metabolism. Experts’ agreement was high (kappa = 0.88). GO2PUB returned 69% of the relevant articles, GoPubMed: 40% and PubMed: 29%. GO2PUB and GoPubMed have 17% of their results in common, corresponding to 24% of the total number of relevant results. 70% of the articles returned by more than one tool were relevant. 36% of the relevant articles were returned only by GO2PUB, 17% only by GoPubMed and 14% only by PubMed. For determining whether these results can be generalized, we generated twenty queries based on random GO terms with a granularity similar to those of the first three queries and compared the proportions of GO2PUB and GoPubMed results. These were respectively of 77% and 40% for the first queries, and of 70% and 38% for the random queries. The two experts also assessed the relevance of seven of the twenty queries (the three related to lipid metabolism and four related to other domains). Expert agreement was high (0.93 and 0.8). GO2PUB and GoPubMed performances were similar to those of the first queries. Conclusions We demonstrated that the use of genes annotated by either GO terms of interest or a descendant of these GO terms yields some relevant articles ignored by other tools. The comparison of GO2PUB, based on semantic expansion, with GoPubMed, based on text mining techniques, showed that both tools are complementary. The analysis of the randomly-generated queries suggests that the results obtained about lipid metabolism can be generalized to other biological processes. GO2PUB is available at http://go2pub.genouest.org. PMID:22958570

  12. Classification of Automated Search Traffic

    NASA Astrophysics Data System (ADS)

    Buehrer, Greg; Stokes, Jack W.; Chellapilla, Kumar; Platt, John C.

    As web search providers seek to improve both relevance and response times, they are challenged by the ever-increasing tax of automated search query traffic. Third party systems interact with search engines for a variety of reasons, such as monitoring a web site’s rank, augmenting online games, or possibly to maliciously alter click-through rates. In this paper, we investigate automated traffic (sometimes referred to as bot traffic) in the query stream of a large search engine provider. We define automated traffic as any search query not generated by a human in real time. We first provide examples of different categories of query logs generated by automated means. We then develop many different features that distinguish between queries generated by people searching for information, and those generated by automated processes. We categorize these features into two classes, either an interpretation of the physical model of human interactions, or as behavioral patterns of automated interactions. Using the these detection features, we next classify the query stream using multiple binary classifiers. In addition, a multiclass classifier is then developed to identify subclasses of both normal and automated traffic. An active learning algorithm is used to suggest which user sessions to label to improve the accuracy of the multiclass classifier, while also seeking to discover new classes of automated traffic. Performance analysis are then provided. Finally, the multiclass classifier is used to predict the subclass distribution for the search query stream.

  13. Situation awareness acquired from monitoring process plants - the Process Overview concept and measure.

    PubMed

    Lau, Nathan; Jamieson, Greg A; Skraaning, Gyrd

    2016-07-01

    We introduce Process Overview, a situation awareness characterisation of the knowledge derived from monitoring process plants. Process Overview is based on observational studies of process control work in the literature. The characterisation is applied to develop a query-based measure called the Process Overview Measure. The goal of the measure is to improve coupling between situation and awareness according to process plant properties and operator cognitive work. A companion article presents the empirical evaluation of the Process Overview Measure in a realistic process control setting. The Process Overview Measure demonstrated sensitivity and validity by revealing significant effects of experimental manipulations that corroborated with other empirical results. The measure also demonstrated adequate inter-rater reliability and practicality for measuring SA based on data collected by process experts. Practitioner Summary: The Process Overview Measure is a query-based measure for assessing operator situation awareness from monitoring process plants in representative settings.

  14. A Discovery Process for Initializing Ad Hoc Underwater Acoustic Networks

    DTIC Science & Technology

    2008-12-01

    the ping utility packet is set to global address 0, its function becomes a broadcast ping and it elicits echoes from all neighboring nodes within...destination. At the Seaweb server, a global neighbor table and a global routing table are maintained to support network configurability. 2. Cellular...aggregates the received peer discovery data in a global neighbor table and ultimately decides how routing to each branch node should be configured

  15. Guided Iterative Substructure Search (GI-SSS) - A New Trick for an Old Dog.

    PubMed

    Weskamp, Nils

    2016-07-01

    Substructure search (SSS) is a fundamental technique supported by various chemical information systems. Many users apply it in an iterative manner: they modify their queries to shape the composition of the retrieved hit sets according to their needs. We propose and evaluate two heuristic extensions of SSS aimed at simplifying these iterative query modifications by collecting additional information during query processing and visualizing this information in an intuitive way. This gives the user a convenient feedback on how certain changes to the query would affect the retrieved hit set and reduces the number of trial-and-error cycles needed to generate an optimal search result. The proposed heuristics are simple, yet surprisingly effective and can be easily added to existing SSS implementations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. DREAM: Classification scheme for dialog acts in clinical research query mediation.

    PubMed

    Hoxha, Julia; Chandar, Praveen; He, Zhe; Cimino, James; Hanauer, David; Weng, Chunhua

    2016-02-01

    Clinical data access involves complex but opaque communication between medical researchers and query analysts. Understanding such communication is indispensable for designing intelligent human-machine dialog systems that automate query formulation. This study investigates email communication and proposes a novel scheme for classifying dialog acts in clinical research query mediation. We analyzed 315 email messages exchanged in the communication for 20 data requests obtained from three institutions. The messages were segmented into 1333 utterance units. Through a rigorous process, we developed a classification scheme and applied it for dialog act annotation of the extracted utterances. Evaluation results with high inter-annotator agreement demonstrate the reliability of this scheme. This dataset is used to contribute preliminary understanding of dialog acts distribution and conversation flow in this dialog space. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Device-independent quantum private query

    NASA Astrophysics Data System (ADS)

    Maitra, Arpita; Paul, Goutam; Roy, Sarbani

    2017-04-01

    In quantum private query (QPQ), a client obtains values corresponding to his or her query only, and nothing else from the server, and the server does not get any information about the queries. V. Giovannetti et al. [Phys. Rev. Lett. 100, 230502 (2008)], 10.1103/PhysRevLett.100.230502 gave the first QPQ protocol and since then quite a few variants and extensions have been proposed. However, none of the existing protocols are device independent; i.e., all of them assume implicitly that the entangled states supplied to the client and the server are of a certain form. In this work, we exploit the idea of a local CHSH game and connect it with the scheme of Y. G. Yang et al. [Quantum Info. Process. 13, 805 (2014)], 10.1007/s11128-013-0692-8 to present the concept of a device-independent QPQ protocol.

  18. Seismic Search Engine: A distributed database for mining large scale seismic data

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Vaidya, S.; Kuzma, H. A.

    2009-12-01

    The International Monitoring System (IMS) of the CTBTO collects terabytes worth of seismic measurements from many receiver stations situated around the earth with the goal of detecting underground nuclear testing events and distinguishing them from other benign, but more common events such as earthquakes and mine blasts. The International Data Center (IDC) processes and analyzes these measurements, as they are collected by the IMS, to summarize event detections in daily bulletins. Thereafter, the data measurements are archived into a large format database. Our proposed Seismic Search Engine (SSE) will facilitate a framework for data exploration of the seismic database as well as the development of seismic data mining algorithms. Analogous to GenBank, the annotated genetic sequence database maintained by NIH, through SSE, we intend to provide public access to seismic data and a set of processing and analysis tools, along with community-generated annotations and statistical models to help interpret the data. SSE will implement queries as user-defined functions composed from standard tools and models. Each query is compiled and executed over the database internally before reporting results back to the user. Since queries are expressed with standard tools and models, users can easily reproduce published results within this framework for peer-review and making metric comparisons. As an illustration, an example query is “what are the best receiver stations in East Asia for detecting events in the Middle East?” Evaluating this query involves listing all receiver stations in East Asia, characterizing known seismic events in that region, and constructing a profile for each receiver station to determine how effective its measurements are at predicting each event. The results of this query can be used to help prioritize how data is collected, identify defective instruments, and guide future sensor placements.

  19. Selecting materialized views using random algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Hao, Zhongxiao; Liu, Chi

    2007-04-01

    The data warehouse is a repository of information collected from multiple possibly heterogeneous autonomous distributed databases. The information stored at the data warehouse is in form of views referred to as materialized views. The selection of the materialized views is one of the most important decisions in designing a data warehouse. Materialized views are stored in the data warehouse for the purpose of efficiently implementing on-line analytical processing queries. The first issue for the user to consider is query response time. So in this paper, we develop algorithms to select a set of views to materialize in data warehouse in order to minimize the total view maintenance cost under the constraint of a given query response time. We call it query_cost view_ selection problem. First, cost graph and cost model of query_cost view_ selection problem are presented. Second, the methods for selecting materialized views by using random algorithms are presented. The genetic algorithm is applied to the materialized views selection problem. But with the development of genetic process, the legal solution produced become more and more difficult, so a lot of solutions are eliminated and producing time of the solutions is lengthened in genetic algorithm. Therefore, improved algorithm has been presented in this paper, which is the combination of simulated annealing algorithm and genetic algorithm for the purpose of solving the query cost view selection problem. Finally, in order to test the function and efficiency of our algorithms experiment simulation is adopted. The experiments show that the given methods can provide near-optimal solutions in limited time and works better in practical cases. Randomized algorithms will become invaluable tools for data warehouse evolution.

  20. Bin-Hash Indexing: A Parallel Method for Fast Query Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, Edward W; Gosink, Luke J.; Wu, Kesheng

    2008-06-27

    This paper presents a new parallel indexing data structure for answering queries. The index, called Bin-Hash, offers extremely high levels of concurrency, and is therefore well-suited for the emerging commodity of parallel processors, such as multi-cores, cell processors, and general purpose graphics processing units (GPU). The Bin-Hash approach first bins the base data, and then partitions and separately stores the values in each bin as a perfect spatial hash table. To answer a query, we first determine whether or not a record satisfies the query conditions based on the bin boundaries. For the bins with records that can not bemore » resolved, we examine the spatial hash tables. The procedures for examining the bin numbers and the spatial hash tables offer the maximum possible level of concurrency; all records are able to be evaluated by our procedure independently in parallel. Additionally, our Bin-Hash procedures access much smaller amounts of data than similar parallel methods, such as the projection index. This smaller data footprint is critical for certain parallel processors, like GPUs, where memory resources are limited. To demonstrate the effectiveness of Bin-Hash, we implement it on a GPU using the data-parallel programming language CUDA. The concurrency offered by the Bin-Hash index allows us to fully utilize the GPU's massive parallelism in our work; over 12,000 records can be simultaneously evaluated at any one time. We show that our new query processing method is an order of magnitude faster than current state-of-the-art CPU-based indexing technologies. Additionally, we compare our performance to existing GPU-based projection index strategies.« less

  1. Exploitation of RF-DNA for Device Classification and Verification Using GRLVQI Processing

    DTIC Science & Technology

    2012-12-01

    5 FLD Fisher’s Linear Discriminant . . . . . . . . . . . . . . . . . . . 6 kNN K-Nearest Neighbor...Neighbor ( kNN ), Support Vector Machine (SVM), and simple cross-correlation techniques [40, 57, 82, 88, 94, 95]. The RF-DNA fingerprinting research in...Expansion and the Dis- crete Gabor Transform on a Non-Separable Lattice”. 2000 IEEE Int’l Conf on Acoustics, Speech , and Signal Processing (ICASSP00

  2. Federated queries of clinical data repositories: the sum of the parts does not equal the whole

    PubMed Central

    Weber, Griffin M

    2013-01-01

    Background and objective In 2008 we developed a shared health research information network (SHRINE), which for the first time enabled research queries across the full patient populations of four Boston hospitals. It uses a federated architecture, where each hospital returns only the aggregate count of the number of patients who match a query. This allows hospitals to retain control over their local databases and comply with federal and state privacy laws. However, because patients may receive care from multiple hospitals, the result of a federated query might differ from what the result would be if the query were run against a single central repository. This paper describes the situations when this happens and presents a technique for correcting these errors. Methods We use a one-time process of identifying which patients have data in multiple repositories by comparing one-way hash values of patient demographics. This enables us to partition the local databases such that all patients within a given partition have data at the same subset of hospitals. Federated queries are then run separately on each partition independently, and the combined results are presented to the user. Results Using theoretical bounds and simulated hospital networks, we demonstrate that once the partitions are made, SHRINE can produce more precise estimates of the number of patients matching a query. Conclusions Uncertainty in the overlap of patient populations across hospitals limits the effectiveness of SHRINE and other federated query tools. Our technique reduces this uncertainty while retaining an aggregate federated architecture. PMID:23349080

  3. 41. DISCOVERY, SEARCH, AND COMMUNICATION OF TEXTUAL KNOWLEDGE RESOURCES IN DISTRIBUTED SYSTEMS a. Discovering and Utilizing Knowledge Sources for Metasearch Knowledge Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamora, Antonio

    Advanced Natural Language Processing Tools for Web Information Retrieval, Content Analysis, and Synthesis. The goal of this SBIR was to implement and evaluate several advanced Natural Language Processing (NLP) tools and techniques to enhance the precision and relevance of search results by analyzing and augmenting search queries and by helping to organize the search output obtained from heterogeneous databases and web pages containing textual information of interest to DOE and the scientific-technical user communities in general. The SBIR investigated 1) the incorporation of spelling checkers in search applications, 2) identification of significant phrases and concepts using a combination of linguisticmore » and statistical techniques, and 3) enhancement of the query interface and search retrieval results through the use of semantic resources, such as thesauri. A search program with a flexible query interface was developed to search reference databases with the objective of enhancing search results from web queries or queries of specialized search systems such as DOE's Information Bridge. The DOE ETDE/INIS Joint Thesaurus was processed to create a searchable database. Term frequencies and term co-occurrences were used to enhance the web information retrieval by providing algorithmically-derived objective criteria to organize relevant documents into clusters containing significant terms. A thesaurus provides an authoritative overview and classification of a field of knowledge. By organizing the results of a search using the thesaurus terminology, the output is more meaningful than when the results are just organized based on the terms that co-occur in the retrieved documents, some of which may not be significant. An attempt was made to take advantage of the hierarchy provided by broader and narrower terms, as well as other field-specific information in the thesauri. The search program uses linguistic morphological routines to find relevant entries regardless of whether terms are stored in singular or plural form. Implementation of additional inflectional morphology processes for verbs can enhance retrieval further, but this has to be balanced by the possibility of broadening the results too much. In addition to the DOE energy thesaurus, other sources of specialized organized knowledge such as the Medical Subject Headings (MeSH), the Unified Medical Language System (UMLS), and Wikipedia were investigated. The supporting role of the NLP thesaurus search program was enhanced by incorporating spelling aid and a part-of-speech tagger to cope with misspellings in the queries and to determine the grammatical roles of the query words and identify nouns for special processing. To improve precision, multiple modes of searching were implemented including Boolean operators, and field-specific searches. Programs to convert a thesaurus or reference file into searchable support files can be deployed easily, and the resulting files are immediately searchable to produce relevance-ranked results with builtin spelling aid, morphological processing, and advanced search logic. Demonstration systems were built for several databases, including the DOE energy thesaurus.« less

  4. KA-SB: from data integration to large scale reasoning

    PubMed Central

    Roldán-García, María del Mar; Navas-Delgado, Ismael; Kerzazi, Amine; Chniber, Othmane; Molina-Castro, Joaquín; Aldana-Montes, José F

    2009-01-01

    Background The analysis of information in the biological domain is usually focused on the analysis of data from single on-line data sources. Unfortunately, studying a biological process requires having access to disperse, heterogeneous, autonomous data sources. In this context, an analysis of the information is not possible without the integration of such data. Methods KA-SB is a querying and analysis system for final users based on combining a data integration solution with a reasoner. Thus, the tool has been created with a process divided into two steps: 1) KOMF, the Khaos Ontology-based Mediator Framework, is used to retrieve information from heterogeneous and distributed databases; 2) the integrated information is crystallized in a (persistent and high performance) reasoner (DBOWL). This information could be further analyzed later (by means of querying and reasoning). Results In this paper we present a novel system that combines the use of a mediation system with the reasoning capabilities of a large scale reasoner to provide a way of finding new knowledge and of analyzing the integrated information from different databases, which is retrieved as a set of ontology instances. This tool uses a graphical query interface to build user queries easily, which shows a graphical representation of the ontology and allows users o build queries by clicking on the ontology concepts. Conclusion These kinds of systems (based on KOMF) will provide users with very large amounts of information (interpreted as ontology instances once retrieved), which cannot be managed using traditional main memory-based reasoners. We propose a process for creating persistent and scalable knowledgebases from sets of OWL instances obtained by integrating heterogeneous data sources with KOMF. This process has been applied to develop a demo tool , which uses the BioPax Level 3 ontology as the integration schema, and integrates UNIPROT, KEGG, CHEBI, BRENDA and SABIORK databases. PMID:19796402

  5. Bio-TDS: bioscience query tool discovery system.

    PubMed

    Gnimpieba, Etienne Z; VanDiermen, Menno S; Gustafson, Shayla M; Conn, Bill; Lushbough, Carol M

    2017-01-04

    Bioinformatics and computational biology play a critical role in bioscience and biomedical research. As researchers design their experimental projects, one major challenge is to find the most relevant bioinformatics toolkits that will lead to new knowledge discovery from their data. The Bio-TDS (Bioscience Query Tool Discovery Systems, http://biotds.org/) has been developed to assist researchers in retrieving the most applicable analytic tools by allowing them to formulate their questions as free text. The Bio-TDS is a flexible retrieval system that affords users from multiple bioscience domains (e.g. genomic, proteomic, bio-imaging) the ability to query over 12 000 analytic tool descriptions integrated from well-established, community repositories. One of the primary components of the Bio-TDS is the ontology and natural language processing workflow for annotation, curation, query processing, and evaluation. The Bio-TDS's scientific impact was evaluated using sample questions posed by researchers retrieved from Biostars, a site focusing on BIOLOGICAL DATA ANALYSIS: The Bio-TDS was compared to five similar bioscience analytic tool retrieval systems with the Bio-TDS outperforming the others in terms of relevance and completeness. The Bio-TDS offers researchers the capacity to associate their bioscience question with the most relevant computational toolsets required for the data analysis in their knowledge discovery process. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. ArrayBridge: Interweaving declarative array processing with high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Haoyuan; Floratos, Sofoklis; Blanas, Spyros

    Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aimsmore » to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.« less

  7. An Intelligent Information System for forest management: NED/FVS integration

    Treesearch

    J. Wang; W.D. Potter; D. Nute; F. Maier; H. Michael Rauscher; M.J. Twery; S. Thomasma; P. Knopp

    2002-01-01

    An Intelligent Information System (IIS) is viewed as composed of a unified knowledge base, database, and model base. This allows an IIS to provide responses to user queries regardless of whether the query process involves a data retrieval, an inference, a computational method, a problem solving module, or some combination of these. NED-2 is a full-featured intelligent...

  8. Design of a Low-Cost Adaptive Question Answering System for Closed Domain Factoid Queries

    ERIC Educational Resources Information Center

    Toh, Huey Ling

    2010-01-01

    Closed domain question answering (QA) systems achieve precision and recall at the cost of complex language processing techniques to parse the answer corpus. We propose a "query-based" model for indexing answers in a closed domain factoid QA system. Further, we use a phrase term inference method for improving the ranking order of related questions.…

  9. Approximate Algorithms for Computing Spatial Distance Histograms with Accuracy Guarantees

    PubMed Central

    Grupcev, Vladimir; Yuan, Yongke; Tu, Yi-Cheng; Huang, Jin; Chen, Shaoping; Pandit, Sagar; Weng, Michael

    2014-01-01

    Particle simulation has become an important research tool in many scientific and engineering fields. Data generated by such simulations impose great challenges to database storage and query processing. One of the queries against particle simulation data, the spatial distance histogram (SDH) query, is the building block of many high-level analytics, and requires quadratic time to compute using a straightforward algorithm. Previous work has developed efficient algorithms that compute exact SDHs. While beating the naive solution, such algorithms are still not practical in processing SDH queries against large-scale simulation data. In this paper, we take a different path to tackle this problem by focusing on approximate algorithms with provable error bounds. We first present a solution derived from the aforementioned exact SDH algorithm, and this solution has running time that is unrelated to the system size N. We also develop a mathematical model to analyze the mechanism that leads to errors in the basic approximate algorithm. Our model provides insights on how the algorithm can be improved to achieve higher accuracy and efficiency. Such insights give rise to a new approximate algorithm with improved time/accuracy tradeoff. Experimental results confirm our analysis. PMID:24693210

  10. QATT: a Natural Language Interface for QPE. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    White, Douglas Robert-Graham

    1989-01-01

    QATT, a natural language interface developed for the Qualitative Process Engine (QPE) system is presented. The major goal was to evaluate the use of a preexisting natural language understanding system designed to be tailored for query processing in multiple domains of application. The other goal of QATT is to provide a comfortable environment in which to query envisionments in order to gain insight into the qualitative behavior of physical systems. It is shown that the use of the preexisting system made possible the development of a reasonably useful interface in a few months.

  11. New Tools to Search for Data in the European Space Agency's Planetary Science Archive

    NASA Astrophysics Data System (ADS)

    Grotheer, E.; Macfarlane, A. J.; Rios, C.; Arviset, C.; Heather, D.; Fraga, D.; Vallejo, F.; De Marchi, G.; Barbarisi, I.; Saiz, J.; Barthelemy, M.; Docasal, R.; Martinez, S.; Besse, S.; Lim, T.

    2016-12-01

    The European Space Agency's (ESA) Planetary Science Archive (PSA), which can be accessed at http://archives.esac.esa.int/psa, provides public access to the archived data of Europe's missions to our neighboring planets. These datasets are compliant with the Planetary Data System (PDS) standards. Recently, a new interface has been released, which includes upgrades to make PDS4 data available from newer missions such as ExoMars and BepiColombo. Additionally, the PSA development team has been working to ensure that the legacy PDS3 data will be more easily accessible via the new interface as well. In addition to a new querying interface, the new PSA also allows access via the EPN-TAP and PDAP protocols. This makes the PSA data sets compatible with other archive-related tools and projects, such as the Virtual European Solar and Planetary Access (VESPA) project for creating a virtual observatory.

  12. Optimizing Maintenance of Constraint-Based Database Caches

    NASA Astrophysics Data System (ADS)

    Klein, Joachim; Braun, Susanne

    Caching data reduces user-perceived latency and often enhances availability in case of server crashes or network failures. DB caching aims at local processing of declarative queries in a DBMS-managed cache close to the application. Query evaluation must produce the same results as if done at the remote database backend, which implies that all data records needed to process such a query must be present and controlled by the cache, i. e., to achieve “predicate-specific” loading and unloading of such record sets. Hence, cache maintenance must be based on cache constraints such that “predicate completeness” of the caching units currently present can be guaranteed at any point in time. We explore how cache groups can be maintained to provide the data currently needed. Moreover, we design and optimize loading and unloading algorithms for sets of records keeping the caching units complete, before we empirically identify the costs involved in cache maintenance.

  13. Wigner surmises and the two-dimensional homogeneous Poisson point process.

    PubMed

    Sakhr, Jamal; Nieminen, John M

    2006-04-01

    We derive a set of identities that relate the higher-order interpoint spacing statistics of the two-dimensional homogeneous Poisson point process to the Wigner surmises for the higher-order spacing distributions of eigenvalues from the three classical random matrix ensembles. We also report a remarkable identity that equates the second-nearest-neighbor spacing statistics of the points of the Poisson process and the nearest-neighbor spacing statistics of complex eigenvalues from Ginibre's ensemble of 2 x 2 complex non-Hermitian random matrices.

  14. StarView: The object oriented design of the ST DADS user interface

    NASA Technical Reports Server (NTRS)

    Williams, J. D.; Pollizzi, J. A.

    1992-01-01

    StarView is the user interface being developed for the Hubble Space Telescope Data Archive and Distribution Service (ST DADS). ST DADS is the data archive for HST observations and a relational database catalog describing the archived data. Users will use StarView to query the catalog and select appropriate datasets for study. StarView sends requests for archived datasets to ST DADS which processes the requests and returns the database to the user. StarView is designed to be a powerful and extensible user interface. Unique features include an internal relational database to navigate query results, a form definition language that will work with both CRT and X interfaces, a data definition language that will allow StarView to work with any relational database, and the ability to generate adhoc queries without requiring the user to understand the structure of the ST DADS catalog. Ultimately, StarView will allow the user to refine queries in the local database for improved performance and merge in data from external sources for correlation with other query results. The user will be able to create a query from single or multiple forms, merging the selected attributes into a single query. Arbitrary selection of attributes for querying is supported. The user will be able to select how query results are viewed. A standard form or table-row format may be used. Navigation capabilities are provided to aid the user in viewing query results. Object oriented analysis and design techniques were used in the design of StarView to support the mechanisms and concepts required to implement these features. One such mechanism is the Model-View-Controller (MVC) paradigm. The MVC allows the user to have multiple views of the underlying database, while providing a consistent mechanism for interaction regardless of the view. This approach supports both CRT and X interfaces while providing a common mode of user interaction. Another powerful abstraction is the concept of a Query Model. This concept allows a single query to be built form a single or multiple forms before it is submitted to ST DADS. Supporting this concept is the adhoc query generator which allows the user to select and qualify an indeterminate number attributes from the database. The user does not need any knowledge of how the joins across various tables are to be resolved. The adhoc generator calculates the joins automatically and generates the correct SQL query.

  15. Modeling and query the uncertainty of network constrained moving objects based on RFID data

    NASA Astrophysics Data System (ADS)

    Han, Liang; Xie, Kunqing; Ma, Xiujun; Song, Guojie

    2007-06-01

    The management of network constrained moving objects is more and more practical, especially in intelligent transportation system. In the past, the location information of moving objects on network is collected by GPS, which cost high and has the problem of frequent update and privacy. The RFID (Radio Frequency IDentification) devices are used more and more widely to collect the location information. They are cheaper and have less update. And they interfere in the privacy less. They detect the id of the object and the time when moving object passed by the node of the network. They don't detect the objects' exact movement in side the edge, which lead to a problem of uncertainty. How to modeling and query the uncertainty of the network constrained moving objects based on RFID data becomes a research issue. In this paper, a model is proposed to describe the uncertainty of network constrained moving objects. A two level index is presented to provide efficient access to the network and the data of movement. The processing of imprecise time-slice query and spatio-temporal range query are studied in this paper. The processing includes four steps: spatial filter, spatial refinement, temporal filter and probability calculation. Finally, some experiments are done based on the simulated data. In the experiments the performance of the index is studied. The precision and recall of the result set are defined. And how the query arguments affect the precision and recall of the result set is also discussed.

  16. Transfer-Efficient Face Routing Using the Planar Graphs of Neighbors in High Density WSNs

    PubMed Central

    Kim, Sang-Ha

    2017-01-01

    Face routing has been adopted in wireless sensor networks (WSNs) where topological changes occur frequently or maintaining full network information is difficult. For message forwarding in networks, a planar graph is used to prevent looping, and because long edges are removed by planarization and the resulting planar graph is composed of short edges, and messages are forwarded along multiple nodes connected by them even though they can be forwarded directly. To solve this, face routing using information on all nodes within 2-hop range was adopted to forward messages directly to the farthest node within radio range. However, as the density of the nodes increases, network performance plunges because message transfer nodes receive and process increased node information. To deal with this problem, we propose a new face routing using the planar graphs of neighboring nodes to improve transfer efficiency. It forwards a message directly to the farthest neighbor and reduces loads and processing time by distributing network graph construction and planarization to the neighbors. It also decreases the amount of location information to be transmitted by sending information on the planar graph nodes rather than on all neighboring nodes. Simulation results show that it significantly improves transfer efficiency. PMID:29053623

  17. Effective Filtering of Query Results on Updated User Behavioral Profiles in Web Mining

    PubMed Central

    Sadesh, S.; Suganthe, R. C.

    2015-01-01

    Web with tremendous volume of information retrieves result for user related queries. With the rapid growth of web page recommendation, results retrieved based on data mining techniques did not offer higher performance filtering rate because relationships between user profile and queries were not analyzed in an extensive manner. At the same time, existing user profile based prediction in web data mining is not exhaustive in producing personalized result rate. To improve the query result rate on dynamics of user behavior over time, Hamilton Filtered Regime Switching User Query Probability (HFRS-UQP) framework is proposed. HFRS-UQP framework is split into two processes, where filtering and switching are carried out. The data mining based filtering in our research work uses the Hamilton Filtering framework to filter user result based on personalized information on automatic updated profiles through search engine. Maximized result is fetched, that is, filtered out with respect to user behavior profiles. The switching performs accurate filtering updated profiles using regime switching. The updating in profile change (i.e., switches) regime in HFRS-UQP framework identifies the second- and higher-order association of query result on the updated profiles. Experiment is conducted on factors such as personalized information search retrieval rate, filtering efficiency, and precision ratio. PMID:26221626

  18. Open Data, Jupyter Notebooks and Geospatial Data Standards Combined - Opening up large volumes of marine and climate data to other communities

    NASA Astrophysics Data System (ADS)

    Clements, O.; Siemen, S.; Wagemann, J.

    2017-12-01

    The EU-funded Earthserver-2 project aims to offer on-demand access to large volumes of environmental data (Earth Observation, Marine, Climate data and Planetary data) via the interface standard Web Coverage Service defined by the Open Geospatial Consortium. Providing access to data via OGC web services (e.g. WCS and WMS) has the potential to open up services to a wider audience, especially to users outside the respective communities. Especially WCS 2.0 with its processing extension Web Coverage Processing Service (WCPS) is highly beneficial to make large volumes accessible to non-expert communities. Users do not have to deal with custom community data formats, such as GRIB for the meteorological community, but can directly access the data in a format they are more familiar with, such as NetCDF, JSON or CSV. Data requests can further directly be integrated into custom processing routines and users are not required to download Gigabytes of data anymore. WCS supports trim (reduction of data extent) and slice (reduction of data dimension) operations on multi-dimensional data, providing users a very flexible on-demand access to the data. WCPS allows the user to craft queries to run on the data using a text-based query language, similar to SQL. These queries can be very powerful, e.g. condensing a three-dimensional data cube into its two-dimensional mean. However, the more processing-intensive the more complex the query. As part of the EarthServer-2 project, we developed a python library that helps users to generate complex WCPS queries with Python, a programming language they are more familiar with. The interactive presentation aims to give practical examples how users can benefit from two specific WCS services from the Marine and Climate community. Use-cases from the two communities will show different approaches to take advantage of a Web Coverage (Processing) Service. The entire content is available with Jupyter Notebooks, as they prove to be a highly beneficial tool to generate reproducible workflows for environmental data analysis.

  19. Optimizing Interactive Development of Data-Intensive Applications

    PubMed Central

    Interlandi, Matteo; Tetali, Sai Deep; Gulzar, Muhammad Ali; Noor, Joseph; Condie, Tyson; Kim, Miryung; Millstein, Todd

    2017-01-01

    Modern Data-Intensive Scalable Computing (DISC) systems are designed to process data through batch jobs that execute programs (e.g., queries) compiled from a high-level language. These programs are often developed interactively by posing ad-hoc queries over the base data until a desired result is generated. We observe that there can be significant overlap in the structure of these queries used to derive the final program. Yet, each successive execution of a slightly modified query is performed anew, which can significantly increase the development cycle. Vega is an Apache Spark framework that we have implemented for optimizing a series of similar Spark programs, likely originating from a development or exploratory data analysis session. Spark developers (e.g., data scientists) can leverage Vega to significantly reduce the amount of time it takes to re-execute a modified Spark program, reducing the overall time to market for their Big Data applications. PMID:28405637

  20. Modeling relief.

    PubMed

    Sumner, Walton; Xu, Jin Zhong; Roussel, Guy; Hagen, Michael D

    2007-10-11

    The American Board of Family Medicine deployed virtual patient simulations in 2004 to evaluate Diplomates' diagnostic and management skills. A previously reported dynamic process generates general symptom histories from time series data representing baseline values and reactions to medications. The simulator also must answer queries about details such as palliation and provocation. These responses often describe some recurring pattern, such as, "this medicine relieves my symptoms in a few minutes." The simulator can provide a detail stored as text, or it can evaluate a reference to a second query object. The second query object can generate details using a single Bayesian network to evaluate the effect of each drug in a virtual patient's medication list. A new medication option may not require redesign of the second query object if its implementation is consistent with related drugs. We expect this mechanism to maintain realistic responses to detail questions in complex simulations.

  1. Innovations in individual feature history management - The significance of feature-based temporal model

    USGS Publications Warehouse

    Choi, J.; Seong, J.C.; Kim, B.; Usery, E.L.

    2008-01-01

    A feature relies on three dimensions (space, theme, and time) for its representation. Even though spatiotemporal models have been proposed, they have principally focused on the spatial changes of a feature. In this paper, a feature-based temporal model is proposed to represent the changes of both space and theme independently. The proposed model modifies the ISO's temporal schema and adds new explicit temporal relationship structure that stores temporal topological relationship with the ISO's temporal primitives of a feature in order to keep track feature history. The explicit temporal relationship can enhance query performance on feature history by removing topological comparison during query process. Further, a prototype system has been developed to test a proposed feature-based temporal model by querying land parcel history in Athens, Georgia. The result of temporal query on individual feature history shows the efficiency of the explicit temporal relationship structure. ?? Springer Science+Business Media, LLC 2007.

  2. Using a data base management system for modelling SSME test history data

    NASA Technical Reports Server (NTRS)

    Abernethy, K.

    1985-01-01

    The usefulness of a data base management system (DBMS) for modelling historical test data for the complete series of static test firings for the Space Shuttle Main Engine (SSME) was assessed. From an analysis of user data base query requirements, it became clear that a relational DMBS which included a relationally complete query language would permit a model satisfying the query requirements. Representative models and sample queries are discussed. A list of environment-particular evaluation criteria for the desired DBMS was constructed; these criteria include requirements in the areas of user-interface complexity, program independence, flexibility, modifiability, and output capability. The evaluation process included the construction of several prototype data bases for user assessement. The systems studied, representing the three major DBMS conceptual models, were: MIRADS, a hierarchical system; DMS-1100, a CODASYL-based network system; ORACLE, a relational system; and DATATRIEVE, a relational-type system.

  3. Towards computational improvement of DNA database indexing and short DNA query searching.

    PubMed

    Stojanov, Done; Koceski, Sašo; Mileva, Aleksandra; Koceska, Nataša; Bande, Cveta Martinovska

    2014-09-03

    In order to facilitate and speed up the search of massive DNA databases, the database is indexed at the beginning, employing a mapping function. By searching through the indexed data structure, exact query hits can be identified. If the database is searched against an annotated DNA query, such as a known promoter consensus sequence, then the starting locations and the number of potential genes can be determined. This is particularly relevant if unannotated DNA sequences have to be functionally annotated. However, indexing a massive DNA database and searching an indexed data structure with millions of entries is a time-demanding process. In this paper, we propose a fast DNA database indexing and searching approach, identifying all query hits in the database, without having to examine all entries in the indexed data structure, limiting the maximum length of a query that can be searched against the database. By applying the proposed indexing equation, the whole human genome could be indexed in 10 hours on a personal computer, under the assumption that there is enough RAM to store the indexed data structure. Analysing the methodology proposed by Reneker, we observed that hits at starting positions [Formula: see text] are not reported, if the database is searched against a query shorter than [Formula: see text] nucleotides, such that [Formula: see text] is the length of the DNA database words being mapped and [Formula: see text] is the length of the query. A solution of this drawback is also presented.

  4. Python Winding Itself Around Datacubes: How to Access Massive Multi-Dimensional Arrays in a Pythonic Way

    NASA Astrophysics Data System (ADS)

    Merticariu, Vlad; Misev, Dimitar; Baumann, Peter

    2017-04-01

    While python has developed into the lingua franca in Data Science there is often a paradigm break when accessing specialized tools. In particular for one of the core data categories in science and engineering, massive multi-dimensional arrays, out-of-memory solutions typically employ their own, different models. We discuss this situation on the example of the scalable open-source array engine, rasdaman ("raster data manager") which offers access to and processing of Petascale multi-dimensional arrays through an SQL-style array query language, rasql. Such queries are executed in the server on a storage engine utilizing adaptive array partitioning and based on a processing engine implementing a "tile streaming" paradigm to allow processing of arrays massively larger than server RAM. The rasdaman QL has acted as blueprint for forthcoming ISO Array SQL and the Open Geospatial Consortium (OGC) geo analytics language, Web Coverage Processing Service, adopted in 2008. Not surprisingly, rasdaman is OGC and INSPIRE Reference Implementation for their "Big Earth Data" standards suite. Recently, rasdaman has been augmented with a python interface which allows to transparently interact with the database (credits go to Siddharth Shukla's Master Thesis at Jacobs University). Programmers do not need to know the rasdaman query language, as the operators are silently transformed, through lazy evaluation, into queries. Arrays delivered are likewise automatically transformed into their python representation. In the talk, the rasdaman concept will be illustrated with the help of large-scale real-life examples of operational satellite image and weather data services, and sample python code.

  5. Does a pear growl? Interference from semantic properties of orthographic neighbors.

    PubMed

    Pecher, Diane; de Rooij, Jimmy; Zeelenberg, René

    2009-07-01

    In this study, we investigated whether semantic properties of a word's orthographic neighbors are activated during visual word recognition. In two experiments, words were presented with a property that was not true for the word itself. We manipulated whether the property was true for an orthographic neighbor of the word. Our results showed that rejection of the property was slower and less accurate when the property was true for a neighbor than when the property was not true for a neighbor. These findings indicate that semantic information is activated before orthographic processing is finished. The present results are problematic for the links model (Forster, 2006; Forster & Hector, 2002) that was recently proposed in order to bring form-first models of visual word recognition into line with previously reported findings (Forster & Hector, 2002; Pecher, Zeelenberg, & Wagenmakers, 2005; Rodd, 2004).

  6. Performance Modeling in CUDA Streams - A Means for High-Throughput Data Processing.

    PubMed

    Li, Hao; Yu, Di; Kumar, Anand; Tu, Yi-Cheng

    2014-10-01

    Push-based database management system (DBMS) is a new type of data processing software that streams large volume of data to concurrent query operators. The high data rate of such systems requires large computing power provided by the query engine. In our previous work, we built a push-based DBMS named G-SDMS to harness the unrivaled computational capabilities of modern GPUs. A major design goal of G-SDMS is to support concurrent processing of heterogenous query processing operations and enable resource allocation among such operations. Understanding the performance of operations as a result of resource consumption is thus a premise in the design of G-SDMS. With NVIDIA's CUDA framework as the system implementation platform, we present our recent work on performance modeling of CUDA kernels running concurrently under a runtime mechanism named CUDA stream . Specifically, we explore the connection between performance and resource occupancy of compute-bound kernels and develop a model that can predict the performance of such kernels. Furthermore, we provide an in-depth anatomy of the CUDA stream mechanism and summarize the main kernel scheduling disciplines in it. Our models and derived scheduling disciplines are verified by extensive experiments using synthetic and real-world CUDA kernels.

  7. Partner switching promotes cooperation among myopic agents on a geographical plane

    NASA Astrophysics Data System (ADS)

    Li, Yixiao; Min, Yong; Zhu, Xiaodong; Cao, Jie

    2013-02-01

    We study the coupling dynamics between the evolution of cooperation and the evolution of partnership network on a geographical plane. While agents play networked prisoner’s dilemma games, they can dynamically adjust their partnerships based on local information about reputation. We incorporate geographical features into the process of the agent’s partner switching and investigate the corresponding effects. At each time step of the coevolution, a random agent can either update his strategy by imitation or adjust his partnership by switching from the lowest reputation partner to the highest reputation one among his neighbors. We differentiate two types of neighbors: geographical neighbors (i.e., the set of agents who are close to the focal agent in terms of geographical distance) and connectivity neighbors (i.e., the set of agents who are close to the focal agent in the partnership network in terms of geodesic distance). We find that switching to either geographical neighbors or connectivity neighbors enhances cooperation greatly in a wide parameter range. Cooperation can be favored in a much stricter condition when agents switch to connectivity neighbors more frequently. However, an increasing tendency of reconnecting to geographical neighbors shortens the geographical distance between a pair of partners on average. When agents consider the cost of geographical distance in adjusting the partnership, they are prone to reconnect to geographical neighbors.

  8. Fast Demand Forecast of Electric Vehicle Charging Stations for Cell Phone Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majidpour, Mostafa; Qiu, Charlie; Chung, Ching-Yen

    This paper describes the core cellphone application algorithm which has been implemented for the prediction of energy consumption at Electric Vehicle (EV) Charging Stations at UCLA. For this interactive user application, the total time of accessing database, processing the data and making the prediction, needs to be within a few seconds. We analyze four relatively fast Machine Learning based time series prediction algorithms for our prediction engine: Historical Average, kNearest Neighbor, Weighted k-Nearest Neighbor, and Lazy Learning. The Nearest Neighbor algorithm (k Nearest Neighbor with k=1) shows better performance and is selected to be the prediction algorithm implemented for themore » cellphone application. Two applications have been designed on top of the prediction algorithm: one predicts the expected available energy at the station and the other one predicts the expected charging finishing time. The total time, including accessing the database, data processing, and prediction is about one second for both applications.« less

  9. Hybrid Collaborative Learning for Classification and Clustering in Sensor Networks

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Sosnowski, Scott; Lane, Terran

    2012-01-01

    Traditionally, nodes in a sensor network simply collect data and then pass it on to a centralized node that archives, distributes, and possibly analyzes the data. However, analysis at the individual nodes could enable faster detection of anomalies or other interesting events as well as faster responses, such as sending out alerts or increasing the data collection rate. There is an additional opportunity for increased performance if learners at individual nodes can communicate with their neighbors. In previous work, methods were developed by which classification algorithms deployed at sensor nodes can communicate information about event labels to each other, building on prior work with co-training, self-training, and active learning. The idea of collaborative learning was extended to function for clustering algorithms as well, similar to ideas from penta-training and consensus clustering. However, collaboration between these learner types had not been explored. A new protocol was developed by which classifiers and clusterers can share key information about their observations and conclusions as they learn. This is an active collaboration in which learners of either type can query their neighbors for information that they then use to re-train or re-learn the concept they are studying. The protocol also supports broadcasts from the classifiers and clusterers to the rest of the network to announce new discoveries. Classifiers observe an event and assign it a label (type). Clusterers instead group observations into clusters without assigning them a label, and they collaborate in terms of pairwise constraints between two events [same-cluster (mustlink) or different-cluster (cannot-link)]. Fundamentally, these two learner types speak different languages. To bridge this gap, the new communication protocol provides four types of exchanges: hybrid queries for information, hybrid "broadcasts" of learned information, each specified for classifiers-to-clusterers, and clusterers-to-classifiers. The new capability has the potential to greatly expand the in situ analysis abilities of sensor networks. Classifiers seeking to categorize incoming data into different types of events can operate in tandem with clusterers that are sensitive to the occurrence of new kinds of events not known to the classifiers. In contrast to current approaches that treat these operations as independent components, a hybrid collaborative learning system can enable them to learn from each other.

  10. MO-A-BRD-09: A Data-Mining Algorithm for Large Scale Analysis of Dose-Outcome Relationships in a Database of Irradiated Head-And-Neck (HN) Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, SP; Quon, H; Kiess, AP

    Purpose: To develop a framework for automatic extraction of clinically meaningful dosimetric-outcome relationships from an in-house, analytic oncology database. Methods: Dose-volume histograms (DVH) and clinical outcome-related structured data elements have been routinely stored to our database for 513 HN cancer patients treated from 2007 to 2014. SQL queries were developed to extract outcomes that had been assessed for at least 100 patients, as well as DVH curves for organs-at-risk (OAR) that were contoured for at least 100 patients. DVH curves for paired OAR (e.g., left and right parotids) were automatically combined and included as additional structures for analysis. For eachmore » OAR-outcome combination, DVH dose points, D(V{sub t}), at a series of normalized volume thresholds, V{sub t}=[0.01,0.99], were stratified into two groups based on outcomes after treatment completion. The probability, P[D(V{sub t})], of an outcome was modeled at each V{sub t} by logistic regression. Notable combinations, defined as having P[D(V{sub t})] increase by at least 5% per Gy (p<0.05), were further evaluated for clinical relevance using a custom graphical interface. Results: A total of 57 individual and combined structures and 115 outcomes were queried, resulting in over 6,500 combinations for analysis. Of these, 528 combinations met the 5%/Gy requirement, with further manual inspection revealing a number of reasonable models based on either reported literature or proximity between neighboring OAR. The data mining algorithm confirmed the following well-known toxicity/outcome relationships: dysphagia/larynx, voice changes/larynx, esophagitis/esophagus, xerostomia/combined parotids, and mucositis/oral mucosa. Other notable relationships included dysphagia/pharyngeal constrictors, nausea/brainstem, nausea/spinal cord, weight-loss/mandible, and weight-loss/combined parotids. Conclusion: Our database platform has enabled large-scale analysis of dose-outcome relationships. The current data-mining framework revealed both known and novel dosimetric and clinical relationships, underscoring the potential utility of this analytic approach. Multivariate models may be necessary to further evaluate the complex relationship between neighboring OARs and observed outcomes. This research was supported through collaborations with Elekta, Philips, and Toshiba.« less

  11. A natural language interface plug-in for cooperative query answering in biological databases.

    PubMed

    Jamil, Hasan M

    2012-06-11

    One of the many unique features of biological databases is that the mere existence of a ground data item is not always a precondition for a query response. It may be argued that from a biologist's standpoint, queries are not always best posed using a structured language. By this we mean that approximate and flexible responses to natural language like queries are well suited for this domain. This is partly due to biologists' tendency to seek simpler interfaces and partly due to the fact that questions in biology involve high level concepts that are open to interpretations computed using sophisticated tools. In such highly interpretive environments, rigidly structured databases do not always perform well. In this paper, our goal is to propose a semantic correspondence plug-in to aid natural language query processing over arbitrary biological database schema with an aim to providing cooperative responses to queries tailored to users' interpretations. Natural language interfaces for databases are generally effective when they are tuned to the underlying database schema and its semantics. Therefore, changes in database schema become impossible to support, or a substantial reorganization cost must be absorbed to reflect any change. We leverage developments in natural language parsing, rule languages and ontologies, and data integration technologies to assemble a prototype query processor that is able to transform a natural language query into a semantically equivalent structured query over the database. We allow knowledge rules and their frequent modifications as part of the underlying database schema. The approach we adopt in our plug-in overcomes some of the serious limitations of many contemporary natural language interfaces, including support for schema modifications and independence from underlying database schema. The plug-in introduced in this paper is generic and facilitates connecting user selected natural language interfaces to arbitrary databases using a semantic description of the intended application. We demonstrate the feasibility of our approach with a practical example.

  12. EmptyHeaded: A Relational Engine for Graph Processing

    PubMed Central

    Aberger, Christopher R.; Tu, Susan; Olukotun, Kunle; Ré, Christopher

    2016-01-01

    There are two types of high-performance graph processing engines: low- and high-level engines. Low-level engines (Galois, PowerGraph, Snap) provide optimized data structures and computation models but require users to write low-level imperative code, hence ensuring that efficiency is the burden of the user. In high-level engines, users write in query languages like datalog (SociaLite) or SQL (Grail). High-level engines are easier to use but are orders of magnitude slower than the low-level graph engines. We present EmptyHeaded, a high-level engine that supports a rich datalog-like query language and achieves performance comparable to that of low-level engines. At the core of EmptyHeaded’s design is a new class of join algorithms that satisfy strong theoretical guarantees but have thus far not achieved performance comparable to that of specialized graph processing engines. To achieve high performance, EmptyHeaded introduces a new join engine architecture, including a novel query optimizer and data layouts that leverage single-instruction multiple data (SIMD) parallelism. With this architecture, EmptyHeaded outperforms high-level approaches by up to three orders of magnitude on graph pattern queries, PageRank, and Single-Source Shortest Paths (SSSP) and is an order of magnitude faster than many low-level baselines. We validate that EmptyHeaded competes with the best-of-breed low-level engine (Galois), achieving comparable performance on PageRank and at most 3× worse performance on SSSP. PMID:28077912

  13. Small numbers, disclosure risk, security, and reliability issues in Web-based data query systems.

    PubMed

    Rudolph, Barbara A; Shah, Gulzar H; Love, Denise

    2006-01-01

    This article describes the process for developing consensus guidelines and tools for releasing public health data via the Web and highlights approaches leading agencies have taken to balance disclosure risk with public dissemination of reliable health statistics. An agency's choice of statistical methods for improving the reliability of released data for Web-based query systems is based upon a number of factors, including query system design (dynamic analysis vs preaggregated data and tables), population size, cell size, data use, and how data will be supplied to users. The article also describes those efforts that are necessary to reduce the risk of disclosure of an individual's protected health information.

  14. Dynamic analysis environment for nuclear forensic analyses

    NASA Astrophysics Data System (ADS)

    Stork, C. L.; Ummel, C. C.; Stuart, D. S.; Bodily, S.; Goldblum, B. L.

    2017-01-01

    A Dynamic Analysis Environment (DAE) software package is introduced to facilitate group inclusion/exclusion method testing, evaluation and comparison for pre-detonation nuclear forensics applications. Employing DAE, the multivariate signatures of a questioned material can be compared to the signatures for different, known groups, enabling the linking of the questioned material to its potential process, location, or fabrication facility. Advantages of using DAE for group inclusion/exclusion include built-in query tools for retrieving data of interest from a database, the recording and documentation of all analysis steps, a clear visualization of the analysis steps intelligible to a non-expert, and the ability to integrate analysis tools developed in different programming languages. Two group inclusion/exclusion methods are implemented in DAE: principal component analysis, a parametric feature extraction method, and k nearest neighbors, a nonparametric pattern recognition method. Spent Fuel Isotopic Composition (SFCOMPO), an open source international database of isotopic compositions for spent nuclear fuels (SNF) from 14 reactors, is used to construct PCA and KNN models for known reactor groups, and 20 simulated SNF samples are utilized in evaluating the performance of these group inclusion/exclusion models. For all 20 simulated samples, PCA in conjunction with the Q statistic correctly excludes a large percentage of reactor groups and correctly includes the true reactor of origination. Employing KNN, 14 of the 20 simulated samples are classified to their true reactor of origination.

  15. Array Processing in the Cloud: the rasdaman Approach

    NASA Astrophysics Data System (ADS)

    Merticariu, Vlad; Dumitru, Alex

    2015-04-01

    The multi-dimensional array data model is gaining more and more attention when dealing with Big Data challenges in a variety of domains such as climate simulations, geographic information systems, medical imaging or astronomical observations. Solutions provided by classical Big Data tools such as Key-Value Stores and MapReduce, as well as traditional relational databases, proved to be limited in domains associated with multi-dimensional data. This problem has been addressed by the field of array databases, in which systems provide database services for raster data, without imposing limitations on the number of dimensions that a dataset can have. Examples of datasets commonly handled by array databases include 1-dimensional sensor data, 2-D satellite imagery, 3-D x/y/t image time series as well as x/y/z geophysical voxel data, and 4-D x/y/z/t weather data. And this can grow as large as simulations of the whole universe when it comes to astrophysics. rasdaman is a well established array database, which implements many optimizations for dealing with large data volumes and operation complexity. Among those, the latest one is intra-query parallelization support: a network of machines collaborate for answering a single array database query, by dividing it into independent sub-queries sent to different servers. This enables massive processing speed-ups, which promise solutions to research challenges on multi-Petabyte data cubes. There are several correlated factors which influence the speedup that intra-query parallelisation brings: the number of servers, the capabilities of each server, the quality of the network, the availability of the data to the server that needs it in order to compute the result and many more. In the effort of adapting the engine to cloud processing patterns, two main components have been identified: one that handles communication and gathers information about the arrays sitting on every server, and a processing unit responsible with dividing work among available nodes and executing operations on local data. The federation daemon collects and stores statistics from the other network nodes and provides real time updates about local changes. Information exchanged includes available datasets, CPU load and memory usage per host. The processing component is represented by the rasdaman server. Using information from the federation daemon it breaks queries into subqueries to be executed on peer nodes, ships them, and assembles the intermediate results. Thus, we define a rasdaman network node as a pair of a federation daemon and a rasdaman server. Any node can receive a query and will subsequently act as this query's dispatcher, so all peers are at the same level and there is no single point of failure. Should a node become inaccessible then the peers will recognize this and will not any longer consider this peer for distribution. Conversely, a peer at any time can join the network. To assess the feasibility of our approach, we deployed a rasdaman network in the Amazon Elastic Cloud environment on 1001 nodes, and observed that this feature can greatly increase the performance and scalability of the system, offering a large throughput of processed data.

  16. A Component-Based Diffusion Model With Structural Diversity for Social Networks.

    PubMed

    Qing Bao; Cheung, William K; Yu Zhang; Jiming Liu

    2017-04-01

    Diffusion on social networks refers to the process where opinions are spread via the connected nodes. Given a set of observed information cascades, one can infer the underlying diffusion process for social network analysis. The independent cascade model (IC model) is a widely adopted diffusion model where a node is assumed to be activated independently by any one of its neighbors. In reality, how a node will be activated also depends on how its neighbors are connected and activated. For instance, the opinions from the neighbors of the same social group are often similar and thus redundant. In this paper, we extend the IC model by considering that: 1) the information coming from the connected neighbors are similar and 2) the underlying redundancy can be modeled using a dynamic structural diversity measure of the neighbors. Our proposed model assumes each node to be activated independently by different communities (or components) of its parent nodes, each weighted by its effective size. An expectation maximization algorithm is derived to infer the model parameters. We compare the performance of the proposed model with the basic IC model and its variants using both synthetic data sets and a real-world data set containing news stories and Web blogs. Our empirical results show that incorporating the community structure of neighbors and the structural diversity measure into the diffusion model significantly improves the accuracy of the model, at the expense of only a reasonable increase in run-time.

  17. SeqWare Query Engine: storing and searching sequence data in the cloud.

    PubMed

    O'Connor, Brian D; Merriman, Barry; Nelson, Stanley F

    2010-12-21

    Since the introduction of next-generation DNA sequencers the rapid increase in sequencer throughput, and associated drop in costs, has resulted in more than a dozen human genomes being resequenced over the last few years. These efforts are merely a prelude for a future in which genome resequencing will be commonplace for both biomedical research and clinical applications. The dramatic increase in sequencer output strains all facets of computational infrastructure, especially databases and query interfaces. The advent of cloud computing, and a variety of powerful tools designed to process petascale datasets, provide a compelling solution to these ever increasing demands. In this work, we present the SeqWare Query Engine which has been created using modern cloud computing technologies and designed to support databasing information from thousands of genomes. Our backend implementation was built using the highly scalable, NoSQL HBase database from the Hadoop project. We also created a web-based frontend that provides both a programmatic and interactive query interface and integrates with widely used genome browsers and tools. Using the query engine, users can load and query variants (SNVs, indels, translocations, etc) with a rich level of annotations including coverage and functional consequences. As a proof of concept we loaded several whole genome datasets including the U87MG cell line. We also used a glioblastoma multiforme tumor/normal pair to both profile performance and provide an example of using the Hadoop MapReduce framework within the query engine. This software is open source and freely available from the SeqWare project (http://seqware.sourceforge.net). The SeqWare Query Engine provided an easy way to make the U87MG genome accessible to programmers and non-programmers alike. This enabled a faster and more open exploration of results, quicker tuning of parameters for heuristic variant calling filters, and a common data interface to simplify development of analytical tools. The range of data types supported, the ease of querying and integrating with existing tools, and the robust scalability of the underlying cloud-based technologies make SeqWare Query Engine a nature fit for storing and searching ever-growing genome sequence datasets.

  18. SeqWare Query Engine: storing and searching sequence data in the cloud

    PubMed Central

    2010-01-01

    Background Since the introduction of next-generation DNA sequencers the rapid increase in sequencer throughput, and associated drop in costs, has resulted in more than a dozen human genomes being resequenced over the last few years. These efforts are merely a prelude for a future in which genome resequencing will be commonplace for both biomedical research and clinical applications. The dramatic increase in sequencer output strains all facets of computational infrastructure, especially databases and query interfaces. The advent of cloud computing, and a variety of powerful tools designed to process petascale datasets, provide a compelling solution to these ever increasing demands. Results In this work, we present the SeqWare Query Engine which has been created using modern cloud computing technologies and designed to support databasing information from thousands of genomes. Our backend implementation was built using the highly scalable, NoSQL HBase database from the Hadoop project. We also created a web-based frontend that provides both a programmatic and interactive query interface and integrates with widely used genome browsers and tools. Using the query engine, users can load and query variants (SNVs, indels, translocations, etc) with a rich level of annotations including coverage and functional consequences. As a proof of concept we loaded several whole genome datasets including the U87MG cell line. We also used a glioblastoma multiforme tumor/normal pair to both profile performance and provide an example of using the Hadoop MapReduce framework within the query engine. This software is open source and freely available from the SeqWare project (http://seqware.sourceforge.net). Conclusions The SeqWare Query Engine provided an easy way to make the U87MG genome accessible to programmers and non-programmers alike. This enabled a faster and more open exploration of results, quicker tuning of parameters for heuristic variant calling filters, and a common data interface to simplify development of analytical tools. The range of data types supported, the ease of querying and integrating with existing tools, and the robust scalability of the underlying cloud-based technologies make SeqWare Query Engine a nature fit for storing and searching ever-growing genome sequence datasets. PMID:21210981

  19. Data Warehousing at the Marine Corps Institute

    DTIC Science & Technology

    2003-09-01

    applications exists for several reasons. It allows for data to be extracted from many sources, by “cleaned”, and stored into one large data facility ...exists. Key individuals at MCI, or the so called “knowledge workers” will be educated , and try to brainstorm possible data relationships that can...They include querying and reporting, On-Line Analytical Processing (OLAP) and statistical analysis, and data mining. 1. Queries and Reports The

  20. Comment on "flexible protocol for quantum private query based on B92 protocol"

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Shi-Bin; Zhu, Jing-Min

    2017-03-01

    In a recent paper (Quantum Inf Process 13:805-813, 2014), a flexible quantum private query (QPQ) protocol based on B92 protocol is presented. Here we point out that the B92-based QPQ protocol is insecure in database security when the channel has loss, that is, the user (Alice) will know more records in Bob's database compared with she has bought.

  1. A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sutanay; Holder, Larry; Chin, George

    2015-02-02

    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving net- works spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with promi- nent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphsmore » in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a “Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named “Relative Selectivity" that is used to se- lect between different query processing strategies. Our experiments performed on real online news, network traffic stream and a syn- thetic social network benchmark demonstrate 10-100x speedups over selectivity agnostic approaches.« less

  2. A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sutanay; Holder, Larry; Chin, George

    2015-05-27

    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in amore » continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a ``Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named ``Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over non-incremental, selectivity agnostic approaches.« less

  3. Ontology-Driven Provenance Management in eScience: An Application in Parasite Research

    NASA Astrophysics Data System (ADS)

    Sahoo, Satya S.; Weatherly, D. Brent; Mutharaju, Raghava; Anantharam, Pramod; Sheth, Amit; Tarleton, Rick L.

    Provenance, from the French word "provenir", describes the lineage or history of a data entity. Provenance is critical information in scientific applications to verify experiment process, validate data quality and associate trust values with scientific results. Current industrial scale eScience projects require an end-to-end provenance management infrastructure. This infrastructure needs to be underpinned by formal semantics to enable analysis of large scale provenance information by software applications. Further, effective analysis of provenance information requires well-defined query mechanisms to support complex queries over large datasets. This paper introduces an ontology-driven provenance management infrastructure for biology experiment data, as part of the Semantic Problem Solving Environment (SPSE) for Trypanosoma cruzi (T.cruzi). This provenance infrastructure, called T.cruzi Provenance Management System (PMS), is underpinned by (a) a domain-specific provenance ontology called Parasite Experiment ontology, (b) specialized query operators for provenance analysis, and (c) a provenance query engine. The query engine uses a novel optimization technique based on materialized views called materialized provenance views (MPV) to scale with increasing data size and query complexity. This comprehensive ontology-driven provenance infrastructure not only allows effective tracking and management of ongoing experiments in the Tarleton Research Group at the Center for Tropical and Emerging Global Diseases (CTEGD), but also enables researchers to retrieve the complete provenance information of scientific results for publication in literature.

  4. Melody Alignment and Similarity Metric for Content-Based Music Retrieval

    NASA Astrophysics Data System (ADS)

    Zhu, Yongwei; Kankanhalli, Mohan S.

    2003-01-01

    Music query-by-humming has attracted much research interest recently. It is a challenging problem since the hummed query inevitably contains much variation and inaccuracy. Furthermore, the similarity computation between the query tune and the reference melody is not easy due to the difficulty in ensuring proper alignment. This is because the query tune can be rendered at an unknown speed and it is usually an arbitrary subsequence of the target reference melody. Many of the previous methods, which adopt note segmentation and string matching, suffer drastically from the errors in the note segmentation, which affects retrieval accuracy and efficiency. Some methods solve the alignment issue by controlling the speed of the articulation of queries, which is inconvenient because it forces users to hum along a metronome. Some other techniques introduce arbitrary rescaling in time but this is computationally very inefficient. In this paper, we introduce a melody alignment technique, which addresses the robustness and efficiency issues. We also present a new melody similarity metric, which is performed directly on melody contours of the query data. This approach cleanly separates the alignment and similarity measurement in the search process. We show how to robustly and efficiently align the query melody with the reference melodies and how to measure the similarity subsequently. We have carried out extensive experiments. Our melody alignment method can reduce the matching candidate to 1.7% with 95% correct alignment rate. The overall retrieval system achieved 80% recall in the top 10 rank list. The results demonstrate the robustness and effectiveness the proposed methods.

  5. Agile Datacube Analytics (not just) for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Misev, Dimitar; Merticariu, Vlad; Baumann, Peter

    2017-04-01

    Metadata are considered small, smart, and queryable; data, on the other hand, are known as big, clumsy, hard to analyze. Consequently, gridded data - such as images, image timeseries, and climate datacubes - are managed separately from the metadata, and with different, restricted retrieval capabilities. One reason for this silo approach is that databases, while good at tables, XML hierarchies, RDF graphs, etc., traditionally do not support multi-dimensional arrays well. This gap is being closed by Array Databases which extend the SQL paradigm of "any query, anytime" to NoSQL arrays. They introduce semantically rich modelling combined with declarative, high-level query languages on n-D arrays. On Server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. This way, they offer new vistas in flexibility, scalability, performance, and data integration. In this respect, the forthcoming ISO SQL extension MDA ("Multi-dimensional Arrays") will be a game changer in Big Data Analytics. We introduce concepts and opportunities through the example of rasdaman ("raster data manager") which in fact has pioneered the field of Array Databases and forms the blueprint for ISO SQL/MDA and further Big Data standards, such as OGC WCPS for querying spatio-temporal Earth datacubes. With operational installations exceeding 140 TB queries have been split across more than one thousand cloud nodes, using CPUs as well as GPUs. Installations can easily be mashed up securely, enabling large-scale location-transparent query processing in federations. Federation queries have been demonstrated live at EGU 2016 spanning Europe and Australia in the context of the intercontinental EarthServer initiative, visualized through NASA WorldWind.

  6. Agile Datacube Analytics (not just) for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Baumann, P.

    2016-12-01

    Metadata are considered small, smart, and queryable; data, on the other hand, are known as big, clumsy, hard to analyze. Consequently, gridded data - such as images, image timeseries, and climate datacubes - are managed separately from the metadata, and with different, restricted retrieval capabilities. One reason for this silo approach is that databases, while good at tables, XML hierarchies, RDF graphs, etc., traditionally do not support multi-dimensional arrays well.This gap is being closed by Array Databases which extend the SQL paradigm of "any query, anytime" to NoSQL arrays. They introduce semantically rich modelling combined with declarative, high-level query languages on n-D arrays. On Server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. This way, they offer new vistas in flexibility, scalability, performance, and data integration. In this respect, the forthcoming ISO SQL extension MDA ("Multi-dimensional Arrays") will be a game changer in Big Data Analytics.We introduce concepts and opportunities through the example of rasdaman ("raster data manager") which in fact has pioneered the field of Array Databases and forms the blueprint for ISO SQL/MDA and further Big Data standards, such as OGC WCPS for querying spatio-temporal Earth datacubes. With operational installations exceeding 140 TB queries have been split across more than one thousand cloud nodes, using CPUs as well as GPUs. Installations can easily be mashed up securely, enabling large-scale location-transparent query processing in federations. Federation queries have been demonstrated live at EGU 2016 spanning Europe and Australia in the context of the intercontinental EarthServer initiative, visualized through NASA WorldWind.

  7. Improve Data Mining and Knowledge Discovery Through the Use of MatLab

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali; Martin, Dawn (Elliott); Beil, Robert

    2011-01-01

    Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(R) (MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and its enormous availability of built in functionalities and toolboxes make it suitable to perform numerical computations and simulations as well as a data mining tool. Engineers and scientists can take advantage of the readily available functions/toolboxes to gain wider insight in their perspective data mining experiments.

  8. Improve Data Mining and Knowledge Discovery through the use of MatLab

    NASA Technical Reports Server (NTRS)

    Shaykahian, Gholan Ali; Martin, Dawn Elliott; Beil, Robert

    2011-01-01

    Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(TradeMark)(MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and its enormous availability of built in functionalities and toolboxes make it suitable to perform numerical computations and simulations as well as a data mining tool. Engineers and scientists can take advantage of the readily available functions/toolboxes to gain wider insight in their perspective data mining experiments.

  9. Data Management and Site-Visit Monitoring of the Multi-Center Registry in the Korean Neonatal Network.

    PubMed

    Choi, Chang Won; Park, Moon Sung

    2015-10-01

    The Korean Neonatal Network (KNN), a nationwide prospective registry of very-low-birth-weight (VLBW, < 1,500 g at birth) infants, was launched in April 2013. Data management (DM) and site-visit monitoring (SVM) were crucial in ensuring the quality of the data collected from 55 participating hospitals across the country on 116 clinical variables. We describe the processes and results of DM and SVM performed during the establishment stage of the registry. The DM procedure included automated proof checks, electronic data validation, query creation, query resolution, and revalidation of the corrected data. SVM included SVM team organization, identification of unregistered cases, source document verification, and post-visit report production. By March 31, 2015, 4,063 VLBW infants were registered and 1,693 queries were produced. Of these, 1,629 queries were resolved and 64 queries remain unresolved. By November 28, 2014, 52 participating hospitals were visited, with 136 site-visits completed since April 2013. Each participating hospital was visited biannually. DM and SVM were performed to ensure the quality of the data collected for the KNN registry. Our experience with DM and SVM can be applied for similar multi-center registries with large numbers of participating centers.

  10. Asynchronous Data Retrieval from an Object-Oriented Database

    NASA Astrophysics Data System (ADS)

    Gilbert, Jonathan P.; Bic, Lubomir

    We present an object-oriented semantic database model which, similar to other object-oriented systems, combines the virtues of four concepts: the functional data model, a property inheritance hierarchy, abstract data types and message-driven computation. The main emphasis is on the last of these four concepts. We describe generic procedures that permit queries to be processed in a purely message-driven manner. A database is represented as a network of nodes and directed arcs, in which each node is a logical processing element, capable of communicating with other nodes by exchanging messages. This eliminates the need for shared memory and for centralized control during query processing. Hence, the model is suitable for implementation on a multiprocessor computer architecture, consisting of large numbers of loosely coupled processing elements.

  11. TopFed: TCGA tailored federated query processing and linking to LOD.

    PubMed

    Saleem, Muhammad; Padmanabhuni, Shanmukha S; Ngomo, Axel-Cyrille Ngonga; Iqbal, Aftab; Almeida, Jonas S; Decker, Stefan; Deus, Helena F

    2014-01-01

    The Cancer Genome Atlas (TCGA) is a multidisciplinary, multi-institutional effort to catalogue genetic mutations responsible for cancer using genome analysis techniques. One of the aims of this project is to create a comprehensive and open repository of cancer related molecular analysis, to be exploited by bioinformaticians towards advancing cancer knowledge. However, devising bioinformatics applications to analyse such large dataset is still challenging, as it often requires downloading large archives and parsing the relevant text files. Therefore, it is making it difficult to enable virtual data integration in order to collect the critical co-variates necessary for analysis. We address these issues by transforming the TCGA data into the Semantic Web standard Resource Description Format (RDF), link it to relevant datasets in the Linked Open Data (LOD) cloud and further propose an efficient data distribution strategy to host the resulting 20.4 billion triples data via several SPARQL endpoints. Having the TCGA data distributed across multiple SPARQL endpoints, we enable biomedical scientists to query and retrieve information from these SPARQL endpoints by proposing a TCGA tailored federated SPARQL query processing engine named TopFed. We compare TopFed with a well established federation engine FedX in terms of source selection and query execution time by using 10 different federated SPARQL queries with varying requirements. Our evaluation results show that TopFed selects on average less than half of the sources (with 100% recall) with query execution time equal to one third to that of FedX. With TopFed, we aim to offer biomedical scientists a single-point-of-access through which distributed TCGA data can be accessed in unison. We believe the proposed system can greatly help researchers in the biomedical domain to carry out their research effectively with TCGA as the amount and diversity of data exceeds the ability of local resources to handle its retrieval and parsing.

  12. ClimateSpark: An In-memory Distributed Computing Framework for Big Climate Data Analytics

    NASA Astrophysics Data System (ADS)

    Hu, F.; Yang, C. P.; Duffy, D.; Schnase, J. L.; Li, Z.

    2016-12-01

    Massive array-based climate data is being generated from global surveillance systems and model simulations. They are widely used to analyze the environment problems, such as climate changes, natural hazards, and public health. However, knowing the underlying information from these big climate datasets is challenging due to both data- and computing- intensive issues in data processing and analyzing. To tackle the challenges, this paper proposes ClimateSpark, an in-memory distributed computing framework to support big climate data processing. In ClimateSpark, the spatiotemporal index is developed to enable Apache Spark to treat the array-based climate data (e.g. netCDF4, HDF4) as native formats, which are stored in Hadoop Distributed File System (HDFS) without any preprocessing. Based on the index, the spatiotemporal query services are provided to retrieve dataset according to a defined geospatial and temporal bounding box. The data subsets will be read out, and a data partition strategy will be applied to equally split the queried data to each computing node, and store them in memory as climateRDDs for processing. By leveraging Spark SQL and User Defined Function (UDFs), the climate data analysis operations can be conducted by the intuitive SQL language. ClimateSpark is evaluated by two use cases using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. One use case is to conduct the spatiotemporal query and visualize the subset results in animation; the other one is to compare different climate model outputs using Taylor-diagram service. Experimental results show that ClimateSpark can significantly accelerate data query and processing, and enable the complex analysis services served in the SQL-style fashion.

  13. DCMS: A data analytics and management system for molecular simulation.

    PubMed

    Kumar, Anand; Grupcev, Vladimir; Berrada, Meryem; Fogarty, Joseph C; Tu, Yi-Cheng; Zhu, Xingquan; Pandit, Sagar A; Xia, Yuni

    Molecular Simulation (MS) is a powerful tool for studying physical/chemical features of large systems and has seen applications in many scientific and engineering domains. During the simulation process, the experiments generate a very large number of atoms and intend to observe their spatial and temporal relationships for scientific analysis. The sheer data volumes and their intensive interactions impose significant challenges for data accessing, managing, and analysis. To date, existing MS software systems fall short on storage and handling of MS data, mainly because of the missing of a platform to support applications that involve intensive data access and analytical process. In this paper, we present the database-centric molecular simulation (DCMS) system our team developed in the past few years. The main idea behind DCMS is to store MS data in a relational database management system (DBMS) to take advantage of the declarative query interface ( i.e. , SQL), data access methods, query processing, and optimization mechanisms of modern DBMSs. A unique challenge is to handle the analytical queries that are often compute-intensive. For that, we developed novel indexing and query processing strategies (including algorithms running on modern co-processors) as integrated components of the DBMS. As a result, researchers can upload and analyze their data using efficient functions implemented inside the DBMS. Index structures are generated to store analysis results that may be interesting to other users, so that the results are readily available without duplicating the analysis. We have developed a prototype of DCMS based on the PostgreSQL system and experiments using real MS data and workload show that DCMS significantly outperforms existing MS software systems. We also used it as a platform to test other data management issues such as security and compression.

  14. A multilevel-skin neighbor list algorithm for molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Zhao, Mingcan; Hou, Chaofeng; Ge, Wei

    2018-01-01

    Searching of the interaction pairs and organization of the interaction processes are important steps in molecular dynamics (MD) algorithms and are critical to the overall efficiency of the simulation. Neighbor lists are widely used for these steps, where thicker skin can reduce the frequency of list updating but is discounted by more computation in distance check for the particle pairs. In this paper, we propose a new neighbor-list-based algorithm with a precisely designed multilevel skin which can reduce unnecessary computation on inter-particle distances. The performance advantages over traditional methods are then analyzed against the main simulation parameters on Intel CPUs and MICs (many integrated cores), and are clearly demonstrated. The algorithm can be generalized for various discrete simulations using neighbor lists.

  15. A multi-site cognitive task analysis for biomedical query mediation.

    PubMed

    Hruby, Gregory W; Rasmussen, Luke V; Hanauer, David; Patel, Vimla L; Cimino, James J; Weng, Chunhua

    2016-09-01

    To apply cognitive task analyses of the Biomedical query mediation (BQM) processes for EHR data retrieval at multiple sites towards the development of a generic BQM process model. We conducted semi-structured interviews with eleven data analysts from five academic institutions and one government agency, and performed cognitive task analyses on their BQM processes. A coding schema was developed through iterative refinement and used to annotate the interview transcripts. The annotated dataset was used to reconstruct and verify each BQM process and to develop a harmonized BQM process model. A survey was conducted to evaluate the face and content validity of this harmonized model. The harmonized process model is hierarchical, encompassing tasks, activities, and steps. The face validity evaluation concluded the model to be representative of the BQM process. In the content validity evaluation, out of the 27 tasks for BQM, 19 meet the threshold for semi-valid, including 3 fully valid: "Identify potential index phenotype," "If needed, request EHR database access rights," and "Perform query and present output to medical researcher", and 8 are invalid. We aligned the goals of the tasks within the BQM model with the five components of the reference interview. The similarity between the process of BQM and the reference interview is promising and suggests the BQM tasks are powerful for eliciting implicit information needs. We contribute a BQM process model based on a multi-site study. This model promises to inform the standardization of the BQM process towards improved communication efficiency and accuracy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. A Multi-Site Cognitive Task Analysis for Biomedical Query Mediation

    PubMed Central

    Hruby, Gregory W.; Rasmussen, Luke V.; Hanauer, David; Patel, Vimla; Cimino, James J.; Weng, Chunhua

    2016-01-01

    Objective To apply cognitive task analyses of the Biomedical query mediation (BQM) processes for EHR data retrieval at multiple sites towards the development of a generic BQM process model. Materials and Methods We conducted semi-structured interviews with eleven data analysts from five academic institutions and one government agency, and performed cognitive task analyses on their BQM processes. A coding schema was developed through iterative refinement and used to annotate the interview transcripts. The annotated dataset was used to reconstruct and verify each BQM process and to develop a harmonized BQM process model. A survey was conducted to evaluate the face and content validity of this harmonized model. Results The harmonized process model is hierarchical, encompassing tasks, activities, and steps. The face validity evaluation concluded the model to be representative of the BQM process. In the content validity evaluation, out of the 27 tasks for BQM, 19 meet the threshold for semi-valid, including 3 fully valid: “Identify potential index phenotype,” “If needed, request EHR database access rights,” and “Perform query and present output to medical researcher”, and 8 are invalid. Discussion We aligned the goals of the tasks within the BQM model with the five components of the reference interview. The similarity between the process of BQM and the reference interview is promising and suggests the BQM tasks are powerful for eliciting implicit information needs. Conclusions We contribute a BQM process model based on a multi-site study. This model promises to inform the standardization of the BQM process towards improved communication efficiency and accuracy. PMID:27435950

  17. Database architectures for Space Telescope Science Institute

    NASA Astrophysics Data System (ADS)

    Lubow, Stephen

    1993-08-01

    At STScI nearly all large applications require database support. A general purpose architecture has been developed and is in use that relies upon an extended client-server paradigm. Processing is in general distributed across three processes, each of which generally resides on its own processor. Database queries are evaluated on one such process, called the DBMS server. The DBMS server software is provided by a database vendor. The application issues database queries and is called the application client. This client uses a set of generic DBMS application programming calls through our STDB/NET programming interface. Intermediate between the application client and the DBMS server is the STDB/NET server. This server accepts generic query requests from the application and converts them into the specific requirements of the DBMS server. In addition, it accepts query results from the DBMS server and passes them back to the application. Typically the STDB/NET server is local to the DBMS server, while the application client may be remote. The STDB/NET server provides additional capabilities such as database deadlock restart and performance monitoring. This architecture is currently in use for some major STScI applications, including the ground support system. We are currently investigating means of providing ad hoc query support to users through the above architecture. Such support is critical for providing flexible user interface capabilities. The Universal Relation advocated by Ullman, Kernighan, and others appears to be promising. In this approach, the user sees the entire database as a single table, thereby freeing the user from needing to understand the detailed schema. A software layer provides the translation between the user and detailed schema views of the database. However, many subtle issues arise in making this transformation. We are currently exploring this scheme for use in the Hubble Space Telescope user interface to the data archive system (DADS).

  18. Ordered Backward XPath Axis Processing against XML Streams

    NASA Astrophysics Data System (ADS)

    Nizar M., Abdul; Kumar, P. Sreenivasa

    Processing of backward XPath axes against XML streams is challenging for two reasons: (i) Data is not cached for future access. (ii) Query contains steps specifying navigation to the data that already passed by. While there are some attempts to process parent and ancestor axes, there are very few proposals to process ordered backward axes namely, preceding and preceding-sibling. For ordered backward axis processing, the algorithm, in addition to overcoming the limitations on data availability, has to take care of ordering constraints imposed by these axes. In this paper, we show how backward ordered axes can be effectively represented using forward constraints. We then discuss an algorithm for XML stream processing of XPath expressions containing ordered backward axes. The algorithm uses a layered cache structure to systematically accumulate query results. Our experiments show that the new algorithm gains remarkable speed up over the existing algorithm without compromising on bufferspace requirement.

  19. Distributed Sensing and Processing Adaptive Collaboration Environment (D-SPACE)

    DTIC Science & Technology

    2014-07-01

    to the query graph, or subgraph permutations with the same mismatch cost (often the case for homogeneous and/or symmetrical data/query). To avoid...decisions are generated in a bottom-up manner using the metric of entropy at the cluster level (Figure 9c). Using the definition of belief messages...for a cluster and a set of data nodes in this cluster , we compute the entropy for forward and backward messages as (,) = −∑ (

  20. Towards a light-weight query engine for accessing health sensor data in a fall prevention system.

    PubMed

    Kreiner, Karl; Gossy, Christian; Drobics, Mario

    2014-01-01

    Connecting various sensors in sensor networks has become popular during the last decade. An important aspect next to storing and creating data is information access by domain experts, such as researchers, caretakers and physicians. In this work we present the design and prototypic implementation of a light-weight query engine using natural language processing for accessing health-related sensor data in a fall prevention system.

  1. Performance Modeling in CUDA Streams - A Means for High-Throughput Data Processing

    PubMed Central

    Li, Hao; Yu, Di; Kumar, Anand; Tu, Yi-Cheng

    2015-01-01

    Push-based database management system (DBMS) is a new type of data processing software that streams large volume of data to concurrent query operators. The high data rate of such systems requires large computing power provided by the query engine. In our previous work, we built a push-based DBMS named G-SDMS to harness the unrivaled computational capabilities of modern GPUs. A major design goal of G-SDMS is to support concurrent processing of heterogenous query processing operations and enable resource allocation among such operations. Understanding the performance of operations as a result of resource consumption is thus a premise in the design of G-SDMS. With NVIDIA’s CUDA framework as the system implementation platform, we present our recent work on performance modeling of CUDA kernels running concurrently under a runtime mechanism named CUDA stream. Specifically, we explore the connection between performance and resource occupancy of compute-bound kernels and develop a model that can predict the performance of such kernels. Furthermore, we provide an in-depth anatomy of the CUDA stream mechanism and summarize the main kernel scheduling disciplines in it. Our models and derived scheduling disciplines are verified by extensive experiments using synthetic and real-world CUDA kernels. PMID:26566545

  2. A Random Walk Approach to Query Informative Constraints for Clustering.

    PubMed

    Abin, Ahmad Ali

    2017-08-09

    This paper presents a random walk approach to the problem of querying informative constraints for clustering. The proposed method is based on the properties of the commute time, that is the expected time taken for a random walk to travel between two nodes and return, on the adjacency graph of data. Commute time has the nice property of that, the more short paths connect two given nodes in a graph, the more similar those nodes are. Since computing the commute time takes the Laplacian eigenspectrum into account, we use this property in a recursive fashion to query informative constraints for clustering. At each recursion, the proposed method constructs the adjacency graph of data and utilizes the spectral properties of the commute time matrix to bipartition the adjacency graph. Thereafter, the proposed method benefits from the commute times distance on graph to query informative constraints between partitions. This process iterates for each partition until the stop condition becomes true. Experiments on real-world data show the efficiency of the proposed method for constraints selection.

  3. Hierarchical data security in a Query-By-Example interface for a shared database.

    PubMed

    Taylor, Merwyn

    2002-06-01

    Whenever a shared database resource, containing critical patient data, is created, protecting the contents of the database is a high priority goal. This goal can be achieved by developing a Query-By-Example (QBE) interface, designed to access a shared database, and embedding within the QBE a hierarchical security module that limits access to the data. The security module ensures that researchers working in one clinic do not get access to data from another clinic. The security can be based on a flexible taxonomy structure that allows ordinary users to access data from individual clinics and super users to access data from all clinics. All researchers submit queries through the same interface and the security module processes the taxonomy and user identifiers to limit access. Using this system, two different users with different access rights can submit the same query and get different results thus reducing the need to create different interfaces for different clinics and access rights.

  4. An XML-Based Manipulation and Query Language for Rule-Based Information

    NASA Astrophysics Data System (ADS)

    Mansour, Essam; Höpfner, Hagen

    Rules are utilized to assist in the monitoring process that is required in activities, such as disease management and customer relationship management. These rules are specified according to the application best practices. Most of research efforts emphasize on the specification and execution of these rules. Few research efforts focus on managing these rules as one object that has a management life-cycle. This paper presents our manipulation and query language that is developed to facilitate the maintenance of this object during its life-cycle and to query the information contained in this object. This language is based on an XML-based model. Furthermore, we evaluate the model and language using a prototype system applied to a clinical case study.

  5. System, method and apparatus for generating phrases from a database

    NASA Technical Reports Server (NTRS)

    McGreevy, Michael W. (Inventor)

    2004-01-01

    A phrase generation is a method of generating sequences of terms, such as phrases, that may occur within a database of subsets containing sequences of terms, such as text. A database is provided and a relational model of the database is created. A query is then input. The query includes a term or a sequence of terms or multiple individual terms or multiple sequences of terms or combinations thereof. Next, several sequences of terms that are contextually related to the query are assembled from contextual relations in the model of the database. The sequences of terms are then sorted and output. Phrase generation can also be an iterative process used to produce sequences of terms from a relational model of a database.

  6. Astronomical Data Processing Using SciQL, an SQL Based Query Language for Array Data

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Scheers, B.; Kersten, M.; Ivanova, M.; Nes, N.

    2012-09-01

    SciQL (pronounced as ‘cycle’) is a novel SQL-based array query language for scientific applications with both tables and arrays as first class citizens. SciQL lowers the entrance fee of adopting relational DBMS (RDBMS) in scientific domains, because it includes functionality often only found in mathematics software packages. In this paper, we demonstrate the usefulness of SciQL for astronomical data processing using examples from the Transient Key Project of the LOFAR radio telescope. In particular, how the LOFAR light-curve database of all detected sources can be constructed, by correlating sources across the spatial, frequency, time and polarisation domains.

  7. PRIDE: new developments and new datasets.

    PubMed

    Jones, Philip; Côté, Richard G; Cho, Sang Yun; Klie, Sebastian; Martens, Lennart; Quinn, Antony F; Thorneycroft, David; Hermjakob, Henning

    2008-01-01

    The PRIDE (http://www.ebi.ac.uk/pride) database of protein and peptide identifications was previously described in the NAR Database Special Edition in 2006. Since this publication, the volume of public data in the PRIDE relational database has increased by more than an order of magnitude. Several significant public datasets have been added, including identifications and processed mass spectra generated by the HUPO Brain Proteome Project and the HUPO Liver Proteome Project. The PRIDE software development team has made several significant changes and additions to the user interface and tool set associated with PRIDE. The focus of these changes has been to facilitate the submission process and to improve the mechanisms by which PRIDE can be queried. The PRIDE team has developed a Microsoft Excel workbook that allows the required data to be collated in a series of relatively simple spreadsheets, with automatic generation of PRIDE XML at the end of the process. The ability to query PRIDE has been augmented by the addition of a BioMart interface allowing complex queries to be constructed. Collaboration with groups outside the EBI has been fruitful in extending PRIDE, including an approach to encode iTRAQ quantitative data in PRIDE XML.

  8. StreamQRE: Modular Specification and Efficient Evaluation of Quantitative Queries over Streaming Data.

    PubMed

    Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G; Khanna, Sanjeev

    2017-06-01

    Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings.

  9. StreamQRE: Modular Specification and Efficient Evaluation of Quantitative Queries over Streaming Data*

    PubMed Central

    Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G.; Khanna, Sanjeev

    2017-01-01

    Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings. PMID:29151821

  10. A neighboring structure reconstructed matching algorithm based on LARK features

    NASA Astrophysics Data System (ADS)

    Xue, Taobei; Han, Jing; Zhang, Yi; Bai, Lianfa

    2015-11-01

    Aimed at the low contrast ratio and high noise of infrared images, and the randomness and ambient occlusion of its objects, this paper presents a neighboring structure reconstructed matching (NSRM) algorithm based on LARK features. The neighboring structure relationships of local window are considered based on a non-negative linear reconstruction method to build a neighboring structure relationship matrix. Then the LARK feature matrix and the NSRM matrix are processed separately to get two different similarity images. By fusing and analyzing the two similarity images, those infrared objects are detected and marked by the non-maximum suppression. The NSRM approach is extended to detect infrared objects with incompact structure. High performance is demonstrated on infrared body set, indicating a lower false detecting rate than conventional methods in complex natural scenes.

  11. Measuring up: Implementing a dental quality measure in the electronic health record context.

    PubMed

    Bhardwaj, Aarti; Ramoni, Rachel; Kalenderian, Elsbeth; Neumann, Ana; Hebballi, Nutan B; White, Joel M; McClellan, Lyle; Walji, Muhammad F

    2016-01-01

    Quality improvement requires using quality measures that can be implemented in a valid manner. Using guidelines set forth by the Meaningful Use portion of the Health Information Technology for Economic and Clinical Health Act, the authors assessed the feasibility and performance of an automated electronic Meaningful Use dental clinical quality measure to determine the percentage of children who received fluoride varnish. The authors defined how to implement the automated measure queries in a dental electronic health record. Within records identified through automated query, the authors manually reviewed a subsample to assess the performance of the query. The automated query results revealed that 71.0% of patients had fluoride varnish compared with the manual chart review results that indicated 77.6% of patients had fluoride varnish. The automated quality measure performance results indicated 90.5% sensitivity, 90.8% specificity, 96.9% positive predictive value, and 75.2% negative predictive value. The authors' findings support the feasibility of using automated dental quality measure queries in the context of sufficient structured data. Information noted only in free text rather than in structured data would require using natural language processing approaches to effectively query electronic health records. To participate in self-directed quality improvement, dental clinicians must embrace the accountability era. Commitment to quality will require enhanced documentation to support near-term automated calculation of quality measures. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  12. Dynamic occupancy models for explicit colonization processes

    USGS Publications Warehouse

    Broms, Kristin M.; Hooten, Mevin B.; Johnson, Devin S.; Altwegg, Res; Conquest, Loveday

    2016-01-01

    The dynamic, multi-season occupancy model framework has become a popular tool for modeling open populations with occupancies that change over time through local colonizations and extinctions. However, few versions of the model relate these probabilities to the occupancies of neighboring sites or patches. We present a modeling framework that incorporates this information and is capable of describing a wide variety of spatiotemporal colonization and extinction processes. A key feature of the model is that it is based on a simple set of small-scale rules describing how the process evolves. The result is a dynamic process that can account for complicated large-scale features. In our model, a site is more likely to be colonized if more of its neighbors were previously occupied and if it provides more appealing environmental characteristics than its neighboring sites. Additionally, a site without occupied neighbors may also become colonized through the inclusion of a long-distance dispersal process. Although similar model specifications have been developed for epidemiological applications, ours formally accounts for detectability using the well-known occupancy modeling framework. After demonstrating the viability and potential of this new form of dynamic occupancy model in a simulation study, we use it to obtain inference for the ongoing Common Myna (Acridotheres tristis) invasion in South Africa. Our results suggest that the Common Myna continues to enlarge its distribution and its spread via short distance movement, rather than long-distance dispersal. Overall, this new modeling framework provides a powerful tool for managers examining the drivers of colonization including short- vs. long-distance dispersal, habitat quality, and distance from source populations.

  13. Shark: SQL and Analytics with Cost-Based Query Optimization on Coarse-Grained Distributed Memory

    DTIC Science & Technology

    2014-01-13

    RDBMS and contains a database (often MySQL or Derby) with a namespace for tables, table metadata and partition information. Table data is stored in an...serialization/deserialization) Java interface implementations with corresponding object inspectors. The Hive driver controls the processing of queries, coordinat...native API, RDD operations are invoked through a functional interface similar to DryadLINQ [32] in Scala, Java or Python. For example, the Scala code for

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    IRIS is a search tool plug-in that is used to implement latent topic feedback for enhancing text navigation. It accepts a list of returned documents from an information retrieval wywtem that is generated from keyword search queries. Data is pulled directly from a topic information database and processed by IRIS to determine the most prominent and relevant topics, along with topic-ngrams, associated with the list of returned documents. User selected topics are then used to expand the query and presumabley refine the search results.

  15. Aligning HST Images to Gaia: A Faster Mosaicking Workflow

    NASA Astrophysics Data System (ADS)

    Bajaj, V.

    2017-11-01

    We present a fully programmatic workflow for aligning HST images using the high-quality astrometry provided by Gaia Data Release 1. Code provided in a Jupyter Notebook works through this procedure, including parsing the data to determine the query area parameters, querying Gaia for the coordinate catalog, and using the catalog with TweakReg as reference catalog. This workflow greatly simplifies the normally time-consuming process of aligning HST images, especially those taken as part of mosaics.

  16. Numerical Simulation of the Diffusion Processes in Nanoelectrode Arrays Using an Axial Neighbor Symmetry Approximation.

    PubMed

    Peinetti, Ana Sol; Gilardoni, Rodrigo S; Mizrahi, Martín; Requejo, Felix G; González, Graciela A; Battaglini, Fernando

    2016-06-07

    Nanoelectrode arrays have introduced a complete new battery of devices with fascinating electrocatalytic, sensitivity, and selectivity properties. To understand and predict the electrochemical response of these arrays, a theoretical framework is needed. Cyclic voltammetry is a well-fitted experimental technique to understand the undergoing diffusion and kinetics processes. Previous works describing microelectrode arrays have exploited the interelectrode distance to simulate its behavior as the summation of individual electrodes. This approach becomes limited when the size of the electrodes decreases to the nanometer scale due to their strong radial effect with the consequent overlapping of the diffusional fields. In this work, we present a computational model able to simulate the electrochemical behavior of arrays working either as the summation of individual electrodes or being affected by the overlapping of the diffusional fields without previous considerations. Our computational model relays in dividing a regular electrode array in cells. In each of them, there is a central electrode surrounded by neighbor electrodes; these neighbor electrodes are transformed in a ring maintaining the same active electrode area than the summation of the closest neighbor electrodes. Using this axial neighbor symmetry approximation, the problem acquires a cylindrical symmetry, being applicable to any diffusion pattern. The model is validated against micro- and nanoelectrode arrays showing its ability to predict their behavior and therefore to be used as a designing tool.

  17. Competition and Cooperation among Similar Representations: Toward a Unified Account of Facilitative and Inhibitory Effects of Lexical Neighbors

    ERIC Educational Resources Information Center

    Chen, Qi; Mirman, Daniel

    2012-01-01

    One of the core principles of how the mind works is the graded, parallel activation of multiple related or similar representations. Parallel activation of multiple representations has been particularly important in the development of theories and models of language processing, where coactivated representations ("neighbors") have been shown to…

  18. Synthesis of benzil-o-carboxylate derivatives and isocoumarins through neighboring ester-participating bromocyclizations of o-alkynylbenzoates.

    PubMed

    Yuan, Si-Tian; Zhou, Hongwei; Zhang, Lianpeng; Liu, Jin-Biao; Qiu, Guanyinsheng

    2017-06-07

    Bromide mediated neighboring ester-participating bromocyclizations of o-alkynylbenzoates are described here for the synthesis of benzil-o-carboxylates. 4-bromoisocoumarins are also synthesized when phenyl o-alkynylbenzoate is used as the substrate. Mechanistic studies suggest that the whole process is composed of an electrophilic bromocyclization and a dibromohydration-based ring-opening, and the neighboring ester group participates in the bromocyclization. Interestingly, the two oxygen atoms of the keto carbonyls in benzil-o-carboxylates are both derived from water. The electrophilic bromo source is in situ generated from the oxidation of bromide.

  19. Two New Computational Methods for Universal DNA Barcoding: A Benchmark Using Barcode Sequences of Bacteria, Archaea, Animals, Fungi, and Land Plants

    PubMed Central

    Tanabe, Akifumi S.; Toju, Hirokazu

    2013-01-01

    Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used “1-nearest-neighbor” (1-NN) method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to accelerate the registration of reference barcode sequences to apply high-throughput DNA barcoding to genus or species level identification in biodiversity research. PMID:24204702

  20. Computing health quality measures using Informatics for Integrating Biology and the Bedside.

    PubMed

    Klann, Jeffrey G; Murphy, Shawn N

    2013-04-19

    The Health Quality Measures Format (HQMF) is a Health Level 7 (HL7) standard for expressing computable Clinical Quality Measures (CQMs). Creating tools to process HQMF queries in clinical databases will become increasingly important as the United States moves forward with its Health Information Technology Strategic Plan to Stages 2 and 3 of the Meaningful Use incentive program (MU2 and MU3). Informatics for Integrating Biology and the Bedside (i2b2) is one of the analytical databases used as part of the Office of the National Coordinator (ONC)'s Query Health platform to move toward this goal. Our goal is to integrate i2b2 with the Query Health HQMF architecture, to prepare for other HQMF use-cases (such as MU2 and MU3), and to articulate the functional overlap between i2b2 and HQMF. Therefore, we analyze the structure of HQMF, and then we apply this understanding to HQMF computation on the i2b2 clinical analytical database platform. Specifically, we develop a translator between two query languages, HQMF and i2b2, so that the i2b2 platform can compute HQMF queries. We use the HQMF structure of queries for aggregate reporting, which define clinical data elements and the temporal and logical relationships between them. We use the i2b2 XML format, which allows flexible querying of a complex clinical data repository in an easy-to-understand domain-specific language. The translator can represent nearly any i2b2-XML query as HQMF and execute in i2b2 nearly any HQMF query expressible in i2b2-XML. This translator is part of the freely available reference implementation of the QueryHealth initiative. We analyze limitations of the conversion and find it covers many, but not all, of the complex temporal and logical operators required by quality measures. HQMF is an expressive language for defining quality measures, and it will be important to understand and implement for CQM computation, in both meaningful use and population health. However, its current form might allow complexity that is intractable for current database systems (both in terms of implementation and computation). Our translator, which supports the subset of HQMF currently expressible in i2b2-XML, may represent the beginnings of a practical compromise. It is being pilot-tested in two Query Health demonstration projects, and it can be further expanded to balance computational tractability with the advanced features needed by measure developers.

  1. Computing Health Quality Measures Using Informatics for Integrating Biology and the Bedside

    PubMed Central

    Murphy, Shawn N

    2013-01-01

    Background The Health Quality Measures Format (HQMF) is a Health Level 7 (HL7) standard for expressing computable Clinical Quality Measures (CQMs). Creating tools to process HQMF queries in clinical databases will become increasingly important as the United States moves forward with its Health Information Technology Strategic Plan to Stages 2 and 3 of the Meaningful Use incentive program (MU2 and MU3). Informatics for Integrating Biology and the Bedside (i2b2) is one of the analytical databases used as part of the Office of the National Coordinator (ONC)’s Query Health platform to move toward this goal. Objective Our goal is to integrate i2b2 with the Query Health HQMF architecture, to prepare for other HQMF use-cases (such as MU2 and MU3), and to articulate the functional overlap between i2b2 and HQMF. Therefore, we analyze the structure of HQMF, and then we apply this understanding to HQMF computation on the i2b2 clinical analytical database platform. Specifically, we develop a translator between two query languages, HQMF and i2b2, so that the i2b2 platform can compute HQMF queries. Methods We use the HQMF structure of queries for aggregate reporting, which define clinical data elements and the temporal and logical relationships between them. We use the i2b2 XML format, which allows flexible querying of a complex clinical data repository in an easy-to-understand domain-specific language. Results The translator can represent nearly any i2b2-XML query as HQMF and execute in i2b2 nearly any HQMF query expressible in i2b2-XML. This translator is part of the freely available reference implementation of the QueryHealth initiative. We analyze limitations of the conversion and find it covers many, but not all, of the complex temporal and logical operators required by quality measures. Conclusions HQMF is an expressive language for defining quality measures, and it will be important to understand and implement for CQM computation, in both meaningful use and population health. However, its current form might allow complexity that is intractable for current database systems (both in terms of implementation and computation). Our translator, which supports the subset of HQMF currently expressible in i2b2-XML, may represent the beginnings of a practical compromise. It is being pilot-tested in two Query Health demonstration projects, and it can be further expanded to balance computational tractability with the advanced features needed by measure developers. PMID:23603227

  2. Random and Directed Walk-Based Top-k Queries in Wireless Sensor Networks

    PubMed Central

    Fu, Jun-Song; Liu, Yun

    2015-01-01

    In wireless sensor networks, filter-based top-k query approaches are the state-of-the-art solutions and have been extensively researched in the literature, however, they are very sensitive to the network parameters, including the size of the network, dynamics of the sensors’ readings and declines in the overall range of all the readings. In this work, a random walk-based top-k query approach called RWTQ and a directed walk-based top-k query approach called DWTQ are proposed. At the beginning of a top-k query, one or several tokens are sent to the specific node(s) in the network by the base station. Then, each token walks in the network independently to record and process the readings in a random or directed way. A strategy of choosing the “right” way in DWTQ is carefully designed for the token(s) to arrive at the high-value regions as soon as possible. When designing the walking strategy for DWTQ, the spatial correlations of the readings are also considered. Theoretical analysis and simulation results indicate that RWTQ and DWTQ both are very robust against these parameters discussed previously. In addition, DWTQ outperforms TAG, FILA and EXTOK in transmission cost, energy consumption and network lifetime. PMID:26016914

  3. Survey of Event Processing

    DTIC Science & Technology

    2007-12-01

    1 A Brief History of Event Processing... history of event processing. The Applications section defines several application domains and use cases for event processing technology. Event...subscription” and “subscription language” will be used where some will often use “(continuous) query” or “query language.” A Brief History of

  4. Empirical evaluation of the Process Overview Measure for assessing situation awareness in process plants.

    PubMed

    Lau, Nathan; Jamieson, Greg A; Skraaning, Gyrd

    2016-03-01

    The Process Overview Measure is a query-based measure developed to assess operator situation awareness (SA) from monitoring process plants. A companion paper describes how the measure has been developed according to process plant properties and operator cognitive work. The Process Overview Measure demonstrated practicality, sensitivity, validity and reliability in two full-scope simulator experiments investigating dramatically different operational concepts. Practicality was assessed based on qualitative feedback of participants and researchers. The Process Overview Measure demonstrated sensitivity and validity by revealing significant effects of experimental manipulations that corroborated with other empirical results. The measure also demonstrated adequate inter-rater reliability and practicality for measuring SA in full-scope simulator settings based on data collected on process experts. Thus, full-scope simulator studies can employ the Process Overview Measure to reveal the impact of new control room technology and operational concepts on monitoring process plants. Practitioner Summary: The Process Overview Measure is a query-based measure that demonstrated practicality, sensitivity, validity and reliability for assessing operator situation awareness (SA) from monitoring process plants in representative settings.

  5. Explaining scene composition using kinematic chains of humans: application to Portuguese tiles history

    NASA Astrophysics Data System (ADS)

    da Silva, Nuno Pinho; Marques, Manuel; Carneiro, Gustavo; Costeira, João P.

    2011-03-01

    Painted tile panels (Azulejos) are one of the most representative Portuguese forms of art. Most of these panels are inspired on, and sometimes are literal copies of, famous paintings, or prints of those paintings. In order to study the Azulejos, art historians need to trace these roots. To do that they manually search art image databases, looking for images similar to the representation on the tile panel. This is an overwhelming task that should be automated as much as possible. Among several cues, the pose of humans and the general composition of people in a scene is quite discriminative. We build an image descriptor, combining the kinematic chain of each character, and contextual information about their composition, in the scene. Given a query image, our system computes its similarity profile over the database. Using nearest neighbors in the space of the descriptors, the proposed system retrieves the prints that most likely inspired the tiles' work.

  6. ESTEEM: A Novel Framework for Qualitatively Evaluating and Visualizing Spatiotemporal Embeddings in Social Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Dustin L.; Volkova, Svitlana

    Analyzing and visualizing large amounts of social media communications and contrasting short-term conversation changes over time and geo-locations is extremely important for commercial and government applications. Earlier approaches for large-scale text stream summarization used dynamic topic models and trending words. Instead, we rely on text embeddings – low-dimensional word representations in a continuous vector space where similar words are embedded nearby each other. This paper presents ESTEEM,1 a novel tool for visualizing and evaluating spatiotemporal embeddings learned from streaming social media texts. Our tool allows users to monitor and analyze query words and their closest neighbors with an interactive interface.more » We used state-of- the-art techniques to learn embeddings and developed a visualization to represent dynamically changing relations between words in social media over time and other dimensions. This is the first interactive visualization of streaming text representations learned from social media texts that also allows users to contrast differences across multiple dimensions of the data.« less

  7. galaxie--CGI scripts for sequence identification through automated phylogenetic analysis.

    PubMed

    Nilsson, R Henrik; Larsson, Karl-Henrik; Ursing, Björn M

    2004-06-12

    The prevalent use of similarity searches like BLAST to identify sequences and species implicitly assumes the reference database to be of extensive sequence sampling. This is often not the case, restraining the correctness of the outcome as a basis for sequence identification. Phylogenetic inference outperforms similarity searches in retrieving correct phylogenies and consequently sequence identities, and a project was initiated to design a freely available script package for sequence identification through automated Web-based phylogenetic analysis. Three CGI scripts were designed to facilitate qualified sequence identification from a Web interface. Query sequences are aligned to pre-made alignments or to alignments made by ClustalW with entries retrieved from a BLAST search. The subsequent phylogenetic analysis is based on the PHYLIP package for inferring neighbor-joining and parsimony trees. The scripts are highly configurable. A service installation and a version for local use are found at http://andromeda.botany.gu.se/galaxiewelcome.html and http://galaxie.cgb.ki.se

  8. Word Spotting and Recognition with Embedded Attributes.

    PubMed

    Almazán, Jon; Gordo, Albert; Fornés, Alicia; Valveny, Ernest

    2014-12-01

    This paper addresses the problems of word spotting and word recognition on images. In word spotting, the goal is to find all instances of a query word in a dataset of images. In recognition, the goal is to recognize the content of the word image, usually aided by a dictionary or lexicon. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. In this subspace, images and strings that represent the same word are close together, allowing one to cast recognition and retrieval tasks as a nearest neighbor problem. Contrary to most other existing methods, our representation has a fixed length, is low dimensional, and is very fast to compute and, especially, to compare. We test our approach on four public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks.

  9. Cannabis: A Neurological Remedy or a Drug of Abuse in India.

    PubMed

    Biswas, Pronit; Mishra, Pooja; Bose, Devasish; Durgbanshi, Abhilasha

    2017-01-01

    Since ancient times, the use of cannabis as a medicine is well documented due to its potential therapeutic activity while subsequently its use as drug of abuse spread increasingly. The present review sought to give an insight in the history of medical and recreational use of cannabis in India. Indian use of cannabis dates back to Vedic time, mostly for the ritualistic and religious purposes, as documented in the ancient literature. It was India that introduced the medical use of cannabis to neighboring countries. Nevertheless, in the same India, medical use did not propagate due to religious and social stigma related to the plant itself. The pharmacoactive constituents of cannabis and their therapeutic values in Ayurvetic medicine have been here described together with the adverse effects they can cause with special reference to neurological ones, including withdrawal symptoms. Finally, how cannabis made its route to the Indian society has also been discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. What Is Spatio-Temporal Data Warehousing?

    NASA Astrophysics Data System (ADS)

    Vaisman, Alejandro; Zimányi, Esteban

    In the last years, extending OLAP (On-Line Analytical Processing) systems with spatial and temporal features has attracted the attention of the GIS (Geographic Information Systems) and database communities. However, there is no a commonly agreed definition of what is a spatio-temporal data warehouse and what functionality such a data warehouse should support. Further, the solutions proposed in the literature vary considerably in the kind of data that can be represented as well as the kind of queries that can be expressed. In this paper we present a conceptual framework for defining spatio-temporal data warehouses using an extensible data type system. We also define a taxonomy of different classes of queries of increasing expressive power, and show how to express such queries using an extension of the tuple relational calculus with aggregated functions.

  11. Lexical neighborhood effects in pseudoword spelling.

    PubMed

    Tainturier, Marie-Josèphe; Bosse, Marie-Line; Roberts, Daniel J; Valdois, Sylviane; Rapp, Brenda

    2013-01-01

    The general aim of this study is to contribute to a better understanding of the cognitive processes that underpin skilled adult spelling. More specifically, it investigates the influence of lexical neighbors on pseudo-word spelling with the goal of providing a more detailed account of the interaction between lexical and sublexical sources of knowledge in spelling. In prior research examining this topic, adult participants typically heard lists composed of both words and pseudo-words and had to make a lexical decision to each stimulus before writing the pseudo-words. However, these priming paradigms are susceptible to strategic influence and may therefore not give a clear picture of the processes normally engaged in spelling unfamiliar words. In our two Experiments involving 71 French-speaking literate adults, only pseudo-words were presented which participants were simply requested to write to dictation using the first spelling that came to mind. Unbeknownst to participants, pseudo-words varied according to whether they did or did not have a phonological word neighbor. Results revealed that low-probability phoneme/grapheme mappings (e.g., /o/ -> aud in French) were used significantly more often in spelling pseudo-words with a close phonological lexical neighbor with that spelling (e.g., /krepo/ derived from "crapaud," /krapo/) than in spelling pseudo-words with no close neighbors (e.g., /frøpo/). In addition, the strength of this lexical influence increased with the lexical frequency of the word neighbors as well as with their degree of phonetic overlap with the pseudo-word targets. These results indicate that information from lexical and sublexical processes is integrated in the course of spelling, and a specific theoretical account as to how such integration may occur is introduced.

  12. Lexical neighborhood effects in pseudoword spelling

    PubMed Central

    Tainturier, Marie-Josèphe; Bosse, Marie-Line; Roberts, Daniel J.; Valdois, Sylviane; Rapp, Brenda

    2013-01-01

    The general aim of this study is to contribute to a better understanding of the cognitive processes that underpin skilled adult spelling. More specifically, it investigates the influence of lexical neighbors on pseudo-word spelling with the goal of providing a more detailed account of the interaction between lexical and sublexical sources of knowledge in spelling. In prior research examining this topic, adult participants typically heard lists composed of both words and pseudo-words and had to make a lexical decision to each stimulus before writing the pseudo-words. However, these priming paradigms are susceptible to strategic influence and may therefore not give a clear picture of the processes normally engaged in spelling unfamiliar words. In our two Experiments involving 71 French-speaking literate adults, only pseudo-words were presented which participants were simply requested to write to dictation using the first spelling that came to mind. Unbeknownst to participants, pseudo-words varied according to whether they did or did not have a phonological word neighbor. Results revealed that low-probability phoneme/grapheme mappings (e.g., /o/ -> aud in French) were used significantly more often in spelling pseudo-words with a close phonological lexical neighbor with that spelling (e.g., /krepo/ derived from “crapaud,” /krapo/) than in spelling pseudo-words with no close neighbors (e.g., /frøpo/). In addition, the strength of this lexical influence increased with the lexical frequency of the word neighbors as well as with their degree of phonetic overlap with the pseudo-word targets. These results indicate that information from lexical and sublexical processes is integrated in the course of spelling, and a specific theoretical account as to how such integration may occur is introduced. PMID:24348436

  13. Orthographic neighborhood effects in recognition and recall tasks in a transparent orthography.

    PubMed

    Justi, Francis R R; Jaeger, Antonio

    2017-04-01

    The number of orthographic neighbors of a word influences its probability of being retrieved in recognition and free recall memory tests. Even though this phenomenon is well demonstrated for English words, it has yet to be demonstrated for languages with more predictable grapheme-phoneme mappings than English. To address this issue, 4 experiments were conducted to investigate effects of number of orthographic neighbors (N) and effects of frequency of occurrence of orthographic neighbors (NF) on memory retrieval of Brazilian Portuguese words. One hundred twenty-four Brazilian Portuguese speakers performed first a lexical-decision task (LDT) on words that were factorially manipulated according to N and NF, and intermixed with either nonpronounceable nonwords without orthographic neighbors (Experiments 1A and 2A), or with pronounceable nonwords with a large number of orthographic neighbors (Experiments 1B and 2B). The words were later used as probes on either recognition (Experiments 1A and 1B) or recall tests (Experiments 2A and 2B). Words with 1 orthographic neighbor were consistently better remembered than words with several orthographic neighbors in all recognition and recall tests. Notably, whereas in Experiment 1A higher false alarm rates were yielded for words with several rather than 1 orthographic neighbor, in Experiment 1B higher false alarm rates were yielded for words with 1 rather than several orthographic neighbors. Effects of NF, on the other hand, were not consistent among memory tasks. The effects of N on the recognition and recall tests conducted here are interpreted in light of dual process models of recognition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Reflections on organizational issues in developing, implementing, and maintaining state Web-based data query systems.

    PubMed

    Love, Denise; Shah, Gulzar H

    2006-01-01

    Emerging technologies, such as Web-based data query systems (WDQSs), provide opportunities for state and local agencies to systematically organize and disseminate data to broad audiences and streamline the data distribution process. Despite the progress in WDQSs' implementation, led by agencies considered the "early adopters," there are still agencies left behind. This article explores the organizational issues and barriers to development of WDQSs in public health agencies and highlights factors facilitating the implementation of WDQSs.

  15. Lyceum: A Multi-Protocol Digital Library Gateway

    NASA Technical Reports Server (NTRS)

    Maa, Ming-Hokng; Nelson, Michael L.; Esler, Sandra L.

    1997-01-01

    Lyceum is a prototype scalable query gateway that provides a logically central interface to multi-protocol and physically distributed, digital libraries of scientific and technical information. Lyceum processes queries to multiple syntactically distinct search engines used by various distributed information servers from a single logically central interface without modification of the remote search engines. A working prototype (http://www.larc.nasa.gov/lyceum/) demonstrates the capabilities, potentials, and advantages of this type of meta-search engine by providing access to over 50 servers covering over 20 disciplines.

  16. Towards a Simple and Efficient Web Search Framework

    DTIC Science & Technology

    2014-11-01

    any useful information about the various aspects of a topic. For example, for the query “ raspberry pi ”, it covers topics such as “what is raspberry pi ...topics generated by the LDA topic model for query ” raspberry pi ”. One simple explanation is that web texts are too noisy and unfocused for the LDA process...making a rasp- berry pi ”. However, the topics generated based on the 10 top ranked documents do not make much sense to us in terms of their keywords

  17. Approach to Privacy-Preserve Data in Two-Tiered Wireless Sensor Network Based on Linear System and Histogram

    NASA Astrophysics Data System (ADS)

    Dang, Van H.; Wohlgemuth, Sven; Yoshiura, Hiroshi; Nguyen, Thuc D.; Echizen, Isao

    Wireless sensor network (WSN) has been one of key technologies for the future with broad applications from the military to everyday life [1,2,3,4,5]. There are two kinds of WSN model models with sensors for sensing data and a sink for receiving and processing queries from users; and models with special additional nodes capable of storing large amounts of data from sensors and processing queries from the sink. Among the latter type, a two-tiered model [6,7] has been widely adopted because of its storage and energy saving benefits for weak sensors, as proved by the advent of commercial storage node products such as Stargate [8] and RISE. However, by concentrating storage in certain nodes, this model becomes more vulnerable to attack. Our novel technique, called zip-histogram, contributes to solving the problems of previous studies [6,7] by protecting the stored data's confidentiality and integrity (including data from the sensor and queries from the sink) against attackers who might target storage nodes in two-tiered WSNs.

  18. Preliminary Results on Uncertainty Quantification for Pattern Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stracuzzi, David John; Brost, Randolph; Chen, Maximillian Gene

    2015-09-01

    This report summarizes preliminary research into uncertainty quantification for pattern ana- lytics within the context of the Pattern Analytics to Support High-Performance Exploitation and Reasoning (PANTHER) project. The primary focus of PANTHER was to make large quantities of remote sensing data searchable by analysts. The work described in this re- port adds nuance to both the initial data preparation steps and the search process. Search queries are transformed from does the specified pattern exist in the data? to how certain is the system that the returned results match the query? We show example results for both data processing and search,more » and discuss a number of possible improvements for each.« less

  19. The role of orthography in the semantic activation of neighbors.

    PubMed

    Hino, Yasushi; Lupker, Stephen J; Taylor, Tamsen E

    2012-09-01

    There is now considerable evidence that a letter string can activate semantic information appropriate to its orthographic neighbors (e.g., Forster & Hector's, 2002, TURPLE effect). This phenomenon is the focus of the present research. Using Japanese words, we examined whether semantic activation of neighbors is driven directly by orthographic similarity alone or whether there is also a role for phonological similarity. In Experiment 1, using a relatedness judgment task in which a Kanji word-Katakana word pair was presented on each trial, an inhibitory effect was observed when the initial Kanji word was related to an orthographic and phonological neighbor of the Katakana word target but not when the initial Kanji word was related to a phonological but not orthographic neighbor of the Katakana word target. This result suggests that phonology plays little, if any, role in the activation of neighbors' semantics when reading familiar words. In Experiment 2, the targets were transcribed into Hiragana, a script they are typically not written in, requiring readers to engage in phonological coding. In that experiment, inhibitory effects were observed in both conditions. This result indicates that phonologically mediated semantic activation of neighbors will emerge when phonological processing is necessary in order to understand a written word (e.g., when that word is transcribed into an unfamiliar script). PsycINFO Database Record (c) 2012 APA, all rights reserved.

  20. Using genetic algorithms to optimize k-Nearest Neighbors configurations for use with airborne laser scanning data

    Treesearch

    Ronald E. McRoberts; Grant M. Domke; Qi Chen; Erik Næsset; Terje Gobakken

    2016-01-01

    The relatively small sampling intensities used by national forest inventories are often insufficient to produce the desired precision for estimates of population parameters unless the estimation process is augmented with auxiliary information, usually in the form of remotely sensed data. The k-Nearest Neighbors (k-NN) technique is a non-parametric,multivariate approach...

  1. Smart trigger logic for focal plane arrays

    DOEpatents

    Levy, James E; Campbell, David V; Holmes, Michael L; Lovejoy, Robert; Wojciechowski, Kenneth; Kay, Randolph R; Cavanaugh, William S; Gurrieri, Thomas M

    2014-03-25

    An electronic device includes a memory configured to receive data representing light intensity values from pixels in a focal plane array and a processor that analyzes the received data to determine which light values correspond to triggered pixels, where the triggered pixels are those pixels that meet a predefined set of criteria, and determines, for each triggered pixel, a set of neighbor pixels for which light intensity values are to be stored. The electronic device also includes a buffer that temporarily stores light intensity values for at least one previously processed row of pixels, so that when a triggered pixel is identified in a current row, light intensity values for the neighbor pixels in the previously processed row and for the triggered pixel are persistently stored, as well as a data transmitter that transmits the persistently stored light intensity values for the triggered and neighbor pixels to a data receiver.

  2. A Semantic Approach for Geospatial Information Extraction from Unstructured Documents

    NASA Astrophysics Data System (ADS)

    Sallaberry, Christian; Gaio, Mauro; Lesbegueries, Julien; Loustau, Pierre

    Local cultural heritage document collections are characterized by their content, which is strongly attached to a territory and its land history (i.e., geographical references). Our contribution aims at making the content retrieval process more efficient whenever a query includes geographic criteria. We propose a core model for a formal representation of geographic information. It takes into account characteristics of different modes of expression, such as written language, captures of drawings, maps, photographs, etc. We have developed a prototype that fully implements geographic information extraction (IE) and geographic information retrieval (IR) processes. All PIV prototype processing resources are designed as Web Services. We propose a geographic IE process based on semantic treatment as a supplement to classical IE approaches. We implement geographic IR by using intersection computing algorithms that seek out any intersection between formal geocoded representations of geographic information in a user query and similar representations in document collection indexes.

  3. Implementation of the common phrase index method on the phrase query for information retrieval

    NASA Astrophysics Data System (ADS)

    Fatmawati, Triyah; Zaman, Badrus; Werdiningsih, Indah

    2017-08-01

    As the development of technology, the process of finding information on the news text is easy, because the text of the news is not only distributed in print media, such as newspapers, but also in electronic media that can be accessed using the search engine. In the process of finding relevant documents on the search engine, a phrase often used as a query. The number of words that make up the phrase query and their position obviously affect the relevance of the document produced. As a result, the accuracy of the information obtained will be affected. Based on the outlined problem, the purpose of this research was to analyze the implementation of the common phrase index method on information retrieval. This research will be conducted in English news text and implemented on a prototype to determine the relevance level of the documents produced. The system is built with the stages of pre-processing, indexing, term weighting calculation, and cosine similarity calculation. Then the system will display the document search results in a sequence, based on the cosine similarity. Furthermore, system testing will be conducted using 100 documents and 20 queries. That result is then used for the evaluation stage. First, determine the relevant documents using kappa statistic calculation. Second, determine the system success rate using precision, recall, and F-measure calculation. In this research, the result of kappa statistic calculation was 0.71, so that the relevant documents are eligible for the system evaluation. Then the calculation of precision, recall, and F-measure produces precision of 0.37, recall of 0.50, and F-measure of 0.43. From this result can be said that the success rate of the system to produce relevant documents is low.

  4. Design of FastQuery: How to Generalize Indexing and Querying System for Scientific Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jerry; Wu, Kesheng

    2011-04-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies such as FastBit are critical for facilitating interactive exploration of large datasets. These technologies rely on adding auxiliary information to existing datasets to accelerate query processing. To use these indices, we need to match the relational data model used by the indexing systems with the array data model used by most scientific data, and to provide an efficient input and output layer for reading and writing the indices. In this work, we present a flexible design that can be easily applied to most scientific datamore » formats. We demonstrate this flexibility by applying it to two of the most commonly used scientific data formats, HDF5 and NetCDF. We present two case studies using simulation data from the particle accelerator and climate simulation communities. To demonstrate the effectiveness of the new design, we also present a detailed performance study using both synthetic and real scientific workloads.« less

  5. Petaminer: Using ROOT for efficient data storage in MySQL database

    NASA Astrophysics Data System (ADS)

    Cranshaw, J.; Malon, D.; Vaniachine, A.; Fine, V.; Lauret, J.; Hamill, P.

    2010-04-01

    High Energy and Nuclear Physics (HENP) experiments store Petabytes of event data and Terabytes of calibration data in ROOT files. The Petaminer project is developing a custom MySQL storage engine to enable the MySQL query processor to directly access experimental data stored in ROOT files. Our project is addressing the problem of efficient navigation to PetaBytes of HENP experimental data described with event-level TAG metadata, which is required by data intensive physics communities such as the LHC and RHIC experiments. Physicists need to be able to compose a metadata query and rapidly retrieve the set of matching events, where improved efficiency will facilitate the discovery process by permitting rapid iterations of data evaluation and retrieval. Our custom MySQL storage engine enables the MySQL query processor to directly access TAG data stored in ROOT TTrees. As ROOT TTrees are column-oriented, reading them directly provides improved performance over traditional row-oriented TAG databases. Leveraging the flexible and powerful SQL query language to access data stored in ROOT TTrees, the Petaminer approach enables rich MySQL index-building capabilities for further performance optimization.

  6. Semantics-Based Intelligent Indexing and Retrieval of Digital Images - A Case Study

    NASA Astrophysics Data System (ADS)

    Osman, Taha; Thakker, Dhavalkumar; Schaefer, Gerald

    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they typically rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this chapter we present a semantically enabled image annotation and retrieval engine that is designed to satisfy the requirements of commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as presenting our initial thoughts on exploiting lexical databases for explicit semantic-based query expansion.

  7. Using discordance to improve classification in narrative clinical databases: an application to community-acquired pneumonia.

    PubMed

    Hripcsak, George; Knirsch, Charles; Zhou, Li; Wilcox, Adam; Melton, Genevieve B

    2007-03-01

    Data mining in electronic medical records may facilitate clinical research, but much of the structured data may be miscoded, incomplete, or non-specific. The exploitation of narrative data using natural language processing may help, although nesting, varying granularity, and repetition remain challenges. In a study of community-acquired pneumonia using electronic records, these issues led to poor classification. Limiting queries to accurate, complete records led to vastly reduced, possibly biased samples. We exploited knowledge latent in the electronic records to improve classification. A similarity metric was used to cluster cases. We defined discordance as the degree to which cases within a cluster give different answers for some query that addresses a classification task of interest. Cases with higher discordance are more likely to be incorrectly classified, and can be reviewed manually to adjust the classification, improve the query, or estimate the likely accuracy of the query. In a study of pneumonia--in which the ICD9-CM coding was found to be very poor--the discordance measure was statistically significantly correlated with classification correctness (.45; 95% CI .15-.62).

  8. Profile-IQ: Web-based data query system for local health department infrastructure and activities.

    PubMed

    Shah, Gulzar H; Leep, Carolyn J; Alexander, Dayna

    2014-01-01

    To demonstrate the use of National Association of County & City Health Officials' Profile-IQ, a Web-based data query system, and how policy makers, researchers, the general public, and public health professionals can use the system to generate descriptive statistics on local health departments. This article is a descriptive account of an important health informatics tool based on information from the project charter for Profile-IQ and the authors' experience and knowledge in design and use of this query system. Profile-IQ is a Web-based data query system that is based on open-source software: MySQL 5.5, Google Web Toolkit 2.2.0, Apache Commons Math library, Google Chart API, and Tomcat 6.0 Web server deployed on an Amazon EC2 server. It supports dynamic queries of National Profile of Local Health Departments data on local health department finances, workforce, and activities. Profile-IQ's customizable queries provide a variety of statistics not available in published reports and support the growing information needs of users who do not wish to work directly with data files for lack of staff skills or time, or to avoid a data use agreement. Profile-IQ also meets the growing demand of public health practitioners and policy makers for data to support quality improvement, community health assessment, and other processes associated with voluntary public health accreditation. It represents a step forward in the recent health informatics movement of data liberation and use of open source information technology solutions to promote public health.

  9. Retrieval of diagnostic and treatment studies for clinical use through PubMed and PubMed's Clinical Queries filters.

    PubMed

    Lokker, Cynthia; Haynes, R Brian; Wilczynski, Nancy L; McKibbon, K Ann; Walter, Stephen D

    2011-01-01

    Clinical Queries filters were developed to improve the retrieval of high-quality studies in searches on clinical matters. The study objective was to determine the yield of relevant citations and physician satisfaction while searching for diagnostic and treatment studies using the Clinical Queries page of PubMed compared with searching PubMed without these filters. Forty practicing physicians, presented with standardized treatment and diagnosis questions and one question of their choosing, entered search terms which were processed in a random, blinded fashion through PubMed alone and PubMed Clinical Queries. Participants rated search retrievals for applicability to the question at hand and satisfaction. For treatment, the primary outcome of retrieval of relevant articles was not significantly different between the groups, but a higher proportion of articles from the Clinical Queries searches met methodologic criteria (p=0.049), and more articles were published in core internal medicine journals (p=0.056). For diagnosis, the filtered results returned more relevant articles (p=0.031) and fewer irrelevant articles (overall retrieval less, p=0.023); participants needed to screen fewer articles before arriving at the first relevant citation (p<0.05). Relevance was also influenced by content terms used by participants in searching. Participants varied greatly in their search performance. Clinical Queries filtered searches returned more high-quality studies, though the retrieval of relevant articles was only statistically different between the groups for diagnosis questions. Retrieving clinically important research studies from Medline is a challenging task for physicians. Methodological search filters can improve search retrieval.

  10. EarthServer: a Summary of Achievements in Technology, Services, and Standards

    NASA Astrophysics Data System (ADS)

    Baumann, Peter

    2015-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data, according to ISO and OGC defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timese ries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The transatlantic EarthServer initiative, running from 2011 through 2014, has united 11 partners to establish Big Earth Data Analytics. A key ingredient has been flexibility for users to ask whatever they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level, standards-based query languages which unify data and metadata search in a simple, yet powerful way. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing cod e has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, the pioneer and leading Array DBMS built for any-size multi-dimensional raster data being extended with support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data import and, hence, duplication); the aforementioned distributed query processing. Additionally, Web clients for multi-dimensional data visualization are being established. Client/server interfaces are strictly based on OGC and W3C standards, in particular the Web Coverage Processing Service (WCPS) which defines a high-level coverage query language. Reviewers have attested EarthServer that "With no doubt the project has been shaping the Big Earth Data landscape through the standardization activities within OGC, ISO and beyond". We present the project approach, its outcomes and impact on standardization and Big Data technology, and vistas for the future.

  11. The Application of Determining Students’ Graduation Status of STMIK Palangkaraya Using K-Nearest Neighbors Method

    NASA Astrophysics Data System (ADS)

    Rusdiana, Lili; Marfuah

    2017-12-01

    K-Nearest Neighbors method is one of methods used for classification which calculate a value to find out the closest in distance. It is used to group a set of data such as students’ graduation status that are got from the amount of course credits taken by them, the grade point average (AVG), and the mini-thesis grade. The study is conducted to know the results of using K-Nearest Neighbors method on the application of determining students’ graduation status, so it can be analyzed from the method used, the data, and the application constructed. The aim of this study is to find out the application results by using K-Nearest Neighbors concept to determine students’ graduation status using the data of STMIK Palangkaraya students. The development of the software used Extreme Programming, since it was appropriate and precise for this study which was to quickly finish the project. The application was created using Microsoft Office Excel 2007 for the training data and Matlab 7 to implement the application. The result of K-Nearest Neighbors method on the application of determining students’ graduation status was 92.5%. It could determine the predicate graduation of 94 data used from the initial data before the processing as many as 136 data which the maximal training data was 50data. The K-Nearest Neighbors method is one of methods used to group a set of data based on the closest value, so that using K-Nearest Neighbors method agreed with this study. The results of K-Nearest Neighbors method on the application of determining students’ graduation status was 92.5% could determine the predicate graduation which is the maximal training data. The K-Nearest Neighbors method is one of methods used to group a set of data based on the closest value, so that using K-Nearest Neighbors method agreed with this study.

  12. Rectangular Array Of Digital Processors For Planning Paths

    NASA Technical Reports Server (NTRS)

    Kemeny, Sabrina E.; Fossum, Eric R.; Nixon, Robert H.

    1993-01-01

    Prototype 24 x 25 rectangular array of asynchronous parallel digital processors rapidly finds best path across two-dimensional field, which could be patch of terrain traversed by robotic or military vehicle. Implemented as single-chip very-large-scale integrated circuit. Excepting processors on edges, each processor communicates with four nearest neighbors along paths representing travel to north, south, east, and west. Each processor contains delay generator in form of 8-bit ripple counter, preset to 1 of 256 possible values. Operation begins with choice of processor representing starting point. Transmits signals to nearest neighbor processors, which retransmits to other neighboring processors, and process repeats until signals propagated across entire field.

  13. Remembering the Important Things: Semantic Importance in Stream Reasoning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Rui; Greaves, Mark T.; Smith, William P.

    Reasoning and querying over data streams rely on the abil- ity to deliver a sequence of stream snapshots to the processing algo- rithms. These snapshots are typically provided using windows as views into streams and associated window management strategies. Generally, the goal of any window management strategy is to preserve the most im- portant data in the current window and preferentially evict the rest, so that the retained data can continue to be exploited. A simple timestamp- based strategy is rst-in-rst-out (FIFO), in which items are replaced in strict order of arrival. All timestamp-based strategies implicitly assume that a temporalmore » ordering reliably re ects importance to the processing task at hand, and thus that window management using timestamps will maximize the ability of the processing algorithms to deliver accurate interpretations of the stream. In this work, we explore a general no- tion of semantic importance that can be used for window management for streams of RDF data using semantically-aware processing algorithms like deduction or semantic query. Semantic importance exploits the infor- mation carried in RDF and surrounding ontologies for ranking window data in terms of its likely contribution to the processing algorithms. We explore the general semantic categories of query contribution, prove- nance, and trustworthiness, as well as the contribution of domain-specic ontologies. We describe how these categories behave using several con- crete examples. Finally, we consider how a stream window management strategy based on semantic importance could improve overall processing performance, especially as available window sizes decrease.« less

  14. Query Auto-Completion Based on Word2vec Semantic Similarity

    NASA Astrophysics Data System (ADS)

    Shao, Taihua; Chen, Honghui; Chen, Wanyu

    2018-04-01

    Query auto-completion (QAC) is the first step of information retrieval, which helps users formulate the entire query after inputting only a few prefixes. Regarding the models of QAC, the traditional method ignores the contribution from the semantic relevance between queries. However, similar queries always express extremely similar search intention. In this paper, we propose a hybrid model FS-QAC based on query semantic similarity as well as the query frequency. We choose word2vec method to measure the semantic similarity between intended queries and pre-submitted queries. By combining both features, our experiments show that FS-QAC model improves the performance when predicting the user’s query intention and helping formulate the right query. Our experimental results show that the optimal hybrid model contributes to a 7.54% improvement in terms of MRR against a state-of-the-art baseline using the public AOL query logs.

  15. Neuromolecular correlates of cooperation and conflict during territory defense in a cichlid fish.

    PubMed

    Weitekamp, Chelsea A; Hofmann, Hans A

    2017-03-01

    Cooperative behavior is widespread among animals, yet the neural mechanisms have not been studied in detail. We examined cooperative territory defense behavior and associated neural activity in candidate forebrain regions in the cichlid fish, Astatotilapia burtoni. We find that a territorial male neighbor will engage in territory defense dependent on the perceived threat of the intruder. The resident male, on the other hand, engages in defense based on the size and behavior of his partner, the neighbor. In the neighbor, we find that an index of engagement correlates with neural activity in the putative homolog of the mammalian basolateral amygdala and in the preoptic area, as well as in preoptic dopaminergic neurons. In the resident, neighbor behavior is correlated with neural activity in the homolog of the mammalian hippocampus. Overall, we find distinct neural activity patterns between the neighbor and the resident, suggesting that an individual perceives and processes an intruder challenge differently during cooperative territory defense depending on its own behavioral role. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. An organizational framework and strategic implementation for system-level change to enhance research-based practice: QUERI Series

    PubMed Central

    Stetler, Cheryl B; McQueen, Lynn; Demakis, John; Mittman, Brian S

    2008-01-01

    Background The continuing gap between available evidence and current practice in health care reinforces the need for more effective solutions, in particular related to organizational context. Considerable advances have been made within the U.S. Veterans Health Administration (VA) in systematically implementing evidence into practice. These advances have been achieved through a system-level program focused on collaboration and partnerships among policy makers, clinicians, and researchers. The Quality Enhancement Research Initiative (QUERI) was created to generate research-driven initiatives that directly enhance health care quality within the VA and, simultaneously, contribute to the field of implementation science. This paradigm-shifting effort provided a natural laboratory for exploring organizational change processes. This article describes the underlying change framework and implementation strategy used to operationalize QUERI. Strategic approach to organizational change QUERI used an evidence-based organizational framework focused on three contextual elements: 1) cultural norms and values, in this case related to the role of health services researchers in evidence-based quality improvement; 2) capacity, in this case among researchers and key partners to engage in implementation research; 3) and supportive infrastructures to reinforce expectations for change and to sustain new behaviors as part of the norm. As part of a QUERI Series in Implementation Science, this article describes the framework's application in an innovative integration of health services research, policy, and clinical care delivery. Conclusion QUERI's experience and success provide a case study in organizational change. It demonstrates that progress requires a strategic, systems-based effort. QUERI's evidence-based initiative involved a deliberate cultural shift, requiring ongoing commitment in multiple forms and at multiple levels. VA's commitment to QUERI came in the form of visionary leadership, targeted allocation of resources, infrastructure refinements, innovative peer review and study methods, and direct involvement of key stakeholders. Stakeholders included both those providing and managing clinical care, as well as those producing relevant evidence within the health care system. The organizational framework and related implementation interventions used to achieve contextual change resulted in engaged investigators and enhanced uptake of research knowledge. QUERI's approach and progress provide working hypotheses for others pursuing similar system-wide efforts to routinely achieve evidence-based care. PMID:18510750

  17. SPLICE: A program to assemble partial query solutions from three-dimensional database searches into novel ligands

    NASA Astrophysics Data System (ADS)

    Ho, Chris M. W.; Marshall, Garland R.

    1993-12-01

    SPLICE is a program that processes partial query solutions retrieved from 3D, structural databases to generate novel, aggregate ligands. It is designed to interface with the database searching program FOUNDATION, which retrieves fragments containing any combination of a user-specified minimum number of matching query elements. SPLICE eliminates aspects of structures that are physically incapable of binding within the active site. Then, a systematic rule-based procedure is performed upon the remaining fragments to ensure receptor complementarity. All modifications are automated and remain transparent to the user. Ligands are then assembled by linking components into composite structures through overlapping bonds. As a control experiment, FOUNDATION and SPLICE were used to reconstruct a know HIV-1 protease inhibitor after it had been fragmented, reoriented, and added to a sham database of fifty different small molecules. To illustrate the capabilities of this program, a 3D search query containing the pharmacophoric elements of an aspartic proteinase-inhibitor crystal complex was searched using FOUNDATION against a subset of the Cambridge Structural Database. One hundred thirty-one compounds were retrieved, each containing any combination of at least four query elements. Compounds were automatically screened and edited for receptor complementarity. Numerous combinations of fragments were discovered that could be linked to form novel structures, containing a greater number of pharmacophoric elements than any single retrieved fragment.

  18. Improved Information Retrieval Performance on SQL Database Using Data Adapter

    NASA Astrophysics Data System (ADS)

    Husni, M.; Djanali, S.; Ciptaningtyas, H. T.; Wicaksana, I. G. N. A.

    2018-02-01

    The NoSQL databases, short for Not Only SQL, are increasingly being used as the number of big data applications increases. Most systems still use relational databases (RDBs), but as the number of data increases each year, the system handles big data with NoSQL databases to analyze and access data more quickly. NoSQL emerged as a result of the exponential growth of the internet and the development of web applications. The query syntax in the NoSQL database differs from the SQL database, therefore requiring code changes in the application. Data adapter allow applications to not change their SQL query syntax. Data adapters provide methods that can synchronize SQL databases with NotSQL databases. In addition, the data adapter provides an interface which is application can access to run SQL queries. Hence, this research applied data adapter system to synchronize data between MySQL database and Apache HBase using direct access query approach, where system allows application to accept query while synchronization process in progress. From the test performed using data adapter, the results obtained that the data adapter can synchronize between SQL databases, MySQL, and NoSQL database, Apache HBase. This system spends the percentage of memory resources in the range of 40% to 60%, and the percentage of processor moving from 10% to 90%. In addition, from this system also obtained the performance of database NoSQL better than SQL database.

  19. An Application Programming Interface for Synthetic Snowflake Particle Structure and Scattering Data

    NASA Technical Reports Server (NTRS)

    Lammers, Matthew; Kuo, Kwo-Sen

    2017-01-01

    The work by Kuo and colleagues on growing synthetic snowflakes and calculating their single-scattering properties has demonstrated great potential to improve the retrievals of snowfall. To grant colleagues flexible and targeted access to their large collection of sizes and shapes at fifteen (15) microwave frequencies, we have developed a web-based Application Programming Interface (API) integrated with NASA Goddard's Precipitation Processing System (PPS) Group. It is our hope that the API will enable convenient programmatic utilization of the database. To help users better understand the API's capabilities, we have developed an interactive web interface called the OpenSSP API Query Builder, which implements an intuitive system of mechanisms for selecting shapes, sizes, and frequencies to generate queries, with which the API can then extract and return data from the database. The Query Builder also allows for the specification of normalized particle size distributions by setting pertinent parameters, with which the API can also return mean geometric and scattering properties for each size bin. Additionally, the Query Builder interface enables downloading of raw scattering and particle structure data packages. This presentation will describe some of the challenges and successes associated with developing such an API. Examples of its usage will be shown both through downloading output and pulling it into a spreadsheet, as well as querying the API programmatically and working with the output in code.

  20. EquiX-A Search and Query Language for XML.

    ERIC Educational Resources Information Center

    Cohen, Sara; Kanza, Yaron; Kogan, Yakov; Sagiv, Yehoshua; Nutt, Werner; Serebrenik, Alexander

    2002-01-01

    Describes EquiX, a search language for XML that combines querying with searching to query the data and the meta-data content of Web pages. Topics include search engines; a data model for XML documents; search query syntax; search query semantics; an algorithm for evaluating a query on a document; and indexing EquiX queries. (LRW)

  1. Remote sensing and GIS integration: Towards intelligent imagery within a spatial data infrastructure

    NASA Astrophysics Data System (ADS)

    Abdelrahim, Mohamed Mahmoud Hosny

    2001-11-01

    In this research, an "Intelligent Imagery System Prototype" (IISP) was developed. IISP is an integration tool that facilitates the environment for active, direct, and on-the-fly usage of high resolution imagery, internally linked to hidden GIS vector layers, to query the real world phenomena and, consequently, to perform exploratory types of spatial analysis based on a clear/undisturbed image scene. The IISP was designed and implemented using the software components approach to verify the hypothesis that a fully rectified, partially rectified, or even unrectified digital image can be internally linked to a variety of different hidden vector databases/layers covering the end user area of interest, and consequently may be reliably used directly as a base for "on-the-fly" querying of real-world phenomena and for performing exploratory types of spatial analysis. Within IISP, differentially rectified, partially rectified (namely, IKONOS GEOCARTERRA(TM)), and unrectified imagery (namely, scanned aerial photographs and captured video frames) were investigated. The system was designed to handle four types of spatial functions, namely, pointing query, polygon/line-based image query, database query, and buffering. The system was developed using ESRI MapObjects 2.0a as the core spatial component within Visual Basic 6.0. When used to perform the pre-defined spatial queries using different combinations of image and vector data, the IISP provided the same results as those obtained by querying pre-processed vector layers even when the image used was not orthorectified and the vector layers had different parameters. In addition, the real-time pixel location orthorectification technique developed and presented within the IKONOS GEOCARTERRA(TM) case provided a horizontal accuracy (RMSE) of +/- 2.75 metres. This accuracy is very close to the accuracy level obtained when purchasing the orthorectified IKONOS PRECISION products (RMSE of +/- 1.9 metre). The latter cost approximately four times as much as the IKONOS GEOCARTERRA(TM) products. The developed IISP is a step closer towards the direct and active involvement of high-resolution remote sensing imagery in querying the real world and performing exploratory types of spatial analysis. (Abstract shortened by UMI.)

  2. An efficient compression scheme for bitmap indices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie

    2004-04-13

    When using an out-of-core indexing method to answer a query, it is generally assumed that the I/O cost dominates the overall query response time. Because of this, most research on indexing methods concentrate on reducing the sizes of indices. For bitmap indices, compression has been used for this purpose. However, in most cases, operations on these compressed bitmaps, mostly bitwise logical operations such as AND, OR, and NOT, spend more time in CPU than in I/O. To speedup these operations, a number of specialized bitmap compression schemes have been developed; the best known of which is the byte-aligned bitmap codemore » (BBC). They are usually faster in performing logical operations than the general purpose compression schemes, but, the time spent in CPU still dominates the total query response time. To reduce the query response time, we designed a CPU-friendly scheme named the word-aligned hybrid (WAH) code. In this paper, we prove that the sizes of WAH compressed bitmap indices are about two words per row for large range of attributes. This size is smaller than typical sizes of commonly used indices, such as a B-tree. Therefore, WAH compressed indices are not only appropriate for low cardinality attributes but also for high cardinality attributes.In the worst case, the time to operate on compressed bitmaps is proportional to the total size of the bitmaps involved. The total size of the bitmaps required to answer a query on one attribute is proportional to the number of hits. These indicate that WAH compressed bitmap indices are optimal. To verify their effectiveness, we generated bitmap indices for four different datasets and measured the response time of many range queries. Tests confirm that sizes of compressed bitmap indices are indeed smaller than B-tree indices, and query processing with WAH compressed indices is much faster than with BBC compressed indices, projection indices and B-tree indices. In addition, we also verified that the average query response time is proportional to the index size. This indicates that the compressed bitmap indices are efficient for very large datasets.« less

  3. Spatial and symbolic queries for 3D image data

    NASA Astrophysics Data System (ADS)

    Benson, Daniel C.; Zick, Gregory L.

    1992-04-01

    We present a query system for an object-oriented biomedical imaging database containing 3-D anatomical structures and their corresponding 2-D images. The graphical interface facilitates the formation of spatial queries, nonspatial or symbolic queries, and combined spatial/symbolic queries. A query editor is used for the creation and manipulation of 3-D query objects as volumes, surfaces, lines, and points. Symbolic predicates are formulated through a combination of text fields and multiple choice selections. Query results, which may include images, image contents, composite objects, graphics, and alphanumeric data, are displayed in multiple views. Objects returned by the query may be selected directly within the views for further inspection or modification, or for use as query objects in subsequent queries. Our image database query system provides visual feedback and manipulation of spatial query objects, multiple views of volume data, and the ability to combine spatial and symbolic queries. The system allows for incremental enhancement of existing objects and the addition of new objects and spatial relationships. The query system is designed for databases containing symbolic and spatial data. This paper discuses its application to data acquired in biomedical 3- D image reconstruction, but it is applicable to other areas such as CAD/CAM, geographical information systems, and computer vision.

  4. GenoQuery: a new querying module for functional annotation in a genomic warehouse

    PubMed Central

    Lemoine, Frédéric; Labedan, Bernard; Froidevaux, Christine

    2008-01-01

    Motivation: We have to cope with both a deluge of new genome sequences and a huge amount of data produced by high-throughput approaches used to exploit these genomic features. Crossing and comparing such heterogeneous and disparate data will help improving functional annotation of genomes. This requires designing elaborate integration systems such as warehouses for storing and querying these data. Results: We have designed a relational genomic warehouse with an original multi-layer architecture made of a databases layer and an entities layer. We describe a new querying module, GenoQuery, which is based on this architecture. We use the entities layer to define mixed queries. These mixed queries allow searching for instances of biological entities and their properties in the different databases, without specifying in which database they should be found. Accordingly, we further introduce the central notion of alternative queries. Such queries have the same meaning as the original mixed queries, while exploiting complementarities yielded by the various integrated databases of the warehouse. We explain how GenoQuery computes all the alternative queries of a given mixed query. We illustrate how useful this querying module is by means of a thorough example. Availability: http://www.lri.fr/~lemoine/GenoQuery/ Contact: chris@lri.fr, lemoine@lri.fr PMID:18586731

  5. SPARK: Adapting Keyword Query to Semantic Search

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Wang, Chong; Xiong, Miao; Wang, Haofen; Yu, Yong

    Semantic search promises to provide more accurate result than present-day keyword search. However, progress with semantic search has been delayed due to the complexity of its query languages. In this paper, we explore a novel approach of adapting keywords to querying the semantic web: the approach automatically translates keyword queries into formal logic queries so that end users can use familiar keywords to perform semantic search. A prototype system named 'SPARK' has been implemented in light of this approach. Given a keyword query, SPARK outputs a ranked list of SPARQL queries as the translation result. The translation in SPARK consists of three major steps: term mapping, query graph construction and query ranking. Specifically, a probabilistic query ranking model is proposed to select the most likely SPARQL query. In the experiment, SPARK achieved an encouraging translation result.

  6. Plant neighbor identity influences plant biochemistry and physiology related to defense

    PubMed Central

    2010-01-01

    Background Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, Centaurea maculosa, would modulate their defensive strategy in response to different plant neighbors. Results In the greenhouse, C. maculosa individuals were paired with either conspecific (C. maculosa) or heterospecific (Festuca idahoensis) plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited C. maculosa plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of C. maculosa growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, C. maculosa individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of C. maculosa conspecifics. Conclusions Our results suggest that an individual C. maculosa plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success. PMID:20565801

  7. Plant neighbor identity influences plant biochemistry and physiology related to defense.

    PubMed

    Broz, Amanda K; Broeckling, Corey D; De-la-Peña, Clelia; Lewis, Matthew R; Greene, Erick; Callaway, Ragan M; Sumner, Lloyd W; Vivanco, Jorge M

    2010-06-17

    Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, Centaurea maculosa, would modulate their defensive strategy in response to different plant neighbors. In the greenhouse, C. maculosa individuals were paired with either conspecific (C. maculosa) or heterospecific (Festuca idahoensis) plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited C. maculosa plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of C. maculosa growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, C. maculosa individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of C. maculosa conspecifics. Our results suggest that an individual C. maculosa plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success.

  8. Searching for rare diseases in PubMed: a blind comparison of Orphanet expert query and query based on terminological knowledge.

    PubMed

    Griffon, N; Schuers, M; Dhombres, F; Merabti, T; Kerdelhué, G; Rollin, L; Darmoni, S J

    2016-08-02

    Despite international initiatives like Orphanet, it remains difficult to find up-to-date information about rare diseases. The aim of this study is to propose an exhaustive set of queries for PubMed based on terminological knowledge and to evaluate it versus the queries based on expertise provided by the most frequently used resource in Europe: Orphanet. Four rare disease terminologies (MeSH, OMIM, HPO and HRDO) were manually mapped to each other permitting the automatic creation of expended terminological queries for rare diseases. For 30 rare diseases, 30 citations retrieved by Orphanet expert query and/or query based on terminological knowledge were assessed for relevance by two independent reviewers unaware of the query's origin. An adjudication procedure was used to resolve any discrepancy. Precision, relative recall and F-measure were all computed. For each Orphanet rare disease (n = 8982), there was a corresponding terminological query, in contrast with only 2284 queries provided by Orphanet. Only 553 citations were evaluated due to queries with 0 or only a few hits. There were no significant differences between the Orpha query and terminological query in terms of precision, respectively 0.61 vs 0.52 (p = 0.13). Nevertheless, terminological queries retrieved more citations more often than Orpha queries (0.57 vs. 0.33; p = 0.01). Interestingly, Orpha queries seemed to retrieve older citations than terminological queries (p < 0.0001). The terminological queries proposed in this study are now currently available for all rare diseases. They may be a useful tool for both precision or recall oriented literature search.

  9. Representation and Integration of Scientific Information

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The objective of this Joint Research Interchange with NASA-Ames was to investigate how the Tsimmis technology could be used to represent and integrate scientific information. The main goal of the Tsimmis project is to allow a decision maker to find information of interest from such sources, fuse it, and process it (e.g., summarize it, visualize it, discover trends). Another important goal is the easy incorporation of new sources, as well the ability to deal with sources whose structure or services evolve. During the Interchange we had research meetings approximately every month or two. The funds provided by NASA supported work that lead to the following two papers: Fusion Queries over Internet Databases; Efficient Query Subscription Processing in a Multicast Environment.

  10. Informatics Resources to Support Health Care Quality Improvement in the Veterans Health Administration

    PubMed Central

    Hynes, Denise M.; Perrin, Ruth A.; Rappaport, Steven; Stevens, Joanne M.; Demakis, John G.

    2004-01-01

    Information systems are increasingly important for measuring and improving health care quality. A number of integrated health care delivery systems use advanced information systems and integrated decision support to carry out quality assurance activities, but none as large as the Veterans Health Administration (VHA). The VHA's Quality Enhancement Research Initiative (QUERI) is a large-scale, multidisciplinary quality improvement initiative designed to ensure excellence in all areas where VHA provides health care services, including inpatient, outpatient, and long-term care settings. In this paper, we describe the role of information systems in the VHA QUERI process, highlight the major information systems critical to this quality improvement process, and discuss issues associated with the use of these systems. PMID:15187063

  11. An advanced web query interface for biological databases

    PubMed Central

    Latendresse, Mario; Karp, Peter D.

    2010-01-01

    Although most web-based biological databases (DBs) offer some type of web-based form to allow users to author DB queries, these query forms are quite restricted in the complexity of DB queries that they can formulate. They can typically query only one DB, and can query only a single type of object at a time (e.g. genes) with no possible interaction between the objects—that is, in SQL parlance, no joins are allowed between DB objects. Writing precise queries against biological DBs is usually left to a programmer skillful enough in complex DB query languages like SQL. We present a web interface for building precise queries for biological DBs that can construct much more precise queries than most web-based query forms, yet that is user friendly enough to be used by biologists. It supports queries containing multiple conditions, and connecting multiple object types without using the join concept, which is unintuitive to biologists. This interactive web interface is called the Structured Advanced Query Page (SAQP). Users interactively build up a wide range of query constructs. Interactive documentation within the SAQP describes the schema of the queried DBs. The SAQP is based on BioVelo, a query language based on list comprehension. The SAQP is part of the Pathway Tools software and is available as part of several bioinformatics web sites powered by Pathway Tools, including the BioCyc.org site that contains more than 500 Pathway/Genome DBs. PMID:20624715

  12. Partitioning medical image databases for content-based queries on a Grid.

    PubMed

    Montagnat, J; Breton, V; E Magnin, I

    2005-01-01

    In this paper we study the impact of executing a medical image database query application on the grid. For lowering the total computation time, the image database is partitioned into subsets to be processed on different grid nodes. A theoretical model of the application complexity and estimates of the grid execution overhead are used to efficiently partition the database. We show results demonstrating that smart partitioning of the database can lead to significant improvements in terms of total computation time. Grids are promising for content-based image retrieval in medical databases.

  13. Easy-to-use phylogenetic analysis system for hepatitis B virus infection.

    PubMed

    Sugiyama, Masaya; Inui, Ayano; Shin-I, Tadasu; Komatsu, Haruki; Mukaide, Motokazu; Masaki, Naohiko; Murata, Kazumoto; Ito, Kiyoaki; Nakanishi, Makoto; Fujisawa, Tomoo; Mizokami, Masashi

    2011-10-01

      The molecular phylogenetic analysis has been broadly applied to clinical and virological study. However, the appropriate settings and application of calculation parameters are difficult for non-specialists of molecular genetics. In the present study, the phylogenetic analysis tool was developed for the easy determination of genotypes and transmission route.   A total of 23 patients of 10 families infected with hepatitis B virus (HBV) were enrolled and expected to undergo intrafamilial transmission. The extracted HBV DNA were amplified and sequenced in a region of the S gene.   The software to automatically classify query sequence was constructed and installed on the Hepatitis Virus Database (HVDB). Reference sequences were retrieved from HVDB, which contained major genotypes from A to H. Multiple-alignments using CLUSTAL W were performed before the genetic distance matrix was calculated with the six-parameter method. The phylogenetic tree was output by the neighbor-joining method. User interface using WWW-browser was also developed for intuitive control. This system was named as the easy-to-use phylogenetic analysis system (E-PAS). Twenty-three sera of 10 families were analyzed to evaluate E-PAS. The queries obtained from nine families were genotype C and were located in one cluster per family. However, one patient of a family was classified into the cluster different from her family, suggesting that E-PAS detected the sample distinct from that of her family on the transmission route.   The E-PAS to output phylogenetic tree was developed since requisite material was sequence data only. E-PAS could expand to determine HBV genotypes as well as transmission routes. © 2011 The Japan Society of Hepatology.

  14. SPARQL Query Re-writing Using Partonomy Based Transformation Rules

    NASA Astrophysics Data System (ADS)

    Jain, Prateek; Yeh, Peter Z.; Verma, Kunal; Henson, Cory A.; Sheth, Amit P.

    Often the information present in a spatial knowledge base is represented at a different level of granularity and abstraction than the query constraints. For querying ontology's containing spatial information, the precise relationships between spatial entities has to be specified in the basic graph pattern of SPARQL query which can result in long and complex queries. We present a novel approach to help users intuitively write SPARQL queries to query spatial data, rather than relying on knowledge of the ontology structure. Our framework re-writes queries, using transformation rules to exploit part-whole relations between geographical entities to address the mismatches between query constraints and knowledge base. Our experiments were performed on completely third party datasets and queries. Evaluations were performed on Geonames dataset using questions from National Geographic Bee serialized into SPARQL and British Administrative Geography Ontology using questions from a popular trivia website. These experiments demonstrate high precision in retrieval of results and ease in writing queries.

  15. Executor Framework for DIRAC

    NASA Astrophysics Data System (ADS)

    Casajus Ramo, A.; Graciani Diaz, R.

    2012-12-01

    DIRAC framework for distributed computing has been designed as a group of collaborating components, agents and servers, with persistent database back-end. Components communicate with each other using DISET, an in-house protocol that provides Remote Procedure Call (RPC) and file transfer capabilities. This approach has provided DIRAC with a modular and stable design by enforcing stable interfaces across releases. But it made complicated to scale further with commodity hardware. To further scale DIRAC, components needed to send more queries between them. Using RPC to do so requires a lot of processing power just to handle the secure handshake required to establish the connection. DISET now provides a way to keep stable connections and send and receive queries between components. Only one handshake is required to send and receive any number of queries. Using this new communication mechanism DIRAC now provides a new type of component called Executor. Executors process any task (such as resolving the input data of a job) sent to them by a task dispatcher. This task dispatcher takes care of persisting the state of the tasks to the storage backend and distributing them among all the Executors based on the requirements of each task. In case of a high load, several Executors can be started to process the extra load and stop them once the tasks have been processed. This new approach of handling tasks in DIRAC makes Executors easy to replace and replicate, thus enabling DIRAC to further scale beyond the current approach based on polling agents.

  16. Applying Semantic Web Concepts to Support Net-Centric Warfare Using the Tactical Assessment Markup Language (TAML)

    DTIC Science & Technology

    2006-06-01

    SPARQL SPARQL Protocol and RDF Query Language SQL Structured Query Language SUMO Suggested Upper Merged Ontology SW... Query optimization algorithms are implemented in the Pellet reasoner in order to ensure querying a knowledge base is efficient . These algorithms...memory as a treelike structure in order for the data to be queried . XML Query (XQuery) is the standard language used when querying XML

  17. Rhizosphere chemical dialogues: plant-microbe interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badri, D.V.; van der Lelie, D.; Weir, T. L.

    2009-12-01

    Every organism on earth relies on associations with its neighbors to sustain life. For example, plants form associations with neighboring plants, microflora, and microfauna, while humans maintain symbiotic associations with intestinal microbial flora, which is indispensable for nutrient assimilation and development of the innate immune system. Most of these associations are facilitated by chemical cues exchanged between the host and the symbionts. In the rhizosphere, which includes plant roots and the surrounding area of soil influenced by the roots, plants exude chemicals to effectively communicate with their neighboring soil organisms. Here we review the current literature pertaining to the chemicalmore » communication that exists between plants and microorganisms and the biological processes they sustain.« less

  18. A study of medical and health queries to web search engines.

    PubMed

    Spink, Amanda; Yang, Yin; Jansen, Jim; Nykanen, Pirrko; Lorence, Daniel P; Ozmutlu, Seda; Ozmutlu, H Cenk

    2004-03-01

    This paper reports findings from an analysis of medical or health queries to different web search engines. We report results: (i). comparing samples of 10000 web queries taken randomly from 1.2 million query logs from the AlltheWeb.com and Excite.com commercial web search engines in 2001 for medical or health queries, (ii). comparing the 2001 findings from Excite and AlltheWeb.com users with results from a previous analysis of medical and health related queries from the Excite Web search engine for 1997 and 1999, and (iii). medical or health advice-seeking queries beginning with the word 'should'. Findings suggest: (i). a small percentage of web queries are medical or health related, (ii). the top five categories of medical or health queries were: general health, weight issues, reproductive health and puberty, pregnancy/obstetrics, and human relationships, and (iii). over time, the medical and health queries may have declined as a proportion of all web queries, as the use of specialized medical/health websites and e-commerce-related queries has increased. Findings provide insights into medical and health-related web querying and suggests some implications for the use of the general web search engines when seeking medical/health information.

  19. Monitoring Moving Queries inside a Safe Region

    PubMed Central

    Al-Khalidi, Haidar; Taniar, David; Alamri, Sultan

    2014-01-01

    With mobile moving range queries, there is a need to recalculate the relevant surrounding objects of interest whenever the query moves. Therefore, monitoring the moving query is very costly. The safe region is one method that has been proposed to minimise the communication and computation cost of continuously monitoring a moving range query. Inside the safe region the set of objects of interest to the query do not change; thus there is no need to update the query while it is inside its safe region. However, when the query leaves its safe region the mobile device has to reevaluate the query, necessitating communication with the server. Knowing when and where the mobile device will leave a safe region is widely known as a difficult problem. To solve this problem, we propose a novel method to monitor the position of the query over time using a linear function based on the direction of the query obtained by periodic monitoring of its position. Periodic monitoring ensures that the query is aware of its location all the time. This method reduces the costs associated with communications in client-server architecture. Computational results show that our method is successful in handling moving query patterns. PMID:24696652

  20. Text Information Extraction System (TIES) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    TIES is a service based software system for acquiring, deidentifying, and processing clinical text reports using natural language processing, and also for querying, sharing and using this data to foster tissue and image based research, within and between institutions.

  1. RDF-GL: A SPARQL-Based Graphical Query Language for RDF

    NASA Astrophysics Data System (ADS)

    Hogenboom, Frederik; Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay

    This chapter presents RDF-GL, a graphical query language (GQL) for RDF. The GQL is based on the textual query language SPARQL and mainly focuses on SPARQL SELECT queries. The advantage of a GQL over textual query languages is that complexity is hidden through the use of graphical symbols. RDF-GL is supported by a Java-based editor, SPARQLinG, which is presented as well. The editor does not only allow for RDF-GL query creation, but also converts RDF-GL queries to SPARQL queries and is able to subsequently execute these. Experiments show that using the GQL in combination with the editor makes RDF querying more accessible for end users.

  2. Protecting personal data in epidemiological research: DataSHIELD and UK law.

    PubMed

    Wallace, Susan E; Gaye, Amadou; Shoush, Osama; Burton, Paul R

    2014-01-01

    Data from individual collections, such as biobanks and cohort studies, are now being shared in order to create combined datasets which can be queried to ask complex scientific questions. But this sharing must be done with due regard for data protection principles. DataSHIELD is a new technology that queries nonaggregated, individual-level data in situ but returns query data in an anonymous format. This raises questions of the ability of DataSHIELD to adequately protect participant confidentiality. An ethico-legal analysis was conducted that examined each step of the DataSHIELD process from the perspective of UK case law, regulations, and guidance. DataSHIELD reaches agreed UK standards of protection for the sharing of biomedical data. All direct processing of personal data is conducted within the protected environment of the contributing study; participating studies have scientific, ethics, and data access approvals in place prior to the analysis; studies are clear that their consents conform with this use of data, and participants are informed that anonymisation for further disclosure will take place. DataSHIELD can provide a flexible means of interrogating data while protecting the participants' confidentiality in accordance with applicable legislation and guidance. © 2014 S. Karger AG, Basel.

  3. Mining Genotype-Phenotype Associations from Public Knowledge Sources via Semantic Web Querying.

    PubMed

    Kiefer, Richard C; Freimuth, Robert R; Chute, Christopher G; Pathak, Jyotishman

    2013-01-01

    Gene Wiki Plus (GeneWiki+) and the Online Mendelian Inheritance in Man (OMIM) are publicly available resources for sharing information about disease-gene and gene-SNP associations in humans. While immensely useful to the scientific community, both resources are manually curated, thereby making the data entry and publication process time-consuming, and to some degree, error-prone. To this end, this study investigates Semantic Web technologies to validate existing and potentially discover new genotype-phenotype associations in GWP and OMIM. In particular, we demonstrate the applicability of SPARQL queries for identifying associations not explicitly stated for commonly occurring chronic diseases in GWP and OMIM, and report our preliminary findings for coverage, completeness, and validity of the associations. Our results highlight the benefits of Semantic Web querying technology to validate existing disease-gene associations as well as identify novel associations although further evaluation and analysis is required before such information can be applied and used effectively.

  4. Bottom-Up Evaluation of Twig Join Pattern Queries in XML Document Databases

    NASA Astrophysics Data System (ADS)

    Chen, Yangjun

    Since the extensible markup language XML emerged as a new standard for information representation and exchange on the Internet, the problem of storing, indexing, and querying XML documents has been among the major issues of database research. In this paper, we study the twig pattern matching and discuss a new algorithm for processing ordered twig pattern queries. The time complexity of the algorithmis bounded by O(|D|·|Q| + |T|·leaf Q ) and its space overhead is by O(leaf T ·leaf Q ), where T stands for a document tree, Q for a twig pattern and D is a largest data stream associated with a node q of Q, which contains the database nodes that match the node predicate at q. leaf T (leaf Q ) represents the number of the leaf nodes of T (resp. Q). In addition, the algorithm can be adapted to an indexing environment with XB-trees being used.

  5. Flexible querying of Web data to simulate bacterial growth in food.

    PubMed

    Buche, Patrice; Couvert, Olivier; Dibie-Barthélemy, Juliette; Hignette, Gaëlle; Mettler, Eric; Soler, Lydie

    2011-06-01

    A preliminary step in microbial risk assessment in foods is the gathering of experimental data. In the framework of the Sym'Previus project, we have designed a complete data integration system opened on the Web which allows a local database to be complemented by data extracted from the Web and annotated using a domain ontology. We focus on the Web data tables as they contain, in general, a synthesis of data published in the documents. We propose in this paper a flexible querying system using the domain ontology to scan simultaneously local and Web data, this in order to feed the predictive modeling tools available on the Sym'Previus platform. Special attention is paid on the way fuzzy annotations associated with Web data are taken into account in the querying process, which is an important and original contribution of the proposed system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Parallel multi-join query optimization algorithm for distributed sensor network in the internet of things

    NASA Astrophysics Data System (ADS)

    Zheng, Yan

    2015-03-01

    Internet of things (IoT), focusing on providing users with information exchange and intelligent control, attracts a lot of attention of researchers from all over the world since the beginning of this century. IoT is consisted of large scale of sensor nodes and data processing units, and the most important features of IoT can be illustrated as energy confinement, efficient communication and high redundancy. With the sensor nodes increment, the communication efficiency and the available communication band width become bottle necks. Many research work is based on the instance which the number of joins is less. However, it is not proper to the increasing multi-join query in whole internet of things. To improve the communication efficiency between parallel units in the distributed sensor network, this paper proposed parallel query optimization algorithm based on distribution attributes cost graph. The storage information relations and the network communication cost are considered in this algorithm, and an optimized information changing rule is established. The experimental result shows that the algorithm has good performance, and it would effectively use the resource of each node in the distributed sensor network. Therefore, executive efficiency of multi-join query between different nodes could be improved.

  7. Foundations of a query and simulation system for the modeling of biochemical and biological processes.

    PubMed

    Antoniotti, M; Park, F; Policriti, A; Ugel, N; Mishra, B

    2003-01-01

    The analysis of large amounts of data, produced as (numerical) traces of in vivo, in vitro and in silico experiments, has become a central activity for many biologists and biochemists. Recent advances in the mathematical modeling and computation of biochemical systems have moreover increased the prominence of in silico experiments; such experiments typically involve the simulation of sets of Differential Algebraic Equations (DAE), e.g., Generalized Mass Action systems (GMA) and S-systems. In this paper we reason about the necessary theoretical and pragmatic foundations for a query and simulation system capable of analyzing large amounts of such trace data. To this end, we propose to combine in a novel way several well-known tools from numerical analysis (approximation theory), temporal logic and verification, and visualization. The result is a preliminary prototype system: simpathica/xssys. When dealing with simulation data simpathica/xssys exploits the special structure of the underlying DAE, and reduces the search space in an efficient way so as to facilitate any queries about the traces. The proposed system is designed to give the user possibility to systematically analyze and simultaneously query different possible timed evolutions of the modeled system.

  8. Using string alignment in a query-by-humming system for real world applications

    NASA Astrophysics Data System (ADS)

    Sailer, Christian

    2005-09-01

    Though query by humming (i.e., retrieving music or information about music by singing a characteristic melody) has been a popular research topic during the past decade, few approaches have reached a level of usefulness beyond mere scientific interest. One of the main problems is the inherent contradiction between error tolerance and dicriminative power in conventional melody matching algorithms that rely on a melody contour approach to handle intonation or transcription errors. Adopting the string matching/alignment techniques from bioinformatics to melody sequences allows to directly assess the similarity between two melodies. This method takes an MPEG-7 compliant melody sequence (i.e., a list of note intervals and length ratios) as query and evaluates the steps necessary to transform it into the reference sequence. By introducing a musically founded cost-of-replace function and an adequate post processing, this method yields a measure for melodic similarity. Thus it is possible to construct a query by humming system that can properly discriminate between thousands of melodies and still be sufficiently error tolerant to be used by untrained singers. The robustness has been verified in extensive tests and real world applications.

  9. GenoMetric Query Language: a novel approach to large-scale genomic data management.

    PubMed

    Masseroli, Marco; Pinoli, Pietro; Venco, Francesco; Kaitoua, Abdulrahman; Jalili, Vahid; Palluzzi, Fernando; Muller, Heiko; Ceri, Stefano

    2015-06-15

    Improvement of sequencing technologies and data processing pipelines is rapidly providing sequencing data, with associated high-level features, of many individual genomes in multiple biological and clinical conditions. They allow for data-driven genomic, transcriptomic and epigenomic characterizations, but require state-of-the-art 'big data' computing strategies, with abstraction levels beyond available tool capabilities. We propose a high-level, declarative GenoMetric Query Language (GMQL) and a toolkit for its use. GMQL operates downstream of raw data preprocessing pipelines and supports queries over thousands of heterogeneous datasets and samples; as such it is key to genomic 'big data' analysis. GMQL leverages a simple data model that provides both abstractions of genomic region data and associated experimental, biological and clinical metadata and interoperability between many data formats. Based on Hadoop framework and Apache Pig platform, GMQL ensures high scalability, expressivity, flexibility and simplicity of use, as demonstrated by several biological query examples on ENCODE and TCGA datasets. The GMQL toolkit is freely available for non-commercial use at http://www.bioinformatics.deib.polimi.it/GMQL/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Cumulative query method for influenza surveillance using search engine data.

    PubMed

    Seo, Dong-Woo; Jo, Min-Woo; Sohn, Chang Hwan; Shin, Soo-Yong; Lee, JaeHo; Yu, Maengsoo; Kim, Won Young; Lim, Kyoung Soo; Lee, Sang-Il

    2014-12-16

    Internet search queries have become an important data source in syndromic surveillance system. However, there is currently no syndromic surveillance system using Internet search query data in South Korea. The objective of this study was to examine correlations between our cumulative query method and national influenza surveillance data. Our study was based on the local search engine, Daum (approximately 25% market share), and influenza-like illness (ILI) data from the Korea Centers for Disease Control and Prevention. A quota sampling survey was conducted with 200 participants to obtain popular queries. We divided the study period into two sets: Set 1 (the 2009/10 epidemiological year for development set 1 and 2010/11 for validation set 1) and Set 2 (2010/11 for development Set 2 and 2011/12 for validation Set 2). Pearson's correlation coefficients were calculated between the Daum data and the ILI data for the development set. We selected the combined queries for which the correlation coefficients were .7 or higher and listed them in descending order. Then, we created a cumulative query method n representing the number of cumulative combined queries in descending order of the correlation coefficient. In validation set 1, 13 cumulative query methods were applied, and 8 had higher correlation coefficients (min=.916, max=.943) than that of the highest single combined query. Further, 11 of 13 cumulative query methods had an r value of ≥.7, but 4 of 13 combined queries had an r value of ≥.7. In validation set 2, 8 of 15 cumulative query methods showed higher correlation coefficients (min=.975, max=.987) than that of the highest single combined query. All 15 cumulative query methods had an r value of ≥.7, but 6 of 15 combined queries had an r value of ≥.7. Cumulative query method showed relatively higher correlation with national influenza surveillance data than combined queries in the development and validation set.

  11. A Query Integrator and Manager for the Query Web

    PubMed Central

    Brinkley, James F.; Detwiler, Landon T.

    2012-01-01

    We introduce two concepts: the Query Web as a layer of interconnected queries over the document web and the semantic web, and a Query Web Integrator and Manager (QI) that enables the Query Web to evolve. QI permits users to write, save and reuse queries over any web accessible source, including other queries saved in other installations of QI. The saved queries may be in any language (e.g. SPARQL, XQuery); the only condition for interconnection is that the queries return their results in some form of XML. This condition allows queries to chain off each other, and to be written in whatever language is appropriate for the task. We illustrate the potential use of QI for several biomedical use cases, including ontology view generation using a combination of graph-based and logical approaches, value set generation for clinical data management, image annotation using terminology obtained from an ontology web service, ontology-driven brain imaging data integration, small-scale clinical data integration, and wider-scale clinical data integration. Such use cases illustrate the current range of applications of QI and lead us to speculate about the potential evolution from smaller groups of interconnected queries into a larger query network that layers over the document and semantic web. The resulting Query Web could greatly aid researchers and others who now have to manually navigate through multiple information sources in order to answer specific questions. PMID:22531831

  12. Optimizing SIEM Throughput on the Cloud Using Parallelization.

    PubMed

    Alam, Masoom; Ihsan, Asif; Khan, Muazzam A; Javaid, Qaisar; Khan, Abid; Manzoor, Jawad; Akhundzada, Adnan; Khan, Muhammad Khurram; Farooq, Sajid

    2016-01-01

    Processing large amounts of data in real time for identifying security issues pose several performance challenges, especially when hardware infrastructure is limited. Managed Security Service Providers (MSSP), mostly hosting their applications on the Cloud, receive events at a very high rate that varies from a few hundred to a couple of thousand events per second (EPS). It is critical to process this data efficiently, so that attacks could be identified quickly and necessary response could be initiated. This paper evaluates the performance of a security framework OSTROM built on the Esper complex event processing (CEP) engine under a parallel and non-parallel computational framework. We explain three architectures under which Esper can be used to process events. We investigated the effect on throughput, memory and CPU usage in each configuration setting. The results indicate that the performance of the engine is limited by the number of events coming in rather than the queries being processed. The architecture where 1/4th of the total events are submitted to each instance and all the queries are processed by all the units shows best results in terms of throughput, memory and CPU usage.

  13. Study of parameters of the nearest neighbour shared algorithm on clustering documents

    NASA Astrophysics Data System (ADS)

    Mustika Rukmi, Alvida; Budi Utomo, Daryono; Imro’atus Sholikhah, Neni

    2018-03-01

    Document clustering is one way of automatically managing documents, extracting of document topics and fastly filtering information. Preprocess of clustering documents processed by textmining consists of: keyword extraction using Rapid Automatic Keyphrase Extraction (RAKE) and making the document as concept vector using Latent Semantic Analysis (LSA). Furthermore, the clustering process is done so that the documents with the similarity of the topic are in the same cluster, based on the preprocesing by textmining performed. Shared Nearest Neighbour (SNN) algorithm is a clustering method based on the number of "nearest neighbors" shared. The parameters in the SNN Algorithm consist of: k nearest neighbor documents, ɛ shared nearest neighbor documents and MinT minimum number of similar documents, which can form a cluster. Characteristics The SNN algorithm is based on shared ‘neighbor’ properties. Each cluster is formed by keywords that are shared by the documents. SNN algorithm allows a cluster can be built more than one keyword, if the value of the frequency of appearing keywords in document is also high. Determination of parameter values on SNN algorithm affects document clustering results. The higher parameter value k, will increase the number of neighbor documents from each document, cause similarity of neighboring documents are lower. The accuracy of each cluster is also low. The higher parameter value ε, caused each document catch only neighbor documents that have a high similarity to build a cluster. It also causes more unclassified documents (noise). The higher the MinT parameter value cause the number of clusters will decrease, since the number of similar documents can not form clusters if less than MinT. Parameter in the SNN Algorithm determine performance of clustering result and the amount of noise (unclustered documents ). The Silhouette coeffisient shows almost the same result in many experiments, above 0.9, which means that SNN algorithm works well with different parameter values.

  14. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants.

    PubMed

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [(15)N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  15. Automatic Processing of Current Affairs Queries

    ERIC Educational Resources Information Center

    Salton, G.

    1973-01-01

    The SMART system is used for the analysis, search and retrieval of news stories appearing in Time'' magazine. A comparison is made between the automatic text processing methods incorporated into the SMART system and a manual search using the classified index to Time.'' (14 references) (Author)

  16. A novel methodology for querying web images

    NASA Astrophysics Data System (ADS)

    Prabhakara, Rashmi; Lee, Ching Cheng

    2005-01-01

    Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.

  17. A novel methodology for querying web images

    NASA Astrophysics Data System (ADS)

    Prabhakara, Rashmi; Lee, Ching Cheng

    2004-12-01

    Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.

  18. Improving integrative searching of systems chemical biology data using semantic annotation.

    PubMed

    Chen, Bin; Ding, Ying; Wild, David J

    2012-03-08

    Systems chemical biology and chemogenomics are considered critical, integrative disciplines in modern biomedical research, but require data mining of large, integrated, heterogeneous datasets from chemistry and biology. We previously developed an RDF-based resource called Chem2Bio2RDF that enabled querying of such data using the SPARQL query language. Whilst this work has proved useful in its own right as one of the first major resources in these disciplines, its utility could be greatly improved by the application of an ontology for annotation of the nodes and edges in the RDF graph, enabling a much richer range of semantic queries to be issued. We developed a generalized chemogenomics and systems chemical biology OWL ontology called Chem2Bio2OWL that describes the semantics of chemical compounds, drugs, protein targets, pathways, genes, diseases and side-effects, and the relationships between them. The ontology also includes data provenance. We used it to annotate our Chem2Bio2RDF dataset, making it a rich semantic resource. Through a series of scientific case studies we demonstrate how this (i) simplifies the process of building SPARQL queries, (ii) enables useful new kinds of queries on the data and (iii) makes possible intelligent reasoning and semantic graph mining in chemogenomics and systems chemical biology. Chem2Bio2OWL is available at http://chem2bio2rdf.org/owl. The document is available at http://chem2bio2owl.wikispaces.com.

  19. Meeting medical terminology needs--the Ontology-Enhanced Medical Concept Mapper.

    PubMed

    Leroy, G; Chen, H

    2001-12-01

    This paper describes the development and testing of the Medical Concept Mapper, a tool designed to facilitate access to online medical information sources by providing users with appropriate medical search terms for their personal queries. Our system is valuable for patients whose knowledge of medical vocabularies is inadequate to find the desired information, and for medical experts who search for information outside their field of expertise. The Medical Concept Mapper maps synonyms and semantically related concepts to a user's query. The system is unique because it integrates our natural language processing tool, i.e., the Arizona (AZ) Noun Phraser, with human-created ontologies, the Unified Medical Language System (UMLS) and WordNet, and our computer generated Concept Space, into one system. Our unique contribution results from combining the UMLS Semantic Net with Concept Space in our deep semantic parsing (DSP) algorithm. This algorithm establishes a medical query context based on the UMLS Semantic Net, which allows Concept Space terms to be filtered so as to isolate related terms relevant to the query. We performed two user studies in which Medical Concept Mapper terms were compared against human experts' terms. We conclude that the AZ Noun Phraser is well suited to extract medical phrases from user queries, that WordNet is not well suited to provide strictly medical synonyms, that the UMLS Metathesaurus is well suited to provide medical synonyms, and that Concept Space is well suited to provide related medical terms, especially when these terms are limited by our DSP algorithm.

  20. Querying archetype-based EHRs by search ontology-based XPath engineering.

    PubMed

    Kropf, Stefan; Uciteli, Alexandr; Schierle, Katrin; Krücken, Peter; Denecke, Kerstin; Herre, Heinrich

    2018-05-11

    Legacy data and new structured data can be stored in a standardized format as XML-based EHRs on XML databases. Querying documents on these databases is crucial for answering research questions. Instead of using free text searches, that lead to false positive results, the precision can be increased by constraining the search to certain parts of documents. A search ontology-based specification of queries on XML documents defines search concepts and relates them to parts in the XML document structure. Such query specification method is practically introduced and evaluated by applying concrete research questions formulated in natural language on a data collection for information retrieval purposes. The search is performed by search ontology-based XPath engineering that reuses ontologies and XML-related W3C standards. The key result is that the specification of research questions can be supported by the usage of search ontology-based XPath engineering. A deeper recognition of entities and a semantic understanding of the content is necessary for a further improvement of precision and recall. Key limitation is that the application of the introduced process requires skills in ontology and software development. In future, the time consuming ontology development could be overcome by implementing a new clinical role: the clinical ontologist. The introduced Search Ontology XML extension connects Search Terms to certain parts in XML documents and enables an ontology-based definition of queries. Search ontology-based XPath engineering can support research question answering by the specification of complex XPath expressions without deep syntax knowledge about XPaths.

  1. Selecting the Best Mobile Information Service with Natural Language User Input

    NASA Astrophysics Data System (ADS)

    Feng, Qiangze; Qi, Hongwei; Fukushima, Toshikazu

    Information services accessed via mobile phones provide information directly relevant to subscribers’ daily lives and are an area of dynamic market growth worldwide. Although many information services are currently offered by mobile operators, many of the existing solutions require a unique gateway for each service, and it is inconvenient for users to have to remember a large number of such gateways. Furthermore, the Short Message Service (SMS) is very popular in China and Chinese users would prefer to access these services in natural language via SMS. This chapter describes a Natural Language Based Service Selection System (NL3S) for use with a large number of mobile information services. The system can accept user queries in natural language and navigate it to the required service. Since it is difficult for existing methods to achieve high accuracy and high coverage and anticipate which other services a user might want to query, the NL3S is developed based on a Multi-service Ontology (MO) and Multi-service Query Language (MQL). The MO and MQL provide semantic and linguistic knowledge, respectively, to facilitate service selection for a user query and to provide adaptive service recommendations. Experiments show that the NL3S can achieve 75-95% accuracies and 85-95% satisfactions for processing various styles of natural language queries. A trial involving navigation of 30 different mobile services shows that the NL3S can provide a viable commercial solution for mobile operators.

  2. VIGOR: Interactive Visual Exploration of Graph Query Results.

    PubMed

    Pienta, Robert; Hohman, Fred; Endert, Alex; Tamersoy, Acar; Roundy, Kevin; Gates, Chris; Navathe, Shamkant; Chau, Duen Horng

    2018-01-01

    Finding patterns in graphs has become a vital challenge in many domains from biological systems, network security, to finance (e.g., finding money laundering rings of bankers and business owners). While there is significant interest in graph databases and querying techniques, less research has focused on helping analysts make sense of underlying patterns within a group of subgraph results. Visualizing graph query results is challenging, requiring effective summarization of a large number of subgraphs, each having potentially shared node-values, rich node features, and flexible structure across queries. We present VIGOR, a novel interactive visual analytics system, for exploring and making sense of query results. VIGOR uses multiple coordinated views, leveraging different data representations and organizations to streamline analysts sensemaking process. VIGOR contributes: (1) an exemplar-based interaction technique, where an analyst starts with a specific result and relaxes constraints to find other similar results or starts with only the structure (i.e., without node value constraints), and adds constraints to narrow in on specific results; and (2) a novel feature-aware subgraph result summarization. Through a collaboration with Symantec, we demonstrate how VIGOR helps tackle real-world problems through the discovery of security blindspots in a cybersecurity dataset with over 11,000 incidents. We also evaluate VIGOR with a within-subjects study, demonstrating VIGOR's ease of use over a leading graph database management system, and its ability to help analysts understand their results at higher speed and make fewer errors.

  3. DNA Barcoding of Recently Diverged Species: Relative Performance of Matching Methods

    PubMed Central

    van Velzen, Robin; Weitschek, Emanuel; Felici, Giovanni; Bakker, Freek T.

    2012-01-01

    Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases. Problems are mostly due to incomplete lineage sorting or simply lack of a ‘barcode gap’ and probably related to large effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based), nearest neighbor and BLAST (similarity-based), and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three different effective population sizes as well as three selected empirical data sets from published studies. Results show, as expected, that success rates are significantly lower for recently diverged species (∼75%) than for older species (∼97%) (P<0.00001). Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to simulated DNA barcode data (P<0.00001). The diagnostic method BLOG had highest correct query identification rate based on simulated (86.2%) as well as empirical data (93.1%), indicating that it is a consistently better method overall. Another advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for instance in species description or molecular detection assays. Even though we can confirm that identification success based on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our results contribute to improved solutions for their accurate identification. PMID:22272356

  4. DNA barcoding of recently diverged species: relative performance of matching methods.

    PubMed

    van Velzen, Robin; Weitschek, Emanuel; Felici, Giovanni; Bakker, Freek T

    2012-01-01

    Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases. Problems are mostly due to incomplete lineage sorting or simply lack of a 'barcode gap' and probably related to large effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based), nearest neighbor and BLAST (similarity-based), and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three different effective population sizes as well as three selected empirical data sets from published studies. Results show, as expected, that success rates are significantly lower for recently diverged species (∼75%) than for older species (∼97%) (P<0.00001). Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to simulated DNA barcode data (P<0.00001). The diagnostic method BLOG had highest correct query identification rate based on simulated (86.2%) as well as empirical data (93.1%), indicating that it is a consistently better method overall. Another advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for instance in species description or molecular detection assays. Even though we can confirm that identification success based on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our results contribute to improved solutions for their accurate identification.

  5. Using Generalized Annotated Programs to Solve Social Network Diffusion Optimization Problems

    DTIC Science & Technology

    2013-01-01

    as follows: —Let kall be the k value for the SNDOP-ALL query and for each SNDOP query i, let ki be the k for that query. For each query i, set ki... kall − 1. —Number each element of vi ∈ V such that gI(vi) and V C(vi) are true. For the ith SNDOP query, let vi be the corresponding element of V —Let...vertices of S. PROOF. We set up |V | SNDOP-queries as follows: —Let kall be the k value for the SNDOP-ALL query and and for each SNDOP-query i, let ki be

  6. A web-based data-querying tool based on ontology-driven methodology and flowchart-based model.

    PubMed

    Ping, Xiao-Ou; Chung, Yufang; Tseng, Yi-Ju; Liang, Ja-Der; Yang, Pei-Ming; Huang, Guan-Tarn; Lai, Feipei

    2013-10-08

    Because of the increased adoption rate of electronic medical record (EMR) systems, more health care records have been increasingly accumulating in clinical data repositories. Therefore, querying the data stored in these repositories is crucial for retrieving the knowledge from such large volumes of clinical data. The aim of this study is to develop a Web-based approach for enriching the capabilities of the data-querying system along the three following considerations: (1) the interface design used for query formulation, (2) the representation of query results, and (3) the models used for formulating query criteria. The Guideline Interchange Format version 3.5 (GLIF3.5), an ontology-driven clinical guideline representation language, was used for formulating the query tasks based on the GLIF3.5 flowchart in the Protégé environment. The flowchart-based data-querying model (FBDQM) query execution engine was developed and implemented for executing queries and presenting the results through a visual and graphical interface. To examine a broad variety of patient data, the clinical data generator was implemented to automatically generate the clinical data in the repository, and the generated data, thereby, were employed to evaluate the system. The accuracy and time performance of the system for three medical query tasks relevant to liver cancer were evaluated based on the clinical data generator in the experiments with varying numbers of patients. In this study, a prototype system was developed to test the feasibility of applying a methodology for building a query execution engine using FBDQMs by formulating query tasks using the existing GLIF. The FBDQM-based query execution engine was used to successfully retrieve the clinical data based on the query tasks formatted using the GLIF3.5 in the experiments with varying numbers of patients. The accuracy of the three queries (ie, "degree of liver damage," "degree of liver damage when applying a mutually exclusive setting," and "treatments for liver cancer") was 100% for all four experiments (10 patients, 100 patients, 1000 patients, and 10,000 patients). Among the three measured query phases, (1) structured query language operations, (2) criteria verification, and (3) other, the first two had the longest execution time. The ontology-driven FBDQM-based approach enriched the capabilities of the data-querying system. The adoption of the GLIF3.5 increased the potential for interoperability, shareability, and reusability of the query tasks.

  7. Towards Big Earth Data Analytics: The EarthServer Approach

    NASA Astrophysics Data System (ADS)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data import and, hence, duplication); the aforementioned distributed query processing. Additionally, Web clients for multi-dimensional data visualization are being established. Client/server interfaces are strictly based on OGC and W3C standards, in particular the Web Coverage Processing Service (WCPS) which defines a high-level raster query language. We present the EarthServer project with its vision and approaches, relate it to the current state of standardization, and demonstrate it by way of large-scale data centers and their services using rasdaman.

  8. Toward An Unstructured Mesh Database

    NASA Astrophysics Data System (ADS)

    Rezaei Mahdiraji, Alireza; Baumann, Peter Peter

    2014-05-01

    Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi-incidence relationships. We instrument ImG model with sets of optional and application-specific constraints which can be used to check validity of meshes for a specific class of object such as manifold, pseudo-manifold, and simplicial manifold. We conducted experiments to measure the performance of the graph database solution in processing mesh queries and compare it with GrAL mesh library and PostgreSQL database on synthetic and real mesh datasets. The experiments show that each system perform well on specific types of mesh queries, e.g., graph databases perform well on global path-intensive queries. In the future, we investigate database operations for the ImG model and design a mesh query language.

  9. Equilibrium polymerization on the equivalent-neighbor lattice

    NASA Technical Reports Server (NTRS)

    Kaufman, Miron

    1989-01-01

    The equilibrium polymerization problem is solved exactly on the equivalent-neighbor lattice. The Flory-Huggins (Flory, 1986) entropy of mixing is exact for this lattice. The discrete version of the n-vector model is verified when n approaches 0 is equivalent to the equal reactivity polymerization process in the whole parameter space, including the polymerized phase. The polymerization processes for polymers satisfying the Schulz (1939) distribution exhibit nonuniversal critical behavior. A close analogy is found between the polymerization problem of index the Schulz r and the Bose-Einstein ideal gas in d = -2r dimensions, with the critical polymerization corresponding to the Bose-Einstein condensation.

  10. Comparative Analysis of Online Health Queries Originating From Personal Computers and Smart Devices on a Consumer Health Information Portal

    PubMed Central

    Jadhav, Ashutosh; Andrews, Donna; Fiksdal, Alexander; Kumbamu, Ashok; McCormick, Jennifer B; Misitano, Andrew; Nelsen, Laurie; Ryu, Euijung; Sheth, Amit; Wu, Stephen

    2014-01-01

    Background The number of people using the Internet and mobile/smart devices for health information seeking is increasing rapidly. Although the user experience for online health information seeking varies with the device used, for example, smart devices (SDs) like smartphones/tablets versus personal computers (PCs) like desktops/laptops, very few studies have investigated how online health information seeking behavior (OHISB) may differ by device. Objective The objective of this study is to examine differences in OHISB between PCs and SDs through a comparative analysis of large-scale health search queries submitted through Web search engines from both types of devices. Methods Using the Web analytics tool, IBM NetInsight OnDemand, and based on the type of devices used (PCs or SDs), we obtained the most frequent health search queries between June 2011 and May 2013 that were submitted on Web search engines and directed users to the Mayo Clinic’s consumer health information website. We performed analyses on “Queries with considering repetition counts (QwR)” and “Queries without considering repetition counts (QwoR)”. The dataset contains (1) 2.74 million and 3.94 million QwoR, respectively for PCs and SDs, and (2) more than 100 million QwR for both PCs and SDs. We analyzed structural properties of the queries (length of the search queries, usage of query operators and special characters in health queries), types of search queries (keyword-based, wh-questions, yes/no questions), categorization of the queries based on health categories and information mentioned in the queries (gender, age-groups, temporal references), misspellings in the health queries, and the linguistic structure of the health queries. Results Query strings used for health information searching via PCs and SDs differ by almost 50%. The most searched health categories are “Symptoms” (1 in 3 search queries), “Causes”, and “Treatments & Drugs”. The distribution of search queries for different health categories differs with the device used for the search. Health queries tend to be longer and more specific than general search queries. Health queries from SDs are longer and have slightly fewer spelling mistakes than those from PCs. Users specify words related to women and children more often than that of men and any other age group. Most of the health queries are formulated using keywords; the second-most common are wh- and yes/no questions. Users ask more health questions using SDs than PCs. Almost all health queries have at least one noun and health queries from SDs are more descriptive than those from PCs. Conclusions This study is a large-scale comparative analysis of health search queries to understand the effects of device type (PCs vs SDs) used on OHISB. The study indicates that the device used for online health information search plays an important role in shaping how health information searches by consumers and patients are executed. PMID:25000537

  11. Comparative analysis of online health queries originating from personal computers and smart devices on a consumer health information portal.

    PubMed

    Jadhav, Ashutosh; Andrews, Donna; Fiksdal, Alexander; Kumbamu, Ashok; McCormick, Jennifer B; Misitano, Andrew; Nelsen, Laurie; Ryu, Euijung; Sheth, Amit; Wu, Stephen; Pathak, Jyotishman

    2014-07-04

    The number of people using the Internet and mobile/smart devices for health information seeking is increasing rapidly. Although the user experience for online health information seeking varies with the device used, for example, smart devices (SDs) like smartphones/tablets versus personal computers (PCs) like desktops/laptops, very few studies have investigated how online health information seeking behavior (OHISB) may differ by device. The objective of this study is to examine differences in OHISB between PCs and SDs through a comparative analysis of large-scale health search queries submitted through Web search engines from both types of devices. Using the Web analytics tool, IBM NetInsight OnDemand, and based on the type of devices used (PCs or SDs), we obtained the most frequent health search queries between June 2011 and May 2013 that were submitted on Web search engines and directed users to the Mayo Clinic's consumer health information website. We performed analyses on "Queries with considering repetition counts (QwR)" and "Queries without considering repetition counts (QwoR)". The dataset contains (1) 2.74 million and 3.94 million QwoR, respectively for PCs and SDs, and (2) more than 100 million QwR for both PCs and SDs. We analyzed structural properties of the queries (length of the search queries, usage of query operators and special characters in health queries), types of search queries (keyword-based, wh-questions, yes/no questions), categorization of the queries based on health categories and information mentioned in the queries (gender, age-groups, temporal references), misspellings in the health queries, and the linguistic structure of the health queries. Query strings used for health information searching via PCs and SDs differ by almost 50%. The most searched health categories are "Symptoms" (1 in 3 search queries), "Causes", and "Treatments & Drugs". The distribution of search queries for different health categories differs with the device used for the search. Health queries tend to be longer and more specific than general search queries. Health queries from SDs are longer and have slightly fewer spelling mistakes than those from PCs. Users specify words related to women and children more often than that of men and any other age group. Most of the health queries are formulated using keywords; the second-most common are wh- and yes/no questions. Users ask more health questions using SDs than PCs. Almost all health queries have at least one noun and health queries from SDs are more descriptive than those from PCs. This study is a large-scale comparative analysis of health search queries to understand the effects of device type (PCs vs. SDs) used on OHISB. The study indicates that the device used for online health information search plays an important role in shaping how health information searches by consumers and patients are executed.

  12. SkyQuery - A Prototype Distributed Query and Cross-Matching Web Service for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Thakar, A. R.; Budavari, T.; Malik, T.; Szalay, A. S.; Fekete, G.; Nieto-Santisteban, M.; Haridas, V.; Gray, J.

    2002-12-01

    We have developed a prototype distributed query and cross-matching service for the VO community, called SkyQuery, which is implemented with hierarchichal Web Services. SkyQuery enables astronomers to run combined queries on existing distributed heterogeneous astronomy archives. SkyQuery provides a simple, user-friendly interface to run distributed queries over the federation of registered astronomical archives in the VO. The SkyQuery client connects to the portal Web Service, which farms the query out to the individual archives, which are also Web Services called SkyNodes. The cross-matching algorithm is run recursively on each SkyNode. Each archive is a relational DBMS with a HTM index for fast spatial lookups. The results of the distributed query are returned as an XML DataSet that is automatically rendered by the client. SkyQuery also returns the image cutout corresponding to the query result. SkyQuery finds not only matches between the various catalogs, but also dropouts - objects that exist in some of the catalogs but not in others. This is often as important as finding matches. We demonstrate the utility of SkyQuery with a brown-dwarf search between SDSS and 2MASS, and a search for radio-quiet quasars in SDSS, 2MASS and FIRST. The importance of a service like SkyQuery for the worldwide astronomical community cannot be overstated: data on the same objects in various archives is mapped in different wavelength ranges and looks very different due to different errors, instrument sensitivities and other peculiarities of each archive. Our cross-matching algorithm preforms a fuzzy spatial join across multiple catalogs. This type of cross-matching is currently often done by eye, one object at a time. A static cross-identification table for a set of archives would become obsolete by the time it was built - the exponential growth of astronomical data means that a dynamic cross-identification mechanism like SkyQuery is the only viable option. SkyQuery was funded by a grant from the NASA AISR program.

  13. The N400 as a snapshot of interactive processing: evidence from regression analyses of orthographic neighbor and lexical associate effects

    PubMed Central

    Laszlo, Sarah; Federmeier, Kara D.

    2010-01-01

    Linking print with meaning tends to be divided into subprocesses, such as recognition of an input's lexical entry and subsequent access of semantics. However, recent results suggest that the set of semantic features activated by an input is broader than implied by a view wherein access serially follows recognition. EEG was collected from participants who viewed items varying in number and frequency of both orthographic neighbors and lexical associates. Regression analysis of single item ERPs replicated past findings, showing that N400 amplitudes are greater for items with more neighbors, and further revealed that N400 amplitudes increase for items with more lexical associates and with higher frequency neighbors or associates. Together, the data suggest that in the N400 time window semantic features of items broadly related to inputs are active, consistent with models in which semantic access takes place in parallel with stimulus recognition. PMID:20624252

  14. Fusion yield rate recovery by escaping hot-spot fast ions in the neighboring fuel layer

    NASA Astrophysics Data System (ADS)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-02-01

    Free-streaming loss by fast ions can deplete the tail population in the hot spot of an inertial confinement fusion (ICF) target. Escaping fast ions in the neighboring fuel layer of a cryogenic target can produce a surplus of fast ions locally. In contrast to the Knudsen layer effect that reduces hot-spot fusion reactivity due to tail ion depletion, the inverse Knudsen layer effect increases fusion reactivity in the neighboring fuel layer. In the case of a burning ICF target in the presence of significant hydrodynamic mix which aggravates the Knudsen layer effect, the yield recovery largely compensates for the yield reduction. For mix-dominated sub-ignition targets, the yield reduction is the dominant process.

  15. The semantic richness of abstract concepts

    PubMed Central

    Recchia, Gabriel; Jones, Michael N.

    2012-01-01

    We contrasted the predictive power of three measures of semantic richness—number of features (NFs), contextual dispersion (CD), and a novel measure of number of semantic neighbors (NSN)—for a large set of concrete and abstract concepts on lexical decision and naming tasks. NSN (but not NF) facilitated processing for abstract concepts, while NF (but not NSN) facilitated processing for the most concrete concepts, consistent with claims that linguistic information is more relevant for abstract concepts in early processing. Additionally, converging evidence from two datasets suggests that when NSN and CD are controlled for, the features that most facilitate processing are those associated with a concept's physical characteristics and real-world contexts. These results suggest that rich linguistic contexts (many semantic neighbors) facilitate early activation of abstract concepts, whereas concrete concepts benefit more from rich physical contexts (many associated objects and locations). PMID:23205008

  16. The Localized Discovery and Recovery for Query Packet Losses in Wireless Sensor Networks with Distributed Detector Clusters

    PubMed Central

    Teng, Rui; Leibnitz, Kenji; Miura, Ryu

    2013-01-01

    An essential application of wireless sensor networks is to successfully respond to user queries. Query packet losses occur in the query dissemination due to wireless communication problems such as interference, multipath fading, packet collisions, etc. The losses of query messages at sensor nodes result in the failure of sensor nodes reporting the requested data. Hence, the reliable and successful dissemination of query messages to sensor nodes is a non-trivial problem. The target of this paper is to enable highly successful query delivery to sensor nodes by localized and energy-efficient discovery, and recovery of query losses. We adopt local and collective cooperation among sensor nodes to increase the success rate of distributed discoveries and recoveries. To enable the scalability in the operations of discoveries and recoveries, we employ a distributed name resolution mechanism at each sensor node to allow sensor nodes to self-detect the correlated queries and query losses, and then efficiently locally respond to the query losses. We prove that the collective discovery of query losses has a high impact on the success of query dissemination and reveal that scalability can be achieved by using the proposed approach. We further study the novel features of the cooperation and competition in the collective recovery at PHY and MAC layers, and show that the appropriate number of detectors can achieve optimal successful recovery rate. We evaluate the proposed approach with both mathematical analyses and computer simulations. The proposed approach enables a high rate of successful delivery of query messages and it results in short route lengths to recover from query losses. The proposed approach is scalable and operates in a fully distributed manner. PMID:23748172

  17. Partial automation of database processing of simulation outputs from L-systems models of plant morphogenesis.

    PubMed

    Chen, Yi- Ping Phoebe; Hanan, Jim

    2002-01-01

    Models of plant architecture allow us to explore how genotype environment interactions effect the development of plant phenotypes. Such models generate masses of data organised in complex hierarchies. This paper presents a generic system for creating and automatically populating a relational database from data generated by the widely used L-system approach to modelling plant morphogenesis. Techniques from compiler technology are applied to generate attributes (new fields) in the database, to simplify query development for the recursively-structured branching relationship. Use of biological terminology in an interactive query builder contributes towards making the system biologist-friendly.

  18. Data Parallel Bin-Based Indexing for Answering Queries on Multi-Core Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosink, Luke; Wu, Kesheng; Bethel, E. Wes

    2009-06-02

    The multi-core trend in CPUs and general purpose graphics processing units (GPUs) offers new opportunities for the database community. The increase of cores at exponential rates is likely to affect virtually every server and client in the coming decade, and presents database management systems with a huge, compelling disruption that will radically change how processing is done. This paper presents a new parallel indexing data structure for answering queries that takes full advantage of the increasing thread-level parallelism emerging in multi-core architectures. In our approach, our Data Parallel Bin-based Index Strategy (DP-BIS) first bins the base data, and then partitionsmore » and stores the values in each bin as a separate, bin-based data cluster. In answering a query, the procedures for examining the bin numbers and the bin-based data clusters offer the maximum possible level of concurrency; each record is evaluated by a single thread and all threads are processed simultaneously in parallel. We implement and demonstrate the effectiveness of DP-BIS on two multi-core architectures: a multi-core CPU and a GPU. The concurrency afforded by DP-BIS allows us to fully utilize the thread-level parallelism provided by each architecture--for example, our GPU-based DP-BIS implementation simultaneously evaluates over 12,000 records with an equivalent number of concurrently executing threads. In comparing DP-BIS's performance across these architectures, we show that the GPU-based DP-BIS implementation requires significantly less computation time to answer a query than the CPU-based implementation. We also demonstrate in our analysis that DP-BIS provides better overall performance than the commonly utilized CPU and GPU-based projection index. Finally, due to data encoding, we show that DP-BIS accesses significantly smaller amounts of data than index strategies that operate solely on a column's base data; this smaller data footprint is critical for parallel processors that possess limited memory resources (e.g., GPUs).« less

  19. CGDM: collaborative genomic data model for molecular profiling data using NoSQL.

    PubMed

    Wang, Shicai; Mares, Mihaela A; Guo, Yi-Ke

    2016-12-01

    High-throughput molecular profiling has greatly improved patient stratification and mechanistic understanding of diseases. With the increasing amount of data used in translational medicine studies in recent years, there is a need to improve the performance of data warehouses in terms of data retrieval and statistical processing. Both relational and Key Value models have been used for managing molecular profiling data. Key Value models such as SeqWare have been shown to be particularly advantageous in terms of query processing speed for large datasets. However, more improvement can be achieved, particularly through better indexing techniques of the Key Value models, taking advantage of the types of queries which are specific for the high-throughput molecular profiling data. In this article, we introduce a Collaborative Genomic Data Model (CGDM), aimed at significantly increasing the query processing speed for the main classes of queries on genomic databases. CGDM creates three Collaborative Global Clustering Index Tables (CGCITs) to solve the velocity and variety issues at the cost of limited extra volume. Several benchmarking experiments were carried out, comparing CGDM implemented on HBase to the traditional SQL data model (TDM) implemented on both HBase and MySQL Cluster, using large publicly available molecular profiling datasets taken from NCBI and HapMap. In the microarray case, CGDM on HBase performed up to 246 times faster than TDM on HBase and 7 times faster than TDM on MySQL Cluster. In single nucleotide polymorphism case, CGDM on HBase outperformed TDM on HBase by up to 351 times and TDM on MySQL Cluster by up to 9 times. The CGDM source code is available at https://github.com/evanswang/CGDM. y.guo@imperial.ac.uk. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Design of a graphical user interface for an intelligent multimedia information system for radiology research

    NASA Astrophysics Data System (ADS)

    Taira, Ricky K.; Wong, Clement; Johnson, David; Bhushan, Vikas; Rivera, Monica; Huang, Lu J.; Aberle, Denise R.; Cardenas, Alfonso F.; Chu, Wesley W.

    1995-05-01

    With the increase in the volume and distribution of images and text available in PACS and medical electronic health-care environments it becomes increasingly important to maintain indexes that summarize the content of these multi-media documents. Such indices are necessary to quickly locate relevant patient cases for research, patient management, and teaching. The goal of this project is to develop an intelligent document retrieval system that allows researchers to request for patient cases based on document content. Thus we wish to retrieve patient cases from electronic information archives that could include a combined specification of patient demographics, low level radiologic findings (size, shape, number), intermediate-level radiologic findings (e.g., atelectasis, infiltrates, etc.) and/or high-level pathology constraints (e.g., well-differentiated small cell carcinoma). The cases could be distributed among multiple heterogeneous databases such as PACS, RIS, and HIS. Content- based retrieval systems go beyond the capabilities of simple key-word or string-based retrieval matching systems. These systems require a knowledge base to comprehend the generality/specificity of a concept (thus knowing the subclasses or related concepts to a given concept) and knowledge of the various string representations for each concept (i.e., synonyms, lexical variants, etc.). We have previously reported on a data integration mediation layer that allows transparent access to multiple heterogeneous distributed medical databases (HIS, RIS, and PACS). The data access layer of our architecture currently has limited query processing capabilities. Given a patient hospital identification number, the access mediation layer collects all documents in RIS and HIS and returns this information to a specified workstation location. In this paper we report on our efforts to extend the query processing capabilities of the system by creation of custom query interfaces, an intelligent query processing engine, and a document-content index that can be generated automatically (i.e., no manual authoring or changes to the normal clinical protocols).

  1. The BioPrompt-box: an ontology-based clustering tool for searching in biological databases.

    PubMed

    Corsi, Claudio; Ferragina, Paolo; Marangoni, Roberto

    2007-03-08

    High-throughput molecular biology provides new data at an incredible rate, so that the increase in the size of biological databanks is enormous and very rapid. This scenario generates severe problems not only at indexing time, where suitable algorithmic techniques for data indexing and retrieval are required, but also at query time, since a user query may produce such a large set of results that their browsing and "understanding" becomes humanly impractical. This problem is well known to the Web community, where a new generation of Web search engines is being developed, like Vivisimo. These tools organize on-the-fly the results of a user query in a hierarchy of labeled folders that ease their browsing and knowledge extraction. We investigate this approach on biological data, and propose the so called The BioPrompt-boxsoftware system which deploys ontology-driven clustering strategies for making the searching process of biologists more efficient and effective. The BioPrompt-box (Bpb) defines a document as a biological sequence plus its associated meta-data taken from the underneath databank--like references to ontologies or to external databanks, and plain texts as comments of researchers and (title, abstracts or even body of) papers. Bpboffers several tools to customize the search and the clustering process over its indexed documents. The user can search a set of keywords within a specific field of the document schema, or can execute Blastto find documents relative to homologue sequences. In both cases the search task returns a set of documents (hits) which constitute the answer to the user query. Since the number of hits may be large, Bpbclusters them into groups of homogenous content, organized as a hierarchy of labeled clusters. The user can actually choose among several ontology-based hierarchical clustering strategies, each offering a different "view" of the returned hits. Bpbcomputes these views by exploiting the meta-data present within the retrieved documents such as the references to Gene Ontology, the taxonomy lineage, the organism and the keywords. Of course, the approach is flexible enough to leave room for future additions of other meta-information. The ultimate goal of the clustering process is to provide the user with several different readings of the (maybe numerous) query results and show possible hidden correlations among them, thus improving their browsing and understanding. Bpb is a powerful search engine that makes it very easy to perform complex queries over the indexed databanks (currently only UNIPROT is considered). The ontology-based clustering approach is efficient and effective, and could thus be applied successfully to larger databanks, like GenBank or EMBL.

  2. The BioPrompt-box: an ontology-based clustering tool for searching in biological databases

    PubMed Central

    Corsi, Claudio; Ferragina, Paolo; Marangoni, Roberto

    2007-01-01

    Background High-throughput molecular biology provides new data at an incredible rate, so that the increase in the size of biological databanks is enormous and very rapid. This scenario generates severe problems not only at indexing time, where suitable algorithmic techniques for data indexing and retrieval are required, but also at query time, since a user query may produce such a large set of results that their browsing and "understanding" becomes humanly impractical. This problem is well known to the Web community, where a new generation of Web search engines is being developed, like Vivisimo. These tools organize on-the-fly the results of a user query in a hierarchy of labeled folders that ease their browsing and knowledge extraction. We investigate this approach on biological data, and propose the so called The BioPrompt-boxsoftware system which deploys ontology-driven clustering strategies for making the searching process of biologists more efficient and effective. Results The BioPrompt-box (Bpb) defines a document as a biological sequence plus its associated meta-data taken from the underneath databank – like references to ontologies or to external databanks, and plain texts as comments of researchers and (title, abstracts or even body of) papers. Bpboffers several tools to customize the search and the clustering process over its indexed documents. The user can search a set of keywords within a specific field of the document schema, or can execute Blastto find documents relative to homologue sequences. In both cases the search task returns a set of documents (hits) which constitute the answer to the user query. Since the number of hits may be large, Bpbclusters them into groups of homogenous content, organized as a hierarchy of labeled clusters. The user can actually choose among several ontology-based hierarchical clustering strategies, each offering a different "view" of the returned hits. Bpbcomputes these views by exploiting the meta-data present within the retrieved documents such as the references to Gene Ontology, the taxonomy lineage, the organism and the keywords. Of course, the approach is flexible enough to leave room for future additions of other meta-information. The ultimate goal of the clustering process is to provide the user with several different readings of the (maybe numerous) query results and show possible hidden correlations among them, thus improving their browsing and understanding. Conclusion Bpb is a powerful search engine that makes it very easy to perform complex queries over the indexed databanks (currently only UNIPROT is considered). The ontology-based clustering approach is efficient and effective, and could thus be applied successfully to larger databanks, like GenBank or EMBL. PMID:17430575

  3. Research on Extension of Sparql Ontology Query Language Considering the Computation of Indoor Spatial Relations

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhu, X.; Guo, W.; Liu, Y.; Huang, H.

    2015-05-01

    A method suitable for indoor complex semantic query considering the computation of indoor spatial relations is provided According to the characteristics of indoor space. This paper designs ontology model describing the space related information of humans, events and Indoor space objects (e.g. Storey and Room) as well as their relations to meet the indoor semantic query. The ontology concepts are used in IndoorSPARQL query language which extends SPARQL syntax for representing and querying indoor space. And four types specific primitives for indoor query, "Adjacent", "Opposite", "Vertical" and "Contain", are defined as query functions in IndoorSPARQL used to support quantitative spatial computations. Also a method is proposed to analysis the query language. Finally this paper adopts this method to realize indoor semantic query on the study area through constructing the ontology model for the study building. The experimental results show that the method proposed in this paper can effectively support complex indoor space semantic query.

  4. VISAGE: Interactive Visual Graph Querying.

    PubMed

    Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng

    2016-06-01

    Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete , an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with "wildcard" nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE's ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries.

  5. VISAGE: Interactive Visual Graph Querying

    PubMed Central

    Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng

    2017-01-01

    Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete, an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with “wildcard” nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE’s ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries. PMID:28553670

  6. A Visual Interface for Querying Heterogeneous Phylogenetic Databases.

    PubMed

    Jamil, Hasan M

    2017-01-01

    Despite the recent growth in the number of phylogenetic databases, access to these wealth of resources remain largely tool or form-based interface driven. It is our thesis that the flexibility afforded by declarative query languages may offer the opportunity to access these repositories in a better way, and to use such a language to pose truly powerful queries in unprecedented ways. In this paper, we propose a substantially enhanced closed visual query language, called PhyQL, that can be used to query phylogenetic databases represented in a canonical form. The canonical representation presented helps capture most phylogenetic tree formats in a convenient way, and is used as the storage model for our PhyloBase database for which PhyQL serves as the query language. We have implemented a visual interface for the end users to pose PhyQL queries using visual icons, and drag and drop operations defined over them. Once a query is posed, the interface translates the visual query into a Datalog query for execution over the canonical database. Responses are returned as hyperlinks to phylogenies that can be viewed in several formats using the tree viewers supported by PhyloBase. Results cached in PhyQL buffer allows secondary querying on the computed results making it a truly powerful querying architecture.

  7. Which factors predict the time spent answering queries to a drug information centre?

    PubMed Central

    Reppe, Linda A.; Spigset, Olav

    2010-01-01

    Objective To develop a model based upon factors able to predict the time spent answering drug-related queries to Norwegian drug information centres (DICs). Setting and method Drug-related queries received at 5 DICs in Norway from March to May 2007 were randomly assigned to 20 employees until each of them had answered a minimum of five queries. The employees reported the number of drugs involved, the type of literature search performed, and whether the queries were considered judgmental or not, using a specifically developed scoring system. Main outcome measures The scores of these three factors were added together to define a workload score for each query. Workload and its individual factors were subsequently related to the measured time spent answering the queries by simple or multiple linear regression analyses. Results Ninety-six query/answer pairs were analyzed. Workload significantly predicted the time spent answering the queries (adjusted R2 = 0.22, P < 0.001). Literature search was the individual factor best predicting the time spent answering the queries (adjusted R2 = 0.17, P < 0.001), and this variable also contributed the most in the multiple regression analyses. Conclusion The most important workload factor predicting the time spent handling the queries in this study was the type of literature search that had to be performed. The categorisation of queries as judgmental or not, also affected the time spent answering the queries. The number of drugs involved did not significantly influence the time spent answering drug information queries. PMID:20922480

  8. Personalized query suggestion based on user behavior

    NASA Astrophysics Data System (ADS)

    Chen, Wanyu; Hao, Zepeng; Shao, Taihua; Chen, Honghui

    Query suggestions help users refine their queries after they input an initial query. Previous work mainly concentrated on similarity-based and context-based query suggestion approaches. However, models that focus on adapting to a specific user (personalization) can help to improve the probability of the user being satisfied. In this paper, we propose a personalized query suggestion model based on users’ search behavior (UB model), where we inject relevance between queries and users’ search behavior into a basic probabilistic model. For the relevance between queries, we consider their semantical similarity and co-occurrence which indicates the behavior information from other users in web search. Regarding the current user’s preference to a query, we combine the user’s short-term and long-term search behavior in a linear fashion and deal with the data sparse problem with Bayesian probabilistic matrix factorization (BPMF). In particular, we also investigate the impact of different personalization strategies (the combination of the user’s short-term and long-term search behavior) on the performance of query suggestion reranking. We quantify the improvement of our proposed UB model against a state-of-the-art baseline using the public AOL query logs and show that it beats the baseline in terms of metrics used in query suggestion reranking. The experimental results show that: (i) for personalized ranking, users’ behavioral information helps to improve query suggestion effectiveness; and (ii) given a query, merging information inferred from the short-term and long-term search behavior of a particular user can result in a better performance than both plain approaches.

  9. Connecting Provenance with Semantic Descriptions in the NASA Earth Exchange (NEX)

    NASA Astrophysics Data System (ADS)

    Votava, P.; Michaelis, A.; Nemani, R. R.

    2012-12-01

    NASA Earth Exchange (NEX) is a data, modeling and knowledge collaboratory that houses NASA satellite data, climate data and ancillary data where a focused community may come together to share modeling and analysis codes, scientific results, knowledge and expertise on a centralized platform. Some of the main goals of NEX are transparency and repeatability and to that extent we have been adding components that enable tracking of provenance of both scientific processes and datasets produced by these processes. As scientific processes become more complex, they are often developed collaboratively and it becomes increasingly important for the research team to be able to track the development of the process and the datasets that are produced along the way. Additionally, we want to be able to link the processes and the datasets developed on NEX to an existing information and knowledge, so that the users can query and compare the provenance of any dataset or process with regard to the component-specific attributes such as data quality, geographic location, related publications, user comments and annotations etc. We have developed several ontologies that describe datasets and workflow components available on NEX using the OWL ontology language as well as a simple ontology that provides linking mechanism to the collected provenance information. The provenance is captured in two ways - we utilize existing provenance infrastructure of VisTrails, which is used as a workflow engine on NEX, and we extend the captured provenance using the PROV data model expressed through the PROV-O ontology. We do this in order to link and query the provenance easier in the context of the existing NEX information and knowledge. The captured provenance graph is processed and stored using RDFlib with MySQL backend that can be queried using either RDFLib or SPARQL. As a concrete example, we show how this information is captured during anomaly detection process in large satellite datasets.

  10. Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea.

    PubMed

    Woo, Hyekyung; Cho, Youngtae; Shim, Eunyoung; Lee, Jong-Koo; Lee, Chang-Gun; Kim, Seong Hwan

    2016-07-04

    As suggested as early as in 2006, logs of queries submitted to search engines seeking information could be a source for detection of emerging influenza epidemics if changes in the volume of search queries are monitored (infodemiology). However, selecting queries that are most likely to be associated with influenza epidemics is a particular challenge when it comes to generating better predictions. In this study, we describe a methodological extension for detecting influenza outbreaks using search query data; we provide a new approach for query selection through the exploration of contextual information gleaned from social media data. Additionally, we evaluate whether it is possible to use these queries for monitoring and predicting influenza epidemics in South Korea. Our study was based on freely available weekly influenza incidence data and query data originating from the search engine on the Korean website Daum between April 3, 2011 and April 5, 2014. To select queries related to influenza epidemics, several approaches were applied: (1) exploring influenza-related words in social media data, (2) identifying the chief concerns related to influenza, and (3) using Web query recommendations. Optimal feature selection by least absolute shrinkage and selection operator (Lasso) and support vector machine for regression (SVR) were used to construct a model predicting influenza epidemics. In total, 146 queries related to influenza were generated through our initial query selection approach. A considerable proportion of optimal features for final models were derived from queries with reference to the social media data. The SVR model performed well: the prediction values were highly correlated with the recent observed influenza-like illness (r=.956; P<.001) and virological incidence rate (r=.963; P<.001). These results demonstrate the feasibility of using search queries to enhance influenza surveillance in South Korea. In addition, an approach for query selection using social media data seems ideal for supporting influenza surveillance based on search query data.

  11. Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea

    PubMed Central

    Woo, Hyekyung; Shim, Eunyoung; Lee, Jong-Koo; Lee, Chang-Gun; Kim, Seong Hwan

    2016-01-01

    Background As suggested as early as in 2006, logs of queries submitted to search engines seeking information could be a source for detection of emerging influenza epidemics if changes in the volume of search queries are monitored (infodemiology). However, selecting queries that are most likely to be associated with influenza epidemics is a particular challenge when it comes to generating better predictions. Objective In this study, we describe a methodological extension for detecting influenza outbreaks using search query data; we provide a new approach for query selection through the exploration of contextual information gleaned from social media data. Additionally, we evaluate whether it is possible to use these queries for monitoring and predicting influenza epidemics in South Korea. Methods Our study was based on freely available weekly influenza incidence data and query data originating from the search engine on the Korean website Daum between April 3, 2011 and April 5, 2014. To select queries related to influenza epidemics, several approaches were applied: (1) exploring influenza-related words in social media data, (2) identifying the chief concerns related to influenza, and (3) using Web query recommendations. Optimal feature selection by least absolute shrinkage and selection operator (Lasso) and support vector machine for regression (SVR) were used to construct a model predicting influenza epidemics. Results In total, 146 queries related to influenza were generated through our initial query selection approach. A considerable proportion of optimal features for final models were derived from queries with reference to the social media data. The SVR model performed well: the prediction values were highly correlated with the recent observed influenza-like illness (r=.956; P<.001) and virological incidence rate (r=.963; P<.001). Conclusions These results demonstrate the feasibility of using search queries to enhance influenza surveillance in South Korea. In addition, an approach for query selection using social media data seems ideal for supporting influenza surveillance based on search query data. PMID:27377323

  12. Lost in translation? A multilingual Query Builder improves the quality of PubMed queries: a randomised controlled trial.

    PubMed

    Schuers, Matthieu; Joulakian, Mher; Kerdelhué, Gaetan; Segas, Léa; Grosjean, Julien; Darmoni, Stéfan J; Griffon, Nicolas

    2017-07-03

    MEDLINE is the most widely used medical bibliographic database in the world. Most of its citations are in English and this can be an obstacle for some researchers to access the information the database contains. We created a multilingual query builder to facilitate access to the PubMed subset using a language other than English. The aim of our study was to assess the impact of this multilingual query builder on the quality of PubMed queries for non-native English speaking physicians and medical researchers. A randomised controlled study was conducted among French speaking general practice residents. We designed a multi-lingual query builder to facilitate information retrieval, based on available MeSH translations and providing users with both an interface and a controlled vocabulary in their own language. Participating residents were randomly allocated either the French or the English version of the query builder. They were asked to translate 12 short medical questions into MeSH queries. The main outcome was the quality of the query. Two librarians blind to the arm independently evaluated each query, using a modified published classification that differentiated eight types of errors. Twenty residents used the French version of the query builder and 22 used the English version. 492 queries were analysed. There were significantly more perfect queries in the French group vs. the English group (respectively 37.9% vs. 17.9%; p < 0.01). It took significantly more time for the members of the English group than the members of the French group to build each query, respectively 194 sec vs. 128 sec; p < 0.01. This multi-lingual query builder is an effective tool to improve the quality of PubMed queries in particular for researchers whose first language is not English.

  13. Development of the Instructional Model by Integrating Information Literacy in the Class Learning and Teaching Processes

    ERIC Educational Resources Information Center

    Maitaouthong, Therdsak; Tuamsuk, Kulthida; Techamanee, Yupin

    2011-01-01

    This study was aimed at developing an instructional model by integrating information literacy in the instructional process of general education courses at an undergraduate level. The research query, "What is the teaching methodology that integrates information literacy in the instructional process of general education courses at an undergraduate…

  14. A Web-Based Data-Querying Tool Based on Ontology-Driven Methodology and Flowchart-Based Model

    PubMed Central

    Ping, Xiao-Ou; Chung, Yufang; Liang, Ja-Der; Yang, Pei-Ming; Huang, Guan-Tarn; Lai, Feipei

    2013-01-01

    Background Because of the increased adoption rate of electronic medical record (EMR) systems, more health care records have been increasingly accumulating in clinical data repositories. Therefore, querying the data stored in these repositories is crucial for retrieving the knowledge from such large volumes of clinical data. Objective The aim of this study is to develop a Web-based approach for enriching the capabilities of the data-querying system along the three following considerations: (1) the interface design used for query formulation, (2) the representation of query results, and (3) the models used for formulating query criteria. Methods The Guideline Interchange Format version 3.5 (GLIF3.5), an ontology-driven clinical guideline representation language, was used for formulating the query tasks based on the GLIF3.5 flowchart in the Protégé environment. The flowchart-based data-querying model (FBDQM) query execution engine was developed and implemented for executing queries and presenting the results through a visual and graphical interface. To examine a broad variety of patient data, the clinical data generator was implemented to automatically generate the clinical data in the repository, and the generated data, thereby, were employed to evaluate the system. The accuracy and time performance of the system for three medical query tasks relevant to liver cancer were evaluated based on the clinical data generator in the experiments with varying numbers of patients. Results In this study, a prototype system was developed to test the feasibility of applying a methodology for building a query execution engine using FBDQMs by formulating query tasks using the existing GLIF. The FBDQM-based query execution engine was used to successfully retrieve the clinical data based on the query tasks formatted using the GLIF3.5 in the experiments with varying numbers of patients. The accuracy of the three queries (ie, “degree of liver damage,” “degree of liver damage when applying a mutually exclusive setting,” and “treatments for liver cancer”) was 100% for all four experiments (10 patients, 100 patients, 1000 patients, and 10,000 patients). Among the three measured query phases, (1) structured query language operations, (2) criteria verification, and (3) other, the first two had the longest execution time. Conclusions The ontology-driven FBDQM-based approach enriched the capabilities of the data-querying system. The adoption of the GLIF3.5 increased the potential for interoperability, shareability, and reusability of the query tasks. PMID:25600078

  15. Classification Model for Damage Localization in a Plate Structure

    NASA Astrophysics Data System (ADS)

    Janeliukstis, R.; Ruchevskis, S.; Chate, A.

    2018-01-01

    The present study is devoted to the problem of damage localization by means of data classification. The commercial ANSYS finite-elements program was used to make a model of a cantilevered composite plate equipped with numerous strain sensors. The plate was divided into zones, and, for data classification purposes, each of them housed several points to which a point mass of magnitude 5 and 10% of plate mass was applied. At each of these points, a numerical modal analysis was performed, from which the first few natural frequencies and strain readings were extracted. The strain data for every point were the input for a classification procedure involving k nearest neighbors and decision trees. The classification model was trained and optimized by finetuning the key parameters of both algorithms. Finally, two new query points were simulated and subjected to a classification in terms of assigning a label to one of the zones of the plate, thus localizing these points. Damage localization results were compared for both algorithms and were found to be in good agreement with the actual application positions of point load.

  16. Contact processes with competitive dynamics in bipartite lattices: effects of distinct interactions

    NASA Astrophysics Data System (ADS)

    Pianegonda, Salete; Fiore, Carlos E.

    2014-05-01

    The two-dimensional contact process (CP) with a competitive dynamics proposed by Martins et al (2011 Phys. Rev. E 84 011125) leads to the appearance of an unusual active-asymmetric phase, in which the system sublattices are unequally populated. It differs from the usual CP only by the fact that particles also interact with their next-nearest neighbor sites via a distinct strength creation rate, and for the inclusion of an inhibition effect, proportional to the local density. Aimed at investigating the robustness of such an asymmetric phase, in this paper we study the influence of distinct interactions for two bidimensional CPs. In the first model, the interaction between first neighbors requires a minimal neighborhood of adjacent particles for creating new offspring, whereas second neighbors interact as usual (e.g. at least one neighboring particle is required). The second model takes the opposite situation, in which the restrictive dynamics is in the interaction between next-nearest neighbor sites. Both models are investigated under mean field theory (MFT) and Monte Carlo simulations. In similarity with results by Martins et al, the inclusion of distinct sublattice interactions maintains the occurrence of an asymmetric active phase and re-entrant transition lines. In contrast, remarkable differences are presented, such as discontinuous phase transitions (even between the active phases), the appearance of tricritical points and the stabilization of active phases under larger values of control parameters. Finally, we have shown that the critical behaviors are not altered due to the change of interactions, in which the absorbing transitions belong to the directed percolation (DP) universality class, whereas second-order active phase transitions belong to the Ising universality class.

  17. Mining Longitudinal Web Queries: Trends and Patterns.

    ERIC Educational Resources Information Center

    Wang, Peiling; Berry, Michael W.; Yang, Yiheng

    2003-01-01

    Analyzed user queries submitted to an academic Web site during a four-year period, using a relational database, to examine users' query behavior, to identify problems they encounter, and to develop techniques for optimizing query analysis and mining. Linguistic analyses focus on query structures, lexicon, and word associations using statistical…

  18. WATCHMAN: A Data Warehouse Intelligent Cache Manager

    NASA Technical Reports Server (NTRS)

    Scheuermann, Peter; Shim, Junho; Vingralek, Radek

    1996-01-01

    Data warehouses store large volumes of data which are used frequently by decision support applications. Such applications involve complex queries. Query performance in such an environment is critical because decision support applications often require interactive query response time. Because data warehouses are updated infrequently, it becomes possible to improve query performance by caching sets retrieved by queries in addition to query execution plans. In this paper we report on the design of an intelligent cache manager for sets retrieved by queries called WATCHMAN, which is particularly well suited for data warehousing environment. Our cache manager employs two novel, complementary algorithms for cache replacement and for cache admission. WATCHMAN aims at minimizing query response time and its cache replacement policy swaps out entire retrieved sets of queries instead of individual pages. The cache replacement and admission algorithms make use of a profit metric, which considers for each retrieved set its average rate of reference, its size, and execution cost of the associated query. We report on a performance evaluation based on the TPC-D and Set Query benchmarks. These experiments show that WATCHMAN achieves a substantial performance improvement in a decision support environment when compared to a traditional LRU replacement algorithm.

  19. PIBAS FedSPARQL: a web-based platform for integration and exploration of bioinformatics datasets.

    PubMed

    Djokic-Petrovic, Marija; Cvjetkovic, Vladimir; Yang, Jeremy; Zivanovic, Marko; Wild, David J

    2017-09-20

    There are a huge variety of data sources relevant to chemical, biological and pharmacological research, but these data sources are highly siloed and cannot be queried together in a straightforward way. Semantic technologies offer the ability to create links and mappings across datasets and manage them as a single, linked network so that searching can be carried out across datasets, independently of the source. We have developed an application called PIBAS FedSPARQL that uses semantic technologies to allow researchers to carry out such searching across a vast array of data sources. PIBAS FedSPARQL is a web-based query builder and result set visualizer of bioinformatics data. As an advanced feature, our system can detect similar data items identified by different Uniform Resource Identifiers (URIs), using a text-mining algorithm based on the processing of named entities to be used in Vector Space Model and Cosine Similarity Measures. According to our knowledge, PIBAS FedSPARQL was unique among the systems that we found in that it allows detecting of similar data items. As a query builder, our system allows researchers to intuitively construct and run Federated SPARQL queries across multiple data sources, including global initiatives, such as Bio2RDF, Chem2Bio2RDF, EMBL-EBI, and one local initiative called CPCTAS, as well as additional user-specified data source. From the input topic, subtopic, template and keyword, a corresponding initial Federated SPARQL query is created and executed. Based on the data obtained, end users have the ability to choose the most appropriate data sources in their area of interest and exploit their Resource Description Framework (RDF) structure, which allows users to select certain properties of data to enhance query results. The developed system is flexible and allows intuitive creation and execution of queries for an extensive range of bioinformatics topics. Also, the novel "similar data items detection" algorithm can be particularly useful for suggesting new data sources and cost optimization for new experiments. PIBAS FedSPARQL can be expanded with new topics, subtopics and templates on demand, rendering information retrieval more robust.

  20. Fuzzy Relational Databases: Representational Issues and Reduction Using Similarity Measures.

    ERIC Educational Resources Information Center

    Prade, Henri; Testemale, Claudette

    1987-01-01

    Compares and expands upon two approaches to dealing with fuzzy relational databases. The proposed similarity measure is based on a fuzzy Hausdorff distance and estimates the mismatch between two possibility distributions using a reduction process. The consequences of the reduction process on query evaluation are studied. (Author/EM)

  1. KARL: A Knowledge-Assisted Retrieval Language. Presentation visuals. M.S. Thesis Final Report, 1 Jul. 1985 - 31 Dec. 1987

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Triantafyllopoulos, Spiros

    1985-01-01

    A collection of presentation visuals associated with the companion report entitled KARL: A Knowledge-Assisted Retrieval Language, is presented. Information is given on data retrieval, natural language database front ends, generic design objectives, processing capababilities and the query processing cycle.

  2. Visualization of Earth and Space Science Data at JPL's Science Data Processing Systems Section

    NASA Technical Reports Server (NTRS)

    Green, William B.

    1996-01-01

    This presentation will provide an overview of systems in use at NASA's Jet Propulsion Laboratory for processing data returned by space exploration and earth observations spacecraft. Graphical and visualization techniques used to query and retrieve data from large scientific data bases will be described.

  3. NLPIR: A Theoretical Framework for Applying Natural Language Processing to Information Retrieval.

    ERIC Educational Resources Information Center

    Zhou, Lina; Zhang, Dongsong

    2003-01-01

    Proposes a theoretical framework called NLPIR that integrates natural language processing (NLP) into information retrieval (IR) based on the assumption that there exists representation distance between queries and documents. Discusses problems in traditional keyword-based IR, including relevance, and describes some existing NLP techniques.…

  4. Visibiome: an efficient microbiome search engine based on a scalable, distributed architecture.

    PubMed

    Azman, Syafiq Kamarul; Anwar, Muhammad Zohaib; Henschel, Andreas

    2017-07-24

    Given the current influx of 16S rRNA profiles of microbiota samples, it is conceivable that large amounts of them eventually are available for search, comparison and contextualization with respect to novel samples. This process facilitates the identification of similar compositional features in microbiota elsewhere and therefore can help to understand driving factors for microbial community assembly. We present Visibiome, a microbiome search engine that can perform exhaustive, phylogeny based similarity search and contextualization of user-provided samples against a comprehensive dataset of 16S rRNA profiles environments, while tackling several computational challenges. In order to scale to high demands, we developed a distributed system that combines web framework technology, task queueing and scheduling, cloud computing and a dedicated database server. To further ensure speed and efficiency, we have deployed Nearest Neighbor search algorithms, capable of sublinear searches in high-dimensional metric spaces in combination with an optimized Earth Mover Distance based implementation of weighted UniFrac. The search also incorporates pairwise (adaptive) rarefaction and optionally, 16S rRNA copy number correction. The result of a query microbiome sample is the contextualization against a comprehensive database of microbiome samples from a diverse range of environments, visualized through a rich set of interactive figures and diagrams, including barchart-based compositional comparisons and ranking of the closest matches in the database. Visibiome is a convenient, scalable and efficient framework to search microbiomes against a comprehensive database of environmental samples. The search engine leverages a popular but computationally expensive, phylogeny based distance metric, while providing numerous advantages over the current state of the art tool.

  5. Assisting Consumer Health Information Retrieval with Query Recommendations

    PubMed Central

    Zeng, Qing T.; Crowell, Jonathan; Plovnick, Robert M.; Kim, Eunjung; Ngo, Long; Dibble, Emily

    2006-01-01

    Objective: Health information retrieval (HIR) on the Internet has become an important practice for millions of people, many of whom have problems forming effective queries. We have developed and evaluated a tool to assist people in health-related query formation. Design: We developed the Health Information Query Assistant (HIQuA) system. The system suggests alternative/additional query terms related to the user's initial query that can be used as building blocks to construct a better, more specific query. The recommended terms are selected according to their semantic distance from the original query, which is calculated on the basis of concept co-occurrences in medical literature and log data as well as semantic relations in medical vocabularies. Measurements: An evaluation of the HIQuA system was conducted and a total of 213 subjects participated in the study. The subjects were randomized into 2 groups. One group was given query recommendations and the other was not. Each subject performed HIR for both a predefined and a self-defined task. Results: The study showed that providing HIQuA recommendations resulted in statistically significantly higher rates of successful queries (odds ratio = 1.66, 95% confidence interval = 1.16–2.38), although no statistically significant impact on user satisfaction or the users' ability to accomplish the predefined retrieval task was found. Conclusion: Providing semantic-distance-based query recommendations can help consumers with query formation during HIR. PMID:16221944

  6. PAQ: Persistent Adaptive Query Middleware for Dynamic Environments

    NASA Astrophysics Data System (ADS)

    Rajamani, Vasanth; Julien, Christine; Payton, Jamie; Roman, Gruia-Catalin

    Pervasive computing applications often entail continuous monitoring tasks, issuing persistent queries that return continuously updated views of the operational environment. We present PAQ, a middleware that supports applications' needs by approximating a persistent query as a sequence of one-time queries. PAQ introduces an integration strategy abstraction that allows composition of one-time query responses into streams representing sophisticated spatio-temporal phenomena of interest. A distinguishing feature of our middleware is the realization that the suitability of a persistent query's result is a function of the application's tolerance for accuracy weighed against the associated overhead costs. In PAQ, programmers can specify an inquiry strategy that dictates how information is gathered. Since network dynamics impact the suitability of a particular inquiry strategy, PAQ associates an introspection strategy with a persistent query, that evaluates the quality of the query's results. The result of introspection can trigger application-defined adaptation strategies that alter the nature of the query. PAQ's simple API makes developing adaptive querying systems easily realizable. We present the key abstractions, describe their implementations, and demonstrate the middleware's usefulness through application examples and evaluation.

  7. The CMS DBS query language

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Valentin; Riley, Daniel; Afaq, Anzar; Sekhri, Vijay; Guo, Yuyi; Lueking, Lee

    2010-04-01

    The CMS experiment has implemented a flexible and powerful system enabling users to find data within the CMS physics data catalog. The Dataset Bookkeeping Service (DBS) comprises a database and the services used to store and access metadata related to CMS physics data. To this, we have added a generalized query system in addition to the existing web and programmatic interfaces to the DBS. This query system is based on a query language that hides the complexity of the underlying database structure by discovering the join conditions between database tables. This provides a way of querying the system that is simple and straightforward for CMS data managers and physicists to use without requiring knowledge of the database tables or keys. The DBS Query Language uses the ANTLR tool to build the input query parser and tokenizer, followed by a query builder that uses a graph representation of the DBS schema to construct the SQL query sent to underlying database. We will describe the design of the query system, provide details of the language components and overview of how this component fits into the overall data discovery system architecture.

  8. Querying Co-regulated Genes on Diverse Gene Expression Datasets Via Biclustering.

    PubMed

    Deveci, Mehmet; Küçüktunç, Onur; Eren, Kemal; Bozdağ, Doruk; Kaya, Kamer; Çatalyürek, Ümit V

    2016-01-01

    Rapid development and increasing popularity of gene expression microarrays have resulted in a number of studies on the discovery of co-regulated genes. One important way of discovering such co-regulations is the query-based search since gene co-expressions may indicate a shared role in a biological process. Although there exist promising query-driven search methods adapting clustering, they fail to capture many genes that function in the same biological pathway because microarray datasets are fraught with spurious samples or samples of diverse origin, or the pathways might be regulated under only a subset of samples. On the other hand, a class of clustering algorithms known as biclustering algorithms which simultaneously cluster both the items and their features are useful while analyzing gene expression data, or any data in which items are related in only a subset of their samples. This means that genes need not be related in all samples to be clustered together. Because many genes only interact under specific circumstances, biclustering may recover the relationships that traditional clustering algorithms can easily miss. In this chapter, we briefly summarize the literature using biclustering for querying co-regulated genes. Then we present a novel biclustering approach and evaluate its performance by a thorough experimental analysis.

  9. Ontobee: A linked ontology data server to support ontology term dereferencing, linkage, query and integration

    PubMed Central

    Ong, Edison; Xiang, Zuoshuang; Zhao, Bin; Liu, Yue; Lin, Yu; Zheng, Jie; Mungall, Chris; Courtot, Mélanie; Ruttenberg, Alan; He, Yongqun

    2017-01-01

    Linked Data (LD) aims to achieve interconnected data by representing entities using Unified Resource Identifiers (URIs), and sharing information using Resource Description Frameworks (RDFs) and HTTP. Ontologies, which logically represent entities and relations in specific domains, are the basis of LD. Ontobee (http://www.ontobee.org/) is a linked ontology data server that stores ontology information using RDF triple store technology and supports query, visualization and linkage of ontology terms. Ontobee is also the default linked data server for publishing and browsing biomedical ontologies in the Open Biological Ontology (OBO) Foundry (http://obofoundry.org) library. Ontobee currently hosts more than 180 ontologies (including 131 OBO Foundry Library ontologies) with over four million terms. Ontobee provides a user-friendly web interface for querying and visualizing the details and hierarchy of a specific ontology term. Using the eXtensible Stylesheet Language Transformation (XSLT) technology, Ontobee is able to dereference a single ontology term URI, and then output RDF/eXtensible Markup Language (XML) for computer processing or display the HTML information on a web browser for human users. Statistics and detailed information are generated and displayed for each ontology listed in Ontobee. In addition, a SPARQL web interface is provided for custom advanced SPARQL queries of one or multiple ontologies. PMID:27733503

  10. EpiGeNet: A Graph Database of Interdependencies Between Genetic and Epigenetic Events in Colorectal Cancer.

    PubMed

    Balaur, Irina; Saqi, Mansoor; Barat, Ana; Lysenko, Artem; Mazein, Alexander; Rawlings, Christopher J; Ruskin, Heather J; Auffray, Charles

    2017-10-01

    The development of colorectal cancer (CRC)-the third most common cancer type-has been associated with deregulations of cellular mechanisms stimulated by both genetic and epigenetic events. StatEpigen is a manually curated and annotated database, containing information on interdependencies between genetic and epigenetic signals, and specialized currently for CRC research. Although StatEpigen provides a well-developed graphical user interface for information retrieval, advanced queries involving associations between multiple concepts can benefit from more detailed graph representation of the integrated data. This can be achieved by using a graph database (NoSQL) approach. Data were extracted from StatEpigen and imported to our newly developed EpiGeNet, a graph database for storage and querying of conditional relationships between molecular (genetic and epigenetic) events observed at different stages of colorectal oncogenesis. We illustrate the enhanced capability of EpiGeNet for exploration of different queries related to colorectal tumor progression; specifically, we demonstrate the query process for (i) stage-specific molecular events, (ii) most frequently observed genetic and epigenetic interdependencies in colon adenoma, and (iii) paths connecting key genes reported in CRC and associated events. The EpiGeNet framework offers improved capability for management and visualization of data on molecular events specific to CRC initiation and progression.

  11. Omicseq: a web-based search engine for exploring omics datasets

    PubMed Central

    Sun, Xiaobo; Pittard, William S.; Xu, Tianlei; Chen, Li; Zwick, Michael E.; Jiang, Xiaoqian; Wang, Fusheng

    2017-01-01

    Abstract The development and application of high-throughput genomics technologies has resulted in massive quantities of diverse omics data that continue to accumulate rapidly. These rich datasets offer unprecedented and exciting opportunities to address long standing questions in biomedical research. However, our ability to explore and query the content of diverse omics data is very limited. Existing dataset search tools rely almost exclusively on the metadata. A text-based query for gene name(s) does not work well on datasets wherein the vast majority of their content is numeric. To overcome this barrier, we have developed Omicseq, a novel web-based platform that facilitates the easy interrogation of omics datasets holistically to improve ‘findability’ of relevant data. The core component of Omicseq is trackRank, a novel algorithm for ranking omics datasets that fully uses the numerical content of the dataset to determine relevance to the query entity. The Omicseq system is supported by a scalable and elastic, NoSQL database that hosts a large collection of processed omics datasets. In the front end, a simple, web-based interface allows users to enter queries and instantly receive search results as a list of ranked datasets deemed to be the most relevant. Omicseq is freely available at http://www.omicseq.org. PMID:28402462

  12. Human motion retrieval from hand-drawn sketch.

    PubMed

    Chao, Min-Wen; Lin, Chao-Hung; Assa, Jackie; Lee, Tong-Yee

    2012-05-01

    The rapid growth of motion capture data increases the importance of motion retrieval. The majority of the existing motion retrieval approaches are based on a labor-intensive step in which the user browses and selects a desired query motion clip from the large motion clip database. In this work, a novel sketching interface for defining the query is presented. This simple approach allows users to define the required motion by sketching several motion strokes over a drawn character, which requires less effort and extends the users’ expressiveness. To support the real-time interface, a specialized encoding of the motions and the hand-drawn query is required. Here, we introduce a novel hierarchical encoding scheme based on a set of orthonormal spherical harmonic (SH) basis functions, which provides a compact representation, and avoids the CPU/processing intensive stage of temporal alignment used by previous solutions. Experimental results show that the proposed approach can well retrieve the motions, and is capable of retrieve logically and numerically similar motions, which is superior to previous approaches. The user study shows that the proposed system can be a useful tool to input motion query if the users are familiar with it. Finally, an application of generating a 3D animation from a hand-drawn comics strip is demonstrated.

  13. PatternQuery: web application for fast detection of biomacromolecular structural patterns in the entire Protein Data Bank.

    PubMed

    Sehnal, David; Pravda, Lukáš; Svobodová Vařeková, Radka; Ionescu, Crina-Maria; Koča, Jaroslav

    2015-07-01

    Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Web tools for effective retrieval, visualization, and evaluation of cardiology medical images and records

    NASA Astrophysics Data System (ADS)

    Masseroli, Marco; Pinciroli, Francesco

    2000-12-01

    To provide easy retrieval, integration and evaluation of multimodal cardiology images and data in a web browser environment, distributed application technologies and java programming were used to implement a client-server architecture based on software agents. The server side manages secure connections and queries to heterogeneous remote databases and file systems containing patient personal and clinical data. The client side is a Java applet running in a web browser and providing a friendly medical user interface to perform queries on patient and medical test dat and integrate and visualize properly the various query results. A set of tools based on Java Advanced Imaging API enables to process and analyze the retrieved cardiology images, and quantify their features in different regions of interest. The platform-independence Java technology makes the developed prototype easy to be managed in a centralized form and provided in each site where an intranet or internet connection can be located. Giving the healthcare providers effective tools for querying, visualizing and evaluating comprehensively cardiology medical images and records in all locations where they can need them- i.e. emergency, operating theaters, ward, or even outpatient clinics- the developed prototype represents an important aid in providing more efficient diagnoses and medical treatments.

  15. Relationship Between Time Consumption and Quality of Responses to Drug-related Queries: A Study From Seven Drug Information Centers in Scandinavia.

    PubMed

    Amundstuen Reppe, Linda; Lydersen, Stian; Schjøtt, Jan; Damkier, Per; Rolighed Christensen, Hanne; Peter Kampmann, Jens; Böttiger, Ylva; Spigset, Olav

    2016-07-01

    The aims of this study were to assess the quality of responses produced by drug information centers (DICs) in Scandinavia, and to study the association between time consumption processing queries and the quality of the responses. We posed six identical drug-related queries to seven DICs in Scandinavia, and the time consumption required for processing them was estimated. Clinical pharmacologists (internal experts) and general practitioners (external experts) reviewed responses individually. We used mixed model linear regression analyses to study the associations between time consumption on one hand and the summarized quality scores and the overall impression of the responses on the other hand. Both expert groups generally assessed the quality of the responses as "satisfactory" to "good." A few responses were criticized for being poorly synthesized and less relevant, of which none were quality-assured using co-signatures. For external experts, an increase in time consumption was statistically significantly associated with a decrease in common quality score (change in score, -0.20 per hour of work; 95% CI, -0.33 to -0.06; P = 0.004), and overall impression (change in score, -0.05 per hour of work; 95% CI, -0.08 to -0.01; P = 0.005). No such associations were found for the internal experts' assessment. To our knowledge, this is the first study of the association between time consumption and quality of responses to drug-related queries in DICs. The quality of responses were in general good, but time consumption and quality were only weakly associated in this setting. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Modeling and interoperability of heterogeneous genomic big data for integrative processing and querying.

    PubMed

    Masseroli, Marco; Kaitoua, Abdulrahman; Pinoli, Pietro; Ceri, Stefano

    2016-12-01

    While a huge amount of (epi)genomic data of multiple types is becoming available by using Next Generation Sequencing (NGS) technologies, the most important emerging problem is the so-called tertiary analysis, concerned with sense making, e.g., discovering how different (epi)genomic regions and their products interact and cooperate with each other. We propose a paradigm shift in tertiary analysis, based on the use of the Genomic Data Model (GDM), a simple data model which links genomic feature data to their associated experimental, biological and clinical metadata. GDM encompasses all the data formats which have been produced for feature extraction from (epi)genomic datasets. We specifically describe the mapping to GDM of SAM (Sequence Alignment/Map), VCF (Variant Call Format), NARROWPEAK (for called peaks produced by NGS ChIP-seq or DNase-seq methods), and BED (Browser Extensible Data) formats, but GDM supports as well all the formats describing experimental datasets (e.g., including copy number variations, DNA somatic mutations, or gene expressions) and annotations (e.g., regarding transcription start sites, genes, enhancers or CpG islands). We downloaded and integrated samples of all the above-mentioned data types and formats from multiple sources. The GDM is able to homogeneously describe semantically heterogeneous data and makes the ground for providing data interoperability, e.g., achieved through the GenoMetric Query Language (GMQL), a high-level, declarative query language for genomic big data. The combined use of the data model and the query language allows comprehensive processing of multiple heterogeneous data, and supports the development of domain-specific data-driven computations and bio-molecular knowledge discovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Semi-automatic semantic annotation of PubMed Queries: a study on quality, efficiency, satisfaction

    PubMed Central

    Névéol, Aurélie; Islamaj-Doğan, Rezarta; Lu, Zhiyong

    2010-01-01

    Information processing algorithms require significant amounts of annotated data for training and testing. The availability of such data is often hindered by the complexity and high cost of production. In this paper, we investigate the benefits of a state-of-the-art tool to help with the semantic annotation of a large set of biomedical information queries. Seven annotators were recruited to annotate a set of 10,000 PubMed® queries with 16 biomedical and bibliographic categories. About half of the queries were annotated from scratch, while the other half were automatically pre-annotated and manually corrected. The impact of the automatic pre-annotations was assessed on several aspects of the task: time, number of actions, annotator satisfaction, inter-annotator agreement, quality and number of the resulting annotations. The analysis of annotation results showed that the number of required hand annotations is 28.9% less when using pre-annotated results from automatic tools. As a result, the overall annotation time was substantially lower when pre-annotations were used, while inter-annotator agreement was significantly higher. In addition, there was no statistically significant difference in the semantic distribution or number of annotations produced when pre-annotations were used. The annotated query corpus is freely available to the research community. This study shows that automatic pre-annotations are found helpful by most annotators. Our experience suggests using an automatic tool to assist large-scale manual annotation projects. This helps speed-up the annotation time and improve annotation consistency while maintaining high quality of the final annotations. PMID:21094696

  18. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    PubMed

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Social media based NPL system to find and retrieve ARM data: Concept paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devarakonda, Ranjeet; Giansiracusa, Michael T.; Kumar, Jitendra

    Information connectivity and retrieval has a role in our daily lives. The most pervasive source of online information is databases. The amount of data is growing at rapid rate and database technology is improving and having a profound effect. Almost all online applications are storing and retrieving information from databases. One challenge in supplying the public with wider access to informational databases is the need for knowledge of database languages like Structured Query Language (SQL). Although the SQL language has been published in many forms, not everybody is able to write SQL queries. Another challenge is that it may notmore » be practical to make the public aware of the structure of the database. There is a need for novice users to query relational databases using their natural language. To solve this problem, many natural language interfaces to structured databases have been developed. The goal is to provide more intuitive method for generating database queries and delivering responses. Social media makes it possible to interact with a wide section of the population. Through this medium, and with the help of Natural Language Processing (NLP) we can make the data of the Atmospheric Radiation Measurement Data Center (ADC) more accessible to the public. We propose an architecture for using Apache Lucene/Solr [1], OpenML [2,3], and Kafka [4] to generate an automated query/response system with inputs from Twitter5, our Cassandra DB, and our log database. Using the Twitter API and NLP we can give the public the ability to ask questions of our database and get automated responses.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devarakonda, Ranjeet; Giansiracusa, Michael T.; Kumar, Jitendra

    Information connectivity and retrieval has a role in our daily lives. The most pervasive source of online information is databases. The amount of data is growing at rapid rate and database technology is improving and having a profound effect. Almost all online applications are storing and retrieving information from databases. One challenge in supplying the public with wider access to informational databases is the need for knowledge of database languages like Structured Query Language (SQL). Although the SQL language has been published in many forms, not everybody is able to write SQL queries. Another challenge is that it may notmore » be practical to make the public aware of the structure of the database. There is a need for novice users to query relational databases using their natural language. To solve this problem, many natural language interfaces to structured databases have been developed. The goal is to provide more intuitive method for generating database queries and delivering responses. Social media makes it possible to interact with a wide section of the population. Through this medium, and with the help of Natural Language Processing (NLP) we can make the data of the Atmospheric Radiation Measurement Data Center (ADC) more accessible to the public. We propose an architecture for using Apache Lucene/Solr [1], OpenML [2,3], and Kafka [4] to generate an automated query/response system with inputs from Twitter5, our Cassandra DB, and our log database. Using the Twitter API and NLP we can give the public the ability to ask questions of our database and get automated responses.« less

  1. Analysis of queries sent to PubMed at the point of care: Observation of search behaviour in a medical teaching hospital

    PubMed Central

    Hoogendam, Arjen; Stalenhoef, Anton FH; Robbé, Pieter F de Vries; Overbeke, A John PM

    2008-01-01

    Background The use of PubMed to answer daily medical care questions is limited because it is challenging to retrieve a small set of relevant articles and time is restricted. Knowing what aspects of queries are likely to retrieve relevant articles can increase the effectiveness of PubMed searches. The objectives of our study were to identify queries that are likely to retrieve relevant articles by relating PubMed search techniques and tools to the number of articles retrieved and the selection of articles for further reading. Methods This was a prospective observational study of queries regarding patient-related problems sent to PubMed by residents and internists in internal medicine working in an Academic Medical Centre. We analyzed queries, search results, query tools (Mesh, Limits, wildcards, operators), selection of abstract and full-text for further reading, using a portal that mimics PubMed. Results PubMed was used to solve 1121 patient-related problems, resulting in 3205 distinct queries. Abstracts were viewed in 999 (31%) of these queries, and in 126 (39%) of 321 queries using query tools. The average term count per query was 2.5. Abstracts were selected in more than 40% of queries using four or five terms, increasing to 63% if the use of four or five terms yielded 2–161 articles. Conclusion Queries sent to PubMed by physicians at our hospital during daily medical care contain fewer than three terms. Queries using four to five terms, retrieving less than 161 article titles, are most likely to result in abstract viewing. PubMed search tools are used infrequently by our population and are less effective than the use of four or five terms. Methods to facilitate the formulation of precise queries, using more relevant terms, should be the focus of education and research. PMID:18816391

  2. Application of connectivity mapping in predictive toxicology based on gene-expression similarity.

    PubMed

    Smalley, Joshua L; Gant, Timothy W; Zhang, Shu-Dong

    2010-02-09

    Connectivity mapping is the process of establishing connections between different biological states using gene-expression profiles or signatures. There are a number of applications but in toxicology the most pertinent is for understanding mechanisms of toxicity. In its essence the process involves comparing a query gene signature generated as a result of exposure of a biological system to a chemical to those in a database that have been previously derived. In the ideal situation the query gene-expression signature is characteristic of the event and will be matched to similar events in the database. Key criteria are therefore the means of choosing the signature to be matched and the means by which the match is made. In this article we explore these concepts with examples applicable to toxicology. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  3. Visualizing whole-brain DTI tractography with GPU-based Tuboids and LoD management.

    PubMed

    Petrovic, Vid; Fallon, James; Kuester, Falko

    2007-01-01

    Diffusion Tensor Imaging (DTI) of the human brain, coupled with tractography techniques, enable the extraction of large-collections of three-dimensional tract pathways per subject. These pathways and pathway bundles represent the connectivity between different brain regions and are critical for the understanding of brain related diseases. A flexible and efficient GPU-based rendering technique for DTI tractography data is presented that addresses common performance bottlenecks and image-quality issues, allowing interactive render rates to be achieved on commodity hardware. An occlusion query-based pathway LoD management system for streamlines/streamtubes/tuboids is introduced that optimizes input geometry, vertex processing, and fragment processing loads, and helps reduce overdraw. The tuboid, a fully-shaded streamtube impostor constructed entirely on the GPU from streamline vertices, is also introduced. Unlike full streamtubes and other impostor constructs, tuboids require little to no preprocessing or extra space over the original streamline data. The supported fragment processing levels of detail range from texture-based draft shading to full raycast normal computation, Phong shading, environment mapping, and curvature-correct text labeling. The presented text labeling technique for tuboids provides adaptive, aesthetically pleasing labels that appear attached to the surface of the tubes. Furthermore, an occlusion query aggregating and scheduling scheme for tuboids is described that reduces the query overhead. Results for a tractography dataset are presented, and demonstrate that LoD-managed tuboids offer benefits over traditional streamtubes both in performance and appearance.

  4. Integration and Analysis of Neighbor Discovery and Link Quality Estimation in Wireless Sensor Networks

    PubMed Central

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor

    2014-01-01

    Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications. PMID:24678277

  5. Collective motion in animal groups from a neurobiological perspective: the adaptive benefits of dynamic sensory loads and selective attention.

    PubMed

    Lemasson, B H; Anderson, J J; Goodwin, R A

    2009-12-21

    We explore mechanisms associated with collective animal motion by drawing on the neurobiological bases of sensory information processing and decision-making. The model uses simplified retinal processes to translate neighbor movement patterns into information through spatial signal integration and threshold responses. The structure provides a mechanism by which individuals can vary their sets of influential neighbors, a measure of an individual's sensory load. Sensory loads are correlated with group order and density, and we discuss their adaptive values in an ecological context. The model also provides a mechanism by which group members can identify, and rapidly respond to, novel visual stimuli.

  6. Enemies and friends in the neighborhood: orthographic similarity effects in semantic categorization.

    PubMed

    Pecher, Diane; Zeelenberg, René; Wagenmakers, Eric-Jan

    2005-01-01

    Studies investigating orthographic similarity effects in semantic tasks have produced inconsistent results. The authors investigated orthographic similarity effects in animacy decision and in contrast with previous studies, they took semantic congruency into account. In Experiments 1 and 2, performance to a target (cat) was better if a previously studied neighbor (rat) was congruent (i.e., belonged to the same animate-inanimate category) than it was if it was incongruent (e.g., mat). In Experiments 3 and 4, performance was better for targets with more preexisting congruent neighbors than for targets with more preexisting incongruent neighbors. These results demonstrate that orthographic similarity effects in semantic categorization are conditional on semantic congruency. This strongly suggests that semantic information becomes available before orthographic processing has been completed. 2005 APA

  7. Clustering, randomness and regularity in cloud fields. I - Theoretical considerations. II - Cumulus cloud fields

    NASA Technical Reports Server (NTRS)

    Weger, R. C.; Lee, J.; Zhu, Tianri; Welch, R. M.

    1992-01-01

    The current controversy existing in reference to the regularity vs. clustering in cloud fields is examined by means of analysis and simulation studies based upon nearest-neighbor cumulative distribution statistics. It is shown that the Poisson representation of random point processes is superior to pseudorandom-number-generated models and that pseudorandom-number-generated models bias the observed nearest-neighbor statistics towards regularity. Interpretation of this nearest-neighbor statistics is discussed for many cases of superpositions of clustering, randomness, and regularity. A detailed analysis is carried out of cumulus cloud field spatial distributions based upon Landsat, AVHRR, and Skylab data, showing that, when both large and small clouds are included in the cloud field distributions, the cloud field always has a strong clustering signal.

  8. Studying cytokinesis in Drosophila epithelial tissues.

    PubMed

    Pinheiro, D; Bellaïche, Y

    2017-01-01

    Epithelial tissue cohesiveness is ensured through cell-cell junctions that maintain both adhesion and mechanical coupling between neighboring cells. During development, epithelial tissues undergo intensive cell proliferation. Cell division, and particularly cytokinesis, is coupled to the formation of new adhesive contacts, thereby preserving tissue integrity and propagating cell polarity. Remarkably, the geometry of the new interfaces is determined by the combined action of the dividing cell and its neighbors. To further understand the interplay between the dividing cell and its neighbors, as well as the role of cell division for tissue morphogenesis, it is important to analyze cytokinesis in vivo. Here we present methods to perform live imaging of cell division in Drosophila epithelial tissues and discuss some aspects of image processing and analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Complement-Related Regulates Autophagy in Neighboring Cells.

    PubMed

    Lin, Lin; Rodrigues, Frederico S L M; Kary, Christina; Contet, Alicia; Logan, Mary; Baxter, Richard H G; Wood, Will; Baehrecke, Eric H

    2017-06-29

    Autophagy degrades cytoplasmic components and is important for development and human health. Although autophagy is known to be influenced by systemic intercellular signals, the proteins that control autophagy are largely thought to function within individual cells. Here, we report that Drosophila macroglobulin complement-related (Mcr), a complement ortholog, plays an essential role during developmental cell death and inflammation by influencing autophagy in neighboring cells. This function of Mcr involves the immune receptor Draper, suggesting a relationship between autophagy and the control of inflammation. Interestingly, Mcr function in epithelial cells is required for macrophage autophagy and migration to epithelial wounds, a Draper-dependent process. This study reveals, unexpectedly, that complement-related from one cell regulates autophagy in neighboring cells via an ancient immune signaling program. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The effect of orthographic neighborhood in the reading span task.

    PubMed

    Robert, Christelle; Postal, Virginie; Mathey, Stéphanie

    2015-04-01

    This study aimed at examining whether and to what extent orthographic neighborhood of words influences performance in a working memory span task. Twenty-five participants performed a reading span task in which final words to be memorized had either no higher frequency orthographic neighbor or at least one. In both neighborhood conditions, each participant completed three series of two, three, four, or five sentences. Results indicated an interaction between orthographic neighborhood and list length. In particular, an inhibitory effect of orthographic neighborhood on recall appeared in list length 5. A view is presented suggesting that words with higher frequency neighbors require more resources to be memorized than words with no such neighbors. The implications of the results are discussed with regard to memory processes and current models of visual word recognition.

  11. User centered and ontology based information retrieval system for life sciences.

    PubMed

    Sy, Mohameth-François; Ranwez, Sylvie; Montmain, Jacky; Regnault, Armelle; Crampes, Michel; Ranwez, Vincent

    2012-01-25

    Because of the increasing number of electronic resources, designing efficient tools to retrieve and exploit them is a major challenge. Some improvements have been offered by semantic Web technologies and applications based on domain ontologies. In life science, for instance, the Gene Ontology is widely exploited in genomic applications and the Medical Subject Headings is the basis of biomedical publications indexation and information retrieval process proposed by PubMed. However current search engines suffer from two main drawbacks: there is limited user interaction with the list of retrieved resources and no explanation for their adequacy to the query is provided. Users may thus be confused by the selection and have no idea on how to adapt their queries so that the results match their expectations. This paper describes an information retrieval system that relies on domain ontology to widen the set of relevant documents that is retrieved and that uses a graphical rendering of query results to favor user interactions. Semantic proximities between ontology concepts and aggregating models are used to assess documents adequacy with respect to a query. The selection of documents is displayed in a semantic map to provide graphical indications that make explicit to what extent they match the user's query; this man/machine interface favors a more interactive and iterative exploration of data corpus, by facilitating query concepts weighting and visual explanation. We illustrate the benefit of using this information retrieval system on two case studies one of which aiming at collecting human genes related to transcription factors involved in hemopoiesis pathway. The ontology based information retrieval system described in this paper (OBIRS) is freely available at: http://www.ontotoolkit.mines-ales.fr/ObirsClient/. This environment is a first step towards a user centred application in which the system enlightens relevant information to provide decision help.

  12. Query-by-example surgical activity detection.

    PubMed

    Gao, Yixin; Vedula, S Swaroop; Lee, Gyusung I; Lee, Mija R; Khudanpur, Sanjeev; Hager, Gregory D

    2016-06-01

    Easy acquisition of surgical data opens many opportunities to automate skill evaluation and teaching. Current technology to search tool motion data for surgical activity segments of interest is limited by the need for manual pre-processing, which can be prohibitive at scale. We developed a content-based information retrieval method, query-by-example (QBE), to automatically detect activity segments within surgical data recordings of long duration that match a query. The example segment of interest (query) and the surgical data recording (target trial) are time series of kinematics. Our approach includes an unsupervised feature learning module using a stacked denoising autoencoder (SDAE), two scoring modules based on asymmetric subsequence dynamic time warping (AS-DTW) and template matching, respectively, and a detection module. A distance matrix of the query against the trial is computed using the SDAE features, followed by AS-DTW combined with template scoring, to generate a ranked list of candidate subsequences (substrings). To evaluate the quality of the ranked list against the ground-truth, thresholding conventional DTW distances and bipartite matching are applied. We computed the recall, precision, F1-score, and a Jaccard index-based score on three experimental setups. We evaluated our QBE method using a suture throw maneuver as the query, on two tool motion datasets (JIGSAWS and MISTIC-SL) captured in a training laboratory. We observed a recall of 93, 90 and 87 % and a precision of 93, 91, and 88 % with same surgeon same trial (SSST), same surgeon different trial (SSDT) and different surgeon (DS) experiment setups on JIGSAWS, and a recall of 87, 81 and 75 % and a precision of 72, 61, and 53 % with SSST, SSDT and DS experiment setups on MISTIC-SL, respectively. We developed a novel, content-based information retrieval method to automatically detect multiple instances of an activity within long surgical recordings. Our method demonstrated adequate recall across different complexity datasets and experimental conditions.

  13. A Modular Framework for Transforming Structured Data into HTML with Machine-Readable Annotations

    NASA Astrophysics Data System (ADS)

    Patton, E. W.; West, P.; Rozell, E.; Zheng, J.

    2010-12-01

    There is a plethora of web-based Content Management Systems (CMS) available for maintaining projects and data, i.a. However, each system varies in its capabilities and often content is stored separately and accessed via non-uniform web interfaces. Moving from one CMS to another (e.g., MediaWiki to Drupal) can be cumbersome, especially if a large quantity of data must be adapted to the new system. To standardize the creation, display, management, and sharing of project information, we have assembled a framework that uses existing web technologies to transform data provided by any service that supports the SPARQL Protocol and RDF Query Language (SPARQL) queries into HTML fragments, allowing it to be embedded in any existing website. The framework utilizes a two-tier XML Stylesheet Transformation (XSLT) that uses existing ontologies (e.g., Friend-of-a-Friend, Dublin Core) to interpret query results and render them as HTML documents. These ontologies can be used in conjunction with custom ontologies suited to individual needs (e.g., domain-specific ontologies for describing data records). Furthermore, this transformation process encodes machine-readable annotations, namely, the Resource Description Framework in attributes (RDFa), into the resulting HTML, so that capable parsers and search engines can extract the relationships between entities (e.g, people, organizations, datasets). To facilitate editing of content, the framework provides a web-based form system, mapping each query to a dynamically generated form that can be used to modify and create entities, while keeping the native data store up-to-date. This open framework makes it easy to duplicate data across many different sites, allowing researchers to distribute their data in many different online forums. In this presentation we will outline the structure of queries and the stylesheets used to transform them, followed by a brief walkthrough that follows the data from storage to human- and machine-accessible web page. We conclude with a discussion on content caching and steps toward performing queries across multiple domains.

  14. User centered and ontology based information retrieval system for life sciences

    PubMed Central

    2012-01-01

    Background Because of the increasing number of electronic resources, designing efficient tools to retrieve and exploit them is a major challenge. Some improvements have been offered by semantic Web technologies and applications based on domain ontologies. In life science, for instance, the Gene Ontology is widely exploited in genomic applications and the Medical Subject Headings is the basis of biomedical publications indexation and information retrieval process proposed by PubMed. However current search engines suffer from two main drawbacks: there is limited user interaction with the list of retrieved resources and no explanation for their adequacy to the query is provided. Users may thus be confused by the selection and have no idea on how to adapt their queries so that the results match their expectations. Results This paper describes an information retrieval system that relies on domain ontology to widen the set of relevant documents that is retrieved and that uses a graphical rendering of query results to favor user interactions. Semantic proximities between ontology concepts and aggregating models are used to assess documents adequacy with respect to a query. The selection of documents is displayed in a semantic map to provide graphical indications that make explicit to what extent they match the user's query; this man/machine interface favors a more interactive and iterative exploration of data corpus, by facilitating query concepts weighting and visual explanation. We illustrate the benefit of using this information retrieval system on two case studies one of which aiming at collecting human genes related to transcription factors involved in hemopoiesis pathway. Conclusions The ontology based information retrieval system described in this paper (OBIRS) is freely available at: http://www.ontotoolkit.mines-ales.fr/ObirsClient/. This environment is a first step towards a user centred application in which the system enlightens relevant information to provide decision help. PMID:22373375

  15. Towards ontology-driven navigation of the lipid bibliosphere

    PubMed Central

    Baker, Christopher JO; Kanagasabai, Rajaraman; Ang, Wee Tiong; Veeramani, Anitha; Low, Hong-Sang; Wenk, Markus R

    2008-01-01

    Background The indexing of scientific literature and content is a relevant and contemporary requirement within life science information systems. Navigating information available in legacy formats continues to be a challenge both in enterprise and academic domains. The emergence of semantic web technologies and their fusion with artificial intelligence techniques has provided a new toolkit with which to address these data integration challenges. In the emerging field of lipidomics such navigation challenges are barriers to the translation of scientific results into actionable knowledge, critical to the treatment of diseases such as Alzheimer's syndrome, Mycobacterium infections and cancer. Results We present a literature-driven workflow involving document delivery and natural language processing steps generating tagged sentences containing lipid, protein and disease names, which are instantiated to custom designed lipid ontology. We describe the design challenges in capturing lipid nomenclature, the mandate of the ontology and its role as query model in the navigation of the lipid bibliosphere. We illustrate the extent of the description logic-based A-box query capability provided by the instantiated ontology using a graphical query composer to query sentences describing lipid-protein and lipid-disease correlations. Conclusion As scientists accept the need to readjust the manner in which we search for information and derive knowledge we illustrate a system that can constrain the literature explosion and knowledge navigation problems. Specifically we have focussed on solving this challenge for lipidomics researchers who have to deal with the lack of standardized vocabulary, differing classification schemes, and a wide array of synonyms before being able to derive scientific insights. The use of the OWL-DL variant of the Web Ontology Language (OWL) and description logic reasoning is pivotal in this regard, providing the lipid scientist with advanced query access to the results of text mining algorithms instantiated into the ontology. The visual query paradigm assists in the adoption of this technology. PMID:18315858

  16. Towards ontology-driven navigation of the lipid bibliosphere.

    PubMed

    Baker, Christopher Jo; Kanagasabai, Rajaraman; Ang, Wee Tiong; Veeramani, Anitha; Low, Hong-Sang; Wenk, Markus R

    2008-01-01

    The indexing of scientific literature and content is a relevant and contemporary requirement within life science information systems. Navigating information available in legacy formats continues to be a challenge both in enterprise and academic domains. The emergence of semantic web technologies and their fusion with artificial intelligence techniques has provided a new toolkit with which to address these data integration challenges. In the emerging field of lipidomics such navigation challenges are barriers to the translation of scientific results into actionable knowledge, critical to the treatment of diseases such as Alzheimer's syndrome, Mycobacterium infections and cancer. We present a literature-driven workflow involving document delivery and natural language processing steps generating tagged sentences containing lipid, protein and disease names, which are instantiated to custom designed lipid ontology. We describe the design challenges in capturing lipid nomenclature, the mandate of the ontology and its role as query model in the navigation of the lipid bibliosphere. We illustrate the extent of the description logic-based A-box query capability provided by the instantiated ontology using a graphical query composer to query sentences describing lipid-protein and lipid-disease correlations. As scientists accept the need to readjust the manner in which we search for information and derive knowledge we illustrate a system that can constrain the literature explosion and knowledge navigation problems. Specifically we have focussed on solving this challenge for lipidomics researchers who have to deal with the lack of standardized vocabulary, differing classification schemes, and a wide array of synonyms before being able to derive scientific insights. The use of the OWL-DL variant of the Web Ontology Language (OWL) and description logic reasoning is pivotal in this regard, providing the lipid scientist with advanced query access to the results of text mining algorithms instantiated into the ontology. The visual query paradigm assists in the adoption of this technology.

  17. When Less is More: Feedback, Priming, and the Pseudoword Superiority Effect

    PubMed Central

    Massol, Stéphanie; Midgley, Katherine J.; Holcomb, Phillip J.; Grainger, Jonathan

    2011-01-01

    The present study combined masked priming with electrophysiological recordings to investigate orthographic priming effects with nonword targets. Targets were pronounceable nonwords (e.g., STRENG) or consonant strings (e.g., STRBNG), that both differed from a real word by a single letter substitution (STRONG). Targets were preceded by related primes that could be the same as the target (e.g., streng – STRENG, strbng-STRBNG) or the real word neighbor of the target (e.g., strong – STRENG, strong-STRBNG). Independently of priming, pronounceable nonwords were associated with larger negativities than consonant strings, starting at 290 ms post-target onset. Overall, priming effects were stronger and more long-lasting with pronounceable nonwords than consonant strings. However, consonant string targets showed an early effect of word neighbor priming in the absence of an effect of repetition priming, whereas pronounceable nonwords showed both repetition and word neighbor priming effects in the same time window. This pattern of priming effects is taken as evidence for feedback from whole-word orthographic representations activated by the prime stimulus that influences bottom-up processing of prelexical representations during target processing. PMID:21354110

  18. Heat perturbation spreading in the Fermi-Pasta-Ulam-β system with next-nearest-neighbor coupling: Competition between phonon dispersion and nonlinearity

    NASA Astrophysics Data System (ADS)

    Xiong, Daxing

    2017-06-01

    We employ the heat perturbation correlation function to study thermal transport in the one-dimensional Fermi-Pasta-Ulam-β lattice with both nearest-neighbor and next-nearest-neighbor couplings. We find that such a system bears a peculiar phonon dispersion relation, and thus there exists a competition between phonon dispersion and nonlinearity that can strongly affect the heat correlation function's shape and scaling property. Specifically, for small and large anharmoncities, the scaling laws are ballistic and superdiffusive types, respectively, which are in good agreement with the recent theoretical predictions; whereas in the intermediate range of the nonlinearity, we observe an unusual multiscaling property characterized by a nonmonotonic delocalization process of the central peak of the heat correlation function. To understand these multiscaling laws, we also examine the momentum perturbation correlation function and find a transition process with the same turning point of the anharmonicity as that shown in the heat correlation function. This suggests coupling between the momentum transport and the heat transport, in agreement with the theoretical arguments of mode cascade theory.

  19. Aftershock identification problem via the nearest-neighbor analysis for marked point processes

    NASA Astrophysics Data System (ADS)

    Gabrielov, A.; Zaliapin, I.; Wong, H.; Keilis-Borok, V.

    2007-12-01

    The centennial observations on the world seismicity have revealed a wide variety of clustering phenomena that unfold in the space-time-energy domain and provide most reliable information about the earthquake dynamics. However, there is neither a unifying theory nor a convenient statistical apparatus that would naturally account for the different types of seismic clustering. In this talk we present a theoretical framework for nearest-neighbor analysis of marked processes and obtain new results on hierarchical approach to studying seismic clustering introduced by Baiesi and Paczuski (2004). Recall that under this approach one defines an asymmetric distance D in space-time-energy domain such that the nearest-neighbor spanning graph with respect to D becomes a time- oriented tree. We demonstrate how this approach can be used to detect earthquake clustering. We apply our analysis to the observed seismicity of California and synthetic catalogs from ETAS model and show that the earthquake clustering part is statistically different from the homogeneous part. This finding may serve as a basis for an objective aftershock identification procedure.

  20. Mining Genotype-Phenotype Associations from Public Knowledge Sources via Semantic Web Querying

    PubMed Central

    Kiefer, Richard C.; Freimuth, Robert R.; Chute, Christopher G; Pathak, Jyotishman

    Gene Wiki Plus (GeneWiki+) and the Online Mendelian Inheritance in Man (OMIM) are publicly available resources for sharing information about disease-gene and gene-SNP associations in humans. While immensely useful to the scientific community, both resources are manually curated, thereby making the data entry and publication process time-consuming, and to some degree, error-prone. To this end, this study investigates Semantic Web technologies to validate existing and potentially discover new genotype-phenotype associations in GWP and OMIM. In particular, we demonstrate the applicability of SPARQL queries for identifying associations not explicitly stated for commonly occurring chronic diseases in GWP and OMIM, and report our preliminary findings for coverage, completeness, and validity of the associations. Our results highlight the benefits of Semantic Web querying technology to validate existing disease-gene associations as well as identify novel associations although further evaluation and analysis is required before such information can be applied and used effectively. PMID:24303249

  1. Datacube Services in Action, Using Open Source and Open Standards

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Misev, D.

    2016-12-01

    Array Databases comprise novel, promising technology for massive spatio-temporal datacubes, extending the SQL paradigm of "any query, anytime" to n-D arrays. On server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. The rasdaman ("raster data manager") system, which has pioneered Array Databases, is available in open source on www.rasdaman.org. Its declarative query language extends SQL with array operators which are optimized and parallelized on server side. The rasdaman engine, which is part of OSGeo Live, is mature and in operational use databases individually holding dozens of Terabytes. Further, the rasdaman concepts have strongly impacted international Big Data standards in the field, including the forthcoming MDA ("Multi-Dimensional Array") extension to ISO SQL, the OGC Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS) standards, and the forthcoming INSPIRE WCS/WCPS; in both OGC and INSPIRE, OGC is WCS Core Reference Implementation. In our talk we present concepts, architecture, operational services, and standardization impact of open-source rasdaman, as well as experiences made.

  2. Query optimization for graph analytics on linked data using SPARQL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seokyong; Lee, Sangkeun; Lim, Seung -Hwan

    2015-07-01

    Triplestores that support query languages such as SPARQL are emerging as the preferred and scalable solution to represent data and meta-data as massive heterogeneous graphs using Semantic Web standards. With increasing adoption, the desire to conduct graph-theoretic mining and exploratory analysis has also increased. Addressing that desire, this paper presents a solution that is the marriage of Graph Theory and the Semantic Web. We present software that can analyze Linked Data using graph operations such as counting triangles, finding eccentricity, testing connectedness, and computing PageRank directly on triple stores via the SPARQL interface. We describe the process of optimizing performancemore » of the SPARQL-based implementation of such popular graph algorithms by reducing the space-overhead, simplifying iterative complexity and removing redundant computations by understanding query plans. Our optimized approach shows significant performance gains on triplestores hosted on stand-alone workstations as well as hardware-optimized scalable supercomputers such as the Cray XMT.« less

  3. Advanced Query and Data Mining Capabilities for MaROS

    NASA Technical Reports Server (NTRS)

    Wang, Paul; Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Hy, Franklin H.

    2013-01-01

    The Mars Relay Operational Service (MaROS) comprises a number of tools to coordinate, plan, and visualize various aspects of the Mars Relay network. These levels include a Web-based user interface, a back-end "ReSTlet" built in Java, and databases that store the data as it is received from the network. As part of MaROS, the innovators have developed and implemented a feature set that operates on several levels of the software architecture. This new feature is an advanced querying capability through either the Web-based user interface, or through a back-end REST interface to access all of the data gathered from the network. This software is not meant to replace the REST interface, but to augment and expand the range of available data. The current REST interface provides specific data that is used by the MaROS Web application to display and visualize the information; however, the returned information from the REST interface has typically been pre-processed to return only a subset of the entire information within the repository, particularly only the information that is of interest to the GUI (graphical user interface). The new, advanced query and data mining capabilities allow users to retrieve the raw data and/or to perform their own data processing. The query language used to access the repository is a restricted subset of the structured query language (SQL) that can be built safely from the Web user interface, or entered as freeform SQL by a user. The results are returned in a CSV (Comma Separated Values) format for easy exporting to third party tools and applications that can be used for data mining or user-defined visualization and interpretation. This is the first time that a service is capable of providing access to all cross-project relay data from a single Web resource. Because MaROS contains the data for a variety of missions from the Mars network, which span both NASA and ESA, the software also establishes an access control list (ACL) on each data record in the database repository to enforce user access permissions through a multilayered approach.

  4. Optimizing SIEM Throughput on the Cloud Using Parallelization

    PubMed Central

    Alam, Masoom; Ihsan, Asif; Javaid, Qaisar; Khan, Abid; Manzoor, Jawad; Akhundzada, Adnan; Khan, M Khurram; Farooq, Sajid

    2016-01-01

    Processing large amounts of data in real time for identifying security issues pose several performance challenges, especially when hardware infrastructure is limited. Managed Security Service Providers (MSSP), mostly hosting their applications on the Cloud, receive events at a very high rate that varies from a few hundred to a couple of thousand events per second (EPS). It is critical to process this data efficiently, so that attacks could be identified quickly and necessary response could be initiated. This paper evaluates the performance of a security framework OSTROM built on the Esper complex event processing (CEP) engine under a parallel and non-parallel computational framework. We explain three architectures under which Esper can be used to process events. We investigated the effect on throughput, memory and CPU usage in each configuration setting. The results indicate that the performance of the engine is limited by the number of events coming in rather than the queries being processed. The architecture where 1/4th of the total events are submitted to each instance and all the queries are processed by all the units shows best results in terms of throughput, memory and CPU usage. PMID:27851762

  5. Facilitating Cohort Discovery by Enhancing Ontology Exploration, Query Management and Query Sharing for Large Clinical Data Repositories.

    PubMed

    Tao, Shiqiang; Cui, Licong; Wu, Xi; Zhang, Guo-Qiang

    2017-01-01

    To help researchers better access clinical data, we developed a prototype query engine called DataSphere for exploring large-scale integrated clinical data repositories. DataSphere expedites data importing using a NoSQL data management system and dynamically renders its user interface for concept-based querying tasks. DataSphere provides an interactive query-building interface together with query translation and optimization strategies, which enable users to build and execute queries effectively and efficiently. We successfully loaded a dataset of one million patients for University of Kentucky (UK) Healthcare into DataSphere with more than 300 million clinical data records. We evaluated DataSphere by comparing it with an instance of i2b2 deployed at UK Healthcare, demonstrating that DataSphere provides enhanced user experience for both query building and execution.

  6. Facilitating Cohort Discovery by Enhancing Ontology Exploration, Query Management and Query Sharing for Large Clinical Data Repositories

    PubMed Central

    Tao, Shiqiang; Cui, Licong; Wu, Xi; Zhang, Guo-Qiang

    2017-01-01

    To help researchers better access clinical data, we developed a prototype query engine called DataSphere for exploring large-scale integrated clinical data repositories. DataSphere expedites data importing using a NoSQL data management system and dynamically renders its user interface for concept-based querying tasks. DataSphere provides an interactive query-building interface together with query translation and optimization strategies, which enable users to build and execute queries effectively and efficiently. We successfully loaded a dataset of one million patients for University of Kentucky (UK) Healthcare into DataSphere with more than 300 million clinical data records. We evaluated DataSphere by comparing it with an instance of i2b2 deployed at UK Healthcare, demonstrating that DataSphere provides enhanced user experience for both query building and execution. PMID:29854239

  7. Improve Performance of Data Warehouse by Query Cache

    NASA Astrophysics Data System (ADS)

    Gour, Vishal; Sarangdevot, S. S.; Sharma, Anand; Choudhary, Vinod

    2010-11-01

    The primary goal of data warehouse is to free the information locked up in the operational database so that decision makers and business analyst can make queries, analysis and planning regardless of the data changes in operational database. As the number of queries is large, therefore, in certain cases there is reasonable probability that same query submitted by the one or multiple users at different times. Each time when query is executed, all the data of warehouse is analyzed to generate the result of that query. In this paper we will study how using query cache improves performance of Data Warehouse and try to find the common problems faced. These kinds of problems are faced by Data Warehouse administrators which are minimizes response time and improves the efficiency of query in data warehouse overall, particularly when data warehouse is updated at regular interval.

  8. Complex analyses on clinical information systems using restricted natural language querying to resolve time-event dependencies.

    PubMed

    Safari, Leila; Patrick, Jon D

    2018-06-01

    This paper reports on a generic framework to provide clinicians with the ability to conduct complex analyses on elaborate research topics using cascaded queries to resolve internal time-event dependencies in the research questions, as an extension to the proposed Clinical Data Analytics Language (CliniDAL). A cascaded query model is proposed to resolve internal time-event dependencies in the queries which can have up to five levels of criteria starting with a query to define subjects to be admitted into a study, followed by a query to define the time span of the experiment. Three more cascaded queries can be required to define control groups, control variables and output variables which all together simulate a real scientific experiment. According to the complexity of the research questions, the cascaded query model has the flexibility of merging some lower level queries for simple research questions or adding a nested query to each level to compose more complex queries. Three different scenarios (one of them contains two studies) are described and used for evaluation of the proposed solution. CliniDAL's complex analyses solution enables answering complex queries with time-event dependencies at most in a few hours which manually would take many days. An evaluation of results of the research studies based on the comparison between CliniDAL and SQL solutions reveals high usability and efficiency of CliniDAL's solution. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Query-Driven Visualization and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruebel, Oliver; Bethel, E. Wes; Prabhat, Mr.

    2012-11-01

    This report focuses on an approach to high performance visualization and analysis, termed query-driven visualization and analysis (QDV). QDV aims to reduce the amount of data that needs to be processed by the visualization, analysis, and rendering pipelines. The goal of the data reduction process is to separate out data that is "scientifically interesting'' and to focus visualization, analysis, and rendering on that interesting subset. The premise is that for any given visualization or analysis task, the data subset of interest is much smaller than the larger, complete data set. This strategy---extracting smaller data subsets of interest and focusing ofmore » the visualization processing on these subsets---is complementary to the approach of increasing the capacity of the visualization, analysis, and rendering pipelines through parallelism. This report discusses the fundamental concepts in QDV, their relationship to different stages in the visualization and analysis pipelines, and presents QDV's application to problems in diverse areas, ranging from forensic cybersecurity to high energy physics.« less

  10. The ATLAS EventIndex: architecture, design choices, deployment and first operation experience

    NASA Astrophysics Data System (ADS)

    Barberis, D.; Cárdenas Zárate, S. E.; Cranshaw, J.; Favareto, A.; Fernández Casaní, Á.; Gallas, E. J.; Glasman, C.; González de la Hoz, S.; Hřivnáč, J.; Malon, D.; Prokoshin, F.; Salt Cairols, J.; Sánchez, J.; Többicke, R.; Yuan, R.

    2015-12-01

    The EventIndex is the complete catalogue of all ATLAS events, keeping the references to all files that contain a given event in any processing stage. It replaces the TAG database, which had been in use during LHC Run 1. For each event it contains its identifiers, the trigger pattern and the GUIDs of the files containing it. Major use cases are event picking, feeding the Event Service used on some production sites, and technical checks of the completion and consistency of processing campaigns. The system design is highly modular so that its components (data collection system, storage system based on Hadoop, query web service and interfaces to other ATLAS systems) could be developed separately and in parallel during LSI. The EventIndex is in operation for the start of LHC Run 2. This paper describes the high-level system architecture, the technical design choices and the deployment process and issues. The performance of the data collection and storage systems, as well as the query services, are also reported.

  11. Evaluation of Sub Query Performance in SQL Server

    NASA Astrophysics Data System (ADS)

    Oktavia, Tanty; Sujarwo, Surya

    2014-03-01

    The paper explores several sub query methods used in a query and their impact on the query performance. The study uses experimental approach to evaluate the performance of each sub query methods combined with indexing strategy. The sub query methods consist of in, exists, relational operator and relational operator combined with top operator. The experimental shows that using relational operator combined with indexing strategy in sub query has greater performance compared with using same method without indexing strategy and also other methods. In summary, for application that emphasized on the performance of retrieving data from database, it better to use relational operator combined with indexing strategy. This study is done on Microsoft SQL Server 2012.

  12. Query Health: standards-based, cross-platform population health surveillance

    PubMed Central

    Klann, Jeffrey G; Buck, Michael D; Brown, Jeffrey; Hadley, Marc; Elmore, Richard; Weber, Griffin M; Murphy, Shawn N

    2014-01-01

    Objective Understanding population-level health trends is essential to effectively monitor and improve public health. The Office of the National Coordinator for Health Information Technology (ONC) Query Health initiative is a collaboration to develop a national architecture for distributed, population-level health queries across diverse clinical systems with disparate data models. Here we review Query Health activities, including a standards-based methodology, an open-source reference implementation, and three pilot projects. Materials and methods Query Health defined a standards-based approach for distributed population health queries, using an ontology based on the Quality Data Model and Consolidated Clinical Document Architecture, Health Quality Measures Format (HQMF) as the query language, the Query Envelope as the secure transport layer, and the Quality Reporting Document Architecture as the result language. Results We implemented this approach using Informatics for Integrating Biology and the Bedside (i2b2) and hQuery for data analytics and PopMedNet for access control, secure query distribution, and response. We deployed the reference implementation at three pilot sites: two public health departments (New York City and Massachusetts) and one pilot designed to support Food and Drug Administration post-market safety surveillance activities. The pilots were successful, although improved cross-platform data normalization is needed. Discussions This initiative resulted in a standards-based methodology for population health queries, a reference implementation, and revision of the HQMF standard. It also informed future directions regarding interoperability and data access for ONC's Data Access Framework initiative. Conclusions Query Health was a test of the learning health system that supplied a functional methodology and reference implementation for distributed population health queries that has been validated at three sites. PMID:24699371

  13. Query Health: standards-based, cross-platform population health surveillance.

    PubMed

    Klann, Jeffrey G; Buck, Michael D; Brown, Jeffrey; Hadley, Marc; Elmore, Richard; Weber, Griffin M; Murphy, Shawn N

    2014-01-01

    Understanding population-level health trends is essential to effectively monitor and improve public health. The Office of the National Coordinator for Health Information Technology (ONC) Query Health initiative is a collaboration to develop a national architecture for distributed, population-level health queries across diverse clinical systems with disparate data models. Here we review Query Health activities, including a standards-based methodology, an open-source reference implementation, and three pilot projects. Query Health defined a standards-based approach for distributed population health queries, using an ontology based on the Quality Data Model and Consolidated Clinical Document Architecture, Health Quality Measures Format (HQMF) as the query language, the Query Envelope as the secure transport layer, and the Quality Reporting Document Architecture as the result language. We implemented this approach using Informatics for Integrating Biology and the Bedside (i2b2) and hQuery for data analytics and PopMedNet for access control, secure query distribution, and response. We deployed the reference implementation at three pilot sites: two public health departments (New York City and Massachusetts) and one pilot designed to support Food and Drug Administration post-market safety surveillance activities. The pilots were successful, although improved cross-platform data normalization is needed. This initiative resulted in a standards-based methodology for population health queries, a reference implementation, and revision of the HQMF standard. It also informed future directions regarding interoperability and data access for ONC's Data Access Framework initiative. Query Health was a test of the learning health system that supplied a functional methodology and reference implementation for distributed population health queries that has been validated at three sites. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Real-time Interpolation for True 3-Dimensional Ultrasound Image Volumes

    PubMed Central

    Ji, Songbai; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2013-01-01

    We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1–2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm3 voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery. PMID:21266563

  15. Real-time interpolation for true 3-dimensional ultrasound image volumes.

    PubMed

    Ji, Songbai; Roberts, David W; Hartov, Alex; Paulsen, Keith D

    2011-02-01

    We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1-2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm(3) voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery.

  16. A Parallel Ghosting Algorithm for The Flexible Distributed Mesh Database

    DOE PAGES

    Mubarak, Misbah; Seol, Seegyoung; Lu, Qiukai; ...

    2013-01-01

    Critical to the scalability of parallel adaptive simulations are parallel control functions including load balancing, reduced inter-process communication and optimal data decomposition. In distributed meshes, many mesh-based applications frequently access neighborhood information for computational purposes which must be transmitted efficiently to avoid parallel performance degradation when the neighbors are on different processors. This article presents a parallel algorithm of creating and deleting data copies, referred to as ghost copies, which localize neighborhood data for computation purposes while minimizing inter-process communication. The key characteristics of the algorithm are: (1) It can create ghost copies of any permissible topological order in amore » 1D, 2D or 3D mesh based on selected adjacencies. (2) It exploits neighborhood communication patterns during the ghost creation process thus eliminating all-to-all communication. (3) For applications that need neighbors of neighbors, the algorithm can create n number of ghost layers up to a point where the whole partitioned mesh can be ghosted. Strong and weak scaling results are presented for the IBM BG/P and Cray XE6 architectures up to a core count of 32,768 processors. The algorithm also leads to scalable results when used in a parallel super-convergent patch recovery error estimator, an application that frequently accesses neighborhood data to carry out computation.« less

  17. On the role of heat and mass transfer into laser processability during selective laser melting AlSi12 alloy based on a randomly packed powder-bed

    NASA Astrophysics Data System (ADS)

    Wang, Lianfeng; Yan, Biao; Guo, Lijie; Gu, Dongdong

    2018-04-01

    A newly transient mesoscopic model with a randomly packed powder-bed has been proposed to investigate the heat and mass transfer and laser process quality between neighboring tracks during selective laser melting (SLM) AlSi12 alloy by finite volume method (FVM), considering the solid/liquid phase transition, variable temperature-dependent properties and interfacial force. The results apparently revealed that both the operating temperature and resultant cooling rate were obviously elevated by increasing the laser power. Accordingly, the resultant viscosity of liquid significantly reduced under a large laser power and was characterized with a large velocity, which was prone to result in a more intensive convection within pool. In this case, the sufficient heat and mass transfer occurred at the interface between the previously fabricated tracks and currently building track, revealing a strongly sufficient spreading between the neighboring tracks and a resultant high-quality surface without obvious porosity. By contrast, the surface quality of SLM-processed components with a relatively low laser power notably weakened due to the limited and insufficient heat and mass transfer at the interface of neighboring tracks. Furthermore, the experimental surface morphologies of the top surface were correspondingly acquired and were in full accordance to the calculated results via simulation.

  18. A fusion approach for coarse-to-fine target recognition

    NASA Astrophysics Data System (ADS)

    Folkesson, Martin; Grönwall, Christina; Jungert, Erland

    2006-04-01

    A fusion approach in a query based information system is presented. The system is designed for querying multimedia data bases, and here applied to target recognition using heterogeneous data sources. The recognition process is coarse-to-fine, with an initial attribute estimation step and a following matching step. Several sensor types and algorithms are involved in each of these two steps. An independence of the matching results, on the origin of the estimation results, is observed. It allows for distribution of data between algorithms in an intermediate fusion step, without risk of data incest. This increases the overall chance of recognising the target. An implementation of the system is described.

  19. Quantum private query with perfect user privacy against a joint-measurement attack

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Liu, Zhi-Chao; Li, Jian; Chen, Xiu-Bo; Zuo, Hui-Juan; Zhou, Yi-Hua; Shi, Wei-Min

    2016-12-01

    The joint-measurement (JM) attack is the most powerful threat to the database security for existing quantum-key-distribution (QKD)-based quantum private query (QPQ) protocols. Wei et al. (2016) [28] proposed a novel QPQ protocol against the JM attack. However, their protocol relies on two-way quantum communication thereby affecting its real implementation and communication efficiency. Moreover, it cannot ensure perfect user privacy. In this paper, we present a new one-way QPQ protocol in which the special way of classical post-processing of oblivious key ensures the security against the JM attack. Furthermore, it realizes perfect user privacy and lower complexity of communication.

  20. Bell Laboratories Book Acquisition, Accounting and Cataloging System (BELLTIP).

    ERIC Educational Resources Information Center

    Sipfle, William K.

    BELLTIP is an on-line library processing system concerned with book acquisitions, cataloging, and financial accounting for a newwork of 26 technical libraries. At its center is an interactively updated and queried set of files concerned with all items currently in process. Principal products include all purchase orders, claims, and cancellations;…

Top