Science.gov

Sample records for nematic lyotropic liquid

  1. Parity breaking in nematic tactoids of lyotropic chromonic liquid crystals

    NASA Astrophysics Data System (ADS)

    Tortora, Luana; Lavrentovich, Oleg D.

    2011-03-01

    In many colloidal systems, an orientationally ordered nematic phase emerges from the isotropic melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric non-chiral structure, even when the building units are chiral, as in the case of tobacco mosaic virus and fd virus. We report on parity breaking in the nematic tactoids formed in molecularly non-chiral polymer-crowded solutions of lyotropic chromonic liquid crystals. The effect is manifested by twist of the director and optical activity. Fluorescent confocal polarizing microscopy reveals that the tactoids nucleate at boundaries of cells. We explain the chirality induction by the effect of geometrical anchoring and by increase of the splay elastic constant in condensed nematic regions of crowded solutions. NSF DMR MWN 0710544.

  2. Two-Point Particle Tracking Microrheology of Nematic Lyotropic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Gomez-Gonzalez, Manuel; Del Alamo, Juan Carlos

    2016-11-01

    Biological and technological complex fluids that are usually available in microscopic amounts (e.g. liquid crystals and biopolymer networks) can exhibit microstructural order leading to nematic rheological behavior. However, current microrheological methods cannot measure their directional viscoelastic coefficients. We recently introduced a directional two-point particle-tracking microrheology (D2PTM) technique to determine these coefficients (1). Here, we experimentally validate D2PTM by applying this method to disodium cromoglycate (DSCG), a lyotropic chromonic nematic liquid crystal that has recently sparked attention due to its biocompatibility and other interesting properties. We chose DSCG because its directional viscosity coefficients have been previously characterized by dynamic light scattering and are available in the literature. Our results suggest that D2PTM measurements agree well with measurements from previous methods. Furthermore, this new technique provides additional information about the microrheological response of nematic fluids that was not accessible via previous methods.

  3. Cracks and Topological Defects in Lyotropic Nematic Gels

    NASA Astrophysics Data System (ADS)

    Islam, M. F.; Nobili, M.; Ye, Fangfu; Lubensky, T. C.; Yodh, A. G.

    2005-09-01

    We report on the effects of the coupling of nematic order and elasticity in anisotropic lyotropic gels consisting of large nematic domains of surfactant coated single wall carbon nanotubes embedded in a cross-linked N-isopropyl acrylamide polymer matrix. We observe the following striking features: (i) undulations and then cusping of the gel sidewalls, (ii) a nematic director field that evolves as the gel sidewalls deform, (iii) networks of surface cracks that are orthogonal to the nematic director field, and (iv) fissures at the sidewall cusps and associated topological defects that would not form in liquid nematics.

  4. Nanoparticle guests in lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Dölle, Sarah; Park, Ji Hyun; Schymura, Stefan; Jo, Hyeran; Scalia, Giusy; Lagerwall, Jan P. F.

    In this chapter we discuss the benefits, peculiarities and main challenges related to nanoparticle templating in lyotropic liquid crystals. We first give a brief bird's-eye view of the field, discussing different nanoparticles as well as different lyotropic hosts that have been explored, but then quickly focus on the dispersion of carbon nanotubes in surfactant-based lyotropic nematic phases. We discuss in some detail how the transfer of orientational order from liquid crystal host to nanoparticle guest can be verified and which degree of ordering can be expected, as well as the importance of choosing the right surfactant and its concentration for the stability of the nanoparticle suspension. We introduce a method for dispersing nanoparticles with an absolute minimum of stabilizing surfactant, based on dispersion below the Krafft temperature, and we discuss the peculiar phenomenon of filament formation in lyotropic nematic phases with a sufficient concentration of well-dispersed carbon nanotubes. Finally, we describe how the total surfactant concentration in micellar nematics can be greatly reduced by combining cat- and anionic surfactants, and we discuss how nanotubes can help in inducing the liquid crystal phase close to the isotropic-nematic boundary.

  5. Modification of the malus law for the torsional deformation of lyotropic nematics in magnetic field on the basis of statistical approach

    NASA Astrophysics Data System (ADS)

    Golovanov, A. V.; Shapovalov, V. I.

    2010-07-01

    A method based on the statistical approach is proposed to calculate the light intensity for the torsional deformation of lyotropic nematic liquid crystals at violated Mauguin adiabatic approximation. Theoretical dependences of the light intensity on the magnetic field strength are obtained for two limiting cases of lyotropic nematic anchoring with bearing surfaces: infinite and low anchoring energies.

  6. Nanostructuring lyotropic chromonic liquid crystals

    NASA Astrophysics Data System (ADS)

    Schneider, Tod L.

    Lyotropic Chromonic Liquid Crystals (LCLCs) are an interesting and little known family of liquid crystals. Although materials such as Disodium Cromoglycate have been studied in depth for their phase behavior for use as antiasthmatic drugs, practical applications had yet to emerge. The focus of this work was to provide new applications for LCLC materials. The three most important results are: the uniform alignment of dried LCLC films, a new type of Langmuir Blodgett molecular monolayer or stack of molecular monolayers with long-range in-plane orientational order, and the use of LCLCs as an amplifying medium of antibody-antigen binding for the purpose of biodetection. To uniformly align LCLC materials, a diblock copolymer additive was used to reduce or eliminate tiger-stripe defects in the films. Uniformly aligned LCLC films can be useful as polarizing, compensating, or alignment layers in liquid crystal displays. In-plane oriented molecular monolayers were created using the method electrostatic self assembled monolayers and allowed for interesting experiments such as imaging individual LCLC aggregates via Atomic Force Microscopy (AFM). Controlling the in-plane long-range ordering one monolayer at a time allows for the creation of novel integrated optical systems. Finally, LCLCs are biocompatible and can be used to detect specific antibody-antigen binding events through the formation of immune complexes. Once the immune complex becomes larger than a critical size (determined by the elastic and surface properties of the LCLC-immune complex), the LCLC becomes distorted around the complex and can be optically detected.

  7. Nematic liquid crystal bridges

    NASA Astrophysics Data System (ADS)

    Doss, Susannah; Ellis, Perry; Vallamkondu, Jayalakshmi; Danemiller, Edward; Vernon, Mark; Fernandez-Nieves, Alberto

    We study the effects of confining a nematic liquid crystal between two parallel glass plates with homeotropic boundary conditions for the director at all bounding surfaces. We find that the free surface of the nematic bridge is a surface of constant mean curvature. In addition, by changing the distance between the plates and the contact angle with the glass plates, we transition between loops and hedgehogs that can be either radial or hyperbolic.

  8. Lauric acid-induced formation of a lyotropic nematic phase of disk-shaped micelles.

    PubMed

    Colafemmina, Giuseppe; Recchia, Raffaella; Ferrante, Andrea S; Amin, Samiul; Palazzo, Gerardo

    2010-06-03

    Addition of small amounts of lauric acid (LA) to a micellar solution of sodium dodecyl sulfate (SDS, 11.5 wt %) and cocamidopropyl betaine (CAPB, 3 wt %) has a dramatic effect on the rheological properties and phase behavior of the system. The viscosity increases by more than 1 order of magnitude up to a weight ratio LA/SDS = 0.17 and decreases for further LA loading. The decrease in viscosity is associated with the formation of a birefringent liquid crystalline phase. The evolution of the system from isotropic micelles in the absence of LA to lyotropic liquid crystals up to a weight ratio LA/SDS = 0.30 was probed by a combination of (23)Na NMR quadrupolar splitting, measurements of water and surfactant self-diffusion coefficients via (1)H-PGSE-NMR, and rheology. The evolution of the water self-diffusion coefficients indicates that LA induced a dramatic increase in the anisotropy of disk-shaped micelles. Birefringent samples always showed a well developed (23)Na quadrupolar splitting with a line shape typical of monodomain samples. This suggests that the whole sample is easily oriented within the spectrometer electromagnet, as usually observed for nematic liquid crystals. Sample spinning first destroys the alignment (only a single peak is discernible in the (23)Na NMR spectrum). Then, upon prolonged spinning, the alignment develops again. This indicates that the system is composed by disklike micelles aligning themselves with their normal perpendicular to the magnetic field. On the other hand, the linear viscoelastic response close to the nematic transition shows features usually observed in wormlike micellar systems (e.g., nearly Maxwellian behavior). To reconciliate the rheological data and the NMR evidence of disklike micelles, the formation of columnar stacks of disklike micelles is proposed. The rheology of the isotropic phase can therefore be interpreted in terms of entanglements of "living columnar stacks" of disklike micelles, and the nematic phase observed

  9. Identification of nematic lymoesophases with discotic and cylindrical micelles in lyotropic amphiphilic systems

    SciTech Connect

    Kiirend, E. O. Chumakova, S. P.; Pehk, T. I.

    2007-02-15

    Nematic lyomesophases with discotic (N{sub D}) and cylindrical (N{sub C}) micelles in complex multicomponent lyotropic systems based on alkyltrimethylammonium bromide detergents have been identified by the {sup 1}H-{sup 2}H-, and {sup 13}C-NMR methods and polarizationoptical microscopy. The difference in the structures of the N{sub D} and N{sub C} nematic phases is especially pronounced in the {sup 13}C-NMR spectra. Addition of chiral dopants to the lyomixture facilitates formation of the Ch{sub D} and Ch{sub C} cholesteric phases. According to the {sup 13}C-NMR spectra, the micellar mobility in the cholesteric lyomesophases decreases in comparison with the nematic ones. The alignment of lyocholesterics under the action of an external magnetic field is found.

  10. Thermotropic and lyotropic behaviour of new liquid-crystalline materials with different hydrophilic groups: synthesis and mesomorphic properties

    PubMed Central

    Kašpar, Miroslav; Hamplová, Věra; Dawin, Ute; Giesselmann, Frank

    2013-01-01

    Summary Several new calamitic liquid-crystalline (LC) materials with flexible hydrophilic chains, namely either hydroxy groups or ethylene glycol units, or both types together, have been synthesized in order to look for new functional LC materials exhibiting both, thermotropic and lyotropic behaviour. Such materials are of high potential interest for challenging issues such as the self-organization of carbon nanotubes or various nanoparticles. Thermotropic mesomorphic properties have been studied by using polarizing optical microscopy, differential scanning calorimetry and X-ray scattering. Four of these nonchiral and chiral materials exhibit nematic and chiral nematic phases, respectively. For some molecular structures, smectic phases have also been detected. A contact sample of one of the prepared compounds with diethylene glycol clearly shows the lyotropic behaviour; namely a lamellar phase was observed. The relationship between the molecular structure and mesomorphic properties of these new LCs with hydrophilic chains is discussed. PMID:23504455

  11. Thermotropic and lyotropic behaviour of new liquid-crystalline materials with different hydrophilic groups: synthesis and mesomorphic properties.

    PubMed

    Bubnov, Alexej; Kašpar, Miroslav; Hamplová, Věra; Dawin, Ute; Giesselmann, Frank

    2013-01-01

    Several new calamitic liquid-crystalline (LC) materials with flexible hydrophilic chains, namely either hydroxy groups or ethylene glycol units, or both types together, have been synthesized in order to look for new functional LC materials exhibiting both, thermotropic and lyotropic behaviour. Such materials are of high potential interest for challenging issues such as the self-organization of carbon nanotubes or various nanoparticles. Thermotropic mesomorphic properties have been studied by using polarizing optical microscopy, differential scanning calorimetry and X-ray scattering. Four of these nonchiral and chiral materials exhibit nematic and chiral nematic phases, respectively. For some molecular structures, smectic phases have also been detected. A contact sample of one of the prepared compounds with diethylene glycol clearly shows the lyotropic behaviour; namely a lamellar phase was observed. The relationship between the molecular structure and mesomorphic properties of these new LCs with hydrophilic chains is discussed.

  12. Boundary Stability of a Nematic Liquid Bridge

    NASA Astrophysics Data System (ADS)

    Barnes, William; Santangelo, Chris

    2014-03-01

    We consider a nematic liquid crystal droplet in air confined between two parallel plates with homeotropic boundary conditions. The boundary conditions at the nematic-plate and nematic-air interfaces induce either a hedgehog or planar ring disclination within the nematic bridge, depending on the plate separation and bridge radius. We study the stability of the liquid crystal-air boundary of a nearly cylindrical nematic bridge by minimizing the Frank elastic energy.

  13. Spontaneous emergence of chirality in achiral lyotropic chromonic liquid crystals confined to cylinders

    PubMed Central

    Nayani, Karthik; Chang, Rui; Fu, Jinxin; Ellis, Perry W.; Fernandez-Nieves, Alberto; Park, Jung Ok; Srinivasarao, Mohan

    2015-01-01

    The presumed ground state of a nematic fluid confined in a cylindrical geometry with planar anchoring corresponds to that of an axial configuration, wherein the director, free of deformations, is along the long axis of the cylinder. However, upon confinement of lyotropic chromonic liquid crystals in cylindrical geometries, here we uncover a surprising ground state corresponding to a doubly twisted director configuration. The stability of this ground state, which involves significant director deformations, can be rationalized by the saddle-splay contribution to the free energy. We show that sufficient anisotropy in the elastic constants drives the transition from a deformation-free ground state to a doubly twisted structure, and results in spontaneous symmetry breaking with equal probability for either handedness. Enabled by the twist angle measurements of the spontaneous twist, we determine the saddle-splay elastic constant for chromonic liquid crystals for the first time. PMID:26287517

  14. Ionic-content dependence of viscoelasticity of the lyotropic chromonic liquid crystal sunset yellow.

    PubMed

    Zhou, Shuang; Cervenka, Adam J; Lavrentovich, Oleg D

    2014-10-01

    A lyotropic chromonic liquid crystal (LCLC) is an orientationally ordered system made by self-assembled aggregates of charged organic molecules in water, bound by weak noncovalent attractive forces and stabilized by electrostatic repulsions. We determine how the ionic content of the LCLC, namely, the presence of mono- and divalent salts and pH enhancing agent, alter the viscoelastic properties of the LCLC. Aqueous solutions of the dye sunset yellow with a uniaxial nematic order are used as an example. By applying a magnetic field to impose orientational deformations, we measure the splay K1, twist K2, and bend K3 elastic constants and rotation viscosity γ1 as a function of concentration of additives. The data indicate that the viscoelastic parameters are influenced by ionic content in dramatic and versatile ways. For example, the monovalent salt NaCl decreases K3 and K2 and increases γ1, while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals formed by covalently bound units of fixed length.

  15. Ionic-content dependence of viscoelasticity of the lyotropic chromonic liquid crystal sunset yellow

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang; Cervenka, Adam J.; Lavrentovich, Oleg D.

    2014-10-01

    A lyotropic chromonic liquid crystal (LCLC) is an orientationally ordered system made by self-assembled aggregates of charged organic molecules in water, bound by weak noncovalent attractive forces and stabilized by electrostatic repulsions. We determine how the ionic content of the LCLC, namely, the presence of mono- and divalent salts and p H enhancing agent, alter the viscoelastic properties of the LCLC. Aqueous solutions of the dye sunset yellow with a uniaxial nematic order are used as an example. By applying a magnetic field to impose orientational deformations, we measure the splay K1, twist K2, and bend K3 elastic constants and rotation viscosity γ1 as a function of concentration of additives. The data indicate that the viscoelastic parameters are influenced by ionic content in dramatic and versatile ways. For example, the monovalent salt NaCl decreases K3 and K2 and increases γ1, while an elevated p H decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals formed by covalently bound units of fixed length.

  16. Solid microparticles in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Muševič, Igor

    A brief historic overview of colloidal experiments in the 1990's is given in the introduction. These experiments have later inspired research on nematic colloids, after the technique of laser tweezers manipulation of particles was introduced to this field. Basic topological properties of colloidal inclusions in the nematic liquid crystals are discussed and the nematic-mediated forces between dipolar and quadrupolar colloidal particles in bulk nematic are explained. Structural and topological properties of 2D and 3D colloidal crystals and superstructures made of colloidal particles of different size and symmetry in bulk nematic liquid crystal are described. Laser-tweezer manipulation and rewiring of topological defect loops around colloidal particles is introduced. This results in the colloidal entanglement, as well as knotting and linking of defect loops of the order parameter field. Shape and size-dependent colloidal interactions in the nematic liquid crystals are reviewed. The chapter concludes with the discussion of bulk chiral nematic and blue phase colloids.

  17. Lyotropic chromonic liquid crystals: From viscoelastic properties to living liquid crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang

    Lyotropic chromonic liquid crystal (LCLC) represents a broad range of molecules, from organic dyes and drugs to DNA, that self-assemble into linear aggregates in water through face-to-face stacking. These linear aggregates of high aspect ratio are capable of orientational order, forming, for example nematic phase. Since the microscopic properties (such as length) of the chromonic aggregates are results of subtle balance between energy and entropy, the macroscopic viscoelastic properties of the nematic media are sensitive to change of external factors. In the first part of this thesis, by using dynamic light scattering and magnetic Frederiks transition techniques, we study the Frank elastic moduli and viscosity coefficients of LCLC disodium cromoglycate (DSCG) and sunset yellow (SSY) as functions of concentration c , temperature T and ionic contents. The elastic moduli of splay (K1) and bend (K3) are in the order of 10pN, about 10 times larger than the twist modulus (K2). The splay modulus K1 and the ratio K1/K3 both increase substantially as T decreases or c increases, which we attribute to the elongation of linear aggregates at lower T or higher c . The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger, changing exponentially with T . Additional ionic additives into the system influence the viscoelastic properties of these systems in a dramatic and versatile way. For example, monovalent salt NaCl decreases bend modulus K3 and increases twist viscosity, while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals form by covalently bound units of fixed length. The second part of the thesis studies a new active bio-mechanical hybrid system called living liquid crystal

  18. Real-time microbe detection based on director distortions around growing immune complexes in lyotropic chromonic liquid crystals.

    PubMed

    Shiyanovskii, S V; Schneider, T; Smalyukh, I I; Ishikawa, T; Niehaus, G D; Doane, K J; Woolverton, C J; Lavrentovich, O D

    2005-02-01

    We describe director distortions in the nematic liquid crystal (LC) caused by a spherical particle with tangential surface orientation of the director and show that light transmittance through the distorted region is a steep function of the particle's size. The effect allows us to propose a real-time microbial sensor based on a nontoxic lyotropic chromonic LC (LCLC) that detects and amplifies the presence of immune complexes. A cassette is filled with LCLC, antibody, and antigen-bearing particles. Small and isolated particles cause no macroscopic distortions of the LCLC. Upon antibody-antigen binding, the growing immune complexes distort the director and cause detectable optical transmittance between crossed polarizers.

  19. Lyotropic liquid crystal directed synthesis of nanostructured materials

    PubMed Central

    Wang, Cuiqing; Chen, Dairong; Jiao, Xiuling

    2009-01-01

    This review introduces and summarizes lyotropic liquid crystal (LLC) directed syntheses of nanostructured materials consisting of porous nanostructures and zero-dimensional (0-D), one-dimensional (1-D) and two-dimensional (2-D) nanostructures. After a brief introduction to the liquid crystals, the LLCs used to prepare mesoporous materials are discussed; in particular, recent advances in controlling mesostructures are summarized. The LLC templates directing the syntheses of nanoparticles, nanorods, nanowires and nanoplates are also presented. Finally, future development in this field is discussed. PMID:27877273

  20. Nematic-nematic demixing in polydisperse thermotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sollich, Peter

    2005-06-01

    We consider the effects of polydispersity on isotropic-nematic phase equilibria in thermotropic liquid crystals, using a Maier-Saupe theory [Z. Naturforsch. A 13A, 564 (1958)] with factorized interactions. A sufficient spread (≈50%) in the interaction strengths of the particles leads to phase separation into two or more nematic phases, which can in addition coexist with an isotropic phase. The isotropic-nematic coexistence region widens dramatically as polydispersity is increased, leading to reentrant isotropic-nematic phase separation in some regions of the phase diagram. We show that similar phenomena will occur also for nonfactorized interactions as long as the interaction strength between any two particle species is lower than the mean of the intraspecies interactions.

  1. Spreading of Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Poulard, Christophe

    2004-11-01

    A cyanobiphenyl liquid crystal drop in the nematic phase should spread on a silicon wafer. In fact, the drop hardly spreads due to the strong antagonist anchoring on the substrate and at the free surface. In a humidity controlled box at high RH and on a hydrophilic substrate, the friction is considerably reduced and the drop spreads easily. A well defined instability develops at the contact line, with two characteristic wavelengths, associated with a modulation of the drop thickness. A theoretical analysis, made by M. Ben Amar and L. Cummings, allows to understand one of the wavelength by an elastic approach and gives a wavelength proportionnal to the local drop's thickness.

  2. Electro-osmosis in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Tovkach, O. M.; Calderer, M. Carme; Golovaty, Dmitry; Lavrentovich, Oleg; Walkington, Noel J.

    2016-07-01

    We derive a mathematical model of a nematic electrolyte based on a variational formulation of nematodynamics. We verify the model by comparing its predictions to the results of the experiments on the substrate-controlled liquid-crystal-enabled electrokinetics. In the experiments, a nematic liquid crystal confined to a thin planar cell with surface-patterned anchoring conditions exhibits electro-osmotic flows along the "guiding rails" imposed by the spatially varying director. Extending our previous work, we consider a general setup which incorporates dielectric anisotropy of the liquid-crystalline matrix and the full set of nematic viscosities.

  3. Electro-osmosis in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Tovkach, O. M.; Carme Calderer, M.; Golovaty, Dmitry; Lavrentovich, Oleg; Walkington, Noel J.

    2016-04-01

    We derive a mathematical model of a nematic electrolyte based on a variational formulation of nematodynamics. Extending our previous work, we consider a general setup which incorporates dielectric anisotropy of the liquid-crystalline matrix and the full set of nematic viscosities. We verify the model by comparing its predictions to the results of the experiments on the substrate-controlled liquid-crystal-enabled electrokinetics. In the experiments a nematic liquid crystal confined to a thin planar cell with surface-patterned anchoring conditions exhibit electro-osmotic flows along the "guiding rails" imposed by the spatially varying director.

  4. Rarely Observed Phase Transitions in a Novel Lyotropic Liquid Crystal System

    NASA Astrophysics Data System (ADS)

    Katsaras, J.; Donaberger, R. L.; Swainson, I. P.; Tennant, D. C.; Tun, Z.; Vold, R. R.; Prosser, R. S.

    1997-02-01

    This Letter presents neutron diffraction data from a novel, biologically relevant, lyotropic membrane system which is highly alignable ( <=1.0° mosaic) in a magnetic field and gives rise to a number of well-defined Bragg reflections. The system, composed of two different phosphorylcholine lipids, undergoes a rare nematic --> smectic phase transition upon doping the system with paramagnetic ions (e.g., 2.7 wt % Tm3+). In addition, the isotropic phase occurs at a lower temperature than the smectic phase, in contrast to other lyotropic systems and in contrast to the phase behavior predicted by the McMillan model [Phys. Rev. A 4, 1238 (1971)] of smectic ordering.

  5. Defect structures mediate the isotropic-nematic transition in strongly confined liquid crystals.

    PubMed

    Gârlea, Ioana C; Mulder, Bela M

    2015-01-21

    Using Monte Carlo simulations, we study rod-like lyotropic liquid crystals confined to a square slab-like geometry with lateral dimensions comparable to the length of the particles. We observe that this system develops linear defect structures upon entering the planar nematic phase. These defect structures flank a lens-shaped nematic region oriented along a diagonal of the square box. We interpret these structures as a compromise between the 2-fold order of the bulk nematic phase and the 4-fold order imposed by the lateral boundaries. A simple Onsager-type theory that effectively implements these competing tendencies is used to model the phase behavior in the center of the box and shows that the free-energy cost of forming the defect structures strongly offsets the transition-inducing effects of both the transverse and lateral confinement.

  6. Interaction between lyotropic chromonic liquid crystals and polymers

    NASA Astrophysics Data System (ADS)

    Yao, Xuxia; Park, Jung; Srinivasarao, Mohan

    2010-03-01

    Lyotropic chromonic liquid crystals (LCLCs) consist of various dyes, drugs, etc., so their importance is self-evident. The interaction of chromonic molecules and polymers is involved in their real applications, such as the dyeing process of fibers, textiles and food, and the functionalization of drugs in vivo. In our research, polymer dispersed LCLC droplets and polymer coated LCLC cells have been fabricated. Effect of interaction was observed by optical texture of LCLCs, as the different polymers induce different director configuration of LCLCs. A textile dye-Benzopurpurine 4B, food dye-Sunset Yellow FCF, and drug-Disodium Cromoglycate mixed with water soluble polymers, proteins and textile polymers have been all studied and compared.

  7. Chirality Amplification in Tactoids of Lyotropic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui; Lavrentovich, Oleg

    2014-03-01

    We demonstrate an effective chirality amplification based on the long-range forces, extending over the scales of tens of micrometers, much larger than the single molecule (nanometer) scale. The mechanism is rooted in the long-range elastic nature of orientational order in lyotropic chromonic liquid crystals (LCLCs) that represent water solutions of achiral disc-like molecules. Minute quantities of chiral molecules such as amino acid L-alanine and limonene added to the droplets of LCLC lead to chiral amplification characterized by an increase of optical activity by a factor of 103 - 104. This effect allows one to discriminate and detect the absolute configuration of chiral molecules in an aqueous system, thus opening new possibilities in biosensing and other biological applications.

  8. Dispersive shock waves in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Smyth, Noel F.

    2016-10-01

    The propagation of coherent light with an initial step intensity profile in a nematic liquid crystal is studied using modulation theory. The propagation of light in a nematic liquid crystal is governed by a coupled system consisting of a nonlinear Schrödinger equation for the light beam and an elliptic equation for the medium response. In general, the intensity step breaks up into a dispersive shock wave, or undular bore, and an expansion fan. In the experimental parameter regime for which the nematic response is highly nonlocal, this nematic bore is found to differ substantially from the standard defocusing nonlinear Schrödinger equation structure due to the effect of the nonlocality of the nematic medium. It is found that the undular bore is of Korteweg-de Vries equation-type, consisting of bright waves, rather than of nonlinear Schrödinger equation-type, consisting of dark waves. In addition, ahead of this Korteweg-de Vries bore there can be a uniform wavetrain with a short front which brings the solution down to the initial level ahead. It is found that this uniform wavetrain does not exist if the initial jump is below a critical value. Analytical solutions for the various parts of the nematic bore are found, with emphasis on the role of the nonlocality of the nematic medium in shaping this structure. Excellent agreement between full numerical solutions of the governing nematicon equations and these analytical solutions is found.

  9. Planar Anchoring of Achiral Nematic Liquid Crystals in Capillaries -- with a Twist

    NASA Astrophysics Data System (ADS)

    Davidson, Zoey S.; Jeong, Joonwoo; Kang, Louis; Collings, Peter J.; Lubensky, Tom C.; Yodh, A. G.

    2015-03-01

    In the common three-term Frank free energy of a nematic liquid crystal, the ground state configuration will have no deformations and all nematic directors will be parallel. However, certain confining geometries can impose significant deformations on the ground state, even if a zero-deformation configuration can be drawn that satisfies all boundary conditions. By solving the Euler-Lagrange problem of the Frank free energy equation, including the saddle-splay term, with cylindrical confinement and degenerate planar anchoring, we find conditions for a highly deformed ground state configuration that has a double twist like structure. We explore these effects experimentally with both thermotropic and lyotropic liquid crystal materials, finding good agreement with the theoretically predicted configuration. We also observe a rich phenomenology of defect structures in the liquid crystal samples. Acknowledgement: We gratefully acknowledge financial support from the National Science Foundation through NSF DMR 1205463, NSF DMR 1104707, and MRSEC DMR 1120901.

  10. Multifunctional Optical Thin Films Fabricated by the Photopolymerization of Uniaxially Oriented Lyotropic Liquid Crystal Monomers for Electro-Optical Devices

    PubMed Central

    Im, Pureun; Choi, Yu-Jin; Yoon, Won-Jin; Kang, Dong-Gue; Park, Minwook; Kim, Dae-Yoon; Lee, Cheul-Ro; Yang, Seungbin; Lee, Ji-Hoon; Jeong, Kwang-Un

    2016-01-01

    A multifunctional optical thin film (MOTF) is fabricated by coating the newly synthesized perylene-based reactive mesogen (PBRM) and stabilized by the subsequent photopolymerization. Based on the spectroscopic results combined with morphological observations, it is found that nematic liquid crystal (NLC) is aligned parallel to the molecular long axis of PBRM not only due to the long-range physical anchoring effect but also due to the short-range molecular physical interactions between alignment layer and NLC molecules. From the electro-optical properties of LC test cells fabricated with the PBRM MOTF, it is clearly demonstrated that the PBRM MOTF can work as the planar LC alignment layer as well as the in-cell coatable polarizer. The coatable PBRM MOTF from lyotropic chromonic reactive mesogens can pave a new way for the flexible optoelectronic devices. PMID:27812042

  11. Multifunctional Optical Thin Films Fabricated by the Photopolymerization of Uniaxially Oriented Lyotropic Liquid Crystal Monomers for Electro-Optical Devices

    NASA Astrophysics Data System (ADS)

    Im, Pureun; Choi, Yu-Jin; Yoon, Won-Jin; Kang, Dong-Gue; Park, Minwook; Kim, Dae-Yoon; Lee, Cheul-Ro; Yang, Seungbin; Lee, Ji-Hoon; Jeong, Kwang-Un

    2016-11-01

    A multifunctional optical thin film (MOTF) is fabricated by coating the newly synthesized perylene-based reactive mesogen (PBRM) and stabilized by the subsequent photopolymerization. Based on the spectroscopic results combined with morphological observations, it is found that nematic liquid crystal (NLC) is aligned parallel to the molecular long axis of PBRM not only due to the long-range physical anchoring effect but also due to the short-range molecular physical interactions between alignment layer and NLC molecules. From the electro-optical properties of LC test cells fabricated with the PBRM MOTF, it is clearly demonstrated that the PBRM MOTF can work as the planar LC alignment layer as well as the in-cell coatable polarizer. The coatable PBRM MOTF from lyotropic chromonic reactive mesogens can pave a new way for the flexible optoelectronic devices.

  12. Stochastic rotation dynamics for nematic liquid crystals

    SciTech Connect

    Lee, Kuang-Wu Mazza, Marco G.

    2015-04-28

    We introduce a new mesoscopic model for nematic liquid crystals (LCs). We extend the particle-based stochastic rotation dynamics method, which reproduces the Navier-Stokes equation, to anisotropic fluids by including a simplified Ericksen-Leslie formulation of nematodynamics. We verify the applicability of this hybrid model by studying the equilibrium isotropic-nematic phase transition and nonequilibrium problems, such as the dynamics of topological defects and the rheology of sheared LCs. Our simulation results show that this hybrid model captures many essential aspects of LC physics at the mesoscopic scale, while preserving microscopic thermal fluctuations.

  13. Secondary and lyotropic liquid crystal membranes for improved aqueous separations

    NASA Astrophysics Data System (ADS)

    Nemade, Parag Ramesh

    An effective membrane separation process should have high flux (i.e., volume filtered per unit membrane surface area per unit time) and selectivity (i.e., passage of the desired species and rejection of undesired species). This dissertation examined two approaches, secondary membranes and lyotropic liquid crystal membranes, for improving flux and selectivity in aqueous liquid separations. The first part of my work emphasizes the use of pre-deposited secondary membranes and backflushing for controlling membrane fouling in microfiltration and ultrafiltration of biological mixtures. Use of secondary membranes increased the permeate flux in microfiltration by several fold. Protein transmission is also enhanced due to the presence of the secondary membrane, and the amount of protein recovered is more than twice that obtained during filtration of protein-only solutions under otherwise identical conditions. In ultrafiltration, the flux enhancement due to secondary membranes is 50%, or less. For the second part of my research, I developed and evaluated polymerized lyotropic liquid crystal (LLC) thin-film composite membranes. LLC assemblies provide an opportunity to make nanoporous polymer membranes with precise control over chemical and structural features on the nanometer scale, which is currently lacking in commercial reverse osmosis (RO) and nanofiltration (NF) membranes available today. These LLC composite membranes are prepared by photopolymerization of solution-cast films of LLC monomer on an ultrafiltration support membrane. These LLC membranes appeared to exhibit almost linearly increasing ionic rejection based on ionic diameter. LLC monomer was modified to achieve a 15% reduction in channel diameter, through the use of a larger multivalent Eu3+ cation as the carboxylate counterion. However, the monomers synthesized required use of solvents such as tetrahydrofuran, which resulted in the dissolution and damage of the support membranes used. Therefore, this direction

  14. PH-Induced Nanosegregation of Ritonavir to Lyotropic Liquid Crystal of Higher Solubility Than Crystalline Polymorphs

    SciTech Connect

    Rodriguez-Spong, B.; Acciacca, A.; Fleisher, D.; Rodriguez-Hornedo, N.

    2009-05-27

    Birefringent spherical vesicles of ritonavir (RTV) are formed by increasing the pH of aqueous solutions from 1 to 3 or to 7 and by addition of water to ethanol solutions at room temperature. Increasing the pH creates supersaturation levels of 30--400. Upon this change in pH, the solutions become translucent, implying that some kind of RTV assembly was formed. Small spherical vesicles of narrow size distribution are detectable only after a few hours by optical microscopy. The vesicles show similar X-ray diffraction patterns and differential scanning calorimetry (DSC) behavior to amorphous RTV prepared by melt-quenching crystalline RTV. Examination by polarized optical microscopy suggests that these are lyotropic liquid crystalline (LLC) assemblies. Small-angle X-ray scattering and synchrotron X-ray diffraction further support the presence of orientational order that is associated with a nematic structure. RTV self-organizes into various phases as a result of the supersaturation created in aqueous solutions. The LLC vesicles do not fuse but slowly transform to the polymorphs of RTV (in days), Form I and finally Form II. Amorphous RTV in aqueous suspension also undergoes a transformation to a mesophase of similar morphology. Transformation pathways are consistent with measured dissolution rates and solubilities: amorphous > LLC >> Form I > Form II. The dissolution and solubility of LLC is slightly lower than that of the amorphous phase and about 20 times higher than that of Form II. RTV also self-assembles at the air/water interface as indicated by the decrease in surface tension of aqueous solutions. This behavior is similar to that of amphiphilic molecules that induce LLC formation.

  15. Continuous Rotation of Achiral Nematic Liquid Crystal Droplets Driven by Heat Flux

    NASA Astrophysics Data System (ADS)

    Ignés-Mullol, Jordi; Poy, Guilhem; Oswald, Patrick

    2016-07-01

    Suspended droplets of cholesteric (chiral nematic) liquid crystals spontaneously rotate in the presence of a heat flux due to a temperature gradient, a phenomenon known as the Lehmann effect. So far, it is not clear whether this effect is due to the chirality of the phase and the molecules or only to the chirality of the director field. Here, we report the continuous rotation in a temperature gradient of nematic droplets of a lyotropic chromonic liquid crystal featuring a twisted bipolar configuration. The achiral nature of the molecular components leads to a random handedness of the spontaneous twist, resulting in the coexistence of droplets rotating in the two senses, with speeds proportional to the temperature gradient and inversely proportional to the droplet radius. This result shows that a macroscopic twist of the director field is sufficient to induce a rotation of the droplets, and that the phase and the molecules do not need to be chiral. This suggests that one can also explain the Lehmann rotation in cholesteric liquid crystals without introducing the Leslie thermomechanical coupling—only present in chiral mesophases. An explanation based on the Akopyan and Zeldovich theory of thermomechanical effects in nematics is proposed and discussed.

  16. Charge transfer reactions in nematic liquid crystals

    SciTech Connect

    Wiederrecht, G.P.; Wasielewski, M.R. |; Galili, T.; Levanon, H.

    1998-07-01

    Ultrafast transient absorption studies of intramolecular photoinduced charge separation and thermal charge recombination were carried out on a molecule consisting of a 4-(N-pyrrolidino)naphthalene-1,8-imide donor (PNI) covalently attached to a pyromellitimide acceptor (PI) dissolved in the liquid crystal 4{prime}-(n-pentyl)-4-cyanobiphenyl (5CB). The temperature dependencies of the charge separation and recombination rates were obtained at temperatures above the nematic-isotropic phase transition of 5CB, where ordered microdomains exist and scattering of visible light by these domains is absent. The authors show that excited state charge separation is dominated by molecular reorientation of 5CB perpendicular to the director within the liquid crystal microdomains. They also show that charge recombination is adiabatic and is controlled by the comparatively slow collective reorientation of the liquid crystal microdomains relative to the orientation of PNI{sup +}-PI{sup {minus}}. They also report the results of time resolved electron paramagnetic resonance (TREPR) studies of photoinduced charge separation in a series of supramolecular compounds dissolved in oriented liquid crystal solvents. These studies permit the determination of the radical pair energy levels as the solvent reorganization energy increases from the low temperature crystalline phase, through the soft glass phase, to the nematic phase of the liquid crystal.

  17. Free surface dynamics of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Cummings, Linda; Kondic, Lou; Lam, Michael; Lin, Te-Sheng

    2014-11-01

    Spreading thin films of nematic liquid crystal (NLC) are known to behave very differently to those of isotropic fluids. The polar interactions of the rod-like molecules with each other, and the interactions with the underlying substrate, can lead to intricate patterns and instabilities that are not yet fully understood. The physics of a system even as simple as a film of NLC spreading slowly over a surface (inclined or horizontal) are remarkably complex: the outcome depends strongly on the details of the NLC's behavior at both the substrate and the free surface (so-called ``anchoring'' effects). We will present a dynamic flow model that takes careful account of such nematic-substrate and nematic-free surface interactions. We will present model simulations for several different flow scenarios that indicate the variety of behavior that can emerge. Spreading over a horizontal substrate may exhibit a range of unstable behavior. Flow down an incline also exhibits intriguing instabilities: in addition to the usual transverse fingering, instabilities can be manifested behind the flowing front in a manner reminiscent of Newtonian flow down an inverted substrate. NSF DMS-1211713.

  18. Lyotropic liquid crystalline L3 phase silicated nanoporous monolithic composites and their production

    DOEpatents

    McGrath, Kathryn M.; Dabbs, Daniel M.; Aksay, Ilhan A.; Gruner, Sol M.

    2003-10-28

    A mesoporous ceramic material is provided having a pore size diameter in the range of about 10-100 nanometers produced by templating with a ceramic precursor a lyotropic liquid crystalline L.sub.3 phase consisting of a three-dimensional, random, nonperiodic network packing of a multiple connected continuous membrane. A preferred process for producing the inesoporous ceramic material includes producing a template of a lyotropic liquid crystalline L.sub.3 phase by mixing a surfactant, a co-surfactant and hydrochloric acid, coating the template with an inorganic ceramic precursor by adding to the L.sub.3 phase tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS) and then converting the coated template to a ceramic by removing any remaining liquids.

  19. Dynamics of Active Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    DeCamp, Stephen J.

    liquid crystal by assembling microtubule bundles into a quasi-2D film confined to a large, flat oil-water interface. Internal stresses generated by kinesin motors drive the system far from equilibrium which precludes a uniformly aligned nematic ground state through the continuous creation and annihilation of +/-1/2 motile defects. First, we demonstrate that the nematic is extensile by observing the deformation of a photobleached spot which undergoes extension along the nematic director and contraction perpendicular to the director. We map the experimentally tunable parameter, ATP concentration, to the intrinsic activity of the sample measured by the characteristic time of the contractile dynamics. Then, we characterize the flow of individual microtubules by measuring their relative velocity within the nematic and find a flow field consistent with a force dipole but where the magnitude of the extension and contraction velocity are proportional to the separation between the filaments. The extensile and contractile flow velocities can be tuned by the ATP concentration and can be as large as 6 mum/s. Then we spatially map microtubule concentration, alignment, and flow near topological defect cores. We test a theory which predicts that flows are directly proportional to the local alignment of the nematic and find our results inconsistent with that theory. Finally, we measure large scale velocity and vorticity distributions as well as vortex area distributions and find agreement with other recent theoretical predictions. Next, we turn our attention to the complex behavior of defects in the active nematic. Using defect tracking algorithms developed by Gabriel S. Redner, we measure the +/-1/2 defect velocity and lifetime distributions as well as MSD and average defect density. We find that average velocities, lifetimes, and densities are tunable by varying the ATP concentration. The MSDs reveal that motile +1/2 defects stream ballistically through the sample (up to 15 mum

  20. Isotropization of nematic liquid crystals by TMDSC

    SciTech Connect

    Chen, Wei; Dadmun, M.; Zhang, Ge; Boller, A.; Wunderlich, B. |

    1997-12-01

    Temperature-modulated differential scanning calorimetry (TMDSC) and traditional DSC are used to study the transition between the nematic liquid crystalline state and the isotropic liquid for two small molecules [4,4{prime}-azoxyanisole and N,N`-bis(4-n-octyloxybenzal)-1,4-phenylenediamine] and one macromolecule (4,4{prime}-dihydroxy-{alpha}-methylstilbene copolymerized with a 1:1 molar mixture of 1,7-dibromoheptane and 1,9-dibromononane). The DSC measurements with 4,4{prime}-azoxyanisole were used for temperature calibration with varying heating and cooling rates. Quasi-isothermal TMDSC with small temperature amplitude and standard TMDSC with underlying heating and cooling rates were utilized to analyze the breadth of the transitions. It could be verified that the isotropization transition of a nematic liquid crystal is, indeed, reversible for all three molecules. The nature of the transition changes, however, from relatively sharp, for small, rigid molecules, to about three kelvins wide for the small molecule with flexible ends, to as broad as 20 K for the macromolecule. It was also demonstrated that quantitative heats of fusion of sharp transitions can be extracted from TMDSC, but only from the time-domain heat-flow signal.

  1. Selective Sequence for the Peptide-Triggered Phase Transition of Lyotropic Liquid-Crystalline Structures.

    PubMed

    Liu, Qingtao; Dong, Yao-Da; Boyd, Ben J

    2016-05-24

    A novel concept of using mixed lipids to construct selective peptide-sequence-sensing lyotropic liquid-crystalline (LLC) dispersion systems was investigated. The LLC systems were constructed using a mixture of phytantriol, a lipid that forms lyotropic liquid-crystalline phases, and a novel synthesized peptide-lipid (peplipid) for sensing a target peptide with the RARAR sequence. The internal structure of the dispersed LLC particles was converted from the lamellar structure (liposomes) to the inverse bicontinuous cubic phase (cubosomes) in the presence of the target peptide. The addition of common human proteins did not induce any structural change, indicating a high selectivity of interaction with the target peptide. The concept has potential for the design of targeted controlled release drug delivery agents.

  2. Particles and curvatures in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Serra, Francesca; Luo, Yimin; Yang, Shu; Kamien, Randall D.; Stebe, Kathleen J.

    Elastic interactions in anisotropic fluids can be harnessed to direct particle interactions. A strategy to smoothly manipulate the director field in nematic liquid crystals is to vary the topography of the bounding surfaces. A rugged landscape with peaks and valleys create local deformations of the director field which can interact with particles in solution. We study this complex interaction in two different settings. The first consists of an array of shallow pores in a poly-dimethyl-siloxane (PDMS) membrane, whose curvature can be tuned either by swelling the PDMS membrane or by mechanical stretching. The second is a set of grooves with wavy walls, fabricated by photolithography, with various parameters of curvature and shapes. In this contexts we study how the motion of colloidal particles in nematic liquid crystals can be influenced by their interaction with the peaks and valleys of the bottom substrate or of the side walls. Particles with different associated topological defects (hedgehogs or Saturn rings) behave differently as they interact with the topographical features, favoring the docking on peaks or valleys. These experimental systems are also ideal to study the ``lock and key'' mechanism of particles in holes and to investigate a possible route for particle sorting.

  3. Role of Molecular Structure on X-ray Diffraction in Thermotropic Uniaxial and Biaxial Nematic Liquid Crystal Phases

    SciTech Connect

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena; Kumar, Satyendra

    2009-08-27

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution function is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.

  4. Chromonic liquid crystalline nematic phase exhibited in binary mixture of two liquid crystals

    SciTech Connect

    Govindaiah, T. N. Sreepad, H. R.; Sridhar, K. N.; Sridhara, G. R.; Nagaraja, N.

    2015-06-24

    A binary mixture of abietic acid and orthophosphoric acid (H{sub 3}PO{sub 4}) exhibits co-existence of biphasic region of Nematic+Isotropic (N+I), lyotropic Nematic (ND) and Smectic-G (SmG) phases. The mixture exhibits N+I, N and SmG phases at different concentrations and at different temperatures. Mixtures with all concentrations of abietic acid exhibit I→N+I→N→SmG phases sequentially when the specimen is cooled from its isotropic melt. These phases have been characterized by using differential scanning calorimetric, X-ray diffraction, and optical texture studies.

  5. pH-responsive lyotropic liquid crystals for the preparation of pure cubic zirconia nanoparticles

    NASA Astrophysics Data System (ADS)

    He, Wei Yan; Liu, Jin Rong; He, Zhang; Cao, Zhen Zhu; Li, Cai Hong; Gao, Yan Fang

    2016-07-01

    We present a lyotropic liquid crystal system consisting of SDS/Triton X-100/water at 25 °C. This system is respond to pH variations with a phase switch. When pH is altered from alkaline (pH 13) to acidic (pH 2) conditions, phase change occurs from a bicontinuous hexagonal phase to a partially hexagonal phase until it disappears. The hexagonal phase under alkaline conditions is stable. Thus, this system is an ideal candidate for the preparation of pure cubic ZrO2 nanoparticles. XRD results confirm that the as-synthesized powder is composed of pure cubic ZrO2. These nanoparticles also exhibit a thermal stability of up to 800 °C. The size and morphological characteristics of the nanoparticles are greatly affected by ZrOCl2 concentration. The mechanism of zirconia nanoparticle synthesis in a lyotropic hexagonal phase was proposed.

  6. Domed Silica Microcylinders Coated with Oleophilic Polypeptides and Their Behavior in Lyotropic Cholesteric Liquid Crystals of the Same Polypeptide.

    PubMed

    Rosu, Cornelia; Jacobeen, Shane; Park, Katherine; Reichmanis, Elsa; Yunker, Peter; Russo, Paul S

    2016-12-13

    Liquid crystals can organize dispersed particles into useful and exotic structures. In the case of lyotropic cholesteric polypeptide liquid crystals, polypeptide-coated particles are appealing because the surface chemistry matches that of the polymeric mesogen, which permits a tighter focus on factors such as extended particle shape. The colloidal particles developed here consist of a magnetic and fluorescent cylindrically symmetric silica core with one rounded, almost hemispherical end. Functionalized with helical poly(γ-stearyl-l-glutamate) (PSLG), the particles were dispersed at different concentrations in cholesteric liquid crystals (ChLC) of the same polymer in tetrahydrofuran (THF). Defects introduced by the particles to the director field of the bulk PSLG/THF host led to a variety of phases. In fresh mixtures, the cholesteric mesophase of the PSLG matrix was distorted, as reflected in the absence of the characteristic fingerprint pattern. Over time, the fingerprint pattern returned, more quickly when the concentration of the PSLG-coated particles was low. At low particle concentration the particles were "guided" by the PSLG liquid crystal to organize into patterns similar to that of the re-formed bulk chiral nematic phase. When their concentration increased, the well-dispersed PSLG-coated particles seemed to map onto the distortions in the bulk host's local director field. The particles located near the glass vial-ChLC interfaces were stacked lengthwise into architectures with apparent two-dimensional hexagonal symmetry. The size of these "crystalline" structures increased with particle concentration. They displayed remarkable stability toward an external magnetic field; hydrophobic interactions between the PSLG polymers in the shell and those in the bulk LC matrix may be responsible. The results show that bio-inspired LCs can assemble suitable colloidal particles into soft crystalline structures.

  7. Laser damage resistant nematic liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Raszewski, Z.; Piecek, W.; Jaroszewicz, L.; Soms, L.; Marczak, J.; Nowinowski-Kruszelnicki, E.; Perkowski, P.; Kedzierski, J.; Miszczyk, E.; Olifierczuk, M.; Morawiak, P.; Mazur, R.

    2013-08-01

    There exists a problem in diagnostics of a dense plasma (so-called Thomson diagnostics). For this purpose, the plasma is illuminated by series of high energy laser pulses. Such pulses are generated by several independent lasers operating sequentially, and these pulses are to be directed along an exactly the same optical path. In this case, the energy of each separate pulse is as large as 3 J, so it is impossible to generate a burst of such pulses by a single laser. In this situation, several independent lasers have to be used. To form optical path with λ = 1.064 μm and absolute value of the energy of laser pulse through of 3 J, a special refractive index matched twisted Nematic Liquid Crystal Cell (NLCC) of type LCNP2 with switching on time τON smaller than 5 μs might be applied. High laser damage resistance of NLCC and short τON can be fulfilled by preparation of liquid crystal cells with Liquid Crystal Mixture (LCM), well tuned to twisted nematic electro-optical effect, and well tuned all optical interfaces (Air - Antireflection - Quartz Plate - Electrode - Blocking Film - Aligning Layer - LCM - Aligning Layer - Blocking Film - Electrode - Quartz Plate - Antireflection - Air). In such LCNP2 cell, the transmission is higher than 97% at λ = 1.064 μm, as it is presented by Gooch and Tarry [J. Phys. D: Appl. Phys. 8, 1575 (1975)]. The safe laser density energy is about 0.6 J/cm2 for a train of laser pulses (λ = 1.064 μm, pulse duration 10 ns FWHM, pulse repetition rate 100 pps, train duration 10 s), so the area of liquid crystal cell tolerating 3 J through it shall be as large as 5 cm2. Due to the presence of two blocking film layers between electrodes, LCNP2 can be driven by high voltages. Switching on time smaller than τON = 5 μs was obtained under 200 V switching voltage.

  8. An improved directional growth apparatus for liquid crystals: applications to thermotropic and lyotropic systems

    NASA Astrophysics Data System (ADS)

    Oswald, P.; Moulin, M.; Metz, P.; Géminard, J. C.; Sotta, P.; Sallen, L.

    1993-09-01

    We have built a directional growth apparatus adapted for the study of thermotropic or lyotropic liquid crystals. This cell allows us to work under inert gas, to orient the sample from outside with respect to the temperature gradient, and to measure the front temperature within 0.1°C. Three applications are described. The first deals with the growth of a monocrystal of pivalic acid when the easy growth axis makes an angle with the heat flow direction. The second experiment is concerned with the fast growth of a discotic liquid crystal and the measurement of the molecular attachment kinetic coefficient at the interface between the columnar hexagonal mesophase and the isotropic liquid. A dynamical anchoring transition between domains of planar and homeotropic orientation will be also described. The last example focuses on the growth of a hexagonal phase of a water-surfactant binary mixture and the first observation of the Mullins-Sekerka instability in a lyotropic system. Nous avons construit une cellule de croissance directionnelle adaptée à l'étude des cristaux liquides thermotropes ou lyotropes. Cette cellule permet de travailler en atmosphère inerte, d'orienter l'échantillon de l'extérieur par rapport au gradient de température, et de mesurer la température du front à 0.1°C près. Trois exemples d'application sont décrits. Le premier porte sur la croissance d'un monocristal d'acide pivalique quand l'axe de croissance facile des cellules fait un angle avec la direction du flux de chaleur. La seconde expérience porte sur la croissance rapide d'un cristal liquide discotique et la mesure du coefficient cinétique d'attachement moléculaire à l'interface entre la mésophase colonnaire hexagonale et le liquide isotrope. Une transition d'ancrage dynamique entre des domaines d'orientations planaire et homéotrope sera également décrite. Le dernier exemple porte sur la croissance d'une phase hexagonale d'un mélange binaire eau-surfactant et la premi

  9. Transmission characteristics of a twisted nematic liquid-crystal layer

    NASA Technical Reports Server (NTRS)

    Grinberg, J.; Jacobson, A. D.

    1976-01-01

    An approximate analytical expression is calculated for the transmission of thin twisted nematic layers situated between a polarizer/analyzer pair. The approximation assumes that the twist angle of the nematic liquid crystal is smaller than the maximum retardation of the cell. The direction of the incident light is assumed to be parallel to the normal of the electrode. This configuration is analyzed for a general arrangement of polarizer and analyzer; the general result is evaluated for the case of the polarizer parallel and analyzer perpendicular to the liquid-crystal optical axis on the input and output electrodes, respectively. The results show that in the case of a thin twisted nematic layer the transmission depends on the thickness of the layer, on the birefringence of the liquid crystal, and on the wavelength of the light. This is a departure from the well-known independence of the transmission on these parameters for a thick twisted nematic layer.

  10. Anisotropic ionic conductivities in lyotropic supramolecular liquid crystals.

    PubMed

    Huang, Youju; Cong, Yuanhua; Li, Junjun; Wang, Daoliang; Zhang, Jingtuo; Xu, Lu; Li, Weili; Li, Liangbin; Pan, Guoqiang; Yang, Chuanlu

    2009-12-28

    The designed aromatic amide discotic molecule with sulfonic acid groups at its periphery exhibits a hexagonal supramolecular columnar liquid crystalline phase, which leads to the achievement of anisotropic ionic conductivity through macroscopically aligning the ionic channels.

  11. Principles of thermal design with nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Fumeron, S.; Pereira, E.; Moraes, F.

    2014-02-01

    Highly engineered materials are arousing great interest because of their ability to manipulate heat, as described by the coordinate transformation approach. Based on recently developed analog gravity models, we present how a simple device based on nematic liquid crystals can achieve in principle either thermal concentration or expulsion. These outcomes are shown to stem from the topological properties of a disclination-like structure, induced in the nematic phase by anchoring conditions.

  12. Aberration Compensation Using Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Somalingam, S.; Hain, M.; Tschudi, T.; Knittel, J.; Richter, H.

    We have developed a novel transmissive nematic liquid crystal device which is capable of compensating spherical wavefront aberration that occurs during the operation of optical pickup systems. In order to increase the storage capacity, next generation optical data storage systems beyond CD and DVD will use according to the Blu-Ray specification (BD) blue laser light and an objective lens with high numerical aperture (N.A.) of 0.85. However, such high N.A. systems have an inherent higher sensitivity on aberrations. For example spherical aberration is inversely proportional to the wavelength and grows with the fourth power of N.A. of the objective lens. In an optical pickup system there are two sources for spherical aberration: The first one is the variation of the substrate thickness due to manufacturing tolerances under mass production conditions. The second one concerns disks with multiple data-layers, which cause spherical aberration when layers are switched, as the objective lens can only be optimized for a single layer thickness. We report a method for effective compensation of spherical aberration by utilizing a novel liquid crystal device, which generates a parabolic wavefront profile. This particular shape makes the device highly tolerant against lateral movement. A sophisticated electrode design allows us to reduce the number of driving electrodes down to two by using the method of conductive ladder mashing. Further evaluation in a blue-DVD test drive has been carried out with good results. By placing the device into an optical pick-up we were able to readout a dual-layer ROM disk with a total capacity of 50 gigabytes (GB). A data-to-clock jitter of 6.9% for the 80 μm and of 8.0% for the 100 μm cover layer could be realized.

  13. Polarized photoluminescence from nematic and chiral- nematic liquid crystalline films

    NASA Astrophysics Data System (ADS)

    Conger, Brooke Morgan

    Polarization control is key to optoelectronics in terms of the processing and display of optical information. In principle, photonic or electronic excitation of anisotropic films should result in polarized light emission. Because of spontaneous molecular self-assembly, liquid crystals are ideal for the exploration of polarized luminescence. Although most studies on polarized luminescence have been based on liquid crystalline fluid films, solid films are preferred in view of morphological stability. Therefore, the theme of my thesis is the study of polarized luminescence from various fluorescent liquid crystal systems. From the fundamental perspective, a theory modeling the process of polarized photoluminescence was validated using fluorophore doped fluid liquid crystal films. To provide the morphological stability crucial to practical application, polarized fluorescence using vitrifiable and polymeric liquid crystals functionalized with fluorescent moieties was investigated. In addition, liquid crystalline π- conjugated polymers were synthesized and characterized as a new class of optical polymers. The effect of the emission source on achievable polarization from pyrene and carbazole systems was also elucidated. The main observations are as follows: (1) The observed degrees of polarization for all fluorescent liquid crystal systems were found to agree with the theories governing polarized fluorescence. (2) Low molar mass vitrifiable and polymeric liquid crystalline cyanoterphenyl and cyanotolane derivatives were found to yield moderate polarized fluorescence. Monomer emission was established as the decay pathway for the precursors and cyclohexane and polymethacrylate derivatives. (3) Ordered solid films from thiophene and p-phenylene π-conjugated polymers were found to induce significant degrees of polarized fluorescence. (4) Emission from glass-forming pyrenyl derivatives exhibited excimer emission in dilute solution and neat film, whereas in solid hosts it was

  14. Positron lifetime measurements in chiral nematic liquid crystals

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Parmar, Devendra S.

    1991-01-01

    Positron lifetimes in the isotropic phases of chiral nematic liquid crystal formulations and their mixtures up to the racemic level were measured. The lifetime spectra for all liquid crystal systems were analyzed into three components. Although the individual spectra in the left- and right-handed components are identical, their racemic mixtures exhibit much larger orthopositronium lifetimes; these larger lifetimes indicate the presence of larger microvoids. This result is consistent with the reportedly higher thermodynamic stability and color play range in the racemic mixtures of chiral nematic liquid crystals.

  15. Defects in liquid crystal nematic shells

    NASA Astrophysics Data System (ADS)

    Fernandez-Nieves, A.; Utada, A. S.; Vitelli, V.; Link, D. R.; Nelson, D. R.; Weitz, D. A.

    2006-03-01

    We generate water/liquid crystal (LC)/water double emulsions via recent micro-capillary fluidic devices [A. S. Utada, et.al. Science 308, 537 (2005)]. The resultant objects are stabilized against coalescence by using surfactants or adequate polymers; these also fix the boundary conditions for the director field n. We use 4-pentyl-4-cyanobiphenyl (5CB) and impose tangential boundary conditions at both water/LC interfaces by having polyvinyl alcohol (PVA) dispersed in the inner and outer water phases. We confirm recent predictions [D. R. Nelson, NanoLetters 2, 1125 (2002)] and find that four strength s=+1/2 defects are present; this is in contrast to the two s=+1 defect bipolar configuration observed for bulk spheres [A. Fernandez-Nieves, et.al. Phys. Rev. Lett. 92, 105503 (2004)]. However, these defects do not lie in the vertices of a tetrahedron but are pushed towards each other until certain equilibration distance is reached. In addition to the four defect shells, we observe shells with two s=+1 defects and even with three defects, a s=+1 and two s=+1/2. We argue these configurations arise from nematic bulk distortions that become important as the shell thickness increases. Finally, by adding a different surfactant, sodium dodecyl sulphate (SDS), to the outer phase, we can change the director boundary conditions at the outermost interface from parallel to homeotropic, to induce coalescing of the two pair of defects in the four defect shell configuration to yield two defect bipolar shells.

  16. Liquid microlenses and waveguides from bulk nematic birefringent profiles.

    PubMed

    Čančula, Miha; Ravnik, Miha; Muševič, Igor; Žumer, Slobodan

    2016-09-19

    We demonstrate polarization-selective microlensing and waveguiding of laser beams by birefringent profiles in bulk nematic fluids using numerical modelling. Specifically, we show that radial escaped nematic director profiles with negative birefringence focus and guide light with radial polarization, whereas the opposite - azimuthal - polarization passes through unaffected. A converging lens is realized in a nematic with negative birefringence, and a diverging lens in a positive birefringence material. Tuning of such single-liquid lenses by an external low-frequency electric field and by adjusting the profile and intensity of the beam itself is demonstrated, combining external control with intrinsic self-adaptive focusing. Escaped radial profiles of birefringence are shown to act as single-liquid waveguides with a single distinct eigenmode and low attenuation. Finally, this work is an approach towards creating liquid photonic elements for all-soft matter photonics.

  17. Nonaqueous lyotropic ionic liquid crystals: preparation, characterization, and application in extraction.

    PubMed

    Liu, Xianxian; Yang, Qiwei; Bao, Zongbi; Su, Baogen; Zhang, Zhiguo; Ren, Qilong; Yang, Yiwen; Xing, Huabin

    2015-06-15

    A class of new ionic liquid (IL)-based nonaqueous lyotropic liquid crystals (LLCs) and the development of an efficient IL extraction process based on LC chemistry are reported. The nonaqueous LLCs feature extraordinarily high extraction capacity, excellent separation selectivity, easy recovery, and biocompatibility. This work also demonstrates that the introduction of self-assembled anisotropic nanostructures into an IL system is an efficient way to overcome the intrinsically strong polarity of ILs and enhances the molecular recognition ability of ILs. The distribution coefficients of IL-based LLCs for organic compounds with H-bond donors reached unprecedented values of 50-60 at very high feed concentrations (>100 mg mL(-1) ), which are 800-1000 times greater than those of common ILs as well as traditional organic and polymer extractants. The IL-based nonaqueous LLCs combining the unique properties of ILs and LCs open a new avenue for the development of high-performance extraction methods.

  18. Simulation of weak anchoring effects on nematic liquid crystal hemispheres

    NASA Astrophysics Data System (ADS)

    Gillen, Sean; Somers, David A. T.; Munday, Jeremy N.

    The free energy of a nematic liquid crystal droplet depends on an interplay between elastic and surface interactions. When the two contributions are of similar magnitude, there exists a transition of the nematic structure of the droplet. Because the two contributions scale differently with length scales, this transition is visible as a function of the size of the droplet. We carry out numerical simulations to explore the use of this transition in measuring surface anchoring energies. This technique could help elucidate alignment forces on liquid crystals, such as those caused by rubbed surfaces, electric fields, or even the Casimir torque. Electrical and Computer Engineering.

  19. Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Dong; Lee, Bomi; Kang, Shin-Woong; Song, Jang-Kun

    2015-08-01

    In various applications involving liquid crystals, the manipulation of the nanoscale molecular assembly and microscale director alignment is highly useful. Here we show that a nematic-isotropic mixture, a unique bi-liquid system, has potential for the fabrication of microstructures having an ordered phase within a disordered phase, or vice versa. The volume expansion and shrinkage, migration, splitting, mergence and elongation of one phase within the other are easily accomplished via thermal treatment and dielectrophoretic manipulation. This is particularly achievable when one phase is suspended in the middle. In that case, a highly biased ordered-phase preference of surfaces, that is, the nematic-philic nature of a polyimide layer and the nematic-phobic nature of a self-assembled monolayer of chlorosilane derivatives, is used. Further, by combining this approach with photopolymerization, the patterned microstructure is solidified as a patterned polymer film having both isotropic and anisotropic molecular arrangements simultaneously, or as a template with a morphological variation.

  20. Dynamic arrest of nematic liquid-crystal colloid networks

    NASA Astrophysics Data System (ADS)

    Zou, Lu; Hwang, Jeoung-Yeon; Kim, Chanjoong

    2013-10-01

    We report interesting self-assembly structures of nematic liquid-crystal colloid (NLCC) networks, which are arrested during cooling from the isotropic temperature to room temperature. The NLCC is composed of sterically stabilized colloidal particles and a nematic liquid crystal (NLC) with nematic-isotropic transition temperature (TNI) that is much higher than those of previously studied 4-Cyano-4'-pentylbiphenyl and N-(4-Methoxybenzylidene)-4-butylaniline. We find that the structure of NLCCs depends on TNI, cooling rates, and boundary conditions, varying from cellular network to hierarchical fern structures in different length scales. Our time-lapse study shows that the transition from the cellular network to the fern structure directly corresponds to the transition from a spinodal demixing to a nucleation-and-growth mechanism.

  1. Characterization of the phase behaviour of a novel polymerizable lyotropic ionic liquid crystal.

    PubMed

    Goujon, Nicolas; Forsyth, Maria; Dumée, Ludovic F; Bryant, Gary; Byrne, Nolene

    2015-09-21

    The development of new polymerizable lyotropic liquid crystals (LLCs) utilizing charged amphiphilic molecules such as those based on long chain imidazolium compounds, is a relatively new design direction for producing robust membranes with controllable nano-structures. Here we have developed a novel polymerizable ionic liquid based LLC, 1-hexadecyl-3-methylimidazolium acrylate (C16mimAcr), where the acrylate anion acts as the polymerizable moiety. The phase behaviour of the C16mimAcr upon the addition of water was characterized using small and wide angle X-ray scatterings, differential scanning calorimetry and polarized optical microscopy. We compare the phase behaviour of this new polymerizable LLC to that of the well known LLC chloride analogue, 1-hexadecyl-3-methylimidazolium chloride (C16mimCl). We find that the C16mimAcr system has a more complex phase behaviour compared to the C16mimCl system. Additional lyotropic liquid crystalline mesophases such as hexagonal phase (H1) and discontinuous cubic phase (I1) are observed at 20 °C for the acrylate system at 50 and 65 wt% water respectively. The appearance of the hexagonal phase (H1) and discontinuous cubic phase (I1) for the acrylate system is likely due to the strong hydrating nature of the acrylate anion, which increases the head group area. The formation of these additional mesophases seen for the acrylate system, especially the hexagonal phase (H1), coupled with the polymerization functionality offers great potential in the design of advanced membrane materials with selective and anisotropic transport properties.

  2. Monodisperse nonionic isoprenoid-type hexahydrofarnesyl ethylene oxide surfactants: high throughput lyotropic liquid crystalline phase determination.

    PubMed

    Fong, Celesta; Weerawardena, Asoka; Sagnella, Sharon M; Mulet, Xavier; Krodkiewska, Irena; Chong, Josephine; Drummond, Calum J

    2011-03-15

    The neat and lyotropic phase behavior of eight new ethylene oxide amphiphiles (EO = 1-8) with a hexahydrofarnesyl chain (3,7,11-trimethyldodecyl) and narrow polydispersity (>98.5% purity) is reported. Below five EO units the behavior of the neat surfactants show only a glass transition, Tg ∼ -90 °C. Above four EO units, crystallization (Tcrys) and crystal-isotropic liquid (Tm) transitions are also observed that increase with degree of ethoxylation of the surfactant headgroup. The lyotropic liquid crystalline phase behavior spans a complex spectrum of surfactant-water interfacial curvatures. Specifically, inverse phases are present below ambient temperatures for EO < 4, with HFarn(EO)2 exhibiting an inverse hexagonal (H(II)) phase stable to dilution. The phase diagram of HFarn(EO)3 displays both the gyroid (Ia3d) and double diamond (Pn3m) inverse bicontinuous cubic phases, with the latter being thermodynamically stable in excess water within the physiological regime. There is a strong preference for planar bilayer structures at intermediate headgroup ethoxylation, with the crossover to normal phases occurring at HFarn(EO)(7-8) which exhibits normal hexagonal (H(I)) and cubic (Q(I)) phases at ambient temperatures. The toxicity of colloidal dispersions of these EO amphiphiles was assayed against normal breast epithelial (HMEpiC) and breast cancer (MCF7) cell lines. The IC50 of the EO amphiphiles was similar in both cell lines with moderate toxicity ranging from ca. <5 to 140 μM in an in vitro cell viability assay. Observations are qualitatively rationalized in terms of the molecular geometry of the surfactant. The physicochemical behavior of the HFarnesyl ethylene oxide amphiphiles is compared to other ethylene oxide surfactants.

  3. Shape of impurity electronic absorption bands in nematic liquid crystal

    SciTech Connect

    Aver`yanov, E.M.

    1994-11-01

    The impurity-matrix anisotropic static intermolecular interactions, orientation-statistical properties, and electronic structure of uniaxial impurity molecules are shown to have a significant influence on spectral moments of the electronic absorption bands of impurities in the nematic liquid crystal. 14 refs., 3 figs.

  4. Global defect topology in nematic liquid crystals

    PubMed Central

    Machon, Thomas

    2016-01-01

    We give the global homotopy classification of nematic textures for a general domain with weak anchoring boundary conditions and arbitrary defect set in terms of twisted cohomology, and give an explicit computation for the case of knotted and linked defects in R3, showing that the distinct homotopy classes have a 1–1 correspondence with the first homology group of the branched double cover, branched over the disclination loops. We show further that the subset of those classes corresponding to elements of order 2 in this group has representatives that are planar and characterize the obstruction for other classes in terms of merons. The planar textures are a feature of the global defect topology that is not reflected in any local characterization. Finally, we describe how the global classification relates to recent experiments on nematic droplets and how elements of order 4 relate to the presence of τ lines in cholesterics. PMID:27493576

  5. Global defect topology in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Machon, Thomas; Alexander, Gareth P.

    2016-07-01

    We give the global homotopy classification of nematic textures for a general domain with weak anchoring boundary conditions and arbitrary defect set in terms of twisted cohomology, and give an explicit computation for the case of knotted and linked defects in R3, showing that the distinct homotopy classes have a 1-1 correspondence with the first homology group of the branched double cover, branched over the disclination loops. We show further that the subset of those classes corresponding to elements of order 2 in this group has representatives that are planar and characterize the obstruction for other classes in terms of merons. The planar textures are a feature of the global defect topology that is not reflected in any local characterization. Finally, we describe how the global classification relates to recent experiments on nematic droplets and how elements of order 4 relate to the presence of τ lines in cholesterics.

  6. A Comprehensive Study on Lyotropic Liquid-Crystalline Behavior of an Amphiphile in 20 Kinds of Amino Acid Ionic Liquids.

    PubMed

    Fujimura, Kanae; Ichikawa, Takahiro; Yoshio, Masafumi; Kato, Takashi; Ohno, Hiroyuki

    2016-02-18

    We examined the self-organization behavior of a designed amphiphilic molecule in 20 kinds of amino acid ionic liquids composed of 1-butyl-3-methylimidazolium cation and natural amino acid anion ([C4mim][AA]). Addition of [C4mim][AA], regardless of their anion species, to the amphiphile provided homogeneous mixtures showing lyotropic liquid-crystalline (LC) behavior. Upon increasing the component ratio of [C4mim][AA] in the mixtures, a successive change of the mesophase patterns from inverted hexagonal columnar, in some case via bicontinuous cubic, to layered phases was observed. By examining the LC properties at various temperatures and component ratios, we constructed lyotropic LC phase diagrams. Interestingly, the appearance of these phase diagrams is greatly different according to the selection of [AA]. Through comparison, we found that the self-organization behavior of an amphiphile in ionic liquids can be tuned by controlling their ability to form hydrogen-bond, van der Waals, and π-π interactions.

  7. Quantum Dot Chain Assembly Mediated by Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Brereton, Peter; Basu, Rajratan; Finkenstadt, Daniel

    2015-03-01

    A small quantity of CdSe quantum dots (QDs) were dispersed in a nematic liquid crystal (LC) media and the QDs were found to exhibit self-assembled asymmetric structures, most likely QD-chains. In the nematic phase the ensemble LC +QD photoluminescence (PL) exhibits an anisotropic spectral line shape, as compared to the emission of QDs doped in the isotropic phase. This indicates a nematic mediated arrangement of the QDs. A simple model is proposed to explain the asymmetric behavior of the PL band as an effective chain of radiatively coupled emitters. The effect of the liquid crystals is to provide an entropic force that attracts dots to minimize the excluded volume. The dielectric reorientation dynamics immediately following the removal of an applied field appears as a one-step exponential decay for the LC and a two-step exponential decay with a slower process for the LC +QD system. The results suggest that anisotropic chain-like QD-assemblies are formed in the nematic platform. A related study has examined PL of ferroelectric LC doped with graphene QD [Kumar, Veeresh, et al., Liquid Crystals (2014)

  8. Reverse lyotropic liquid crystals from europium nitrate and P123 with enhanced luminescence efficiency.

    PubMed

    Yi, Sijing; Li, Qintang; Liu, Hongguo; Chen, Xiao

    2014-10-02

    Fabrication of lyotropic aggregates containing the lanthanide ions is becoming a preferable way to prepare novel functional materials. Here, the lyotropic liquid crystals (LLCs) of reverse hexagonal, reverse bicontinuous cubic, and lamellar phases have been constructed in sequence directly from the mixtures of Eu(NO3)3·6H2O and Pluronic P123 amphiphilc block copolymer with increasing the salt proportion. Their phase types and structural characteristics were analyzed using polarized optical microscopy (POM) and small-angle X-ray scattering (SAXS) measurements. The driving forces of reverse LLC phase formation were investigated using Fourier-transformed infrared spectroscopy (FTIR) and rheological measurements. The hydrated europium salt was found to act not only as a solvent here, but also as the bridge to form hydrogen bonding between coordinated water molecules and PEO blocks, which played a key role in the reverse LLCs formation. Compared to those in aqueous solutions and solid state, the enhanced luminescence quantum yields and prolonged excited state lifetimes were observed in two europium containing reverse mesophases. The luminescence quenching effect of lanthanide ions was efficiently suppressed, probably due to the substitution of coordinated water molecules by oxyethyl groups of P123 and ordered phase structures of LLCs, where the coordinated europium ions were confined and isolated by PEO blocks. The optimum luminescence performance was then found to exist in the reverse hexagonal phase. The obtained results on such lanthanide-induced reverse LLCs should be referable for designing new luminescent soft materials construction to expand their application fields.

  9. Photoalignment of a Nematic Liquid Crystal Fluid and Glassy-Nematic Oligofluorenes on Coumarin-Containing Polymer Films

    SciTech Connect

    Trajkovska, A.; Kim, C.; Marshall, K.L.; Mourey, T.H.; Chen, S.H.

    2007-03-19

    The orientations of both a nematic liquid crystal fluid and a series of monodisperse glassy-nematic oligofluorenes were investigated on photoalignment films comprising a polymethacrylate backbone with 7-benzoyloxycoumarin pendants. Both classes of liquid crystalline material were found to undergo a transition from a parallel to a perpindicular orientation with reference to the polarization axis of UV-irradiation at a sufficiently high extent of dimerization.

  10. Hybrid graphene nematic liquid crystal light scattering device

    NASA Astrophysics Data System (ADS)

    Qasim, M. M.; Khan, A. A.; Kostanyan, A.; Kidambi, P. R.; Cabrero-Vilatela, A.; Braeuninger-Weimer, P.; Gardiner, D. J.; Hofmann, S.; Wilkinson, T. D.

    2015-08-01

    A hybrid graphene nematic liquid crystal (LC) light scattering device is presented. This device exploits the inherent poly-crystallinity of chemical vapour deposited (CVD) graphene films to induce directional anchoring and formation of LC multi-domains. This thereby enables efficient light scattering without the need for crossed polarisers or separate alignment layers/additives. The hybrid LC device exhibits switching thresholds at very low electric fields (< 1 V μm-1) and repeatable, hysteresis free characteristics. This exploitation of LC alignment effects on CVD graphene films enables a new generation of highly efficient nematic LC scattering displays as well as many other possible applications.A hybrid graphene nematic liquid crystal (LC) light scattering device is presented. This device exploits the inherent poly-crystallinity of chemical vapour deposited (CVD) graphene films to induce directional anchoring and formation of LC multi-domains. This thereby enables efficient light scattering without the need for crossed polarisers or separate alignment layers/additives. The hybrid LC device exhibits switching thresholds at very low electric fields (< 1 V μm-1) and repeatable, hysteresis free characteristics. This exploitation of LC alignment effects on CVD graphene films enables a new generation of highly efficient nematic LC scattering displays as well as many other possible applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04094a

  11. Oleoylethanolamide-based lyotropic liquid crystals as vehicles for delivery of amino acids in aqueous environment.

    PubMed

    Mohammady, Sayed Z; Pouzot, Matthieu; Mezzenga, Raffaele

    2009-02-18

    We have investigated the phase behavior of self-assembled lyotropic liquid crystals (LC) formed by ternary mixtures of oleoylethanolamide (OEA), water and arginine. OEA, a natural analog of the endogenous cannabinoid anandamide involved in the peripheral regulation of feeding, was selected as a main component due to its capacity to induce efficient decreases in food intake and gains in body mass. Arginine was selected as representative hydrophilic amino acid and added to the OEA-water mixture at different concentrations. The phase diagrams were determined by combining cross-polarized optical microscopy and small angle x-ray scattering. First, the phase diagram for the OEA-water system was determined. It was shown that these two compounds give rise to reverse Ia3d double gyroid and reverse Pn3m double diamond cubic phases existing in bulk over a large window of temperature and composition, and that for water content beyond 25% Pn3m coexisted with excess water. Successively, the influence of arginine as guest molecule in the water channels of the reverse LC was investigated. For the sake of comparison, results for the OEA-water-arginine system were compared with analog series of OEA-water-glucose. The results showed that, at a fixed water content and temperature, the phase behavior of the liquid crystalline phases is strongly dependent on arginine concentration. In more detail, arginine could be encapsulated in the bulk OEA-water LC up to 2.0% wt, whereas transitions from Ia3d to Pn3m cubic phase were observed with increasing arginine concentration. Interestingly, upon an increase of water concentration beyond 20-25%, Pn3m phase started to coexist with excess water releasing the arginine in external water solution. Quantitative measurements of arginine content inside the LC water channels and in the excess external water solution revealed a complete release of the amino acid, demonstrating that the investigated lyotropic liquid crystalline systems can be used as

  12. New nanotechnology for the guided tissue regeneration of skin--potential of lyotropic liquid crystals.

    PubMed

    Yamaguchi, Y; Nagasawa, T; Kitagawa, A; Nakamura, N; Matsumoto, K; Uchiwa, H; Hirata, K; Igarashi, R

    2006-02-01

    Tissue in body must quickly recognize injury to response to the rapid pace of epidermal growth. In skin, the epidermal cells must also react to danger signals from the surrounding extracellular lipid of the stratum corneum spaces and immediately participate by initiating the wound repair process. The topical administration of the lyotropic liquid crystal nanocube to stratum corneum rapidly broke down the lipid lamella structure which would be recognized as a wound without organ-change. This can activate a variety of biological processes. This study set out to determine whether the phase transition of the lipid to a neighbouring different physicochemical structure can stimulate keratinocyte cells and what mechanism is responsible for this response. Using small angle x-ray scattering (SAXS) analysis, a response to the transient structural change of lipid was detected which might result from the diffusion of oil and/or water from nanocube liquid crystal towards the lipid lamella phase. Simultaneously, a significant increase in growth factors and inflammatory cytokines was detected after administration of nanocube. Not only the excess expression of cytokines but also the extent of TEWL as a barrier marker of skin increased. These observations suggest that a structural change in lipid can stimulate and trigger recognition of a slight injury in the wound defence and a repair response as homeostasis. This method actually succeeded in improving photo-induced hyperpigmentation on a human face.

  13. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals

    PubMed Central

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations. PMID:28243062

  14. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals.

    PubMed

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations.

  15. Ordering Quantum Dot Clusters via Nematic Liquid Crystal Defects

    NASA Astrophysics Data System (ADS)

    Rodarte, Andrea; Pandolfi, R.; Hirst, L. S.; Ghosh, S.

    2012-11-01

    Nematic liquid crystal (LC) materials can be used to create ordered clusters of CdSe/ZnS core/shell quantum dots (QDs) from a homogeneous isotropic dispersion. At the phase transition, the ordered domains of nematic LC expel the majority of dispersed QDs into the isotropic domains. The final LC phase produces a series of QD clusters that are situated at the defect points of the liquid crystal texture. Lower concentrations of QDs are organized in a network throughout the LC matrix that originates from the LC phase transition. Inside the QD clusters the inter-particle distance enables efficient energy transfer from high energy dots to lower energy dots. Because the QD clusters form at defect sites, the location of the clusters can be preselected by seeding the LC cell with defect nucleation points.

  16. Phase behavior of a nematic liquid crystal in contact with a chemically and geometrically structured substrate.

    PubMed

    Harnau, L; Kondrat, S; Poniewierski, A

    2005-07-01

    A nematic liquid crystal in contact with a grating surface possessing an alternating stripe pattern of locally homeotropic and planar anchoring is studied within the Frank-Oseen model. The combination of both chemical and geometrical surface pattern leads to rich phase diagrams, involving a homeotropic, a planar, and a tilted nematic texture. The effect of the groove depth and the anchoring strengths on the location and the order of phase transitions between different nematic textures is studied. A zenithally bistable nematic device is investigated by confining a nematic liquid crystal between the patterned grating surface and a flat substrate with strong homeotropic anchoring.

  17. Stability of Equilibria of Nematic Liquid Crystalline Polymers

    DTIC Science & Technology

    2011-01-01

    attractive for studying low molar -mass liquid crystals. After Maier and Saupe and Flory’s work, many new theories have been developed for liquid No.6 H...one set of (q1, q2) satisfying (22). Proof We prove by contradiction . To accomplish this, suppose (q (1) 1 , q (1) 2 ) and (q (2) 1 , q (2) 2 ) are...H.Y. Wang: STABILITY OF EQUILIBRIA OF NEMATIC LIQUID 2299 which contradicts with (25). Thus the claim is established: (q (1) 1 , q (1) 2 ) and (q (2) 1

  18. Electrical Freedericksz transitions in nematic liquid crystals containing ferroelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Cîrtoaje, Cristina; Petrescu, Emil; Stoian, Victor

    2015-03-01

    A new theoretical approach was elaborated to explain the contradictions reported in many papers about the electric threshold for Freedericksz transition in nematic liquid crystal (NLC) with ferroparticles additives. The free energy density of the mixture was estimated and the contributions of the interaction energy of NLC molecules with ferroparticles surface were calculated. Experimental results for 5CB-BaTiO3 mixture are given.

  19. Photoluminescence analysis of self induced planer alignment in azo dye dispersed nematic liquid crystal complex

    SciTech Connect

    Kumar, Rishi Sood, Srishti Raina, K. K.

    2014-04-24

    We have developed azo dye doped nematic liquid crystal complex for advanced photonic liquid crystal display technology aspects. Disperse orange azo dye self introduced planer alignment in the nematic liquid crystal without any surface anchoring treatment. Planer alignment was characterized by optical polarizing microscopy. The electro-optical switching response of dye disperse planer aligned nematic cell was investigated as a function of applied voltage with the help of photoluminescence spectrophotometer for the tuning of photoluminescence contrast.

  20. Magnetically stabilized nematic order. II. Critical states and algebraically ordered nematic spin liquids in one-dimensional optical lattices

    SciTech Connect

    Zhai Hui; Zhou Fei

    2005-07-01

    We investigate the Zeeman-field-driven quantum phase transitions between singlet spin liquids and algebraically ordered O(2) nematic spin liquids of spin-one bosons in one-dimensional optical lattices. We find that the critical behavior is characterized by condensation of hardcore bosons instead of ideal magnons in high-dimensional lattices. Critical exponents are strongly renormalized by hardcore interactions and critical states are equivalent to the free Fermion model up to the Friedel oscillations. We also find that the algebraically ordered nematic spin liquids close to critical points are fully characterized by the Luttinger-liquid dynamics with Luttinger-liquid parameters magnetically tunable. The Bethe ansatz solution has been applied to determine the critical magnetization and nematic correlations.

  1. Nematic-like stable glasses without equilibrium liquid crystal phases.

    PubMed

    Gómez, Jaritza; Gujral, Ankit; Huang, Chengbin; Bishop, Camille; Yu, Lian; Ediger, M D

    2017-02-07

    We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, Tsubstrate, during deposition. Ellipsometry and IR measurements indicate that glasses prepared at Tsubstrate very near the glass transition temperature (Tg) are highly ordered. For these posaconazole glasses, the orientation order parameter is similar to that observed in macroscopically aligned nematic liquid crystals, indicating that the molecules are mostly parallel to one another and perpendicular to the interface. To our knowledge, these are the most anisotropic glasses ever prepared by PVD from a molecule that does not form equilibrium liquid crystal phases. These results are consistent with a previously proposed mechanism in which molecular orientation in PVD glasses is inherited from the orientation present at the free surface of the equilibrium liquid. This mechanism suggests that molecular orientation at the surface of the equilibrium liquid of posaconazole is nematic-like. Posaconazole glasses can show very high kinetic stability; the isothermal transformation of a 400 nm glass into the supercooled liquid occurs via a propagating front that originates at the free surface and requires ∼10(5) times the structural relaxation time of the liquid (τα). We also studied the kinetic stability of PVD glasses of itraconazole, which is a structurally similar molecule with equilibrium liquid crystal phases. While itraconazole glasses can be even more anisotropic than posaconazole glasses, they exhibit lower kinetic stability.

  2. Nematic-like stable glasses without equilibrium liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Gómez, Jaritza; Gujral, Ankit; Huang, Chengbin; Bishop, Camille; Yu, Lian; Ediger, M. D.

    2017-02-01

    We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, Tsubstrate, during deposition. Ellipsometry and IR measurements indicate that glasses prepared at Tsubstrate very near the glass transition temperature (Tg) are highly ordered. For these posaconazole glasses, the orientation order parameter is similar to that observed in macroscopically aligned nematic liquid crystals, indicating that the molecules are mostly parallel to one another and perpendicular to the interface. To our knowledge, these are the most anisotropic glasses ever prepared by PVD from a molecule that does not form equilibrium liquid crystal phases. These results are consistent with a previously proposed mechanism in which molecular orientation in PVD glasses is inherited from the orientation present at the free surface of the equilibrium liquid. This mechanism suggests that molecular orientation at the surface of the equilibrium liquid of posaconazole is nematic-like. Posaconazole glasses can show very high kinetic stability; the isothermal transformation of a 400 nm glass into the supercooled liquid occurs via a propagating front that originates at the free surface and requires ˜105 times the structural relaxation time of the liquid (τα). We also studied the kinetic stability of PVD glasses of itraconazole, which is a structurally similar molecule with equilibrium liquid crystal phases. While itraconazole glasses can be even more anisotropic than posaconazole glasses, they exhibit lower kinetic stability.

  3. Advances in drug delivery and medical imaging using colloidal lyotropic liquid crystalline dispersions.

    PubMed

    Mulet, Xavier; Boyd, Ben J; Drummond, Calum J

    2013-03-01

    The overarching goal of this feature article is to review the recent developments in the field of drug delivery specifically involving colloidal lyotropic liquid crystalline dispersions. The development of advanced particles for drug delivery applications is regarded as the next necessary step in the advancement of nanomedicine. An outline of the state of the art in preparation and application of self-assembled nanoparticles to drug delivery and medical imaging is presented. The basic concepts for controlling the nature of the internal structure of particles by tuning the self-assembly properties of small molecule amphiphiles is covered. Theranostics is an exciting emerging area for this colloidal material class, and the types of therapeutic compounds and medical imaging agents that can be incorporated as well as their methods of preparation are described. The stabilisation and biocompatibility of the colloidal dispersions are also discussed. Finally an overview of lesion-specific active and passive targeting is presented. Exploiting such a multi-functional drug delivery platform is essential to not only the next generation delivery of bioactive molecules but also in the creation of new diagnostic tools.

  4. Oil and drug control the release rate from lyotropic liquid crystals.

    PubMed

    Martiel, Isabelle; Baumann, Nicole; Vallooran, Jijo J; Bergfreund, Jotam; Sagalowicz, Laurent; Mezzenga, Raffaele

    2015-04-28

    The control of the diffusion coefficient by the dimensionality d of the structure appears as a most promising lever to efficiently tune the release rate from lyotropic liquid crystalline (LLC) phases and dispersed particles towards sustained, controlled and targeted release. By using phosphatidylcholine (PC)- and monolinoleine (MLO)-based mesophases with various apolar structural modifiers and water-soluble drugs, we present a comprehensive study of the dimensional structural control of hydrophilic drug release, including 3-d bicontinuous cubic, 2-d lamellar, 1-d hexagonal and 0-d micellar cubic phases in excess water. We investigate how the surfactant, the oil properties and the drug hydrophilicity mitigate or even cancel the effect of structure variation on the drug release rate. Unexpectedly, the observed behavior cannot be fully explained by the thermodynamic partition of the drug into the lipid matrix, which points out to previously overlooked kinetic effects. We therefore interpret our results by discussing the mechanism of structural control of the diffusion rate in terms of drug permeation through the lipid membrane, which includes exchange kinetics. A wide range of implications follow regarding formulation and future developments, both for dispersed LLC delivery systems and topical applications in bulk phase.

  5. Dynamics of Water in Gemini Surfactant-Based Lyotropic Liquid Crystals

    DOE PAGES

    McDaniel, Jesse G.; Mantha, Sriteja; Yethiraj, Arun

    2016-09-26

    The dynamics of water confined to nanometer-sized domains is important in a variety of applications ranging from proton exchange membranes to crowding effects in biophysics. In this work we study the dynamics of water in gemini surfactant-based lyotropic liquid crystals (LLCs) using molecular dynamics simulations. These systems have well characterized morphologies, e.g., hexagonal, gyroid, and lamellar, and the surfaces of the confining regions can be controlled by modifying the headgroup of the surfactants. This allows one to study the effect of topology, functionalization, and interfacial curvature on the dynamics of confined water. Through analysis of the translational diffusion and rotationalmore » relaxation we conclude that the hydration level and resulting confinement lengthscale is the predominate determiner of the rates of water dynamics, and other effects, namely surface functionality and curvature, are largely secondary. In conclusion, this novel analysis of the water dynamics in these LLC systems provides an important comparison for previous studies of water dynamics in lipid bilayers and reverse micelles.« less

  6. Dynamics of Water in Gemini Surfactant-Based Lyotropic Liquid Crystals

    SciTech Connect

    McDaniel, Jesse G.; Mantha, Sriteja; Yethiraj, Arun

    2016-09-26

    The dynamics of water confined to nanometer-sized domains is important in a variety of applications ranging from proton exchange membranes to crowding effects in biophysics. In this work we study the dynamics of water in gemini surfactant-based lyotropic liquid crystals (LLCs) using molecular dynamics simulations. These systems have well characterized morphologies, e.g., hexagonal, gyroid, and lamellar, and the surfaces of the confining regions can be controlled by modifying the headgroup of the surfactants. This allows one to study the effect of topology, functionalization, and interfacial curvature on the dynamics of confined water. Through analysis of the translational diffusion and rotational relaxation we conclude that the hydration level and resulting confinement lengthscale is the predominate determiner of the rates of water dynamics, and other effects, namely surface functionality and curvature, are largely secondary. In conclusion, this novel analysis of the water dynamics in these LLC systems provides an important comparison for previous studies of water dynamics in lipid bilayers and reverse micelles.

  7. Thermal Characterization of Thermotropic Nematic Liquid-Crystalline Elastomers

    NASA Astrophysics Data System (ADS)

    Thomas, David; Cardarelli, Matt; Sanchez-Ferrer, Antoni; Mbanga, Badel L.; Atherton, Timothy J.; Cebe, Peggy

    Nematic Liquid-Crystallline Elastomers (LCEs) are weakly crosslinked polymeric networks that exhibit rubber elasticity and liquid-crystalline orientational order due to the presence of mesogenic groups. Three end-on side-chain nematic LCEs were investigated using real-time synchrotron wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and thermogravimetry (TG) to correlate thermal behavior with structural and chemical differences among them. The elastomers differed in crosslinking density and mesogen composition. Thermally reversible glass transition temperature, Tg, and nematic-to-isotropic transition temperature, Tni, were observed upon heating and cooling for all samples. By varying the heating rate, Tg0 and Tni0 were determined at zero heating rate. The temperature dependence of the orientational order parameter was determined from the anisotropic azimuthal angular distribution of the equatorial reflection seen during real-time WAXS experiments. Our results show that the choice of crosslinking unit, its shape, density, as well as the structure of co-monomers, all influence the temperature range over which the thermal transitions take place.

  8. Charge retention of twisted nematic liquid-crystal displays

    NASA Astrophysics Data System (ADS)

    Yang, K. H.

    1990-01-01

    A simulated thin-film transistor (TFT) circuit has been built to drive the twisted nematic (TN) cell for the measurements of charge retention and the transmission versus peak voltage applied to the drain electrode of the simulated TFT using the gate pulse width as a parameter. The established rule that the transmission of the TN cell depends only on the rms voltage applied to the cell has been confirmed by calculating the rms voltage of the charge retention curves in correlation with the measured transmissions. The deviation of the decaying charge retention curves from the exponential behavior has been observed and can be qualitatively explained by a combination of the dielectric and transport properties of nematic liquid-crystal medium.

  9. Nematic liquid crystals doped with nanoparticles: Phase behavior and dielectric properties

    NASA Astrophysics Data System (ADS)

    Osipov, Mikhail A.; Gorkunov, Maxim V.

    Thermodynamics and dielectric properties of nematic liquid crystals doped with various nanoparticles have been studied in the framework of a molecular mean-field theory. It is shown that spherically isotropic nanoparticles effectively dilute the liquid crystal material and cause a decrease of the nematic-isotropic transition temperature, while anisotropic nanoparticles are aligned by the nematic host and, in turn, may significantly improve the liquid crystal alignment. In the case of strong interaction between spherical nanoparticles and mesogenic molecules, the nanocomposite possesses a number of unexpected properties: The nematic-isotropic co-existence region appears to be very broad, and the system either undergoes a direct transition from the isotropic phase into the phase-separated state, or undergoes first a transition into the homogeneous nematic phase and then phase-separates at a lower temperature. The phase separation does not occur for sufficiently low nanoparticle concentrations, and, in certain cases, the separation takes place only within a finite region of the nanoparticle concentration. For nematics doped with strongly polar nanoparticles, the theory predicts the nanoparticle aggregation in linear chains that make a substantial contribution to the static dielectric anisotropy and optical birefringence of the nematic composite. The theory clarifies the microscopic origin of important phenomena observed in nematic composites including a shift of the isotropic-nematic phase transition and improvement of the nematic order; a considerable softening of the first order nematic-isotropic transition; a complex phase-separation behavior; and a significant increase of the dielectric anisotropy and the birefringence.

  10. Observation of large nematic domains of discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shinde, Abhijeet; Wang, Xuezhen; Cheng, Zhengdong

    2015-03-01

    Discotic liquid crystals are commonly found in nature in the form of clay, nacre. They are technologically important in applications such as conductive polymers, semiconductors and photovoltaics. Size and its distribution play an important role in their self-assemblies. Here we observed large nematic domains of discotic liquid crystals grown on a time scale of months. The development of such domains is observed to be faster for nanodisks that relatively smaller in size. The orientation of nanodisks is affected by gravity and inter-particle interactions which are yet to be fully understood.

  11. Thermo - optical studies of nematic liquid crystal elastomer

    NASA Astrophysics Data System (ADS)

    Gharde, Rita A.; Mani, Santosh A.; Lal, Suman; Tripathi, S. K.; Khosla, Samriti

    2014-10-01

    The influences of structural parameter on thermo - optical properties of Nematic Liquid Crystal Elastomer (NLCE) were studied using Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) Spectroscopy and Polarizing Microscopy Studies (PMS). Dielectric Measurement was also performed in addition to these measurements. The NLCE used in the present study were synthesized, has a unique coupling between anisotropic order of Liquid crystal component and elasticity of polymer network. The investigations were performed as function of temperature during heating and cooling processes. The study revealed the correlation of thermo - optical behavior of NLCE with the crosslinking agent and temperature.

  12. Pattern-induced anchoring transitions in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Rojas-Gómez, Óscar A.; Romero-Enrique, José M.; Silvestre, Nuno M.; Telo da Gama, Margarida M.

    2017-02-01

    In this paper we revisit the problem of a nematic liquid crystal in contact with patterned substrates. The substrate is modelled as a periodic array of parallel infinite grooves of well-defined cross-section sculpted on a chemically homogeneous substrate which favours local homeotropic anchoring of the nematic. We consider three cases: a sawtooth, a crenellated and a sinusoidal substrate. We analyse this problem within the modified Frank-Oseen formalism. We argue that, for substrate periodicities much larger than the extrapolation length, the existence of different nematic textures with distinct far-field orientations, as well as the anchoring transitions between them, are associated with the presence of topological defects either on or close to the substrate. For the sawtooth and sinusoidal cases, we observe a homeotropic to planar anchoring transition as the substrate roughness increases. On the other hand, a homeotropic to oblique anchoring transition is observed for crenellated substrates. In this case, the anchoring phase diagram shows a complex dependence on the substrate roughness and substrate anchoring strength.

  13. Material Flows in an Active Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Decamp, Stephen; Redner, Gabriel; Baskaran, Aparna; Hagan, Michael; Dogic, Zvonimir

    Active matter systems are composed of energy consuming constituent components which drive far-from-equilibrium dynamics. As such, active materials exhibit energetic states which would be unfavorable in passive, equilibrium materials. We study one such material; an active nematic liquid crystal which exists in a dynamical steady state where +/-1/2 defects are continuously generated and annihilated at a constant rate. The active nematic is composed of micron-sized microtubule filaments which are highly concentrated into a quasi-2D film that resides on an oil-water interface. Kinesin motor proteins drive inter-filament sliding which results in net extensile motion of the microtubule film. Notably, we find a mesophase in which motile +1/2 defects, acquire system-spanning orientational order. Currently, we are tracking material flows generated by the active stresses in the system to measure length scales at which energy is dissipated, and to measure the relation between internally generated flows and bend in the nematic field.

  14. Pattern-induced anchoring transitions in nematic liquid crystals.

    PubMed

    Rojas-Gómez, Óscar A; Romero-Enrique, José M; Silvestre, Nuno M; Telo da Gama, Margarida M

    2017-02-15

    In this paper we revisit the problem of a nematic liquid crystal in contact with patterned substrates. The substrate is modelled as a periodic array of parallel infinite grooves of well-defined cross-section sculpted on a chemically homogeneous substrate which favours local homeotropic anchoring of the nematic. We consider three cases: a sawtooth, a crenellated and a sinusoidal substrate. We analyse this problem within the modified Frank-Oseen formalism. We argue that, for substrate periodicities much larger than the extrapolation length, the existence of different nematic textures with distinct far-field orientations, as well as the anchoring transitions between them, are associated with the presence of topological defects either on or close to the substrate. For the sawtooth and sinusoidal cases, we observe a homeotropic to planar anchoring transition as the substrate roughness increases. On the other hand, a homeotropic to oblique anchoring transition is observed for crenellated substrates. In this case, the anchoring phase diagram shows a complex dependence on the substrate roughness and substrate anchoring strength.

  15. Dispersion and Excluded Volume Interactions in Nematic Liquid Crystals.

    NASA Astrophysics Data System (ADS)

    Poliks, Mark David

    1988-12-01

    The effectiveness of the potential of mean torque in accounting for solute orientation is explored. It is described by repulsive (excluded volume) and attractive forces (dispersion) and is tested using rigid, semi-flexible and flexible solutes dissolved in nematic phases. For rigid molecules (benzenes and anthracene) the attractive short range potential gave the best results. For anthracene the results indicated that the potential can discriminate between solute/solvent interactions. For wholly aliphatic solvents the excluded volume forces gave excellent agreement, as did the attractive forces for the aromatic solvents. For the semi-flexible molecule, biphenyl, quadrupole splittings were simulated using the internal torsion angle as a parameter. The values of this angle were predicted to vary systematically with temperature. Using crystallographic and idealized structural data as the starting points for the calculation, the structure of PAA in the nematic phase was estimated. Both the internal angle and the aromatic proton valence angles were determined. Flexible, "siamese-twin" liquid crystals having an internal per-deuterated spacer consisting of ten methylenes were studied. They differed only in the length of the aliphatic tails (5105, 101010). The quadrupole splittings of both twins dissolved in the nematic phase of BCH-S1131 were identical. Quantitative simulations of the splittings using standard RIS geometry and excluded volume forces were successful. In the bulk nematic phase the order parameter of 5105 was greater than 101010. The difference was interpreted as a dilution effect of the mesogenic cores by aliphatic tails. Simulations indicated the conformation of the spacer is highly extended. As parameterized the required strength of the mean field is a strong function of the molecular dimensions, suggesting that the current description still is incomplete.

  16. Flexoelectricity in an oxadiazole bent-core nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Kaur, S.; Panov, V. P.; Greco, C.; Ferrarini, A.; Görtz, V.; Goodby, J. W.; Gleeson, H. F.

    2014-12-01

    We have determined experimentally the magnitude of the difference in the splay and bend flexoelectric coefficients, |e1 - e3|, of an oxadiazole bent-core liquid crystal by measuring the critical voltage for the formation of flexodomains together with their wave number. The coefficient |e1 - e3| is found to be a factor of 2-3 times higher than in most conventional calamitic nematic liquid crystals, varying from 8 pCm-1 to 20 pCm-1 across the ˜60 K—wide nematic regime. We have also calculated the individual flexoelectric coefficients e1 and e3, with the dipolar and quadrupolar contributions of the bent-core liquid crystal by combining density functional theory calculations with a molecular field approach and atomistic modelling. Interestingly, the magnitude of the bend flexoelectric coefficient is found to be rather small, in contrast to common expectations for bent-core molecules. The calculations are in excellent agreement with the experimental values, offering an insight into how molecular parameters contribute to the flexoelectric coefficients and illustrating a huge potential for the prediction of flexoelectric behaviour in bent-core liquid crystals.

  17. Flexoelectricity in an oxadiazole bent-core nematic liquid crystal

    SciTech Connect

    Kaur, S. Panov, V. P.; Gleeson, H. F.; Greco, C.; Ferrarini, A.; Görtz, V.; Goodby, J. W.

    2014-12-01

    We have determined experimentally the magnitude of the difference in the splay and bend flexoelectric coefficients, |e{sub 1} − e{sub 3}|, of an oxadiazole bent-core liquid crystal by measuring the critical voltage for the formation of flexodomains together with their wave number. The coefficient |e{sub 1} − e{sub 3}| is found to be a factor of 2–3 times higher than in most conventional calamitic nematic liquid crystals, varying from 8 pCm{sup −1} to 20 pCm{sup −1} across the ∼60 K—wide nematic regime. We have also calculated the individual flexoelectric coefficients e{sub 1} and e{sub 3}, with the dipolar and quadrupolar contributions of the bent-core liquid crystal by combining density functional theory calculations with a molecular field approach and atomistic modelling. Interestingly, the magnitude of the bend flexoelectric coefficient is found to be rather small, in contrast to common expectations for bent-core molecules. The calculations are in excellent agreement with the experimental values, offering an insight into how molecular parameters contribute to the flexoelectric coefficients and illustrating a huge potential for the prediction of flexoelectric behaviour in bent-core liquid crystals.

  18. Nematic liquid crystals on sinusoidal channels: the zigzag instability

    NASA Astrophysics Data System (ADS)

    Silvestre, Nuno M.; Romero-Enrique, Jose M.; Telo da Gama, Margarida M.

    2017-01-01

    Substrates which are chemically or topographically patterned induce a variety of liquid crystal textures. The response of the liquid crystal to competing surface orientations, typical of patterned substrates, is determined by the anisotropy of the elastic constants and the interplay of the relevant lengths scales, such as the correlation length and the surface geometrical parameters. Transitions between different textures, usually with different symmetries, may occur under a wide range of conditions. We use the Landau-de Gennes free energy to investigate the texture of nematics in sinusoidal channels with parallel anchoring bounded by nematic-air interfaces that favour perpendicular (hometropic) anchoring. In micron size channels 5CB was observed to exhibit a non-trivial texture characterized by a disclination line, within the channel, which is broken into a zigzag pattern. Our calculations reveal that when the elastic anisotropy of the nematic does not favour twist distortions the defect is a straight disclination line that runs along the channel, which breaks into a zigzag pattern with a characteristic period, when the twist elastic constant becomes sufficiently small when compared to the splay and bend constants. The transition occurs through a twist instability that drives the defect line to rotate from its original position. The interplay between the energetically favourable twist distortions that induce the defect rotation and the liquid crystal anchoring at the surfaces leads to the zigzag pattern. We investigate in detail the dependence of the periodicity of the zigzag pattern on the geometrical parameters of the sinusoidal channels, which in line with the experimental results is found to be non-linear.

  19. Nematic liquid crystals on sinusoidal channels: the zigzag instability.

    PubMed

    Silvestre, Nuno M; Romero-Enrique, Jose M; Telo da Gama, Margarida M

    2017-01-11

    Substrates which are chemically or topographically patterned induce a variety of liquid crystal textures. The response of the liquid crystal to competing surface orientations, typical of patterned substrates, is determined by the anisotropy of the elastic constants and the interplay of the relevant lengths scales, such as the correlation length and the surface geometrical parameters. Transitions between different textures, usually with different symmetries, may occur under a wide range of conditions. We use the Landau-de Gennes free energy to investigate the texture of nematics in sinusoidal channels with parallel anchoring bounded by nematic-air interfaces that favour perpendicular (hometropic) anchoring. In micron size channels 5CB was observed to exhibit a non-trivial texture characterized by a disclination line, within the channel, which is broken into a zigzag pattern. Our calculations reveal that when the elastic anisotropy of the nematic does not favour twist distortions the defect is a straight disclination line that runs along the channel, which breaks into a zigzag pattern with a characteristic period, when the twist elastic constant becomes sufficiently small when compared to the splay and bend constants. The transition occurs through a twist instability that drives the defect line to rotate from its original position. The interplay between the energetically favourable twist distortions that induce the defect rotation and the liquid crystal anchoring at the surfaces leads to the zigzag pattern. We investigate in detail the dependence of the periodicity of the zigzag pattern on the geometrical parameters of the sinusoidal channels, which in line with the experimental results is found to be non-linear.

  20. Lyotropic liquid crystal to soft mesocrystal transformation in hydrated salt-surfactant mixtures.

    PubMed

    Albayrak, Cemal; Barım, Gözde; Dag, Ömer

    2013-10-25

    Hydrated CaCl2, LiI, and MgCl2 salts induce self-assembly in nonionic surfactants (such as C12H25(OCH2CH2)10OH) to form lyotropic liquid-crystalline (LLC) mesophases that undergo a phase transition to a new type of soft mesocrystal (SMC) under ambient conditions. The SMC samples can be obtained by aging the LLC samples, which were prepared as thin films by spin-coating, dip-coating, or drop-casting of a clear homogenized solution of water, salt, and surfactant over a substrate surface. The LLC mesophase exists up to a salt/surfactant mole ratio of 8, 10, and 4 (corresponding to 59, 68, and 40 wt% salt/surfactant) in the CaCl2, LiI, and MgCl2 mesophases, respectively. The SMC phase can transform back to a LLC mesophase at a higher relative humidity. The phase transformations have been monitored using powder X-ray diffraction (PXRD), polarized optical microscopy (POM), and FTIR techniques. The LLC mesophases only diffract at small angles, but the SMCs diffract at both small and wide angles. The broad surfactant features in the FTIR spectra of the LLC mesophases become sharp and well resolved upon SMC formation. The unit cell of the mesophases expands upon SMC transformation, in which the expansion is largest in the MgCl2 and smallest in the CaCl2 systems. The POM images of the SMCs display birefringent textures with well-defined edges, similar to crystals. However, the surface of the crystals is highly patterned, like buckling patterns, which indicates that these crystals are quite soft. This unusual phase behavior could be beneficial in designing new soft materials in the fields of phase-changing materials and mesostructured materials, and it demonstrates the richness of the phase behavior in the salt-surfactant mesophases.

  1. Ordering of Glass Rods in Nematic and Cholesteric Liquid Crystals

    DTIC Science & Technology

    2011-12-01

    C. Chen, C. Wang, F. Chu, C. Chao, C. Kang, P. Chou, and Y. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and...Lapointe, D. H. Reich, and R. L. Leheny, “Manipulation and organization of ferromagnetic nanowires by patterned nematic liquid crystals,” Langmuir...24(19), 11175–11181 (2008). 15. C. Lapointe, N. Cappallo, D. H. Reich, and R. L. Leheny, “Static and dynamic properties of magnetic nanowires in

  2. Surface-induced structures in nematic liquid crystal colloids

    NASA Astrophysics Data System (ADS)

    Chernyshuk, S. B.; Tovkach, O. M.; Lev, B. I.

    2014-08-01

    We predict theoretically the existence of a class of colloidal structures in nematic liquid crystal (NLC) cells, which are induced by surface patterns on the plates of the cell (like cells with UV-irradiated polyamide surfaces using micron sized masks in front of the cell). These bulk structures arise from nonuniform boundary conditions for the director distortions at the confining surfaces. In particular, we demonstrate that quadrupole spherical particles (like spheres with boojums or Saturn-ring director configurations) form a square lattice inside a planar NLC cell, which has checkerboard patterns on both its plates.

  3. The Viscoelastic Properties of Nematic Monodomains Containing Liquid Crystal Polymers.

    NASA Astrophysics Data System (ADS)

    Gu, Dongfeng

    The work presented here investigates the viscoelastic properties of nematic materials containing liquid crystal polymers (LCP). We focus on how the elastic constants and the viscosity coefficients of the mixture systems are influenced by polymer architectures. In dynamic light scattering studies of the relaxation of the director orientation fluctuations for the splay, twist, and bend deformation modes, decrease of the relaxation rates was observed when LCPs were dissolved into low molar mass nematics (LMMN). For the side-chain LCPs, the slowing down in the bend mode is comparable to or larger than those of the splay and twist modes. For main-chain LCPs, the relative changes in the relaxation rates for the twist and splay modes are about one order of magnitude larger than that for the bend mode. The results of light scattering under an electric field show that the decrease in the twist relaxation rate is due to a large increase in the twist viscosity and a minor decrease in the twist elastic constant. These changes were found to increase with decrease of the spacer length, with increase of molecular weight, and with decrease of the backbone flexibility. In Freedericksz transition measurements, the splay and bend elastic constants and the dielectric anisotropies of the nematic mixtures were determined and the values are 5~15% lower than those of the pure solvent. From the analysis of the results of Freedericksz transition and light scattering experiments, a complete set of the elastic constants and viscosity coefficients corresponding to the three director deformation modes were obtained for the LCP mixtures. The changes in the viscosity coefficients due to addition of LCPs were analysed to estimate the anisotropic shapes of the polymer backbone via a hydrodynamic model. The results suggest that an oblate backbone configuration is maintained by the side-chain LCPs and a prolate chain configuration appears for the main-chain LCPs. The rheological behavior of a side

  4. Simulation of coherent backscattering of light in nematic liquid crystals

    SciTech Connect

    Aksenova, E. V. Kokorin, D. I. Romanov, V. P.

    2012-08-15

    Multiple scattering of light by the fluctuations of the director in a nematic liquid crystal (NLC) aligned by a magnetic field is considered. A peak of coherent backscattering is calculated by numerical simulation. Since the indicatrix of single scattering for a liquid crystal (LC) is known exactly, the calculations are carried out without any simplifying assumptions on the parameters of the liquid crystal. Multiple scattering is simulated as a random walk of photons in the medium. A peak of coherent backscattering in such a medium is very narrow; therefore, the so-called semianalytical method is applied. The parameters of the backscattering peak obtained by numerical simulation are compared with the available experimental data and with the results of analytical approximations. It turns out that the experimental data are in good agreement with the results of simulation. The results of numerical simulation adequately describe the anisotropy and the width of the backscattering peak.

  5. Substrate-induced gliding in a nematic liquid crystal layer

    NASA Astrophysics Data System (ADS)

    Mema, E.; Kondic, L.; Cummings, L. J.

    2015-12-01

    We consider the interaction between nematic liquid crystals (NLCs) and polymer substrates. Such substrates can interact with NLCs, exhibiting a phenomenon known as director gliding: the preferred orientation of the NLC molecules at the interface changes on time scales that are slow relative to the elastic relaxation time scale of the NLC. We present two models for gliding, inspired by experiments that investigate the interaction between the NLC and a polymer substrate. These models, though simple, lead to nontrivial results, including loss of bistability under gliding. Perhaps surprisingly, we find that externally imposed switching between the steady states of a bistable system may reverse the effect of gliding, preventing loss of bistability if switching is sufficiently frequent. Our findings may be of relevance to a variety of technological applications involving liquid crystal devices, and particularly to a new generation of flexible liquid crystal displays that implement polymeric substrates.

  6. Propylammonium nitrate as a solvent for amphiphile self-assembly into micelles, lyotropic liquid crystals, and microemulsions.

    PubMed

    Atkin, Rob; Bobillier, Sophie M C; Warr, Gregory G

    2010-01-28

    The phase behavior and self-assembled microstructures of a range of oligo(oxyethylene)-n-alkyl ether (C(i)E(j)) surfactants has been investigated in propylammonium nitrate (PAN), a room temperature ionic liquid. Micelles and single-phase microemulsions were all found to form at alkyl chain lengths from dodecyl to octadecyl, and lyotropic liquid crystals formed with hexadecyl chains or longer. Small-angle neutron scattering (SANS) shows that self-assembly occurs by solvophobic interactions driving the aggregation of the alkyl chains, but several results indicate that these are weaker in PAN than in water or ethylammonium nitrate, due chiefly to the hydrophobicity of PAN. Longer alkyl chains are needed for lyotropic liquid crystals to form, and higher surfactant concentrations are needed to form a single phase microemulsion. Conductivity shows these microemulsions to be weakly structured, and relatively insensitive to oil or surfactant molecular structure, unlike water-based systems. However, SANS contrast variation reveals a nanosegregation of oil from the alkyl tails of surfactants within the microemulsion, and may suggest a cosurfactant-like role for the propylammonium cation. Molecular areas within microemulsions and lamellar phases are larger than corresponding water- or ethylammonium nitrate-based systems due to the large molecular volume of the solvating PANs.

  7. Enhanced energy transfer efficiency and stability of europium β-diketonate complex in ionic liquid-based lyotropic liquid crystals.

    PubMed

    Yi, Sijing; Wang, Jiao; Chen, Xiao

    2015-08-21

    Luminescent materials from europium β-diketonate complex in ionic liquids (ILs) could achieve enhanced luminescence efficiencies and photostabilities. However, the question of how to provide a feasible and environmentally-friendly way to distribute these lanthanide complexes uniformly and stably within IL-based matrix remains a significant challenge. Here, a soft luminescent material from IL-mediated lyotropic liquid crystals (LLCs) doped with [Bmim][Eu(TTA)4] (Bmim = 1-butyl-3-methyl imidazolium, TTA = 2-thenoyltrifluoroacetone) has been constructed by a convenient self-assembling method. The hexagonal or lamellar LLC phases could be identified by small-angle X-ray scattering (SAXS) measurements. All LLC samples exhibited intense red luminescence upon exposure to ultraviolet radiation. The good dispersibility of the complexes in LLC matrices and their good photostability (as in ILs) was verified by steady-state luminescence spectroscopy. The isolated and unique characteristics of the microenvironment within the LLCs were noteworthy to decrease the nonradiative deactivation of the excited states, thereby allowing more efficient energy transfer and longer lifetimes than those in pure complex or IL solutions. Both the luminescent property and the stability of the LLC materials were different in different phase structures, the complexes behaving better in the lamellar phase than in the hexagonal one. The findings reported herein will not only present an easy way to design novel luminescent lanthanide β-diketonate soft materials, but also provide a useful reference to better understand the LLC phase structure effects on the luminescence properties.

  8. Interaction between two spherical particles in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun-Ichi; Stark, Holger; Yoneya, Makoto; Yokoyama, Hiroshi

    2004-04-01

    We numerically investigate the interaction between two spherical particles in a nematic liquid crystal mediated by elastic distortions in the orientational order. We pay attention to the cases where two particles with equal radii R0 impose rigid normal anchoring on their surfaces and carry a pointlike topological defect referred to as a hyperbolic hedgehog. To describe the geometry of our system, we use bispherical coordinates, which prove useful in the implementation of boundary conditions at the particle surfaces and at infinity. We adopt the Landau de Gennes continuum theory in terms of a second-rank tensor order parameter Qij for the description of the orientational order of a nematic liquid crystal. We also utilize an adaptive mesh refinement scheme that has proven to be an efficient way of dealing with topological defects whose core size is much smaller than the particle size. When the two “dipoles,” composed of a particle and a hyperbolic hedgehog, are in parallel directions, the two-particle interaction potential is attractive for large interparticle distances D and proportional to D-3 as expected from the form of the dipole-dipole interaction, until the well-defined potential minimum at D≃2.46 R0 is reached. For the antiparallel configuration with no hedgehogs between the two particles, the interaction potential is repulsive and behaves as D-2 for D≲10 R0 , which is stronger than the dipole-dipole repulsion ( ˜ D-3 ) expected theoretically as an asymptotic behavior for large D .

  9. Mesogenic linear azobenzene polymer-stabilized nematic liquid crystals

    SciTech Connect

    Bagramyan, Arutyun; Thibault-Maheu, Olivier; Galstian, Tigran; Bessette, Andre; Zhao, Yue

    2011-03-15

    We describe the detailed study of a polymer stabilized liquid crystal compound, which was created by using a reactive (monofunctional) azobenzene mesogenic guest and a nematic liquid crystal host. The resonant interaction of light with the azobenzene segment of the guest and the mesogenic nature of the latter enable the optical alignment of host molecules and the permanent fixing of that orientation by means of UV polymerization of the guest. We use dynamic spectral, polarimetric, and scattering techniques to study the orientational ordering and interaction of the guest-host system. We show that the uniform UV polymerization of this compound results in a low scattering material system with dielectric and elastic properties that are relatively close to those of the host, while still providing the capacity for optical configuration of its morphology.

  10. Chirality Differentiation by Diffusion in Chiral Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yang, Deng-Ke

    2017-01-01

    Chirality is of great importance in the living world. It helps differentiate biochemical reactions such as those that take place during digestion. It may also help differentiate physical processes such as diffusion. Aiming to study the latter effect, we investigate the diffusion of guest chiral molecules in chiral nematic (cholesteric) liquid-crystal hosts. We discover that the diffusion dramatically depends on the handedness of the guest and host molecules and the chiral differentiation is greatly enhanced by the proper alignment of the liquid-crystal host. The diffusion of a guest chiral molecule in a chiral host with the same handedness is much faster than in a chiral host with opposite handedness. We also observe that the differentiation of chirality depends on the diffusion direction with respect to the twisting direction (helical axis). These results might be important in understanding effects of chirality on physical processes that take place in biological organisms. In addition, this effect could be utilized for enantiomer separation.

  11. Finding exact spatial soliton profiles in nematic liquid crystals.

    PubMed

    Beeckman, J; Neyts, K; Vanbrabant, P J M; James, R; Fernandez, F A

    2010-02-15

    Finding exact analytical soliton profile solutions is only possible for certain types of non-linear media. In most cases one must resort to numerical techniques to find the soliton profile. In this work we present numerical calculations of spatial soliton profiles in nematic liquid crystals. The nonlinearity is governed by the optical-field-induced liquid crystal director reorientation, which is described by a system of coupled nonlinear partial differential equations. The soliton profile is found using an iterative scheme whereby the induced waveguide and mode profiles are calculated alternatively until convergence is achieved. In this way it is also possible to find higher order solitons. The results in this work can be used to accurately design all-optical interconnections with soliton beams.

  12. Substrate induced gliding for a nematic liquid crystal layer

    NASA Astrophysics Data System (ADS)

    Mema, Ensela; Cummings, Linda; Kondic, Lou

    2015-03-01

    The interaction between nematic liquid crystals (NLC) and polymer substrates is of current industrial interest, due to a desire to manufacture a new generation of flexible Liquid Crystal Displays (LCDs) for use in portable electronic devices. Polymer substrates present challenges because they can interact with the NLC, exhibiting a phenomenon known as gliding: the preferred orientation of the NLC molecules at the interface changes over timescales of minutes to hours. We present two models for gliding, inspired by the physics and chemistry of the interaction between the NLC and polymer substrate. These models, though simple, lead to non-trivial results, including loss of bistability, a finding that may have implications for display devices. Supported by NSF Grant No. DMS-1211713.

  13. Chiral power change upon photoisomerization in twisted nematic liquid crystals.

    PubMed

    Simoncelli, Sabrina; Aramendía, Pedro F

    2015-05-05

    In this work, we use the photoisomerization of azobenzenes, a phenanthrospirooxazine, and a fulgide in a twisted nematic liquid crystalline phase to change the chiral twisting power of the system. The changes are probed by the rotatory power of linearly polarized light. Time resolved and steady state experiments are carried out. The chiral change and the photoisomerization process have similar characteristic recovery times and activation energy, thus probing that the change is induced by the modification in the chemical composition of the photochromic dopant system. The amplitude of the light twisting power change correlates with the order change in the liquid crystal (LC) but not with the modification in the absorption characteristics of the system. This indicates that the driving force of the chiral change is the microscopic order modification in the LC phase that affects the helical pitch of the phase.

  14. Complex dendrimer-lyotropic liquid crystalline systems: structural behavior and interactions.

    PubMed

    Bitan-Cherbakovsky, Liron; Libster, Dima; Aserin, Abraham; Garti, Nissim

    2011-10-27

    The incorporation of dendrimer into three lyotropic liquid crystalline (LLCs) mesophases is demonstrated for the first time. A second generation (G2) of poly(propylene imine) dendrimer (PPI) was solubilized into lamellar, diamond reverse cubic, and reverse hexagonal LLCs composed of glycerol monooleate (GMO), and water (and D-α-tocopherol in the H(II) system). The combination of PPI with LLCs may provide an advantageous drug delivery system. Cross-polarized light microscope, small-angle X-ray scattering (SAXS), and attenuated total reflectance Fourier transform infrared (ATR-FTIR) were utilized to study the structural behavior of the mesophases, the localization of PPI within the system, and the interactions between the guest molecule and the system's components. It was revealed that PPI-G2 functioned as a "water pump", competing with the lipid headgroups for water binding. As a result, L(α)→H(II) and Q(224)→H(II) structural shifts were detected (at 10 wt % PPI-G2 content), probably caused by the dehydration of monoolein headgroups and subsequent increase of the lipid's critical packing parameter (CPP). In the case of H(II), as a result of the balance between the dehydration of the monoolein headgroups and the significant presence of PPI within the interfacial region, increasing the quantity of hydrogen bonds, no structural transitions occurred. ATR-FTIR analysis demonstrated a downward shift of the H-O-H (water), as a result of PPI-G2 embedment, suggesting an increase in the mean water-water H-bond angle resulting from binding PPI-G2 to the water network. Additionally, the GMO hydroxyl groups at β- and γ-C-OH positions revealed a partial interaction of hydrogen bonds with N-H functional groups of the protonated PPI-G2. Other GMO interfacial functional groups were shown to interact with the PPI-G2, in parallel with the GMO dehydration phenomenon. In the future, these outcomes can be used to design advanced drug delivery systems, allowing administration of

  15. Triply Periodic Multiply Continuous Lyotropic Liquid Crystals Derived from Gemini Surfactants

    NASA Astrophysics Data System (ADS)

    Sorenson, Gregory P.

    A subtle balance of non-covalent interactions directs the self-assembly of small molecule amphiphiles in aqueous media into supramolecular assemblies known as aqueous lyotropic liquid crystals (LLCs). Aqueous LLCs form many intricate, ordered nanoscale morphologies comprising distinct and structurally periodic hydrophobic and hydrophilic domains. Triply periodic multiply continuous (TPMC) LLC morphologies, which exhibit continuous hydrophobic and aqueous domains that percolate in three-dimensions, are of particular interest by virtue of their potentially wide ranging technological applications including advanced membranes for electrical energy storage and utilization, therapeutic delivery, and templates for new organic and inorganic mesoporous materials. However, robust molecular design criteria for amphiphiles that readily form TMPC morphologies are notably lacking in the literature. Recent reports have described the increased propensity for quaternary ammonium and phosphonium gemini surfactants, derived from dimerization of traditional single-tail surfactants at or near the hydrophilic headgroups through a hydrophobic linker, to stabilize TMPC mesophases. The generality of this surfactant design strategy remains untested in other amphiphiles classes bearing different headgroup chemistries. In this thesis, we describe the unusual aqueous LLC phase behavior of series of gemini dicarboxylate amphiphiles as a function of the alkyl tail length, hydrophobic linker length, and the charge-compensating counterion. These dicarboxylate surfactants unexpectedly exhibit a strong propensity to form TPMC LLCs over amphiphile concentration windows as wide as 20 wt% over a temperature range T = 25--100 °C. Through systematic modifications of the length of the hydrophobic linker and alkyl tails, we use small-angle X-ray scattering to demonstrate that these surfactants adopt new LLC mesophases including the first report of a single-gyroid phase (I4132 symmetry) and a new

  16. Development of low anchoring strength liquid crystal mixtures for bistable nematic displays

    NASA Astrophysics Data System (ADS)

    Stoenescu, D.; Gallaire, D.; Faget, L.; Lamarque-Forget, S.; Joly, S.; Dubois, J.-C.; Martinot-Lagarde, Ph.; Dozov, I.

    2006-02-01

    The recent Bistable Nematic (BiNem (R)) LCD technology presents long term bistability, high level passive matrix multiplexing and high optical quality. The BiNem device, based on anchoring breaking, needs specific low anchoring strength materials - alignment layers and liquid crystal mixtures. We present here our approach to develop nematic mixtures with wide enough temperature range and low zenithal anchoring energy.

  17. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    PubMed Central

    Dumée, Ludovic F.; Lemoine, Jean-Baptiste; Ancel, Alice; Hameed, Nishar; He, Li; Kong, Lingxue

    2015-01-01

    The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation. PMID:28347094

  18. Nematic liquid crystals at rough and fluctuating interfaces.

    PubMed

    Elgeti, J; Schmid, F

    2005-12-01

    Nematic liquid crystals at rough and fluctuating interfaces are analyzed within the Frank elastic theory and the Landau-de Gennes theory. We study specifically interfaces that locally favor planar anchoring. In the first part we reconsider the phenomenon of Berreman anchoring on fixed rough surfaces, and derive new simple expressions for the corresponding azimuthal anchoring energy. Surprisingly, we find that for strongly aligning surfaces, it depends only on the geometrical surface anisotropy and the bulk elastic constants, and not on the precise values of the chemical surface parameters. In the second part, we calculate the capillary waves at nematic-isotropic interfaces. If one neglects elastic interactions, the capillary wave spectrum is characterized by an anisotropic interfacial tension. With elastic interactions, the interfacial tension, i.e., the coefficient of the leading q(2) term of the capillary wave spectrum, becomes isotropic. However, the elastic interactions introduce a strongly anisotropic cubic q(3) term. The amplitudes of capillary waves are largest in the direction perpendicular to the director. These results are in agreement with previous molecular dynamics simulations.

  19. Liquid crystal gratings from nematic to blue phase

    NASA Astrophysics Data System (ADS)

    Lu, Yan-qing; Hu, Wei; Lin, Xiao-wen; Srivastava, Abhishek; Chigrinov, Vladimir G.

    2012-10-01

    Some of our recent progress on liquid crystal (LC) gratings, from nematic to blue phase, is reviewed in this invited talk. The first kind of grating is fabricated by periodically adjusting the LC directors to form alternate micro phase retarders and polarization rotators in a cell placed between crossed polarizers. The second one is demonstrated by means of photoalignment technique with alternate orthogonal homogeneously-aligned domains. To improve the response time of the gratings, several approaches are also proposed by using dual-frequency addressed nematic LC, ferroelectric LC and blue phase LC, which shows great performance including high transmittance, polarization independency and submillisecond response. At last, to obtain other controllable LC microstructures rather than simple 1D/2D gratings, we develop a micro-lithography system with a digital micro-mirror device as dynamic mask forms. It may instantly generate arbitrary micro-images on photoalignment layers and further guides the LC molecule orientations. Besides normal phase gratings, more complex patterns such as quasicrystal structures are demonstrated. Some new applications such as tunable multiport optical switching and vector beam generations are expected.

  20. Elastic constants and dynamics in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Humpert, Anja; Allen, Michael P.

    2015-09-01

    In this paper, we present molecular dynamics calculations of the Frank elastic constants, and associated time correlation functions, in nematic liquid crystals. We study two variants of the Gay-Berne potential, and use system sizes of half a million molecules, significantly larger than in previous studies of elastic behaviour. Equilibrium orientational fluctuations in reciprocal (k-) space were calculated, to determine the elastic constants by fitting at low |k|; our results indicate that small system size may be a source of inaccuracy in previous work. Furthermore, the dynamics of the Gay-Berne nematic were studied by calculating time correlation functions of components of the order tensor, together with associated components of the velocity field, for a set of wave vectors k. Confirming our earlier work, we found exponential decay for splay and twist correlations, and oscillatory exponential decay for the bend correlation. In this work, we confirm similar behaviour for the corresponding velocity components. In all cases, the decay rates, and oscillation frequencies, were found to be accurately proportional to k2 for small k, as predicted by the equations of nematodynamics. However, the observation of oscillatory bend fluctuations, and corresponding oscillatory shear flow decay, is in contradiction to the usual assumptions appearing in the literature, and in standard texts. We discuss the advantages and drawbacks of using large systems in these calculations.

  1. Fast switching from isotropic liquids to nematic liquid crystals: rotaxanes as smart fluids.

    PubMed

    He, Hao; Sevick, Edith M; Williams, David R M

    2015-11-28

    We examine a solution of rod-like piston-rotaxanes, which can switch their length by external excitation (for example optically) from a short state of length L to a long state of length qL. We show that this solution can exhibit a number of different behaviours. In particular it can rapidly switch from an isotropic to a nematic liquid crystalline state. There is a minimum ratio q* = 1.13 for which transitions from a pure isotropic state to a pure nematic state are possible. We present a phase-switching diagram, which gives the six possible behaviours for this system. It turns out that a large fraction of the phase switching diagram is occupied by the transition from a pure isotropic to a pure nematic state.

  2. Transparent laser damage resistant nematic liquid crystal cell "LCNP3"

    NASA Astrophysics Data System (ADS)

    Raszewski, Z.; Piecek, W.; Jaroszewicz, L.; Dąbrowski, R.; Nowinowski-Kruszelnicki, E.; Soms, L.; Olifierczuk, M.; Kędzierski, J.; Morawiak, P.; Mazur, R.; Miszczyk, E.; Mrukiewicz, M.; Kowiorski, K.

    2014-09-01

    There exists the problem in diagnostics of dense plasma (so-called Thomson diagnostics). For this purpose the plasma is illuminated by series of high energy laser pulses. The energy of each separate pulse is as large as 3 J, so it is impossible to generate a burst of such pulses by a single laser. In this situation, the pulses are generated by several independent lasers operating sequentially, and these pulses are to be directed along the same optical path. To form an optical path with λ = 1.064 μm and absolute value of the laser pulse energy of 3 J, a special refractive index matched twisted Nematic Liquid Crystal Cell of type LCNP3, with switching on time τON smaller than 3 μs was applied.

  3. Asymmetric dynamic phase holographic grating in nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Ren, Chang-Yu; Shi, Hong-Xin; Ai, Yan-Bao; Yin, Xiang-Bao; Wang, Feng; Ding, Hong-Wei

    2016-09-01

    A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal (NLC) was presented. An oblique incidence beam was used to record the thin asymmetric dynamic phase holographic grating. The diffraction efficiency we achieved is more than 40%, exceeding the theoretical limit for symmetric profile gratings. Both facts can be explained by assuming that a grating with an asymmetric saw-tooth profile is formed in the NLC. Finally, physical mechanism and mathematical model for characterizing the asymmetric phase holographic grating were presented, based on the photo-refractive-like (PR-like) effect. Project supported by the Science and Technology Programs of the Educational Committee of Heilongjiang Province, China (Grant No. 12541730) and the National Natural Science Foundation of China (Grant No. 61405057).

  4. Coherent backscattering of light in nematic liquid crystals

    SciTech Connect

    Aksenova, E. V. Kuz'min, V. L.; Romanov, V. P.

    2009-03-15

    Multiple light scattering by director fluctuations in nematic liquid crystals is considered. A uniform director orientation is assumed to be specified by an applied magnetic field. The coherent backscattering effect, which consists in the presence of a sharp light backscattering peak, is studied. The Bethe-Salpeter equation is used to calculate the multiple scattering intensity taking into account the contributions of ladder and cyclic diagrams. An analytical expression for the angular and polarization dependences of the coherent backscattering intensity is obtained in terms of the diffusion approximation. The calculation and experimental results are compared. The developed theory is shown to qualitatively describe the elliptical shape of the backscattering cone, to explain the absence of a coherent contribution for crossed polarizations, and to calculate the relative peak height.

  5. Dielectric Anisotropy of Gold Nanoparticle Colloids in Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Visco, Angelo; Foust, Jon; Mahmood, Rizwan

    We present electrical and optical studies of hexanethiol-treated gold nanoparticle (GNPs) colloids in 4-cyano-4 '-pentyl-biphenyl (5CB) liquid crystals. Preliminary data analysis suggests an unusual behavior of sudden drop and then rise in the dielectric anisotropy at a critical concentration of 0.0862% by wt. GNPs and a sudden rise and then drop in the nematic to isotropic transition temperature. Above the critical concentration the data level off to within the uncertainty of the experimental errors. This colloidal system will help us to understand the interaction and the effects of nanoparticles on the self-assembly of LC molecules and the manner in which these particles organize in LC. This study is important for further developments in nanotechnology, sharp and fast display panels, and within the medical field.

  6. Onset of electroconvection of homeotropically aligned nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Sheng-Qi; Éber, Nándor; Buka, Ágnes; Pesch, Werner; Ahlers, Guenter

    2006-10-01

    We present experimental measurements near the onset of electroconvection (EC) of homeotropically aligned nematic liquid crystals Phase 5A and MBBA. A voltage of amplitude 2V0 and frequency f was applied. With increasing V0 , EC occurred after the bend Freedericksz transition. We found supercritical bifurcations to EC that were either stationary bifurcations or Hopf bifurcations to traveling convection rolls, depending on the sample conductances. Results for the onset voltages Vc , the critical wave numbers kc , the obliqueness angles θc , and the traveling-wave (Hopf) frequencies at onset ωc over a range of sample conductances and driving frequencies are presented and compared, to the extent possible, with theoretical predictions. For the most part good agreement was found. However, the experiment revealed some unusual results for the orientations of the convection rolls relative to the direction selected by the Freedericksz domain.

  7. Soliton-like defects in nematic liquid crystal thin layers

    NASA Astrophysics Data System (ADS)

    Chuvyrov, A. N.; Krekhov, A. P.; Lebedev, Yu. A.; Timirov, Yu. I.

    2016-11-01

    The nonsingular soliton-like defects in plane nematic liquid crystal (NLC) layers and spherical NLC drops are experimentally detected and studied when the interaction of NLC molecules with a bounding surface is varied. The dynamics and the annihilation of nonsingular defects of opposite signs on a plane surface are investigated. Periodic transformations of the soliton-like defects in NLC drops in an electric field are detected. The theory of elasticity is used to show that the surface energy taken into account in the total free energy of NLC in the case of weak anchoring leads to the possibility of nonsingular solutions of a director equilibrium equation. The calculated pictures of director distribution in a plane NLC layer and in a spherical NLC drop characterized by weak surface anchoring agree well with the results of polarized light optical observations.

  8. Phase diagrams of orientational transitions in absorbing nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Zolot'ko, A. S.; Ochkin, V. N.; Smayev, M. P.; Shvetsov, S. A.

    2015-05-01

    A theory of orientational transitions in nematic liquid crystals (NLCs), which employs the expansion of optical torques acting on the NLC director with respect to the rotation angle, has been developed for NLCs with additives of conformationally active compounds under the action of optical and low-frequency electric and magnetic fields. Phase diagrams of NLCs are constructed as a function of the intensity and polarization of the light field, the strength of low-frequency electric field, and a parameter that characterizes the feedback between the rotation of the NLC director and optical torque. Conditions for the occurrence of first- and second-order transitions are determined. The proposed theory agrees with available experimental data.

  9. Phase diagrams of orientational transitions in absorbing nematic liquid crystals

    SciTech Connect

    Zolot’ko, A. S. Ochkin, V. N.; Smayev, M. P.; Shvetsov, S. A.

    2015-05-15

    A theory of orientational transitions in nematic liquid crystals (NLCs), which employs the expansion of optical torques acting on the NLC director with respect to the rotation angle, has been developed for NLCs with additives of conformationally active compounds under the action of optical and low-frequency electric and magnetic fields. Phase diagrams of NLCs are constructed as a function of the intensity and polarization of the light field, the strength of low-frequency electric field, and a parameter that characterizes the feedback between the rotation of the NLC director and optical torque. Conditions for the occurrence of first- and second-order transitions are determined. The proposed theory agrees with available experimental data.

  10. Branched quaternary ammonium amphiphiles: nematic ionic liquid crystals near room temperature.

    PubMed

    Li, Wen; Zhang, Jing; Li, Bao; Zhang, Mingliang; Wu, Lixin

    2009-09-21

    Branched quaternary ammonium molecules were synthesized and characterized by calorimetric, optical and X-ray diffraction studies; two of the molecules exhibited interesting nematic liquid crystalline behavior close to room temperature.

  11. Thermochromic Behavior of a Novel Nematic Liquid Crystal Mixture:. Effects of Chiral Doping

    NASA Astrophysics Data System (ADS)

    Kapila, Shikha; Raina, K. K.

    Chirality was induced in a room temperature nematic liquid crystalline mixture. The phase transitions of doped samples were studied and thermochromic response of the mixture was investigated via RGB (Red-Green-Blue) and Hue measurements.

  12. Strong optical diffraction in a nematic liquid crystal with high nonlinearity.

    PubMed

    Durbin, S D; Arakelian, S M; Shen, Y R

    1982-04-01

    Quantitative results of measurements on multiorder diffraction of light from a laser-induced phase grating in a nematic liquid crystal with high optical nonlinearity are presented. Theoretical calculations using a nonperturbative approach show good agreement with experiment.

  13. A nonaqueous lyotropic liquid crystal fabricated by a polyoxyethylene amphiphile in protic ionic liquid.

    PubMed

    Ma, Fumin; Chen, Xiao; Zhao, Yurong; Wang, Xudong; Li, Qiuhong; Lv, Chao; Yue, Xiu

    2010-06-01

    The aggregation behaviors of oleyl polyoxyethylene (10) ether, Brij 97, in room temperature ionic liquids, ethylammonium nitrate (EAN), pyrrolidinium nitrate ([Pyrr][NO(3)]), ethylammonium butyrate (EAB), 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF(6)]), and 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), have been investigated. Only in the Brij 97/EAN binary system is the hexagonal liquid crystalline phase formed, and its ordering is found to decrease with increasing temperature. The lattice spacing values measured from the small-angle X-ray scattering (SAXS) shrink with reduction of ionic liquid content at room temperature. The general rules for aggregate formation in these ionic liquids are discussed and compared with that in water. A degraded ability to produce the ordered self-assembly of Brij 97 from H(2)O to EAN to [Bmim][PF(6)], [Bmim][BF(4)], [Pyrr][NO(3)], and EAB is found and analyzed based on the molecular packing and Gordon parameters and also hydrogen-bonding or solvophobic interactions. Steady-shear rheological measurements combined with the frequency sweep data indicate the highly viscoelastic nature of this liquid crystalline phase.

  14. Dynamics of disk pairs in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Antipova, Alena; Denniston, Colin

    2016-11-01

    We use a hybrid lattice Boltzmann method to study the behavior of sets of ferromagnetic colloidal disks in a nematic liquid crystal. When a weak rotating magnetic field acts on the system, the disks rotate following the magnetic field. This leads to a distortion in the liquid crystal that drives translational motion of the disks. If the concentration of disks is high, disks get locked together: a stable chain configuration is created, where each disk lays on the nearest neighbor. For intermediate concentrations of disks, a different behavior is observed. When disks are rotated by the magnetic field by more than 90∘ from their initial orientation, the distortion in the liquid crystal leads to a simultaneous flip of both disks. The final disk positions depends only weakly on the initial configuration. Consecutive rotations of magnetic field push disks towards an equidistant configuration. Periodicity of the systems studied and analysis of the flipping motion of a single disk imply that one can use weak rotating magnetic fields to create stable crystal structures of disks.

  15. Generation of harmonics and supercontinuum in nematic liquid crystals

    SciTech Connect

    Nyushkov, B N; Trashkeev, S I; Klementyev, Vasilii M; Pivtsov, V S; Kobtsev, Sergey M

    2013-02-28

    Nonlinear optical properties of nematic liquid crystals (NLC) have been investigated. A technique for efficient laser frequency conversion in a microscopic NLC volume deposited on an optical fibre end face is experimentally demonstrated. An efficient design of a compact NLC-based IR frequency converter with a fibre input and achromatic collimator is proposed and implemented. Simultaneous generation of the second and third harmonics is obtained for the first time under pumping NLC by a 1.56-mm femtosecond fibre laser. The second-harmonic generation efficiency is measured to be about 1 %, while the efficiency of third-harmonic generation is several tenths of percent. A strong polarisation dependence of the third-harmonic generation efficiency is revealed. When pumping NLC by a cw laser, generation of spectral supercontinua (covering the visible and near-IR spectral ranges) is observed. The nonlinear effects revealed can be due to the light-induced change in the orientational order in liquid crystals, which breaks the initial symmetry and leads to formation of disclination structures. The NLC optical nonlinearity is believed to be of mixed orientationalelectronic nature as a whole. (laser optics 2012)

  16. Mechanical and chemical protection of a wired enzyme oxygen cathode by a cubic phase lyotropic liquid crystal.

    PubMed

    Rowinski, Pawel; Kang, Chan; Shin, Hyosul; Heller, Adam

    2007-02-01

    When implanted in animals, enzyme-containing battery electrodes, biofuel cell electrodes, and biosensors are often damaged by components of the biological environment. An O2 cathode, superior to the classical platinum cathode, which would be implanted, as part of a caseless physiological pH miniature Zn-O2 battery or as part of a caseless and membraneless miniature glucose-O2 biofuel cell, is rapidly damaged by serum urate at its operating potential. The cathode is made by electrically connecting, or wiring, reaction centers of bilirubin oxidase to carbon with an electron-conducting redox hydrogel. In the physiological pH 7.3 electrolyte battery or biofuel cell, the O2 cathode should operate at, or positive of, 0.3 V (Ag/AgCl), where the urate anion, a common serum component, is electrooxidized. Because an unidentified urate electrooxidation intermediate, formed in the presence of O2, damages the wired bilirubin oxidase electrocatalyst, urate must be excluded from the cathode. Unlike O2, which permeates through both the lipid and the aqueous interconnected networks of cubic-phase lyotropic liquid crystals, urate permeates only through their continuous three-dimensional aqueous channel networks. The aqueous channels have well-defined diameters of approximately 5 nm in the monoolein/water cubic-phase liquid crystal. Through tailoring the wall charge of the aqueous channels, the anion/cation permeability ratio can be modulated. Thus, doping the monoolein of the monoolein/water liquid crystal with 1,2-dioleoyl-sn-glycero-3-phosphate makes the aqueous channel walls anionic and reduces the urate permeation in the liquid crystal. As a result, the ratio of the urate electrooxidation current to the O2 electroreduction current is reduced from 1:3 to 1:100 for 5-mm O2 cathodes rotating at 1000 rpm. Doping with 1,2-dioleoyl-sn-glycero-3-phosphate also increases the shear strength of the cubic-phase monoolein/water lyotropic liquid crystal. While the undoped liquid crystal is

  17. Predicting photoisomerization profile of the highly polymerized nematic azobenzene liquid crystal network: First principle calculation

    NASA Astrophysics Data System (ADS)

    Yun, J.; Li, C.; Chung, H.; Choi, J.; Cho, M.

    2015-05-01

    The cis profile of azobenzene is a key factor in predicting the photodeformation of the nematic azobenzene liquid crystal network (LCN). An ab initio based method for predicting the photoisomerization profile of azobenzene is developed by coupling the stimulated Raman adiabatic passage (STIRAP) method with non-linear Beers law, and compared with experimental data. Using this combined method, we calculate the photoisomerization profile of azobenzene with various light input conditions. We identify the cis profile of the nematic LCN structure evolves into a step-like decaying shape when the direction of polarized light is parallel to the nematic direction.

  18. Direct mapping of local director field of nematic liquid crystals at the nanoscale

    PubMed Central

    Xia, Yu; Serra, Francesca; Kamien, Randall D.; Stebe, Kathleen J.; Yang, Shu

    2015-01-01

    Liquid crystals (LCs), owing to their anisotropy in molecular ordering, are of wide interest in both the display industry and soft matter as a route to more sophisticated optical objects, to direct phase separation, and to facilitate colloidal assemblies. However, it remains challenging to directly probe the molecular-scale organization of nonglassy nematic LC molecules without altering the LC directors. We design and synthesize a new type of nematic liquid crystal monomer (LCM) system with strong dipole–dipole interactions, resulting in a stable nematic phase and strong homeotropic anchoring on silica surfaces. Upon photopolymerization, the director field can be faithfully “locked,” allowing for direct visualization of the LC director field and defect structures by scanning electron microscopy (SEM) in real space with 100-nm resolution. Using this technique, we study the nematic textures in more complex LC/colloidal systems and calculate the extrapolation length of the LCM. PMID:26621729

  19. Stability of the Melting Hedgehog in the Landau-de Gennes Theory of Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Ignat, Radu; Nguyen, Luc; Slastikov, Valeriy; Zarnescu, Arghir

    2014-09-01

    We investigate stability properties of the radially symmetric solution corresponding to the vortex defect (the so called "melting hedgehog") in the framework of the Landau-de Gennes model of nematic liquid crystals. We prove local stability of the melting hedgehog under arbitrary Q-tensor valued perturbations in the temperature regime near the critical supercooling temperature. As a consequence of our method, we also rediscover the loss of stability of the vortex defect in the deep nematic regime.

  20. Stability of the Melting Hedgehog in the Landau-de Gennes Theory of Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Ignat, Radu; Nguyen, Luc; Slastikov, Valeriy; Zarnescu, Arghir

    2015-02-01

    We investigate stability properties of the radially symmetric solution corresponding to the vortex defect (the so called "melting hedgehog") in the framework of the Landau-de Gennes model of nematic liquid crystals. We prove local stability of the melting hedgehog under arbitrary Q-tensor valued perturbations in the temperature regime near the critical supercooling temperature. As a consequence of our method, we also rediscover the loss of stability of the vortex defect in the deep nematic regime.

  1. Nematic director reorientation at solid and liquid interfaces under flow: SAXS studies in a microfluidic device.

    PubMed

    Silva, Bruno F B; Zepeda-Rosales, Miguel; Venkateswaran, Neeraja; Fletcher, Bretton J; Carter, Lester G; Matsui, Tsutomu; Weiss, Thomas M; Han, Jun; Li, Youli; Olsson, Ulf; Safinya, Cyrus R

    2015-04-14

    In this work we investigate the interplay between flow and boundary condition effects on the orientation field of a thermotropic nematic liquid crystal under flow and confinement in a microfluidic device. Two types of experiments were performed using synchrotron small-angle X-ray-scattering (SAXS). In the first, a nematic liquid crystal flows through a square-channel cross section at varying flow rates, while the nematic director orientation projected onto the velocity/velocity gradient plane is measured using a 2D detector. At moderate-to-high flow rates, the nematic director is predominantly aligned in the flow direction, but with a small tilt angle of ∼±11° in the velocity gradient direction. The director tilt angle is constant throughout most of the channel width but switches sign when crossing the center of the channel, in agreement with the Ericksen-Leslie-Parodi (ELP) theory. At low flow rates, boundary conditions begin to dominate, and a flow profile resembling the escaped radial director configuration is observed, where the director is seen to vary more smoothly from the edges (with homeotropic alignment) to the center of the channel. In the second experiment, hydrodynamic focusing is employed to confine the nematic phase into a sheet of liquid sandwiched between two layers of Triton X-100 aqueous solutions. The average nematic director orientation shifts to some extent from the flow direction toward the liquid boundaries, although it remains unclear if one tilt angle is dominant through most of the nematic sheet (with abrupt jumps near the boundaries) or if the tilt angle varies smoothly between two extreme values (∼90 and 0°). The technique presented here could be applied to perform high-throughput measurements for assessing the influence of different surfactants on the orientation of nematic phases and may lead to further improvements in areas such as boundary lubrication and clarifying the nature of defect structures in LC displays.

  2. Nematic director reorientation at solid and liquid interfaces under flow: SAXS studies in a microfluidic device

    DOE PAGES

    Silva, Bruno F. B.; Zepeda-Rosales, Miguel; Venkateswaran, Neeraja; ...

    2014-10-30

    In this work we investigate the interplay between flow and boundary condition effects on the orientation field of a thermotropic nematic liquid crystal under flow and confinement in a microfluidic device. Two types of experiments were performed using synchrotron small-angle X-ray-scattering (SAXS). In the first, a nematic liquid crystal flows through a square-channel cross section at varying flow rates, while the nematic director orientation projected onto the velocity/velocity gradient plane is measured using a 2D detector. At moderate-to-high flow rates, the nematic director is predominantly aligned in the flow direction, but with a small tilt angle of ~±11° in themore » velocity gradient direction. The director tilt angle is constant throughout most of the channel width but switches sign when crossing the center of the channel, in agreement with the Ericksen–Leslie–Parodi (ELP) theory. At low flow rates, boundary conditions begin to dominate, and a flow profile resembling the escaped radial director configuration is observed, where the director is seen to vary more smoothly from the edges (with homeotropic alignment) to the center of the channel. In the second experiment, hydrodynamic focusing is employed to confine the nematic phase into a sheet of liquid sandwiched between two layers of Triton X-100 aqueous solutions. The average nematic director orientation shifts to some extent from the flow direction toward the liquid boundaries, although it remains unclear if one tilt angle is dominant through most of the nematic sheet (with abrupt jumps near the boundaries) or if the tilt angle varies smoothly between two extreme values (~90 and 0°). Lastly, the technique presented here could be applied to perform high-throughput measurements for assessing the influence of different surfactants on the orientation of nematic phases and may lead to further improvements in areas such as boundary lubrication and clarifying the nature of defect structures in LC

  3. Nematic director reorientation at solid and liquid interfaces under flow: SAXS studies in a microfluidic device

    SciTech Connect

    Silva, Bruno F. B.; Zepeda-Rosales, Miguel; Venkateswaran, Neeraja; Fletcher, Bretton J.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Han, Jun; Li, Youli; Olsson, Ulf; Safinya, Cyrus R.

    2014-10-30

    In this work we investigate the interplay between flow and boundary condition effects on the orientation field of a thermotropic nematic liquid crystal under flow and confinement in a microfluidic device. Two types of experiments were performed using synchrotron small-angle X-ray-scattering (SAXS). In the first, a nematic liquid crystal flows through a square-channel cross section at varying flow rates, while the nematic director orientation projected onto the velocity/velocity gradient plane is measured using a 2D detector. At moderate-to-high flow rates, the nematic director is predominantly aligned in the flow direction, but with a small tilt angle of ~±11° in the velocity gradient direction. The director tilt angle is constant throughout most of the channel width but switches sign when crossing the center of the channel, in agreement with the Ericksen–Leslie–Parodi (ELP) theory. At low flow rates, boundary conditions begin to dominate, and a flow profile resembling the escaped radial director configuration is observed, where the director is seen to vary more smoothly from the edges (with homeotropic alignment) to the center of the channel. In the second experiment, hydrodynamic focusing is employed to confine the nematic phase into a sheet of liquid sandwiched between two layers of Triton X-100 aqueous solutions. The average nematic director orientation shifts to some extent from the flow direction toward the liquid boundaries, although it remains unclear if one tilt angle is dominant through most of the nematic sheet (with abrupt jumps near the boundaries) or if the tilt angle varies smoothly between two extreme values (~90 and 0°). Lastly, the technique presented here could be applied to perform high-throughput measurements for assessing the influence of different surfactants on the orientation of nematic phases and may lead to further improvements in areas such as boundary lubrication and clarifying the nature of defect structures in LC displays.

  4. Electrically controllable Fresnel lens in 90° twisted nematic liquid crystals.

    PubMed

    Kuo, Chie-Tong; Li, Chien-Yu; Lin, Shih-Hung; Yeh, Hui-Chen

    2015-10-05

    This study presents a theoretical analysis and experimental demonstration of an electrically controllable Fresnel lens in a 90° twisted nematic liquid crystal cell. The cell gap was chosen to satisfy the Gooch-Tarry conditions, and therefore, the polarization rotation effect was valid regardless of the incident polarization direction. The polarization sensitivity of the diffraction efficiency of the 90° twisted nematic Fresnel lens was dependent on the applied voltage regime. Theoretical calculations effectively explain the experimental results.

  5. Rayleigh-Bénard convection in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Werner, Pesch

    2000-03-01

    Rayleigh-Bénard convection (RBC) in thin layers of nematic liquid crystals (LCs) heated from below or even from above, leads to a rich variety of new phenomena not found in isotropic fluids. The orientational degrees of freedom of the rod-like molecules of the LCs are of crucial importance as in the electro-convection in these materials. For instance a new type of convection rolls (``abnormal rolls''), due to a spontaneous symmetry breaking of the orientational ordering, has recently motivated considerable activities. A system of coupled Ginzburg-Landau-type equations describes very well the bifurcation sequences near onset [1]. LCs also offer a convenient opportunity to study convection in the presence of a first-order phase change, which is relevant in the earth mantle [2]. It will be demonstrated that theory can scope sucessfully also with this case. [1] E. Plaut and W. Pesch, Phys. Rev. E, 59, 1247 (1999) and references therein [2] S. Sakurai, A. Tschammer, W. Pesch and G. Ahlers, Phys. Rev. E, 60, 539 (1999)

  6. Nucleation type instabilities in partially wetting nanoscale nematic liquid films

    NASA Astrophysics Data System (ADS)

    Lam, Michael; Cummings, Linda; Kondic, Lou

    2016-11-01

    Nucleation type instabilities are studied in nematic liquid crystal (NLC) films with thicknesses less than a micrometer. Within the framework of the long wave approximation, a 4th order nonlinear partial differential equation is proposed for the free surface height. Unlike simple fluids, NLC molecules have a dipole moment which induces an elastic response due to deformation in the bulk of the fluid. The model includes the balance between the bulk elasticity energy and the anchoring (boundary) energy at the substrate and free surface, and van der Waals' intermolecular forces, by means of a structural disjoining pressure. In this presentation, we focus on two-dimensional flow and present simulation results for a flat film with a localized perturbation. We are interested in the morphology of the dewetted film as a function of the initial film thickness. We will show that there exists a range of film thicknesses within the linearly unstable flat film regime where stability analysis does not explain the morphology of the dewetted film. Marginal stability criterion (MSC) is used to derive an analytical expression for the velocity at which a perturbation propagates into the unstable flat film. Finally, we discuss the degree to which MSC can be used to explain the observed morphology.

  7. Anomalous swimming behavior of bacteria in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Lavrentovich, Oleg; Aranson, Igor

    2015-03-01

    Flagellated bacteria stop swimming in isotropic media of viscosity higher than 0.06kgm-1s-1. However, Bacillus Subtilis slows down by only about 30% in a nematic chromonic liquid crystal (CLC, 14wt% DSCG in water), where the anisotropic viscosity can be as high as 6kgm-1s-1. The bacteria velocity (Vb) is linear with the flagella rotation frequency. The phase velocity of the flagella Vf ~ 2Vb in LC, as compared to Vf ~ 10Vb in water. The flow generated by the bacteria is localized along the bacterial body axis, decaying slowly over tens of micrometers along, but rapidly over a few micrometers across this axis. The concentrated flow grants the bacteria new ability to carry cargo particles in LC, ability not seen in their habitat isotropic media. We attribute these anomalous features to the anisotropy of viscosity of the CLC, namely, the viscosities of splay and twist is hundreds times higher than that of bend deformation, which provides extra boost of swimming efficiency and enables the bacteria swim at considerable speed in a viscous medium. Our findings can potentially lead to applications such as particle transportation in microfluidic devices. A.S and I.A are supported by the US DOE, Office of Science, BES, Materials Science and Engineering Division. S.Z. and O.D.L are supported by NSF DMR 1104850, DMS-1434185.

  8. In vitro permeation of diclofenac salts from lyotropic liquid crystalline systems.

    PubMed

    Yariv, Doron; Efrat, Rivka; Libster, Dima; Aserin, Abraham; Garti, Nissim

    2010-07-01

    In this paper we examined feasible correlations between the structure of different lyotropic mesophases and transdermal administration of three diclofenac derivatives with varying degrees of kosmotropic or chaotropic properties, solubilized within the mesophases. It was found that the most chaotropic derivative of diclofenac diethyl amine (DEA-DFC) interacted with the polar heads of glycerol monooleate (GMO), thus expanding the water-lipid interface of the lamellar and cubic mesophases. This effect was detected by an increase in the lattice parameter of both mesophases, enhanced elastic properties, and increased solid-like response of the systems in the presence of DEA. Potassium diclofenac (K-DFC), a less chaotropic salt, had less pronounced effect on the structural features of the mesophases. Kosmotropic Na+ salt (Na-DFC) had only minor influence on both lamellar and cubic structures. The locus of solubilization of the molecules with the host mesophases was correlated with their delivery. It was suggested that transdermal delivery of kosmotropic Na-DFC was accelerated by the aqueous phase and less constrained by the interaction with monoglyceride. On the other hand, the chaotropic cations (K+ and DEA+), presumably entrapped in the water-lipid interface, interacted with monoglyceride headgroups, which is likely to be the key cause for their sustained administration.

  9. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor.

    PubMed

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-28

    The properties of water under confinement are of practical and fundamental interest. In this work, we study the properties of water in the self-assembled lyotropic phases of Gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments, the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, D(T), and rotational relaxation time, τ(R). We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparing the values to those directly measured in the simulations. We find that the de-coupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of D(T) and τ(R) can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale.

  10. Straining soft colloids in aqueous nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Mushenheim, Peter C.; Pendery, Joel S.; Weibel, Douglas B.; Spagnolie, Saverio E.; Abbott, Nicholas L.

    2016-05-01

    Liquid crystals (LCs), because of their long-range molecular ordering, are anisotropic, elastic fluids. Herein, we report that elastic stresses imparted by nematic LCs can dynamically shape soft colloids and tune their physical properties. Specifically, we use giant unilamellar vesicles (GUVs) as soft colloids and explore the interplay of mechanical strain when the GUVs are confined within aqueous chromonic LC phases. Accompanying thermal quenching from isotropic to LC phases, we observe the elasticity of the LC phases to transform initially spherical GUVs (diameters of 2-50 µm) into two distinct populations of GUVs with spindle-like shapes and aspect ratios as large as 10. Large GUVs are strained to a small extent (R/r < 1.54, where R and r are the major and minor radii, respectively), consistent with an LC elasticity-induced expansion of lipid membrane surface area of up to 3% and conservation of the internal GUV volume. Small GUVs, in contrast, form highly elongated spindles (1.54 < R/r < 10) that arise from an efflux of LCs from the GUVs during the shape transformation, consistent with LC-induced straining of the membrane leading to transient membrane pore formation. A thermodynamic analysis of both populations of GUVs reveals that the final shapes adopted by these soft colloids are dominated by a competition between the LC elasticity and an energy (˜0.01 mN/m) associated with the GUV-LC interface. Overall, these results provide insight into the coupling of strain in soft materials and suggest previously unidentified designs of LC-based responsive and reconfigurable materials.

  11. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals

    PubMed Central

    Tortora, Luana; Lavrentovich, Oleg D.

    2011-01-01

    In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement. PMID:21402929

  12. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals.

    PubMed

    Tortora, Luana; Lavrentovich, Oleg D

    2011-03-29

    In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement.

  13. Topologically Required Defects in Nematic Liquid Films over Microposts or in contact with Anisotropic Particles

    NASA Astrophysics Data System (ADS)

    Gharbi, Mohamed

    2013-03-01

    In this work we present an experimental investigation of topological defects in nematic liquid crystals formed over micropost array with a LC-air interface pinning to the pillar edges or containing washer-shaped microparticles in suspension. For nematic-LC covered microposts with homeotropic anchoring conditions on all boundaries, including the LC-air and LC-substrate interfaces, disclination lines form that bear the signature of the micropost and satisfy global topological constraints of the system. When washer particles with different anchoring conditions are dispersed in homeotropic liquid crystal cells, new topological configurations are observed. In each case, defects are described from both a geometric and topological perspective. Finally, we demonstrate that topological defects created by microposts and washers can generate elastic interactions with dispersed microparticles in nematic liquid crystals. We believe this is a promising route to controlling colloidal self-assembly in complex media.

  14. Enhanced diffraction properties of photoinduced gratings in nematic liquid crystals doped with Disperse Red 1.

    PubMed

    Li, Hongjing; Wang, Jianhao; Wang, Changshun; Zeng, Pengfei; Pan, Yujia; Yang, Yifei

    2016-01-01

    Diffraction properties of photoinduced gratings recorded by overlapping two coherent beams at 532 nm in nematic liquid crystals doped with Disperse Red 1 were investigated with a probe beam at 632.8 nm. The grating was formed due to the alignment of dye molecules that leaded to the reorientation of the liquid crystal phase. The diffraction efficiency of the photoinduced grating was found to increase rapidly when the sample temperature was close to the clearing point in the nematic phase and a nearly 30-fold enhancement of the first-order diffraction efficiency was obtained. The pretransitional enhancement of the diffraction efficiency was discussed in terms of the reorientation of liquid crystals, optical nonlinearity effects and the onset of critical opalescence near the nematic-isotropic phase transition. Moreover, a peak shift of diffraction efficiency towards the lower temperature was observed with the increase of recording light intensity, which was attributed to laser induced photochemical disordering.

  15. Enhanced diffraction properties of photoinduced gratings in nematic liquid crystals doped with Disperse Red 1

    PubMed Central

    LI, Hongjing; WANG, Jianhao; WANG, Changshun; ZENG, Pengfei; PAN, Yujia; YANG, Yifei

    2016-01-01

    Diffraction properties of photoinduced gratings recorded by overlapping two coherent beams at 532 nm in nematic liquid crystals doped with Disperse Red 1 were investigated with a probe beam at 632.8 nm. The grating was formed due to the alignment of dye molecules that leaded to the reorientation of the liquid crystal phase. The diffraction efficiency of the photoinduced grating was found to increase rapidly when the sample temperature was close to the clearing point in the nematic phase and a nearly 30-fold enhancement of the first-order diffraction efficiency was obtained. The pretransitional enhancement of the diffraction efficiency was discussed in terms of the reorientation of liquid crystals, optical nonlinearity effects and the onset of critical opalescence near the nematic-isotropic phase transition. Moreover, a peak shift of diffraction efficiency towards the lower temperature was observed with the increase of recording light intensity, which was attributed to laser induced photochemical disordering. PMID:27725471

  16. Dynamics and Instabilities of an overdamped active nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Putzig, Elias; Baskaran, Aparna

    Active nematics have been studied extensively in the context of suspensions of active particles, with a Stokes equation describing the flow of the surrounding fluid. Here we will present a continuum model of an overdamped (often termed 'dry') active nematic, where activity enters through self-induced flows. These flows represent the ability of the internal forces to convect, shear, or rotate the nematic order. The self-induced shear gives rise to an instability in the homogeneous ordered state which is analogous to that seen in active suspensions. The self-induced rotation gives rise to a new instability. A phase diagram from this model will be presented, and the phenomenology will be compared with what is seen in experimental and simulated active systems. We would like to acknowledge Grant support through NSF (NSF-DMR-1149266), (DMR-0820492), (NIH-5T32EB009419) and IGERT (DGE-1068620).

  17. Lyotropic liquid crystal engineering moving beyond binary compositional space - ordered nanostructured amphiphile self-assembly materials by design.

    PubMed

    van 't Hag, Leonie; Gras, Sally L; Conn, Charlotte E; Drummond, Calum J

    2017-03-10

    Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).

  18. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor

    DOE PAGES

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-24

    The properties of water under confinement are of practical and fundamental interest. Here in this work we study the properties of water in the self-assembled lyotropic phases of gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, DT , and rotational relaxation time, τR. We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparing the valuesmore » to those directly measured in the simulations. We find that the decoupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of DT and τR can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale and neutron spin echo measurements would be a valuable technique in addition to QENS.« less

  19. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor

    SciTech Connect

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-24

    The properties of water under confinement are of practical and fundamental interest. Here in this work we study the properties of water in the self-assembled lyotropic phases of gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, DT , and rotational relaxation time, τR. We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparing the values to those directly measured in the simulations. We find that the decoupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of DT and τR can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale and neutron spin echo measurements would be a valuable technique in addition to QENS.

  20. Chiral nematic porous germania and germanium/carbon films

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Nguyen, Thanh-Dinh; Xie, Kai; Hamad, Wadood Y.; MacLachlan, Mark J.

    2015-07-01

    We report our extensive attempts and, ultimately, success to produce crack-free, chiral nematic GeO2/cellulose nanocrystal (CNC) composite films with tunable photonic properties from the controlled assembly of germanium(iv) alkoxides with the lyotropic liquid-crystalline CNCs in a mixed solvent of water/DMF. With different pyrolysis conditions, the photonic GeO2/CNC composites can be converted into freestanding chiral nematic films of amorphous GeO2, and semiconducting mesoporous GeO2/C and Ge/C replicas. These new materials are promising for chiral separation, enantioselective adsorption, catalysis, sensing, optoelectronics, and lithium ion batteries. Furthermore, the new, reproducible synthesis strategies developed may be applicable for constructing other composites and porous materials with chiral nematic ordering.We report our extensive attempts and, ultimately, success to produce crack-free, chiral nematic GeO2/cellulose nanocrystal (CNC) composite films with tunable photonic properties from the controlled assembly of germanium(iv) alkoxides with the lyotropic liquid-crystalline CNCs in a mixed solvent of water/DMF. With different pyrolysis conditions, the photonic GeO2/CNC composites can be converted into freestanding chiral nematic films of amorphous GeO2, and semiconducting mesoporous GeO2/C and Ge/C replicas. These new materials are promising for chiral separation, enantioselective adsorption, catalysis, sensing, optoelectronics, and lithium ion batteries. Furthermore, the new, reproducible synthesis strategies developed may be applicable for constructing other composites and porous materials with chiral nematic ordering. Electronic supplementary information (ESI) available: TGA, IR, Raman, TEM, SEM, BET. See DOI: 10.1039/c5nr02520f

  1. Phase biaxiality in nematic liquid crystalline side-chain polymers of various chemical constitutions.

    PubMed

    Severing, Kirsten; Stibal-Fischer, Elke; Hasenhindl, Alfred; Finkelmann, Heino; Saalwächter, Kay

    2006-08-17

    In a previous deuterium NMR study conducted on a liquid crystalline (LC) polymer with laterally attached book-shaped molecules as the mesogenic moiety, we have revealed a biaxial nematic phase below the conventional uniaxial nematic phase (Phys. Rev. Lett. 2004, 92, 125501). To elucidate details of its formation, we here report on deuterium NMR experiments that have been conducted on different types of LC side-chain polymers as well as on mixtures with low-molar-mass mesogens. Different parameters that affect the formation of a biaxial nematic phase, such as the geometry of the attachment, the spacer length between the polymer backbone and the mesogenic unit, as well as the polymer dynamics, were investigated. Surprisingly, also polymers with terminally attached mesogens (end-on polymers) are capable of forming biaxial nematic phases if the flexible spacer is short and thus retains a coupling between the polymer backbone and the LC phase. Furthermore, the most important parameter for the formation of a biaxial nematic phase is the dynamics of the polymer backbone, as the addition of a small percentage of low molar mass LC to the biaxial nematic polymer from the original study served to shift both the glass transition and the appearance of detectable biaxiality in a very similar fashion. Plotting different parameters for the investigated systems as a function of T/Tg also reveals the crucial role of the dynamics of the polymer backbone and hence the glass transition.

  2. Edge pinning and transformation of defect lines induced by faceted colloidal rings in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Senyuk, Bohdan; Liu, Qingkun; Yuan, Ye; Smalyukh, Ivan I.

    2016-06-01

    Nematic colloids exhibit a large diversity of topological defects and structures induced by colloidal particles in the orientationally ordered liquid crystal host fluids. These defects and field configurations define elastic interactions and medium-mediated self-assembly, as well as serve as model systems in exploiting the richness of interactions between topologies and geometries of colloidal surfaces, nematic fields, and topological singularities induced by particles in the nematic bulk and at nematic-colloidal interfaces. Here we demonstrate formation of quarter-strength surface-pinned disclinations, as well as a large variety of director field configurations with splitting and reconnections of singular defect lines, prompted by colloidal particles with sharp edges and size large enough to define strong boundary conditions. Using examples of faceted ring-shaped particles of genus g =1 , we explore transformation of defect lines as they migrate between locations in the bulk of the nematic host to edge-pinned locations at the surfaces of particles and vice versa, showing that this behavior is compliant with topological constraints defined by mathematical theorems. We discuss how transformation of bulk and surface defect lines induced by faceted colloids can enrich the diversity of elasticity-mediated colloidal interactions and how these findings may impinge on prospects of their controlled reconfigurable self-assembly in nematic hosts.

  3. Phase winding of a nematic liquid crystal by dynamic localized reorientation of an azo-based self-assembled monolayer.

    PubMed

    Shi, Yue; Fang, Guanjiu; Glaser, Matthew A; Maclennan, Joseph E; Korblova, Eva; Walba, David M; Clark, Noel A

    2014-08-12

    Azobenzene-based molecules forming a self-assembled monolayer (SAM) tethered to a glass surface are highly photosensitive and readily reorient liquid crystals in contact with them when illuminated with polarized actinic light. We probe the coupling of such monolayers to nematic liquid crystal in a hybrid cell by studying the dynamics of liquid crystal reorientation in response to local orientational changes of the monolayer induced by a focused actinic laser with a rotating polarization. The steady increase in the azimuth of the mean molecular orientation of the SAM around the laser beam locally reorients the nematic, winding up an extended set of nested rings of splay-bend nematic director reorientation until the cumulative elastic torque exceeds that of the surface coupling within the beam, after which the nematic director starts to slip. Quantitative analyses of the ring dynamics allow measurements of the anchoring strength of the azo-SAM and its interaction with the nematic liquid crystal.

  4. Seeing and Sculpting Nematic Liquid Crystal Textures with the Thom construction

    NASA Astrophysics Data System (ADS)

    Chen, Bryan; Alexander, Gareth

    2012-02-01

    Nematic liquid crystals are the foundation for modern display technology and also exhibit topological defects that can readily be seen under a microscope. Recently, experimentalists have been able to create and control several new families of interesting defect textures, including reconfigurably knotted defect lines around colloids (Ljubljana) and the ``toron,'' a pair of hedgehogs bound together with a ring of double-twist between them (CU Boulder). We apply the Thom construction from algebraic topology to visualize 3 dimensional molecular orientation fields as certain colored surfaces in the sample. These surfaces turn out to be a generalization to 3 dimensions of the dark brushes seen in Schlieren textures of two-dimensional samples of nematics. Manipulations of these surfaces correspond to deformations of the nematic orientation fields, giving a hands-on way to classify liquid crystal textures which is also easily computable from data and robust to noise.

  5. [Polarization-sensitive characteristics of the transmission spectra in photonic crystal with nematic liquid crystal defects].

    PubMed

    Dai, Qin; Wu, Ri-na; Yan, Bin; Zhang, Rui-liang; Wang, Peng-chong; Quan, Wei; Xu, Song-ning

    2012-05-01

    The polarization-sensitive characteristics in the transmission spectra of TiO2/SiO2 optical multilayer films of one-dimensional photonic crystal (1D PC) with nematic liquid crystal defects were investigated in the present paper. The transmission spectra measurements and simulated results show that the polarization-sensitive feature was obvious when natural light was normal incident onto the parallelly aligned nematic liquid crystal. There were peaks of the extraordinary light (TE mode) with center wavelengths 1831 and 1800 nm and the ordinary light (TM mode) with center wavelengths 1452 and 1418 nm in the photonic forbidden band, respectively. With applied voltage increasing, the peaks of the extraordinary light was blue-shifted, and coincided with the peaks of O light gradually. Their tunable ranges were about 31 and 34 nm, respectively. For the random nematic liquid crystal, polarization sensitivity was not observed. Meanwhile, an individual extraordinary light peak with center wavelength 1801 nm and an individual ordinary light peak with center wavelength 1391 nm were obtained in the photonic forbidden band, respectively. The peaks were also found blue-shifted with applied voltage increasing, and their tunable ranges were about 64 and 15 nm, respectively. The polarization insensitive photonic crystal with nematic liquid crystal defects can be achieved by random liquid crystal molecules, which make the effective refractive index of the extraordinary light equal to that of the ordinary light.

  6. The Effect of Aerosil Network on Smectic A-Reentrant Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, Mehmet; Larochelle, Simon; Birgeneau, Robert J.

    2006-03-01

    We report on a high resolution x-ray scattering study of aerosil dispersion effects on nematic-smectic A and smectic A-reentrant nematic phase transitions in 6OCB (hexyloxycyanobiphenyl) and 8OCB (octyloxycyanobiphenyl) liquid crystal mixtures. Dispersed aerosil particles introduce quenched randomness to the liquid crystal phases, which destroys the long range smectic order [1]. The experiment was conducted on mixtures with different 6OCB:8OCB concentrations and aerosil densities. The parabolic smectic A phase boundary is found to be slightly distorted in the presence of the aerosil network, with shifted transition and median (TM) temperatures. Above TM, the order parameter, susceptibility and parallel correlation lengths for the thermal and random parts of the structure factor show behaviors similar to those observed in non-reentrant nematic-smectic A second order phase transitions [2]. At TM, where the order parameter has its maximum value, the scattering peaks are only defined by the random part of the structure factor. The smectic order parameter decreases with a further decrease in temperature, while the susceptibility and thermal correlation length increasingly show nematic-like behavior. Finally, at the lowest temperature, the mixtures are found in the reentrant nematic phase. [1] P.S. Clegg et. al. PRE 67,021703 (2003) [2] S. Larochelle et. al. in preparation

  7. Highly luminescent and stable lyotropic liquid crystals based on a europium β-diketonate complex bridged by an ethylammonium cation.

    PubMed

    Yi, Sijing; Yao, Meihuan; Wang, Jiao; Chen, Xiao

    2016-10-05

    Soft lanthanide luminescent materials are impressive because of their tunable and self-assembling characteristics, which make them an attractive emerging materials field of research. In this report, novel luminescent lyotropic liquid crystals (LLCs) with four different mesophases have been fabricated by a protic ionic liquid (IL) based europium β-diketonate complex EA[Eu(TTA)4] (EA = ethylammonium, TTA = 2-thenoyltrifluoro-acetone) and an amphiphilic block copolymer (Pluronic P123). The protic IL, ethylammonium nitrate (EAN), was used as both the solvent and linkage to stabilize the doped complexes. Analyses by single-crystal X-ray diffraction for EA[Eu(TTA)4] and Fourier transform infrared spectroscopy for the LLC materials reveal convincingly that the ethylammonium cations establish an effective connection with both the carbonyl group of the β-diketonate ligand and the EO blocks of the amphiphilic block copolymer P123 via strong hydrogen bonding interactions. Due to this, an extremely long decay time of the excited state is obtained in EA[Eu(TTA)4] and excellent photostability of the luminescent LLCs could be achieved. The long-period ordered structures of the luminescent LLCs have been investigated by small-angle X-ray scattering measurements and the best luminescence performance was found in the most organized mesophase. Noteworthy, the LLCs could yield an effective confining effect on the europium complex accompanied by a sizeable elongation of the excited-state lifetime and an enhancement of the energy transfer efficiency, which reaches a remarkably high value of 52.6%. More importantly, the modulated luminescence properties observed in the four mesophase structures offer the potential and powerful possibility for these unique composite LLCs to be used in the fabrication of soft luminescent materials with tunable functions.

  8. X-ray and Raman scattering study of orientational order in nematic and heliconical nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Singh, Gautam; Fu, Jinxin; Agra-Kooijman, Dena M.; Song, Jang-Kun; Vengatesan, M. R.; Srinivasarao, Mohan; Fisch, Michael R.; Kumar, Satyendra

    2016-12-01

    The temperature dependence of the orientational order parameters and in the nematic (N ) and twist-bend nematic (Ntb) phases of the liquid crystal dimer CB7CB have been measured using x-ray and polarized Raman scattering. The obtained from both techniques are the same, while , determined by Raman scattering is, as expected, systematically larger than its x-ray value. Both order parameters increase in the N phase with decreasing temperature, drop across the N -Ntb transition, and continue to decrease. In the Ntb phase, the x-ray value of eventually becomes negative, providing a direct and independent confirmation of a conical molecular orientational distribution. The heliconical tilt angle α, determined from orientational distribution functions in the Ntb phase, increases to ˜24∘ at ˜15 K below the transition. In the Ntb phase, α (T ) ∝(T*-T)λ , with λ =0.19 ±0.03 . The transition supercools by 1.7 K, consistent with its weakly first-order nature. The value of λ is close to 0.25 indicating close proximity to a tricritical point.

  9. Tunable nanojet-induced mode achieved by coupled core-shell microcylinders with nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang

    2014-01-01

    The tunable nanojet-induced mode achieved by coupled core-shell microcylinders with nematic liquid crystals is reported. The optical transmission properties of touching core-shell microcylinders with nematic liquid crystals are studied by using high resolution finite-difference time-domain simulation. We identify two rotation mechanisms of liquid crystal in terms of the coupling efficiency between neighboring core-shell microcylinders. The nanojet-induced guided modes depend strongly on the directors of liquid crystals. The optical transport can be continuously tuned in the core-shell microcylinder by controlling the directors of liquid crystals. The coupled core-shell microcylinders can be assembled inside hollow structures to build tunable optical waveguides for effective and low-loss guiding of photons.

  10. Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching

    PubMed Central

    Zografopoulos, Dimitrios C.; Beccherelli, Romeo

    2015-01-01

    The electrically tunable properties of liquid-crystal fishnet metamaterials are theoretically investigated in the terahertz spectrum. A nematic liquid crystal layer is introduced between two fishnet metallic structures, forming a voltage-controlled metamaterial cavity. Tuning of the nematic molecular orientation is shown to shift the magnetic resonance frequency of the metamaterial and its overall electromagnetic response. A shift higher than 150 GHz is predicted for common dielectric and liquid crystalline materials used in terahertz technology and for low applied voltage values. Owing to the few micron-thick liquid crystal cell, the response speed of the tunable metamaterial is calculated as orders of magnitude faster than in demonstrated liquid-crystal based non-resonant terahertz components. Such tunable metamaterial elements are proposed for the advanced control of electromagnetic wave propagation in terahertz applications. PMID:26272652

  11. Nematicons deflection through interaction with disclination lines in chiral nematic liquid crystals

    SciTech Connect

    Laudyn, Urszula A.; Karpierz, Miroslaw A.

    2013-11-25

    In this work, we study experimentally the interaction of spatial optical soliton in chiral nematic liquid crystals with disclination line created in a wedge shaped cell. We show that in most cases the self-confined beam preserves this interaction. We demonstrate that this interaction can be employed for efficient bending of the soliton trajectory, as a result of reflection and refraction.

  12. Nematic liquid crystals: a suitable medium for self-confinement of coherent and incoherent light.

    PubMed

    Peccianti, Marco; Assanto, Gaetano

    2002-03-01

    Nematic liquid crystals exhibit a saturable, non-instantaneous nonlinear response through light-induced reorientation. In such a material, we demonstrate that (2+1)-dimensional spatial solitary waves can be generated at milliwatt power levels not only with a coherent optical beam, but also with incoherent excitations. Self-trapping also allows the efficient guidance of a weak co-polarized probe.

  13. A new method for solid surface topographical studies using nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Baber, N.; Strugalski, Z.

    1984-03-01

    A new simple method has been developed to investigate the topography of a wide range of solid surfaces using nematic liquid crystals. Polarizing microscopy is employed. The usefulness of the method for detecting weak mechanical effects has been demonstrated. An application in criminology is foreseen.

  14. Self-organization and electrooptical characteristics of a nematic liquid crystal-cellulose diacetate composite

    NASA Astrophysics Data System (ADS)

    Sadovoy, A. V.; Shipovskaya, A. B.; Nazvanov, V. F.

    2008-12-01

    Stable self-organization process has been observed during the formation of thin films of a composite based on a nematic liquid crystal and a cellulose acetate polymer matrix. Optical transmission characteristics and electrooptical response time of the composite have been theoretically calculated and experimentally studied.

  15. Shape of impurity electronic absorption bands in a nematic liquid crystal

    SciTech Connect

    Aver`yanov, E.M.

    1995-02-01

    It is shown that the anisotropic intermolecular impurity-matrix interactions, statistical orientation properties, and the electronic structure of the uniaxial impurity molecules considerably affect the spectral moments of the impurity electronic adsorption bands in a nematic liquid crystal. 15 refs., 3 figs.

  16. Anticonical anchoring and surface transitions in a nematic liquid crystal.

    PubMed

    Faget, L; Lamarque-Forget, S; Martinot-Lagarde, Ph; Auroy, P; Dozov, I

    2006-11-01

    Recent works reported planar and conical azimuthally degenerated nematic anchorings. Here we predict an additional "anticonical" degenerated anchoring. Its energy presents two minima, parallel and perpendicular to the substrate plane, separated by a conical energy barrier. We realize this bistable anchoring on a grafted polymer brush and we observe temperature-driven transitions between the conical, planar, and anticonical degenerated anchorings. Under electric field we break the anticonical anchoring and switch between its bistable states.

  17. Anticonical anchoring and surface transitions in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Faget, L.; Lamarque-Forget, S.; Martinot-Lagarde, Ph.; Auroy, P.; Dozov, I.

    2006-11-01

    Recent works reported planar and conical azimuthally degenerated nematic anchorings. Here we predict an additional “anticonical” degenerated anchoring. Its energy presents two minima, parallel and perpendicular to the substrate plane, separated by a conical energy barrier. We realize this bistable anchoring on a grafted polymer brush and we observe temperature-driven transitions between the conical, planar, and anticonical degenerated anchorings. Under electric field we break the anticonical anchoring and switch between its bistable states.

  18. Polar structure of disclination loops in nematic liquid crystals probed by second-harmonic-light scattering.

    PubMed

    Pardaev, Shokir A; Williams, J C; Twieg, R J; Jakli, A; Gleeson, J T; Ellman, B; Sprunt, S

    2015-03-01

    Angle-resolved, second-harmonic-light scattering (SHLS) measurements are reported for three different classes of thermotropic nematic liquid crystals (NLCs): polar and nonpolar rodlike compounds and a bent-core compound. Results revealing well-defined scattering peaks are interpreted in terms of the electric polarization induced by distortions of the nematic orientational field ("flexopolarity") associated with inversion wall defects, nonsingular disclinations, analogous to Neel walls in ferromagnets, that often exhibit a closed loop morphology in NLCs. Analysis of the SHLS patterns based on this model provides a "proof-of-concept" for a potentially useful method to probe the flexopolar properties of NLCs.

  19. Laser beam propagation in nematic liquid crystals at the temperature close to the nematicisotropic critical point.

    PubMed

    Chen, Yu-Jen; Lin, Yu-Sung; Jiang, I-Min; Tsai, Ming-Shan

    2008-03-17

    This study investigates the optical nonlinearity of beam propagation in homogeneously aligned nematic liquid crystal (NLC) cells at a temperature close to the nematic-isotropic temperature (TNI). The undulate propagation mode with convergent and divergent loops appearing alternately is reported and the thermally enhanced optical reorientation nonlinearity at the focus is described. The optically induced phase transition exists along the pump beam direction. With the application of the conscopic technique, the arrangements of LC at the focus are proposed in this study. Results of this study demonstrate that the evolution of the LC configuration was affected by the pump beam based on the analysis of conoscopic patterns.

  20. Optically optimized transmittive and reflective bistable twisted nematic liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Tang, S. T.; Chiu, H. W.; Kwok, H. S.

    2000-01-01

    A new Mueller matrix approach is developed for the design of optical modes for all nematic liquid crystal displays (LCD). In particular, for linearly polarized light going into the LC cell, conditions for linear polarization and circular polarization outputs are obtained. By considering the switching between different polarization modes, new transmittive and reflective bistable twisted nematic (BTN) LCD operating conditions with optimized contrast and brightness are discovered. A passive matrix driven single polarizer reflective BTN display was fabricated with reasonably good measured optical performance and fast selection time.

  1. Fiber-to-fiber nonlinear coupling via a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Nyushkov, B. N.; Trashkeev, S. I.; Ivanenko, A. V.; Kolker, D. B.; Purtov, P. A.

    2017-01-01

    Nonlinear optical coupling between two single-mode fibers terminated coaxially in a nematic liquid crystal (NLC) was explored for the first time. Light-induced reorientation of nematic molecules can result in the stable self-collimation of light transmitted through the gap between fibers. Thus, high coupling efficiency can be achieved despite large fiber spacing. We demonstrated a coupling efficiency of up to ∼0.7, achieved with spacing equal to four diffraction lengths. This feature opens up possibilities for the development of novel in-line fiber-optic elements based on NLCs. For instance, a polarization controller was proposed and considered.

  2. Switching behavior and electro-optical properties of liquid crystals in nematic gels

    PubMed

    Gautier; Brunet; Grupp; Sauvajol; Anglaret

    2000-11-01

    Anisotropic nematic gels are prepared via in situ polymerization of diacrylate monomers in an orientated nematic liquid crystal (LC) matrix. The switching behavior of the LC molecules under electric field is probed in polarized Raman spectroscopy and straight theta-2straight theta elastic light scattering experiments. The electro-optical characteristics of the gels are directly related to the electric field dependence of the fraction of switched molecules. The electro-optical contrast relates to the coexistence of switched LC domains and LC domains anchored to the polymer network.

  3. Pattern-forming instabilities in nematic liquid crystals under oscillatory Couette flow.

    PubMed

    Tarasov, O S; Krekhov, A P; Kramer, L

    2005-09-01

    We consider instabilities, either homogeneous or periodic in space, which develop in a nematic liquid crystal layer under rectilinear oscillatory Couette flow for planar surface alignment of the director perpendicular to the flow plane. On the basis of a numerical and analytical linear stability analysis we determine the critical amplitude of the oscillatory flow, the wave number, and the symmetry of the destabilizing mode and present a comprehensive phase diagram of the flow instabilities. In particular it is found that by varying the frequency of the Couette flow the instability changes its temporal symmetry. This transition is shown to be related to the inertia effects of the nematic fluid, which become more important with increasing flow frequency. We also show that an electric field applied perpendicularly to the nematic layer can induce an exchange of instabilities with different spatial and temporal symmetries. The theoretical results are compared with experiments, when available.

  4. Elastic anisotropy effects on the electrical responses of a thin sample of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Gomes, O. A.; Yednak, C. A. R.; Ribeiro de Almeida, R. R.; Teixeira-Souza, R. T.; Evangelista, L. R.

    2017-03-01

    The electrical responses of a nematic liquid crystal cell are investigated by means of the elastic continuum theory. The nematic medium is considered as a parallel circuit of a resistance and a capacitance and the electric current profile across the sample is determined as a function of the elastic constants. In the reorientation process of the nematic director, the resistance and capacitance of the sample are determined by taking into account the elastic anisotropy. A nonmonotonic profile for the current is observed in which a minimum value of the current may be used to estimate the elastic constants values. This scenario suggests a theoretical method to determine the values of the bulk elastic constants in a single planar aligned cell just by changing the direction of applied electrical field and measuring the resulting electrical current.

  5. Thermal and optical study of semiconducting CNTs-doped nematic liquid crystalline material

    NASA Astrophysics Data System (ADS)

    Vimal, T.; Singh, D. P.; Gupta, S. K.; Pandey, S.; Agrahari, K.; Manohar, R.

    2016-06-01

    We report the thermal and spectroscopic analysis of the carbon nanotubes (CNTs)-doped nematic liquid crystal (NLC) material. The CNTs have been oriented in the p-ethoxybenzylidene p-butylaniline NLC. The thermal study of the CNTs doped nematic mixtures shows a significant decrease in the isotropic to nematic phase transition temperature. However higher doping concentration of CNTs has led to the further increase in transition temperature. The UV-Visible spectroscopy has been attempted on the CNTs/NLC mixtures at room temperature. The investigated NLC present one absorption band corresponding to π-π* electronic transition. A red shift of λmax with the increasing concentration of CNTs in the mixture has been observed. The band gap of NLC has been found to decrease after the doping of CNTs. The absorbance was measured for the UV light, polarized parallel and perpendicular to the LC director in the planar aligned cell.

  6. Two-step switching in dual-frequency nematic liquid crystal mixtures

    NASA Astrophysics Data System (ADS)

    Mrukiewicz, M.; Perkowski, P.; Piecek, W.; Mazur, R.; Chojnowska, O.; Garbat, K.

    2015-11-01

    The so-called dual-frequency nematic mixtures are very promising components for applications in fast operating devices. Compared with classical nematics, they exhibit positive or negative anisotropy of the electric permittivity depending on the applied frequencies of an external electric field. Owing to this property, an overall switching process from planar to homeotropic orientations, and vice versa, can be shortened by using the electric field with two different frequencies. Electro-optical switching characteristics of transmission versus time as a function of applied voltage were obtained for two different dual-frequency mixtures in twisted nematic cells. For one of the investigated mixtures, unusual decrease in the light transmission at switching from the homeotropic to planar orientation at threshold voltage was observed. The switching process apparently occurs in two steps. The mechanism of the two-step switching at twisted dual-frequency nematic structures was discussed. The explanation of the switching mechanism takes into account the influence of the electric field with different frequencies on molecules with transverse and longitudinal dipole moments. Moreover, molecular structure of compounds constituting the mixtures was analyzed. Additionally, response times of the switching driven with low and high frequency pulses were shown. This work helps to understand the molecular interaction and electro-optical switching in the dual-frequency nematic liquid crystals.

  7. Wrinkling of a thin film on a nematic liquid-crystal elastomer

    NASA Astrophysics Data System (ADS)

    Soni, Harsh; Pelcovits, Robert A.; Powers, Thomas R.

    2016-07-01

    Wrinkles commonly develop in a thin film deposited on a soft elastomer substrate when the film is subject to compression. Motivated by recent experiments [Agrawal et al., Soft Matter 8, 7138 (2012)], 10.1039/c2sm25734c that show how wrinkle morphology can be controlled by using a nematic elastomer substrate, we develop the theory of small-amplitude wrinkles of an isotropic film atop a nematic elastomer. The directors of the nematic elastomer are initially uniform. For uniaxial compression of the film along the direction perpendicular to the elastomer directors, the system behaves as a compressed film on an isotropic substrate. When the uniaxial compression is along the direction of nematic order, we find that the soft elasticity characteristic of liquid-crystal elastomers leads to a critical stress for wrinkling which is very small compared to the case of an isotropic substrate. We also determine the wavelength of the wrinkles at the critical stress and show how the critical stress and wavelength depend on substrate depth and the anisotropy of the polymer chains in the nematic elastomer.

  8. Wrinkling of a thin film on a nematic liquid-crystal elastomer.

    PubMed

    Soni, Harsh; Pelcovits, Robert A; Powers, Thomas R

    2016-07-01

    Wrinkles commonly develop in a thin film deposited on a soft elastomer substrate when the film is subject to compression. Motivated by recent experiments [Agrawal et al., Soft Matter 8, 7138 (2012)]1744-683X10.1039/c2sm25734c that show how wrinkle morphology can be controlled by using a nematic elastomer substrate, we develop the theory of small-amplitude wrinkles of an isotropic film atop a nematic elastomer. The directors of the nematic elastomer are initially uniform. For uniaxial compression of the film along the direction perpendicular to the elastomer directors, the system behaves as a compressed film on an isotropic substrate. When the uniaxial compression is along the direction of nematic order, we find that the soft elasticity characteristic of liquid-crystal elastomers leads to a critical stress for wrinkling which is very small compared to the case of an isotropic substrate. We also determine the wavelength of the wrinkles at the critical stress and show how the critical stress and wavelength depend on substrate depth and the anisotropy of the polymer chains in the nematic elastomer.

  9. Study of intrinsic anchoring in nematic liquid crystals based on modified Gruhn Hess pair potential

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Dong; Zhang, Yan-Jun

    2008-01-01

    A nematic liquid crystal slab composed of N molecular layers is investigated using a simple cubic lattice model, based upon the molecular pair potential which is spatially anisotropic and dependent on elastic constants of liquid crystals. A perfect nematic order is assumed in the theoretical treatment, which means the orientation of the molecular long axis coincides with the director of liquid crystal and the total free energy equals to the total interaction energy. We present a modified Gruhn Hess model, which is relative to the splay-bend elastic constant K. Furthermore, we have studied the free nematic interfacial behavior (intrinsic anchoring) by this model in the assumption of the perfect nematic order. We find that the preferred orientation at the free interface and the intrinsic anchoring strength change with the value of modification, and that the director profile can be determined by the competition of the intrinsic anchoring with external forces present in the system. Also we simulate the intrinsic anchoring at different temperatures using Monte Carlo method and the simulation results show that the intrinsic anchoring favors planar alignment and the free interface is more disordered than the bulk.

  10. Reversible macroscopic dynamics of polar nematic liquid crystals: Reversible currents and their experimental consequences

    NASA Astrophysics Data System (ADS)

    Brand, Helmut R.; Cladis, P. E.; Pleiner, Harald

    2009-03-01

    Polar liquid crystalline phases are relevant for fluid liquid crystal phases observed in banana liquid crystals as well as for a class of polymeric liquid crystalline materials investigated recently. In this Brief Report we present the reversible dynamics for polar nematic liquid crystals with C∞v symmetry, where the macroscopic polarization representing polar order acts as an independent macroscopic variable. We find reversible coupling terms, for example, between flow and temperature and concentration gradients specific for the existence of a polar preferred direction. We suggest concrete experiments to check the importance of the reversible dynamic cross-coupling terms presented here.

  11. Studies of Optical Wave Front Conjugation and Imaging Properties of Nematic Liquid Crystal Films

    DTIC Science & Technology

    1988-06-30

    processes was also demonstrated. The capability of optical four wave mixing to generate amplified reflection and self- oscillation in nematic liquid crystal...via real time optical wave mixing process was also demonstrated. The capability of optical four wave mixing to generate amplified reflection and self...the special nonlinear optical properties of liquid crystal films for optical wave front conjugation and in related four -wave mixing processes. The

  12. Driving voltage properties sensitive to microscale liquid crystal orientation pattern in twisted nematic liquid crystal cells

    NASA Astrophysics Data System (ADS)

    Honma, Michinori; Takahashi, Koki; Yamaguchi, Rumiko; Nose, Toshiaki

    2016-04-01

    We investigated the micropattern-sensitive driving voltage properties of twisted nematic liquid crystal (LC) cells and found that the threshold voltage for inducing the Fréedericksz transition strongly depends on the micropatterned LC molecular orientation state. We discuss the effects of various cell parameters such as the period of the micropattern Λ, the LC layer thickness d, and the twist angle Φ on the threshold voltage. By a computer simulation of the LC molecular orientation, we found that the threshold voltage V th varies in response to the deformation factor Δ (= d 2/Λ2 + Φ2/π2) of the spatially distributed LC molecular orientation. We confirm that V\\text{th}2 is proportional to 1 - Δ from both theoretical and experimental standpoints.

  13. Electrode Placement for Active Tuning of Silicon-on-Insulator (SOI) Ring Resonator Structure Clad in Nematic Liquid Crystals

    DTIC Science & Technology

    2014-08-01

    their electromagnetic spectrum and find applications in optical switching, filtering, buffering , lasers, and biosensors. Photonic resonances are... coupler ring resonators [1–3]. Combining dielectric resonators with nematic liquid crystals (LC) enables easily tunable devices where the tuning is

  14. Elastic torque and the levitation of metal wires by a nematic liquid crystal.

    PubMed

    Lapointe, C; Hultgren, A; Silevitch, D M; Felton, E J; Reich, D H; Leheny, R L

    2004-01-30

    Anisotropic particles suspended in a nematic liquid crystal disturb the alignment of the liquid crystal molecules and experience small forces that depend on the particles' orientation. We have measured these forces using magnetic nanowires. The torque on a wire and its orientation-dependent repulsion from a flat surface are quantitatively consistent with theoretical predictions based on the elastic properties of the liquid crystal. These forces can also be used to manipulate submicrometer-scale particles. We show that controlled spatial variations in the liquid crystal's alignment convert the torque on a wire to a translational force that levitates the wire to a specified height.

  15. Non-linear Imaging of Nanoscale Surface Defects on Alphabet Letter Shaped Colloids in a Uniformly Aligned Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Giller, Julian; Lapointe, Clayton P.; Smalyukh, Ivan I.

    2012-03-01

    The formation of defect structures on the surfaces of colloids immersed in uniformly aligned nematic liquid crystals is a phenomenon which, if better understood, could lead to advances in micro and nanoscale colloidal self assembly techniques. In this study, three photon fluorescence microscopy (3PFM) was used in conjunction with holographic optical tweezers (HOT) in order to stabilize and image surface defects on English alphabet letter shaped colloids suspended in a uniformly aligned nematic liquid crystal. This data made it possible to characterize the location and strength of these defects for a robust variety of shapes. A relationship between particle shape and angle of orientation vs the host nematic was also observed.

  16. Passing Current through Electrically Conducting Lyotropic Liquid Crystals and Micelles Assembled from Hybrid Surfactants with π-Conjugated Tail and Polyoxometalate Head

    PubMed Central

    2016-01-01

    The solvent-mediated ability for molecularly encoded self-assembly into states of higher order (micelles, lyotropic liquid crystals) embodies the basis for many applications of surfactants in science and society. Surfactants are used frequently in recipes for nanoparticle synthesis. Because ordinary surfactants comprise insulating constituents (alkyl groups as side-chains and charged organic heads), such nanostructures are wrapped in an electrically inactive barrier, and this is a large disadvantage for future developments in nanotechnology. Implications of micelles with electrically conducting walls made from either “metallic” or “semiconducting” surfactants are huge, also in other areas such as nanoelectrocatalysis or micellar energy storage. We cross this frontier by replacing not only the hydrophilic chain but also the hydrophilic head by electronically conducting entities. We report the synthesis of surfactants with oligo para-phenylene-ethynylene as a π-conjugated side-chain attached to a redox-active, inorganic polyoxometalate cluster as charged head. It is proven that electronic communication between head and tail takes place. Hybridization on the molecular level leads to the emergence of advanced surfactant features such as semiconductor properties (Egap = 2.6 eV) in soft lyotropic systems (micelles, liquid crystals). PMID:27809472

  17. Shear rheology and in-vitro release kinetic study of apigenin from lyotropic liquid crystal.

    PubMed

    Fan, Jun; Liu, Feng; Wang, Zhongni

    2016-01-30

    Apigenin is a flavonoid compound with diverse pharmacological functions which could develop health benefit products, but its formulation is hampered by its poor water solubility and bioavailability. In this paper, in order to overcome these difficulties, apigenin was encapsulated in LLC formed by polyoxyethylene-10-oleyl ether (Brij 97) and sodium deoxycholate (NaDC) mixtures. The hexagonal liquid crystalline phase (H) and the cubic liquid crystalline phase (C) were found in this system. The shear rheology was used to study the structure change with temperature. It was shown that C3 (Brij 97-NaDC/IPM-PEG400/H2O=36:9:55) was C at low temperature. But above 35.6°C, the matrix of C3 completely transformed to polymer solution. The matrix of H3 was H (Brij 97-NaDC:IPM-PEG 400:H2O=50:9:41) below 50°C, but the structural strength change was obvious. Vitro release experiment was used to study drug release kinetics. It was indicated that apigenin encapsulated in LLC conformed to the concentration diffusion model, and cumulative percentage of apigenin released from C3 and H3 had corresponding relationship with the shear rheology at different temperatures.

  18. Lyotropic liquid crystal behaviour of azelate and succinate monoester surfactants based on fragrance alcohols.

    PubMed

    Marchal, Frédéric; Nardello-Rataj, Véronique; Chailloux, Nelly; Aubry, Jean-Marie; Tiddy, Gordon J T

    2008-05-01

    Azelaic acid was used as a starting material for the preparation of new monoester surfactants based on fragrance alcohols. Sodium monocitronellyl azelate (citroC(9)Na) and sodium monomenthyl azelate (menC(9)Na) were synthesized and their aqueous phase behaviour was studied. For comparison, monoesters derived from succinic anhydride, i.e. sodium monocitronellyl succinate (citroC(4)Na) and sodium monomenthyl succinate (menC(4)Na), were also prepared as well as sodium monodecyl succinate (C(10)C(4)Na) and sodium monodecyl azelate (C(10)C(9)Na) in order to study the effect of the position of the ester function inside the hydrophobic tail and of branching and unsaturation respectively. Liquid crystal structures were examined by optical polarising microscopy and schematic partial binary phase diagrams (surfactant+water, 0-100 wt%, 10-90 degrees C) of the surfactants were established. Succinate surfactants behave as longer alkyl chain surfactants than their azelate counterparts, meaning that these last ones probably adopt a more folded conformation, with the ester function more frequently present at the micelle surface. This conformation would result in a rougher micelle surface, making it slightly less easy for micelles to pack in liquid crystalline phases. It was also shown that the tendency to adopt a more folded conformation and to form smaller micelles is ranked in this order: monomenthyl>monocitronellyl>monodecyl.

  19. Liquid crystal alignment at macroscopically isotropic polymer surfaces: Effect of an isotropic-nematic phase transition

    NASA Astrophysics Data System (ADS)

    Aryasova, Natalie; Reznikov, Yuri

    2016-09-01

    We study the effect of an isotropic-nematic (I -N ) phase transition on the liquid crystal alignment at untreated polymer surfaces. We demonstrate that the pattern at the untreated substrate in the planar cell where the other substrate is uniformly rubbed strongly depends on the temperature gradient across the cell during the I -N phase transition, being macroscopically isotropic if the untreated substrate is cooled faster, but becoming almost homogeneous along the rubbing direction in the opposite temperature gradient. We interpret the observed effect using complementary models of heat transfer and nematic elasticity. Based on the heat transfer model we show that the asymmetric temperature conditions in our experiments provide unidirectional propagation of the I -N interface during the phase transition and determine the initial director orientation pattern at the test's untreated surface. Using the Frank-Oseen model of nematic elasticity, we represent the three-dimensional director field in the nematic cell as a two-dimensional (2D) pattern at the untreated surface and perform 2D numeric simulations. The simulations explain the experimental results: Different initial director orientations at the untreated surface evolve into different stationary patterns.

  20. Geometrical optics approach to the nematic liquid crystal grating: numerical results.

    PubMed

    Kosmopoulos, J A; Zenginoglou, H M

    1987-05-01

    The problem of the grating action of a periodically distorted nematic liquid crystal layer, in the geometrical optics ray approximation is considered, and a theory for the calculation of the fringe powers is proposed. A nonabsorbing nematic phase is assumed, and the direction of incidence is taken to be normal to the layer. The powers of the resulting diffraction fringes are related to the spatial and angular deviation of the rays propagating across the layer and to the perturbation of the phase of the wave associated with the ray. The theory is applied to the simple case of a harmonically distorted nematic layer. In the case of a weakly distorted nematic layer the results agree with the predictions of Carroll's model, where only even-order fringes are important. As the distortion becomes larger, odd-order fringes (with the exception of the first order) become equally important, and particularly those at relatively large orders (e.g., seven and nine) exhibit maxima greater than that of the even-order neighbors. Finally, the dependence of the powers of odd-order fringes on the distortion angle is quite different from that of the even-order fringes.

  1. Optical studies of the nematic phase of an oxazole-derived bent-core liquid crystal

    NASA Astrophysics Data System (ADS)

    Olivares, J. A.; Stojadinovic, S.; Dingemans, T.; Sprunt, S.; Jákli, A.

    2003-10-01

    Various optical and dynamic light scattering studies have been conducted on the nematic phase of an oxazole-derived bent-core liquid crystal. At optical length scales and in the absence of applied fields, homogeneously aligned samples of this material, which has an oxazole heterocyclic ring in the central core, are found to behave more like a conventional straight-core nematic than a previously investigated ester-based class of bent-core molecules that have a benzene ring as the core linkage between the two arms of the bow-shaped molecule. In particular, the nematic refractive indices of the oxazole compound combine in the standard way [i.e., ((2n2o+n2e)/3)] to match the isotropic value throughout the nematic range, and the observed director fluctuation modes have relaxation rates comparable to those of the usual thermotropics. However, polarized light scattering data reveal evidence of weak biaxial fluctuations, and indications of electric-field-induced biaxiality are observed in the refractive index measurements.

  2. Understanding the distinctive elastic constants in an oxadiazole bent-core nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Kaur, S.; Addis, J.; Greco, C.; Ferrarini, A.; Görtz, V.; Goodby, J. W.; Gleeson, H. F.

    2012-10-01

    The splay and bend elastic constants of the bent-core oxadiazole material [C5-Ph-ODBP-Ph-OC12] have been investigated as a function of temperature across the nematic phase. The bend constant K33 is found to take values of ˜3.0 pN and to be almost temperature independent, whereas, the splay constant K11 increases monotonically from ˜3.5 pN close to the isotropic phase transition to values of ˜9 pN deep in the nematic phase. No pretransitional divergence is observed in either K11 or K33 at temperatures approaching the underlying phase. This behavior of the elastic constants is distinct from that observed in rodlike liquid crystal systems but appears to share characteristics with the few other bent-core nematic systems studied to date. We discuss the interdependence of the elastic constants, the birefringence, and the order parameter to allow a comparison of the observed behavior with theory. We show that calculations of the elastic constants via molecular-field theory and atomistic modeling are in excellent qualitative as well as good quantitative (within 2 pN) agreement with the measurements across the temperature range, offering a deeper understanding of the elasticity in bent-core nematic materials than has been, hitherto, available.

  3. Large-scale self-organization of reconfigurable topological defect networks in nematic liquid crystals.

    PubMed

    Sasaki, Yuji; Jampani, V S R; Tanaka, Chiharu; Sakurai, Nobutaka; Sakane, Shin; Le, Khoa V; Araoka, Fumito; Orihara, Hiroshi

    2016-11-07

    Topological defects in nematic liquid crystals are ubiquitous. The defects are important in understanding the fundamental properties of the systems, as well as in practical applications, such as colloidal self-assembly, optical vortex generation and templates for molecular self-assembly. Usually, spatially and temporally stable defects require geometrical frustration imposed by surfaces; otherwise, the system relaxes because of the high cost of the elastic energy. So far, multiple defects are kept in bulk nematic liquid crystals by top-down lithographic techniques. In this work, we stabilize a large number of umbilical defects by doping with an ionic impurity. This method does not require pre-patterned surfaces. We demonstrate that molecular reorientation controlled by an AC voltage induces periodic density modulation of ions accumulated at an electrically insulating polymer interface, resulting in self-organization of a two-dimensional square array of umbilical defects that is reconfigurable and tunable.

  4. Stimulated orientational and thermal scatterings and self-starting optical phase conjugation with nematic liquid crystals

    PubMed

    Khoo; Liang

    2000-11-01

    A quantitative theory and experimental results on self-starting optical phase conjugation, using stimulated orientational and thermal scattering in nematic liquid crystal films, are presented. The coupled wave-material equations for the laser-induced refractive index changes, grating formation, and coherent wave mixing effects are developed. Analytical solutions are obtained for the case of negligible pump depletion, and numerical solutions for various input and generated signals, taking losses into account, are obtained. Experimentally, we demonstrate the feasibility of realizing these stimulated scattering and phase conjugation processes in thin (200 &mgr;m) nematic liquid crystal with a milliwatt-power cw laser. Theoretical estimates for various gain constants and threshold intensities, and their dependence on various physical parameters, are found to be in good agreement with experimental observations.

  5. Determination of ordinary and extraordinary refractive indices of nematic liquid crystals by using wedge cells

    NASA Astrophysics Data System (ADS)

    Kędzierski, J.; Raszewski, Z.; Kojdecki, M. A.; Kruszelnicki-Nowinowski, E.; Perkowski, P.; Piecek, W.; Miszczyk, E.; Zieliński, J.; Morawiak, P.; Ogrodnik, K.

    2010-06-01

    A new accurate and fast interference method for determining ordinary and extraordinary refractive indices of nematic liquid crystals is presented and discussed. The method relies on microscopic measurements of distances between interference fringes appearing in polarised parallel coherent monochromatic light beam transmitted normally to the surfaces through a wedge cell filled with a nematic. Both glass plates confining the cell are coated with a partly transparent thin film of metal which is deposited by evaporation in vacuum. Owing to the multiple reflections between the surfaces and a small edge angle, the interference fringes observed near the wedge apex edge are sharp and equidistant. To apply this method one needs only small amount of an investigated liquid crystal. Basic mathematical formulae and results of an experiment are briefly discussed.

  6. Microsecond-range optical shutter for unpolarized light with chiral nematic liquid crystal

    SciTech Connect

    Mohammadimasoudi, Mohammad Neyts, Kristiaan; Beeckman, Jeroen; Shin, Jungsoon; Lee, Keechang

    2015-04-15

    A fast electro-optic shutter is fabricated and demonstrated. The device works independently of the polarization state of the incoming light beam. Modulation between 3% transmission and 60% transmission is obtained within a wavelength range of 50 nm with a response time of 20 μs. The device consists of two partly polymerized chiral nematic liquid crystal layers separated by a half wave plate. The transmission modulation is due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid crystal realized by applying an electric field over a mixture of photo-polymerized LC and non-reactive nematic LC containing a chiral dopant. The shutter features high reflectivity in the photonic band gap. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.

  7. Microsecond-range optical shutter for unpolarized light with chiral nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Mohammadimasoudi, Mohammad; Shin, Jungsoon; Lee, Keechang; Neyts, Kristiaan; Beeckman, Jeroen

    2015-04-01

    A fast electro-optic shutter is fabricated and demonstrated. The device works independently of the polarization state of the incoming light beam. Modulation between 3% transmission and 60% transmission is obtained within a wavelength range of 50 nm with a response time of 20 μs. The device consists of two partly polymerized chiral nematic liquid crystal layers separated by a half wave plate. The transmission modulation is due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid crystal realized by applying an electric field over a mixture of photo-polymerized LC and non-reactive nematic LC containing a chiral dopant. The shutter features high reflectivity in the photonic band gap. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.

  8. Large-scale self-organization of reconfigurable topological defect networks in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sasaki, Yuji; Jampani, V. S. R.; Tanaka, Chiharu; Sakurai, Nobutaka; Sakane, Shin; Le, Khoa V.; Araoka, Fumito; Orihara, Hiroshi

    2016-11-01

    Topological defects in nematic liquid crystals are ubiquitous. The defects are important in understanding the fundamental properties of the systems, as well as in practical applications, such as colloidal self-assembly, optical vortex generation and templates for molecular self-assembly. Usually, spatially and temporally stable defects require geometrical frustration imposed by surfaces; otherwise, the system relaxes because of the high cost of the elastic energy. So far, multiple defects are kept in bulk nematic liquid crystals by top-down lithographic techniques. In this work, we stabilize a large number of umbilical defects by doping with an ionic impurity. This method does not require pre-patterned surfaces. We demonstrate that molecular reorientation controlled by an AC voltage induces periodic density modulation of ions accumulated at an electrically insulating polymer interface, resulting in self-organization of a two-dimensional square array of umbilical defects that is reconfigurable and tunable.

  9. Large-scale self-organization of reconfigurable topological defect networks in nematic liquid crystals

    PubMed Central

    Sasaki, Yuji; Jampani, V.S.R.; Tanaka, Chiharu; Sakurai, Nobutaka; Sakane, Shin; Le, Khoa V.; Araoka, Fumito; Orihara, Hiroshi

    2016-01-01

    Topological defects in nematic liquid crystals are ubiquitous. The defects are important in understanding the fundamental properties of the systems, as well as in practical applications, such as colloidal self-assembly, optical vortex generation and templates for molecular self-assembly. Usually, spatially and temporally stable defects require geometrical frustration imposed by surfaces; otherwise, the system relaxes because of the high cost of the elastic energy. So far, multiple defects are kept in bulk nematic liquid crystals by top-down lithographic techniques. In this work, we stabilize a large number of umbilical defects by doping with an ionic impurity. This method does not require pre-patterned surfaces. We demonstrate that molecular reorientation controlled by an AC voltage induces periodic density modulation of ions accumulated at an electrically insulating polymer interface, resulting in self-organization of a two-dimensional square array of umbilical defects that is reconfigurable and tunable. PMID:27819290

  10. Effects of polymers on the rotational viscosities of nematic liquid crystals and dynamics of field alignment

    SciTech Connect

    Kim, D.

    1993-12-31

    Many of the important physical phenomena exhibited by the nematic phase, such as its unusual flow properties and its responses to the electric and the magnetic fields, can be discussed regarding it as a continous medium. The Leslie-Erickson dynamic theory has the six dissipative coefficients from continuum model of liquid crystal. Parodi showed that only five of them are independent, when Onsagar`s reciprocal relations are used. One of these, which has no counterpart in the isotropic liquids, is the rotational viscosity co-efficient, {gamma}{sub 1}. The main objective of this project is to study the rotational viscosities of selected micellar nematic systems and the effect of dissolved polymers in micellar and thermotropic liqud crystals. We used rotating magnetic field method which allows one to determine {gamma}{sub 1} and the anisotropic magnetic susceptibility, {chi}{sub a}. For the ionic surfactant liquid crystals of SDS and KL systems used in this study, the rotational viscosity exhibited an extraordinary drop after reaching the highest values {gamma}{sub 1} as the temperature was lowered. This behavior is not observed in normal liquid crystals. But this phenomena can be attributed to the existence of nematic biaxial phase below the rod-like nematic N{sub c} phase. The pretransitional increase in {gamma}{sub 1} near the disk-like nematic to smectic-A phase transition of the pure CsPFO/H{sub 2}O systems are better understood with the help of mean-field models of W.L. McMillan. He predicted a critical exponent {nu} = {1/2} for the divergence of {gamma}{sub 1}. The polymer (PEO, molecular weight = 10{sup 5}) dissolved in CsPFO/H{sub 2}O system (which has 0.6% critical polymer concentration), suppressed the nematic to lamellar smectic phase transition in concentrated polymer solutions (0.75% and higher). In dilute polymer solutions with lower than 0.3% polyethylene-oxide, a linear increase of {gamma}{sub 1} is observed, which agrees with Brochard theory.

  11. Phase shifting digital holography implemented with a twisted-nematic liquid-crystal display.

    PubMed

    Cruz, Maria-Luisa; Castro, Albertina; Arrizón, Victor

    2009-12-20

    We describe and experimentally demonstrate a phase shifting method based on the lateral displacement of a grating implemented with a twisted-nematic liquid-crystal spatial light modulator. This method allows an accurate implementation of the phase shift without requiring moving parts. The technique is implemented in a Mach-Zehnder digital holography setup in which the field transmitted by the sample object freely propagates to the hologram plane.

  12. Optical nonlinearity due to thermomechanical effect in the planar and homeotropic nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Poursamad, J. B.; Phirouznia, A.; Sahrai, M.

    2015-11-01

    Possibility of observing third thermomechanical (TM) effect in uniform nematic liquid crystals (NLC) with proper selection of boundary conditions on the cell walls is theoretically studied. Absorption of a light wave induces the needed temperature gradient for the TM effect. The molecular director reorientation due to third TM effect and the induced phase shift on the probe beam are calculated. The forth TM coefficient can be measured directly by the method proposed in this work.

  13. Nematic order-disorder state transition in a liquid crystal analogue formed by oriented and migrating amoeboid cells

    NASA Astrophysics Data System (ADS)

    Kemkemer, R.; Teichgräber, V.; Schrank-Kaufmann, S.; Kaufmann, D.; Gruler, H.

    2000-10-01

    In cell culture, liquid crystal analogues are formed by elongated, migrating, and interacting amoeboid cells. An apolar nematic liquid crystal analogue is formed by different cell types like human melanocytes (=pigment cells of the skin), human fibroblasts (=connective tissue cells), human osteoblasts (=bone cells), human adipocytes (=fat cells), etc. The nematic analogue is quite well described by i) a stochastic machine equation responsible for cell orientation and ii) a self-organized extracellular guiding signal, E_2, which is proportional to the orientational order parameter as well as to the cell density. The investigations were mainly made with melanocytes. The transition to an isotropic state analogue can be accomplished either by changing the strength of interaction (e.g. variation of the cell density) or by influencing the cellular machinery by an externally applied signal: i) An isotropic gaseous state analogue is observed at low cell density (ρ < 110melanocytes/mm^2) and a nematic liquid crystal state analogue at higher cell density. ii) The nematic state analogue disappears if the bipolar shaped melanocytes are forced to become a star-like shape (induced by colchicine or staurosporine). The analogy between nematic liquid crystal state analogue formed by elongated, migrating and interacting cells and the nematic liquid crystal phase formed by interacting elongated molecules is discussed.

  14. A QCM-D and SAXS Study of the Interaction of Functionalised Lyotropic Liquid Crystalline Lipid Nanoparticles with siRNA.

    PubMed

    Tajik-Ahmadabad, Behnoosh; Mechler, Adam; Muir, Benjamin W; McLean, Keith; Hinton, Tracey M; Separovic, Frances; Polyzos, Anastasios

    2017-02-23

    Biophysical studies were undertaken to investigate the binding and release of short interfering ribonucleic acid (siRNA) from lyotropic liquid crystalline lipid nanoparticles (LNPs) using a quartz crystal microbalance (QCM). These carriers are based on phytantriol (Phy) and a cationic lipid, DOTAP (1, 2-dioleoyl-3 trimethylammonium propane). The non-lamellar phase LNPs were tethered to the surface of the QCM chip for analysis based on biotin-neutravidin binding, which enabled the controlled deposition of siRNA-LNP complexes with different lipid/siRNA charge ratios on a QCM-D crystal sensor. The binding and release of biomolecules such as siRNA from LNPs was demonstrated to be reliably characterized using this technique. Essential physicochemical parameters of the cationic LNP/siRNA lipoplexes, such as particle size, lyotropic mesophase behavior, cytotoxicity, gene silencing and uptake efficiency, were also assessed. The SAXS data show that upon lowering the pH to 5.5, the structure of lipoplexes did not change, indicating that the acidic conditions of the endosome were not a significant factor in the release of siRNA from the cationic lipidic carriers.

  15. An immersed boundary method for fluid-structure interactions in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Spagnolie, Saverio

    2015-11-01

    The nematic phase of a liquid crystal is characterized by a spontaneous local molecular alignment leading to an anisotropic (direction-dependent) response to deformations. A body moving through such a phase can induce complex viscous and elastic structures in the flow, and the fluid's anisotropic response can generate surprising forces on the immersed body. Bacteria swimming in a liquid crystal, for instance, have been observed to align with the orientation of the underlying director field. The complexity of such problems generally makes mathematical analysis intractable, and the computation of solutions can still be very challenging. In this talk an immersed boundary method for computing fluid-structure interactions in a nematic liquid crystal will be discussed. The Ericksen-Leslie equations, or a more general Landau-de Gennes model, are solved on a fixed, regular grid. Immersed boundaries communicate forces onto the fluid as in Peskin's original method, but now also torques on the nematic director field through molecular anchoring boundary conditions. Sample applications will also be discussed, including the locomotion of undulatory bodies in anisotropic fluids.

  16. Optical analysis of spatially periodic patterns in nematic liquid crystals: Diffraction and shadowgraphy

    NASA Astrophysics Data System (ADS)

    Pesch, Werner; Krekhov, Alexei

    2013-05-01

    Optical methods are most convenient for analyzing spatially periodic patterns with wave vector q in a thin layer of a nematic liquid crystal. In the standard experimental setup a beam of parallel light with a “short” wavelength λ≪2π/q passes the nematic layer. Recording the transmitted light the patterns are either directly visualized by shadowgraphy or characterized more indirectly by the diffraction fringes due to the optical-grating effects of the pattern. In this work we present a systematic short-wavelength analysis of these methods for the commonly used planar orientation of the optical axis of liquid crystal at the confining surfaces. Our approach covers general three-dimensional experimental geometries with respect to the relative orientation of q and of the wave vector k of the incident light. In particular, we emphasize the importance of phase-grating effects, which are not accessible in a pure geometric optics approach. Finally, as a by-product we present also an optical analysis of convection rolls in Rayleigh-Bénard convection, where the refraction index of the fluid is isotropic in contrast to its uniaxial symmetry in nematic liquid crystals. Our analysis is in excellent agreement with an earlier physical optics approach by Trainoff and Cannell [Phys. FluidsPHFLE61070-663110.1063/1.1449892 14, 1340 (2002)], which is restricted to a two-dimensional geometry and technically much more demanding.

  17. Optical analysis of spatially periodic patterns in nematic liquid crystals: diffraction and shadowgraphy.

    PubMed

    Pesch, Werner; Krekhov, Alexei

    2013-05-01

    Optical methods are most convenient for analyzing spatially periodic patterns with wave vector q in a thin layer of a nematic liquid crystal. In the standard experimental setup a beam of parallel light with a "short" wavelength λ<2π/q passes the nematic layer. Recording the transmitted light the patterns are either directly visualized by shadowgraphy or characterized more indirectly by the diffraction fringes due to the optical-grating effects of the pattern. In this work we present a systematic short-wavelength analysis of these methods for the commonly used planar orientation of the optical axis of liquid crystal at the confining surfaces. Our approach covers general three-dimensional experimental geometries with respect to the relative orientation of q and of the wave vector k of the incident light. In particular, we emphasize the importance of phase-grating effects, which are not accessible in a pure geometric optics approach. Finally, as a by-product we present also an optical analysis of convection rolls in Rayleigh-Bénard convection, where the refraction index of the fluid is isotropic in contrast to its uniaxial symmetry in nematic liquid crystals. Our analysis is in excellent agreement with an earlier physical optics approach by Trainoff and Cannell [Phys. Fluids 14, 1340 (2002)], which is restricted to a two-dimensional geometry and technically much more demanding.

  18. Hard Spherocylinders of Two Different Lengths as a Model System of a Nematic Liquid Crystal on an Anisotropic Substrate

    NASA Astrophysics Data System (ADS)

    Koda, Tomonori; Hyodo, Yosuke; Momoi, Yuichi; Kwak, Musun; Kang, Dongwoo; Choi, Youngseok; Nishioka, Akihiro; Haba, Osamu; Yonetake, Koichiro

    2016-02-01

    In this article, we describe the effects of an anisotropic substrate on the alignment of a nematic liquid crystal. We examine how the substrate affects the alignment of a nematic liquid crystal by Monte Carlo simulation. The liquid crystal on a substrate was described by the phase separation of liquid crystal molecules and substrate molecules, both of which were modeled by hard particles. We used hard rods to represent both the liquid crystal and the substrate. The length of the hard rods representing the substrate was adjusted to represent the degree of substrate anisotropy. The results show that the nematic alignment could either be reinforced or weakened, depending on the length of the substrate rods. Mean field theory is used to analyze the simulation results. We confirmed that the distance over which the substrate affects the bulk liquid crystal is about 3 nm for the present hard-rod-based model.

  19. Alignment and electrooptic effects in nanoparticle-doped nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Kinkead, Brandy; Urbanski, Martin; Qi, Hao; Kitzerow, Heinz-S.; Hegmann, Torsten

    2010-08-01

    It is well known that doping nematic liquid crystals with nanoparticles can alter the electrooptic response of the nematic host as well as the alignment of the liquid crystal molecules on various substrates. In addition, nanoparticles dispersed in a nematic matrix often induce defects and defect patterns justifying the necessity for more detailed optical and electrooptic investigations including effects of nanoparticle size, coating, concentration and core material. We studied the local alignment of nematic LC molecules in such dispersions by means of fluorescence confocal polarizing microscopy. The results of two- and three-dimensional imaging indicate that frequently observed birefringent stripes, which are induced by the presence of metal nanoparticles and semiconductor quantum dots, correspond to twist disclinations located at the LC/substrate interface. The luminescence of dispersed quantum dots shows that the ends of these disclination threads are pinned to conglomerates of nanoparticles that stabilize these line defects. By performing (x,z)-scans, it can be shown that the defects are not walls extending through the entire cell gap, but lines that are located at the substrate surface. Our experiments also confirm, as hypothesized before, that the nanoparticles preferably reside at the liquid crystal/substrate interfaces. Finally, detailed electrooptic investigations also revealed that a contrast inversion observed earlier is initiated by a change from parallel to homeotropic anchoring, thereby causing an instability, which in turn leads to the appearance of convection rolls (Kapustin-Williams domains). This electrohydrodynamic instability is likely an example for the behavior of (+, -) systems predicted by de Gennes, which was only recently experimentally observed for the first time.

  20. Detecting, visualizing, and measuring gold nanoparticle chirality using helical pitch measurements in nematic liquid crystal phases.

    PubMed

    Sharma, Anshul; Mori, Taizo; Lee, Huey-Charn; Worden, Matthew; Bidwell, Eric; Hegmann, Torsten

    2014-12-23

    Chirality at the nanoscale, or more precisely, the chirality or chiroptical effects of chiral ligand-capped metal nanoparticles (NPs) is an intriguing and rapidly evolving field in nanomaterial research with promising applications in catalysis, metamaterials, and chiral sensing. The aim of this work was to seek out a system that not only allows the detection and understanding of NP chirality but also permits visualization of the extent of chirality transfer to a surrounding medium. The nematic liquid crystal phase is an ideal candidate, displaying characteristic defect texture changes upon doping with chiral additives. To test this, we synthesized chiral cholesterol-capped gold NPs and prepared well-dispersed mixtures in two nematic liquid crystal hosts. Induced circular dichroism spectropolarimetry and polarized light optical microscopy revealed that all three gold NPs induce chiral nematic phases, and that those synthesized in the presence of a chiral bias (disulfide) are more powerful chiral inducers than those where the NP was formed in the absence of a chiral bias (prepared by conjugation of a chiral silane to preformed NPs). Helical pitch data here visually show a clear dependence on the NP size and the number of chiral ligands bound to the NP surface, thereby supporting earlier experimental and theoretical data that smaller metal NPs made in the presence of a chiral bias are stronger chiral inducers.

  1. Chiral amplification in a cyanobiphenyl nematic liquid crystal doped with helicene-like derivatives.

    PubMed

    Ferrarini, Alberta; Pieraccini, Silvia; Masiero, Stefano; Spada, Gian Piero

    2009-10-07

    The addition of a chiral non-racemic dopant to a nematic liquid crystal (LC) has the effect of transferring the molecular chirality to the phase organization and a chiral nematic phase is formed. This molecular chirality amplification in the LC provides a unique possibility for investigating the relationship between molecular structure, intermolecular interactions, and mesoscale organization. It is known that axially chiral or helical-shaped molecules with reduced conformational disorder are good candidates for high helical twisting power derivatives. In particular, biaryl derivatives are known to be efficient chiral inducers in biaryl nematic mesophases. In this paper, we focus on a new series of helicene-like molecules of known absolute configuration. We have integrated cholesteric pitch measurements with geometry optimization by DFT calculations and analysis of the twisting ability by the Surface Chirality model to shed light on the structural features responsible for the analogies and differences exhibited by these derivatives. The investigation of these dopants with well-defined geometry, by virtue of the low conformational freedom, and the substituents variously distributed around the core, allows us to extend our knowledge of the molecular origin of the chirality amplification in liquid crystals and to confirm the simple relationship "molecular P-helicity" --> "cholesteric P-handedness" for helical-shaped helicene-like derivatives.

  2. Confined nematic liquid crystal between two spherical boundaries with planar anchoring

    NASA Astrophysics Data System (ADS)

    Seyednejad, Seyed Reza; Mozaffari, Mohammad Reza; Ejtehadi, Mohammad Reza

    2013-07-01

    Nematic shells of liquid crystals have been provided in microscales. Defect structures in the shells are very essential in the electro-optical applications of such colloidal objects. We have numerically minimized the free energy of symmetric and asymmetric spherical shells of the nematic liquid crystal. Considering degenerate planar anchoring on the surfaces and isotropic nematic elasticity, a variety of defect structures are observed by controlling or varying the thicknesses of the shell and its degree of asymmetry. In symmetric shells, our calculations show that boojums (bipolar) defects appear in thick shells and tetrahedral (baseball) defects in thin shells. In asymmetric shells, while we are in the bipolar regime, the boojums defects transform to trigonal configurations. Free energy landscape shows that in this regime the inner droplet is not stable in the center and it is trapped in an off-center minimum energy position. For the case of thin shells, there are two degenerate director textures with similar tetrahedral configuration of the disclination lines. The levels are split in asymmetric shells. The stability of the inner droplet in the center position depends on director texture. It is stable for one texture and unstable for the other one. For an unstable pattern there is no minimum energy position for the inner droplet and it moves until it touches the outer boundary.

  3. Three-dimensional modeling of nematic liquid crystal micro-optics structures with complex patterned electrodes

    NASA Astrophysics Data System (ADS)

    Rong, Xing; Kang, Shengwu; Zhang, Xinyu; Ji, An; Xie, Changsheng; Zhang, Tianxu

    2012-11-01

    In this paper, a three-dimensional (3-D) relaxation method is used to model the dynamic response behavior of liquid crystal (LC) directors in LC micro-optics structures with complex patterned electrodes. The method is based on Frank- Oseen continuum elastic theory by using a vectorial representation. This method can deal with liquid crystal structures with arbitrary patterned electrodes, and it is quite computational stability. Different numerical results obtained according the method are as follows: (1) the nematic LC structures with complex patterned electrodes applied by a constant voltage signal, and (2) the nematic LC structures with different thickness of LC layer, and (3) the nematic LC structures with different signal voltage. The typical results include the distribution of LC directors in LC layers, the distribution of electric potential in LC layers, and the distribution of phase retardation. The results show that the method can be used to effectively predict the formation of disclination lines, which has a strong impact on the performance of LC micro-optics structures.

  4. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    NASA Astrophysics Data System (ADS)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-05-01

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10-100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  5. Wide-Viewing-Angle Hybrid Aligned Nematic Liquid Crystal Cell Controlled by Complex Electric Field

    NASA Astrophysics Data System (ADS)

    Hong, Seung Ho; Kim, Hyang Yul; Kim, Jae-Hyung; Nam, Sang-Hee; Lee, Myong-Hoon; Lee, Seung Hee

    2002-07-01

    We have developed a hybrid aligned nematic liquid crystal (LC) cell driven by a complex electric field. In the device, the pixel electrode exists on the bottom substrate and the counter electrodes exist on the top and bottom substrates such that with a bias voltage both vertical and horizontal fields are generated. The LC molecules are hybrid aligned with homogeneous alignment on the bottom substrate where the alignment direction is coincident with one of the transmission axes of the crossed polarizers. Therefore, the cell appears to be black in the absence of an electric field. When a voltage is applied to obtain a white state, both vertical and horizontal fields enable the LC molecules to rotate with lowered tilt angles than those in the dark state. The device shows a much wider viewing angle than that of the twisted nematic mode, high light efficiency and low driving voltage in electro-optic characteristics.

  6. Landau-de Gennes theory of isotropic-nematic-smectic liquid crystal transitions.

    PubMed

    Biscari, Paolo; Calderer, Maria Carme; Terentjev, Eugene M

    2007-05-01

    We propose a Landau-de Gennes variational theory fit to simultaneously describe isotropic, nematic, smectic- A , and smectic- C phases of a liquid crystal. The unified description allows us to deal with systems in which one, or all, of the order parameters develop because of the influence of defects, external fields and/or boundary conditions. We derive the complete phase diagram of the system, that is, we characterize how the homogeneous minimizers depend on the value of the constitutive parameters. The coupling between the nematic order tensor and the complex smectic order parameter generates an elastic potential which is a nonconvex function of the gradient of the smectic order parameter. This lack of convexity yields in turn a loss of regularity of the free-energy minimizers. We then consider the effect on an infinitesimal second-order regularization term in the free-energy functional, which fixes the optimal number of defects in the singular configurations.

  7. Propagation of optical spatial solitary waves in bias-free nematic-liquid-crystal cells

    SciTech Connect

    Minzoni, Antonmaria A.; Sciberras, Luke W.; Worthy, Annette L.; Smyth, Noel F.

    2011-10-15

    The propagation of a bulk optical solitary wave in a rectangular cell filled with a nematic liquid crystal--a nematicon--is mathematically modelled. In order to overcome the Freedricksz threshold the cell walls are rubbed to pretilt the nematic. A modulation theory, based on a Lagrangian formulation, is developed for the (2+1)-dimensional propagation of the solitary wave beam down the cell. This modulation theory is based on two different formulations of the director distribution. The relative advantages and disadvantages of these two methods are discussed. A previously unexplored method based on images is found to possess significant advantages. Excellent agreement with full numerical solutions of the nematicon equations is found for both methods. Finally, the implications of the results obtained for some widely used approximations to the nematicon equations are discussed, particularly their use in comparisons with experimental results.

  8. Co-dispersion of plasmonic nanorods in thermotropic nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sheetah, Ghadah; Liu, Qinkun; Smalukh, Ivan

    Colloidal dispersions of plasmonic metal nanoparticles in liquid crystals promise the capability of pre-engineering tunable optical properties of mesostructured metal-dielectric composites. Recently, concentrated dispersions of anisotropic gold, silver, and metal alloy nanoparticles in nematic hosts have been achieved and successfully controlled by low-voltage fields. However, to enable versatile designs of material behavior of the composites, simultaneous co-dispersion of anisotropic particles with different shapes, alignment properties, and compositions are often needed. We achieve such co-dispersions and explore their switching characteristics in response to external stimuli like light and electric fields. We demonstrated that spectral characteristics of co-dispersions of multiple types of anisotropic nanoparticles in a common nematic host provides unprecedented variety of electrically- and optically-tunable material behavior, with a host of potential practical applications in electro-optic devices and displays Ghadah acknowledges support from the King Faisal University (KFU) graduate fellowship.

  9. Stabilization of nematic liquid crystal dispersions with acrylamide copolymers and their electrooptical properties

    NASA Astrophysics Data System (ADS)

    Park, Soo-Jin; Seo, Min-Kang; Han, Mijeong; Lee, Jae-Rock

    2003-01-01

    This study reports the observation of electrooptical properties in polymer-dispersed liquid crystal films during the formation of a copolymerization of hydrophilic acrylamide with hydrophobic monomers (styrene and methyl methacrylate). According to the interfacial tension and coalescence time measurements, it is proposed that the presence of hydrophobic moieties onto nematic liquid crystal (NLC) droplet surface leads to a steric stabilization of the dispersion, due to increasing interfacial tension of NLC, decreasing NLC droplet size, and finally reducing anchoring effect between NLC and polymeric wall.

  10. Electrically Controlled Phase Gratings for Terahertz Radiation Based on Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, D.; Tabiryan, N.; Margaryan, H.; Abrahamyan, V.; Hakobyan, N.

    2014-03-01

    A mathematical model of a new type of liquid crystal (LC) based diffraction grating for the terahertz frequency range is proposed. Numerical time-integration by the finite-difference time-domain (FDTD) method of Maxwell-equation systems, describing the proposed structure, has been performed. The partial differential equation, describing the electro-optical induced orientation of the LC molecule in the external electric field, is calculated by the method of lines (MOL). The dependence of induced birefringence vs. external control voltage is obtained for 6CB nematic liquid crystal (NLC).

  11. Refraction of nonlinear beams by localized refractive index changes in nematic liquid crystals

    SciTech Connect

    Assanto, Gaetano; Minzoni, Antonmaria A.; Smyth, Noel F.; Worthy, Annette L.

    2010-11-15

    The propagation of solitary waves in nematic liquid crystals in the presence of localized nonuniformities is studied. These nonuniformities can be caused by external electric fields, other light beams, or any other mechanism which results in a modified director orientation in a localized region of the liquid-crystal cell. The net effect is that the solitary wave undergoes refraction and trajectory bending. A general modulation theory for this refraction is developed, and particular cases of circular, elliptical, and rectangular perturbations are considered. The results are found to be in excellent agreement with numerical solutions.

  12. Electric field-induced optical second harmonic generation in nematic liquid crystal 5CB

    NASA Astrophysics Data System (ADS)

    Torgova, S. I.; Shigorin, V. D.; Maslyanitsyn, I. A.; Todorova, L.; Marinov, Y. G.; Hadjichristov, G. B.; Petrov, A. G.

    2014-12-01

    Electric field-induced second harmonic generation (EFISH) was studied for the liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) (a nematic phase material at room temperature). The intensity of coherent SHG from 5CB cells upon DC electric field was measured for various initial orientations of the liquid crystal. The dependence of the SHG intensity on the pump beam incidence angle was obtained in transmission geometry using sample rotation method. The experimental results (the registered light intensity in the output SHG interference patterns) were theoretically modelled and analyzed.

  13. Influence of latent heat and thermal diffusion on the growth of nematic liquid crystal nuclei.

    PubMed

    Huisman, B A H; Fasolino, A

    2007-08-01

    The growth of nematic liquid crystal nuclei from an isotropic melt follows a power law behavior with exponent n found experimentally to vary between 1/2 for low quench depths, up to 1 for high quench depths. This behavior has been attributed to the competition between curvature and free energy. We show that curvature cannot account for the low quench depth behavior of the nucleus growth, and attribute this behavior to the diffusion of latent heat. We use a multiscale approach to solve the Landau-Ginzburg order parameter evolution equation coupled to a diffusive heat equation, and discuss this behavior for material parameters experimentally measured for the liquid crystal 8CB.

  14. Polarization-controlled contrasted images using dye-doped nematic liquid crystals.

    PubMed

    Porras Aguilar, R; Ramirez-San-Juan, J C; Baldovino-Pantaleon, O; May-Arrioja, D; Arroyo Carrasco, M L; Iturbe-Castillo, M D; Sánchez-de-la-Llave, D; Ramos-Garcia, R

    2009-03-02

    We explore the polarization dependence of the nonlinear response of a planar nematic liquid crystal cell doped with 1% wt of methyl red dye. The results obtained show that the refractive index change can be switched from a positive value to a negative one as the polarization of the beam changes from parallel to perpendicular with respect to the rubbing direction. This property is exploited in a phase contrast system, where a dynamic phase filter is photoinduced in a liquid crystal cell placed in the system's Fourier plane. Real-time contrast inversion in the resulting images is demonstrated.

  15. Propelling and spinning of microsheets in nematic liquid crystals driven by ac electric field

    NASA Astrophysics Data System (ADS)

    Rasna, M. V.; Ramudu, U. V.; Chandrasekar, R.; Dhara, Surajit

    2017-01-01

    Dynamics of microparticles in isotropic liquids by transducing the energy of an applied electric field have been studied for decades. Recently, such studies in anisotropic media like liquid crystals have opened up new perspectives in colloid science. Here, we report studies on ac-electric-field-driven dynamics of microsheets in nematic liquid crystals. In planar aligned liquid crystals, with negative dielectric anisotropy, the microsheets are propelled parallel to the director. A steady spinning of the microsheets is observed in homeotropic cells with positive dielectric anisotropy liquid crystals. The velocity of propelling and the angular frequency of spinning depends on the amplitude and the frequency of the applied electric field. The electrokinetic studies of anisotropic microparticles are important as they are potential for applications in microfluidics and in areas where the controlled transport or rotation is required.

  16. Zigzag line defects and manipulation of colloids in a nematic liquid crystal in microwrinkle grooves

    PubMed Central

    Ohzono, Takuya; Fukuda, Jun-ichi

    2012-01-01

    Spatially confined liquid crystals exhibit non-uniform alignment, often accompanied by self-organised topological defects of non-trivial shape in response to imposed boundary conditions and geometry. Here we show that a nematic liquid crystal, when confined in a sinusoidal microwrinkle groove, exhibits a new periodic arrangement of twist deformations and a zigzag line defect. This periodic ordering results from the inherent liquid crystal elastic anisotropy and the antagonistic boundary conditions at the flat liquid crystal–air and the curved liquid crystal–groove interfaces. The periodic structure can be tuned by controlling the groove geometry and the molecular chirality, which demonstrates the importance of boundary conditions and introduced asymmetry for the engineering of topological defects. Moreover, the kinks in the zigzag defects can trap small particles, which may afford a new method for manipulation of colloids. Our system, which uses easily fabricated microwrinkle grooves, provides a new microfabrication method based on the arrangement of controllable defects. PMID:22426222

  17. Plasmon electro-optic effect in a subwavelength metallic nanograting with a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.; Kasyanova, I. V.; Geivandov, A. R.; Shtykov, N. M.; Artemov, V. V.; Gorkunov, M. V.

    2016-01-01

    The electro-optic effect in hybrid structures based on subwavelength metallic nanogratings in contact with a layer of a nematic liquid crystal has been experimentally studied. Metallic gratings are fabricated in the form of interdigitated electrodes, which makes it possible to use them not only as optical elements but also for the production of an electric field in a thin surface region of the layer of the liquid crystal. It has been shown that, owing to the electric-field-induced reorientation of molecules of the liquid crystal near the surface of the grating, it is possible to significantly control the spectral features of the transmission of light, which are caused by the excitation of surface plasmons. The electro-optic effect is superfast for liquid crystal devices because a change in the optical properties of the system requires the reorientation of molecules only in a very thin surface layer of the liquid crystal.

  18. Tunable photonic nanojet achieved using a core-shell microcylinder with nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang

    2013-04-01

    A tunable photonic nanojet achieved using a core-shell microcylinder with nematic liquid crystal is reported. The core-shell microcylinder can be obtained by the infiltration of liquid crystal into the air core of a microcylinder. The refractive indices of the liquid crystals can be changed by rotating the directors of the liquid crystals. Therefore, we were able to control the flow direction of the photonic nanojet in two-dimensional core-shell microcylinder structures. Using high resolution finite-difference time-domain simulation, we demonstrate that the photonic nanojet can be continuously tuned in the core-shell microcylinder. The horizontal and vertical shifts of photonic nanojet depend strongly on the director of the liquid crystals. Such a mechanism of nanojet adjustment should open up a new application for using visible light to detect nanoparticles, optical gratings, and single molecules with subwavelength spatial resolution.

  19. Critical points and symmetries of a free energy function for biaxial nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Chillingworth, D. R. J.

    2015-05-01

    We describe a general mean field model for the free energy function for a homogeneous medium of mutually interacting molecules, based on the formalism for a biaxial nematic liquid crystal set out by Katriel et al (1986) in an influential paper in Liquid Crystals 1 and subsequently called the KKLS formalism. The free energy is expressed as the sum of an entropy term and an interaction (Hamiltonian) term. Using the language of group representation theory we identify the order parameters as averaged components of a linear transformation, and characterize the full symmetry group of the entropy term in the liquid crystal context as a wreath product SO(3) ≀ Z2. The symmetry-breaking role of the Hamiltonian, pointed out by Katriel et al, is here made explicit in terms of centre manifold reduction at bifurcation from isotropy. We use tools and methods of equivariant singularity theory to reduce the bifurcation study to that of a D3-invariant function on R2, ubiquitous in liquid crystal theory, and to describe the ‘universal’ bifurcation geometry in terms of the superposition of a familiar swallowtail surface controlling uniaxial equilibria and another less familiar surface controlling biaxial equilibria. In principle this provides a template for all nematic liquid crystal phase transitions close to isotropy, although further work is needed to identify the absolute minima that are the critical points representing stable phases.

  20. Amphiphilic brush polymers produced using the RAFT polymerisation method stabilise and reduce the cell cytotoxicity of lipid lyotropic liquid crystalline nanoparticles.

    PubMed

    Zhai, Jiali; Suryadinata, Randy; Luan, Bao; Tran, Nhiem; Hinton, Tracey M; Ratcliffe, Julian; Hao, Xiaojuan; Drummond, Calum J

    2016-10-06

    Self-assembled lipid lyotropic liquid crystalline nanoparticles such as hexosomes and cubosomes contain internal anisotropic and isotropic nanostructures, respectively. Despite the remarkable potential of such nanoparticles in various biomedical applications, the stabilisers used in formulating the nanoparticles are often limited to commercially available polymers such as the Pluronic block copolymers. This study explored the potential of using Reversible Addition-Fragmentation chain Transfer (RAFT) technology to design amphiphilic brush-type polymers for the purpose of stabilising phytantriol and monoolein-based lipid dispersions. The synthesised brush-type polymers consisted of a hydrophobic C12 short chain and a hydrophilic poly(ethylene glycol)methyl ether acrylate (PEGA) long chain with multiple 9-unit poly(ethylene oxide) (PEO) brushes with various molecular weights. It was observed that increasing the PEO brush density and thus the length of the hydrophilic component improved the stabilisation effectiveness for phytantriol and monoolein-based cubosomes. Synchrotron small-angle X-ray scattering (SAXS) experiments confirmed that the RAFT polymer-stabilised cubosomes had an internal double-diamond cubic phase with tunable water channel sizes. These properties were dependent on the molecular weight of the polymers, which were considered in some cases to be anisotropically distributed within the cubosomes. The in vitro toxicity of the cubosomes was assessed by cell viability of two human adenocarcinoma cell lines and haemolytic activities to mouse erythrocytes. The results showed that phytantriol cubosomes stabilised by the RAFT polymers were less toxic compared to their Pluronic F127-stabilised analogues. This study provides valuable insight into designing non-linear amphiphilic polymers for the effective stabilisation and cellular toxicity improvement of self-assembled lipid lyotropic liquid crystalline nanoparticles.

  1. Topological Polymer Dispersed Liquid Crystals with Bulk Nematic Defect Lines Pinned to Handlebody Surfaces

    NASA Astrophysics Data System (ADS)

    Campbell, Michael G.; Tasinkevych, Mykola; Smalyukh, Ivan I.

    2014-05-01

    Polymer dispersed liquid crystals are a useful model system for studying the relationship between surface topology and defect structures. They are comprised of a polymer matrix with suspended spherical nematic drops and are topologically constrained to host defects of an elementary hedgehog charge per droplet, such as bulk or surface point defects or closed disclination loops. We control the genus of the closed surfaces confining such micrometer-sized nematic drops with tangential boundary conditions for molecular alignment imposed by the polymer matrix, allowing us to avoid defects or, on the contrary, to generate them in a controlled way. We show, both experimentally and through numerical modeling, that topological constraints in nematic microdrops can be satisfied by hosting topologically stable half-integer bulk defect lines anchored to opposite sides of handlebody surfaces. This enriches the interplay of topologies of closed surfaces and fields with nonpolar symmetry, yielding new unexpected configurations that cannot be realized in vector fields, having potential implications for topologically similar defects in cosmology and other fields.

  2. Robustness of the periodic and chaotic orientational behavior of tumbling nematic liquid crystals.

    PubMed

    Heidenreich, Sebastian; Ilg, Patrick; Hess, Siegfried

    2006-06-01

    The dynamical behavior of molecular alignment strongly affects physical properties of nematic liquid crystals. A theoretical description can be made by a nonlinear relaxation equation of the order parameter and leads to the prediction that rather complex even chaotic orientational behavior occur. Here the influence of fluctuating shear rates on the orientational dynamics especially on chaotic solutions is discussed. With the help of phase portraits and time evolution diagrams, we investigated the influence of different fluctuation strengths on the flow aligned, isotropic, and periodic solutions. To explore the effect of fluctuations on the chaotic behavior, we calculated the largest Lyapunov exponent for different fluctuation strengths. We found in all cases that small fluctuations of the shear rate do not affect the basic features of the dynamics of tumbling nematics. Furthermore, we present an amended potential modeling the isotropic to nematic transition and discuss the equivalence and difference to the commonly used Landau-de Gennes potential. In contrast to the Landau-de Gennes potential, our potential has the advantage to restrict the order parameter to physically admissible values. In the case of extensional flow, we show that the amended potential leads for increasing extensional rate to a better agreement with experimental results.

  3. Field-driven dynamics of microcapillaries filled with nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Fu, Fred; Khayyatzadeh, Pouya; Abukhdeir, Nasser M.

    Polymer-dispersed liquid crystal (PDLC) composites have long been a focus of study for their unique electro-optical properties and the feasibility of manufacturing them on a large scale, resulting in applications such as switchable windows. LC domains within PDLCs are typically spheroidal, as opposed to rectangular in LCD technology, and thus exhibit substantially different behaviour in the presence of an external field. In this work, continuum simulations were performed in order to capture the complex formation and electric field-driven switching dynamics of approximations of PDLC domains. A simplified elliptic cylinder (microcapillary) geometry is used and the effects of varying aspect ratio, surface anchoring, and external field strength were studied using the Landau-de Gennes model. The observed nematic formation and reorientation dynamics were found to be governed by the presence and motion of defects within the domain. Aspect ratio was found to strongly influence domain texture by providing regions of high curvature to which defects are attracted. Simulations also predict the presence of a geometry-controlled transition from nematic order enhanced by an external field (low aspect ratio) to nematic order frustrated by an external field (high aspect ratio). This work was made possible by the Natural Sciences and Engineering Research Council of Canada and Compute Ontario.

  4. Lattice Statistical Models for the Nematic Transitions in Liquid-Crystalline Systems

    NASA Astrophysics Data System (ADS)

    Nascimento, E. S.; Vieira, A. P.; Salinas, S. R.

    2016-12-01

    We investigate the connections between some simple Maier-Saupe lattice models, with a discrete choice of orientations of the microscopic directors, and a recent proposal of a two-tensor formalism to describe the phase diagrams of nematic liquid-crystalline systems. This two-tensor proposal is used to formulate the statistical problem in terms of fully connected lattice Hamiltonians, with the local nematic directors restricted to the Cartesian axes. Depending on the choice of interaction parameters, we regain all of the main features of the original mean-field two-tensor calculations. With a standard choice of parameters, we obtain the well-known sequence of isotropic, uniaxial, and biaxial nematic structures, with a Landau multicritical point. With another suitably chosen set of parameters, we obtain two tricritical points, according to some recent predictions of the two-tensor calculations. The simple statistical lattice models are quite easy to work with, for all values of parameters, and the present calculations can be carried out beyond the mean-field level.

  5. Symmetry breaking in nematic liquid crystals: analogy with cosmology and magnetism.

    PubMed

    Repnik, R; Ranjkesh, A; Simonka, V; Ambrozic, M; Bradac, Z; Kralj, S

    2013-10-09

    Universal behavior related to continuous symmetry breaking in nematic liquid crystals is studied using Brownian molecular dynamics. A three-dimensional lattice system of rod-like objects interacting via the Lebwohl-Lasher interaction is considered. We test the applicability of predictions originally derived in cosmology and magnetism. In the first part we focus on coarsening dynamics following the temperature driven isotropic-nematic phase transition for different quench rates. The behavior in the early coarsening regime supports predictions made originally by Kibble in cosmology. For fast enough quenches, symmetry breaking and causality give rise to a dense tangle of defects. When the degree of orientational ordering is large enough, well defined protodomains characterized by a single average domain length are formed. With time subcritical domains gradually vanish and supercritical domains grow with time, exhibiting a universal scaling law. In the second part of the paper we study the impact of random-field-type disorder on a range of ordering in the (symmetry broken) nematic phase. We demonstrate that short-range order is observed even for a minute concentration of impurities, giving rise to disorder in line with the Imry-Ma theorem prediction only for the appropriate history of systems.

  6. Molecular dynamics of a binary mixture of twist-bend nematic liquid crystal dimers studied by dielectric spectroscopy.

    PubMed

    Robles-Hernández, Beatriz; Sebastián, Nerea; Salud, Josep; Diez-Berart, Sergio; Dunmur, David A; Luckhurst, Geoffrey R; López, David O; de la Fuente, M Rosario

    2016-06-01

    We report a comprehensive dielectric characterization of a liquid crystalline binary mixture composed of the symmetric mesogenic dimer CB7CB and the nonsymmetric mesogenic dimer FFO9OCB. In addition to the high-temperature nematic phase, such a binary mixture shows a twist-bend nematic phase at room temperature which readily vitrifies on slow cooling. Changes in the conformational distribution of the dimers are reflected in the dielectric permittivity and successfully analyzed by means of an appropriate theoretical model. It is shown that the dielectric spectra of the mixture reflect the different molecular dipole properties of the components, resembling in the present case the characteristic dielectric spectra of nonsymmetric dimers. Comparison of the nematic and twist-bend nematic phases reveals that molecular dynamics are similar despite the difference in the molecular environment.

  7. Optical properties of light-sensitive liquid-crystal elastomers in the vicinity of the nematic-paranematic phase transition

    NASA Astrophysics Data System (ADS)

    Gregorc, Marko; Li, Hui; Domenici, Valentina; Ambrožič, Gabriela; Čopič, Martin; Drevenšek-Olenik, Irena

    2013-02-01

    We investigate light-induced patterning of a monodomain side-chain liquid crystal elastomer (SC-LCE) doped with light-sensitive azobenzene moiety in the temperature region close to the nematic-paranematic phase transition. We show that a strongly nonlinear relationship between the concentration of the cis isomers of the azomesogens and the refractive index modification of the material, which is characteristic for the phase transition region, results in nonmonotonous time dependence of the diffraction efficiency of a probe beam. From this effect we determine the sensitivity of the nematic transition temperature on the molar fraction of the cis isomers. The relation between the cis isomer molar fraction and nematic order also provides a possibility for recording hidden holograms, which can be made visible by cooling the sample from the paranematic to the nematic phase.

  8. Effects of Polymers on the Rotational Viscosities of Nematic Liquid Crystals and Dynamics of Field Alignment.

    NASA Astrophysics Data System (ADS)

    Kim, Du-Rim

    Many of the important physical phenomena exhibited by the nematic phase, such as its unusual flow properties and its responses to the electric and the magnetic fields, can be discussed regarding it as a continuous medium. The Leslie-Erickson dynamic theory has the six dissipative coefficients from continuum model of liquid crystal. Parodi showed that only five of them are independent, when Onsagar's reciprocal relations are used. One of these, which has no counterpart in the isotropic liquids, is the rotational viscosity coefficient, gamma_1. The main objective of this project is to study the rotational viscosities of selected micellar nematic systems and the effect of dissolved polymers in micellar and thermotropic liquid crystals. We used rotating magnetic field method which allows one to determine gamma _1 and the anisotropic magnetic susceptibility, chi_{a}. For the ionic surfactant liquid crystals of SDS and KL systems used in this study, the rotational viscosity exhibited an extraordinary drop after reaching the highest value gamma_1 as the temperature was lowered. This behavior is not observed in normal liquid crystals. But this phenomena can be attributed to the existence of nematic biaxial phase below the rod-like nematic N_{c} phase. The pretransitional increase in gamma _1 near the disk-like nematic to smectic -A phase transition of the pure CsPFO H_2O systems are better understood with the help of mean-field models of W. L. McMillan. He predicted a critical exponent nu = -{1over 2} for the divergence of gamma_1. The polymer (PEO, molecular weight = 10 ^5) dissolved in CsPFO H_2O system (which has 0.6% critical polymer concentration), suppressed the nematic to lamellar smectic phase transition in concentrated polymer solutions (0.75% and higher). In dilute polymer solutions with lower than 0.3% polyethylene-oxide, a linear increase of gamma_1 is observed, which agrees with Brochard theory. The polymer solutions in thermotropic liquid crystal solvents

  9. Hierarchy of orientational phases and axial anisotropies in the gauge theoretical description of generalized nematic liquid crystals.

    PubMed

    Liu, Ke; Nissinen, Jaakko; de Boer, Josko; Slager, Robert-Jan; Zaanen, Jan

    2017-02-01

    The paradigm of spontaneous symmetry breaking encompasses the breaking of the rotational symmetries O(3) of isotropic space to a discrete subgroup, i.e., a three-dimensional point group. The subgroups form a rich hierarchy and allow for many different phases of matter with orientational order. Such spontaneous symmetry breaking occurs in nematic liquid crystals, and a highlight of such anisotropic liquids is the uniaxial and biaxial nematics. Generalizing the familiar uniaxial and biaxial nematics to phases characterized by an arbitrary point-group symmetry, referred to as generalized nematics, leads to a large hierarchy of phases and possible orientational phase transitions. We discuss how a particular class of nematic phase transitions related to axial point groups can be efficiently captured within a recently proposed gauge theoretical formulation of generalized nematics [K. Liu, J. Nissinen, R.-J. Slager, K. Wu, and J. Zaanen, Phys. Rev. X 6, 041025 (2016)2160-330810.1103/PhysRevX.6.041025]. These transitions can be introduced in the model by considering anisotropic couplings that do not break any additional symmetries. By and large this generalizes the well-known uniaxial-biaxial nematic phase transition to any arbitrary axial point group in three dimensions. We find in particular that the generalized axial transitions are distinguished by two types of phase diagrams with intermediate vestigial orientational phases and that the window of the vestigial phase is intimately related to the amount of symmetry of the defining point group due to inherently growing fluctuations of the order parameter. This might explain the stability of the observed uniaxial-biaxial phases as compared to the yet to be observed other possible forms of generalized nematic order with higher point-group symmetries.

  10. Hierarchy of orientational phases and axial anisotropies in the gauge theoretical description of generalized nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Nissinen, Jaakko; de Boer, Josko; Slager, Robert-Jan; Zaanen, Jan

    2017-02-01

    The paradigm of spontaneous symmetry breaking encompasses the breaking of the rotational symmetries O(3 ) of isotropic space to a discrete subgroup, i.e., a three-dimensional point group. The subgroups form a rich hierarchy and allow for many different phases of matter with orientational order. Such spontaneous symmetry breaking occurs in nematic liquid crystals, and a highlight of such anisotropic liquids is the uniaxial and biaxial nematics. Generalizing the familiar uniaxial and biaxial nematics to phases characterized by an arbitrary point-group symmetry, referred to as generalized nematics, leads to a large hierarchy of phases and possible orientational phase transitions. We discuss how a particular class of nematic phase transitions related to axial point groups can be efficiently captured within a recently proposed gauge theoretical formulation of generalized nematics [K. Liu, J. Nissinen, R.-J. Slager, K. Wu, and J. Zaanen, Phys. Rev. X 6, 041025 (2016), 10.1103/PhysRevX.6.041025]. These transitions can be introduced in the model by considering anisotropic couplings that do not break any additional symmetries. By and large this generalizes the well-known uniaxial-biaxial nematic phase transition to any arbitrary axial point group in three dimensions. We find in particular that the generalized axial transitions are distinguished by two types of phase diagrams with intermediate vestigial orientational phases and that the window of the vestigial phase is intimately related to the amount of symmetry of the defining point group due to inherently growing fluctuations of the order parameter. This might explain the stability of the observed uniaxial-biaxial phases as compared to the yet to be observed other possible forms of generalized nematic order with higher point-group symmetries.

  11. Imaging in natural light with nematic liquid crystals (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Galstian, Tigran V.

    2015-10-01

    Nametic liquid crystals (NLC) are most commonly used liquid crystal (LC) materials in various light modulators [1], displays [2] and lenses [3]. However those materials have a fundamental limitation: they are polarization sensitive since the refractive index modulation here is achieved by the electric field induced reorientation of their local anisotropy axis. Thus, the standard imaging optical systems (used in consumer electronic products and dealing with natural light sources [4]) have to use double NLC structures in a cross oriented way and in rather requiring geometrical conditions. We describe a simple but very efficient optical device that allows the dynamic focusing of unpolarized light using a single NLC layer. The operation principle of the proposed device is based on the combination of an electrically variable "single layer lens" with two fixed optical elements for light reflection and 90° polarization flip. Such an approach is made possible thanks to the close integration of thin film wave plate and mirror. Preliminary experimental studies of the obtained electrically variable mirror show very promising results. Several standard camera geometries, using the double layer approach, and possible new geometries, using the reflective approach, will be described. References 1. Gordon D. Love, Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator, Applied Optics, Vol. 36, Issue 7, pp. 1517-1524 (1997). 2. P. Yeh and C. Gu, Optics of Liquid Crystal Displays, Wiley, 1999. 3. T. Galstian, Smart Mini-Cameras, CRC Press, Taylor and Francis group, 2013. 4. www.lensvector.com

  12. Equilibrium Configuration in a Nematic Liquid Crystal Droplet with Homeotropic Anchoring of Finite Strength

    NASA Astrophysics Data System (ADS)

    Kanke, Masaki; Sasaki, Kazuo

    2013-09-01

    Equilibrium configuration of order parameter in a nematic liquid crystal droplet with homeotropic anchoring of finite strength at the surface is studied numerically by using the Landau--de Gennes approach. It is found that a hedgehog-like configuration with a disclination loop of a small radius is stable for strong anchoring while an axial configuration without defect is stable for weak anchoring. A first-order phase transition from one configuration to the other occurs as the strength of the anchoring is varied. The critical anchoring strength turns out to increase almost linearly with the inverse of the droplet radius.

  13. Half-Integer Point Defects in the Q-Tensor Theory of Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Di Fratta, G.; Robbins, J. M.; Slastikov, V.; Zarnescu, A.

    2016-02-01

    We investigate prototypical profiles of point defects in two-dimensional liquid crystals within the framework of Landau-de Gennes theory. Using boundary conditions characteristic of defects of index k/2, we find a critical point of the Landau-de Gennes energy that is characterised by a system of ordinary differential equations. In the deep nematic regime, b^2 small, we prove that this critical point is the unique global minimiser of the Landau-de Gennes energy. For the case b^2=0, we investigate in greater detail the regime of vanishing elastic constant L → 0, where we obtain three explicit point defect profiles, including the global minimiser.

  14. Convection in a nematic liquid crystal with homeotropic alignment and heated from below

    SciTech Connect

    Ahlers, G.

    1995-12-31

    Experimental results for convection in a thin horizontal layer of a homeotropically aligned nematic liquid crystal heated from below and in a vertical magnetic field are presented. A subcritical Hopf bifurcation leads to the convecting state. There is quantitative agreement between the measured and the predicted bifurcation line as a function of magnetic field. The nonlinear state near the bifurcation is one of spatio-temporal chaos which seems to be the result of a zig-zag instability of the straight-roll state.

  15. Role of initial conditions in the decay of spatially periodic patterns in a nematic liquid crystal.

    PubMed

    Pesch, Werner; Kramer, Lorenz; Eber, Nándor; Buka, Agnes

    2006-06-01

    The decay of stripe patterns in planarly aligned nematic liquid crystals has been studied experimentally and theoretically. The initial patterns have been generated by the electrohydrodynamic instability and a light diffraction technique has been used to monitor their decay. In our experiments different decay rates have been observed as a function of the pattern wave number. According to our theoretical analysis they belong to a spectrum of decay modes and are individually selected in dependence on the initial conditions. Additional insight has emerged from a refined physical optical description of the diffraction intensity. The results compare well with experiments, which include also controlled modifications of the initial conditions to assess different decay modes.

  16. Phase synchronization of the hydrodynamic and orientational modes during electroconvection in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Batyrshin, E. S.; Krekhov, A. P.; Skaldin, O. A.; Delev, V. A.

    2014-12-01

    The spatiotemporal dynamics of oscillating electroconvective structures appearing in a nematic liquid crystal (NLC) under the combined action of applied alternating (ac) and direct (dc) electric voltages has been experimentally studied. It is established that an increase in the dc component of the applied voltage leads to synchronization of the hydrodynamic mode with the orientational twist mode of the NLC director. The synchronization parameter and the phase shift of the modes are determined as function of the applied dc voltage. The results confirm the flexoelectric mechanism of synchronization.

  17. Colloidal liquid crystals in square confinement: isotropic, nematic and smectic phases

    NASA Astrophysics Data System (ADS)

    Cortes, Louis B. G.; Gao, Yongxiang; Dullens, Roel P. A.; Aarts, Dirk G. A. L.

    2017-02-01

    We report on the confinement of colloidal liquid crystals in three dimensional chambers with a square footprint. To this end we use colloidal silica rods and exploit their relatively large density difference with respect to the dispersing solvent to study isotropic, nematic and smectic phases confined into a single chamber. Combining laser scanning confocal microscopy and soft-lithography techniques enables us to characterize the configurations down to the single particle level. We will focus on the smectic phase and compare to recent theories and simulations.

  18. Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Morris, S. M.; Qasim, M. M.; Cheng, K. T.; Castles, F.; Ko, D.-H.; Gardiner, D. J.; Nosheen, S.; Wilkinson, T. D.; Coles, H. J.; Burgess, C.; Hill, L.

    2013-09-01

    We report the demonstration of an optically activated shutter based upon a short-pitch chiral nematic liquid crystal (LC) device sandwiched between crossed polarizers. This LC is comprised of photo-active chiral dopants. In the trans-state, the LC appears dark between crossed polarizers due to the very short pitch. As the pitch is extended through exposure to ultraviolet light, the device becomes transmissive reaching a maximum for a particular value of the pitch. As a result, it is possible to switch between the light and dark states by subjecting the device to visible light so as to cause a cis-trans photo-isomerisation.

  19. Straining soft colloids in aqueous nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Spagnolie, Saverio; Mushenheim, Peter; Pendery, Joel; Weibel, Douglas; Abbott, Nicholas

    2016-11-01

    Liquid crystals (LCs) are anisotropic, viscoelastic fluids that can be used to direct colloids into organized assemblies with unusual optical, mechanical, and electrical properties. In past studies, the colloids have been sufficiently rigid that their individual shapes and properties have not been strongly coupled to elastic stresses imposed by the LCs. We will discuss how soft colloids (micrometer-sized shells) behave in LCs. We reveal a sharing of strain between the LC and shells, resulting in formation of spindle-like shells and other complex shapes. These results hint at previously unidentified designs of reconfigurable soft materials with applications in sensing and biology. Related effects relevant to biolocomotion will also be touched upon. Wisconsin MRSEC Grant DMR-1121288.

  20. High-Resolution X-Ray Study of Nematic-Smectic-A And Smectic-A-Reentrant-Nematic Transitions in Liquid-Crystal-Aerosil Gels

    SciTech Connect

    Ramazanoglu, M.; Larochelle, S.; Garland, C.W.; Birgeneau, R.J.

    2009-05-21

    We have studied the effects of quenched random disorder created by dispersed aerosil nanoparticle gels on the nematic to smectic- A (N- SmA ) and smectic- A to reentrant nematic ( SmA -RN) phase transitions of thermotropic liquid-crystal mixtures of hexyloxycyanobiphenyl (6OCB) and octyloxycyanobiphenyl (8OCB). These effects are probed using high-resolution synchrotron x-ray diffraction techniques. We find that the reentrant characteristics of the system are largely unchanged by the presence of the aerosil gel network. By comparing measurements of the smectic static structure amplitude for this 8OCB- 6OCB+aerosil system with those for butyloxybenzilidene-octylaniline (4O.8)+aerosil gels, we find that the short-range smectic order in the smectic- A phase is significantly weaker in the reentrant system. This result is consistent with the behavior seen in pure 8OCB-6OCB mixtures. The strength of the smectic ordering decreases progressively as the 6OCB concentration is increased. Detailed line shape analysis shows that the high- and low-temperature nematic phases (N and RN) are similar to each other.

  1. High-resolution x-ray study of nematic-smectic- A and smectic- A -reentrant-nematic transitions in liquid-crystal-aerosil gels

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, M.; Larochelle, S.; Garland, C. W.; Birgeneau, R. J.

    2008-03-01

    We have studied the effects of quenched random disorder created by dispersed aerosil nanoparticle gels on the nematic to smectic- A (N- SmA ) and smectic- A to reentrant nematic ( SmA -RN) phase transitions of thermotropic liquid-crystal mixtures of hexyloxycyanobiphenyl (6OCB) and octyloxycyanobiphenyl (8OCB). These effects are probed using high-resolution synchrotron x-ray diffraction techniques. We find that the reentrant characteristics of the system are largely unchanged by the presence of the aerosil gel network. By comparing measurements of the smectic static structure amplitude for this 8OCB- 6OCB+aerosil system with those for butyloxybenzilidene-octylaniline (4O.8)+aerosil gels, we find that the short-range smectic order in the smectic- A phase is significantly weaker in the reentrant system. This result is consistent with the behavior seen in pure 8OCB-6OCB mixtures. The strength of the smectic ordering decreases progressively as the 6OCB concentration is increased. Detailed line shape analysis shows that the high- and low-temperature nematic phases (N and RN) are similar to each other.

  2. Alternating Waves in Electroconvection of Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Acharya, Gyanu; Gleeson, J. T.; Ladd, Joshua; Dangelmayr, Gerhard; Oprea, Juliana

    2006-11-01

    We present the results of pattern formation in electroconvection of liquid crystal 4-ethyl-2-fluoro-4'-[2-(trans-4-pentylclohexyl)-ethyl]biphenyl (I52) with planar alignment. The pattern was a function of three control parameters: applied ac voltage, driving frequency and electrical conductivity. Over certain range of conductivity, the initial transition (supercritical Hopf bifurcation) leads to right and left traveling zig and zag rolls .Time evolution of spatial Fourier transform (FT) of a series of these images with the sampling rate greater than Hopf frequency and taken under same controlled parameters were studied. To demodulate zig/zag rolls, the region around kn ( the wave vector of a given mode) of interest at one quarter of the FT was taken setting remainder of the FTs to zero. Taking the index of the maximum FT value at that region as the reference point, again this region was separated into four parts and redistributed at four corners. The absolute value of the inverse FT of the modified function gives the required envelope. The temporal variation of the amplitudes of these envelopes is periodic between standing zig and zag modes which are consistent with the theoretical predictions*. Supported by NSF-DMS0407418. *G. Dangelmayr and I. Opera. Mol. Cryst., Liq. Cryst., 413:2241, 2004

  3. In situ prepared polymer films as alignment layers for nematic liquid crystals

    SciTech Connect

    Pires, David; Galerne, Yves

    2006-12-15

    By means of UV-visible irradiations and convenient photoinitiators, we realize the cross-linked polymerization of a triacrylate monomer in solution in a nematic liquid crystal (p-pentyl-p{sup '}-cyanobiphenyl) at low concentrations (a few wt %), i.e., under conditions opposite to the synthesis of polymer-dispersed liquid crystals. As atomic force microscope measurements show, when operating close to, but below, the percolation transition, a thin polymer layer is synthesized in situ, directly covering and coating all the substrate. These observations therefore confirm that the properties of anchoring and of alignment memory previously observed in such nematic cells effectively originate from the synthesized polymer film. According to the photoinitiator used, bulk or surface polymerizations dominate and respectively produce continuous or discontinuous films (i.e., with separate clusters). In the former case, polymer aggregates are first synthesized. They then diffuse in the volume until they meet a surface, where they definitely stick if they are large enough. An estimate of the entropy and interaction energy differences between the two states, stuck or free, shows that the aggregates stick on the substrates if their size exceeds the length of about three monomers, i.e., if they contain more than 20-30 monomers. Interestingly, these films may be used to replicate nonuniform alignment patterns that are difficult to realize otherwise. The method may be considered as an imprinting method.

  4. Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Roberts, Tyler; Aranson, Igor S.; de Pablo, Juan J.

    2016-02-01

    Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices.

  5. Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring.

    PubMed

    Zhang, Rui; Roberts, Tyler; Aranson, Igor S; de Pablo, Juan J

    2016-02-28

    Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices.

  6. Quick measurement of electrorheological effect for small amounts of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Tadokoro, Chiharu; Hosomi, Yuki; Nakano, Ken

    2015-08-01

    A quick measurement method of effective viscosity, employing damped oscillation between two parallel plates, was proposed to examine the electrorheological (ER) effect for small amounts of nematic liquid crystal (LC). To demonstrate the validity of the method, the viscosity measurements were conducted for ordinary liquids [polyalphaolefins (PAOs)] and a nematic LC [4-pentyl-4‧-cyanobiphenyl (5CB)] by using a newly developed apparatus that embodied the measurement principle. The viscosity measurements for PAOs showed that when the film thickness is in the submillimeter range (e.g. 0.2 mm), this method provides reliable values of the effective viscosity. The viscosity measurement for 5CB showed that this method evaluates the ER effect with a few dozen cubic millimeters of the sample (e.g. 16 mm3) under the application of a voltage (e.g. 0 to 300 V). It was confirmed that the effective viscosities of 5CB measured at various conditions were scaled to a single master curve as a function of the applied voltage, effective velocity and film thickness.

  7. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Pu, Shengli; Ji, Hongzhu; Yu, Guojun

    2012-05-01

    Ferronematic materials composed of 4-cyano-4'-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δ n) and figure of merit of optical properties ( Q = Δ n/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of Q R exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field.

  8. NMR polarization echoes in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Levstein, Patricia R.; Chattah, Ana K.; Pastawski, Horacio M.; Raya, Jésus; Hirschinger, Jérôme

    2004-10-01

    We have modified the polarization echo (PE) sequence through the incorporation of Lee-Goldburg cross polarization steps to quench the 1H-1H dipolar dynamics. In this way, the 13C becomes an ideal local probe to inject and detect polarization in the proton system. This improvement made possible the observation of the local polarization P00(t) and polarization echoes in the interphenyl proton of the liquid crystal N-(4-methoxybenzylidene)-4-butylaniline. The decay of P00(t) was well fitted to an exponential law with a characteristic time τC≈310 μs. The hierarchy of the intramolecular dipolar couplings determines a dynamical bottleneck that justifies the use of the Fermi Golden Rule to obtain a spectral density consistent with the structural parameters. The time evolution of P00(t) was reversed by the PE sequence generating echoes at the time expected by the scaling of the dipolar Hamiltonian. This indicates that the reversible 1H-1H dipolar interaction is the main contribution to the local polarization decrease and that the exponential decay for P00(t) does not imply irreversibility. The attenuation of the echoes follows a Gaussian law with a characteristic time τφ≈527 μs. The shape and magnitude of the characteristic time of the PE decay suggest that it is dominated by the unperturbed homonuclear dipolar Hamiltonian. This means that τφ is an intrinsic property of the dipolar coupled network and not of other degrees of freedom. In this case, one cannot unambiguously identify the mechanism that produces the decoherence of the dipolar order. This is because even weak interactions are able to break the fragile multiple coherences originated on the dipolar evolution, hindering its reversal. Other schemes to investigate these underlying mechanisms are proposed.

  9. Asymmetric motion of bubble in nematic liquid crystal induced by symmetry-broken evaporation

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Jo; Lev, Bohdan; Kim, Jong-Hyun

    2016-07-01

    The size of air bubbles in nematic liquid crystals can be continuously decreased through the absorption of air molecules into the host liquid crystal. A bubble and its accompanying hyperbolic hedgehog point defect undergo a continuous asymmetric motion, while the bubble decreases in size. In this study, a mechanism is proposed to theoretically explain both the motion of the air bubble and the point defect observed experimentally. Anisotropic evaporation of air molecules may occur because of the symmetry breaking of the director configuration near the point defect. The motion of the center of the air bubble to the hyperbolic hedgehog point defect is induced by the anisotropic force due to evaporation of air molecules and Stokes drag force.

  10. Thermal switching of the reflection in chiral nematic mesoporous organosilica films infiltrated with liquid crystals.

    PubMed

    Giese, Michael; De Witt, Joanna C; Shopsowitz, Kevin E; Manning, Alan P; Dong, Ronald Y; Michal, Carl A; Hamad, Wadood Y; MacLachlan, Mark J

    2013-08-14

    Materials that undergo stimulus-induced optical changes are important for many new technologies. In this paper, we describe a new free-standing silica-based composite film that exhibits reversible thermochromic reflection, induced by a liquid crystalline guest in the pores of iridescent mesoporous films. We demonstrate that selective reflection from the novel mesoporous organosilica material with chiral nematic organization can be reversibly switched by thermal cycling of the 8CB guest between its isotropic and liquid crystalline states, which was proven by solid-state NMR experiments. The switching of the optical properties of the chiral solid-state host by stimulus-induced transitions of the guest opens the possibility of applications for these novel materials in sensors and displays.

  11. Dependence of the lateral ion transport on the driving frequency in nematic liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Stojmenovik, G.; Vermael, S.; Neyts, K.; Asselt, R. van; Verschueren, A. R. M.

    2004-10-01

    The presence of ions in a liquid crystal (LC) influences the transmission characteristics of LC displays. These ions follow the electric field perpendicular to the electrodes and move back and forth under the influence of the ac field. Because of their charge, they can distort the electric field, which leads to transmission changes. Recently it was discovered that due to the LC anisotropy, ion motion parallel with the plane of the electrodes (perpendicular to the electric field) is also possible, even without lateral fields. After driving a pixel for a long time, the ions will accumulate at one pixel edge, which leads to unwanted image artifacts. In this paper, we investigate the frequency dependence of the lateral ion transport in twisted nematic liquid crystal displays at high and low ion concentrations, different ion mobilities, and LC rotational viscosities, for a fixed voltage just above the LC threshold.

  12. On the nature of the orientational effect of ultrasound on nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Kapustina, O. A.; Negazina, E. K.

    2016-07-01

    Experimental substantiation of the validity of the model of orientational distortion in a homeotropic layer of nematic liquid crystal under an ultrasonic beam with a sharp boundary is presented for the first time. The model is constructed within the concepts of nonequilibrium thermodynamics and statistical hydrodynamics, taking into account the processes of structural relaxation of the mesophase. It establishes the relationship between the characteristics specifying the homeotropic structure deformation (layer thickness, ultrasound frequency, parameters of the molecular micromodel of liquid crystal, and its material constants) and the layer transparency for a linearly polarized light beam. The calculation results are compared with the experimental data in the frequency range of 0.1-3 MHz.

  13. Optical Switching of Nematic Liquid Crystal Film based on Localized Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Quint, Makiko; Delgado, Silverio; Nuno, Zachary; Hirst, Linda; Ghosh, Sayantani

    2015-03-01

    We have demonstrated an all-optical technique to reversibly switch the spatial orientation of nematic liquid crystal molecules from homeotropic to planar in a few micron thick films. Our method leverages the highly localized electric fields that are generated in the near-field of a densely packed gold nanoparticle layer when the samples are excited by light resonant with the localized surface plasmon absorption. We present simulations and control measurements for off-resonance excitation, where the switching behavior is not observed. Using polarized microscopy and transmission measurements, we observe this switching over a temperature range starting several degrees below and up to the isotropic transition, and at on-resonance excitation power less than 10 μW. In addition, we controllably vary the in-plane directionality of the liquid crystal molecules in the planar state by altering the linear polarization of the incident excitation. This work is supported by NSF Grant No. DMR-1056860 and ECC-1227034.

  14. Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices.

    PubMed

    d'Alessandro, A; Asquini, R; Gizzi, C; Caputo, R; Umeton, C; Veltri, A; Sukhov, A V

    2004-06-15

    We report the diffraction properties at wavelengths of 632.8 and 1550 nm for volume transmission gratings made of a sequence of continuously aligned nematic liquid-crystal layers separated by isotropic polymer slices. The gratings are generated by holographically curing a solution of liquid crystal diluted in an isotropic prepolymer by means of a laser beam at a wavelength of 352 nm with a total intensity of approximately 10 mW/cm2. A diffraction efficiency of 98% was measured, and an electric field as low as 5 V/microm switches off the phase grating. Measured angular spectra are fitted by use of the modified coupled-mode theory including the effects of grating birefringence.

  15. A Self-Quenched Defect Glass in a Colloid-Nematic Liquid Crystal Composite

    NASA Astrophysics Data System (ADS)

    Wood, T. A.; Lintuvuori, J. S.; Schofield, A. B.; Marenduzzo, D.; Poon, W. C. K.

    2011-10-01

    Colloidal particles immersed in liquid crystals frustrate orientational order. This generates defect lines known as disclinations. At the core of these defects, the orientational order drops sharply. We have discovered a class of soft solids, with shear moduli up to 104 pascals, containing high concentrations of colloidal particles (volume fraction ϕ>∼20%) directly dispersed into a nematic liquid crystal. Confocal microscopy and computer simulations show that the mechanical strength derives from a percolated network of defect lines entangled with the particles in three dimensions. Such a “self-quenched glass” of defect lines and particles can be considered a self-organized analog of the “vortex glass” state in type II superconductors.

  16. Electric-field variations within a nematic-liquid-crystal layer

    NASA Astrophysics Data System (ADS)

    Cummings, L. J.; Mema, E.; Cai, C.; Kondic, L.

    2014-07-01

    A thin layer of nematic liquid crystal (NLC) across which an electric field is applied is a setup of great industrial importance in liquid crystal display devices. There is thus a large literature modeling this situation and related scenarios. A commonly used assumption is that an electric field generated by electrodes at the two bounding surfaces of the layer will produce a field that is uniform: that is, the presence of NLC does not affect the electric field. In this paper, we use calculus of variations to derive the equations coupling the electric potential to the orientation of the NLC's director field, and use a simple one-dimensional model to investigate the limitations of the uniform field assumption in the case of a steady applied field. The extension of the model to the unsteady case is also briefly discussed.

  17. Homeotropic orientation of a nematic liquid crystal by bent-core molecules adsorbed on its surface

    NASA Astrophysics Data System (ADS)

    Hwang, Jiyong; Yang, Seungbin; Lee, Hyojin; Kim, Jongyoon; Lee, Ji-Hoon; Kang, Shin-Woong; Choi, E.-Joon

    2015-06-01

    We reported the promotion of a homeotropic alignment of a nematic liquid crystal (NLC) by bent-core liquid-crystal (BLC) Molecules adsorbed its surface. The BLC was mixed at various concentrations with the NLC, and the mixtures were injected into an empty cell with a cell gap of 13 μm. Although the pure NLC showed a heterogeneous orientation, the BLC-NLC mixture was gradually transformed to a homeotropic alignment with increasing concentration of the BLC. We investigated the surface topography of the samples by using an atomic force microscopy (AFM) and found that the BLC molecules were segregated into a polyimide (PI) surface and formed protrusion domains with diameters of 50-100 nm. The BLC protrusions might promote the homeotropic orientation of the NLC molecules.

  18. Nematic and blue phase liquid crystals for temperature stabilization and active optical tuning of silicon photonic devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ptasinski, Joanna N.; Khoo, Iam Choon; Fainman, Yeshaiahu

    2015-10-01

    We describe the underlying theories and experimental demonstrations of passive temperature stabilization of silicon photonic devices clad in nematic liquid crystal mixtures, and active optical tuning of silicon photonic resonant structures combined with dye-doped nematic and blue phase liquid crystals. We show how modifications to the resonator device geometry allow for not only enhanced tuning of the resonator response, but also aid in achieving complete athermal operations of silicon photonic circuits. [Ref.: I.C. Khoo, "DC-field-assisted grating formation and nonlinear diffractions in methyl-red dye-doped blue phase liquid crystals," Opt. Lett. 40, 60-63 (2015); J. Ptasinski, I.C. Khoo, and Y. Fainman, "Enhanced optical tuning of modified-geometry resonators clad in blue phase liquid crystals," Opt. Lett. 39, 5435-5438 (2014); J. Ptasinski, I.C. Khoo, and Y. Fainman, "Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals," Materials 7(3), 2229-2241 (2014)].

  19. Interference patterns of scattering light induced by orientational fluctuations in an electric-field-biased nematic liquid-crystal film.

    PubMed

    Shen, Y; Chen, S H; Hsu, C H; Lai, Y

    1998-06-15

    A new light-scattering phenomenon from a planar aligned nematic liquid-crystal film is observed and studied. This new phenomenon exhibits ring patterns in the orthogonal polarization. A simple model based on optical interference has been developed, and its predictions agree well with experimental observation.

  20. Computational studies of history dependence in nematic liquid crystals in random environments

    NASA Astrophysics Data System (ADS)

    Ranjkesh, Amid; Ambrožič, Milan; Kralj, Samo; Sluckin, Timothy J.

    2014-02-01

    Glassy liquid crystalline systems are expected to show significant history-dependent effects. Two model glassy systems are the RAN and SSS (sprinkled silica spin) lattice models. The RAN model is a Lebwohl-Lasher lattice model with locally coupled nematic spins, together with uncorrelated random anisotropy fields at each site, while the SSS model has a finite concentration of impurity spins frozen in random directions. Here Brownian simulation is used to study the effect of different sample histories in the low temperature regime in a three-dimensional (d =3) model intermediate between SSS and RAN, in which a finite concentration p nematic spins with coupling W. Simulations were performed at temperature T ˜TNI/2 (TNI the bulk nematic-isotropic transition temperature) for temperature-quenched and field-quenched histories (TQH and FQH, respectively), as well as for temperature-annealed histories (AH). The first two of these limits represent extreme histories encountered in typical experimental studies. Using long-time averages for equilibrated systems, we calculate orientational order parameters and two-point correlation functions. Finite-size scaling was used to determine the range of the orientational ordering, as a function of coupling strength W ,p and sample history. Sample history plays a significant role; for given concentration p, as disorder strength W is increased, TQH systems sustain quasi-long-range order (QLRO) and short-range order (SRO). The data are also consistent with a long-range order (LRO) phase at very low disorder strength. By contrast, for FQH and p ≤0.1, only LRO and QLRO occur within the range of parameters investigated. The crossover between regimes depends on history, but in general, the FQH phase is more ordered than the AH phase, which is more ordered than the TQH phase. However, at temperatures close to the isotropic-nematic phase transition of pure samples

  1. Structural transition of nematic liquid crystal in cylindrical capillary as a result of the annihilation of two point defects

    NASA Astrophysics Data System (ADS)

    Svetec, Milan; Slavinec, Mitja

    2008-02-01

    We study the annihilation of hedgehog-antihedgehog defects in confined nematic liquid crystals using Brownian molecular dynamics simulations. After the collision, merging of defects, and building a loop disclination structure, system can experience a structural transition into another nematic structure, triggered by a nucleation of loop disclination structure. In our rough theoretical approach we calculate the size of the emerged loop structure as the function of the typical size of the confining cavity. Attention is paid also to the dynamics of the loop structure after collision.

  2. Detection of a new 'nematic-like' phase in liquid crystal-amphiphile mixture by differential scanning calorimetry

    SciTech Connect

    Dan, Kaustabh Roy, Madhusudan Datta, Alokmay

    2014-04-24

    Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.

  3. Experimental NMR spin-lattice relaxometry study in the liquid crystalline nematic phase of propylcyano-phenylcyclohexane.

    PubMed

    Acosta, R H; Pusiol, D J

    2001-01-01

    The NMR spin-lattice proton relaxation dispersion T1(nu(L)) of the liquid crystal propylcyano-phenylcyclohexane is studied over several decades of Larmor frequencies and at different temperatures in the nematic mesophase. The results show that the order fluctuation of the local nematic director contribution to T1(nu(L)) undergoes a transition between two power regimes: from T1(nu(L)) protional to nu(1/2)L to nu(alpha)L (alpha approximately 1/3) on going from low to high Larmor frequencies.

  4. Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration.

    PubMed

    Castles, F; Morris, S M; Coles, H J

    2009-09-01

    The flexoelectro-optic effect describes the rotation of the optic axis of a short-pitch chiral nematic liquid crystal under the application of an electric field. We investigate the effect in the uniform standing helix, or "Grandjean" configuration. An in-plane electric field is applied. The director profile is determined numerically using a static one-dimensional continuum model with strong surface anchoring. The Berreman method is used to solve for plane-wave solutions to Maxwell's equations, and predict the optical properties of the resulting structure in general cases. By using a chiral nematic with short pitch between crossed polarizers an optical switch may be generated. With no applied field the configuration is nontransmissive at normal incidence, but becomes transmissive with an applied field. For this case, numerical results using the Berreman method are supplemented with an analytic theory and found to be in good agreement. The transmitted intensity as a function of tilt, the contrast ratio, and the tilt required for full intensity modulation are presented. The angular dependence of the transmission is calculated and the isocontrast curves are plotted. For typical material and cell parameters a switching speed of 0.017 ms and contrast ratio of 1500:1 at normal incidence are predicted, at a switch-on tilt of 41.5 degrees. Experimental verification of the analytic and numerical models is provided.

  5. Nematic liquid crystalline alignment on graphitic carbon film surfaces and its electrooptical characteristics

    NASA Astrophysics Data System (ADS)

    Nakagaki, Takamitsu; Yamada, Kenji; Nakamura, Atsushi; Temmyo, Jiro; Kubono, Atsushi

    2015-09-01

    A graphitic carbon (g-C) film directly grown on a synthetic quartz glass substrate was applied to a liquid crystal (LC) device as an alignment layer combined with a transparent electrode for a demonstration of high performance. The as-grown g-C films showed a nanometer-size domain with 91.6% transmittance at 550 nm and with a sheet resistance of 5.9 kΩ/sq. The nanodomain of the g-C film surface was associated with a random orientation of the twisted nematic LC (4-pentyl-4‧-n-cyanobiphenyl, 5CB) molecules in an in-plane randomly parallel alignment that was analyzed by polarized optical microscopy (POM). We also demonstrated an LC display (LCD) in an in-plane random hybrid twisted nematic (IPR-HTN) configuration using the g-C films compared with a previously proposed configuration using a hydroxypropyl cellulose (HPC) sublayer and a TN configuration using a polyimide film with a rubbing treatment. It was found that the combined g-C alignment layer/electrode provides a low turn-on voltage, a fast response, and a wide viewing angle as an orientation sublayer and an electrode.

  6. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    SciTech Connect

    Bhargavi, R.; Nair, Geetha G. E-mail: skpras@gmail.com; Krishna Prasad, S. E-mail: skpras@gmail.com; Majumdar, R.; Bag, Braja G.

    2014-10-21

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4–5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  7. Dynamics of colloidal particles in electrohydrodynamic convection of nematic liquid crystal.

    PubMed

    Takahashi, Kentaro; Kimura, Yasuyuki

    2014-07-01

    We have studied the dynamics of micrometer-sized colloidal particles in electrohydrodynamic convection of nematic liquid crystal. Above the onset voltage of electroconvection, the parallel array of convection rolls appears to be perpendicular to the nematic field at first. The particles are forced to rotate by convection flow and are trapped within a single roll in this voltage regime. A slow glide motion along the roll axis is also observed. The frequency of rotational motion and the glide velocity increase with the applied voltage. Under a much larger voltage where the roll axis temporally fluctuates, the particles occasionally hop to the neighbor rolls. In this voltage regime, the motion of the particles becomes two-dimensional. The motion perpendicular to the roll axis exhibits diffusion behavior at a long time period. The effective diffusion constant is 10(3)-10(4) times larger than the molecular one. The observed behavior is compared with the result obtained by a simple stochastic model for the transport of the particles in convection. The enhancement of diffusion can be quantitatively described well by the rotation frequency in a roll, the width of the roll, and the hopping probability to the neighbor rolls.

  8. Fluorescence microscopy reveals molecular localisation at line defects in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Ohzono, Takuya; Katoh, Kaoru; Fukuda, Jun-Ichi

    2016-11-01

    Topological defects easily form in liquid crystals (LCs) as a result of frustrations in spatially dependent anisotropic molecular ordering, and have been regarded as promising tools for facilitating manipulation of relatively large non-LC materials such as colloids. However, it remains unclear whether low-molecular-weight (LMW) impurities that do not aggregate or self-assemble in bulk LCs because of the dominance of entropy can localise at LC defects. Here, by fluorescence microscopy, we directly show the localisation of LMW molecules at the topological line defects of a nematic LC. It is theoretically explained that excess free energy density of nematic ordering at the defect core allows LMW solutes to accumulate at a non-negligible level overcoming the entropy leading to their uniform distributions. Our results demonstrate the usefulness of LC defects as a bottom-up field that enables micromanipulation of LMW molecules and realisation of transformable three-dimensional micro-architectures composed of versatile small functional molecules.

  9. Annihilation dynamics of topological monopoles on a fiber in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Nikkhou, M.; Škarabot, M.; Muševič, I.

    2016-06-01

    We use the laser tweezers to create isolated pairs of topological point defects in a form of radial and hyperbolic hedgehogs, located close and attracted to a thin fiber with perpendicular surface orientation of nematic liquid crystal molecules in a thin planar nematic cell. We study the time evolution of the interaction between the two monopoles by monitoring their movement and reconstructing their trajectories and velocities. We find that there is a crossover in the pair interaction force between the radial and hyperbolic hedgehog. At small separation d , the elastic force between the opposite monopoles results in an increase of the attractive force with respect to the far field, and their relative velocity v scales as a v (d ) ∝d-2 ±0.2 power law. At large separations, the two oppositely charged monopoles can either attract or repel with constant interaction force. We explain this strange far-field behavior by the experimental inaccuracy in setting the fiber exactly perpendicular to the cell director.

  10. Bistable director alignments of nematic liquid crystals confined in frustrated substrates

    NASA Astrophysics Data System (ADS)

    Araki, Takeaki; Nagura, Jumpei

    2017-01-01

    We studied in-plane bistable alignments of nematic liquid crystals confined by two frustrated surfaces by means of Monte Carlo simulations of the Lebwohl-Lasher spin model. The surfaces are prepared with orientational checkerboard patterns, on which the director field is locally anchored to be planar yet orthogonal between the neighboring blocks. We found the director field in the bulk tends to be aligned along the diagonal axes of the checkerboard pattern, as reported experimentally [J.-H. Kim et al., Appl. Phys. Lett. 78, 3055 (2001), 10.1063/1.1371246]. The energy barrier between the two stable orientations is increased, when the system is brought to the isotropic-nematic transition temperature. Based on an elastic theory, we found that the bistability is attributed to the spatial modulation of the director field near the frustrated surfaces. As the block size is increased and/or the elastic modulus is reduced, the degree of the director inhomogeneity is increased, enlarging the energy barrier. We also found that the switching rate between the stable states is decreased when the block size is comparable to the cell thickness.

  11. Microscopic origins of anistropic active stress in motor-driven nematic liquid crystals

    PubMed Central

    Blackwell, Robert; Sweezy-Schindler, Oliver; Baldwin, Christopher; Hough, Loren E.; Glaser, Matthew A.; Betterton, M. D.

    2016-01-01

    The cytoskeleton, despite comprising relatively few building blocks, drives an impressive variety of cellular phenomena ranging from cell division to motility. These building blocks include filaments, motor proteins, and static crosslinkers. Outside of cells, these same components can form novel materials exhibiting active flows and nonequilibrium contraction or extension. While dipolar extensile or contractile active stresses are common in nematic motor-filament systems, their microscopic origin remains unclear. Here we study a minimal physical model of filaments, crosslinking motors, and static crosslinkers to dissect the microscopic mechanisms of stress generation in a two-dimensional system of orientationally aligned rods. We demonstrate the essential role of filament steric interactions which have not previously be considered to significantly contribute to active stresses. With this insight, we are able to tune contractile or extensile behavior through control of motor-driven filament sliding and crosslinking. This work provides a roadmap for engineering stresses in active liquid crystals. The mechanisms we study may help explain why flowing nematic motor-filament mixtures are extensile while gelled systems are contractile. PMID:26742483

  12. Nematic Liquid Crystal Alignment Behaviors between Crossed Stretched Miropolymer Filaments with Anchoring Effects

    NASA Astrophysics Data System (ADS)

    Fujikake, Hideo; Murashige, Takeshi; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2006-04-01

    We observed the molecular alignment of a liquid crystal (LC) induced by crossing two stretched micropolymer filaments between glass substrates and confirmed its light modulation property. The two microfilaments, which were extracted from a cellulose cloth by stretching it in advance, had surface molecular alignment and stabilized nematic LC alignment between the microfilaments crossed with a small angle. In the fabricated LC cell, a spatially-uniform LC planar alignment is achieved in the area of a filament interval of less than 60 μm. By polarizing microscopy observation of the isotropic-to-nematic wetting transition of the LC material between the polymer filaments, it was confirmed that the stable LC alignment area is formed by the surface anchoring of the filaments. When external voltages were applied to the obtained uniformed alignment LC area, a characteristic periodic electrooptic property was confirmed on the basis of electrically-controlled birefringence under the alignment control of the in-plane anchoring of the filaments.

  13. Fluorescence microscopy reveals molecular localisation at line defects in nematic liquid crystals

    PubMed Central

    Ohzono, Takuya; Katoh, Kaoru; Fukuda, Jun-ichi

    2016-01-01

    Topological defects easily form in liquid crystals (LCs) as a result of frustrations in spatially dependent anisotropic molecular ordering, and have been regarded as promising tools for facilitating manipulation of relatively large non-LC materials such as colloids. However, it remains unclear whether low-molecular-weight (LMW) impurities that do not aggregate or self-assemble in bulk LCs because of the dominance of entropy can localise at LC defects. Here, by fluorescence microscopy, we directly show the localisation of LMW molecules at the topological line defects of a nematic LC. It is theoretically explained that excess free energy density of nematic ordering at the defect core allows LMW solutes to accumulate at a non-negligible level overcoming the entropy leading to their uniform distributions. Our results demonstrate the usefulness of LC defects as a bottom-up field that enables micromanipulation of LMW molecules and realisation of transformable three-dimensional micro-architectures composed of versatile small functional molecules. PMID:27812045

  14. Domain walls and anchoring transitions mimicking nematic biaxiality in the oxadiazole bent-core liquid crystal C7

    NASA Astrophysics Data System (ADS)

    Kim, Young-Ki; Cukrov, Greta; Xiang, Jie; Shin, Sung-Tae; Lavrentovich, Oleg D.

    We investigate the origin of secondary disclinations that were recently described as a new evidence of a biaxial nematic phase in an oxadiazole bent-core thermotropic liquid crystal C7. With an assortment of optical techniques such as polarizing optical microscopy, LC PolScope, and fluorescence confocal polarizing microscopy, we demonstrate that the secondary disclinations represent non-singular domain walls formed in an uniaxial nematic during the surface anchoring transition, in which surface orientation of the director changes from tangential (parallel to the bounding plates) to tilted. Each domain wall separates two regions with the director tilted in opposite azimuthal directions. At the centre of the wall, the director remains parallel to the bonding plates. The domain walls can be easily removed by applying a modest electric field. The anchoring transition is explained by the balance of (a) the intrinsic perpendicular surface anchoring produced by the polyimide aligning layer and (b) tangential alignment caused by ionic impurities forming electric double layers. The model is supported by the fact that the temperature of the tangential-tilted anchoring transition decreases as the cell thickness increases and as the concentration of ionic species (added salt) increases. We also demonstrate that the surface alignment is strongly affected by thermal degradation of the samples. The study shows that C7 exhibits only a uniaxial nematic phase and demonstrate yet another mechanism (formation of secondary disclinations) by which a uniaxial nematic can mimic a biaxial nematic behaviour.

  15. Multiple short time power laws in the orientational relaxation of nematic liquid crystals.

    PubMed

    Jose, Prasanth P; Bagchi, Biman

    2006-11-14

    Relaxation in the nematic liquid crystalline phase is known to be sensitive to its proximity to both isotropic and smectic phases. Recent transient optical Kerr effect (OKE) studies have revealed, rather surprisingly, two temporal power laws at short to intermediate times and also an apparent absence of the expected exponential decay at longer times. In order to understand this unusual dynamics, we have carried out extensive molecular dynamics simulations of transient OKE and related orientational time correlation functions in a system of prolate ellipsoids (with aspect ratio equal to 3). The simulations find two distinct power laws, with a crossover region, in the decay of the orientational time correlation function at short to intermediate times (in the range of a few picoseconds to a few nanoseconds). In addition, the simulation results fail to recover any long time exponential decay component. The system size dependence of the exponents suggests that the first power law may originate from the local orientational density fluctuations (like in a glassy liquid). The origin of the second power law is less clear and may be related to the long range fluctuations (such as smecticlike density fluctuations)--these fluctuations are expected to involve small free energy barriers. In support of the latter, the evidence of pronounced coupling between orientational and spatial densities at intermediate wave numbers is presented. This coupling is usually small in normal isotropic liquids, but it is large in the present case. In addition to slow collective orientational relaxation, the single particle orientational relaxation is also found to exhibit slow dynamics in the nematic phase in the long time.

  16. Nematic liquid crystals confined in microcapillaries for imaging phenomena at liquid-liquid interfaces.

    PubMed

    Zhong, Shenghong; Jang, Chang-Hyun

    2015-09-21

    Here, we report the development of an experimental system based on liquid crystals (LCs) confined in microcapillaries for imaging interfacial phenomena. The inner surfaces of the microcapillaries were modified with octadecyltrichlorosilane to promote an escaped-radial configuration of LCs. We checked the optical appearance of the capillary-confined LCs under a crossed polarizing microscope and determined their arrangement based on side and top views. We then placed the capillary-confined LCs in contact with non-surfactant and surfactant solutions, producing characteristic textures of two bright lines and a four-petal shape, respectively. We also evaluated the sensitivity, stability, and reusability of the system. Our imaging system was more sensitive than previously reported LC thin film systems. The textures formed in microcapillaries were stable for more than 120 h and the capillaries could be reused at least 10 times. Finally, we successfully applied our system to image the interactions of phospholipids and bivalent metal ions. In summary, we developed a simple, small, portable, sensitive, stable, and reusable experimental system that can be broadly applied to monitor liquid-liquid interfacial phenomena. These results provide valuable information for designs using confined LCs as chemoresponsive materials in optical sensors.

  17. A Technique for determining the director pretilt angle in cells with hybrid or homeotropic alignment of a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Vakulin, D. A.

    2015-12-01

    A new technique for determining the director pretilt angle in cells with hybrid or homeotropic alignment of a nematic liquid crystal has been developed. To use this technique, it is necessary to experimentally determine the transmission of an optical system in parallel polarizers and maximum transmission of a cell in crossed polarizers. The technique makes it possible to locally control the liquid crystal director alignment on an aligning surface.

  18. Motion of a colloidal particle in a nonuniform director field of a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Lee, Beom-Kyu; Kim, Sung-Jo; Lev, Bohdan; Kim, Jong-Hyun

    2017-01-01

    We investigate the dynamics of a single spherical particle immersed in a nematic liquid crystal. A nonuniform director field is imposed on the substrate by a stripe alignment pattern with splay deformation. The particle of homeotropic anchoring at the surface is accompanied by hyperbolic hedgehog or Saturn-ring defects. The particle motion is dependent on the defect structure. We study the two types of motions theoretically and confirm the obtained results experimentally. The particle accompanied by a hyperbolic hedgehog defect is pulled to a deformed region to relax the elastic deformation energy. The motion occurs in the direction heading the hyperbolic hedgehog defect of a particle in a twist region. The position exhibits a weak S-shaped change as a function of time. The particle accompanied by a Saturn-ring defect shows insignificant motion due to its relatively small deformation energy.

  19. Nematic liquid crystals in a spatially step-wise magnetic field

    NASA Astrophysics Data System (ADS)

    Napoli, Gaetano; Scaraggi, Michele

    2016-01-01

    We study the molecular reorientation induced by a textured external field in a nematic liquid crystal (nLC). In particular, we consider an infinitely wide cell with strong planar anchoring boundary conditions, subjected to a spatially periodic piecewise magnetic field. In the framework of the Frank's continuum theory, we use the perturbation analysis to study in detail the field-induced splay-bend Fréedericksz transition. A numerical approach, based on the finite differences method, is instead employed to solve the fully nonlinear equations. At high field strengths, an analytic approach allows us to draw the bulk profile of the director in terms of elliptic integrals. Finally, through the application of the Bruggeman texture hydrodynamics theory, we qualitatively discuss on the LCs piecewise director configuration under sliding interfaces, which can be adopted to actively regulate friction. Our study opens the pathway for the application of highly controlled nLC texturing for tribotronics.

  20. Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals.

    PubMed

    Pezzi, Luigia; De Sio, Luciano; Veltri, Alessandro; Placido, Tiziana; Palermo, Giovanna; Comparelli, Roberto; Curri, Maria Lucia; Agostiano, Angela; Tabiryan, Nelson; Umeton, Cesare

    2015-08-21

    The last few years have seen a growing interest in the ability of metallic nanoparticles (MNPs) to control temperature at the nanoscale. Under a suitable optical radiation, MNPs feature an enhanced light absorption/scattering, thus turning into an ideal nano-source of heat, remotely controllable by means of light. In this framework, we report our recent efforts on modeling and characterizing the photo-thermal effects observed in gold nanoparticles (GNPs) dispersed in thermotropic Liquid Crystals (LCs). Photo-induced temperature variations in GNPs dispersed in Nematic LCs (NLCs) have been studied by implementing an ad hoc theoretical model based on the thermal heating equation applied to an anisotropic medium. Theoretical predictions have been verified by performing photo-heating experiments on a sample containing a small percentage of GNPs dispersed in NLCs. Both theory and experiments represent an important achievement in understanding the physics of heat transfer at the nanoscale, with applications ranging from photonics to nanomedicine.

  1. Direct measurement of force between colloidal particles in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Takahashi, Kenji; Ichikawa, Masatoshi; Kimura, Yasuyuki

    2008-02-01

    The interparticle force between two colloidal particles in a nematic liquid crystal is directly measured as a function of the interparticle distance R by two different experimental methods: the free-release method and the optical tweezing method. The obtained force between an elastic 'dipole', which constitutes a colloidal particle and an accompanying hyperbolic hedgehog defect, confirms previous theoretical predictions that the force is attractive and proportional to R-4. We also observe that a repulsive component emerges at short distances to preclude direct contact of the particles. We find that the magnitudes of the forces obtained by the two methods are different. The origin of this discrepancy is discussed by a comparison between the static and the non-static measurements.

  2. Wavelength, temperature, and voltage dependent calibration of a nematic liquid crystal multispectral polarization generating device

    SciTech Connect

    Baba, Justin S; Boudreaux, Philip R

    2007-01-01

    Rapid calibration of liquid crystal variable retarder (LCVR) devices is critical for successful clinical implementation of a LC-based Mueller matrix imaging system being developed for noninvasisve skin cancer detection. For multispectral implementation of such a system, the effect of wavelength (), temperature (T), and voltage (V) on the retardance () required to generate each desired polarization state needs to be clearly understood. Calibration involves quantifying this interdependence such that for a given set of system input variables, T, the appropriate voltage is applied across a LC cell to generate a particular retardance. This paper presents findings that elucidate the dependence of voltage, for a set retardance, on the aforementioned variables for a nematic LC cell: 253 mv100 nm-dependence andd 10 mVC T-dependence. Additionally, an empirically derived model is presented that enables initial voltage calibration of retardance for any desired input wavelength within the calibration range of 460-905 nm. copyright 2007 Optical Society of America

  3. Photoluminescent nematic liquid crystalline elastomer with a thermomechanical emission variation function.

    PubMed

    Wei, Renbo; He, Yaning; Wang, Xiaogong; Keller, Patrick

    2014-09-01

    Nematic liquid crystalline elastomer (LCE) microactuators are developed, showing simultaneous thermomechanical deformation and photoluminescence (PL) emission variation functions. The microactuators are prepared by a method combining soft-lithography and photo-polymerization/crosslinking. 1,4-Bis(α-cyano-4-methoxystyryl)benzene as the PL dye is synthesized, characterized, and introduced into LCEs as a dopant in the preparation process. During the heating process, PL emission of the LCE micropillars under blue light excitation becomes significantly weak when the micropillars contract. When cooling down, the emission completely recovers as the micropillars stretches back to their original shape. The PL intensity variation at the transition is proved to be related to the thermomechanical deformation.

  4. Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes.

    PubMed

    Lee, W; Chiu, C S

    2001-04-15

    Diffraction gratings were studied in cells of the homogeneously aligned liquid-crystal E7 doped with multiwall carbon nanotubes. These phase gratings were induced by interference modulation of two coherent optical beams, in conjunction with an applied dc field that was perpendicular to the unperturbed director axis. Self-diffraction was observed at all angles of incidence of the writing beams, including normal incidence. A superior nonlinear-index coefficient of 5x10(-2)cm(2)/W was obtained after passage of a 44-mW/cm(2) beam through a film with a grating constant of 18 mum under an external voltage of 15 V. The observed phenomenon depends strongly on the applied dc field, and the memory effect in a nematic film depends strongly on the grating constant.

  5. Chirality-biased point defects dynamics on a disclination line in a nematic liquid crystal.

    PubMed

    Zywociński, Andrzej; Pawlak, Katarzyna; Hołyst, Robert; Oswald, Patrick

    2005-05-19

    Chiral additives in the nematic liquid crystal can alter the dynamics of point defects moving on a disclination line. They exert a constant force on defects, leading to the bimodal distribution of distances between them at long times. The evolution of the system of defects in the presence of chiral additives provides a very direct proof of the existence of repulsive forces between the defects at large distances. We find that addition of a sufficient amount of chiral compound removes all point defects from the system. The process is studied in the system of 8CB (4-n-octyl-4'-cyanobiphenyl) doped with the chiral compound S811 (from Merck Co.) and in the computer simulations.

  6. Behaviors of random laser in dye-doped nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Yao, Fengfeng; Bian, Huanting; Pei, Yanbo; Hou, Chunfeng; Sun, Xiudong

    2016-01-01

    Random lasing in the nematic liquid crystals (NLCs) with a high doping concentration of the laser dye was observed and characterized. With increasing the pump energy after the occurrence of the random laser (RL), the RL intensity first increases gradually to a maximum, then drops sharply to zero, accompanied by the gradual enhancement of scattering manifested by the growth of far-field diffraction rings of the transmitted pump beam in number. The threshold energy per unit pump area, slope efficiency, and maximal output intensity of the NLC RL depend heavily and nonmonotonically on the pump angle. A model involving the pump pulse induced molecular reorientation in NLCs leading to the pump angle dependent enhancement of scattering is proposed to explain the pump angle dependent properties of RLs.

  7. Nematic liquid crystals used to control photo-thermal effects in gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Pezzi, Luigia; De Sio, Luciano; Palermo, Giovanna; Veltri, Alessandro; Placido, Tiziana; Curri, Maria Lucia; Tabiryan, Nelson; Umeton, Cesare

    2016-03-01

    We report on photo-thermal effects observed in gold nanoparticles (GNPs) dispersed in Nematic Liquid Crystals (NLCs). Under a suitable optical radiation, GNPs exhibit a strong light absorption/scattering; the effect depends on the refractive index of the medium surrounding the nanoparticles, which can be electrically or optically tuned. In this way, the system represents an ideal nano-source of heat, remotely controllable by light to adjust the temperature at the nanoscale. Photo-induced temperature variations in GNPs dispersed in NLCs have been investigated by implementing a theoretical model based on the thermal heating equation applied to an anisotropic medium; theoretical predictions have been compared with results of experiments carried out in a NLC medium hosting GNPs. Both theory and experiments represent a step forward to understand the physics of heat production at the nanoscale, with applications that range from photonics to nanomedicine.

  8. Electric method for studying reorientation dynamics of the nematic liquid crystal director

    NASA Astrophysics Data System (ADS)

    Shcherbinin, D. P.; Vakulin, D. A.; Konshina, E. A.

    2016-07-01

    A method has been proposed for studying the reorientation dynamics of the nematic liquid crystal (NLC) director using the results of measurements of the electric response of an LC cell. The simulation of the time dependences of the current in an LC cell with a homogeneous orientation is carried out upon variation of the applied voltage, the initial tilt angle of the director, dielectric anisotropy, and the elasticity coefficient, as well as the dynamic viscosity, density, and ion mobility in the NLC. A comparison of the experimental and computational curves of the electric response for NLC 5CB shows their good agreement. The method makes it possible to monitor the steady-state current, the density, and the ion mobility in NLCs.

  9. Fiber optic dynamic electric field sensor based on nematic liquid crystal Fabry-Perot etalon

    NASA Astrophysics Data System (ADS)

    Ko, Myeong Ock; Kim, Sung-Jo; Kim, Jong-Hyun; Jeon, Min Yong

    2014-05-01

    We propose a fiber-optic dynamic electric field sensor using a nematic liquid crystal (NLC) Fabry-Perot etalon and a wavelength-swept laser. The transmission wavelength of the NLC Fabry-Perot etalon depends on the applied electric field intensity. The change in the effective refractive index of the NLC is measured while changing the applied electric field intensity. It decreases from 1.67 to 1.51 as the applied the electric field intensity is increased. Additionally, we successfully measure the dynamic variation of the electric field using the high-speed wavelength-swept laser. By measuring the modulation frequency of the transmission peaks in the temporal domain, the frequency of the modulated electric field can be estimated.

  10. Optical control of plasmonic heating effects using reversible photo-alignment of nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Palermo, Giovanna; Cataldi, Ugo; De Sio, Luciano; Bürgi, Thomas; Tabiryan, Nelson; Umeton, Cesare

    2016-11-01

    We demonstrate and characterize an optical control of the plasmonic heat delivered by a monolayer substrate of gold nanoparticles, obtained by modulating the effective refractive index of the neighboring dielectric medium. The effect, which exploits the dependence of the nematic liquid crystal (NLC) refractive index on the molecular director orientation, is realized by using a polarization dependent, light-induced molecular reorientation of a thin film of photo-alignment layer that the NLC is in contact with. For a suitable alignment, plasmonic pumping intensity values ranging from 0.25 W/cm2 to 6.30 W/cm2 can induce up to 17.4 °C temperature variations in time intervals of the order of seconds. The reversibility of the optically induced NLC molecular director orientation enables an active control of the plasmonic photo-induced heat.

  11. Electrically controlled plasmonic lasing resonances with silver nanoparticles embedded in amplifying nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Chin; Deng, Luogen

    2014-11-01

    We demonstrated an electrical control of coherent plasmonic random lasing with very diluted Ag nanoparticles dispersed in a dye-doped nematic liquid crystal (NLC), in which the external electric field dependent emission intensity and frequency-splitting were recorded. A modified rate equation model is proposed to interpret the observed coherent lasing, which is a manifestation of the double enhancements caused by the plasmon-polariton near-fields of Ag particles on the population inversion of laser dye molecules and on the optical energy density of lasing modes. The featured laser quenching as weakening the applied field indicates that the present lasing resonances are very sensitive to the fluctuant dielectric perturbations in the NLC host, and are thus most likely associated with some coupled plasmonic oscillations among the metal nanoparticles.

  12. Temperature dependences of the electrooptical properties of rodlike nematic liquid crystals doped with hockey-stick-shaped liquid crystals

    NASA Astrophysics Data System (ADS)

    Yeo, Sunggu; Srivastava, Anoop Kumar; Lee, Hyojin; Lee, Ji-Hoon; Choi, E.-Joon

    2016-01-01

    We investigated the temperature dependences of the dielectric anisotropy, birefringence, order parameter, splay elastic constant, and rotational viscosity of rodlike nematic liquid crystals (RLCs) doped with hockey-stick-shaped liquid crystals (HLCs). Although the order parameter of the HLC-RLC mixtures was similar to that of the pure RLC, the dielectric anisotropy and the birefringence of the mixtures were decreased or increased depending on the structure of the HLC molecule. In addition, the activation energies of the mixtures were different, which implies that the intramolecular structure of the HLC molecule had more influence on the electrooptical properties of the HLC-RLC binary mixtures than the inter-molecular interaction between the HLC and the RLC molecules.

  13. Measurement of the Converse Flexoelectric Effect of a Bent-Core Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Harden, John; Teeling, Richelle; Sprunt, Samuel; Gleeson, James; Jakli, Antal

    2008-03-01

    Flexoelectricity is a linear coupling between bend or splay distortions and electric polarization^1. It is a unique property of orientationally ordered materials of which liquid crystals are the best known example. It has been shown that the bend flexoelectric coefficient in ``banana'' bent-core liquid crystals is three orders of magnitude higher than the effect found in calamitic liquid crystals^2. Using a Mirau interferometer attached to the objective port of a microscope, we were able to measure the converse effect. This polarity dependent flexing of a thin cell yielded displacements of 100nm when 100V DC was applied to a 1cm x 2cm x 25μm cell filled with the bent-core nematic liquid crystal 4-chloro-1,3-phenylene bis 4-[4'-(9-decenyloxy) benzoyloxy] benzoate (ClPbis10BB). The substrates were 100μm thick Mylar with ITO as a conducting layer. These preliminary experiments show the promise of new types of soft actuators or beam steering devices. References: ^1Meyer R.B. (1969). Physical Review Letters 22(18): 918-921. ^2Harden, J., B. Mbanga, et al. (2006). Physical Review Letters 97(15). Acknowledgement: NSF DMR-0606160 and NSF REU-0649017

  14. Three-dimensional profilometry of microlenses by phase shifting interferometery using nematic liquid crystal material filled cell as a phase modulator.

    PubMed

    Inam, M; Srivastava, V; Mehta, D S

    2015-02-10

    In this paper, we report the use of a nematic liquid crystal material filled cell in transmission mode as a voltage controlled phase modulator for the characterization of microlenses. In one arm of the Mach-Zehnder interferometer, a nematic liquid crystal filled cell with DC voltage connection was placed, and in another arm of the interferometer microlenses with a 4-F imaging system were placed. Interference takes place between the light beams coming from the two arms of the Mach-Zehnder interferometer, one after passing through the nematic liquid crystal cell and another after passing through microlenses. Interference patterns were recorded by a CCD camera. By applying DC voltage to the nematic liquid crystal filled cell, various phase shifted interferograms were recorded, and from phase shifted interferograms, the shape and size of microlenses were determined. The results of the reconstructed profile of the microlenses are compared with white-light profilometry.

  15. Models for ionic contribution to the complex dielectric constant of nematic liquid crystals.

    PubMed

    Alexe-Ionescu, A L; Barbero, G; Lelidis, I

    2009-12-01

    We analyze the models that account the ionic contribution to the complex dielectric constant of a nematic liquid crystal. We compare the predictions of the model of [Sawada, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 318, 225 (1998)] based on the assumption that the electric field in the liquid coincides with the applied one, with the model of Macdonald where the electric field in the sample is determined in self-consistent manner by solving the equation of Poisson. We show that the model of Sawada , widely used to determine the bulk density of ions and their diffusion coefficient in liquid crystal cells, predicts a thickness dependence of the real and imaginary parts of the dielectric constant different from that predicted by the model of Macdonald. On the contrary, the predictions of the two models coincide for what concerns the frequency dependencies of the two components of the dielectric constant. By considering a typical case, we show that the numerical values of the ionic properties derived by means of the model of Sawada may differ even more than 1 order of magnitude by those predicted by the model of Macdonald. A rescaling procedure allowing to evaluate the bulk density of ions and the ionic diffusion coefficient determined by means of the model of Sawada in agreement with the one of Macdonald is proposed.

  16. Topological Defects in a Living Nematic Ensnare Swimming Bacteria

    NASA Astrophysics Data System (ADS)

    Genkin, Mikhail M.; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2017-01-01

    Active matter exemplified by suspensions of motile bacteria or synthetic self-propelled particles exhibits a remarkable propensity to self-organization and collective motion. The local input of energy and simple particle interactions often lead to complex emergent behavior manifested by the formation of macroscopic vortices and coherent structures with long-range order. A realization of an active system has been conceived by combining swimming bacteria and a lyotropic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics, we develop a computational model describing intricate properties of such a living nematic. In faithful agreement with the experiment, the model reproduces the onset of periodic undulation of the director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields a testable prediction on the accumulation of bacteria in the cores of +1 /2 topological defects and depletion of bacteria in the cores of -1 /2 defects. Our dedicated experiment on motile bacteria suspended in a freestanding liquid crystalline film fully confirms this prediction. Our findings suggest novel approaches for trapping and transport of bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and manipulate microscopic objects in active matter.

  17. A novel twisted nematic alignment and its effects on the electro-optical dynamics of nanoscale liquid crystalline films

    NASA Astrophysics Data System (ADS)

    Rauzan, Brittany; Lee, Lay Min; Nuzzo, Ralph

    2015-03-01

    Vibrational spectroscopic studies of a surface induced, twisted alignment of the nematic liquid crystal, 4-n-pentyl-4'-cyanobiphenyl (5CB) and its temperature-dependent electro-optical (EO) dynamics were studied near the crystalline-nematic and nematic-isotropic transition temperatures, and at a median temperature in the nematic phase. A 50 nm thick film of 5CB was confined in nanocavities defined by the dimensions of a gold interdigitated electrode array patterned on a unidirectionally polished ZnSe substrate. The film was assembled between two polished substrates bearing extended nanometer-scaled grooves that are oriented orthogonally to one another. The results show that with this anchoring scheme, the molecular director of the LC film undergoes a ninety-degree twist. Step-scan time resolved spectroscopy (TRS) measurements were made to determine the rate constants for the temperature-dependent EO dynamics of both the electric field-induced orientation and thermal relaxation processes of the LC film. The work rationalizes the impacts of organizational anisotropy and illustrates how it can be exploited as a design principle to effectively influence the electric field-induced dynamics of LC systems.

  18. Nonstationary local reorientation of a nematic liquid crystal in a cell with a silicon p- n junction

    NASA Astrophysics Data System (ADS)

    Goncharov, Yu. I.; Kolesnikov, D. A.; Kucheev, S. I.

    2014-09-01

    We report the first observation of the phenomenon of nonstationary local reorientation of a nematic liquid crystal (NLC), which is initiated by a reverse biased p- n junction in a cell with silicon substrate. The velocity of reorientation and the distance traveled by a reoriented nematic band (which is tenfold greater than the cell thickness) are determined by the p- n junction bias voltage. The band profile depends on the distribution of the surface conductivity, which has been set in this work either by irradiation with 30-keV Ga ions or by light-induced generation of nonequilibriun carriers in silicon. The local reorientation of NLC and the depletion of the silicon surface are explained by the influence of ion space charge in the liquid crystal.

  19. Matched elastic constants for a perfect helical planar state and a fast switching time in chiral nematic liquid crystals.

    PubMed

    Yu, Meina; Zhou, Xiaochen; Jiang, Jinghua; Yang, Huai; Yang, Deng-Ke

    2016-05-11

    Chiral nematic liquid crystals possess a self-assembled helical structure and exhibit unique selective reflection in visible and infrared light regions. Their optical properties can be electrically tuned. The tuning involves the unwinding and restoring of the helical structure. We carried out an experimental study on the mechanism of the restoration of the helical structure. We constructed chiral nematic liquid crystals with variable elastic constants by doping bent-dimers and studied their impact on the restoration. With matched twist and bend elastic constants, the helical structure can be restored dramatically fast from the field-induced homeotropic state. Furthermore, defects can be eliminated to produce a perfect planar state which exhibits high selective reflection.

  20. Electro-optic properties of nematic and ferroelectric liquid crystalline nanocolloids doped with partially reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Lapanik, Valeri; Timofeev, Sergei; Haase, Wolfgang

    2016-02-01

    Flakes of partially reduced graphene oxide (PRGO) were doped in nematic liquid crystals (NLCs) and ferroelectric liquid crystals (FLCs), respectively. The dielectric and electro-optical properties of NLCs doped with those flakes have been investigated. Threshold voltage and switching times are reduced by 30%-50%. This is primarily due to the decrease of the elastic properties of the nanocolloids compared to the non-doped nematics. The influence of the PRGO flakes on the spontaneous polarization, tilt angle and switching time of FLCs was investigated too. Such flakes reduce the response time by 40%-60%, increases spontaneous polarization by 20%-25% and increase the tilt angle by 15%-20%.

  1. Effect of hygroscopicity of the metal salt on the formation and air stability of lyotropic liquid crystalline mesophases in hydrated salt-surfactant systems.

    PubMed

    Albayrak, Cemal; Barım, Gözde; Dag, Ömer

    2014-11-01

    It is known that alkali, transition metal and lanthanide salts can form lyotropic liquid crystalline (LLC) mesophases with non-ionic surfactants (such as CiH2i+1(OCH2CH2)jOH, denoted as CiEj). Here we combine several salt systems and show that the percent deliquescence relative humidity (%DRH) value of a salt is the determining parameter in the formation and stability of the mesophases and that the other parameters are secondary and less significant. Accordingly, salts can be divided into 3 categories: Type I salts (such as LiCl, LiBr, LiI, LiNO3, LiClO4, CaCl2, Ca(NO3)2, MgCl2, and some transition metal nitrates) have low %DRH and form stable salt-surfactant LLC mesophases in the presence of a small amount of water, type II salts (such as some sodium and potassium salts) that are moderately hygroscopic form disordered stable mesophases, and type III salts that have high %DRH values, do not form stable LLC mesophases and leach out salt crystals. To illustrate this effect, a large group of salts from alkali and alkaline earth metals were investigated using XRD, POM, FTIR, and Raman techniques. Among the different salts investigated in this study, the LiX (where X is Cl(-), Br(-), I(-), NO3(-), and ClO4(-)) and CaX2 (X is Cl(-), and NO3(-)) salts were more prone to establish LLC mesophases because of their lower %DRH values. The phase behavior with respect to concentration, stability, and thermal behavior of Li(I) systems were investigated further. It is seen that the phase transitions among different anions in the Li(I) systems follow the Hofmeister series.

  2. Pullback attractors of the two-dimensional non-autonomous simplified Ericksen-Leslie system for nematic liquid crystal flows

    NASA Astrophysics Data System (ADS)

    You, Bo; Li, Fang

    2016-08-01

    This paper is concerned with the long-time behaviour of the two-dimensional non-autonomous simplified Ericksen-Leslie system for nematic liquid crystal flows introduced in Lin and Liu (Commun Pure Appl Math, 48:501-537, 1995) with a non-autonomous forcing bulk term and order parameter field boundary conditions. In this paper, we prove the existence of pullback attractors and estimate the upper bound of its fractal dimension under some suitable assumptions.

  3. Lasing in a nematic liquid crystal cell with an interdigitated electrode system

    SciTech Connect

    Shtykov, N M; Palto, S P; Umanskii, B A; Geivandov, A R

    2015-04-30

    Waveguide lasing in a layer of a dye-doped nematic liquid crystal has been observed. The liquid-crystal layer was sandwiched between a quartz substrate and a glass cover plate on whose surface was deposited an interdigitated electrode system. This system had a period of 3.75 μm and played a dual role, namely, it created a spatial periodicity of the waveguide medium refractive index (thus creating distributed feedback) and served as a diffraction grating coupling out a part of waveguide radiation into the glass cover plate. The distributed feedback ensured lasing in the 18th diffraction order for the TE modes and in the 19th order for the TM modes of the waveguide. The generated radiation was observed at the exit from the glass plate end face at the angles to the waveguide plane of 33.1 ± 1.5° for TM modes and 21.8 ± 1.8° for TE modes. The intensity and position of the TE emission line showed no regular dependence on the voltage on the electrodes. In the case of TM radiation, an increase in the voltage led to a short-wavelength shift of the laser line and to a decrease in its intensity. (lasers)

  4. Defect topologies in a nematic liquid crystal near a patchy colloid

    NASA Astrophysics Data System (ADS)

    Melle, Michael; Schlotthauer, Sergej; Mazza, Marco G.; Klapp, Sabine H. L.; Schoen, Martin

    2012-05-01

    Using isothermal-isobaric Monte Carlo simulations we investigate defect topologies due to a spherical colloidal particle immersed in a nematic liquid crystal. Defects arise because of the competition between the preferential orientation at the colloid's surface and the far-field director widehat{{n}}0. Considering a chemically homogeneous colloid as a special case we observe the well-known surface and saturn ring defect topologies for weak and strong perpendicular anchoring, respectively; for homogeneous, strong parallel anchoring we find a boojum defect topology that has been seen experimentally [see P. Poulin and D. A. Weitz, Phys. Rev. E 57, 626 (1998)] but not in computer simulations. We also consider a heterogeneous, patchy colloid where the liquid-crystal molecules anchor either preferentially planar or perpendicular at the surface of the colloid. For a patchy colloid we observe a boojum ring defect topology in agreement with recent experimental studies [see M. Conradi, M. Ravnik, M. Bele, M. Zorko, S. Žumer, and I. Muševič, Soft Matter 5, 3905 (2009)]. We also observe two other novel defect topologies that have not been reported thus far neither experimentally nor theoretically.

  5. Disclination loops, standing alone and around solid particles, in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Terentjev, E. M.

    1995-02-01

    A suspended particle with specific director anchoring on its surface introduces a complex distortion field in a nematic liquid crystal matrix. Topological defects-disclination loops, boojums, and hedgehogs, are needed to match the director near the particle surface with that at the far distance, which is determined by boundary conditions on the sample. This paper analyzes the elastic energy and stability of a singular loop of wedge disclination and the first-order transition of the radial hedgehog into a wide singular loop, driven by an external magnetic field. The far field of distortions, created by a ``Saturn ring'' of disclination around the spherical radial particle, allows one to calculate the potential of interaction between such particles and with the surface of the liquid crystal. Particles are repelled from each other and from the rigidly anchored surface with the potential U~1/r3. If the sample surface has soft anchoring, the particle is attracted to it at close distances and is repelled, if beyond the anchoring coherence length ξw. Several experiments to test these conclusions are suggested.

  6. Onset of Thermal Convection in a Homeotropically Aligned Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Thomas, Leif N.; Ahlers, Guenter; Bajaj, Kapil M. S.

    1996-11-01

    For a homeotropically aligned nematic liquid crystal in a vertical magnetic field and heated from below, it was predicted^1 that the bifurcation from conduction to convection is a subcritical Hopf bifurcation. Using 4-n-pentyl-4'-cyanobiphenyl (5CB) at a mean temperature of 25.6^oC in a cylindrical cell of aspect ratio (radius/height) Γ=10.6, we observed travelling and standing waves during the transient from conduction to convection. We measured the Hopf frequency ω c and the critical wavenumber kc at different vertical magnetic field strengths in the range 8 alt h ≡ H/ HF alt 17 (HF = 20.1 Gauss is the Fréedericksz field). Over this field range, our results for ωc agree within their scatter of about 2% with the prediction, but our results for kc are systematically lower by about 5%. After the transients, the fully developed flow has a very slow chaotic time dependence which is unrelated to the Hopf frequency.^2 Supported by U.S. Department of Energy Grant DE-FG03-87ER13738. ^1Q. Feng, W. Decker, W. Pesch, and L. Kramer, J. Phys. France II 2, 1303 (1992). ^2G. Ahlers, in Pattern Formation in Liquid Crystals, edited by A. Buka and L. Kramer (Springer, 1996).

  7. Kibble-Zurek Scaling during Defect Formation in a Nematic Liquid Crystal.

    PubMed

    Fowler, Nicholas; Dierking, Dr Ingo

    2017-02-10

    Symmetry-breaking phase transitions are often accompanied by the formation of topological defects, as in cosmological theories of the early universe, superfluids, liquid crystals or solid-state systems. This scenario is described by the Kibble-Zurek mechanism, which predicts corresponding scaling laws for the defect density ρ. One such scaling law suggests a relation ρ≈τQ(-1/2) with τQ the change of rate of a control parameter. In contrast to the scaling of the defect density during annihilation with ρ≈t(-1) , which is governed by the attraction of defects of the same strength but opposite sign, the defect formation process, which depends on the rate of change of a physical quantity initiating the transition, has only rarely been investigated. Herein, we use nematic liquid crystals as a different system to demonstrate the validity of the predicted scaling relation for defect formation. It is found that the scaling exponent is independent of temperature and material employed, thus universal, as predicted.

  8. Anchoring Orientation of Nematic and Smectic A Liquid Crystals on PTFE Treated Plates

    NASA Astrophysics Data System (ADS)

    Hubert, Pascal; Dreyfus, Hanna; Guillon, Daniel; Galerne, Yves

    1995-09-01

    The anchoring orientation of different liquid crystals in contact with poly(tetrafluoroethylene) (PTFE) treated surfaces is determined by means of optical interferometry. The anchoring is found to be planar for all the compounds tested, MBBA, 2OO6, 5CB and 7BPI, consisting of polar and non-polar molecules, in the nematic or smectic A phase. This result is consistent with the non-polar nature of PTFE, which is only sensitive to London-like interactions. L'orientation de l'ancrage de différents cristaux liquides sur des surfaces de poly(tétrafluoroéthylène) (téflon) est mesurée par interférométrie optique. Un ancrage planaire est trouvé pour tous les composés essayés MBBA, 2OO6, 5CB et 7BPI, que les molécules soient polaires ou non polaires, en phase nématique ou smectique A. Ce résultat est cohérent avec la nature non-polaire du téflon qui n'est sensible qu'à l'interaction de London.

  9. Numerical solution of the Ericksen-Leslie dynamic equations for two-dimensional nematic liquid crystal flows

    NASA Astrophysics Data System (ADS)

    Cruz, Pedro A.; Tomé, Murilo F.; Stewart, Iain W.; McKee, Sean

    2013-08-01

    A finite difference method for solving nematic liquid crystal flows under the effect of a magnetic field is developed. The dynamic equations of nematic liquid crystals, given by the Ericksen-Leslie dynamic theory, are employed. These are expressed in terms of primitive variables and solved employing the ideas behind the GENSMAC methodology (Tomé and McKee, 1994; Tomé et al., 2002) [38,41]. These equations are nonlinear partial differential equations consisting of the mass conservation equation and the balance laws of linear and angular momentum. By employing fully developed flow assumptions an analytic solution for steady 2D-channel flow is found. The resulting numerical technique was then, in part, validated by comparing numerical solutions against this analytic solution. Convergence results are presented. To demonstrate the capabilities of the numerical method, the flow of a nematic liquid crystal through various complex geometries are then simulated. Results are obtained for L-shaped channels and planar 4:1 contraction for several values of Reynolds and Ericksen numbers.

  10. Fluctuations and spatio-temporal chaos in electroconvection of nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochao

    We have studied two fundamental issues in driven nonequilibrium systems using electroconvection in nematic liquid crystal I52 and N4. We first report experimental results for electroconvection of the nematic Liquid Crystal I52 with planar alignment and a conductivity of 1.0 x 10-8 (Om)-1. The cell spacing was 19.4 mum and the driving frequency was 25.0 Hz. Spatio-temporal chaos consisting of a superposition of zig and zag oblique rolls evolved by means of a supercritical Hopf bifurcation from the uniform conduction state[14]. For small ε ≡ V2/V2cFsF - 1 (V is the applied voltage amplitude and Vc the value of V at the onset of convection), we measured the correlation lengths of the envelopes of both zig and zag patterns. These lengths could be fit to a power law in ε with an exponent smaller than that predicted from amplitude equations. The disagreement with theory is similar to that found previously for domain chaos in rotating Rayleigh-Benard convection [82]. In the following part, we developed a way to measure local current fluctuations in electroconvection. Several special cells were made and each cell had a small local detecting electrode. The detecting electrodes were squares of width 8. 16. 32, 48 and 128 mum at the center of one of the two large electrodes. The spacing of these cells was close to 20 mum. We used the NLC Merck phase IV (N4) with planar alignment. When the driving ε was from 0.8 to 6, we found that the distribution of the current fluctuations was strongly skewed towards larger values for detecting electrodes smaller than the cell spacing and slightly skewed towards smaller values for the rest of the cells. This is compared with global current-fluctuation measurements in similar cells which showed a Gaussian distribution. For the small electrodes, large fluctuations that extended below the current expected for the conduction state were found and a possible connection with the Gallavotti-Cohen Fluctuation Theorem is discussed. This

  11. Electro-optical response of polymer-dispersed liquid crystal single layers of large nematic droplets oriented by rubbed teflon nanolayers

    NASA Astrophysics Data System (ADS)

    Marinov, Y. G.; Hadjichristov, G. B.; Petrov, A. G.; Marino, S.; Versace, C.; Scaramuzza, N.

    2013-02-01

    The surface orienting effect of rubbed teflon nanolayers on the morphology and electro-optical (EO) response of polymer-dispersed liquid crystal (PDLC) single layers of large nematic droplets was studied experimentally. In PDLC composites of the nematic liquid crystal (LC) E7 and NOA65 polymer, single droplets of LC with diameters as larger as 10 μm were confined in layers with a thickness of 10 μm, and the nematic director field was efficiently modified by nanostructuring teflon rubbing of the glass plates of the PDLC cell. For layered PDLCs arranged and oriented in this way, the modulated EO response by the dielectric oscillations of the nematic director exhibits a selective amplitude-frequency modulation controllable by both temperature and voltage applied, and is simply related to the LC droplet size. That may be of practical interest for PDLC-based modulators operating in the infrasound frequency range.

  12. Better Actuation Through Chemistry: Using Surface Coatings to Create Uniform Director Fields in Nematic Liquid Crystal Elastomers.

    PubMed

    Xia, Yu; Lee, Elaine; Hu, Hao; Gharbi, Mohamed Amine; Beller, Daniel A; Fleischmann, Eva-Kristina; Kamien, Randall D; Zentel, Rudolf; Yang, Shu

    2016-05-18

    Controlling the molecular alignment of liquid crystal monomers (LCMs) within nano- and microstructures is essential in manipulating the actuation behavior of nematic liquid crystal elastomers (NLCEs). Here, we study how to induce uniformly vertical alignment of nematic LCMs within a micropillar array to maximize the macroscopic shape change using surface chemistry. Landau-de Gennes numerical modeling suggests that it is difficult to perfectly align LCMs vertically in every pore within a poly(dimethylsiloxane) (PDMS) mold with porous channels during soft lithography. In an untreated PDMS mold that provides homeotropic anchoring of LCMs, a radially escaped configuration of LCMs is observed. Vertically aligned LCMs, a preferred configuration for actuation, are only observed when using a PDMS mold with planar anchoring. Guided by the numerical modeling, we coat the PDMS mold with a thin layer of poly(2-hydroxyethyl methacrylate) (PHEMA), leading to planar anchoring of LCM. Confirmed by polarized optical microscopy, we observe monodomains of vertically aligned LCMs within the mold, in agreement with modeling. After curing and peeling off the mold, the resulting NLCE micropillars showed a relatively large and reversible radial strain (∼30%) when heated above the nematic to isotropic transition temperature.

  13. Refractive index matched half-wave plate with a nematic liquid crystal for three-dimensional laser metrology applications

    NASA Astrophysics Data System (ADS)

    Piecek, W.; Jaroszewicz, L. R.; Miszczyk, E.; Raszewski, Z.; Mrukiewicz, M.; Perkowski, P.; Nowinowski-Kruszelnicki, E.; Zieliński, J.; Olifierczuk, M.; Kędzierski, J.; Sun, X. W.; Garbat, K.; Kowiorski, K.; Morawiak, P.; Mazur, R.; Tkaczyk, J.

    2016-12-01

    There exists a need in a quality and accuracy of a three-dimensional laser metrology operating in numerically controlled automatic machines. For this purpose, one sends three laser beams mutually perpendicular. These three beams of the wavelength λ = 0.6328 μm are generated by the same laser and are directed along three independent, orthogonal, mutually perpendicular, optical paths with a given light polarization plain. Using these beams, constituting the frame of coordinates, three independent laser rangefinders are able to determine spatial coordinates of a working tool or a workpiece. To form these optical pulses, a special refractive index matched Half-Wave Plate with nematic Liquid Crystal (LCHWP) was applied. The presented half-wave plate is based on a single Twisted Nematic (TN) cell (with the twist angle Φ = π/2) of a rather high cell gap d 15 μm filled with a newly developed High-Birefringence Nematic Liquid Crystal Mixture (HBLCM) of optical anisotropy as high as Δn 0.40 at λ = 0.6328 μm, where the Mauguin limit above 5.00 Δnd >> λ/2 = 0.32 is fulfilled.

  14. Elongational perturbations on nematic liquid crystal polymers under a weak shear

    NASA Astrophysics Data System (ADS)

    Zhou, Hong; Wang, Hongyun

    2007-10-01

    The two-dimensional Smoluchowski equation is employed to study the effect of elongational perturbations on nematic liquid crystal polymers under a weak shear. We use the multiscale asymptotic analysis to show that (1) when the elongational perturbation is small relative to the weak shear, the orientational probability density function (pdf) tumbles periodically only in an intermediate range of polymer concentration; outside this intermediate range (i.e., for very small and very large polymer concentration) the orientational pdf converges to a steady state and there is no tumbling. (2) When the elongational perturbation is about 20% of the shear rate or larger, the intermediate range of tumbling disappears and the orientational pdf always converges to a steady state regardless of the polymer concentration. Our theoretical predictions are consistent with various earlier results based on the Leslie-Ericksen theory [C. V. Chaubal and L. G. Leal, J. Non-Newtonian Fluid Mech. 82, 22 (1999)] or analogous 3D numerical simulations [M. G. Forest, R. Zhou, and Q. Wang, Phys. Rev. Lett. 93, 088301 (2004); M. G. Forest, Q. Wang, R. Zhou, and E. Choate, J. Non-Newtonian Fluid Mech. 118, 17 (2004)].

  15. Topology and self-assembly of defect-colloidal superstructure in confined chiral nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Pandey, M. B.; Ackerman, P. J.; Burkart, A.; Porenta, T.; Žumer, S.; Smalyukh, Ivan I.

    2015-01-01

    We describe formation of defect-colloidal superstructures induced by microspheres with normal surface anchoring dispersed in chiral nematic liquid crystals in confinement-unwound homeotropic cells. Using three-dimensional nonlinear optical imaging of the director field, we demonstrate that some of the induced defects have nonsingular solitonic nature while others are singular point and line topological defects. The common director structures induced by individual microspheres have dipolar symmetry. These topological dipoles are formed by the particle and a hyperbolic point defect (or small disclination loop) of elementary hedgehog charge opposite to that of a sphere with perpendicular boundary conditions, which in cells with thickness over equilibrium cholesteric pitch ratio approaching unity are additionally interspaced by a looped double-twist cylinder of continuous director deformations. The long-range elastic interactions are probed by holographic optical tweezers and videomicroscopy, providing insights to the physical underpinnings behind self-assembled colloidal structures entangled by twisted solitons. Computer-simulated field and defect configurations induced by the colloidal particles and their assemblies, which are obtained by numerically minimizing the Landau-de Gennes free energy, are in agreement with the experimental findings.

  16. Molecular organization of nematic liquid crystals between concentric cylinders: Role of the elastic anisotropy

    NASA Astrophysics Data System (ADS)

    Chiccoli, C.; Pasini, P.; Evangelista, L. R.; Teixeira-Souza, R. T.; Zannoni, C.

    2015-02-01

    The orientational order in a nematic liquid crystal sample confined to an annular region between two concentric cylinders is investigated by means of lattice Monte Carlo simulations. Strong anchoring and homeotropic orientations, parallel to the radial direction, are implemented at the confining surfaces. The elastic anisotropy is taken into account in the bulk interactions by using the pair potential introduced by Gruhn and Hess [T. Gruhn and S. Hess, Z. Naturforsch. A 51, 1 (1996)] and parametrized by Romano and Luckhurst [S. Romano, Int. J. Mod. Phys. B 12, 2305 (1998), 10.1142/S0217979298001344; Phys. Lett. A 302, 203 (2002), 10.1016/S0375-9601(02)01042-3; G. R. Luckhurst and S. Romano, Liq. Cryst. 26, 871 (1999), 10.1080/026782999204561], i.e., the so-called GHRL potential. In the case of equal elastic constants, a small but appreciable deformation along the cylinder axis direction is observed, whereas when the values of K11/K33 if K22=K33 are low enough, all the spins in the bulk follow the orientation imposed by the surfaces. For larger values of K11/K33 , spontaneous deformations, perpendicular to the polar plane, increase significantly. Our findings indicate that the onset of these deformations also depends on the ratio K22/K33 and on the radius of the cylindrical surfaces. Although expected from the elastic theory, no tangential component of the deformations was observed in the simulations for the set of parameters analyzed.

  17. Interaction between a disclination and a uniaxial-isotropic phase interface in a nematic liquid crystal.

    PubMed

    Shklyaev, Oleg E; Fried, Eliot

    2008-01-01

    We consider the interaction between a disclination line of strength +/-1/2 and an interface between the uniaxial and isotropic phases of a nematic liquid crystal. We apply a recently developed set of interface conditions including a configurational force balance which generalizes the Gibbs-Thomson equation to account for the curvature elasticity of the uniaxial phase and the orientation dependence of the interfacial free-energy density. We consider a rectangular vessel containing both phases and a disclination. We formulate a relevant free-boundary problem and use numerical methods to determine equilibrium shapes of the interface. When the interfacial free-energy is constant, the shape of the interface is insensitive to whether the strength of the defect is +1/2 or -1/2 and to rotations of the director field consistent with the boundary conditions. Accounting for the dependence of the interfacial free-energy density on the angle between the interfacial unit normal field and the director field eliminates these degeneracies. In particular, when such dependence is taken into account, different solution branches are found, indicating the presence of a bifurcation. We find also that, depending on the magnitude of the anisotropic contribution to the interfacial free-energy density, the interaction between the disclination and the interface may be repulsive or attractive. When the interaction is repulsive, the disclination line positions itself at an energetically optimal distance adjacent to the interface. Otherwise, the uniaxial phase expels the disclination to the interface where a cusp forms.

  18. Multi-domain vertical alignment of nematic liquid crystals for reduced off-axis gamma shift

    NASA Astrophysics Data System (ADS)

    Yoon, Tae-Hoon; Park, Byung Wok; Kim, Ki-Han; Kim, Hoon; Shin, Ki-Chul; Kim, Hee Seop

    2013-03-01

    Several liquid crystal (LC) modes, such as twisted nematic, vertical alignment (VA), and in-plane switching, have been in competition with each other in the LC display market. Among them, the VA mode has been widely used because of the high contrast ratio. Since the LC molecules are aligned perpendicular to the substrate in the initial state, an excellent dark state can be obtained at normal viewing direction. However, effective phase retardation of LC layer at oblique viewing direction differs greatly from that at normal viewing direction. Thus, gamma distortion phenomenon occurs at oblique view direction. To reduce the gamma shift in the VA mode at oblique viewing direction, multi-domain VA modes were proposed. Although gamma shifts of these modes are smaller than that of the single domain VA mode, the problems still remain. Recently, several technologies for 8-domain alignment have been proposed to decrease the gamma shift at off-axis. However, additional driving circuits are required to realize the eight-domain structure. In this paper we report technologies for the multi-domain VA mode with no additional driving circuits. By using the proposed technologies, we can obtain the dual threshold voltage in each sub-pixel to realize the multi-domain VA mode with no decrease of contrast ratio.

  19. Direct mapping of local director field of nematic liquid crystals at the nano-scale

    NASA Astrophysics Data System (ADS)

    Xia, Yu; Serra, Francesca; Yang, Shu; Kamien, Randall

    2015-03-01

    The director field in liquid crystals (LCs) has been characterized mainly via polarized optical microscopy, fluorescence confocal microscopy, and Raman spectroscopy, all of which are limited by optical wavelengths - from hundreds of nanometers to several micrometers. Since LC orientation cannot be resolved directly by these methods, theory is needed to interpret the local director field of LC alignment. In this work, we introduce a new approach to directly visualize the local director field of a nematic LC (NLC) at the nano-scale using scanning electron microscopy (SEM). A new type of NLC monomer bearing crosslinkable groups was designed and synthesized. It can be well-oriented at particle surfaces and patterned polymer substrates, including micron-sized silica colloids, porous membranes, micropillar arrays, and 1D channels. After carefully crosslinking, the molecular orientation of NLCs around the particles or within the patterns could be directly visualized by SEM, showing oriented nanofibers representing LC director from the fractured samples. Here, we could precisely resolve not only the local director field by this approach, but the defect structures of NLCs, including hedgehogs and line defects. The direct mapping of LC directors at the nanoscale using this method will improve our understanding of NLC local director field, and thus their manipulation and applications. More importantly, a theoretical interpretation will no longer be a necessity to resolve a new material system in this field.

  20. Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope.

    PubMed

    Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Li, Dayu; Peng, Zenghui; Liu, Yonggang; Xuan, Li

    2009-02-16

    A nematic liquid crystal adaptive optics system (NLC AOS) was assembled for a 2.16-m telescope to correct for atmospheric turbulence. LC AOS was designed and optimized with Zemax optical software. Second, an adaptive correction experiment was performed in the laboratory to test the performance of the NLC AOS. After the correction, the peak to valley (PV) and root mean square (RMS) of the wavefront were down to 0.2 lambda (lambda=633 nm) and 0.05 lambda, respectively. Finally, the star of Pollux (beta Gem) was tracked using the 2.16-m Reflecting Telescope, and real time correction of the atmospheric turbulence was performed with the NLC AOS. After the adaptive correction, the average PV and RMS of the wavefront were reduced from 11 lambda and 2.5 lambda to 2.3 lambda and 0.6 lambda, respectively. Although the intensity distribution of the beta Gem was converged and its peak was sharp, a halo still existed around the peak. These results indicated that the NLC AOS only partially corrected the vertical atmospheric turbulence. The limitations of our NLC AOS are discussed and some proposals are made.

  1. Numerical analysis of nonlinear electromagnetic waves in nematic liquid crystal cells

    NASA Astrophysics Data System (ADS)

    Papanicolaou, N. C.; Christou, M. A.; Polycarpou, A. C.

    2012-10-01

    In the current work, the nonlinear problem of electromagnetic wave propagation in a Nematic Liquid Crystal (NLC) cell is solved numerically. The LC is sandwiched between two glass layers of finite thickness and a linearly polarized beam is obliquely incident to the cell. The dielectric properties of N-LCs depend on the tilt angle of the directors. When the excitation beam enters the cell, and providing the incident intensity is above the Fréedericksz threshold, the directors reorient themselves changing the LC's relative permittivity tensor. In turn, this affects beam propagation throughout the crystal. The electromagnetic field is modeled by the time-harmonic Maxwell equations whereas the director field is governed by a nonlinear ordinary differential equation (ODE). Our solution method is iterative, consistently taking into account this interaction between the excitation beam and the director field. The Maxwell equations are solved employing the Mode-Matching Technique (MMT). The solution of the nonlinear differential equation for the director field is obtained with the aid of a finite difference (FD) scheme.

  2. Dielectric and electro-optic measurements of nematic liquid crystals doped with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Peterson, Matthew; Georgiev, Georgi; Atherton, Timothy; Cebe, Peggy

    We studied the effects of carbon nanotubes (CNTs) on the dielectric and electro-optic properties of nematic 5CB liquid crystals (LCs). Samples containing 0.01%, 0.10% and 1.00% CNTs by weight were prepared. Anti- parallel rubbed cells with a nominal thickness of 10 μm were prepared using indium tin oxide coated glass cells and a polyimide alignment layer. The capacitance and dissipation factor were measured using an Agilent 4284A precision LCR meter. From these measurements, the complex dielectric permittivity was determined as a function of frequency. Analysis of the low frequency regime (f <1000 Hz) indicates that 5CB samples containing CNTs have a higher conductance than neat samples. The Fréedericksz transition critical voltage was noted by a sharp increase in capacitance after an initial plateau. Numerical simulations of CNT-facilitated switching show that polarization induced on the nanotubes from capacitive effects can significantly reduce the critical voltage in DC electric fields, in agreement with experimental results. Measurements of the critical voltage over a range of frequencies will also be presented. Research was supported by the National Science Foundation, DMR1206010.

  3. Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions.

    PubMed

    Li, Xiao; Armas-Perez, Julio C; Martinez-Gonzalez, Jose A; Liu, Xiaoying; Xie, Helou; Bishop, Camille; Hernandez-Ortiz, Juan P; Zhang, Rui; de Pablo, Juan J; Nealey, Paul F

    2016-10-19

    The morphology and through-film optical properties of nematic liquid crystals (LCs) confined between two surfaces may be engineered to create switches that respond to external electric fields, thereby enabling applications in optoelectronics that require fast responses and low power. Interfacial properties between the confining surfaces and the LC play a central role in device design and performance. Here we investigate the morphology of LCs confined in hybrid cells with a top surface that exhibits uniform homeotropic anchoring and a bottom surface that is chemically patterned with sub-micron and micron- wide planar anchoring stripes in a background of homeotropic anchoring. In a departure from past work, we first investigate isolated stripes, as opposed to dense periodic arrays of stripes, thereby allowing for an in-depth interpretation of the effects of patterning on LC morphology. We observe three LC morphologies and sharp transitions between them as a function of stripe width in the submicron and micron regimes. Numerical simulations and theory help explain the roles of anchoring energy, elastic deformation, entropy, pattern geometry, and coherence length of the LC in the experimentally observed behavior. The knowledge and models developed from an analysis of results generated on isolated features are then used to design dense patterned substrates for high-contrast and efficient orientational switching of LCs in response to applied fields.

  4. Specific features of luminescence quenching in a nematic liquid crystal doped with nanoparticles

    NASA Astrophysics Data System (ADS)

    Kurochkina, M. A.; Konshina, E. A.; Shcherbinin, D. P.

    2016-10-01

    The change in the intensity of the photoluminescence (PL) spectra of nematic liquid crystal (NLC) composites as a function of the concentration of CdSe/ZnS semiconductor quantum dots (QDs) and TiO2 and ZrO2 nanoparticles 5 nm in diameter has been investigated. It is shown that the PL-quenching intensity in composites with CdSe/ZnS QDs exceeds that in composites with TiO2 and ZrO2 nanoparticles. The lowfrequency spectra of these composites with a concentration of 0.1 wt %, recorded in the range of 102-103 Hz, and the content of mobile ions in them have been investigated. It is found that the dielectric loss in the composite with CdSe/ZnS QDs is much higher and the content of mobile ions is larger by a factor of 3 than in the composites with TiO2 and ZrO2 nanoparticles. It is shown that an increase in the CdSe/ZnS QD concentration in NLC composites leads to an increase in the dielectric loss and a decrease in the PL intensity. Possible mechanisms of the interaction between NLC molecules and CdSe/ZnS QDs are discussed.

  5. Effect of nickel oxide nanoparticles on dielectric and optical properties of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Jamwal, Gaurav; Prakash, Jai; Chandran, Achu; Gangwar, Jitendra; Srivastava, A. K.; Biradar, A. M.

    2015-08-01

    In the present paper, we have studied the improvement in dielectric and optical properties of nematic liquid crystal (NLC) by doping of nickel oxide (NiO) nanoparticles. We have observed the dielectric and optical properties of pure and doped cells in order to understand the influence of NiO nanoparticles in the pure NLC. The experimental results have been analyzed through dielectric spectroscopic and optical texural methods.Detailed studies of dielectric parameters such as dielectric permittivity, dielectric loss and dielectric loss factor as a function of frequency with temperature were carried out. It has been observed that on doping the nanoparticles in NLC, the value of dielectric parameters (dielectric permittivity, dielectric loss and dielectric loss factor) decreases. The impedance and resistance of both pure and nanoparticles doped NLC cells were studied and found that for doped NLC, these parameter have low value. In addition to this, optical textures of the pure and doped samples have also been observed with a polarizing optical microscope at room temperature. All the results i.e. related to the investigation of dielectric and electro-optic properties have been explained by using existing theory of NLC.

  6. A molecular nematic liquid crystalline material for high-performance organic photovoltaics

    PubMed Central

    Sun, Kuan; Xiao, Zeyun; Lu, Shirong; Zajaczkowski, Wojciech; Pisula, Wojciech; Hanssen, Eric; White, Jonathan M.; Williamson, Rachel M.; Subbiah, Jegadesan; Ouyang, Jianyong; Holmes, Andrew B.; Wong, Wallace W.H.; Jones, David J.

    2015-01-01

    Solution-processed organic photovoltaic cells (OPVs) hold great promise to enable roll-to-roll printing of environmentally friendly, mechanically flexible and cost-effective photovoltaic devices. Nevertheless, many high-performing systems show best power conversion efficiencies (PCEs) with a thin active layer (thickness is ~100 nm) that is difficult to translate to roll-to-roll processing with high reproducibility. Here we report a new molecular donor, benzodithiophene terthiophene rhodanine (BTR), which exhibits good processability, nematic liquid crystalline behaviour and excellent optoelectronic properties. A maximum PCE of 9.3% is achieved under AM 1.5G solar irradiation, with fill factor reaching 77%, rarely achieved in solution-processed OPVs. Particularly promising is the fact that BTR-based devices with active layer thicknesses up to 400 nm can still afford high fill factor of ~70% and high PCE of ~8%. Together, the results suggest, with better device architectures for longer device lifetime, BTR is an ideal candidate for mass production of OPVs. PMID:25586307

  7. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device

    PubMed Central

    Nayek, Prasenjit; Li, Guoqiang

    2015-01-01

    A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device was addressed in the large signal regime by an amplitude modulated square wave signal at the frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total optical response time (rise time + decay time) for a 5 μm-thick cell is 2.5 ms for ~7 Vrms. This might be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. The possible reason behind the fast response time could be the visco-elastic constant and restoring force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized optical microscopic textural observation shows that the macroscopic dislocation-free excellent contrast have significant impact on improving the image quality and performance of the devices. PMID:26041701

  8. Flow birefringence in lyotropic mixtures in the isotropic phase

    SciTech Connect

    Fernandes, P.R.G.; Figueiredo Neto, A.M. )

    1995-01-01

    The flow-induced birefringence ([delta][ital n]) in lyotropic mixtures in the isotropic phase (ISO) was measured by means of optical techniques. As a function of temperature, the ISO is surrounded by two lamellar (LAM) phases. The shear flow produced by a perturbation in ISO induces a birefringent phase, which relaxes back to ISO with a typical relaxation time [tau]. [tau] increases near the transition to the more ordered LAM phases, and the behavior of [tau] versus temperature indicates the existence of a virtual nematic phase in the isotropic domain.

  9. The Influence of the Driving Voltage and Ion Concentration on the Lateral Ion Transport in Nematic Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Stojmenovik, Goran; Neyts, Kristiaan; Vermael, Stefaan; Verschueren, Alwin R. M.; van Asselt, Rob

    2005-08-01

    Nematic liquid crystal displays (LCDs) contain ions that influence the electrooptical characteristics of the display. A typical super-twisted nematic (STN) display for mobile phone applications becomes darker at a standard driving frequency if it contains many impurity ions. We have discovered that ions can travel in the plane of the glass plates in the absence of a lateral electric field, leading to lateral nonhomogeneity in transmission (dark and bright stripes). In this paper, we present our research on the lateral ion transport dependence on the driving square wave (SQW) amplitude and dc component at a wide range of ion concentrations. The existence of a dc component, a high ion concentration and high SQW amplitudes increase the lateral ion speed.

  10. Theoretical model applicable to the experimental determination of surface anchoring energies of nematic liquid crystals. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1980-01-01

    For a cell configuration consisting of a thin nematic layer bounded by two parallel plane surfaces, with opposing surfaces suitably treated to produce dissimilar molecular orientations, the elastic continuum theory for nematic liquid crystals was applied to derive an expression relating surface anchoring energies to elastic constants, director orientations at the substrate surfaces, and cell thickness. A numerical comparison with the elastically isotropic result over a range K sub 3 = 1.5 K sub 1 to K sub 3 = 10 K sub 1 showed the effect of elastic anisotropy could be quite significant. Surface anchoring energies calculated for anisotropic of K sub 3 = 2 K sub 1 and K sub 3 + 10 K sub 1 were approximately 50% and 500%, respectively, than the isotropic values.

  11. Gradient polymer-disposed liquid crystal single layer of large nematic droplets for modulation of laser light.

    PubMed

    Hadjichristov, Georgi B; Marinov, Yordan G; Petrov, Alexander G

    2011-06-01

    The light modulating ability of gradient polymer-disposed liquid crystal (PDLC) single layer of large droplets formed by nematic E7 in UV-cured polymer NOA65 is studied. Operating at relatively low voltages, such PDLC film with a of thickness 10-25 μm and droplet size up to 50 μm exhibits a good contrast ratio and is capable of producing a large phase shift for the propagating coherent light. For a linearly polarized He-Ne laser (λ=633 nm), an electrically commanded phase shift as large as π/2 can be obtained by the large-droplet region of the film. The electrically produced phase shift and its spatial profile controlled by the thickness of the gradient PDLC single layers of large nematic droplets can be useful for tunable spatial light modulators and other devices for active control of laser light.

  12. Synthesis and mesomorphic behaviour of achiral four-ring unsymmetrical bent-core liquid crystals: Nematic phases

    NASA Astrophysics Data System (ADS)

    Paul, Manoj Kumar; Kalita, Gayatri; Laskar, Atiqur Rahman; Debnath, Somen; Gude, Venkatesh; Sarkar, Dipika Debnath; Mohiuddin, Golam; Varshney, Sanjay Kumar; Nandiraju Rao, V. S.

    2013-10-01

    Achiral four ring unsymmetrical bent-core liquid crystals derived from 3-amino-2-methylbenzoic acid have been designed and synthesized with an imine, ester and photochromic azo linking moieties. These hockey-stick shape resembling bent molecules possess an alkoxy chain at one end of the molecule and methyl or methoxy group at the other end. The synthesis, phase transition temperatures and characterization of phase behaviour are discussed. The molecular structure characterization is consistent with data from elemental and spectroscopic analysis. The materials thermal behaviour and phase characterization have been investigated by differential scanning calorimetry and polarizing optical microscopy. All these compounds exhibit enantiotropic nematic phase over wide temperature range. Stable supercooling of nematic phase has been observed in methoxy homologues. The density functional theory (DFT) calculations were performed to obtain the stable molecular conformation, polarizability, dipole moment, Highest occupied molecular orbital (HOMO), Lowest unoccupied molecular orbital (LUMO) energies and bending angle of the compound.

  13. Interactions of carbon nanotubes in a nematic liquid crystal. II. Experiment

    NASA Astrophysics Data System (ADS)

    Agha, Hakam; Galerne, Yves

    2016-04-01

    Multiwall carbon nanotube (CNT) colloids with different anchoring conditions are dispersed in pentyl-cyanobiphenyl (5CB), a thermotropic liquid crystal (LC) that exhibits a room-temperature nematic phase. The experiments make use of CNTs treated for strong planar, homeotropic, or Janus anchorings. Observations with a polarizing microscope show that the CNTs placed in a uniform nematic field stabilize parallel or perpendicular to n depending on their anchoring conditions. In the presence of a splay-bend disclination line, they are first attracted toward it and ultimately, they get trapped on it. Their orientation relative to the line is then found to be parallel or perpendicular to it, again depending on the anchoring conditions. When a sufficient number of particles are deposited on a disclination line, they form a micro- or nanonecklace in the shape of a thin thread or of a bottle brush, with the CNTs being oriented parallel or perpendicular to the disclination line according to the anchoring treatment. The system exhibits a rich versatility, even if until now the weak anchorings appear to be difficult to control. In a next step, the necklaces may be glued by means of pyrrole electropolymerization. In this manner, we realize a true materialization of the disclination lines, and we obtain nanowires capable of conducting the electricity in the place of the initial disclinations that just worked as templates. The advantage of the method is that it finally provides nanowires that are automatically connected to predesignated three-dimensional (3D) electrodes. Such a 3D nanowiring could have important applications, as it could allow one to develop electronic circuits in the third dimension. They could thus help with increasing the transistor density per surface unit, although downsizing of integrated circuits will soon be limited to atomic sizes or so. In other words, the predicted limitation to Moore's law could be avoided. For the moment, the nanowires that we obtain

  14. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal.

    PubMed

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  15. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  16. Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell

    NASA Astrophysics Data System (ADS)

    Lin, Ja-Hon; Chang, Shu-Chun; Li, Yi-Han; Chien, Cheng-Yen; Chen, Chien-Hsing; Lin, Yi-Chin; Wu, Jin-Jei; Tsay, Shwu-Yun; Chen, Yao-Hui

    2017-03-01

    We propose a robust method to suppress laser speckle using a polymer-stabilized liquid crystal (PSLC) device with high initial transmittance. With applied voltage, a large modulation depth has been produced through light scattering because of the refractive index mismatch between the rotated nematic liquid crystals and the polymer networks. By using PSLCs with 5 wt % monomer, a speckle noise reduction rate of approximately 54.7% can be achieved with an applied voltage of 6 V. The lowest speckle contrast of approximately 0.025 with relatively high discrimination from the projected AF image has also been demonstrated through a wedge PSLC cell.

  17. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light

    NASA Astrophysics Data System (ADS)

    Zheng, Zhi-Gang; Li, Yannian; Bisoyi, Hari Krishna; Wang, Ling; Bunning, Timothy J.; Li, Quan

    2016-03-01

    Chiral nematic liquid crystals—otherwise referred to as cholesteric liquid crystals (CLCs)—are self-organized helical superstructures that find practical application in, for example, thermography, reflective displays, tuneable colour filters and mirrorless lasing. Dynamic, remote and three-dimensional control over the helical axis of CLCs is desirable, but challenging. For example, the orientation of the helical axis relative to the substrate can be changed from perpendicular to parallel by applying an alternating-current electric field, by changing the anchoring conditions of the substrate, or by altering the topography of the substrate’s surface; separately, in-plane rotation of the helical axis parallel to the substrate can be driven by a direct-current field. Here we report three-dimensional manipulation of the helical axis of a CLC, together with inversion of its handedness, achieved solely with a light stimulus. We use this technique to carry out light-activated, wide-area, reversible two-dimensional beam steering—previously accomplished using complex integrated systems and optical phased arrays. During the three-dimensional manipulation by light, the helical axis undergoes, in sequence, a reversible transition from perpendicular to parallel, followed by in-plane rotation on the substrate surface. Such reversible manipulation depends on experimental parameters such as cell thickness, surface anchoring condition, and pitch length. Because there is no thermal relaxation, the system can be driven either forwards or backwards from any light-activated intermediate state. We also describe reversible photocontrol between a two-dimensional diffraction state, a one-dimensional diffraction state and a diffraction ‘off’ state in a bilayer cell.

  18. Formation of nematic liquid crystals of sterically stabilized layered double hydroxide platelets.

    PubMed

    Mourad, Maurice C D; Devid, Edwin J; van Schooneveld, Matti M; Vonk, Chantal; Lekkerkerker, Henk N W

    2008-08-21

    Colloidal platelets of hydrotalcite, a layered double hydroxide, have been prepared by coprecipitation at pH 11-12 of magnesium nitrate and aluminum nitrate at two different magnesium to aluminum ratios. Changing the temperature and ionic strength during hydrothermal treatment, the platelets were tailored to different sizes and aspect ratios. Amino-modified polyisobutylene molecules were grafted onto the platelets following a convenient new route involving freeze-drying. Organic dispersions in toluene were prepared of the particles with the largest size and highest aspect ratio. The colloidal dispersions prepared in this way showed isotropic-nematic phase transitions above a limiting concentration in a matter of days. The number density at the transition and the width of the biphasic region were determined and compared to theory. The orientation of the platelets in nematic droplets (tactoids) and at the isotropic-nematic interface were analyzed by polarization microscopy. It was observed that sedimentation induces a nematic layer in samples that are below the limiting concentration for isotropic-nematic phase separation. No nematic phase was observed in the initial aqueous suspensions of the ungrafted particles.

  19. A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics.

    PubMed

    Kim, Bong-Gi; Jeong, Eun Jeong; Chung, Jong Won; Seo, Sungbaek; Koo, Bonwon; Kim, Jinsang

    2013-07-01

    Conjugated polymers with a one-dimensional p-orbital overlap exhibit optoelectronic anisotropy. Their unique anisotropic properties can be fully realized in device applications only when the conjugated chains are aligned. Here, we report a molecular design principle of conjugated polymers to achieve concentration-regulated chain planarization, self-assembly, liquid-crystal-like good mobility and non-interdigitated side chains. As a consequence of these intra- and intermolecular attributes, chain alignment along an applied flow field occurs. This liquid-crystalline conjugated polymer was realized by incorporating intramolecular sulphur-fluorine interactions and bulky side chains linked to a tetrahedral carbon having a large form factor. By optimizing the polymer concentration and the flow field, we could achieve a high dichroic ratio of 16.67 in emission from conducting conjugated polymer films. Two-dimensional grazing-incidence X-ray diffraction was performed to analyse a well-defined conjugated polymer alignment. Thin-film transistors built on highly aligned conjugated polymer films showed more than three orders of magnitude faster carrier mobility along the conjugated polymer alignment direction than the perpendicular direction.

  20. Design and synthesis of new type I bicontinuous cubic lyotropic liquid crystal monomers based on the gemini framework for molecular-size separation applications

    NASA Astrophysics Data System (ADS)

    Wiesenauer, Brian R.

    The overall objective of this thesis research was the design and synthesis of new type I bicontinuous cubic (QI) phase-forming, gemini-shaped lyotropic liquid crystal (LLC) monomers for the preparation of nanoporous polymer membrane materials. These new QI-phase LLC monomers were designed to overcome several shortcomings of previously developed QI-phase LLC monomers in the Gin research group that include expensive and difficult synthesis, poor film processibility, and limited blendability with additives. The first method for obtaining this objective was the synthesis of six homologues of a new gemini ammonium LLC monomer, two of which exhibit a QI phase with water. Both of these LLCs form a robust Q I phase such that a gel of these materials can be fully infused into a microporous support membrane and then cross-linked to maintain the LLC phase structure. The resulting QI-phase polymer film showed a uniform pore size of 0.86 nm in water nanofiltration and desalination experiments. This QI monomer platform is less costly and less rigorous to synthesize than previously synthesized phosphonium-based gemini QI LLC monomers. These new LLC monomers also have the ability to blend with the hydrophobic, commercially available cross-linkable elastomer vinyl-EPDM (v-EPDM) to form breathable composite barrier materials. In the appropriate composition, melt-infused gemini ammonium monomer/v-EPDM polymer membranes exhibit extremely high pure water vapor fluxes, and high rejection of toxic industrial chemical vapors. A new cross-linkable gemini LLC monomer based on charged imidazolium units was also developed that forms a QI phase with glycerol. This new LLC monomer can be solution-cast from MeOH and UV-irradiated to form cross-linked thin-film composite QI membranes with slightly larger effective pore size (0.96 nm) than the previous systems. A related goal of this thesis research was to develop methods for systematically tuning the effective pore size of nanoporous QI polymer

  1. Second harmonic light scattering induced by defects in the twist-bend nematic phase of liquid crystal dimers.

    PubMed

    Pardaev, Shokir A; Shamid, S M; Tamba, M G; Welch, C; Mehl, G H; Gleeson, J T; Allender, D W; Selinger, J V; Ellman, B; Jakli, A; Sprunt, S

    2016-05-11

    The nematic twist-bend (NTB) phase, exhibited by certain thermotropic liquid crystalline (LC) dimers, represents a new orientationally ordered mesophase - the first distinct nematic variant discovered in many years. The NTB phase is distinguished by a heliconical winding of the average molecular long axis (director) with a remarkably short (nanoscale) pitch and, in systems of achiral dimers, with an equal probability to form right- and left-handed domains. The NTB structure thus provides another fascinating example of spontaneous chiral symmetry breaking in nature. The order parameter driving the formation of the heliconical state has been theoretically conjectured to be a polarization field, deriving from the bent conformation of the dimers, that rotates helically with the same nanoscale pitch as the director field. It therefore presents a significant challenge for experimental detection. Here we report a second harmonic light scattering (SHLS) study on two achiral, NTB-forming LCs, which is sensitive to the polarization field due to micron-scale distortion of the helical structure associated with naturally-occurring textural defects. These defects are parabolic focal conics of smectic-like "pseudo-layers", defined by planes of equivalent phase in a coarse-grained description of the NTB state. Our SHLS data are explained by a coarse-grained free energy density that combines a Landau-deGennes expansion of the polarization field, the elastic energy of a nematic, and a linear coupling between the two.

  2. Prediction of flow-aligning and tumbling in a bent-core nematic liquid crystal using measurements of orienation order parameters

    NASA Astrophysics Data System (ADS)

    Park, Min Sang; Park, Beom-Jin; Park, Jung Ok; Srinivasarao, Mohan

    2010-03-01

    The flow behavior of bent-core nematic liquid crystal (A131), which has been known to exhibit a biaxial nematic phase, is predicted by measurements of 2^nd and 4^th rank orientation order parameters. Using experimentally determined uniaxial, and , and biaxial orientation order parameters, , and from polarized micro-Raman spectroscopy, we compute the tumbling parameter, λ. The relationships between the order parameters and tumbling parameter derived by 2 different groups are used and the results are computed: a molecular theory by Archer and Larson (1995), that by Kroger and Seller (1995) for uniaxial system, and Leslie's theory for 2-director continuum. Temperature evolution of tumbling parameter shows the transition from a flow alignment regime to a tumbling instability. The results of the temperature evolution of tumbling parameter of bent-core nematic LC are compared to those of pure nematic LC (5CB) and LC mixture (E7).

  3. Novel Cholesteric Glassy Liquid Crystals Comprising Benzene Functionalized with Hybrid Chiral-Nematic Mesogens

    SciTech Connect

    Kim, C; Marshall, K L; Wallace, J U; Ou, J J; Chen, S H

    2010-03-12

    With 4-cyanobiphenyl-4-yl benzoate nematogens chemically bonded to a benzene core via enantiomeric 2-methylpropyl spacers, a new series of cholesteric glassy liquid crystals has been synthesized for an investigation of structure-property relationships. Glass-forming ability, phase-transition temperatures, and stability against crystallization are affected by both the number and the position of substituent groups on the benzene ring with 1,3,5-trisubstituted system possessing the most favorable set of properties, Tg at 73 °C and Tc at 295 °C. With (S)-3-bromo-2-methylpropanol as the chiral precursor, left-handed helical stacking was observed for all the cholesteric GLCs reported herein. Films of the 1,3,5-trisubstituted and meta-disubstituted systems show a selective reflection wavelength, λR, at 413 and 422 nm, respectively, whereas that of the ortho-isomer exhibits a λR at 860 nm. Replacing one of the hybrid chiral-nematic mesogen in the 1,3,5-trisubstituted system by a nematogen loosens the helical pitch to yield a λR at 630 nm, still shorter than that of the ortho-isomer despite the dilution by a nematogen. This observation suggests the importance of regioisomerism to helical twisting. The difference in λR was interpreted in terms of molecular packing involving chiral spacers through computational chemistry. The susceptibility of cholesteric GLCs to photoalignment was tested using the ortho-isomer. The degree of photoalignment improves with an increasing rotational mobility of pendant coumarin monomers to an extent comparable to mechanical alignment on conventional rubbed polyimide films.

  4. Combined lyotropic and thermotropic phase transitions of deoxycholic acid

    NASA Astrophysics Data System (ADS)

    Vuc˜elić, V.; Vũcelić, D.

    1980-02-01

    Phase transitions of deoxycholic acid have been examined by studying systems which form a clathrate during crystallization. It has been shown that, depending upon the type of solvent molecule present, the deoxycholic acid clathrate may or may not form a thermotropic liquid crystal. In this manner, the simultaneous occurrence of both lyotropic and thermotropic effects was observed.

  5. A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids

    NASA Astrophysics Data System (ADS)

    Zhao, Jia; Yang, Xiaofeng; Shen, Jie; Wang, Qi

    2016-01-01

    We develop a linear, first-order, decoupled, energy-stable scheme for a binary hydrodynamic phase field model of mixtures of nematic liquid crystals and viscous fluids that satisfies an energy dissipation law. We show that the semi-discrete scheme in time satisfies an analogous, semi-discrete energy-dissipation law for any time-step and is therefore unconditionally stable. We then discretize the spatial operators in the scheme by a finite-difference method and implement the fully discrete scheme in a simplified version using CUDA on GPUs in 3 dimensions in space and time. Two numerical examples for rupture of nematic liquid crystal filaments immersed in a viscous fluid matrix are given, illustrating the effectiveness of this new scheme in resolving complex interfacial phenomena in free surface flows of nematic liquid crystals.

  6. Confinement of 5CB Between Lyotropic Bilayers

    NASA Astrophysics Data System (ADS)

    Dolbashian, Cory; Mahmood, Rizwan; Bellini, Tommaso; Clark, Noel

    2013-03-01

    We report phase behavior of mixtures of 5CB (4-Cyano-4'-Pentyl-1, 1'-biphenyl), a calamitic thermotropic liquid crystal, with mixtures of the lyotropic double tailed cationic surfactant DDAB (diodecyldimethylammonium-bromide) and water. These mixtures had a fixed ratio of DDAB to water (75% / 25%) and 5CB concentrations ranging from 10% to 85%. Our preliminary phase diagram suggests transition from isotropic to lamellar phase having higher birefringence at higher DDAB concentration. We have also observed low vale of birefringence at lower DDAB concentration suggesting swelling of bilayers.

  7. Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide

    NASA Astrophysics Data System (ADS)

    Al-Zangana, Shakhawan; Iliut, Maria; Boran, Gökçen; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo

    2016-08-01

    Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25-60 oC) and frequency range (100 Hz-2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such as isopropanol IPA, were observed to be much lower than the GO doped thermotropic nematic medium 5CB. It is anticipated that the slow relaxation frequencies (~10 kHz) could be resulting from the relaxation modes of the GO flakes while the fast relaxation frequencies (~100 kHz) could indicate strongly slowed down molecular modes of the nematogenic molecules, which are anchored to the GO flakes via dispersion interactions. The relaxation frequencies decreased as the size of the GO flakes in the isotropic solvent was increased. Polarizing microscopy showed that GO flakes with a mean diameter of 10 μm, dispersed in water, formed a lyotropic nematic liquid crystal phase. This lyotropic nematic exhibited the slowest dielectric relaxation process, with relaxation frequencies in the order of 2 kHz, as compared to the GO-isotropic suspension and the GO-doped 5CB.

  8. Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide

    PubMed Central

    Al-Zangana, Shakhawan; Iliut, Maria; Boran, Gökçen; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo

    2016-01-01

    Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25–60 oC) and frequency range (100 Hz–2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such as isopropanol IPA, were observed to be much lower than the GO doped thermotropic nematic medium 5CB. It is anticipated that the slow relaxation frequencies (~10 kHz) could be resulting from the relaxation modes of the GO flakes while the fast relaxation frequencies (~100 kHz) could indicate strongly slowed down molecular modes of the nematogenic molecules, which are anchored to the GO flakes via dispersion interactions. The relaxation frequencies decreased as the size of the GO flakes in the isotropic solvent was increased. Polarizing microscopy showed that GO flakes with a mean diameter of 10 μm, dispersed in water, formed a lyotropic nematic liquid crystal phase. This lyotropic nematic exhibited the slowest dielectric relaxation process, with relaxation frequencies in the order of 2 kHz, as compared to the GO-isotropic suspension and the GO-doped 5CB. PMID:27555475

  9. One-step facile synthesis of noble metal nanocrystals with tunable morphology in a nematic liquid crystalline medium

    NASA Astrophysics Data System (ADS)

    Dan, Kaustabh; Satpati, Biswarup; Datta, Alokmay

    2016-05-01

    The present study describes in-situ synthesis of noble metal nano structures (MNCs) (Au and Ag) within a nematic liquid crystalline medium MBBA [N-(4-methoxybenzylidene)-4-butylaniline] without using any seed mediated growth protocol or without using any external stabilizing or reducing agent. Detailed Transmission Electron Microscopy (TEM) study indicates that apart from Kinetic based mechanism, the thermodynamical parameters also influence greatly the morphological evolution of these MNCs. The MNCs are of diverse shapes including nano prisms, hexagons, urchins, cubes, and rods which depend on the time of reaction and the choice of nanoparticle precursor.

  10. Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host

    NASA Astrophysics Data System (ADS)

    Lee, Wei; Wang, Chun-Yu; Shih, Yu-Cheng

    2004-07-01

    We present results of the electro-optical effect in 90° twisted nematic cells of pristine and doped liquid crystals under an applied dc voltage. The doped cells were fabricated with a minute addition of either buckminsterfullerene C60 or multiwalled carbon nanotubes (CNTs). Investigated were the switching behaviors as well as the hystereses and time evolutions of both the optical transmittance and electrical capacitance of the display samples. It is shown that doping with nanotubes can effectively reduce the dc driving voltage and improve the switching behavior.

  11. Direct visualization of spatiotemporal structure of self-assembled colloidal particles in electrohydrodynamic flow of a nematic liquid crystal.

    PubMed

    Sasaki, Yuji; Hoshikawa, Hikaru; Seto, Takafumi; Kobayashi, Fumiaki; Jampani, V S R; Herminghaus, Stephan; Bahr, Christian; Orihara, Hiroshi

    2015-04-07

    Characterization of spatiotemporal dynamics is of vital importance to soft matter systems far from equilibrium. Using a confocal laser scanning microscopy, we directly reveal three-dimensional motion of surface-modified particles in the electrohydrodynamic convection of a nematic liquid crystal. Particularly, visualizing a caterpillar-like motion of a self-assembled colloidal chain demonstrates the mechanism of the persistent transport enabled by the elastic, electric, and hydrodynamic contributions. We also precisely show how the particles' trajectory is spatially modified by simply changing the surface boundary condition.

  12. Spin Nematics, Valence-Bond Solids, and Spin Liquids in SO(N) Quantum Spin Models on the Triangular Lattice.

    PubMed

    Kaul, Ribhu K

    2015-10-09

    We introduce a simple model of SO(N) spins with two-site interactions which is amenable to quantum Monte Carlo studies without a sign problem on nonbipartite lattices. We present numerical results for this model on the two-dimensional triangular lattice where we find evidence for a spin nematic at small N, a valence-bond solid at large N, and a quantum spin liquid at intermediate N. By the introduction of a sign-free four-site interaction, we uncover a rich phase diagram with evidence for both first-order and exotic continuous phase transitions.

  13. Acoustical and optical investigations of the size effect in nematic-isotropic phase transition in liquid crystal microemulsions

    NASA Astrophysics Data System (ADS)

    Maksimochkin, G. I.; Pasechnik, S. V.; Lukin, A. V.

    2015-07-01

    The absorption of ultrasound (at a frequency of 2.7 MHz) and the depolarized light transmission and scattering (at a wavelength of 630 nm) in liquid crystal (LC) emulsions have been studied during the nematic-isotropic (N-I) phase transition in LC droplets with radii ranging from 150 to 2300 nm. The obtained acoustical and optical data are used to determine the influence of the droplet size on characteristics of the N-I phase transition. It is shown that the acoustical and optical characteristics of LC emulsions have good prospects to be used for the investigation of phase transitions in submicron samples.

  14. Electric-field-induced transport of microspheres in the isotropic and chiral nematic phase of liquid crystals

    NASA Astrophysics Data System (ADS)

    Oh, Jiyoung; Gleeson, Helen F.; Dierking, Ingo

    2017-02-01

    The application of an electric field to microspheres suspended in a liquid crystal causes particle translation in a plane perpendicular to the applied field direction. Depending on applied electric field amplitude and frequency, a wealth of different motion modes may be observed above a threshold, which can lead to linear, circular, or random particle trajectories. We present the stability diagram for these different translational modes of particles suspended in the isotropic and the chiral nematic phase of a liquid crystal and investigate the angular velocity, circular diameter, and linear velocity as a function of electric field amplitude and frequency. In the isotropic phase a narrow field amplitude-frequency regime is observed to exhibit circular particle motion whose angular velocity increases with applied electric field amplitude but is independent of applied frequency. The diameter of the circular trajectory decreases with field amplitude as well as frequency. In the cholesteric phase linear as well as circular particle motion is observed. The former exhibits an increasing velocity with field amplitude, while decreasing with frequency. For the latter, the angular velocity exhibits an increase with field amplitude and frequency. The rotational sense of the particles on a circular trajectory in the chiral nematic phase is independent of the helicity of the liquid crystalline structure, as is demonstrated by employing a cholesteric twist inversion compound.

  15. In-plane switching of a twisted-nematic liquid crystal cell for single-cellgap transflective display

    NASA Astrophysics Data System (ADS)

    Yoon, Tae-Hoon; Lee, Gak Seok; Lee, Jeong Hyun; Song, Dong Han; Kim, Jae Chang; Park, Dae Lim; Hwang, Seong Soo; Kim, Dae Hyun; Park, Sung Il

    2008-02-01

    We propose an optical configuration of a twisted-nematic liquid crystal (TNLC) device driven by an in-plane electric field for a single-cellgap transflective display. The dark state of the reflective part is realized by a nematic liquid crystal layer with the twisted angle of 63.6° and the retardation of 194 nm, while a quarter-wave plate is inserted for the dark state of the transmissive part. Wavelength dispersion of the TNLC layer is suppressed by introducing a half-wave plate, whose optimum angle is found by using the Muller matrix method. Different directions of electric fields rotate liquid crystals to 15° for the bright state of the reflective part, but to -30° for that of the transmissive part. With the proposed configuration, we can realize a single-gamma transflective display in single cellgap structure without any in-cell retardation layers. By fabricating a 2.0" qCIF+ (176×RGB×220) prototype panel, we demonstrated both high reflection/transmission and single gamma of the proposed configuration.

  16. Effects of carbon nanotubes on the physical properties of a nematic liquid crystal N-(4‧-methoxybenzylidene)-4-butylaniline

    NASA Astrophysics Data System (ADS)

    Jber, Nasreen Raheem; Rashad, Alaa Adnan; Shihab, Mehdi Salih

    2013-07-01

    In this work, the nematic liquid crystal (LC) N-(4'-methoxybenzylidene)-4-n-butylaniline (MBBA) was prepared and doped with different concentrations (0.025, 0.05, 0.06, 0.07, 0.08, and 0.1 wt.%) of multi-walled carbon nanotubes (CNTs) at room temperature to study the electric properties of (LC-CNTs) cell. The experimental results showed that capacitance of (LC-CNTs) cell became higher than that of pure LC cell. The dielectric permittivity is determined as a function of applied frequency (100 Hz to 100 kHz) at voltage (5 V); it is found that increasing concentration of CNTs (0.1 wt.%) led to increase in the real part dielectric constant and decrease in imaginary part for (LC-CNTs) cell compared with the pure liquid crystal. Also conductivity of (LC-CNTs) cell was increased with increasing concentration of CNTs more than 0.05 wt.%. Theoretical study was carried out by using PM3 method for stable geometries of a nematic liquid crystal molecule of MBBA assembled parallel on a molecule of single-walled carbon nanotube (CNT). The result showed that the interaction caused by π,π-stacking between MBBA molecule and the wall of CNT and that may lead to formation of the local short range orientation order by LC molecules on the surface of the CNT. The binding energy of the LC molecule on the CNT wall was within the typical van der Waals interaction.

  17. Effect of surface viscosity, anchoring energy, and cell gap on the response time of nematic liquid crystals

    SciTech Connect

    Souza, R.F. de; Yang, D.-Ke; Lenzi, E.K.; Evangelista, L.R.; Zola, R.S.

    2014-07-15

    An analytical expression for the relaxation time of a nematic liquid crystal is obtained for the first time by considering the influence of surface viscosity, anchoring energy strength and cell gap, validated numerically by using the so-called relaxation method. This general equation for the molecular response time (τ{sub 0}) was derived for a vertical aligned cell and by solving an eigenvalue equation coming from the usual balance of torque equation in the Derzhanskii and Petrov formulation, recovering the usual equations in the appropriate limit. The results show that τ∼d{sup b}, where b=2 is observed only for strongly anchored cells, while for moderate to weak anchored cells, the exponent lies between 1 and 2, depending on both, surface viscosity and anchoring strength. We found that the surface viscosity is important when calculating the response time, specially for thin cells, critical for liquid crystal devices. The surface viscosity’s effect on the optical response time with pretilt is also explored. Our results bring new insights about the role of surface viscosity and its effects in applied physics. - Highlights: • The relaxation of nematic liquid crystals is calculated by taking the surface viscosity into account. • An analytical expression for the relaxation time depending on surface viscosity, anchoring strength and cell gap is obtained. • The results are numerically verified. • Surface viscosity is crucial for thin and weak anchored cells. • The effect on optical time and pretilt angle is also studied.

  18. Electric-field-induced transport of microspheres in the isotropic and chiral nematic phase of liquid crystals.

    PubMed

    Oh, Jiyoung; Gleeson, Helen F; Dierking, Ingo

    2017-02-01

    The application of an electric field to microspheres suspended in a liquid crystal causes particle translation in a plane perpendicular to the applied field direction. Depending on applied electric field amplitude and frequency, a wealth of different motion modes may be observed above a threshold, which can lead to linear, circular, or random particle trajectories. We present the stability diagram for these different translational modes of particles suspended in the isotropic and the chiral nematic phase of a liquid crystal and investigate the angular velocity, circular diameter, and linear velocity as a function of electric field amplitude and frequency. In the isotropic phase a narrow field amplitude-frequency regime is observed to exhibit circular particle motion whose angular velocity increases with applied electric field amplitude but is independent of applied frequency. The diameter of the circular trajectory decreases with field amplitude as well as frequency. In the cholesteric phase linear as well as circular particle motion is observed. The former exhibits an increasing velocity with field amplitude, while decreasing with frequency. For the latter, the angular velocity exhibits an increase with field amplitude and frequency. The rotational sense of the particles on a circular trajectory in the chiral nematic phase is independent of the helicity of the liquid crystalline structure, as is demonstrated by employing a cholesteric twist inversion compound.

  19. Liquid-Crystal Displays: Fabrication and Measurement of a Twisted Nematic Liquid-Crystal Cell

    ERIC Educational Resources Information Center

    Waclawik, Eric R.; Ford, Michael J.; Hale, Penny S.; Shapter, Joe G.; Voelcker, Nico H.

    2004-01-01

    An experiment is developed for a laboratory course on nanostructures, as part of the undergraduate Bachelor of Science degree in nanotechnology at Flinders University. Designed to demonstrate the relationship between molecular order and the optical dielectric properties of the liquid crystalline state, the experiment is shown to be a useful tool…

  20. A phenomenological introduction to liquid crystals and colloids

    NASA Astrophysics Data System (ADS)

    Lagerwall, Jan P. F.

    This chapter aims to give the reader an overview of the full scope of the liquid crystalline state of matter and a first contact with colloids. The ambition is to introduce and explain all key phenomena and concepts that will be needed in the following chapters in a concise yet understandable way. We begin by introducing the nematic phase and defining the director concept. We then introduce the two classes of liquid crystals, thermotropics and lyotropics, discussing similarities and differences and defining necessary help concepts such as mesogenicity, amphiphilicity and micelle formation. In the context of lyotropic liquid crystals we also introduce some key concepts of colloids, which form a minimum base that the following more detailed chapter on colloids by Paul van der Schoot takes as a starting point. Thermotropic smectic and lyotropic lamellar phases are then discussed together, emphasizing shared aspects as well as their respective unique features. This is followed by columnar phases of disc-shaped thermotropic molecules and in lyotropic suspensions of nanorods, and then we introduce the modifications of the phase structures that chirality typically induces...

  1. Photoresponsive azo-doped aerosil/7CB nematic liquid-crystalline nanocomposite films: the role of polyimide alignment layers of the films

    NASA Astrophysics Data System (ADS)

    Hadjichristov, Georgi B.; Marinov, Yordan G.

    2017-01-01

    We studied thin films (25 µm-thick) of nanomaterials composed from 3 wt.% aerosil nanospheres and the room-temperature nematic liquid crystal 4-n-heptyl cyanobiphenyl (7CB). The inclusion of 3 wt.% of the photoactive liquid crystal 4-(4‧-ethoxyphenylazo)phenyl hexanoate (EPH) in the aerosil/7CB nanostructured nematics make them photoresponsive. The films had alignment layers from rubbed polyimide (PI). Our study is concentrated on the inspection of the PI-role for the photo-stimulated electro-optical properties of the considered EPH-doped aerosil/7CB nanocomposite films.

  2. Pretransitional behavior above the nematic-isotropic phase transition of an auxetic trimer liquid crystal.

    PubMed

    Kang, D; Mahajan, M P; Zhang, S; Petschek, R G; Rosenblatt, C; He, C; Liu, P; Griffin, A C

    1999-10-01

    Static light scattering and electric field-induced Kerr measurements were performed above the nematic-isotropic phase transition of a terminal-lateral-lateral-terminal negative Poisson ratio trimer. For both measurements the inverse susceptibility was observed to be nearly linear with temperature, a result inconsistent with our previously reported Kerr data [Phys. Rev. E 58, 2041 (1998)].

  3. Distortion and flow of nematics simulated by dissipative particle dynamics.

    PubMed

    Zhao, Tongyang; Wang, Xiaogong

    2014-05-14

    In this study, we simulated distortion and flow of nematics by dissipative particle dynamics (DPD). The nematics were modeled by a binary mixture that contained rigid rods composed of DPD particles as mesogenic units and normal DPD particles as solvent. Elastic distortions were investigated by monitoring director orientation in space under influences of boundary anchoring and external fields. Static distortion demonstrated by the simulation is consistent with the prediction of Frank elastic theory. Spatial distortion profile of the director was examined to obtain static elastic constants. Rotational motions of the director under influence of the external field were simulated to understand the dynamic process. The rules revealed by the simulation are in a good agreement with those obtained from dynamical experiments and classical theories for nematics. Three Miesowicz viscosities were obtained by using external fields to hold the orientation of the rods in shear flows. The simulation showed that the Miesowicz viscosities have the order of ηc > ηa > ηb and the rotational viscosity γ1 is about two orders larger than the Miesowicz viscosity ηb. The DPD simulation correctly reproduced the non-monotonic concentration dependence of viscosity, which is a unique property of lyotropic nematic fluids. By comparing simulation results with classical theories for nematics and experiments, the DPD nematic fluids are proved to be a valid model to investigate the distortion and flow of lyotropic nematics.

  4. Influence of virtual surfaces on Frank elastic constants in a polymer-stabilized bent-core nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Madhuri, P. Lakshmi; Hiremath, Uma S.; Yelamaggad, C. V.; Madhuri, K. Priya; Prasad, S. Krishna

    2016-04-01

    Effect of a polymer network on the threshold voltage of the Fréedericksz transition, Frank elastic constants, switching speed, and the rotational viscosity are investigated in a polymer-stabilized bent-core nematic liquid crystal with different polymer concentrations. These polymer networks form virtual surfaces with a finite anchoring energy. The studies bring out several differences in comparison to similar studies with a calamitic liquid crystal as the nematic host. For example, on varying the polymer content the threshold voltage decreases initially, but exhibits a drastic increase above a critical concentration. A similar feature—reaching a minimum before rising—is seen for the bend elastic constant, which gets enhanced by an order of magnitude for a polymer content of 2.5 wt %. In contrast, the splay elastic constant has a monotonic variation although the overall enhancement is comparable to that of the bend elastic constant. The behavior changing at a critical concentration is also seen for the switching time and the associated rotational viscosity. The presence of the polymer also induces a shape change in the thermal dependence of the bend elastic constant. We explain the features observed here on the basis of images obtained from the optical and atomic force microscopy.

  5. Influence of virtual surfaces on Frank elastic constants in a polymer-stabilized bent-core nematic liquid crystal.

    PubMed

    Madhuri, P Lakshmi; Hiremath, Uma S; Yelamaggad, C V; Madhuri, K Priya; Prasad, S Krishna

    2016-04-01

    Effect of a polymer network on the threshold voltage of the Fréedericksz transition, Frank elastic constants, switching speed, and the rotational viscosity are investigated in a polymer-stabilized bent-core nematic liquid crystal with different polymer concentrations. These polymer networks form virtual surfaces with a finite anchoring energy. The studies bring out several differences in comparison to similar studies with a calamitic liquid crystal as the nematic host. For example, on varying the polymer content the threshold voltage decreases initially, but exhibits a drastic increase above a critical concentration. A similar feature-reaching a minimum before rising-is seen for the bend elastic constant, which gets enhanced by an order of magnitude for a polymer content of 2.5 wt %. In contrast, the splay elastic constant has a monotonic variation although the overall enhancement is comparable to that of the bend elastic constant. The behavior changing at a critical concentration is also seen for the switching time and the associated rotational viscosity. The presence of the polymer also induces a shape change in the thermal dependence of the bend elastic constant. We explain the features observed here on the basis of images obtained from the optical and atomic force microscopy.

  6. Curvature generation in nematic surfaces

    NASA Astrophysics Data System (ADS)

    Mostajeran, Cyrus

    2015-06-01

    In recent years there has been a growing interest in the study of shape formation using modern responsive materials that can be preprogrammed to undergo spatially inhomogeneous local deformations. In particular, nematic liquid crystalline solids offer exciting possibilities in this context. Considerable recent progress has been made in achieving a variety of shape transitions in thin sheets of nematic solids by engineering isolated points of concentrated Gaussian curvature using topological defects in the nematic director field across textured surfaces. In this paper, we consider ways of achieving shape transitions in thin sheets of nematic glass by generation of nonlocalized Gaussian curvature in the absence of topological defects in the director field. We show how one can blueprint any desired Gaussian curvature in a thin nematic sheet by controlling the nematic alignment angle across the surface and highlight specific patterns which present feasible initial targets for experimental verification of the theory.

  7. Optimal Boundary Control of a Simplified Ericksen-Leslie System for Nematic Liquid Crystal Flows in 2D

    NASA Astrophysics Data System (ADS)

    Cavaterra, Cecilia; Rocca, Elisabetta; Wu, Hao

    2017-02-01

    In this paper, we investigate an optimal boundary control problem for a two dimensional simplified Ericksen-Leslie system modelling the incompressible nematic liquid crystal flows. The hydrodynamic system consists of the Navier-Stokes equations for the fluid velocity coupled with a convective Ginzburg-Landau type equation for the averaged molecular orientation. The fluid velocity is assumed to satisfy a no-slip boundary condition, while the molecular orientation is subject to a time-dependent Dirichlet boundary condition that corresponds to the strong anchoring condition for liquid crystals. We first establish the existence of optimal boundary controls. Then we show that the control-to-state operator is Fréchet differentiable between appropriate Banach spaces and derive first-order necessary optimality conditions in terms of a variational inequality involving the adjoint state variables.

  8. Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal.

    PubMed

    Lysenko, D; Ouskova, E; Ksondzyk, S; Reshetnyak, V; Cseh, L; Mehl, G H; Reznikov, Y

    2012-05-01

    It was shown that irradiation of a nematic liquid crystal doped with metal nanoparticles in the visible near the plasmon resonance band led to strong thermal changes of the refractive indices. The effect was studied by recording of dynamic optical gratings in the colloid. Nanoparticles "worked" as effective nano-heaters in a matrix causing the order parameter decrease around the particles. A large nonlinearity parameter (n (2) ≈ 10(-2) cm(2)/kW and fast response (≈ 0.7 ms), with no detectable particles' aggregation and excellent photo- thermo-stability make these colloids potentially attractive nonlinear optical media. Application of a dynamic holography technique allowed measuring the coefficients of thermal conductivity of the liquid crystal along the director k (||) = (0.4 ± 0.02) W m(-1)K(-1) and perpendicular to the director k (⊥) = (0.2 ± 0.01) W m(-1)K(-1).

  9. Ferroelectric C* phase induced in a nematic liquid crystal matrix by a chiral non-mesogenic dopant

    NASA Astrophysics Data System (ADS)

    Pozhidaev, E. P.; Torgova, S. I.; Barbashov, V. A.; Minchenko, M. V.; Sulyanov, S. N.; Dorovatovskii, P. V.; Ostrovskii, B. I.; Strigazzi, A.

    2015-02-01

    We report on a ferroelectric chiral smectic C (C*) phase obtained in a mixture of a nematic liquid crystal (NLC) and a chiral nonmesogenic dopant. The existence of C* phase was proven by calorimetric, dielectric and optical measurements, and also by X-rays analysis. The smectic C* which is obtained in such a way can flow, allowing to restore the ferroelectric liquid crystal layer structure in the electro-optical cells after action of the mechanical stress, as it happens with the cells filled with NLC. The proposed method of obtaining smectic C* material allows us to create innovative electro-optical cell combining the advantages of NLC (mechanical resilience) and smectic C* (high switching speed).

  10. Acousto-optic effect in a nematic liquid-crystal layer under the binary effect of sound and viscous waves

    SciTech Connect

    Kozhevnikov, E. N.

    2010-03-15

    The optical effect in a liquid crystal cell containing a homeotropic layer of nematic liquid crystal (NLC) is analyzed. An NLC layer, located between crossed polaroids and opaque in the absence of external effect, is cleared after irradiation by an ultrasonic beam with a sharp spatial boundary. This enlightenment is suggested to be caused by the reorientation of crystal molecules in the acoustic flows that arise under the binary effect of the layer compression in the irradiated region and the viscous waves propagating from the layer boundaries. The flows were calculated taking into account the stress caused by the velocity convection and crystal structure relaxation. An expression is derived for the cell transparency, and the relative role of the convection and relaxation processes in the effect is determined.

  11. Global characterization of a nematic liquid crystal display LCX038ARA using the retarder-rotor model in the modulation amplitude regime-coupled without applied voltage

    NASA Astrophysics Data System (ADS)

    Cuevas Cely, C. J.; Acevedo, C. H.; Torres Moreno, Y.

    2017-01-01

    This work shows experimental and theoretical results of the characterization of a nematic liquid-crystal spatial light modulator Sony model LCX038ARA for the parameters angle of molecular rotation, the birefringence and angle of the molecular axis, using the retarder-rotor model without electric field applied in the amplitude regime-coupled.

  12. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    PubMed

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle

  13. Wetting transition of a nematic liquid crystal on a periodic wedge-structured substrate.

    PubMed

    Patricio, P; Pham, C-T; Romero-Enrique, J M

    2008-01-01

    It is known that the wetting behaviour of a fluid is deeply altered by the presence of rough or structured substrates. We first review some simple considerations about isotropic fluids and rough substrates, and then we generalize Wenzel's law, which assigns an effective contact angle to a droplet on a rough substrate, when the wetting layer has an ordered phase, like a nematic. We estimate the conditions for which the wetting behavior of an ordered fluid can be qualitatively different from that usually found in a simple fluid. To support our general considerations, we use the Landau-de Gennes mean field approach to investigate theoretically and numerically the wetting transition of a nematic phase on a periodic triangular structured substrate.

  14. Observation of a nematic quantum Hall liquid on the surface of bismuth

    NASA Astrophysics Data System (ADS)

    Feldman, Benjamin E.; Randeria, Mallika T.; Gyenis, András; Wu, Fengcheng; Ji, Huiwen; Cava, R. J.; MacDonald, Allan H.; Yazdani, Ali

    2016-10-01

    Nematic quantum fluids with wave functions that break the underlying crystalline symmetry can form in interacting electronic systems. We examined the quantum Hall states that arise in high magnetic fields from anisotropic hole pockets on the Bi(111) surface. Spectroscopy performed with a scanning tunneling microscope showed that a combination of single-particle effects and many-body Coulomb interactions lift the six-fold Landau level (LL) degeneracy to form three valley-polarized quantum Hall states. We imaged the resulting anisotropic LL wave functions and found that they have a different orientation for each broken-symmetry state. The wave functions correspond to those expected from pairs of hole valleys and provide a direct spatial signature of a nematic electronic phase.

  15. Nematic-field-driven positioning of particles in liquid crystal droplets.

    PubMed

    Whitmer, Jonathan K; Wang, Xiaoguang; Mondiot, Frederic; Miller, Daniel S; Abbott, Nicholas L; de Pablo, Juan J

    2013-11-27

    Common nematic oils, such as 5CB, experience planar anchoring at aqueous interfaces. When these oils are emulsified, this anchoring preference and the resulting topological constraints lead to the formation of droplets that exhibit one or two point defects within the nematic phase. Here, we explore the interactions of adsorbed particles at the aqueous interface through a combination of experiments and coarse-grained modeling, and demonstrate that surface-active particles, driven by elastic forces in the droplet, readily localize to these defect regions in a programmable manner. When droplets include two nanoparticles, these preferentially segregate to the two poles, thereby forming highly regular dipolar structures that could serve for hierarchical assembly of functional structures. Addition of sufficient concentrations of surfactant changes the interior morphology of the droplet, but pins defects to the interface, resulting in aggregation of the two particles.

  16. Electric and Magnetic Field-Assisted Orientational Transitions in the Ensembles of Domains in a Nematic Liquid Crystal on the Polymer Surface

    PubMed Central

    Parshin, Alexander M.; Gunyakov, Vladimir A.; Zyryanov, Victor Y.; Shabanov, Vasily F.

    2014-01-01

    Using electro- and magneto-optical techniques, we investigated orientational transitions in the ensembles of domains in a nematic liquid crystal on the polycarbonate film surface under the conditions of competing surface forces that favor radial and uniform planar alignment of nematic molecules. Having analyzed field dependences of the intensity of light passed through a sample, we established the threshold character of the orientational effects, plotted the calculated intensity versus magnetic coherence length, and compared the latter with the equilibrium length that characterizes the balance of forces on the polymer surface. PMID:25279586

  17. Curvature induced quasi-melting from rough surfaces in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Barbero, G.; Durand, G.

    1991-06-01

    The Berreman-de Gennes model, describing the azimutal anchoring energy of a nematic material oriented by a grooved surface, is revisited. When the groove wave-length is shorter than the nematic-isotropic coherence lenght, the nematic should decrease locally its order parameter to decrease the too large curvature energy induced by the boundaries. This curvature induced surface quasi-melting could explain recent observations on the order parameter decrease close to oblique SiO evaporated rough surfaces. Le modèle de Berreman-de Gennes, qui décrit l'ancrage azimuthal d'un nématique orienté par une surface ondulée est rediscuté. Quand la période des ondulations est plus courte que la longueur de cohérence nématique-isotrope, le nématique préfère fondre que se courber. Ce mécanisme explique la décroissance du paramètre d'ordre observée sur des surfaces rugueuses obtenues par évaporation oblique de SiO.

  18. Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers.

    PubMed

    Chen, Dong; Porada, Jan H; Hooper, Justin B; Klittnick, Arthur; Shen, Yongqiang; Tuchband, Michael R; Korblova, Eva; Bedrov, Dmitry; Walba, David M; Glaser, Matthew A; Maclennan, Joseph E; Clark, Noel A

    2013-10-01

    Freeze-fracture transmission electron microscopy study of the nanoscale structure of the so-called "twist-bend" nematic phase of the cyanobiphenyl (CB) dimer molecule CB(CH2)7CB reveals stripe-textured fracture planes that indicate fluid layers periodically arrayed in the bulk with a spacing of d ~ 8.3 nm. Fluidity and a rigorously maintained spacing result in long-range-ordered 3D focal conic domains. Absence of a lamellar X-ray reflection at wavevector q ~ 2π/d or its harmonics in synchrotron-based scattering experiments indicates that this periodic structure is achieved with no detectable associated modulation of the electron density, and thus has nematic rather than smectic molecular ordering. A search for periodic ordering with d ~ in CB(CH2)7CB using atomistic molecular dynamic computer simulation yields an equilibrium heliconical ground state, exhibiting nematic twist and bend, of the sort first proposed by Meyer, and envisioned in systems of bent molecules by Dozov and Memmer. We measure the director cone angle to be θ(TB) ~ 25° and the full pitch of the director helix to be p(TB) ~ 8.3 nm, a very small value indicating the strong coupling of molecular bend to director bend.

  19. Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals.

    PubMed

    Hashemi, S Masoomeh; Ejtehadi, Mohammad Reza

    2015-01-01

    A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the particle size to nanoscale, the equilibrium angle follows a descending or ascending trend in such a way that the equilibrium angle of a particle with the aspect ratio bigger than 1:1 (a discotic particle) goes to a parallel alignment with respect to the far-field nematic, whereas the equilibrium angle for a particle with the aspect ratio 1:1 and smaller (a rodlike particle) tends toward a perpendicular alignment to the uniform nematic direction. The discrepancy between the equilibrium angles of the mesoscopic and nanoscopic particles originates from the significant differences between their defect structures. The possible defect structures related to mesoscopic and nanoscopic colloidal particles of this geometry are also introduced.

  20. Polarity-sensitive transient patterned state in a twisted nematic liquid crystal driven by very low frequency fields

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, K. S.; Kumar, Pramoda; Kumar, M. Vijay

    2013-02-01

    We report, for a rodlike nematic liquid crystal with small positive dielectric and conductivity anisotropies, and in the 90°-twisted configuration, low frequency (<2 Hz) square wave electric field generated Carr-Helfrich director modulation appearing transiently over a few seconds at each polarity reversal and vanishing almost completely under steady field conditions. Significantly, the instability is polarity sensitive, with the maximum distortion localized in the vicinity of the negative electrode, rather than in the midplane of the layer. This is revealed by the wave vector alternating in the two halves of the driving cycle between the alignment directions at the two substrates. Besides the Carr-Helfrich mechanism, quadrupolar flexoelectric polarization arising under electric field gradient is strongly indicated as being involved in the development of the transient periodic order. Similar transient instability is also observed in other nematic compounds with varying combinations of dielectric and conductivity anisotropies, showing its general nature. The study also deals with various characteristics of the electro-optic effect that emerge from the temporal variation of optical response for different driving voltages, frequencies, and temperatures.

  1. Influence of finite size and wetting on nematic and smectic phase behavior of liquid crystal confined to controlled-pore matrices

    NASA Astrophysics Data System (ADS)

    Kutnjak, Zdravko; Kralj, Samo; Lahajnar, Gojmir; Žumer, Slobodan

    2004-11-01

    The high-resolution calorimetric study was carried out on octylcyanobiphenyl liquid crystal (LC) confined to various controlled-pore glass (CPG) matrices with silane-treated surface. The diameter of the voids cross section ranged between 23.7 and 395nm . The results are compared to those obtained previously on CPG voids nontreated with silane. We found a striking similarity between the shifts in the isotropic to nematic and nematic to smectic- A phase transition temperatures as a function of the void radius in which order parameter variations at the LC-void interface play the dominant role. Weaker temperature shifts are observed in silane-treated samples, where surface ordering tendency is larger. In nontreated samples, a finite-size scaling law in the maximum value of the heat capacity at the nematic to smectic- A transition was observed for void diameters larger than 20nm . In silane-treated samples, this behavior is considerably changed by surface wetting interactions.

  2. Dynamic interactions between nematic point defects in the spinning extrusion duct of spiders.

    PubMed

    De Luca, Gino; Rey, Alejandro D

    2006-04-14

    Spider silk fibers have remarkable mechanical properties as a result of an ultraoptimized spinning process. Silk fibers are spun from a lyotropic nematic liquid crystalline anisotropic fluid phase which undergoes significant structural changes throughout the spinning pathway. In the silk extrusion duct, those structural changes are expected to be driven by elastic-mediated interactions between point defects. In this work, the interaction between two point defects of opposite topological charges located on the axis of a cylindrical cavity is studied using a tensor order parameter formalism. Distinct regimes leading to defect annihilation and structural transitions are described in detail. The driving force setting the defects into motion is also examined. The different results suggest that the tensorial approach is primordial in describing the complicated physics of the problem. The phenomenon described is important to the understanding of the process-induced structuring of silk fibers and to defect physics in a more general context.

  3. Determination of the flexoelectric coefficient (e1-e3) in nematic liquid crystal by using fully leaky optical-guided mode

    NASA Astrophysics Data System (ADS)

    Zheng, Guili; Zhang, Hui; Ye, Wenjiang; Zhang, Zhidong; Song, Hong-wei; Xuan, Li

    2016-02-01

    Fully leaky optical-guided mode was employed to determine the difference in the splay and bend flexoelectric coefficient (e1-e3) in negative nematic liquid crystal MS-N01300-000. The experimental curves of reflectivity versus internal angle (angle of incident light to the liquid crystal) were obtained when a laser beam passed through the hybrid-aligned nematic in-plane switching liquid crystal cell; the cell was embedded in pyramid-coupled waveguide with different alternating current (AC) and direct current (DC) voltages. The curves of the applied DC with voltage similar to that of AC shift to the left or the right. Experimental results were then compared with theoretical results derived from elastic continuum theory and multi-layer optical theory of liquid crystals. The approximate value of the flexoelectric coefficient (e1-e3) of MS-N01300-000 is 9.0 × 10-11 C/m.

  4. Formation of a 1,8-octanedithiol self-assembled monolayer on Au(111) prepared in a lyotropic liquid-crystalline medium.

    PubMed

    García Raya, Daniel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa

    2010-07-20

    A characterization of the 1,8-octanedithiol (ODT) self-assembled monolayer (SAM) formed from a Triton X-100 lyotropic medium has been conducted by electrochemical techniques. It is found that an ODT layer of standing-up molecules is obtained at short modification time without removing oxygen from the medium. The electrochemical study shows that the ODT layer formed after 15 min of modification time has similar electron-transfer blocking properties to the layers formed from organic solvents at much longer modification times. On the basis of XPS data, it is demonstrated that the inability to bind gold nanoparticles (AuNPs) is due to the presence of extra ODT molecules either interdigited or on top of the layer. Treatment consisting of an acid washing step following the formation of the ODT-Au(111) SAM produces a layer that is able to attach AuNPs as demonstrated by electrochemical techniques and atomic force microscopy (AFM) images.

  5. Electro-optic characteristics of 90° twisted nematic liquid crystal display driven by fringe-electric field

    NASA Astrophysics Data System (ADS)

    Song, I. S.; Shin, S. S.; Kim, H. Y.; Song, S. H.; Lee, S. H.

    2004-02-01

    We investigated the electro-optic characteristics of a fringe-field driven twisted nematic (TN) display. In the absence of an electric field, the liquid crystals (LCs) are initially twisted 90° from the top to the bottom substrate under parallel polarizers so that the cell appears to be black. In the presence of a fringe-electric field, the LCs with negative dielectric anisotropy are rotated toward a plane that is almost perpendicular to the horizontal component of the fringe field, above the entire electrode surface. The cell then appears to be white, and shows high transmittance. In addition, the cell displays a wide viewing angle and has excellent color characteristics over a wide viewing range due to almost in-plane switching, unlike a conventional TN device where the LC director tilts upward in only one direction and results in a narrow viewing angle.

  6. Cholesterol-Based Grafted Polymer Brushes as Alignment Coating with Temperature-Tuned Anchoring for Nematic Liquid Crystals.

    PubMed

    Stetsyshyn, Yurij; Raczkowska, Joanna; Budkowski, Andrzej; Awsiuk, Kamil; Kostruba, Andriy; Nastyshyn, Svyatoslav; Harhay, Khrystyna; Lychkovskyy, Edward; Ohar, Halyna; Nastishin, Yuriy

    2016-10-11

    Novel alignment coating with temperature-tuned anchoring for nematic liquid crystals (NLCs) was successfully fabricated in three step process, involving polymerization of poly(cholesteryl methacrylate) (PChMa) from oligoproxide grafted to the glass surface premodified with 3-aminopropyltriethoxysilane. Molecular composition, thickness, wettability of the PChMa coating and its alignment action for a NLC were examined with time of flight-secondary ion mass spectrometry, ellipsometry, contact angle measurements, polarization optical microscopy and commercially produced PolScope technique allowing for mapping of the optic axis and optical retardance within the microscope field view. We find that the PChMa coating provides a specific monotonous increase (decrease) in the tilt angle of the NLC director with respect to the substrates normal upon heating (cooling) referred to as anchoring tuning.

  7. Electrohydrodynamic Behaviors in the Multiwalled Carbon Nanotubes Doped Optically Compensated Bend Polymer-Dispersed Nematic Liquid Crystal Cell

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ning; Wu, Jin-Jei; Ke, Hung-Lin

    2008-11-01

    We fabricated three optically compensated bend (OCB) polymer-dispersed nematic liquid crystal (PDLC) cells doped with a minute amount of multiwalled carbon nanotubes (MWCNTs) and observed the eletrohydrodynamic (EHD) behaviors of LCs in these three MWCNT-doped OCB PDLC cells at 5 or 12 V AC voltage with a frequency of 1 kHz or 60 Hz, respectively. Using the polarizing microscope, we discovered many kinds of domain patterns, including the fingerprint-like domain pattern, the uniform domain pattern, the bean-like domain pattern, the irregular big spot domain pattern, the hexagonal short period lattice domain pattern, and the rectangular period lattice domain pattern. This suggests that some domain patterns differ from the Kapustin-William's domain pattern while others were somewhat similar to the Kapustin-William's domain pattern.

  8. Spectral and dielectric properties of nematic liquid crystal doped semiconductor quantum dots CdSe/ZnS

    NASA Astrophysics Data System (ADS)

    Kurachkina, M. A.; Shcherbinin, D. P.; Konshina, E. A.

    2015-06-01

    We investigated the absorption and luminescence spectra and the low-frequency spectra of dielectric losses of the nematic liquid crystal (NLC) suspensions with quantum dots (QDs) CdSe/ZnS with a core diameter of 3.5 nm and 5.0 nm. The changing of luminescence intensity and dielectric losses in the region below 103 Hz were observed as result variation of a concentration and a QDs size in the spectra of NLC/QDs suspensions in comparison with the pure NLC. Luminescence quenching of the NLC and the increase of dielectric loss in the spectra were found with the increasing CdSe/ZnS concentration in interval between 0.07 - 0.3 wt. %.

  9. Modulation of localized surface plasmon resonance for an array of Ag nanostructures layered with nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shang, Zhenzhen; Huang, Haishen; Wan, Yuan; Deng, Luogen

    2016-08-01

    Sensitivity of the localized surface plasmon resonance (LSPR) for an array of Ag (silver) nanostructures layered with nematic liquid crystals (NLC) is investigated. Calculations are made by using finite-difference time-domain (FDTD) method under different geometrical and environmental parameters. Results show that the LSPR wavelength in this array can be controlled and tuned to infrared wavelength range by the rotation of the NLC optical-axis. The rotation of the array and the modifications to height of the NLC layer, the size and periods of the array can affect the sensitivity of the LSPR. The sensitivity is higher when the optical-axis is in xoz plane, than that for the optical-axis in xoy plane. An improved sensitivity has been obtained in the simulation.

  10. Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Guo, Boling; Xi, Xiaoyu; Xie, Binqiang

    2017-02-01

    The Cauchy problem for the three-dimensional non-isothermal model for compressible nematic liquid crystals is considered. Existence of global-in-time smooth solutions is established provided that the initial datum is close to a steady state (ρ bar , 0 , d bar , θ bar). By using the Lq-Lp estimates and the Fourier splitting method, if the initial perturbation is small in H3-norm and bounded in Lq (q ∈ [ 1 ,6/5)) norm, we obtain the optimal decay rates for the first and second order spatial derivatives of solutions. In addition, the third and fourth order spatial derivatives of director field d in L2-norm are achieved.

  11. Curvature oscillations and linear electro-optical effect in a surface layer of a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Blinov, L. M.; Durand, G.; Yablonsky, S. V.

    1992-05-01

    Damped curvature oscillations are excited at the surface between a nematic liquid crystal and a solid substrate, from the linear coupling of an AC electric field with the flexoelectric properties of the medium. The waves are detected by a modulation ellipsometry technique. Linear-in-field oscillations of the director in the surface nematic layer have been observed. The amplitude and characteristic response time of the oscillations are defined by visco-elastic and flexoelectric properties of the medium and the overlaping of the curvature wave with the profile of the sampling optical evanescent wave. A simple model is discussed which is in good agreement with experiments performed on a compensated MBBA mixture (with zero dielectric anisotropy) and 5CB. The anchoring energy for the nematic in contact with obliquely evaported SiO layer, as well as the sum e_1 +e_3 of the flexoelectric coefficients are measured, indicating a surface order parameter smaller than its bulk value. Des oscillations de courbure amorties sont excitées à l'interface entre un cristal liquide nématique et un substrat solide, par le couplage linéaire entre un champ électrique alternatif et la polarisation flexoélectrique du nématique. Les ondes sont détectées par une technique ellipsométrique. On observe une oscillation du directeur à la fréquence du champ. L'anplitude et le temps caractéristique de cette oscillation sont définis par les propriétés viscoélastiques et flexoélectriques du milieu, et le recouvrement de l'onde de courbure avec le profil de l'onde optique évanescente de mesure. Un modèle simple est discuté, en bon accord avec les expériences, faites sur un mélange compensé de MBBA (d'anisotropie diélectrique nulle) et sur du 5CB. L'énergie d'ancrage sur l'électrode évaporée SiO oblique, et la somme e_1 +e_3 des coefficients flexoélectriques sont mesurées, indiquant une baisse du paramètre d'ordre en surface.

  12. Dynamics of Order Reconstruction in a Nanoconfined Nematic Liquid Crystal with a Topological Defect

    PubMed Central

    Zhou, Xuan; Zhang, Zhidong

    2013-01-01

    At the wall in a hybrid nematic cell with strong anchoring, the nematic director is parallel to one wall and perpendicular to the other. Within the Landau-de Gennes theory, we have investigated the dynamics of s = ±1/2 wedge disclinations in such a cell, using the two-dimensional finite-difference iterative method. Our results show that with the cell gap decreasing, the core of the defect explodes, and the biaxiality propagates inside the cell. At a critical value of dc* ≈ 9ξ (where ξ is the characteristic length for order-parameter changes), the exchange solution is stable, while the defect core solution becomes metastable. Comparing to the case with no initial disclination, the value at which the exchange solution becomes stable increases relatively. At a critical separation of dc ≈ 6ξ, the system undergoes a structural transition, and the defect core merges into a biaxial layer with large biaxiality. For weak anchoring boundary conditions, a similar structural transition takes place at a relative lower critical value. Because of the weakened frustration, the asymmetric boundary conditions repel the defect to the weak anchoring boundary and have a relatively lower critical value of da, where the shape of the defect deforms. Further, the response time between two very close cell gaps is about tens of microseconds, and the response becomes slower as the defect explodes. PMID:24351807

  13. Configurational temperature and local properties of the anisotropic Gay-Berne liquid crystal model: Applications to the isotropic liquid/vapor interface and isotropic/nematic transition

    NASA Astrophysics Data System (ADS)

    Ghoufi, Aziz; Morineau, Denis; Lefort, Ronan; Malfreyt, Patrice

    2011-01-01

    Molecular simulations in the isothermal statistical ensembles require that the macroscopic thermal and mechanical equilibriums are respected and that the local values of these properties are constant at every point in the system. The thermal equilibrium in Monte Carlo simulations can be checked through the calculation of the configurational temperature, {k_BT_{conf}={< |nabla _r U({r}^N)|2>}/{< nabla _r{^2} U({r}^N) >}}, where nabla _r is the nabla operator of position vector r. As far as we know, T_{conf} was never calculated with the anisotropic Gay-Berne potential, whereas the calculation of T_{conf} is much more widespread with more common potentials (Lennard Jones, electrostatic, …). We establish here an operational expression of the macroscopic and local configurational temperatures, and we investigate locally the isotropic liquid phase, the liquid / vapor interface, and the isotropic-nematic transition by Monte Carlo simulations.

  14. Nematic ordering of SWNT in meso-structured thin liquid films of polystyrenesulfonate.

    PubMed

    Itzhak-Cohen, Racheli; Nativ-Roth, Einat; Levi-Kalisman, Yael; Josef, Elinor; Szleifer, Igal; Yerushalmi-Rozen, Rachel

    2014-12-16

    The formation of nematic-like islands of single-walled carbon nanotubes (SWNT) in polystyrenesulfonate (PSS) dispersions confined into nanometrically thin films is reported. The SWNT are observed to assemble into orientationally ordered phases, where the intertube distance, as measured via transmission electron microscopy at cryogenic temperatures, matches the polyelectrolyte's bulk correlation length deduced from X-ray scattering. The micrometers-long islands of orientationally ordered carbon nanotubes are observed in both SWNT and double-walled carbon nanotubes (DWNT) but not in specimens prepared from similar dispersions of multiwalled carbon nanotubes (MWNT). These observations, together with relaxation and rheological experiments, suggest that the orientational ordering may result from coupling between confinement of the polymer-wrapped SWNT and DWNT and the microstructure of the solvated polyelectrolyte.

  15. Dielectric, calorimetric and mesophase properties of 1''-(2',4-difluorobiphenyl-4'-yloxy)-9''-(4-cyanobiphenyl-4'-yloxy) nonane: an odd liquid crystal dimer with a monotropic mesophase having the characteristics of a twist-bend nematic phase.

    PubMed

    Sebastián, N; López, D O; Robles-Hernández, B; de la Fuente, M R; Salud, J; Pérez-Jubindo, M A; Dunmur, D A; Luckhurst, G R; Jackson, D J B

    2014-10-21

    This paper reports a novel liquid crystal phase having the characteristics of a twist-bend nematic phase formed by a non-symmetric ether-linked liquid crystal dimer. The dimer 1''-(2',4-difluorobiphenyl-4'-yloxy)-9''-(4-cyanobiphenyl-4'-yloxy) nonane (FFO9OCB) exhibits two liquid-crystalline phases on cooling at a sufficiently high rate from the isotropic phase. The high temperature mesophase has been reported in the literature as nematic and confirmed in this study. The other mesophase is metastable and can be supercooled giving rise to a glassy state. Its identification and characterization are based on optical textures, broadband dielectric spectroscopy, calorimetry, measurements of both splay and bend elastic constants in the nematic phase and miscibility studies. It is concluded that the low temperature mesophase exhibits the characteristics of a twist-bend nematic phase. Dielectric measurements enable us to obtain the static permittivity and information about the molecular dynamics in the isotropic phase, in the nematic mesophase and across the isotropic-to-nematic phase transition. Two orientations, parallel and perpendicular to the director, have been investigated. In the high temperature nematic mesophase, the dielectric anisotropy is found to be positive. Measurements of the parallel component of the dielectric permittivity are well-explained by the molecular theory of dielectric relaxation in nematic dimers (M. Stocchero, A. Ferrarini, G. J. Moro, D. A. Dunmur and G. R. Luckhurst, J. Chem. Phys., 2004, 121, 8079). The dimer is modelled as a mixture of cis and trans conformers and the model allows an estimate of their relative populations at each temperature. The nematic-to-isotropic phase transition has been exhaustively studied from the accurate evolution of the heat capacity and the static dielectric permittivity data. It has been concluded that the transition is first order in nature, but close to tricritical. The nature of the nematic-to-the novel

  16. The effect of CdSe/ZnS quantum dots on the rotational viscosity and charge carrier concentration of a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Shcherbinin, D. P.; Konshina, E. A.; Solodkov, D. E.

    2015-08-01

    The addition of CdSe/ZnS quantum dots (QDs) with a core diameter of 3.5 nm at a concentration of 10 wt % leads to a 2.5-fold increase in the dynamic rotational viscosity of a 5CB nematic liquid crystal (NLC). A comparison of the diffusion currents in NLC cells filled with pure 5CB and a suspension with QDs shows evidence of an increase in the concentration of charge carriers in the latter case.

  17. Screening out the non-Arrhenius behaviour of nematic-isotropic transition by room temperature ionic liquid

    NASA Astrophysics Data System (ADS)

    Dan, K.; Datta, A.; Yoshida, Y.; Saito, G.; Yoshikawa, K.; Roy, M.

    2016-02-01

    Differential Scanning Calorimetry (DSC) and optical polarization microscopy of a mixture of the liquid crystalline material (N-(4-methoxybenzylidene)-4-butylaniline, MBBA) and a Fe-based room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrachloroferrate ([Emim]+ [FeCl4]-, EMIF) indicate a decrease in the nematic-isotropic (N-I) phase transition temperature (TNI) with an increase in EMIF concentration, explained by a proposed model of Coulomb "screening" of MBBA quadrupoles by the EMIF ions along with ionic "self screening." DSC studies of EMIF-MBBA and pure EMIF and comparison with pure MBBA results show that the major transitions in pure EMIF have Arrhenius behaviour, but more importantly the previously found convex Arrhenius behaviour of the pristine MBBA [K. Dan et al., Europhys. Lett. 108, 36007 (2014)] becomes Arrhenius in the mixture, indicating a conversion of the entropic N-I activation barrier to an enthalpic one. In presence of EMIF, a drastic decrease in the intensity of out-of-plane distortions of benzene rings in MBBA is found from Fourier transform infrared spectroscopy, consistent with significant reduction in the conformational states of MBBA. This suppression of large amplitude motion is again consistent with a Coulomb screening and gives a molecular basis for the entropic-to-enthalpic conversion of the N-I activation barrier.

  18. Electro-optical properties of a nematic liquid crystal cell by double-side fringe-field switching

    NASA Astrophysics Data System (ADS)

    Xiang, C. Y.; Sun, X. W.

    2004-09-01

    The electro-optical and response properties of a nematic liquid crystal cell driven by double-side fringe-field switching [C. Y. Xiang, X. W. Sun, and X. J. Yin, Appl. Phys. Lett. 83, 5154 (2003)] have been studied. The transmission-voltage curve of the double-side fringe-field cell can be modeled by the change of the maximum twist angle. It is shown that the liquid crystal layer is linearly twisted before the transmission reaches the maximum. The threshold voltage of double-side fringe-field switching is the same as that of single-side fringe-field switching. The turn-on and turn-off response times, showing four time improvement over the single-side fringe-field switching, have been derived. The experimental turn-off times of the double-sides fringe-field switching and single-side fringe-field switching cell match with the theoretical prediction. The experimental turn-on time of the double-side fringe-field switching cell shows four times improvement over the single-side fringe-field one as predicted by the theoretical analysis.

  19. Optical Anisotropy and Four Possible Orientations of a Nematic Liquid Crystal on the Same Film of a Photochromic Chiral Smectic Polymer

    NASA Astrophysics Data System (ADS)

    Blinov, Lev M.; Barberi, Riccardo; Kozlovsky, Mikhail V.; Lazarev, Vladimir V.; de Santo, Maria P.

    Spin coated films of a chiral comb-like liquid crystalline copolymer containing azobenzene chromophores in its side chains are optically isotropic in their twisted smectic-like glassy state. In contact with a nematic liquid crystal (5CB, E7, MBBA) they provide a degenerate planar orientation. When irradiated by unpolarized UV light, they orient the same nematics homeotropically. Treated with linearly polarized UV light they orient nematics homogeneously with the director along the electric vector of the exciting light. After a combined irradiation first with unpolarized UV light and then with linearly polarized visible light, the films again provide a homogeneous liquid crystal orientation, this time with the director perpendicular to the visible light electric vector. The phenomena observed are related to the light induced optical anisotropy. Two main processes are responsible for the anisotropy (1) a UV light depletion of trans-isomers of the azobenzene chromophores from the chosen direction and (2) a reorientation of the chromophores by polarized visible light.

  20. Dendronized Polyimides Bearing Long-Chain Alkyl Groups and Their Application for Vertically Aligned Nematic Liquid Crystal Displays

    PubMed Central

    Tsuda, Yusuke; OH, Jae Min; Kuwahara, Renpei

    2009-01-01

    Polyimides having dendritic side chains were investigated. The terphenylene diamine monomer having a first-generation monodendron, 3,4,5-tris(n-dodecyloxy)-benzoate and the monomer having a second-generation monodendron, 3,4,5-tris[-3’,4’,5’-tri(n-dodecyloxy)benzyloxy]benzoate were successfully synthesized and the corresponding soluble dendritic polyimides were obtained by polycondensation with conventional tetracarboxylic dianhydride monomers such as benzophenone tertracarboxylic dianhydride (BTDA). The two-step polymerizations in NMP that is a general method for the synthesis of soluble polyimides is difficult; however, the expected dendritic polyimides can be obtained in aromatic polar solvents such as m-cresol and pyridine. The solubility of these dendoronized polyimides is characteristic; soluble in common organic solvents such as dichloromethane, chloroform, toluene and THF. These dendronized polyimides exhibited high glass transition temperatures and good thermal stability in both air and under nitrogen. Their application as alignment layers for LCDs was investigated, and it was found that these polyimides having dendritic side chains were applicable for the vertically aligned nematic liquid crystal displays (VAN-LCDs). PMID:20087476

  1. Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal.

    PubMed

    Huang, Kuan-Chung; Hsiao, Yu-Cheng; Timofeev, Ivan V; Zyryanov, Victor Ya; Lee, Wei

    2016-10-31

    We report on the spectral properties of an optically switchable tristable chiral-tilted homeotropic nematic liquid crystal (LC) incorporated as a tunable defect layer in one-dimensional photonic crystal. By varying the polarization angle of the incident light and modulating the light intensity ratio between UV and green light, various transmission characteristics of the composite were obtained. The hybrid structure realizes photo-tunability in transmission of defect-mode peaks within the photonic bandgap in addition to optical switchability among three distinct sets of defect modes via photoinduced tristable state transitions. Because the fabrication process is easier and less critical in terms of cell parameters or sample preparation conditions and the LC layer itself possesses an extra stable state compared with the previously reported bistable counterpart operating on the basis of biased-voltage dual-frequency switching, it has much superior potential for photonic applications such as a low-power-consumption multichannel filter and an optically controllable intensity modulator.

  2. Pattern Dynamics in the Electrohydrodynamics of Nematic Liquid Crystals ---Defect Patterns, Transition to Turbulence and Magnetic Field Effects---

    NASA Astrophysics Data System (ADS)

    Kai, S.; Zimmermann, W.

    Various patterns in the electrohydrodynamic convection of planarly aligned nematic liquid crystals are investigated. We give experimental and theoretical results on the onset of convection in the conduction regime and the dielectric regime as well. The transition to the fluctuating Williams domain (FWD) immediately above the onset of convection in the conduction regime is characterized in detail. At this secondary threshold the straight rolls become unstable and defects appear. During the temporal development of the FWD, defects are continuously created and annihilated, and the defect density behaves rather stochastical in time. At even higher values of the applied voltage we investigate the transition between the two turbulent states DSM1 and DSM2 which has some analogy with TI-TII transition in superfluid HeII. DSM 2 turbulence can be characterized by disclination and therefore called disclination turbulence. We show that this transition is local via nucleation and that the main difference between both states is the vanishing disclination density in the DSM1 state and its finite value in the DSM2. In the high frequency regime we analyse the secondary transition to chevrons and the defect dynamics in this pattern as a periodic defect structure. Furthermore, the influence of a superimposingly applied magnetic field on these patterns is considered.

  3. Improvement of the performance of the twisted-nematic liquid-crystal display as a phase modulator.

    PubMed

    Ma, Baiheng; Yao, Baoli; Li, Ze; Ye, Tong

    2011-06-10

    A twisted-nematic liquid-crystal display (TN-LCD) placed between two linear polarizers (P) generally produces coupled intensity and phase modulations. For the purpose of phase-only modulation, quarter-wave plates (QWPs) are often used in front of or behind the LCD. In this paper, we demonstrate theoretically and experimentally the QWPs' effect on the modulation properties of the TN-LCD based on the general Jones matrix descriptions for all the devices, which circumvents the inconvenience of the traditional method on the basis of the TN-LCD's internal parameters. We prove that the phase modulation depth of the TN-LCD can be further increased in the configuration of P1-QWP1-LCD-QWP2-P2 with each component properly oriented, provided that the mean intensity transmission is decreased to a lower level. By observing the diffracted patterns of the Ronchi phase grating or blazed grating addressed onto the TN-LCD, we verify the validity of the proposed method. Improved reconstructed image quality from the kinoform loaded on the TN-LCD is obtained in this configuration. This approach is valuable when the TN-LCD is employed as a phase modulator, especially for the modern, thinner TN-LCD.

  4. A model-free temperature-dependent conformational study of n-pentane in nematic liquid crystals

    SciTech Connect

    Burnell, E. Elliott; Weber, Adrian C. J.; Dong, Ronald Y.; Meerts, W. Leo; Lange, Cornelis A. de

    2015-01-14

    The proton NMR spectra of n-pentane orientationally ordered in two nematic liquid-crystal solvents are studied over a wide temperature range and analysed using covariance matrix adaptation evolutionary strategy. Since alkanes possess small electrostatic moments, their anisotropic intermolecular interactions are dominated by short-range size-and-shape effects. As we assumed for n-butane, the anisotropic energy parameters of each n-pentane conformer are taken to be proportional to those of ethane and propane, independent of temperature. The observed temperature dependence of the n-pentane dipolar couplings allows a model-free separation between conformer degrees of order and conformer probabilities, which cannot be achieved at a single temperature. In this way for n-pentane 13 anisotropic energy parameters (two for trans trans, tt, five for trans gauche, tg, and three for each of gauche{sub +} gauche{sub +}, pp, and gauche{sub +} gauche{sub −}, pm), the isotropic trans-gauche energy difference E{sub tg} and its temperature coefficient E{sub tg}{sup ′} are obtained. The value obtained for the extra energy associated with the proximity of the two methyl groups in the gauche{sub +} gauche{sub −} conformers (the pentane effect) is sensitive to minute details of other assumptions and is thus fixed in the calculations. Conformer populations are affected by the environment. In particular, anisotropic interactions increase the trans probability in the ordered phase.

  5. Control of the plasmonic resonance of a graphene coated plasmonic nanoparticle array combined with a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    De Sio, Luciano; Cataldi, Ugo; Bürgi, Thomas; Tabiryan, Nelson; Bunning, Timothy J.

    2016-07-01

    We report on the fabrication and characterization of a switchable plasmonic device based on a conductive graphene oxide (cGO) coated plasmonic nanoparticle (NP) array, layered with nematic liquid crystal (NLC) as an active medium. A monolayer of NPs has been immobilized on a glass substrate through electrostatic interaction, and then grown in place using nanochemistry. This monolayer is then coated with a thin (less then 100nm) cGO film which acts simultaneously as both an electro-conductive and active medium. The combination of the conductive NP array with a separate top cover substrate having both cGO and a standard LC alignment layer is used for aligning a NLC film in a hybrid configuration. The system is analysed in terms of morphological and electro-optical properties. The spectral response of the sample characterized after each element is added (air, cGO, NLC) reveals a red-shift of the localized plasmonic resonance (LPR) frequency of approximately 62nm with respect to the NP array surrounded by air. The application of an external voltage (8Vpp) is suitable to modulate (blue shift) the LPR frequency by approximately 22nm.

  6. Optical switching of nematic liquid crystal film arising from induced electric field of localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Quint, Makiko T.; Delgado, Silverio; Paredes, John H.; Hirst, Linda S.; Ghosh, Sayantani

    2015-08-01

    We have developed an all-optical method to control the in- and out-of-plane spatial orientation of nematic liquid crystal (NLC) molecules by leveraging the highly localized electric fields produced in the near-field regime of gold nanoparticle (AuNP) layers. A 1-2 micron thick NLC film is deposited on a close-packed drop-cast AuNP layer, excited with tunable optical sources and the transmission of white light through it analyzed using polarization optics as a function of incident light wavelength, excitation power and sample temperature. Our findings, supported by simulations using discrete-dipole approximations, establish the optical switching effect to be repeatable, reversible, spectrally-selective, operational over a broad temperature range, including room temperature, and requiring very small on-resonance excitation intensity (0.3 W/cm2). For the case of the in-plane switching we have additionally demonstrated that controlling the incident excitation polarization can continuously vary the alignment of the NLC molecules, allowing for grayscale transmission.

  7. Dielectrophoretic manipulation of nematic and isotropic droplets

    NASA Astrophysics Data System (ADS)

    Lee, Bomi; Song, Jang-Kun

    2016-03-01

    Dielectrophoresis can provide a delicate tool to control electrically neutral particles in colloid. The dielectrophoresis is usually applied to solid particles or heterogeneous liquid droplet in continuous liquid, but we devised and investigated the dielectrophoresis of isotropic droplets within nematic phase or vice versa. Using multi-components liquid crystal mixtures that exhibit relatively wide temperature range of nematic-isotropic coexistence, we achieved a field-induced phase separation between isotropic and nematic. We also fabricated the isotropic-nematic filaments that was achieved using a biased surface preference for either isotropic or nematic phase of the alignment layer [1]. The dielectrophoresis manipulations of isotropic and nematic droplets required much lower voltage compared to that for the electro wetting type devices. In addition, we observed the bi-directional actuation of isotropic droplets using anisotropic dielectric property of liquid crystal, which is not possible in usual dielectrophoresis. The bidirectional actuation was achieved by controlling the LC director within the cell so as to change the sign of the difference between the effective dielectric constant of nematic and isotropic liquid crystals. We simulated the bi-directional dielectrophoresis by performing the LC director calculation and the corresponding dielectrophoresis. The simulation results matched well with the experimental data. Thus, the bi-directional dielectrophoresis using isotropic and nematic droplets may open new possibility of electro- optical applications using liquid crystals.

  8. The Influence of Disorder on Thermotropic Nematic Liquid Crystals Phase Behavior

    PubMed Central

    Popa-Nita, Vlad; Gerlič, Ivan; Kralj, Samo

    2009-01-01

    We review the theoretical research on the influence of disorder on structure and phase behavior of condensed matter system exhibiting continuous symmetry breaking focusing on liquid crystal phase transitions. We discuss the main properties of liquid crystals as adequate systems in which several open questions with respect to the impact of disorder on universal phase and structural behavior could be explored. Main advantages of liquid crystalline materials and different experimental realizations of random field-type disorder imposed on liquid crystal phases are described. PMID:19865529

  9. Polymer-Layer-Free Alignment for Fast Switching Nematic Liquid Crystals by Multifunctional Nanostructured Substrate.

    PubMed

    Jung, Woo-Bin; Jeong, Hyeon Su; Jeon, Hwan-Jin; Kim, Yun Ho; Hwang, Jeong Yeon; Kim, Jae-Hoon; Jung, Hee-Tae

    2015-11-01

    A novel polymer-layer-free system for liquid-crystal alignment is demonstrated by various shaped indium tin oxide (ITO) patterns. Liquid crystals are aligned along the ITO line pattern and secondary sputtering lithography can change the shape of the ITO line pattern. Different shapes can control the direction and size of the pretilt angle. This effect eliminates defects and reduces the response time.

  10. Studies of Optical Wave Front Conjugation and Imaging Properties of Nematic Liquid Crystal Films.

    DTIC Science & Technology

    1986-06-01

    AFOSR84O375). Y. R. Shen’s research is supported by a National 4. See. for example, M. Tobias , International Handbook of Liquid Crvstal Science Foundation...vol. A27, pp. 1968-1976,1983;see tal above the I reedericksz transition," AppL. Phys. Lett., vol. 37, also I. P. Battra, R. II. I.nns, and 1). Pohl

  11. Absorption-induced Optical Tuning of Silicon Photonic Structures Clad with Nematic Liquid Crystals

    DTIC Science & Technology

    2013-03-01

    document, we explore tuning of photonic structures including ring resonators and directional couplers with a reconfigurable liquid crystal cladding. A...exposed in a HTG Mask Aligner and etched in a buffered oxide solution (1:6 buffered oxide etch). The remaining S1805 photoresist was removed with

  12. Nonlinear experimental dye-doped nematic liquid crystal optical transmission spectra estimated by neural network empirical physical formulas

    NASA Astrophysics Data System (ADS)

    Yildiz, Nihat; San, Sait Eren; Köysal, Oğuz

    2010-09-01

    In this paper, two complementary objectives related to optical transmission spectra of nematic liquid crystals (NLCs) were achieved. First, at room temperature, for both pure and dye (DR9) doped E7 NLCs, the 10-250 W halogen lamp transmission spectra (wavelength 400-1200 nm) were measured at various bias voltages. Second, because the measured spectra were inherently highly nonlinear, it was difficult to construct explicit empirical physical formulas (EPFs) to employ as transmittance functions. To avoid this difficulty, layered feedforward neural networks (LFNNs) were used to construct explicit EPFs for these theoretically unknown nonlinear NLC transmittance functions. As we theoretically showed in a previous work, a LFNN, as an excellent nonlinear function approximator, is highly relevant to EPF construction. The LFNN-EPFs efficiently and consistently estimated both the measured and yet-to-be-measured nonlinear transmittance response values. The experimentally obtained doping ratio dependencies and applied bias voltage responses of transmittance were also confirmed by LFFN-EPFs. This clearly indicates that physical laws embedded in the physical data can be faithfully extracted by the suitable LFNNs. The extraordinary success achieved with LFNN here suggests two potential applications. First, although not attempted here, these LFNN-EPFs, by such mathematical operations as derivation, integration, minimization etc., can be used to obtain further transmittance related functions of NLCs. Second, for a given NLC response function, whose theoretical nonlinear functional form is yet unknown, a suitable experimental data based LFNN-EPF can be constructed to predict the yet-to-be-measured values.

  13. Nematic Liquids in Weak Capillary Poiseuille Flow: Structure Scaling Laws and Effective Conductivity Implications

    DTIC Science & Technology

    2007-01-01

    Poiseuille flow . These studies complement our earlier drag-driven structure simulations and analyses. We use the mesoscopic Doi-Marrucci-Greco model...pressure-driven, capillary Poiseuille flow . These studies complement our earlier drag-driven structure simulations and analyses. We use the mesoscopic Doi... Simulations of liquid crystals in Poiseuille flow ,” Computational and Theoretical Polymer Science 11, 389-395 (2001). [10] Doi, M., Edwards, S.F., The Theory of

  14. Nonlinear optical properties of new photosensitive smart materials based on nematic liquid crystal with H-bonded dye-polymer complex

    NASA Astrophysics Data System (ADS)

    Uklein, A. V.; Vasko, A. A.; Ouskova, E. V.; Brodyn, M. S.; Gayvoronsky, V. Ya.

    2013-06-01

    The nonlinear optical (NLO) properties of the new photosensitive heterogeneous systems based on nematic liquid crystal (LC) doped with H-bonded polymer-azo-dye complex were studied. The excitation of the heterosystem by continuous laser irradiation at 532 nm produces the refractive index variation up to 10-2 measured within the spatial profile analysis in the far field. The phenomenon could be attributed to the photoinduced transformation of the azo dye from trans to cis form that reduces the order parameter of the LC in the vicinity of the complex.

  15. Light-stimulated growth of isotropic domains in nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Czajkowski, M.; Bartkiewicz, S.; Mysliwiec, J.

    2012-10-01

    Growth dynamics of single isotropic domains, appearing in liquid crystalline azobenzene derivative during diffraction grating recording has been studied under the polarized microscope. Theoretical approach considering light stimulation as main reason of the growth has been proposed. Growth dynamics of population of the domains has been studied by fitting diffraction efficiency dynamics, using diffraction on rectangular phase grating model. Influence of parameters concerning: material properties, domain growth function and incubation time distribution have been studied by series of simulations. Proposed model explains the local extrema effect on diffraction efficiency curves and can be used for fitting with very good precision.

  16. Liquid crystalline polymer networks based on a nematic epoxy resin with azoxy group

    NASA Astrophysics Data System (ADS)

    Włodarska, M.; Mossety-Leszczak, B.; Bąk, G. W.; Galina, H.; Ledzion, R.

    2009-06-01

    The paper presents research results on curing two recently synthesized liquid crystalline epoxy materials with selected amines. The process of cross-linking, the final product of curing, and the pure monomers were examined using polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and dielectric spectroscopy (DS). Chemical structure of the products was confirmed using spectroscopic methods. The authors attempted to demonstrate how selection of curing conditions (such as the amine used as curing agent, the curing temperature or preparation of the surface in contact with the sample) influences optical properties of the cured product.

  17. Knot theory realizations in nematic colloids

    PubMed Central

    Čopar, Simon; Tkalec, Uroš; Muševič, Igor; Žumer, Slobodan

    2015-01-01

    Nematic braids are reconfigurable knots and links formed by the disclination loops that entangle colloidal particles dispersed in a nematic liquid crystal. We focus on entangled nematic disclinations in thin twisted nematic layers stabilized by 2D arrays of colloidal particles that can be controlled with laser tweezers. We take the experimentally assembled structures and demonstrate the correspondence of the knot invariants, constructed graphs, and surfaces associated with the disclination loop to the physically observable features specific to the geometry at hand. The nematic nature of the medium adds additional topological parameters to the conventional results of knot theory, which couple with the knot topology and introduce order into the phase diagram of possible structures. The crystalline order allows the simplified construction of the Jones polynomial and medial graphs, and the steps in the construction algorithm are mirrored in the physics of liquid crystals. PMID:25624467

  18. Emulsion of aqueous-based nonspherical droplets in aqueous solutions by single-chain surfactants: templated assembly by nonamphiphilic lyotropic liquid crystals in water.

    PubMed

    Varghese, Nisha; Shetye, Gauri S; Bandyopadhyay, Debjyoti; Gobalasingham, Nemal; Seo, JinAm; Wang, Jo-Han; Theiler, Barbara; Luk, Yan-Yeung

    2012-07-24

    Single-chain surfactants usually emulsify and stabilize oily substances into droplets in an aqueous solution. Here, we report a coassembly system, in which single types of anionic or non-ionic surfactants emulsify a class of water-soluble nonamphiphilic organic salts with fused aromatic rings in aqueous solutions. The nonamphiphilic organic salts are in turn promoted to form droplets of water-based liquid crystals (chromonic liquid crystals) encapsulated by single-chain surfactants. The droplets, stabilized against coalescence by encapsulated in a layer (or layers) of single chain surfactants, are of both nonspherical tactoid (elongated ellipsoid with pointy ends) and spherical shapes. The tactoids have an average long axis of ∼9 μm and a short axis of ∼3.5 μm with the liquid crystal aligning parallel to the droplet surface. The spherical droplets are 5-10 μm in diameter and have the liquid crystal aligning perpendicular to the droplet surface and a point defect in the center. Cationic and zwitterionic surfactants studied in this work did not promote the organic salt to form droplets. These results illustrate the complex interplay of self-association and thermodynamic incompatibility of molecules in water, which can cause new assembly behavior, including potential formation of vesicles or other assemblies, from surfactants that usually form only micelles. These unprecedented tactoidal shaped droplets also provide potential for the fabrication of new soft organic microcapsules.

  19. Two-step electrical percolation in nematic liquid crystals filled with multiwalled carbon nanotubes.

    PubMed

    Tomylko, Serhiy; Yaroshchuk, Oleg; Lebovka, Nikolai

    2015-07-01

    Percolation of carbon nanotubes (CNTs) in liquid crystals (LCs) opens the way for a unique class of anisotropic hybrid materials with a complex dielectric constant widely controlled by CNT concentration. Percolation in such systems is commonly described as a one-step process starting at a very low loading of CNTs. In the present study the two-step percolation was observed in the samples of thickness 250 μm obtained by pressing the suspension between two substrates. The first threshold concentration, C(n)(p(1))∼10(-4) wt.%, was sensitive to temperature and phase state of LC, while the second one, C(n)(p(2))∼10(-1) wt.%, remained practically unchanged in the temperature tests. The two-stage nature of percolation was explained on a base of mean-field theory assuming core-shell structure of CNTs.

  20. Two-step electrical percolation in nematic liquid crystals filled with multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tomylko, Serhiy; Yaroshchuk, Oleg; Lebovka, Nikolai

    2015-07-01

    Percolation of carbon nanotubes (CNTs) in liquid crystals (LCs) opens the way for a unique class of anisotropic hybrid materials with a complex dielectric constant widely controlled by CNT concentration. Percolation in such systems is commonly described as a one-step process starting at a very low loading of CNTs. In the present study the two-step percolation was observed in the samples of thickness 250 μ m obtained by pressing the suspension between two substrates. The first threshold concentration, Cnp1˜10-4 wt.%, was sensitive to temperature and phase state of LC, while the second one, Cnp2˜10-1 wt.%, remained practically unchanged in the temperature tests. The two-stage nature of percolation was explained on a base of mean-field theory assuming core-shell structure of CNTs.

  1. Non-Debye relaxation in the dielectric response of nematic liquid crystals: surface and memory effects in the adsorption-desorption process of ionic impurities.

    PubMed

    de Paula, J L; Santoro, P A; Zola, R S; Lenzi, E K; Evangelista, L R; Ciuchi, F; Mazzulla, A; Scaramuzza, N

    2012-11-01

    We demonstrate theoretically that the presence of ions in insulating materials such as nematic liquid crystals may be responsible for the dielectric spectroscopy behavior observed experimentally. It is shown that, at low frequencies, an essentially non-Debye relaxation process takes place due to surface effects. This is accomplished by investigating the effects of the adsorption-desorption process on the electrical response of an electrolytic cell when the generation and recombination of ions is present. The adsorption-desorption is governed by a non-usual kinetic equation in order to incorporate memory effects related to a non-Debye relaxation and the roughness of the surface. The analysis is carried out by searching for solutions to the drift-diffusion equation that satisfy the Poisson equation relating the effective electric field to the net charge density. We also discuss the effect of the mobility of the ions, i.e., situations with equal and different diffusion coefficients for positive and negative ions, on the impedance and obtain an exact expression for the admittance. The model is compared with experimental results measured for the impedance of a nematic liquid crystal sample and a very good agreement is obtained.

  2. Non-Debye relaxation in the dielectric response of nematic liquid crystals: Surface and memory effects in the adsorption-desorption process of ionic impurities

    NASA Astrophysics Data System (ADS)

    de Paula, J. L.; Santoro, P. A.; Zola, R. S.; Lenzi, E. K.; Evangelista, L. R.; Ciuchi, F.; Mazzulla, A.; Scaramuzza, N.

    2012-11-01

    We demonstrate theoretically that the presence of ions in insulating materials such as nematic liquid crystals may be responsible for the dielectric spectroscopy behavior observed experimentally. It is shown that, at low frequencies, an essentially non-Debye relaxation process takes place due to surface effects. This is accomplished by investigating the effects of the adsorption-desorption process on the electrical response of an electrolytic cell when the generation and recombination of ions is present. The adsorption-desorption is governed by a non-usual kinetic equation in order to incorporate memory effects related to a non-Debye relaxation and the roughness of the surface. The analysis is carried out by searching for solutions to the drift-diffusion equation that satisfy the Poisson equation relating the effective electric field to the net charge density. We also discuss the effect of the mobility of the ions, i.e., situations with equal and different diffusion coefficients for positive and negative ions, on the impedance and obtain an exact expression for the admittance. The model is compared with experimental results measured for the impedance of a nematic liquid crystal sample and a very good agreement is obtained.

  3. Simultaneous determination of ordinary and extraordinary refractive index dispersions of nematic liquid crystals in the visible and near-infrared regions from an interference spectrum

    NASA Astrophysics Data System (ADS)

    Ozaki, Ryotaro; Nishi, Koji; Kan, Takayuki; Kadowaki, Kazunori

    2016-10-01

    An improved interference method is proposed to determine ordinary and extraordinary refractive index dispersions of nematic liquid crystals (LCs). In this method, an LC cell coated with a thin metal layer is used as a Fabry-Perot interferometer, which shows us a sharp transmission fringe. To ensure high reliability, the wavelength dispersion of the refractive index of the metal is taken into account in fitting calculation. In spite of measuring ordinary and extraordinary components, the LC cell, polarizers, and other equipment are not rotated during the experiment. The index evaluation from a single spectrum avoids errors depending on the measurement position owing to non-uniformities of molecular orientation and cell thickness because we can obtain the two indices at exactly the same position. This system can adapt to a wide frequency range and does not require any specific wavelength light source or laser. We demonstrate the determination of ordinary and extraordinary refractive index dispersions of a nematic liquid crystal in the visible and near-infrared regions. Furthermore, we quantitatively reproduce the measured spectrum by calculation using the measured refractive indices.

  4. Optimize the modulation response of twisted-nematic liquid crystal displays as pure phase spatial light modulators

    NASA Astrophysics Data System (ADS)

    Ma, Baiheng; Peng, Fei; Kang, Mingwu; Zhou, Jiawu

    2014-11-01

    Twisted-nematic liquid crystal displays (TN-LCD) are widely used in numerous research fields of optics working as spatial light modulators. Approaches to obtaining desired intensity or phase modulation by TN-LCD have been extensively studied based on the knowledge of TN-LCD's internal structure parameters, e.g., the orientation of LC molecules at the surfaces, the twist angle, the thickness of the LC layer, and the birefringence of the material. Generally TN-LCD placed between two linear polarizers (P) produces coupled intensity and phase modulation. To obtain the commonly used pure phase modulation, quarter wave plates (QWP) are often used in front of and/or behind the LCD. In this paper, we present a method to optimize the optical modulation properties of the TN-LCD to obtain pure phase modulation in the configuration of P-QWP-LCD-QWP-P each with proper orientation. Firstly an improved method for determining the Jones matrix of the TN-LCD without knowing its internal parameters is presented, which is based on the macroscopical Jones matrix descriptions for TN-LCD, linear polarizer and QWP. Only three sets of intensity measurements are needed for the complete determination of the TN-LCD's Jones matrix for a single wavelength. Then Jones matrix calculations are carried out to determine the orientations of the polarizers and QWPs for pure phase modulation response. In addition, we prove that the phase modulation depth (PMD) of the TN-LCD can be further increased provided that the mean intensity transmission is decreased to a lower level, which is very useful when the TN-LCD is used as a phase modulator and the ratio between the intensities of the desired diffracted order relative to the other diffracted orders is required higher. Experimental results coincide well with the optical modulation properties of the TN-LCD predicted by our determined Jones matrix. In contrast to the traditional method which requires knowledge of the TN-LCD's internal structure parameters

  5. PEGylation of phytantriol-based lyotropic liquid crystalline particles--the effect of lipid composition, PEG chain length, and temperature on the internal nanostructure.

    PubMed

    Nilsson, Christa; Østergaard, Jesper; Larsen, Susan Weng; Larsen, Claus; Urtti, Arto; Yaghmur, Anan

    2014-06-10

    Poly(ethylene glycol)-grafted 1,2-distearoyl-sn-glycero-3-phosphoethanolamines (DSPE-mPEGs) are a family of amphiphilic lipopolymers attractive in formulating injectable long-circulating nanoparticulate drug formulations. In addition to long circulating liposomes, there is an interest in developing injectable long-circulating drug nanocarriers based on cubosomes and hexosomes by shielding and coating the dispersed particles enveloping well-defined internal nonlamellar liquid crystalline nanostructures with hydrophilic PEG segments. The present study attempts to shed light on the possible PEGylation of these lipidic nonlamellar liquid crystalline particles by using DSPE-mPEGs with three different block lengths of the hydrophilic PEG segment. The effects of lipid composition, PEG chain length, and temperature on the morphology and internal nanostructure of these self-assembled lipidic aqueous dispersions based on phytantriol (PHYT) were investigated by means of synchrotron small-angle X-ray scattering and Transmission Electron Cryo-Microscopy. The results suggest that the used lipopolymers are incorporated into the water-PHYT interfacial area and induce a significant effect on the internal nanostructures of the dispersed submicrometer-sized particles. The hydrophilic domains of the internal liquid crystalline nanostructures of these aqueous dispersions are functionalized, i.e., the hydrophilic nanochannels of the internal cubic Pn3m and Im3m phases are significantly enlarged in the presence of relatively small amounts of the used DSPE-mPEGs. It is evident that the partial replacement of PHYT by these PEGylated lipids could be an attractive approach for the surface modification of cubosomal and hexosomal particles. These PEGylated nanocarriers are particularly attractive in designing injectable cubosomal and hexosomal nanocarriers for loading drugs and/or imaging probes.

  6. Biologically relevant lyotropic liquid crystalline phases in mixtures of n-octyl β-D-glucoside and water. Determination of the phase diagram by fluorescence spectroscopy.

    PubMed

    Karukstis, Kerry K; Duim, Whitney C; Van Hecke, Gerald R; Hara, Nagiko

    2012-03-29

    When mixed with water, n-octyl β-D-glucoside forms self-assembled nanostructures, several of which are liquid crystalline and all of which depend on the water/glucoside ratio and temperature. For practical use of these phases, a detailed understanding of the conditions under which they exist (i.e., the isobaric phase diagram) is required. We use the fluorescence of the dye molecule prodan as a new approach to probe the phases formed in these mixtures. The prodan fluorescence signal depends on the polarity of its environment and thus the phase(s) in which the dye exists. Visual inspection of the total fluorescence signal can qualitatively determine the phases present, including coexisting phases. Temperature-induced phase changes are also detected from variations observed in the prodan fluorescence spectrum. The sensitivity of this new technique allows the single- and multiple-phase regions to be mapped carefully for the first time.

  7. Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: in vitro and in vivo studies

    PubMed Central

    Freag, May S; Elnaggar, Yosra SR; Abdelmonsif, Doaa A; Abdallah, Ossama Y

    2016-01-01

    Recently, research has progressively highlighted on clues from conventional use of herbal medicines to introduce new anticancer drugs. Aloe-emodin (AE) is a herbal drug with promising anticancer activity. Nevertheless, its clinical utility is handicapped by its low solubility. For the first time, this study aims to the fabrication of surface-functionalized polyethylene glycol liquid crystalline nanoparticles (PEG-LCNPs) of AE to enhance its water solubility and enable its anticancer use. Developed AE-PEG-LCNPs were optimized via particle size and zeta potential measurements. Phase behavior, solid state characteristics, hemocompatibility, and serum stability of LCNPs were assessed. Sterile formulations were developed using various sterilization technologies. Furthermore, the potential of the formulations was investigated using cell culture, pharmacokinetics, biodistribution, and toxicity studies. AE-PEG-LCNPs showed particle size of 190 nm and zeta potential of −49.9, and PEGylation approach reduced the monoolein hemolytic tendency to 3% and increased the serum stability of the nanoparticles. Sterilization of liquid and lyophilized AE-PEG-LCNPs via autoclaving and γ-radiations, respectively, insignificantly affected the physicochemical properties of the nanoparticles. Half maximal inhibitory concentration of AE-PEG-LCNPs was 3.6-fold lower than free AE after 48 hours and their cellular uptake was threefold higher than free AE after 24-hour incubation. AE-PEG-LCNPs presented 5.4-fold increase in t1/2 compared with free AE. Biodistribution and toxicity studies showed reduced AE-PEG-LCNP uptake by reticuloendothelial system organs and good safety profile. PEGylated LCNPs could serve as a promising nanocarrier for efficient delivery of AE to cancerous cells. PMID:27703348

  8. Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: in vitro and in vivo studies.

    PubMed

    Freag, May S; Elnaggar, Yosra Sr; Abdelmonsif, Doaa A; Abdallah, Ossama Y

    Recently, research has progressively highlighted on clues from conventional use of herbal medicines to introduce new anticancer drugs. Aloe-emodin (AE) is a herbal drug with promising anticancer activity. Nevertheless, its clinical utility is handicapped by its low solubility. For the first time, this study aims to the fabrication of surface-functionalized polyethylene glycol liquid crystalline nanoparticles (PEG-LCNPs) of AE to enhance its water solubility and enable its anticancer use. Developed AE-PEG-LCNPs were optimized via particle size and zeta potential measurements. Phase behavior, solid state characteristics, hemocompatibility, and serum stability of LCNPs were assessed. Sterile formulations were developed using various sterilization technologies. Furthermore, the potential of the formulations was investigated using cell culture, pharmacokinetics, biodistribution, and toxicity studies. AE-PEG-LCNPs showed particle size of 190 nm and zeta potential of -49.9, and PEGylation approach reduced the monoolein hemolytic tendency to 3% and increased the serum stability of the nanoparticles. Sterilization of liquid and lyophilized AE-PEG-LCNPs via autoclaving and γ-radiations, respectively, insignificantly affected the physicochemical properties of the nanoparticles. Half maximal inhibitory concentration of AE-PEG-LCNPs was 3.6-fold lower than free AE after 48 hours and their cellular uptake was threefold higher than free AE after 24-hour incubation. AE-PEG-LCNPs presented 5.4-fold increase in t1/2 compared with free AE. Biodistribution and toxicity studies showed reduced AE-PEG-LCNP uptake by reticuloendothelial system organs and good safety profile. PEGylated LCNPs could serve as a promising nanocarrier for efficient delivery of AE to cancerous cells.

  9. Role of Molecular Structure on X-ray Diffraction in Uniaxial and Biaxial Phases of Thermotropic Liquid Crystals

    SciTech Connect

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena; Kumar, Satyendra

    2009-04-29

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution function is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.

  10. Molecular orientation behavior of chiral nematic liquid crystals based on the presence of blue phases using polarized microscopic FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsumura, Masanori; Katayama, Norihisa

    2016-07-01

    Study on molecular orientation behavior of highly twisted chiral nematic liquid crystals (N∗LCs) expressing blue phases (BPs) is important for developing new devices. This study examines the change of molecular orientation of N∗LCs due to the presence of BPs. Polarized microscopic FT-IR spectroscopy was used to study the in- and out-of-plane molecular orientations of N∗LCs that undergo a phase transition involving BPs. The band intensity ratio of CN to CH2 stretching modes (CN/CH2) in the IR spectra was used to determine the orientation of N∗LC molecules. The measured spectra indicated that the helical axis of N∗LC molecules was perpendicular to the substrate before heating and inclined on the substrate after cooling the sample which has phase transition from BP I to chiral nematic (N∗). The N∗LC molecule in the cell of rubbed orientation film exhibited the in-plane anisotropy after a heating-cooling ramp only in samples that passed through BP I. These results indicate that the changes of molecular orientation of N∗LC by phase transition are affected by BP I.

  11. Generation of Pretilt Angle for Nematic Liquid Crystal Using the Photodimerization Method on Various New Photo-Crosslinkable Polyimide Based Polymers

    NASA Astrophysics Data System (ADS)

    Hwang, Jeoung-Yeon; Seo, Dae-Shik; Son, Jong-Ho; Suh, Dong Hack

    2001-07-01

    We synthesized the various new photo-crosslinkable polyimide based polymers and generation of pretilt angle for a nematic liquid crystal (NLC) using a photodimerization method on the photopolymers was studied. A good thermal stability of the photopolymers was measured by thermogravimatric analysis (TGA) measurement until 450°C. The NLC pretilt angle generated was about 2.5°-3.0° by polarized UV exposure on the photopolymers containing a biphenyl (BP), decyl (De), and cholesteryl(chol), chalcone(Chal) group, respectively. However, low pretilt angle of the NLC was measured by polarized UV exposure on the photopolymers containing the fluorine and chalcone group. The NLC pretilt angle generated is attributed to the biphenyl and alkyl moieties, and the photo-dimerized chalcone group of the photopolymer.

  12. Low-Power All-Optical Bistable Device of Twisted-Nematic Liquid Crystal Based on Surface Plasmons in a Metal-Insulator-Metal Structure

    NASA Astrophysics Data System (ADS)

    Tien Thanh, Pham; Tanaka, Daisuke; Fujimura, Ryushi; Takanishi, Yoichi; Kajikawa, Kotaro

    2013-01-01

    A low-power all-optical bistable device of twisted-nematic liquid crystal (TN-LC) is reported, on the basis of coupled surface plasmons (SPs) in a metal-insulator-metal (MIM) structure. The lowest threshold switching illumination was 0.3 mW/mm2, which is much lower than the value we previously reported for a similar all-optical TN-LC device based on the coupled SPs in a gold grating. The threshold illumination is lower at higher temperature up to the phase transition. The TN-LC device is promising for two-dimensional optical memories or spatial light modulators, since the structure is simple and free from electronic circuits.

  13. Mechanical properties of monodomain nematic side-chain liquid-crystalline elastomers with homeotropic and in-plane orientation of the director.

    PubMed

    Rogez, D; Martinoty, P

    2011-07-01

    We present the first study of the shear mechanical properties of monodomain nematic side-chain liquid-crystal elastomers (SCLCEs) prepared by cross-linking with UV irradiation a nematic side-chain liquid-crystal polymer oriented with an electric or a magnetic field. Their elastic behavior was studied in the dry, swollen and stretched states, in order to check the various theoretical descriptions of these systems. The shear measurements taken on the dry samples show that the shear anisotropy is much smaller than that of the usual twice cross-linked samples oriented by a mechanical stretching of the network formed after the first cross-linking step, demonstrating that the elasticity of the networks strongly depends on the preparation procedure used. The shear experiments performed on the swollen state of these two different types of elastomers reveal that the elasticity of the network is Gaussian for the elastomers oriented with the electric or the magnetic field, and non-Gaussian for the elastomers oriented with the usual stretching procedure. The analysis of the stress-strain curves of both types of elastomers with the neoclassical model based on Gaussian rubber elasticity confirms the Gaussian and non-Gaussian nature of their elasticity. The shear experiments performed as a function of the elongation of the homeotropically oriented elastomer when the shear is applied in a direction parallel to the elongation, do not show the decrease of the associated shear modulus, which is theoretically expected when the strain approaches the threshold value marking the beginning of the elastic plateau. However, the observation of this effect could be prevented by possible small misalignments of the director, as suggested by a calculation presented in one of the theories describing this effect.

  14. Optical-to-optical interface device. [consisting of two transparent electrodes on glass substrates that enclose thin film photoconductor and thin layer of nematic liquid crystal

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.

    1973-01-01

    Studies were conducted on the performance of a photoactivated dc liquid crystal light valve. The dc light valve is a thin film device that consists of two transparent electrodes, deposited on glass substrates, that enclose a thin film photoconductor (cadmium sulfide) and a thin layer of a nematic liquid crystal that operates in the dynamic scattering mode. The work was directed toward application of the light valve to high resolution non-coherent light to coherent light image conversion. The goal of these studies was to improve the performance and quality of the already existing dc light valve device and to evaluate quantitatively the properties and performance of the device as they relate to the coherent optical data processing application. As a result of these efforts, device sensitivity was improved by a factor of ten, device resolution was improved by a factor of three, device lifetime was improved by two-orders of magnitude, undesirable secondary liquid crystal scattering effects were eliminated, the scattering characteristics of the liquid crystal were thoroughly documented, the cosmetic quality of the devices was dramatically improved, and the performance of the device was fully documented.

  15. Ferromagnetic nanoparticles suspensions in twisted nematic

    NASA Astrophysics Data System (ADS)

    Cîrtoaje, Cristina; Petrescu, Emil; Stan, Cristina; Creangă, Dorina

    2016-05-01

    Ferromagnetic nanoparticles insertions in nematic liquid crystals (NLC) in twisted configuration are studied and a theoretical model is proposed to explain the results. Experimental observation revealed that nanoparticles tend to overcrowd in long strings parallel to the rubbing direction of the alignment substrate of the LC cell. Their behavior under external field was studied and their interaction with their nematic host is described using elastic continuum theory.

  16. Effects of conducting polymer poly(3, 4-ethylenedioxythiophene) nanotubes on the electro-optical and dielectric properties of a nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl host

    NASA Astrophysics Data System (ADS)

    Ghosh, Sharmistha; Nayek, Prasenjit; Roy, Subir Kr.; Gangopadhyay, Rupali; Molla, Mijanur Rahaman; Dabrowski, Roman

    2010-02-01

    We report the results of the optical transmission and the capacitance behavior as a function dc electric field of a pristine liquid crystal and conducting polymer nanotube-liquid crystal composite measured in twisted nematic cells. The threshold and driving voltages have been determined from transmission-voltage curve. There is remarkable reduction in the threshold and driving voltage in the polymer nanotube doped liquid crystal cell which is good from application point of view. The residual dc is also reduced significantly in the doped cell and the reduction is even more than that observed in the carbon nanotube doped same liquid crystal system.

  17. Principal molecular axis and transition dipole moment orientations in liquid crystal systems: an assessment based on studies of guest anthraquinone dyes in a nematic host.

    PubMed

    Sims, Mark T; Abbott, Laurence C; Cowling, Stephen J; Goodby, John W; Moore, John N

    2016-12-21

    An assessment of five different definitions of the principal molecular axis along which molecules align in a nematic liquid crystal system has been made by analysing fully atomistic molecular dynamics (MD) simulations of a set of anthraquinone dyes in the cyanobiphenyl-based nematic host mixture E7. Principal molecular axes of the dyes defined by minimum moment of inertia, minimum circumference, minimum area, maximum aspect ratio, and surface tensor models were tested, and the surface tensor model was found to give the best description. Analyses of MD simulations of E7 alone showed that the surface tensor model also gave a good description of the principal molecular axes of the host molecules, suggesting that this model may be applicable more generally. Calculated dichroic order parameters of the guest-host systems were obtained by combining the surface tensor analysis with fixed transition dipole moment (TDM) orientations from time-dependent density functional theory (TD-DFT) calculations on optimised structures of the dyes, and the trend between the dyes generally matched the trend in the experimental values. Additional analyses of the guest-host simulations identified the range of conformers explored by the flexible chromophores within the dyes, and TD-DFT calculations on corresponding model structures showed that this flexibility has a significant effect on the TDM orientations within the molecular frames. Calculated dichroic order parameters that included the effects of this flexibility gave a significantly improved match with the experimental values for the more flexible dyes. Overall, the surface tensor model has been shown to provide a rationale for the experimental alignment trends that is based on molecular shape, and molecular flexibility within the chromophores has been shown to be significant for the guest-host systems: the computational approaches reported here may be used as a general aid in the predictive design of dyes with appropriate molecular

  18. Alkyl-bis(imidazolium) salts: a new amphiphile platform that forms thermotropic and non-aqueous lyotropic bicontinuous cubic phases

    SciTech Connect

    Robertson, LA; Schenkel, MR; Wiesenauer, BR; Gin, DL

    2013-01-01

    New ionic amphiphiles with a hexyl-bridged bis(imidazolium) headgroup; Br-, BF4-, or Tf2N- anions; and a long n-alkyl tail can form thermotropic bicontinuous cubic liquid crystal phases in neat form and/or lyotropic bicontinuous cubic phases with several non-aqueous solvents or water.

  19. Macroscopic structures of lyotropic lamellar phase under spatial confinement

    NASA Astrophysics Data System (ADS)

    Iwashita, Yasutaka; Tanaka, Hajime

    2004-03-01

    We study the formation of lamellar structure of lyotropic liquid crystal composed of C_12E_5/H_2O in wedge-shaped cell. The equilibrium lamellar structure in this cell is known to be an edge dislocation array, which is formed if lamellar layers well align homeotropically to cell surface. When we formed the lamellar phase in the cell, however, some lamellar structures far from equilibrium appeared such as random orientation lamella with dense defects and onion phase in particular condition. This means non-equilibrium, which has not been taken into account so far, is important in this problem. In observing their formation processes in detail, we found the origin of these non-equilibrium lamellar structures is a complex coupling between homo- or heterogeneous nucleation of lamella, elasticity of membrane and spatial confinement (or sample thickness). We will show the relation between spatial confinement and the morphology of structure, and discuss their physical origins.

  20. Aqueous Gemini Surfactant Self-Assembly into Complex Lyotropic Phases

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Sorenson, Gregory

    2012-02-01

    In spite of the potentially wide-ranging applications of aqueous bicontinuous lyotropic liquid crystals (LLCs), the discovery of amphiphiles that reliably form these non-constant mean curvature morphologies over large phase windows remains largely serendipitous. Recent work has established that cationic gemini surfactants exhibit a pronounced tendency to form bicontinuous cubic (e.g. gyroid) phases as compared to their parent single-tail amphiphiles. The universality of this phenomenon in other surfactant systems remains untested. In this paper, we will report the aqueous LLC phase behavior of a new class of anionic gemini surfactants derived from long chain carboxylic acids. Our studies show that these new surfactants favor the formation of non-constant mean curvature gyroid and primitive (``Plumber's Nightmare'') structures over amphiphile concentration windows up to 20 wt% wide. Based on these observations, we will discuss insights gained into the delicate force balance governing the self-assembly of these surfactants into aqueous bicontinuous LLCs.

  1. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide

    NASA Astrophysics Data System (ADS)

    Akbari, Abozar; Sheath, Phillip; Martin, Samuel T.; Shinde, Dhanraj B.; Shaibani, Mahdokht; Banerjee, Parama Chakraborty; Tkacz, Rachel; Bhattacharyya, Dibakar; Majumder, Mainak

    2016-03-01

    Graphene-based membranes demonstrating ultrafast water transport, precise molecular sieving of gas and solvated molecules shows great promise as novel separation platforms; however, scale-up of these membranes to large-areas remains an unresolved problem. Here we demonstrate that the discotic nematic phase of graphene oxide (GO) can be shear aligned to form highly ordered, continuous, thin films of multi-layered GO on a support membrane by an industrially adaptable method to produce large-area membranes (13 × 14 cm2) in <5 s. Pressure driven transport data demonstrate high retention (>90%) for charged and uncharged organic probe molecules with a hydrated radius above 5 Å as well as modest (30-40%) retention of monovalent and divalent salts. The highly ordered graphene sheets in the plane of the membrane make organized channels and enhance the permeability (71+/-5 l m-2 hr-1 bar-1 for 150+/-15 nm thick membranes).

  2. Metastable nematic hedgehogs

    NASA Astrophysics Data System (ADS)

    Rosso, Riccardo; Virga, Epifanio G.

    1996-07-01

    For nematic liquid crystals, we study the local stability of a radial hedgehog against biaxial perturbations. Our analysis employs the Landau - de Gennes functional to describe the free energy stored in a ball, whose radius is a parameter of the model. We find that a radial hedgehog may be either unstable or metastable, depending on the values of the elastic constants. For unstable hedgehogs, we give an explicit expression for the radius of the ball within which the instability manifests itself: it can be interpreted as the size of the biaxial core of the defect; it is of the same order of magnitude as the radius of the disclination ring predicted by Penzenstadler and Trebin's model. The metastable hedgehogs predicted by our model are the major novelty of the paper. They tell us that we may also expect truly uniaxial point defects, whose core contains no biaxial structure.

  3. Vortex beam generation and other advanced optics experiments reproduced with a twisted-nematic liquid-crystal display with limited phase modulation

    NASA Astrophysics Data System (ADS)

    Cofré, Aaron; García-Martínez, Pascuala; Vargas, Asticio; Moreno, Ignacio

    2017-01-01

    In this work we propose the use of twisted-nematic liquid-crystal spatial light modulators (TN-LC-SLM) as a useful tool for training students in the manipulation of light beams with phase-only masks. In particular, we focus the work on the realization of phase-only gratings and phase-only spiral phases for the generation of vortex beams, beams carrying orbital angular momentum (OAM). Despite the extensive activity in this field, its experimental implementation for educational purposes is limited because it requires the use of very expensive high-resolution liquid-crystal on silicon (LCOS) SLMs. Here, we show that a low-cost experimental implementation can be done with older TNLC technology. However, these devices, intended for display applications, exhibit rather limited optical phase modulation properties in comparison with modern LCOS devices, such as a very low range of phase modulation and a general coupled intensity modulation. However, we show that a precise characterization of their retardance parameters permits their operation in useful modulation configurations. As examples, we include one continuous phase-only configuration useful for reproducing the optimal triplicator phase grating, and a binary π-phase modulation. We include experiments with the realization of different phase diffraction gratings, and their combination with spiral phase patterns and lens functions to generate a variety of vortex beams.

  4. Photonic crystals, light manipulation, and imaging in complex nematic structures

    NASA Astrophysics Data System (ADS)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  5. Quantum decoherence and quasi-equilibrium in open quantum systems with few degrees of freedom: application to 1H NMR of nematic liquid crystals.

    PubMed

    Segnorile, Héctor H; Zamar, Ricardo C

    2011-12-28

    Explanation of decoherence and quasi-equilibrium in systems with few degrees of freedom demands a deep theoretical analysis that considers the observed system as an open quantum system. In this work, we study the problem of decoherence of an observed system of quantum interacting particles, coupled to a quantum lattice. Our strategy is based on treating the environment and the system-environment Hamiltonians fully quantum mechanically, which yields a representation of the time evolution operator useful for disentangling the different time scales underlying in the observed system dynamics. To describe the possible different stages of the dynamics of the observed system, we introduce quantum mechanical definitions of essentially isolated, essentially adiabatic, and thermal-contact system-environment interactions. This general approach is then applied to the study of decoherence and quasi-equilibrium in proton nuclear magnetic resonance ((1)H NMR) of nematic liquid crystals. A summary of the original results of this work is as follows. We calculate the decoherence function and apply it to describe the evolution of a coherent spin state, induced by the coupling with the molecular environment, in absence of spin-lattice relaxation. By assuming quantum energy conserving or non-demolition interactions, we identify an intermediate time scale, between those controlled by self-interactions and thermalization, where coherence decays irreversibly. This treatment is also adequate for explaining the buildup of quasi-equilibrium of the proton spin system, via the process we called eigen-selectivity. By analyzing a hypothetical time reversal experiment, we identify two sources of coherence loss which are of a very different nature and give rise to distinct time scales of the spin dynamics: (a) reversible or adiabatic quantum decoherence and (b) irreversible or essentially adiabatic quantum decoherence. Local irreversibility arises as a consequence of the uncertainty introduced by

  6. Critical Slowing of Density Fluctuations Approaching the Isotropic-Nematic Transition in Liquid Crystals: 2D IR Measurements and Mode Coupling Theory.

    PubMed

    Sokolowsky, Kathleen P; Bailey, Heather E; Hoffman, David J; Andersen, Hans C; Fayer, Michael D

    2016-07-21

    Two-dimensional infrared (2D IR) data are presented for a vibrational probe in three nematogens: 4-cyano-4'-pentylbiphenyl, 4-cyano-4'-octylbiphenyl, and 4-(trans-4-amylcyclohexyl)-benzonitrile. The spectral diffusion time constants in all three liquids in the isotropic phase are proportional to [T*/(T - T*)](1/2), where T* is 0.5-1 K below the isotropic-nematic phase transition temperature (TNI). Rescaling to a reduced temperature shows that the decays of the frequency-frequency correlation function (FFCF) for all three nematogens fall on the same curve, suggesting a universal dynamic behavior of nematogens above TNI. Spectral diffusion is complete before significant orientational relaxation in the liquid, as measured by optically heterodyne detected-optical Kerr effect (OHD-OKE) spectroscopy, and before any significant orientational randomization of the probe measured by polarization selective IR pump-probe experiments. To interpret the OHD-OKE and FFCF data, we constructed a mode coupling theory (MCT) schematic model for the relationships among three correlation functions: ϕ1, a correlator for large wave vector density fluctuations; ϕ2, the orientational correlation function whose time derivative is the observable in the OHD-OKE experiment; and ϕ3, the FFCF for the 2D IR experiment. The equations for ϕ1 and ϕ2 match those in the previous MCT schematic model for nematogens, and ϕ3 is coupled to the first two correlators in a straightforward manner. Resulting models fit the data very well. Across liquid crystals, the temperature dependences of the coupling constants show consistent, nonmonotonic behavior. A remarkable change in coupling occurs at ∼5 K above TNI, precisely where the rate of spectral diffusion in 5CB was observed to deviate from that of a similar nonmesogenic liquid.

  7. Aligned nanostructured polymers by magnetic-field-directed self-assembly of a polymerizable lyotropic mesophase.

    PubMed

    Tousley, Marissa E; Feng, Xunda; Elimelech, Menachem; Osuji, Chinedum O

    2014-11-26

    Magnetic-field-directed assembly of lyotropic surfactant mesophases provides a scalable approach for the fabrication of aligned nanoporous polymers by templated polymerization. We develop and characterize a lyotropic liquid crystalline system containing hexagonally packed cylindrical micelles of a polymerizable surfactant in a polymerizable solvent. The system exhibits negative magnetic anisotropy, resulting in the degenerate alignment of cylindrical micelles perpendicular to the magnetic field. Sample rotation during field alignment is used to effectively break this degeneracy and enable the production of uniformly well-aligned mesophases. High-fidelity retentions of the hexagonal structure and alignment were successfully achieved in polymer films produced upon UV exposure of the reactive system. The success of this effort provides a route for the fabrication of aligned nanoporous membranes suitable for highly selective separations, sensing, and templated nanomaterial synthesis.

  8. Direct Observation of Heliconical Pitch in the Twist-bend Nematic Liquid Crystal Phase of Bent Molecular Dimers

    NASA Astrophysics Data System (ADS)

    Shuai, Min; Tuchband, Michael; Chen, Dong; Klittnick, Arthur; Maclennan, Joseph; Glaser, Matthew; Clark, Noel; Korblova, Eva; Walba, David

    2014-03-01

    Nanometer-scale modulation of the director field is directly observed using freeze-fracture transmission electron microscopy (FFTEM) in the heliconical twist-bend nematic (NTB) phase, a periodic mesophase with no detectable modulation of the electron density [Chen, D., et al., PNAS, 2013, 110(40):15931-15936]. A homologous series of achiral odd-methylene-linked dimers CB mCB (m = 5, 7, 9, and 11) and binary mixtures with simple cyanobiphenyl nCBs (n = 5, 6, 7, and 8) in the NTB phase has been studied. The helix pitch is found to vary between 6 and 11 nm. Increase the m or n value increases the helix pitch. Meanwhile, surprisingly, the helix pitch becomes shorter as the monomer concentration in the mixtures increases. FFTEM images show homogenous phases and preliminary measurements of the transition temperature versus concentration indicate that the binary mixtures are close to ideal. Polarized optical microscopy and calorimetry are carried out to study the nature of the N-NTB transition in detail. This work is supported by NSF MRSEC Grant DMR-0820579, ICAM Postdoctoral Fellowship Award OCG5711B, and ED GAANN Award P200A120014.

  9. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide

    PubMed Central

    Akbari, Abozar; Sheath, Phillip; Martin, Samuel T.; Shinde, Dhanraj B.; Shaibani, Mahdokht; Banerjee, Parama Chakraborty; Tkacz, Rachel; Bhattacharyya, Dibakar; Majumder, Mainak

    2016-01-01

    Graphene-based membranes demonstrating ultrafast water transport, precise molecular sieving of gas and solvated molecules shows great promise as novel separation platforms; however, scale-up of these membranes to large-areas remains an unresolved problem. Here we demonstrate that the discotic nematic phase of graphene oxide (GO) can be shear aligned to form highly ordered, continuous, thin films of multi-layered GO on a support membrane by an industrially adaptable method to produce large-area membranes (13 × 14 cm2) in <5 s. Pressure driven transport data demonstrate high retention (>90%) for charged and uncharged organic probe molecules with a hydrated radius above 5 Å as well as modest (30–40%) retention of monovalent and divalent salts. The highly ordered graphene sheets in the plane of the membrane make organized channels and enhance the permeability (71±5 l m−2 hr−1 bar−1 for 150±15 nm thick membranes). PMID:26947916

  10. Equilibrium of nematic vesicles

    NASA Astrophysics Data System (ADS)

    Napoli, Gaetano; Vergori, Luigi

    2010-11-01

    A variational scheme is proposed which allows the derivation of a concise and elegant formulation of the equilibrium equations for closed fluid membranes, endowed with a nematic microstructure. The nematic order is described by an in-plane nematic director and a degree of orientation, as customary in the theory of uniaxial nematics. The only constitutive ingredient in this scheme is a free-energy density which depends on the vesicle geometry and order parameters. The stress and the couple stress tensors related to this free-energy density are provided. As an application of the proposed scheme, a certain number of special theories are deduced: soap bubbles, lipid vesicles, chiral and achiral nematic membranes, and nematics on curved substrates.

  11. An investigation of the structure and bond rotational potential of some fluorinated ethanes by NMR spectroscopy of solutions in nematic liquid crystalline solvents

    NASA Astrophysics Data System (ADS)

    Emsley, J. W.; Longeri, M.; Merlet, D.; Pileio, G.; Suryaprakash, N.

    2006-06-01

    NMR spectra of 1,2-dibromo-1,1-difluoroethane and 1-bromo-2-iodo-tetrafluoroethane dissolved in nematic liquid crystalline solvents have been analysed to yield the magnitudes and signs of the scalar couplings, Jij, and total anisotropic couplings, Tij, between all the 1H, 19F, and 13C nuclei, except for those between two 13C nuclei. The values obtained for Tij in principle contain a contribution from Jijaniso, the component along the static applied magnetic field of the anisotropic part of the electron-mediated spin-spin coupling. Neglecting this contribution allows partially averaged dipolar couplings, Dij, to be extracted from the Tij, and these were used to determine the structure, orientational order, and the conformational distribution generated by rotation about the C-C bond. The values obtained are compared with the results of calculations by ab initio and density functional methods. The differences found are no greater than those obtained for similar compounds which do not contain fluorine, so that there is no definitive evidence for significant contributions from JCFaniso or JFFaniso in the two compounds studied.

  12. Content-addressable Holographic Digital Data Storage Based on Hybrid Ternary Modulation with a Twisted-Nematic Liquid-Crystal Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    John, Renu; Joseph, Joby; Singh, Kehar

    We propose and demonstrate the use of hybrid ternary modulated digital pages for content-addressable holographic data storage. Display of binary data pages with equal number of ZEROs and ONEs by modulating both amplitude and phase of beams using twisted-nematic liquid crystal spatial light modulator, reduces strong de component and produces a more homogeneous spectral distribution at the recording plane. This technique facilitates better recording of all spatial frequencies, thus improving the discrimination capability of a content-addressable memory. Hence we get better results in associative recall in a holographic memory system, with very low number of false hits. An important advantage of the hybrid ternary modulation over pure phase data pages is that it offers a dark state for coding the undesired portion of the SLM while the search argument is small. The unique orientation of quarter wave plate and the analyzer blocks the light transmitted from OFF pixels leading to near total removal of dark signals. This in turn improves the system performance and reduces the number of false hits when the size of the search argument is small. Our experimental results show good discrimination capability and signal-to-noise ratio for a hybrid ternary modulation based content addressable memory.

  13. Relationship between thermodynamic parameter and thermodynamic scaling parameter for orientational relaxation time for flip-flop motion of nematic liquid crystals.

    PubMed

    Satoh, Katsuhiko

    2013-03-07

    Thermodynamic parameter Γ and thermodynamic scaling parameter γ for low-frequency relaxation time, which characterize flip-flop motion in a nematic phase, were verified by molecular dynamics simulation with a simple potential based on the Maier-Saupe theory. The parameter Γ, which is the slope of the logarithm for temperature and volume, was evaluated under various conditions at a wide range of temperatures, pressures, and volumes. To simulate thermodynamic scaling so that experimental data at isobaric, isothermal, and isochoric conditions can be rescaled onto a master curve with the parameters for some liquid crystal (LC) compounds, the relaxation time was evaluated from the first-rank orientational correlation function in the simulations, and thermodynamic scaling was verified with the simple potential representing small clusters. A possibility of an equivalence relationship between Γ and γ determined from the relaxation time in the simulation was assessed with available data from the experiments and simulations. In addition, an argument was proposed for the discrepancy between Γ and γ for some LCs in experiments: the discrepancy arises from disagreement of the value of the order parameter P2 rather than the constancy of relaxation time τ1(*) on pressure.

  14. Sorption and selective chromatographic properties of isomer-selective composite sorbent based on a eutectic mixture of nematic liquid crystals and perbenzoylated β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Onuchak, L. A.; Kapralova, T. S.; Kuraeva, Yu. G.; Belousova, Z. P.; Stepanova, R. F.

    2015-12-01

    Mesomorphic, sorption, and selective properties of a three-component sorbent based on a mixture of nematic ( N) liquid crystals of 4-methoxy-4'-ethoxyazoxybenzene (MEAB) and 4,4'-diethoxyazoxybenzene (azoxyphenetol, AOP) of an eutectic composition and heptakis-(2,3,6-tri- O-benzoyl)-β-cyclodextrin (Bz-β-CD) are studied. For 30 organic compounds of different classes with linear and cyclic molecular structures, including optical isomers of limonene, pinene, camphene, and butanediol-2,3, thermodynamic functions are determined for their gas-phase sorption using a three-component MEAB-AOP-Bz-β- CD sorbent (62: 28: 10 wt %). It is found that the investigated sorbent possesses high structural selectivity (αp/m = 1.128-1.059, 100-130°C, N) and moderate enantioselectivity (1.07-1.02) within a broad temperature range (95-170°C) including both mesomorphic and isotropic phases of the sorbent. It is shown that the enantioselectivity of the sorbent is apparent under conditions of both increasing retention when a chiral Bz-β-CD additive is introduced into the MEAB-AOP system (limonenes, pinenes, camphenes) and decreasing retention (butanediols-2,3).

  15. Liquid crystalline pattern formation in drying droplets of biopolymers

    NASA Astrophysics Data System (ADS)

    Smalyukh, Ivan; Zribi, Olena; Butler, John; Lavrentovich, Oleg; Wong, Gerard

    2006-03-01

    When a droplet of DNA in water dries out, a ring-like deposit is observed along the perimeter, similar to the stains in spilled drops of coffee. However, the dried ring of DNA is a self-similar birefringent pattern composed of extended molecules. We examine dynamics of the pattern formation at the droplet's rim. This gives us an insight into the underlining physics. During the major part of drying process the contact line is pinned so that DNA molecules are brought to the perimeter and extended by the radial capillary flow. Lyotropic nematic phase is formed in which highly concentrated DNA aligns along the triple line to minimize elastic energy. When the contact angle becomes small, the contact line starts to retract and the radial dilative stress causes buckling distortions at the rim which then propagate deep into the elastic liquid- crystalline medium and give rise to the pattern.

  16. Surface alignment, anchoring transitions, optical properties, and topological defects in the nematic phase of thermotropic bent-core liquid crystal A131

    NASA Astrophysics Data System (ADS)

    Senyuk, B.; Wonderly, H.; Mathews, M.; Li, Q.; Shiyanovskii, S. V.; Lavrentovich, O. D.

    2010-10-01

    We study optical, structural, and surface anchoring properties of thermotropic nematic bent-core material A131. The focus is on the features associated with orientational order as the material has been reported to exhibit not only the usual uniaxial nematic but also the biaxial nematic phase. We demonstrate that A131 experiences a surface anchoring transition from a perpendicular to tilted alignment when the temperature decreases. The features of the tilted state are consistent with surface-induced birefringence associated with smectic layering near the surface and a molecular tilt that changes along the normal to the substrates. The surface-induced birefringence is reduced to zero by a modest electric field that establishes a uniform uniaxial nematic state. Both refractive and absorptive optical properties of A131 are consistent with the uniaxial order. We found no evidence of the “polycrystalline” biaxial behavior in the cells placed in crossed electric and magnetic fields. We observe stable topological point defects (boojums and hedgehogs) and nonsingular “escaped” disclinations pertinent only to the uniaxial order. Finally, freely suspended films of A131 show uniaxial nematic and smectic textures; a decrease in the film thickness expands the temperature range of stability of smectic textures, supporting the idea of surface-induced smectic layering. Our conclusion is that A131 features only a uniaxial nematic phase and that the apparent biaxiality is caused by subtle surface effects rather than by the bulk biaxial phase.

  17. Slow molecular dynamics of water in a lyotropic complex fluid studied by deuterium conventional and spin-lattice relaxometry NMR.

    PubMed

    Rodríguez, C R; Pusiol, D J; Figueiredo Neto, A M; Seitter, R-O

    2002-03-01

    A nuclear magnetic resonance study of protons and deuterons in the mesomorphic phases of the micellar lyotropic mixture potassium laurate/1-decanol/heavy water is reported. The slow dynamical behavior of water molecules has been investigated with deuterons spin-lattice relaxation dispersion in the Larmor frequency range 10(3)nematic phases the water slow reorientational dynamics is closely related to the slow reorientation of the micellar aggregates. In addition, conventional deuterium nuclear magnetic resonance at nu(L)=4.2x10(7) Hz spectra has been measured at different places in the phase diagram. The line shapes show a quadrupolar splitting in nematic phases, meanwhile in the isotropic phase the spectral structure collapses in a single line. This indicates that in the nematic phases the water reorientations are not enough to average the deuterons quadrupolar Hamiltonian. On the other hand, fast isotropic water reorientations reduce the quadrupolar interactions in the isotropic phase.

  18. Nematic Cells for Digital Light Deflection

    NASA Technical Reports Server (NTRS)

    Pishnyak, Oleg; Golovin, Andrii; Laventovich, Oleg; Kreminska, Liubov; Winker, Bruce; Pouch, John; Miranda, Felix

    2008-01-01

    Smectic A (SmA) materials can be used in non-mechanical, digital beam deflectors (DBDs) as fillers for passive birefringent prisms based on decoupled pairs of electrically controlled, liquid crystalline polarization rotators, like twisted nematic (TN) cells and passive deflectors. DBDs are used in free-space laser communications, optical fiber communications, optical switches, scanners, and in-situ wavefront correction.

  19. Where Are the Hedgehogs in Quenched Nematics?

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark

    1995-09-01

    In experiments which take a liquid crystal rapidly from the isotropic to the nematic phase, a dense tangle of defects is formed. In nematics, there are, in principle, both line and point defects (``hedgehogs''), but no point defects are observed until the defect network has coarsened appreciably. In this Letter the expected density of point defects is shown to be extremely low, approximately 10-8 per initially correlated domain, as a result of the topology (specifically, the homology) of the order-parameter space.

  20. Glassy correlations and thermal fluctuations in nematic elastomers

    NASA Astrophysics Data System (ADS)

    Lu, Bing; Xing, Xiangjun; Ye, Fangfu; Goldbart, Paul

    2010-03-01

    By means of the vulcanization theory framework we address the properties of nematic elastomers prepared in the isotropic liquid state and subsequently randomly cross-linked beyond the gelation point. We base our analysis on a model replica Landau free energy, in which the vulcanization order parameter is coupled to the order parameter describing the local degree of nematic ordering, retaining fluctuation terms to the Gaussian level. We explore how the cross-linking renormalizes the thermal correlations of the local nematic order, and also results in frozen-in, glassy nematic correlations. We examine these thermal and glassy correlations for two different preparation histories of the system: in the first, the cross-linking is done at temperatures close to the isotropic-nematic transition; in the other, the cross-linking is done at higher temperatures, but the system is subsequently cooled to near this transition temperature.

  1. Measurement of photoluminescence from a twisted-nematic liquid crystal/dye cell for an application in an energy-harvesting display

    NASA Astrophysics Data System (ADS)

    Ohta, Masamichi; Itaya, Shunsuke; Ozawa, Shintaro; Binti, M. Azmi; Dianah, Nada; Fujieda, Ichiro

    2016-09-01

    One can convert a Luminescent Solar Concentrator (LSC) to an energy-harvesting display by scanning a laser beam on it. By incorporating a guest-host system of liquid crystal (LC) and dye materials in an LSC, the power of photoluminescence (PL) utilized for either display or energy-harvesting can be adjusted to the changes in ambient lighting conditions. We have measured basic characteristics of an LC/dye cell with twisted-nematic (TN) alignment. These are absorption of the laser light, PL radiation pattern, contrast of luminance, spreading of the PL generated by a narrow laser beam, and their dependencies on the bias. The results are similar to those of the LC/dye cell with antiparallel (AP) alignment with the following exceptions. First, absorption by the TN cell depends on the bias for both polarization components of the excitation light, while the AP cell exhibits a bias dependency only for the component polarized along the alignment direction. Second, the PL from the TN cell is mostly polarized along the alignment direction on the exit side of the cell while the PL from the AP cell is mostly polarized along its alignment direction. These observations can be attributed to the fact that the polarization plane of a linearly polarized light rotates as it propagated the TN-LC layer. For both AP and TN cells, low-intensity PL is observed from the whole cell surfaces. This can degrade the contrast of a displayed image. Bias application to the cell suppresses this effect.

  2. Fluctuational shift of nematic-isotropic phase transition temperature

    NASA Astrophysics Data System (ADS)

    Kats, E. I.

    2017-02-01

    In this work we discuss a macroscopic counterpart to the microscopic mechanism of the straightening dimer mesogens conformations, proposed recently by S.M. Saliti, M.G.Tamba, S.N. Sprunt, C.Welch, G.H.Mehl, A. Jakli, J.T. Gleeson (Phys. Rev. Lett. 116, 217801 (2016)) to explain their experimental observation of the unprecedentedly large shift of the nematic-isotropic transition temperature. Our interpretation is based on singular longitudinal fluctuations of the nematic order parameter. Since these fluctuations are governed by the Goldstone director fluctuations they exist only in the nematic state. External magnetic field suppresses the singular longitudinal fluctuations of the order parameter (similarly as it is the case for the transverse director fluctuations, although with a different scaling over the magnetic field). The reduction of the fluctuations changes the equilibrium value of the modulus of the order parameter in the nematic state. Therefore it leads to additional (with respect to the mean field contribution) fluctuational shift of the nematic-isotropic transition temperature. Our mechanism works for any nematic liquid crystals, however the magnitude of the fluctuational shift increases with decrease of the Frank elastic moduli. Since some of these moduli supposed to be anomalously small for so-called bent-core or dimer nematic liquid crystals, just these liquid crystals are promising candidates for the observation of the predicted fluctuational shift of the phase transition temperature.

  3. Modeling spreading of nematic droplets

    NASA Astrophysics Data System (ADS)

    Lin, Te-Sheng; Cummings, Linda; Kondic, Lou

    2011-03-01

    Experiments by Poulard & Cazabat on spreading droplets of nematic liquid crystal reveal a surprisingly rich variety of behavior, including at least two different emerging lengthscales resulting from a contact line instability. In earlier work we modified a lubrication model for nematic liquid crystals due to Ben Amar and Cummings, and showed that, in a qualitative sense, it can account for much of the observed behavior. In the present work we propose a new approach, that allows us to explore the effect of anchoring variations on the substrate. This in turn gives a simple way to model the presence of defects, which are always present during such liquid crystal flows. The new model leads to additional terms in the governing equation. We first explore the influence of these additional terms for some simple flow scenarios, to gain a basic understanding of their influence, before extending our simulations to the experimental geometry and comparing our results to the experiments. This work was partially supported by NSF Grant No. DMS-0908158.

  4. Transverse vibration of nematic elastomer Timoshenko beams

    NASA Astrophysics Data System (ADS)

    Zhao, Dong; Liu, Ying; Liu, Chuang

    2017-01-01

    Being a rubber-like liquid crystalline elastomer, a nematic elastomer (NE) is anisotropic viscoelastic, and displays dynamic soft elasticity. In this paper, the transverse vibration of a NE Timoshenko beam is studied based on the linear viscoelasticity theory of nematic elastomers. The governing equation of motion for the transverse vibration of a NE Timoshenko beam is derived. A complex modal analysis method is used to obtain the natural frequencies and decrement coefficients of NE beams. The influences of the nematic director rotation, the rubber relaxation time, and the director rotation time on the vibration characteristic of NE Timoshenko beams are discussed in detail. The sensitivity of the dynamic performance of NE beams to director initial angle and relaxation times provides a possibility of intelligent controlling of their dynamic performance.

  5. Minimal model for polydomain nematic elastomers

    NASA Astrophysics Data System (ADS)

    Ye, Fangfu; Lu, Bing; Xing, Xiangjun; Goldbart, Paul

    2010-03-01

    Nematic elastomers are materials that possess both the elastic properties of cross-linked rubber and the orientational properties of nematic liquid crystals. When cross-linked in the isotropic phase, and subsequently cooled into the nematic regime, these materials usually form polydomain structures. To understand the formation of these polydomain structures, we develop a microscopic model based on an elastic network medium formed by the random end-linking, via springs, of rigid dimers. We assume that the dimers interact with one another through a Maier-Saupe term, and that the springs impose soft constraints, not only on the separations between the dimers that they link but also on the relative orientations of these dimers. We then use vulcanization theory to investigate: (i) how these orientational constraints lead to the emergence of polydomain structures, as the temperature is decreased; and (ii) the dependence of the characteristic size of the domains on temperature and link density.

  6. Role of space charges on light-induced effects in nematic liquid crystals doped by methyl red

    NASA Astrophysics Data System (ADS)

    Lucchetti, L.; Simoni, F.

    2014-03-01

    We show that both the extraordinarily large nonlinear response and the light-induced permanent reorientation in liquid crystals doped by the azo dye methyl red originates from the same phenomenon of modification of the charge density on the irradiated surface. The demonstration is done by applying ac voltage to the samples, showing that in this case no permanent anchoring is possible. The measurements confirm the role of photoisomerization that gives a transient contribution to the actual reorientation process only in the high dose regime. This result allows us to draw a picture for light-induced effects that might be applied to a large class of compounds.

  7. Swimming bacteria in liquid crystal

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg

    2014-03-01

    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  8. Capillary-induced giant elastic dipoles in thin nematic films

    PubMed Central

    Jeridi, Haifa; Gharbi, Mohamed A.; Othman, Tahar; Blanc, Christophe

    2015-01-01

    Directed and true self-assembly mechanisms in nematic liquid crystal colloids rely on specific interactions between microparticles and the topological defects of the matrix. Most ordered structures formed in thin nematic cells are thus based on elastic multipoles consisting of a particle and nearby defects. Here, we report, for the first time to our knowledge, the existence of giant elastic dipoles arising from particles dispersed in free nematic liquid crystal films. We discuss the role of capillarity and film thickness on the dimensions of the dipoles and explain their main features with a simple 2D model. Coupling of capillarity with nematic elasticity could offer ways to tune finely the spatial organization of complex colloidal systems. PMID:26554001

  9. Orientational order of motile defects in active nematics

    SciTech Connect

    DeCamp, Stephen J.; Redner, Gabriel S.; Baskaran, Aparna; Hagan, Michael F.; Dogic, Zvonimir

    2015-08-17

    The study of equilibrium liquid crystals has led to fundamental insights into the nature of ordered materials, as well as many practical applications such as display technologies. Active nematics are a fundamentally different class of liquid crystals, which are driven away from equilibrium by the autonomous motion of their constituent rodlike particles. This internally-generated activity powers the continuous creation and annihilation of topological defects, leading to complex streaming flows whose chaotic dynamics appear to destroy long-range order. Here, we study these dynamics in experimental and computational realizations of active nematics. By tracking thousands of defects over centimeter distances in microtubule-based active nematics, we identify a non-equilibrium phase characterized by system-spanning orientational order of defects. This emergent order persists over hours despite defect lifetimes of only seconds. Lastly, similar dynamical structures are observed in coarse-grained simulations, suggesting that defect-ordered phases are a generic feature of active nematics.

  10. Realization of Multi-Stable Ground States in a Nematic Liquid Crystal by Surface and Electric Field Modification

    NASA Astrophysics Data System (ADS)

    Gwag, Jin Seog; Kim, Young-Ki; Lee, Chang Hoon; Kim, Jae-Hoon

    2015-06-01

    Owing to the significant price drop of liquid crystal displays (LCDs) and the efforts to save natural resources, LCDs are even replacing paper to display static images such as price tags and advertising boards. Because of a growing market demand on such devices, the LCD that can be of numerous surface alignments of directors as its ground state, the so-called multi-stable LCD, comes into the limelight due to the great potential for low power consumption. However, the multi-stable LCD with industrial feasibility has not yet been successfully performed. In this paper, we propose a simple and novel configuration for the multi-stable LCD. We demonstrate experimentally and theoretically that a battery of stable surface alignments can be achieved by the field-induced surface dragging effect on an aligning layer with a weak surface anchoring. The simplicity and stability of the proposed system suggest that it is suitable for the multi-stable LCDs to display static images with low power consumption and thus opens applications in various fields.

  11. Realization of Multi-Stable Ground States in a Nematic Liquid Crystal by Surface and Electric Field Modification

    PubMed Central

    Gwag, Jin Seog; Kim, Young-Ki; Lee, Chang Hoon; Kim, Jae-Hoon

    2015-01-01

    Owing to the significant price drop of liquid crystal displays (LCDs) and the efforts to save natural resources, LCDs are even replacing paper to display static images such as price tags and advertising boards. Because of a growing market demand on such devices, the LCD that can be of numerous surface alignments of directors as its ground state, the so-called multi-stable LCD, comes into the limelight due to the great potential for low power consumption. However, the multi-stable LCD with industrial feasibility has not yet been successfully performed. In this paper, we propose a simple and novel configuration for the multi-stable LCD. We demonstrate experimentally and theoretically that a battery of stable surface alignments can be achieved by the field-induced surface dragging effect on an aligning layer with a weak surface anchoring. The simplicity and stability of the proposed system suggest that it is suitable for the multi-stable LCDs to display static images with low power consumption and thus opens applications in various fields. PMID:26100597

  12. Dielectric and magnetic anisotropy of a nematic ytterbium complex

    SciTech Connect

    Dobrun, L. A. Sakhatskii, A. S.; Kovshik, A. P.; Ryumtsev, E. I.; Kolomiets, I. P.; Knyazev, A. A.; Galyametdinov, Yu. G.

    2015-05-15

    The sign and the magnitude of the dielectric anisotropy of an ytterbium-based paramagnetic nematic liquid crystal complex, namely, tris[1-(4-(4-propylcyclohexyl)phenyl)octane-1,3-dione]-[5,5'-di (heptadecile)-2,2'-bipyridine]ytterbium, are determined. The temperature dependence of the permittivity components of the complex is obtained in the temperature range of a nematic phase. The sign of the anisotropy of the magnetic susceptibility of this compound is experimentally determined.

  13. Nematic droplets on fibers

    NASA Astrophysics Data System (ADS)

    Batista, V. M. O.; Silvestre, N. M.; Telo da Gama, M. M.

    2015-12-01

    The emergence of new techniques for the fabrication of nematic droplets with nontrivial topology provides new routes for the assembly of responsive devices. Here we explore some of the properties of nematic droplets on fibers, which constitute the basic units of a type of device that is able to respond to external stimuli, including the detection of gases. We perform a numerical study of spherical nematic droplets on fibers. We analyze the equilibrium textures for homogeneous and hybrid boundary conditions and find that in some cases the nematic avoids the nucleation of topological defects, which would provide a different optical response. We consider in detail a homeotropic nematic droplet wrapped around a fiber with planar anchoring. We investigate the effect of an electric field on the texture of this droplet. In the presence of a dc field, the system undergoes an orientational transition above a given threshold Ec, for which a ring defect is transformed into a figure-eight defect. We also consider ac fields, at high and low frequencies, and find that the textures are similar to those observed for static fields, in contrast with recently reported experiments.

  14. Miscibility studies of two twist-bend nematic liquid crystal dimers with different average molecular curvatures. A comparison between experimental data and predictions of a Landau mean-field theory for the NTB-N phase transition.

    PubMed

    López, D O; Robles-Hernández, B; Salud, J; de la Fuente, M R; Sebastián, N; Diez-Berart, S; Jaen, X; Dunmur, D A; Luckhurst, G R

    2016-02-14

    We report a calorimetric study of a series of mixtures of two twist-bend liquid crystal dimers, the 1'',7''-bis(4-cyanobiphenyl)-4'-yl heptane (CB7CB) and 1''-(2',4-difluorobiphenyl-4'-yloxy)-9''-(4-cyanobiphenyl-4'-yloxy) nonane (FFO9OCB), the molecules of which have different effective molecular curvatures. High-resolution heat capacity measurements in the vicinity of the NTB-N phase transition for a selected number of binary mixtures clearly indicate a first order NTB-N phase transition for all the investigated mixtures, the strength of which decreases when the nematic range increases. Published theories predict a second order NTB-N phase transition, but we have developed a self-consistent mean field Landau model using two key order parameters: a symmetric and traceless tensor for the orientational order and a short-range vector field which is orthogonal to the helix axis and rotates around of the heliconical structure with an extremely short periodicity. The theory, in its simplified form, depends on two effective elastic constants and explains satisfactorily our heat capacity measurements and also predicts a first-order NTB-N phase transition. In addition, as a complementary source of experimental measurements, the splay (K1) and bend (K3) elastic constants in the conventional nematic phase for the pure compounds and some selected mixtures have been determined.

  15. Chiral structures from achiral liquid crystals in cylindrical capillaries

    NASA Astrophysics Data System (ADS)

    Jeong, Joonwoo; Kang, Louis; Davidson, Zoey S.; Collings, Peter J.; Lubensky, Tom C.; Yodh, A. G.

    2015-04-01

    We study chiral symmetry-broken configurations of nematic liquid crystals (LCs) confined to cylindrical capillaries with homeotropic anchoring on the cylinder walls (i.e., perpendicular surface alignment). Interestingly, achiral nematic LCs with comparatively small twist elastic moduli relieve bend and splay deformations by introducing twist deformations. In the resulting twisted and escaped radial (TER) configuration, LC directors are parallel to the cylindrical axis near the center, but to attain radial orientation near the capillary wall, they escape along the radius through bend and twist distortions. Chiral symmetry-breaking experiments in polymer-coated capillaries are carried out using Sunset Yellow FCF, a lyotropic chromonic LC with a small twist elastic constant. Its director configurations are investigated by polarized optical microscopy and explained theoretically with numerical calculations. A rich phenomenology of defects also arises from the degenerate bend/twist deformations of the TER configuration, including a nonsingular domain wall separating domains of opposite twist handedness but the same escape direction and singular point defects (hedgehogs) separating domains of opposite escape direction. We show the energetic preference for singular defects separating domains of opposite twist handedness compared with those of the same handedness, and we report remarkable chiral configurations with a double helix of disclination lines along the cylindrical axis. These findings show archetypally how simple boundary conditions and elastic anisotropy of confined materials lead to multiple symmetry breaking and how these broken symmetries combine to create a variety of defects.

  16. Chiral structures from achiral liquid crystals in cylindrical capillaries

    PubMed Central

    Jeong, Joonwoo; Kang, Louis; Davidson, Zoey S.; Collings, Peter J.; Lubensky, Tom C.; Yodh, A. G.

    2015-01-01

    We study chiral symmetry-broken configurations of nematic liquid crystals (LCs) confined to cylindrical capillaries with homeotropic anchoring on the cylinder walls (i.e., perpendicular surface alignment). Interestingly, achiral nematic LCs with comparatively small twist elastic moduli relieve bend and splay deformations by introducing twist deformations. In the resulting twisted and escaped radial (TER) configuration, LC directors are parallel to the cylindrical axis near the center, but to attain radial orientation near the capillary wall, they escape along the radius through bend and twist distortions. Chiral symmetry-breaking experiments in polymer-coated capillaries are carried out using Sunset Yellow FCF, a lyotropic chromonic LC with a small twist elastic constant. Its director configurations are investigated by polarized optical microscopy and explained theoretically with numerical calculations. A rich phenomenology of defects also arises from the degenerate bend/twist deformations of the TER configuration, including a nonsingular domain wall separating domains of opposite twist handedness but the same escape direction and singular point defects (hedgehogs) separating domains of opposite escape direction. We show the energetic preference for singular defects separating domains of opposite twist handedness compared with those of the same handedness, and we report remarkable chiral configurations with a double helix of disclination lines along the cylindrical axis. These findings show archetypally how simple boundary conditions and elastic anisotropy of confined materials lead to multiple symmetry breaking and how these broken symmetries combine to create a variety of defects. PMID:25825733

  17. Microstructure and phase behavior in colloids and liquid crystals

    NASA Astrophysics Data System (ADS)

    Lohr, Matthew Alan

    This thesis describes our investigation of microstructure and phase behavior in colloids and liquid crystals. The first set of experiments explores the phase behavior of helical packings of thermoresponsive microspheres inside glass capillaries as a function of volume fraction. Stable helical packings are observed with long-range orientational order. Some of these packings evolve abruptly to disordered states as the volume fraction is reduced. We quantify these transitions using correlation functions and susceptibilities of an orientational order parameter. The emergence of coexisting metastable packings, as well as coexisting ordered and disordered states, is also observed. These findings support the notion of phase-transition-like behavior in quasi-one-dimensional systems. The second set of experiments investigates cross-over behavior from glasses with attractive interactions to sparse gel-like states. In particular, the vibrational modes of quasi-two-dimensional disordered colloidal packings of hard colloidal spheres with short-range attractions are measured as a function of packing fraction. A crossover from glassy to sparse gel-like states is indicated by an excess of low-frequency phonon modes. This change in vibrational mode distribution appears to arise from highly localized vibrations that tend to involve individual and/or small clusters of particles with few local bonds. These mode behaviors and corresponding structural insights may serve as a useful signature for glass-gel transitions in wider classes of attractive packings. A third set of experiments explores the director structures of aqueous lyotropic chromonic liquid crystal (LCLC) films created on square lattice cylindrical-micropost substrates. The structures are manipulated by modulating of the concentration-dependent elastic properties of LCLC s via drying. Nematic LCLC films exhibit preferred bistable alignment along the diagonals of the micropost lattice. Columnar LCLC films form two distinct

  18. Defect dynamics and ordering in compressible active nematics

    NASA Astrophysics Data System (ADS)

    Mishra, Prashant; Srivastava, Pragya; Marchetti, M. Cristina

    Active nematics, such as suspensions of biopolymers activated by molecular motors or bacteria swimming in passive liquid crystals, exhibit complex self-sustained flow, excitability and defect generation. Activity renders the defect themselves self-propelled particles, capable of organizing in emergent ordered structures. We have developed a minimal model of compressible active nematics on a substrate. We eliminate the flow velocity in favor of the nematic order parameter via the balance of frictional dissipation and active driving to obtain a dynamical description entirely in terms of the nematic alignment order parameter. Activity renormalizes the bend and splay elastic constants rendering them anisotropic and driving them to zero or even negative, resulting in the appearance of modulated states and defective structures. Using linear stability analysis and numerics we organize the various regimes into a phase diagram and discuss the relation to experiments. This work was supported by NSF-DMR-1305184.

  19. Defect-Stabilized Phases in Extensile Active Nematics

    NASA Astrophysics Data System (ADS)

    Redner, Gabriel; Decamp, Stephen; Dogic, Zvonimir; Hagan, Michael

    2015-03-01

    Active nematics are liquid crystals which are driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these materials, leading to beautiful and surprising behaviors including the spontaneous generation of topological defect pairs which stream through the system and later annihilate, yielding a complex, seemingly chaotic dynamical steady-state. In this talk, I will describe the emergence of order from this chaos in the form of previously unknown broken-symmetry phases in which the topological defects themselves undergo orientational ordering. We have identified these defect-ordered phases in two realizations of an active nematic: first, a suspension of extensile bundles of microtubules and molecular motor proteins, and second, a computational model of extending hard rods. I will describe the defect-stabilized phases that manifest in these systems, our current understanding of their origins, and discuss whether such phases may be a general feature of extensile active nematics.

  20. Shear dynamics of an inverted nematic emulsion.

    PubMed

    Tiribocchi, A; Da Re, M; Marenduzzo, D; Orlandini, E

    2016-10-04

    Here we study theoretically the dynamics of a 2D and a 3D isotropic droplet in a nematic liquid crystal under a shear flow. We find a large repertoire of possible nonequilibrium steady states as a function of the shear rate and of the anchoring of the nematic director field at the droplet surface. We first discuss homeotropic anchoring. For weak anchoring, we recover the typical behaviour of a sheared isotropic droplet in a binary fluid, which rotates, stretches and can be broken by the applied flow. For intermediate anchoring, new possibilities arise due to elastic effects in the nematic fluid. We find that in this regime the 2D droplet can tilt and move in the flow, or tumble incessantly at the centre of the channel. For sufficiently strong anchoring, finally, one or both of the topological defects which form close to the surface of the isotropic droplet in equilibrium detach from it and get dragged deep into the nematic state by the flow. In 3D, instead, the Saturn ring associated with the normal anchoring disclination line can be deformed and shifted downstream by the flow, but remains always localized in the proximity of the droplet, at least for the parameter range we explored. Tangential anchoring in 2D leads to a different dynamic response, as the boojum defects characteristic of this situation can unbind from the droplet under a weaker shear with respect to the normal anchoring case. Our results should stimulate further experiments with inverted liquid crystal emulsions under shear, as most of the predictions can be testable in principle by monitoring the evolution of liquid crystalline orientation patterns or by tracking the position and shape of the droplet over time.