Sample records for nematic lyotropic liquid

  1. Nanoparticle guests in lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Dölle, Sarah; Park, Ji Hyun; Schymura, Stefan; Jo, Hyeran; Scalia, Giusy; Lagerwall, Jan P. F.

    In this chapter we discuss the benefits, peculiarities and main challenges related to nanoparticle templating in lyotropic liquid crystals. We first give a brief bird's-eye view of the field, discussing different nanoparticles as well as different lyotropic hosts that have been explored, but then quickly focus on the dispersion of carbon nanotubes in surfactant-based lyotropic nematic phases. We discuss in some detail how the transfer of orientational order from liquid crystal host to nanoparticle guest can be verified and which degree of ordering can be expected, as well as the importance of choosing the right surfactant and its concentration for the stability of the nanoparticle suspension. We introduce a method for dispersing nanoparticles with an absolute minimum of stabilizing surfactant, based on dispersion below the Krafft temperature, and we discuss the peculiar phenomenon of filament formation in lyotropic nematic phases with a sufficient concentration of well-dispersed carbon nanotubes. Finally, we describe how the total surfactant concentration in micellar nematics can be greatly reduced by combining cat- and anionic surfactants, and we discuss how nanotubes can help in inducing the liquid crystal phase close to the isotropic-nematic boundary.

  2. Confinement effects on lyotropic nematic liquid crystal phases of graphene oxide dispersions

    NASA Astrophysics Data System (ADS)

    Al-Zangana, Shakhawan; Iliut, Maria; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo

    2017-12-01

    Graphene oxide (GO) forms well ordered liquid crystal (LC) phases in polar solvents. Here, we map the lyotropic phase diagram of GO as a function of the lateral dimensions of the GO flakes, their concentration, geometrical confinement configuration and solvent polarity. GO flakes were prepared in water and transferred into other polar solvents. Polarising optical microscopy (POM) was used to determine the phase evolution through the isotropic-biphasic-nematic transitions of the GO LC. We report that the confinement volume and geometry relative to the particle size is critical for the observation of the lyotropic phase, specifically, this determines the low-end concentration limit for the detection of the GO LC. Additionally, a solvent with higher polarisability stabilises the LC phases at lower concentrations and smaller flake sizes. GO LCs have been proposed for a range of applications from display technologies to conductive fibres, and the behaviour of LC phase formation under confinement imposes a limit on miniaturisation of the dimensions of such GO LC systems which could significantly impact on their potential applications.

  3. Phase states and thermomorphologic, thermotropic, and magnetomorphologic properties of lyotropic mesophases: Sodium lauryl sulphate-water-1-decanol liquid-crystalline system

    NASA Astrophysics Data System (ADS)

    Özden, Pınar; Nesrullajev, Arif; Oktik, Şener

    2010-12-01

    Phase states in sodium lauryl sulphate-water-1-decanol lyotropic liquid-crystalline system have been investigated for different temperature ranges. The dependence of triangle phase diagram types, phase boundaries, and sequence of lyotropic mesophases vs temperature has been found. The thermomorphologic, thermotropic, and magnetomorphologic properties of hexagonal E, lamellar D, nematic-calamitic NC , nematic-discotic ND , and biaxial nematic Nbx mesophases have been studied in detail. Dynamics of transformations of magnetically induced textures has been investigated. Peculiarities of typical and magnetically induced textures have been investigated in detail. Triangle phase diagrams of sodium lauryl sulphate-water-1-decanol lyotropic liquid-crystalline system for different temperatures and typical and magnetically induced textures of E, D, NC , ND , and Nbx mesophases are presented.

  4. Brownian Dynamics of Colloidal Particles in Lyotropic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Martinez, Angel; Collings, Peter J.; Yodh, Arjun G.

    We employ video microscopy to study the Brownian dynamics of colloidal particles in the nematic phase of lyotropic chromonic liquid crystals (LCLCs). These LCLCs (in this case, DSCG) are water soluble, and their nematic phases are characterized by an unusually large elastic anisotropy. Our preliminary measurements of particle mean-square displacement for polystyrene colloidal particles (~5 micron-diameter) show diffusive and sub-diffusive behaviors moving parallel and perpendicular to the nematic director, respectively. In order to understand these motions, we are developing models that incorporate the relaxation of elastic distortions of the surrounding nematic field. Further experiments to confirm these preliminary results and to determine the origin of these deviations compared to simple diffusion theory are ongoing; our results will also be compared to previous diffusion experiments in nematic liquid crystals. We gratefully acknowledge financial support through NSF DMR12-05463, MRSEC DMR11-20901, and NASA NNX08AO0G.

  5. Non-linear optical measurement of the twist elastic constant in thermotropic and DNA lyotropic chiral nematics.

    PubMed

    Lucchetti, Liana; Fraccia, Tommaso P; Ciciulla, Fabrizio; Bellini, Tommaso

    2017-07-10

    Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced birefringence, we can readily extract the twist elastic coefficient K 22 of thermotropic and lyotropic chiral nematics (N*). The value of K 22 we obtain for chiral doped 5CB thermotropic N* well matches those reported in the literature. With this same strategy, we could determine for the first time K 22 of the N* phase of concentrated aqueous solutions of DNA oligomers, bypassing the limitations that so far prevented measuring the elastic constants of this class of liquid crystalline materials. The present study also enlightens the significant nonlinear optical response of DNA liquid crystals.

  6. Lyotropic chromonic liquid crystals: From viscoelastic properties to living liquid crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang

    Lyotropic chromonic liquid crystal (LCLC) represents a broad range of molecules, from organic dyes and drugs to DNA, that self-assemble into linear aggregates in water through face-to-face stacking. These linear aggregates of high aspect ratio are capable of orientational order, forming, for example nematic phase. Since the microscopic properties (such as length) of the chromonic aggregates are results of subtle balance between energy and entropy, the macroscopic viscoelastic properties of the nematic media are sensitive to change of external factors. In the first part of this thesis, by using dynamic light scattering and magnetic Frederiks transition techniques, we study the Frank elastic moduli and viscosity coefficients of LCLC disodium cromoglycate (DSCG) and sunset yellow (SSY) as functions of concentration c , temperature T and ionic contents. The elastic moduli of splay (K1) and bend (K3) are in the order of 10pN, about 10 times larger than the twist modulus (K2). The splay modulus K1 and the ratio K1/K3 both increase substantially as T decreases or c increases, which we attribute to the elongation of linear aggregates at lower T or higher c . The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger, changing exponentially with T . Additional ionic additives into the system influence the viscoelastic properties of these systems in a dramatic and versatile way. For example, monovalent salt NaCl decreases bend modulus K3 and increases twist viscosity, while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals form by covalently bound units of fixed length. The second part of the thesis studies a new active bio-mechanical hybrid system called living liquid crystal

  7. Computational model for living nematic

    NASA Astrophysics Data System (ADS)

    Genkin, Mikhail; Sokolov, Andrey; Lavrentovich, Oleg; Aranson, Igor

    A realization of an active system has been conceived by combining swimming bacteria and a lyotropic nematic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics we developed a computational model describing intricate properties of such a living nematic. In faithful agreement with the experiment, the model reproduces the onset of periodic undulation of the nematic director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields testable prediction on the accumulation and transport of bacteria in the cores of +1/2 topological defects and depletion of bacteria in the cores of -1/2 defects. Our new experiment on motile bacteria suspended in a free-standing liquid crystalline film fully confirmed this prediction. This effect can be used to capture and manipulation of small amounts of bacteria.

  8. Nematic DNA Thermotropic Liquid Crystals with Photoresponsive Mechanical Properties.

    PubMed

    Zhang, Lei; Maity, Sourav; Liu, Kai; Liu, Qing; Göstl, Robert; Portale, Giuseppe; Roos, Wouter H; Herrmann, Andreas

    2017-09-01

    Over the last decades, water-based lyotropic liquid crystals of nucleic acids have been extensively investigated because of their important role in biology. Alongside, solvent-free thermotropic liquid crystals (TLCs) from DNA are gaining great interest, owing to their relevance to DNA-inspired optoelectronic applications. Up to now, however, only the smectic phase of DNA TLCs has been reported. The development of new mesophases including nematic, hexagonal, and cubic structures for DNA TLCs remains a significant challenge, which thus limits their technological applications considerably. In this work, a new type of DNA TLC that is formed by electrostatic complexation of anionic oligonucleotides and cationic surfactants containing an azobenzene (AZO) moiety is demonstrated. DNA-AZO complexes form a stable nematic mesophase over a temperature range from -7 to 110 °C and retain double-stranded DNA structure at ambient temperature. Photoisomerization of the AZO moieties from the E- to the Z-form alters the stiffness of the DNA-AZO hybrid materials opening a pathway toward the development of DNA TLCs as stimuli-responsive biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Chiral nematic porous germania and germanium/carbon films

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Nguyen, Thanh-Dinh; Xie, Kai; Hamad, Wadood Y.; MacLachlan, Mark J.

    2015-07-01

    We report our extensive attempts and, ultimately, success to produce crack-free, chiral nematic GeO2/cellulose nanocrystal (CNC) composite films with tunable photonic properties from the controlled assembly of germanium(iv) alkoxides with the lyotropic liquid-crystalline CNCs in a mixed solvent of water/DMF. With different pyrolysis conditions, the photonic GeO2/CNC composites can be converted into freestanding chiral nematic films of amorphous GeO2, and semiconducting mesoporous GeO2/C and Ge/C replicas. These new materials are promising for chiral separation, enantioselective adsorption, catalysis, sensing, optoelectronics, and lithium ion batteries. Furthermore, the new, reproducible synthesis strategies developed may be applicable for constructing other composites and porous materials with chiral nematic ordering.We report our extensive attempts and, ultimately, success to produce crack-free, chiral nematic GeO2/cellulose nanocrystal (CNC) composite films with tunable photonic properties from the controlled assembly of germanium(iv) alkoxides with the lyotropic liquid-crystalline CNCs in a mixed solvent of water/DMF. With different pyrolysis conditions, the photonic GeO2/CNC composites can be converted into freestanding chiral nematic films of amorphous GeO2, and semiconducting mesoporous GeO2/C and Ge/C replicas. These new materials are promising for chiral separation, enantioselective adsorption, catalysis, sensing, optoelectronics, and lithium ion batteries. Furthermore, the new, reproducible synthesis strategies developed may be applicable for constructing other composites and porous materials with chiral nematic ordering. Electronic supplementary information (ESI) available: TGA, IR, Raman, TEM, SEM, BET. See DOI: 10.1039/c5nr02520f

  10. Chromonic liquid crystalline nematic phase exhibited in binary mixture of two liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govindaiah, T. N., E-mail: tngovi.phy@gmail.com; Sreepad, H. R.; Sridhar, K. N.

    2015-06-24

    A binary mixture of abietic acid and orthophosphoric acid (H{sub 3}PO{sub 4}) exhibits co-existence of biphasic region of Nematic+Isotropic (N+I), lyotropic Nematic (ND) and Smectic-G (SmG) phases. The mixture exhibits N+I, N and SmG phases at different concentrations and at different temperatures. Mixtures with all concentrations of abietic acid exhibit I→N+I→N→SmG phases sequentially when the specimen is cooled from its isotropic melt. These phases have been characterized by using differential scanning calorimetric, X-ray diffraction, and optical texture studies.

  11. Aqueous Lyotropic Liquid Crystalline Frank-Kasper Mesophases

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Kim, Sung A.; Jeong, Kyeong-Jun; Yethiraj, Arun

    Amphiphilic molecules undergo water concentration-dependent self-assembly to form lyotropic liquid crystal (LLC) mesophases. LLC morphology selection is directed by cooperative optimization of preferred molecular packing arrangements, which stem from a subtle balance of local, non-covalent interactions. We recently discovered a class of amphiphiles that form a progression of discontinuous micellar LLCs, including two tetrahedrally-closest packed Frank-Kasper phases that exhibit exceptional long range order. This discovery complements recent reports of their formation in thermotropic liquid crystals, neat diblock and tetrablock polymers, and in lyotropic mesophases of block polymers in ionic liquids. Using a combination of MD simulations and experiments, we provide new insights into the mechanisms of formation for these low symmetry micelle phases.

  12. Structural and dielectric behaviors of Bi4Ti3O12 - lyotropic liquid crystalline nanocolloids

    NASA Astrophysics Data System (ADS)

    Shukla, Ravi K.; Raina, K. K.

    2018-03-01

    We investigated the structural and dielectric dynamics of nanocolloids comprising lyotropic liquid crystals and bismuth titanate (Bi4Ti3O12) spherical nanoparticles (≈16-18 nm) of varying concentration 0.05 and 0.1 wt%. The lyotropic liquid crystalline mixture was prepared by a binary mixture of cetylpyridinuium chloride and ethylene glycol mixed in 5:95 wt% ratio. Binary lyotropic mixture exhibited hexagonal lyotropic phase. Structural and textural characterizations of nanocolloids infer that the nanoparticles were homogeneously dispersed in the liquid crystalline matrix and did not perturb the hexagonal ordering of the lyotropic phase. The dielectric constant and dielectric strength were found to be increased with the rise in the Bi4Ti3O12 nanoparticles concertation in the lyotropic matrix. A significant increase of one order was observed in the ac conductivity of colloidal systems as compared to the non-doped lyotropic liquid crystal. Relaxation parameters of the non-doped lyotropic liquid crystal and colloidal systems were computed and correlated with other parameters.

  13. Topological defects in a living nematic ensnare swimming bacteria [Linking bacterial motility and liquid crystallinity in a model of living nematic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genkin, Mikhail Mikhailovich; Sokolov, Andrey; Lavrentovich, Oleg D.

    Active matter exemplified by suspensions of motile bacteria or synthetic self-propelled particles exhibits a remarkable propensity to self-organization and collective motion. The local input of energy and simple particle interactions often lead to complex emergent behavior manifested by the formation of macroscopic vortices and coherent structures with long-range order. A realization of an active system has been conceived by combining swimming bacteria and a lyotropic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics, we develop a computational model describing intricate properties of such a living nematic. In faithful agreement withmore » the experiment, the model reproduces the onset of periodic undulation of the director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields a testable prediction on the accumulation of bacteria in the cores of +1/2 topological defects and depletion of bacteria in the cores of -1/2 defects. Our dedicated experiment on motile bacteria suspended in a freestanding liquid crystalline film fully confirms this prediction. Lastly, our findings suggest novel approaches for trapping and transport of bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and manipulate microscopic objects in active matter.« less

  14. Topological defects in a living nematic ensnare swimming bacteria [Linking bacterial motility and liquid crystallinity in a model of living nematic

    DOE PAGES

    Genkin, Mikhail Mikhailovich; Sokolov, Andrey; Lavrentovich, Oleg D.; ...

    2017-03-08

    Active matter exemplified by suspensions of motile bacteria or synthetic self-propelled particles exhibits a remarkable propensity to self-organization and collective motion. The local input of energy and simple particle interactions often lead to complex emergent behavior manifested by the formation of macroscopic vortices and coherent structures with long-range order. A realization of an active system has been conceived by combining swimming bacteria and a lyotropic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics, we develop a computational model describing intricate properties of such a living nematic. In faithful agreement withmore » the experiment, the model reproduces the onset of periodic undulation of the director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields a testable prediction on the accumulation of bacteria in the cores of +1/2 topological defects and depletion of bacteria in the cores of -1/2 defects. Our dedicated experiment on motile bacteria suspended in a freestanding liquid crystalline film fully confirms this prediction. Lastly, our findings suggest novel approaches for trapping and transport of bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and manipulate microscopic objects in active matter.« less

  15. Role of Molecular Structure on X-ray Diffraction in Thermotropic Uniaxial and Biaxial Nematic Liquid Crystal Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena

    2009-08-27

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution functionmore » is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.« less

  16. Nematic Liquid-Crystal Colloids

    PubMed Central

    Muševič, Igor

    2017-01-01

    This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of kBT per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology. PMID:29295574

  17. Lyotropic liquid crystal preconcentrates for the treatment of periodontal disease.

    PubMed

    Fehér, A; Urbán, E; Eros, I; Szabó-Révész, P; Csányi, E

    2008-06-24

    The aim of our study was to develop water-free lyotropic liquid crystalline preconcentrates, which consist of oils and surfactants with good physiological tolerance and spontaneously form lyotropic liquid crystalline phase in aqueous environment. In this way these preconcentrates having low viscosity can be injected into the periodontal pocket, where they are transformed into highly viscous liquid crystalline phase, so that the preparation is prevented from flowing out of the pocket due to its great viscosity, while drug release is controlled by the liquid crystalline texture. In order to follow the structure alteration upon water absorption polarization microscopical and rheological examinations were performed. The water absorption mechanism of the samples was examined by the Enslin-method. Metronidazole-benzoate was used as active agent the release of which was characterized via in vitro investigations performed by means of modified Kirby-Bauer disk diffusion method. On the grounds of the results it can be stated that the 4:1 mixture of the investigated surfactants (Cremophor EL, Cremophor RH40) and oil (Miglyol 810) formed lyotopic liquid crystalline phases upon water addition. Polarization microscopic examinations showed that samples with 10-40% water content possessed anisotropic properties. On the basis of water absorption, rheological and drug release studies it can be concluded that the amount of absorbed water and stiffness of lyotropic structure influenced by the chemical entity of the surfactant exerted major effect on the drug release.

  18. Lyotropic chromonic liquid crystals as materials for optical and biosensing applications

    NASA Astrophysics Data System (ADS)

    Tortora, L.; Park, H.-S.; Antion, K.; Finotello, D.; Lavrentovich, O. D.

    2007-02-01

    Lyotropic chromonic liquid crystals (LCLCs) are formed by molecules with rigid polyaromatic cores and ionic groups at the periphery that form aggregates while in water. Most of the LCLCs are not toxic to the biological cells and can be used as an amplifying medium in real-time biosensors. The detector is based on the principle that the immune aggregates growing in the LCLC bulk trigger the director distortions. Self-assembly of LCLC molecules into oriented structures allows one to use them in various structured films. For example, layer-by-layer electrostatic deposition produces monomolecular layers and stacks of layers of LCLC with long-range in-plane orientational order which sets them apart from the standard Langmuir-Blodgett films. We demonstrate that divalent and multivalent salts as well as acidic and basic materials that alter pH of the LCLC water solutions, are drastically modifying the phase diagrams of LCLC, from shifting the phase transition temperatures by tens of degrees, to causing condensation of the LCLC aggregates into more compact structures, such as birefringent bundles or formation of a columnar hexagonal phase from the nematic phase.

  19. Molecular reorientation of a nematic liquid crystal by thermal expansion

    PubMed Central

    Kim, Young-Ki; Senyuk, Bohdan; Lavrentovich, Oleg D.

    2012-01-01

    A unique feature of nematic liquid crystals is orientational order of molecules that can be controlled by electromagnetic fields, surface modifications and pressure gradients. Here we demonstrate a new effect in which the orientation of nematic liquid crystal molecules is altered by thermal expansion. Thermal expansion (or contraction) causes the nematic liquid crystal to flow; the flow imposes a realigning torque on the nematic liquid crystal molecules and the optic axis. The optical and mechanical responses activated by a simple temperature change can be used in sensing, photonics, microfluidic, optofluidic and lab-on-a-chip applications as they do not require externally imposed gradients of temperature, pressure, surface realignment, nor electromagnetic fields. The effect has important ramifications for the current search of the biaxial nematic phase as the optical features of thermally induced structural changes in the uniaxial nematic liquid crystal mimic the features expected of the biaxial nematic liquid crystal. PMID:23072803

  20. Lyotropic liquid crystalline L3 phase silicated nanoporous monolithic composites and their production

    DOEpatents

    McGrath, Kathryn M.; Dabbs, Daniel M.; Aksay, Ilhan A.; Gruner, Sol M.

    2003-10-28

    A mesoporous ceramic material is provided having a pore size diameter in the range of about 10-100 nanometers produced by templating with a ceramic precursor a lyotropic liquid crystalline L.sub.3 phase consisting of a three-dimensional, random, nonperiodic network packing of a multiple connected continuous membrane. A preferred process for producing the inesoporous ceramic material includes producing a template of a lyotropic liquid crystalline L.sub.3 phase by mixing a surfactant, a co-surfactant and hydrochloric acid, coating the template with an inorganic ceramic precursor by adding to the L.sub.3 phase tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS) and then converting the coated template to a ceramic by removing any remaining liquids.

  1. UV response on dielectric properties of nano nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Pandey, Kamal Kumar; Tripathi, Pankaj Kumar; Misra, Abhishek Kumar; Manohar, Rajiv

    2018-03-01

    In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB) and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz-10 MHz in the nematic mesophase range.

  2. Topological Defects in a Living Nematic Ensnare Swimming Bacteria

    NASA Astrophysics Data System (ADS)

    Genkin, Mikhail M.; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2017-01-01

    Active matter exemplified by suspensions of motile bacteria or synthetic self-propelled particles exhibits a remarkable propensity to self-organization and collective motion. The local input of energy and simple particle interactions often lead to complex emergent behavior manifested by the formation of macroscopic vortices and coherent structures with long-range order. A realization of an active system has been conceived by combining swimming bacteria and a lyotropic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics, we develop a computational model describing intricate properties of such a living nematic. In faithful agreement with the experiment, the model reproduces the onset of periodic undulation of the director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields a testable prediction on the accumulation of bacteria in the cores of +1 /2 topological defects and depletion of bacteria in the cores of -1 /2 defects. Our dedicated experiment on motile bacteria suspended in a freestanding liquid crystalline film fully confirms this prediction. Our findings suggest novel approaches for trapping and transport of bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and manipulate microscopic objects in active matter.

  3. Self-assembly of nematic liquid crystal elastomer filaments

    NASA Astrophysics Data System (ADS)

    Wei, Wei-Shao; Xia, Yu; Yang, Shu; Yodh, A. G.

    In this work we investigate the self-assembly of nematic liquid crystal polymer (NLCP) filaments and their corresponding cross-linked elastomer structures. Specifically, by fine-tuning surfactant concentration, prepolymer chain length, and temperature within a background aqueous phase we can generate filaments composed of oligomerized LC monomers. Filaments with narrowly dispersed diameters ranging from one hundred nanometers to a few micrometers can be obtained. Using polarization optical microscopy, we show that the nematic LCs within the filaments have an escaped radial structure. After photo-cross-linking, nematic liquid crystal elastomer filaments are obtained with well-maintained directors and smooth surface structure. Since these materials are elastomers, the size and mechanical and optical response of the filaments can be ''tuned'' near the nematic to isotropic phase transition temperature. This work is supported by NSF DMR16-07378, PENN MRSEC Grant DMR11-20901, and NASA Grant NNX08AO0G.

  4. Assembly, Elasticity, and Structure of Lyotropic Chromonic Liquid Crystals and Disordered Colloids

    NASA Astrophysics Data System (ADS)

    Davidson, Zoey S.

    This dissertation describes experiments which explore the structure and dynamics in two classes of soft materials: lyotropic chromonic liquid crystals and colloidal glasses and super-cooled liquids. The first experiments found that the achiral LCLCs, sunset yellow FCF (SSY) and disodium cromoglycate (DSCG) both exhibit spontaneous mirror symmetry breaking in the nematic phase driven by a giant elastic anisotropy of their twist modulus compared to their splay and bend moduli. Resulting structures of the confined LCLCs display interesting director configurations due to interplay of topologically required defects and twisted director fields. At higher concentrations, the LCLC compounds form columnar phases. We studied the columnar phase confined within spherical drops and discovered and understood configurations of the LC that sometimes led to non-spherical droplet shapes. The second experiments with SSY LCLCs confined in hollow cylinders uncovered director configurations which were driven in large measure by an exotic elastic modulus known as saddle-splay. We measured this saddle-splay modulus in a LCLC for the first time and found it to be more than 50 times greater than the twist elastic modulus. This large relative value of the saddle-splay modulus violates a theoretical result/assumption known as the Ericksen inequality. A third group of experiments on LCLCs explored the drying process of sessile drops containing SSY solutions, including evaporation dynamics, morphology, and deposition patterns. These drops differ from typical, well-studied evaporating colloidal drops primarily due to the LCLC's concentration-dependent isotropic, nematic, and columnar phases. Phase separation occurs during evaporation, creating surface tension gradients and significant density and viscosity variation within the droplet. Thus, the drying multiphase drops exhibit new convective currents, drop morphologies, deposition patterns, as well as a novel ordered crystalline phase. Finally

  5. Optics of twisted nematic and supertwisted nematic liquid-crystal displays

    NASA Astrophysics Data System (ADS)

    Leenhouts, F.; Schadt, M.

    1986-11-01

    For the first time calculations of the off-state transmission of twisted nematic liquid-crystal displays (LCD's) are presented which exhibit twist angles greater than the conventional 90 °. The transmission has been calculated using a treatment introduced by Priestley. In addition, the CIE (Commission Internationale d'Eclairage) color coordinates were evaluated which, together with the brightness, determine the optical appearance of an LCD. The finite efficiency of the polarizers was taken into account. The results are compared with those obtained for conventional 90 ° twisted nematic LCD's. From the calculations follow the conditions required to obtain optimal contrast and steep electro-optical characteristics in 180 ° supertwisted LCD's designed for high information content applications.

  6. Ordering of Glass Rods in Nematic and Cholesteric Liquid Crystals

    DTIC Science & Technology

    2011-12-01

    3), 483–508 (2007). 2. M. D. Lynch and D. L. Patrick, “Controlling the orientation of micron-sized rod-shaped SiC particles with nematic liquid...Elastic torque and the levitation of metal wires by a nematic liquid crystal,” Science 303(5658), 652–655 (2004). 17. R. Eelkema, M. M. Pollard, J...Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994). 1. Introduction Incorporating rod-like particles into liquid crystal (LC) media can lead

  7. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    PubMed Central

    Dumée, Ludovic F.; Lemoine, Jean-Baptiste; Ancel, Alice; Hameed, Nishar; He, Li; Kong, Lingxue

    2015-01-01

    The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation. PMID:28347094

  8. Effect of zinc oxide nanoparticles on dielectric behavior of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Kumar, Pankaj; Malik, Praveen

    2018-05-01

    In this work, phase transition and dielectric behavior of nematic liquid crystal (NLC), E7 and zinc oxide (ZnO) nanoparticles (NPs) doped nematic liquid crystals are investigated. Effect of nano-particles dispersion is analyzed and compared with the dielectric behavior of E7 and E7-ZnO. Frequency dependent dielectric permittivity at various temperatures in nematic phase for E7 and E7-ZnO sample is also studied.

  9. Temperature-tunable lasing in negative dielectric chiral nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Wu, Ri-Na; Wu, Jie; Wu, Xiao-Jiao; Dai, Qin

    2015-05-01

    In this work, negative dielectric nematic liquid crystal SLC12V620-400, chiral dopant S811, and laser dye DCM are used to prepare dye-doped chiral nematic liquid crystal laser sample. In order to investigate temperature-tunable lasing in negative dielectric chiral nematic liquid crystal, we measure the transmission and lasing spectrum of this sample. The photonic band gap (PBG) is observed to red shift with its width reducing from 71.2 nm to 40.2 nm, and its short-wavelength band edge moves 55.3 nm while the long-wavelength band edge only moves 24.9 nm. The wavelength of output laser is found to red shift from 614.4 nm at 20 °C to 662.8 nm at 67 °C, which is very different from the previous experimental phenomena. The refractive indices, parallel and perpendicular to the director in chiral nematic liquid crystal have different dependencies on temperature. The experiment shows that the pitch of this chiral nematic liquid crystal increases with the increase of temperature. The decrease in the PBG width, different shifts of band edges, and the red shift of laser wavelength are the results of refractive indices change and pitch thermal elongation. Project supported by the National Natural Science Foundation of China (Grant No. 61378042), the Outstanding Young Scholars Growth Plans of Colleges and Universities in Liaoning Province, China (Grant No. LJQ2013022), the Science and Technology Research of Liaoning Province, China (Grant No. L2010465), the Open Funds of Liaoning Province Key Laboratory of Laser and Optical Information of Shenyang Ligong University, China.

  10. Effects of flow on the dynamics of a ferromagnetic nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Potisk, Tilen; Pleiner, Harald; Svenšek, Daniel; Brand, Helmut R.

    2018-04-01

    We investigate the effects of flow on the dynamics of ferromagnetic nematic liquid crystals. As a model, we study the coupled dynamics of the magnetization, M , the director field, n , associated with the liquid crystalline orientational order, and the velocity field, v . We evaluate how simple shear flow in a ferromagnetic nematic is modified in the presence of small external magnetic fields, and we make experimentally testable predictions for the resulting effective shear viscosity: an increase by a factor of 2 in a magnetic field of about 20 mT. Flow alignment, a characteristic feature of classical uniaxial nematic liquid crystals, is analyzed for ferromagnetic nematics for the two cases of magnetization in or perpendicular to the shear plane. In the former case, we find that small in-plane magnetic fields are sufficient to suppress tumbling and thus that the boundary between flow alignment and tumbling can be controlled easily. In the latter case, we furthermore find a possibility of flow alignment in a regime for which one obtains tumbling for the pure nematic component. We derive the analogs of the three Miesowicz viscosities well-known from usual nematic liquid crystals, corresponding to nine different configurations. Combinations of these can be used to determine several dynamic coefficients experimentally.

  11. Light-scattering study of a polymer nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Taratuta, Victor G.; Hurd, Alan J.; Meyer, Robert B.

    1985-07-01

    We study the relaxation of thermally excited orientation fluctuations in a polymer nematic liquid crystal using photon correlation spectroscopy. The material studied is poly-γ-benzyl glutamate at a concentration just above the isotropic to nematic transition point. The relaxation rates of elastic deformation modes exhibit large anisotropies. Quantitative measurements of ratios of Frank elastic constants and Leslie viscosities are described.

  12. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena

    2014-09-24

    The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms anmore » L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.« less

  13. Statistical physics of modulated phases in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shamid, Shaikh M.

    Nematic liquid crystals are the state of the matter in which there is no positional order like crystals but it has orientational order of the constituent molecules. In the conventional nematics, the long axes of the rod-like molecules tend to align up or down uniformly along a director n. If the constituent molecules are chiral, they tend to form a modulated structure in one of the space dimensions. They are called the chiral nematics. If the chirality is strong enough we get the modulated structures in all three dimensions called the chiral blue phase. On the other hand, if the molecules are achiral, but an additional polar dipole is attached to the molecules, they also tend to form a modulated structure. In these types of materials we observe an important physical effect called flexoelectric effect, in which the polar order is linearly coupled to the director gradients. This dissertation work presents analytical and simulation studies of that modulated structures using the flexoelectric mechanism. Classic work by R. B. Meyer and further studies by I. Dozov predicted two possible structures, known as twist-bend and splay-bend. One of these predictions, the twist-bend phase, has recently been identified in experiments on bent-shaped liquid crystals. In this recently discovered twist-bend nematic phase the modulation is along one of the space dimensions. If this flexoelectric coupling is strong enough, in addition to twist-bend and splay-bend, here we predict the formation of polar analog of chiral blue phases (in both 2D and 3D) made of achiral polar liquid crystal materials by using Elastic continuum theory-based numerical calculations and computer simulations. This dissertation work also presents the coarse-grained theory of twist-bend phase. This theory predicts normal modes of fluctuation in both sides of nematic to twist-bend transition, which then compared with light scattering experiments. Macroscopic elastic and electric properties of twist-bend nematics

  14. Magneto-optic dynamics in a ferromagnetic nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Potisk, Tilen; Mertelj, Alenka; Sebastián, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel

    2018-01-01

    We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M , and the director field, n , associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals the importance of a dynamic cross-coupling between M and n . The experimental data are used to extract the value of the dissipative cross-coupling coefficient. We also make concrete predictions about how reversible cross-coupling terms between the magnetization and the director could be detected experimentally by measurements of the transmitted light intensity as well as by analyzing the azimuthal angle of the magnetization and the director out of the plane spanned by the anchoring axis and the external magnetic field. We derive the eigenmodes of the coupled system and study their relaxation rates. We show that in the usual experimental setup used for measuring the relaxation rates of the splay-bend or twist-bend eigenmodes of a nematic liquid crystal one expects for a ferromagnetic nematic liquid crystal a mixture of at least two eigenmodes.

  15. Vitrified chiral-nematic liquid crystalline films for selective reflection and circular polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsis, D.; Chen, P.H.M.; Mastrangelo, J.C.

    Nematic and left-handed chiral-nematic liquid crystals comprising methoxybiphenylbenzoate and (S)-(-)-1-phenylethylamine pendants to a cyclohexane core were synthesized and characterized. Although pristine samples were found to be polycrystalline, thermal quenching following heating to and annealing at elevated temperatures permitted the molecular orders characteristic of liquid crystalline mesomorphism to be frozen in the glassy state. Left at room temperature for 6 months, the vitrified liquid crystalline films showed no evidence of recrystallization. An orientational order parameter of 0.65 was determined with linear dichroism of a vitrified nematic film doped with Exalite 428 at a mole fraction of 0.0025. Birefringence dispersion of amore » blank vitrified nematic film was determined using a phase-difference method complemented by Abbe refractometry. A series of vitrified chiral-nematic films were prepared to demonstrate selective reflection and circular polarization with a spectral region tunable from blue to the infrared region by varying the chemical composition. The experimentally measured circular polarization spectra were found to agree with the Good-Karali theory in which all four system parameters were determined a priori: optical birefringence, average refractive index, selective reflection wavelength, and film thickness.« less

  16. Lyotropic liquid crystalline phase behaviour in amphiphile-protic ionic liquid systems.

    PubMed

    Chen, Zhengfei; Greaves, Tamar L; Fong, Celesta; Caruso, Rachel A; Drummond, Calum J

    2012-03-21

    Approximate partial phase diagrams for nine amphiphile-protic ionic liquid (PIL) systems have been determined by synchrotron source small angle X-ray scattering, differential scanning calorimetry and cross polarised optical microscopy. The binary phase diagrams of some common cationic (hexadecyltrimethyl ammonium chloride, CTAC, and hexadecylpyridinium bromide, HDPB) and nonionic (polyoxyethylene (10) oleyl ether, Brij 97, and Pluronic block copolymer, P123) amphiphiles with the PILs, ethylammonium nitrate (EAN), ethanolammonium nitrate (EOAN) and diethanolammonium formate (DEOAF), have been studied. The phase diagrams were constructed for concentrations from 10 wt% to 80 wt% amphiphile, in the temperature range 25 °C to >100 °C. Lyotropic liquid crystalline phases (hexagonal, cubic and lamellar) were formed at high surfactant concentrations (typically >50 wt%), whereas at <40 wt%, only micelles or polydisperse crystals were present. With the exception of Brij 97, the thermal stability of the phases formed by these surfactants persisted to temperatures above 100 °C. The phase behaviour of amphiphile-PIL systems was interpreted by considering the PIL cohesive energy, liquid nanoscale order, polarity and ionicity. For comparison the phase behaviour of the four amphiphiles was also studied in water.

  17. Photoluminescence analysis of self induced planer alignment in azo dye dispersed nematic liquid crystal complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rishi, E-mail: kkraina@gmail.com; Sood, Srishti, E-mail: kkraina@gmail.com; Raina, K. K., E-mail: kkraina@gmail.com

    2014-04-24

    We have developed azo dye doped nematic liquid crystal complex for advanced photonic liquid crystal display technology aspects. Disperse orange azo dye self introduced planer alignment in the nematic liquid crystal without any surface anchoring treatment. Planer alignment was characterized by optical polarizing microscopy. The electro-optical switching response of dye disperse planer aligned nematic cell was investigated as a function of applied voltage with the help of photoluminescence spectrophotometer for the tuning of photoluminescence contrast.

  18. Electroclinic effect in the chiral lamellar α phase of a lyotropic liquid crystal

    NASA Astrophysics Data System (ADS)

    Harjung, Marc D.; Giesselmann, Frank

    2018-03-01

    In thermotropic chiral Sm -A* phases, an electric field along the smectic layers breaks the D∞ symmetry of the Sm -A* phase and induces a tilt of the liquid crystal director. This so-called electroclinic effect (ECE) was first reported by Garoff and Meyer in 1977 and attracted substantial scientific and technological interest due to its linear and submicrosecond electro-optic response [S. Garoff and R. B. Meyer, Phys. Rev. A 19, 338 (1979), 10.1103/PhysRevA.19.338]. We now report the observation of an ECE in the pretransitional regime from a lyotropic chiral lamellar Lα* phase into a lyo-Sm -C* phase, the lyotropic analog to the thermotropic Sm -C* phase which was recently discovered by Bruckner et al. [Angew. Chem. Int. Ed. 52, 8934 (2013), 10.1002/anie.201303344]. We further show that the observed ECE has all signatures of its thermotropic counterpart, namely (i) the effect is chiral in nature and vanishes in the racemic Lα phase, (ii) the effect is essentially linear in the sign and magnitude of the electric field, and (iii) the magnitude of the effect diverges hyperbolically as the temperature approaches the critical temperature of the second order tilting transition. Specific deviations between the ECEs in chiral lamellar and chiral smectic phases are related to the internal field screening effect of electric double layers formed by inevitable ionic impurities in lyotropic phases.

  19. Numerical method of lines for the relaxational dynamics of nematic liquid crystals.

    PubMed

    Bhattacharjee, A K; Menon, Gautam I; Adhikari, R

    2008-08-01

    We propose an efficient numerical scheme, based on the method of lines, for solving the Landau-de Gennes equations describing the relaxational dynamics of nematic liquid crystals. Our method is computationally easy to implement, balancing requirements of efficiency and accuracy. We benchmark our method through the study of the following problems: the isotropic-nematic interface, growth of nematic droplets in the isotropic phase, and the kinetics of coarsening following a quench into the nematic phase. Our results, obtained through solutions of the full coarse-grained equations of motion with no approximations, provide a stringent test of the de Gennes ansatz for the isotropic-nematic interface, illustrate the anisotropic character of droplets in the nucleation regime, and validate dynamical scaling in the coarsening regime.

  20. Nematic order-disorder state transition in a liquid crystal analogue formed by oriented and migrating amoeboid cells

    NASA Astrophysics Data System (ADS)

    Kemkemer, R.; Teichgräber, V.; Schrank-Kaufmann, S.; Kaufmann, D.; Gruler, H.

    2000-10-01

    In cell culture, liquid crystal analogues are formed by elongated, migrating, and interacting amoeboid cells. An apolar nematic liquid crystal analogue is formed by different cell types like human melanocytes (=pigment cells of the skin), human fibroblasts (=connective tissue cells), human osteoblasts (=bone cells), human adipocytes (=fat cells), etc. The nematic analogue is quite well described by i) a stochastic machine equation responsible for cell orientation and ii) a self-organized extracellular guiding signal, E_2, which is proportional to the orientational order parameter as well as to the cell density. The investigations were mainly made with melanocytes. The transition to an isotropic state analogue can be accomplished either by changing the strength of interaction (e.g. variation of the cell density) or by influencing the cellular machinery by an externally applied signal: i) An isotropic gaseous state analogue is observed at low cell density (ρ < 110melanocytes/mm^2) and a nematic liquid crystal state analogue at higher cell density. ii) The nematic state analogue disappears if the bipolar shaped melanocytes are forced to become a star-like shape (induced by colchicine or staurosporine). The analogy between nematic liquid crystal state analogue formed by elongated, migrating and interacting cells and the nematic liquid crystal phase formed by interacting elongated molecules is discussed.

  1. Dynamics of Active Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    DeCamp, Stephen J.

    liquid crystal by assembling microtubule bundles into a quasi-2D film confined to a large, flat oil-water interface. Internal stresses generated by kinesin motors drive the system far from equilibrium which precludes a uniformly aligned nematic ground state through the continuous creation and annihilation of +/-1/2 motile defects. First, we demonstrate that the nematic is extensile by observing the deformation of a photobleached spot which undergoes extension along the nematic director and contraction perpendicular to the director. We map the experimentally tunable parameter, ATP concentration, to the intrinsic activity of the sample measured by the characteristic time of the contractile dynamics. Then, we characterize the flow of individual microtubules by measuring their relative velocity within the nematic and find a flow field consistent with a force dipole but where the magnitude of the extension and contraction velocity are proportional to the separation between the filaments. The extensile and contractile flow velocities can be tuned by the ATP concentration and can be as large as 6 mum/s. Then we spatially map microtubule concentration, alignment, and flow near topological defect cores. We test a theory which predicts that flows are directly proportional to the local alignment of the nematic and find our results inconsistent with that theory. Finally, we measure large scale velocity and vorticity distributions as well as vortex area distributions and find agreement with other recent theoretical predictions. Next, we turn our attention to the complex behavior of defects in the active nematic. Using defect tracking algorithms developed by Gabriel S. Redner, we measure the +/-1/2 defect velocity and lifetime distributions as well as MSD and average defect density. We find that average velocities, lifetimes, and densities are tunable by varying the ATP concentration. The MSDs reveal that motile +1/2 defects stream ballistically through the sample (up to 15 mum

  2. Chiral amplification and sensing of chirality with lyotropic chromonic liquid crystals

    NASA Astrophysics Data System (ADS)

    Srinivasarao, Mohan; Park, Jung Ok; Fu, Jinxin; Nayani, Karthik; Chang, Rui

    Due to the anisotropic elastic properties of lyotropic chromonic liquid crystals (LCLCs), a spontaneously twisted chiral structure has been reported in the achiral LCLCs system under cylindrical confinement. It is found that the handedness of chirality could be biased with a minute amount of a chiral additive. The entire system becomes ``homochiral'' and takes on the handedness of the additive. When 1% by weight of L-glutamic acid was added to LCLCs in a cylinder, the LCLC sbecomes homochiral and possesses giant optical rotation. We explore the mechanism for this based on the ``sergeants-and-soldiers'' and the ``majority-rule'' principles known for organic molecular systems.

  3. Free-standing mesoporous silica films with tunable chiral nematic structures.

    PubMed

    Shopsowitz, Kevin E; Qi, Hao; Hamad, Wadood Y; Maclachlan, Mark J

    2010-11-18

    Chirality at the molecular level is found in diverse biological structures, such as polysaccharides, proteins and DNA, and is responsible for many of their unique properties. Introducing chirality into porous inorganic solids may produce new types of materials that could be useful for chiral separation, stereospecific catalysis, chiral recognition (sensing) and photonic materials. Template synthesis of inorganic solids using the self-assembly of lyotropic liquid crystals offers access to materials with well-defined porous structures, but only recently has chirality been introduced into hexagonal mesostructures through the use of a chiral surfactant. Efforts to impart chirality at a larger length scale using self-assembly are almost unknown. Here we describe the development of a photonic mesoporous inorganic solid that is a cast of a chiral nematic liquid crystal formed from nanocrystalline cellulose. These materials may be obtained as free-standing films with high surface area. The peak reflected wavelength of the films can be varied across the entire visible spectrum and into the near-infrared through simple changes in the synthetic conditions. To the best of our knowledge these are the first materials to combine mesoporosity with long-range chiral ordering that produces photonic properties. Our findings could lead to the development of new materials for applications in, for example, tuneable reflective filters and sensors. In addition, this type of material could be used as a hard template to generate other new materials with chiral nematic structures.

  4. Pattern-induced anchoring transitions in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Rojas-Gómez, Óscar A.; Romero-Enrique, José M.; Silvestre, Nuno M.; Telo da Gama, Margarida M.

    2017-02-01

    In this paper we revisit the problem of a nematic liquid crystal in contact with patterned substrates. The substrate is modelled as a periodic array of parallel infinite grooves of well-defined cross-section sculpted on a chemically homogeneous substrate which favours local homeotropic anchoring of the nematic. We consider three cases: a sawtooth, a crenellated and a sinusoidal substrate. We analyse this problem within the modified Frank-Oseen formalism. We argue that, for substrate periodicities much larger than the extrapolation length, the existence of different nematic textures with distinct far-field orientations, as well as the anchoring transitions between them, are associated with the presence of topological defects either on or close to the substrate. For the sawtooth and sinusoidal cases, we observe a homeotropic to planar anchoring transition as the substrate roughness increases. On the other hand, a homeotropic to oblique anchoring transition is observed for crenellated substrates. In this case, the anchoring phase diagram shows a complex dependence on the substrate roughness and substrate anchoring strength.

  5. Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point.

    PubMed

    Lederer, Samuel; Schattner, Yoni; Berg, Erez; Kivelson, Steven A

    2017-05-09

    Using determinantal quantum Monte Carlo, we compute the properties of a lattice model with spin [Formula: see text] itinerant electrons tuned through a quantum phase transition to an Ising nematic phase. The nematic fluctuations induce superconductivity with a broad dome in the superconducting [Formula: see text] enclosing the nematic quantum critical point. For temperatures above [Formula: see text], we see strikingly non-Fermi liquid behavior, including a "nodal-antinodal dichotomy" reminiscent of that seen in several transition metal oxides. In addition, the critical fluctuations have a strong effect on the low-frequency optical conductivity, resulting in behavior consistent with "bad metal" phenomenology.

  6. Nematic liquid crystals on sinusoidal channels: the zigzag instability.

    PubMed

    Silvestre, Nuno M; Romero-Enrique, Jose M; Telo da Gama, Margarida M

    2017-01-11

    Substrates which are chemically or topographically patterned induce a variety of liquid crystal textures. The response of the liquid crystal to competing surface orientations, typical of patterned substrates, is determined by the anisotropy of the elastic constants and the interplay of the relevant lengths scales, such as the correlation length and the surface geometrical parameters. Transitions between different textures, usually with different symmetries, may occur under a wide range of conditions. We use the Landau-de Gennes free energy to investigate the texture of nematics in sinusoidal channels with parallel anchoring bounded by nematic-air interfaces that favour perpendicular (hometropic) anchoring. In micron size channels 5CB was observed to exhibit a non-trivial texture characterized by a disclination line, within the channel, which is broken into a zigzag pattern. Our calculations reveal that when the elastic anisotropy of the nematic does not favour twist distortions the defect is a straight disclination line that runs along the channel, which breaks into a zigzag pattern with a characteristic period, when the twist elastic constant becomes sufficiently small when compared to the splay and bend constants. The transition occurs through a twist instability that drives the defect line to rotate from its original position. The interplay between the energetically favourable twist distortions that induce the defect rotation and the liquid crystal anchoring at the surfaces leads to the zigzag pattern. We investigate in detail the dependence of the periodicity of the zigzag pattern on the geometrical parameters of the sinusoidal channels, which in line with the experimental results is found to be non-linear.

  7. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    PubMed

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Electron paramagnetic resonance studies of slowly tumbling vanadyl spin probes in nematic liquid crystals

    NASA Technical Reports Server (NTRS)

    Bruno, G. V.; Harrington, J. K.; Eastman, M. P.

    1978-01-01

    An analysis of EPR line shapes by the method of Polnaszek, Bruno, and Freed is made for slowly tumbling vanadyl spin probes in viscous nematic liquid crystals. The use of typical vanadyl complexes as spin probes for nematic liquid crystals is shown to simplify the theoretical analysis and the subsequent interpretation. Rotational correlation times tau and orientational ordering parameters S sub Z where slow tumbling effects are expected to be observed in vanadyl EPR spectra are indicated in a plot. Analysis of the inertial effects on the probe reorientation, which are induced by slowly fluctuating torque components of the local solvent structure, yield quantitative values for tau and S sub Z. The weakly ordered probe VOAA is in the slow tumbling region and displays these inertial effects throughout the nematic range of BEPC and Phase V. VOAA exhibits different reorientation behavior near the isotropic-nematic transition temperature than that displayed far below this transition temperature.

  9. Nematic director reorientation at solid and liquid interfaces under flow: SAXS studies in a microfluidic device

    DOE PAGES

    Silva, Bruno F. B.; Zepeda-Rosales, Miguel; Venkateswaran, Neeraja; ...

    2014-10-30

    In this work we investigate the interplay between flow and boundary condition effects on the orientation field of a thermotropic nematic liquid crystal under flow and confinement in a microfluidic device. Two types of experiments were performed using synchrotron small-angle X-ray-scattering (SAXS). In the first, a nematic liquid crystal flows through a square-channel cross section at varying flow rates, while the nematic director orientation projected onto the velocity/velocity gradient plane is measured using a 2D detector. At moderate-to-high flow rates, the nematic director is predominantly aligned in the flow direction, but with a small tilt angle of ~±11° in themore » velocity gradient direction. The director tilt angle is constant throughout most of the channel width but switches sign when crossing the center of the channel, in agreement with the Ericksen–Leslie–Parodi (ELP) theory. At low flow rates, boundary conditions begin to dominate, and a flow profile resembling the escaped radial director configuration is observed, where the director is seen to vary more smoothly from the edges (with homeotropic alignment) to the center of the channel. In the second experiment, hydrodynamic focusing is employed to confine the nematic phase into a sheet of liquid sandwiched between two layers of Triton X-100 aqueous solutions. The average nematic director orientation shifts to some extent from the flow direction toward the liquid boundaries, although it remains unclear if one tilt angle is dominant through most of the nematic sheet (with abrupt jumps near the boundaries) or if the tilt angle varies smoothly between two extreme values (~90 and 0°). Lastly, the technique presented here could be applied to perform high-throughput measurements for assessing the influence of different surfactants on the orientation of nematic phases and may lead to further improvements in areas such as boundary lubrication and clarifying the nature of defect structures in LC

  10. Naturally occurring reverse tilt domains in a high-pretilt alignment nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Wang, Ruiting; Atherton, Timothy J.; Zhu, Minhua; Petschek, Rolfe G.; Rosenblatt, Charles

    2007-08-01

    A cell whose substrates were coated with the polyamic acid SE1211 (Nissan Chemical Industries) and baked at high temperatures was filled with a nematic liquid crystal in the isotropic phase. On cooling into the nematic phase, naturally occurring and temporally and thermally robust reverse tilt domains separated by thin filamentlike walls were observed. The properties of these structures are reported.

  11. Nematic-like stable glasses without equilibrium liquid crystal phases

    DOE Data Explorer

    Gomez, Jaritza [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Gujral, Ankit [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Huang, Chengbin [School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Bishop, Camille [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Yu, Lian [School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Ediger, Mark [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

    2017-02-01

    We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, Tsubstrate, during deposition.Ellipsometry and IR measurements indicate that glasses prepared at Tsubstrate very near the glass transition temperature (Tg) are highly ordered. For these posaconazole glasses, the orientation order parameter is similar to that observed in macroscopically aligned nematic liquid crystals, indicating that the molecules are mostly parallel to one another and perpendicular to the interface. To our knowledge, these are the most anisotropic glasses ever prepared by PVD from a molecule that does not form equilibrium liquid crystal phases. These results are consistent with a previously proposed mechanism in which molecular orientation in PVD glasses is inherited from the orientation present at the free surface of the equilibrium liquid. This mechanism suggests that molecular orientation at the surface of the equilibrium liquid of posaconazole is nematic-like. Posaconazole glasses can show very high kinetic stability; the isothermal transformation of a 400 nm glass into the supercooled liquid occurs via a propagating front that originates at the free surface and requires ~105 times the structural relaxation time of the liquid (τα). We also studied the kinetic stability of PVD glasses of itraconazole, which is a structurally similar molecule with equilibrium liquid crystal phases. While itraconazole glasses can be even more anisotropic than posaconazole glasses, they exhibit lower kinetic stability.

  12. Demixing by a Nematic Mean Field: Coarse-Grained Simulations of Liquid Crystalline Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramírez-Hernández, Abelardo; Hur, Su-Mi; Armas-Pérez, Julio

    2017-03-01

    Liquid crystalline polymers exhibit a particular richness of behaviors that stems from their rigidity and their macromolecular nature. On the one hand, the orientational interaction between liquid-crystalline motifs promotes their alignment, thereby leading to the emergence of nematic phases. On the other hand, the large number of configurations associated with polymer chains favors formation of isotropic phases, with chain stiffness becoming the factor that tips the balance. In this work, a soft coarse-grained model is introduced to explore the interplay of chain stiffness, molecular weight and orientational coupling, and their role on the isotropic-nematic transition in homopolymer melts. We alsomore » study the structure of polymer mixtures composed of stiff and flexible polymeric molecules. We consider the effects of blend composition, persistence length, molecular weight and orientational coupling strength on the melt structure at the nano-and mesoscopic levels. Conditions are found where the systems separate into two phases, one isotropic and the other nematic. We confirm the existence of non-equilibrium states that exhibit sought-after percolating nematic domains, which are of interest for applications in organic photovoltaic and electronic devices.« less

  13. Hydrodynamics Defines the Stable Swimming Direction of Spherical Squirmers in a Nematic Liquid Crystal.

    PubMed

    Lintuvuori, J S; Würger, A; Stratford, K

    2017-08-11

    We present a study of the hydrodynamics of an active particle-a model squirmer-in an environment with a broken rotational symmetry: a nematic liquid crystal. By combining simulations with analytic calculations, we show that the hydrodynamic coupling between the squirmer flow field and liquid crystalline director can lead to reorientation of the swimmers. The preferred orientation depends on the exact details of the squirmer flow field. In a steady state, pushers are shown to swim parallel with the nematic director while pullers swim perpendicular to the nematic director. This behavior arises solely from hydrodynamic coupling between the squirmer flow field and anisotropic viscosities of the host fluid. Our results suggest that an anisotropic swimming medium can be used to characterize and guide spherical microswimmers in the bulk.

  14. Topological transitions in unidirectional flow of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Cummings, Linda; Anderson, Thomas; Mema, Ensela; Kondic, Lou

    2015-11-01

    Recent experiments by Sengupta et al. (Phys. Rev. Lett. 2013) revealed interesting transitions that can occur in flow of nematic liquid crystal under carefully controlled conditions within a long microfluidic channel of rectangular cross-section, with homeotropic anchoring at the walls. At low flow rates the director field of the nematic adopts a configuration that is dominated by the surface anchoring, being nearly parallel to the channel height direction over most of the cross-section; but at high flow rates there is a transition to a flow-dominated state, where the director configuration at the channel centerline is aligned with the flow (perpendicular to the channel height direction). We analyze simple channel-flow solutions to the Leslie-Ericksen model for nematics. We demonstrate that two solutions exist, at all flow rates, but that there is a transition between the elastic free energies of these solutions: the anchoring-dominated solution has the lowest energy at low flow rates, and the flow-dominated solution has lowest energy at high flow rates. NSF DMS 1211713.

  15. A Nanohelicoidal Nematic Liquid Crystal Formed by a Non-Linear Duplexed Hexamer.

    PubMed

    Mandle, Richard J; Goodby, John W

    2018-06-11

    The twist-bend modulated nematic liquid-crystal phase exhibits formation of a nanometre-scale helical pitch in a fluid and spontaneous breaking of mirror symmetry, leading to a quasi-fluid state composed of chiral domains despite being composed of achiral materials. This phase was only observed for materials with two or more mesogenic units, the manner of attachment between which is always linear. Non-linear oligomers with a H-shaped hexamesogen are now found to exhibit both nematic and twist-bend modulated nematic phases. This shatters the assumption that a linear sequence of mesogenic units is a prerequisite for this phase, and points to this state of matter being exhibited by a wider range of self-assembling structures than was previously envisaged. These results support the double helix model of the TB phase as opposed to the simple heliconical model. This new class of materials could act as low-molecular-weight surrogates for cross-linked liquid-crystalline elastomers. © 2018 Die Autoren. Veröffentlicht von Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Role of Molecular Structure on X-ray Diffraction in Uniaxial and Biaxial Phases of Thermotropic Liquid Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena

    2009-04-29

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution functionmore » is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.« less

  17. Blue phase liquid crystal phase transition for cyano compound chiral nematic liquid crystal mixtures with three two-ring core structures and chiral dopant concentrations

    NASA Astrophysics Data System (ADS)

    Shin, Jaesun; Kim, Beomjong; Jung, Wansu; Fahad, Mateen; Park, SangJin; Hong, Sung-Kyu

    2017-05-01

    Blue phase (BP) temperature range of a chiral nematic liquid crystal (LC) mixture is dependent upon the host nematic LC chemical structure and chiral dopant concentration. In this study, we investigated BP phase transition behaviour and helical twisting power (HTP) using three chiral dopant concentrations of cyano compound chiral nematic LC mixtures incorporating three two-ring core structures in the host nematic LCs. The effect of the host nematic LC core structure, HTP and chiral dopant concentrations were considered on BP temperature ranges, for two types of complete BPI and BPII without isotropic phase (Iso) and two types of coexistence state of BPI+Iso and BPII+Iso.

  18. Laser damage resistant nematic liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Raszewski, Z.; Piecek, W.; Jaroszewicz, L.; Soms, L.; Marczak, J.; Nowinowski-Kruszelnicki, E.; Perkowski, P.; Kedzierski, J.; Miszczyk, E.; Olifierczuk, M.; Morawiak, P.; Mazur, R.

    2013-08-01

    There exists a problem in diagnostics of a dense plasma (so-called Thomson diagnostics). For this purpose, the plasma is illuminated by series of high energy laser pulses. Such pulses are generated by several independent lasers operating sequentially, and these pulses are to be directed along an exactly the same optical path. In this case, the energy of each separate pulse is as large as 3 J, so it is impossible to generate a burst of such pulses by a single laser. In this situation, several independent lasers have to be used. To form optical path with λ = 1.064 μm and absolute value of the energy of laser pulse through of 3 J, a special refractive index matched twisted Nematic Liquid Crystal Cell (NLCC) of type LCNP2 with switching on time τON smaller than 5 μs might be applied. High laser damage resistance of NLCC and short τON can be fulfilled by preparation of liquid crystal cells with Liquid Crystal Mixture (LCM), well tuned to twisted nematic electro-optical effect, and well tuned all optical interfaces (Air - Antireflection - Quartz Plate - Electrode - Blocking Film - Aligning Layer - LCM - Aligning Layer - Blocking Film - Electrode - Quartz Plate - Antireflection - Air). In such LCNP2 cell, the transmission is higher than 97% at λ = 1.064 μm, as it is presented by Gooch and Tarry [J. Phys. D: Appl. Phys. 8, 1575 (1975)]. The safe laser density energy is about 0.6 J/cm2 for a train of laser pulses (λ = 1.064 μm, pulse duration 10 ns FWHM, pulse repetition rate 100 pps, train duration 10 s), so the area of liquid crystal cell tolerating 3 J through it shall be as large as 5 cm2. Due to the presence of two blocking film layers between electrodes, LCNP2 can be driven by high voltages. Switching on time smaller than τON = 5 μs was obtained under 200 V switching voltage.

  19. Intrinsic frame transport for a model of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Cozzini, S.; Rull, L. F.; Ciccotti, G.; Paolini, G. V.

    1997-02-01

    We present a computer simulation study of the dynamical properties of a nematic liquid crystal model. The diffusional motion of the nematic director is taken into account in our calculations in order to give a proper estimate of the transport coefficients. Differently from other groups we do not attempt to stabilize the director through rigid constraints or applied external fields. We instead define an intrinsic frame which moves along with the director at each step of the simulation. The transport coefficients computed in the intrinsic frame are then compared against the ones calculated in the fixed laboratory frame, to show the inadequacy of the latter for systems with less than 500 molecules. Using this general scheme on the Gay-Berne liquid crystal model, we evidence the natural motion of the director and attempt to quantify its intrinsic time scale and size dependence. Through extended simulations of systems of different size we calculate the diffusion and viscosity coefficients of this model and compare our results with values previously obtained with fixed director.

  20. Coulomb-like elastic interaction induced by symmetry breaking in nematic liquid crystal colloids.

    PubMed

    Lee, Beom-Kyu; Kim, Sung-Jo; Kim, Jong-Hyun; Lev, Bohdan

    2017-11-21

    It is generally thought that colloidal particles in a nematic liquid crystal do not generate the first multipole term called deformation elastic charge as it violates the mechanical equilibrium. Here, we demonstrate theoretically and experimentally that this is not the case, and deformation elastic charges, as well as dipoles and quadrupoles, can be induced through anisotropic boundary conditions. We report the first direct observation of Coulomb-like elastic interactions between colloidal particles in a nematic liquid crystal. The behaviour of two spherical colloidal particles with asymmetric anchoring conditions induced by asymmetric alignment is investigated experimentally; the interaction of two particles located at the boundary of twist and parallel aligned regions is observed. We demonstrate that such particles produce deformation elastic charges and interact by Coulomb-like interactions.

  1. Microsecond-range optical shutter for unpolarized light with chiral nematic liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadimasoudi, Mohammad, E-mail: Mohammad.Mohammadimasoudi@elis.ugent.be; Neyts, Kristiaan; Beeckman, Jeroen

    2015-04-15

    A fast electro-optic shutter is fabricated and demonstrated. The device works independently of the polarization state of the incoming light beam. Modulation between 3% transmission and 60% transmission is obtained within a wavelength range of 50 nm with a response time of 20 μs. The device consists of two partly polymerized chiral nematic liquid crystal layers separated by a half wave plate. The transmission modulation is due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid crystal realized by applying an electric field over a mixture of photo-polymerized LC and non-reactive nematic LC containingmore » a chiral dopant. The shutter features high reflectivity in the photonic band gap. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.« less

  2. Microsecond-range optical shutter for unpolarized light with chiral nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Mohammadimasoudi, Mohammad; Shin, Jungsoon; Lee, Keechang; Neyts, Kristiaan; Beeckman, Jeroen

    2015-04-01

    A fast electro-optic shutter is fabricated and demonstrated. The device works independently of the polarization state of the incoming light beam. Modulation between 3% transmission and 60% transmission is obtained within a wavelength range of 50 nm with a response time of 20 μs. The device consists of two partly polymerized chiral nematic liquid crystal layers separated by a half wave plate. The transmission modulation is due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid crystal realized by applying an electric field over a mixture of photo-polymerized LC and non-reactive nematic LC containing a chiral dopant. The shutter features high reflectivity in the photonic band gap. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.

  3. Alignment of nematic liquid crystals by inhomogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Ong, Hiap Liew; Hurd, Alan J.; Meyer, Robert B.

    1985-01-01

    Variable oblique alignment of nematic liquid crystals has been achieved on microscopically inhomogeneous surfaces. The surfaces consist of small patches favoring vertical (homeotropic) alignment surrounded by a matrix favoring a planar alignment. The construction of these surfaces employs randomly distributed microscopic metal islands formed by certain metals as vapor-deposited films. Larger scale periodic patterns were made as well to verify the techniques. The results are interpreted in terms of a continuum elasticity theory and azimuthal degeneracy is also discussed.

  4. Self-assembled ordered structures in thin films of HAT5 discotic liquid crystal.

    PubMed

    Morales, Piero; Lagerwall, Jan; Vacca, Paolo; Laschat, Sabine; Scalia, Giusy

    2010-05-20

    Thin films of the discotic liquid crystal hexapentyloxytriphenylene (HAT5), prepared from solution via casting or spin-coating, were investigated by atomic force microscopy and polarizing optical microscopy, revealing large-scale ordered structures substantially different from those typically observed in standard samples of the same material. Thin and very long fibrils of planar-aligned liquid crystal were found, possibly formed as a result of an intermediate lyotropic nematic state arising during the solvent evaporation process. Moreover, in sufficiently thin films the crystallization seems to be suppressed, extending the uniform order of the liquid crystal phase down to room temperature. This should be compared to the bulk situation, where the same material crystallizes into a polymorphic structure at 68 °C.

  5. Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Ta; Chen, Chun-Wei; Yang, Tzu-Hsuan; Nys, Inge; Li, Cheng-Chang; Lin, Tsung-Hsien; Neyts, Kristiaan; Beeckman, Jeroen

    2018-01-01

    Selection of the bandedge lasing mode of a photonic crystal laser has been realized in a fluorescent dye doped chiral nematic liquid crystal by exerting electrical control over the mode competition. The bandedge lasing can be reversibly switched from the short-wavelength edge mode to the long-wavelength edge mode by applying a voltage of only 20 V, without tuning the bandgap. The underlying mechanism is the field-induced change in the order parameter of the fluorescent dye in the liquid crystal. The orientation of the transition dipole moment determines the polarization state of the dye emission, thereby promoting lasing in the bandedge mode that favors the emission polarization. Moreover, the dynamic mode-selection capability is retained upon polymer-stabilizing the chiral nematic liquid crystal laser. In the polymer-stabilized system, greatly improved stability and lasing performance are observed.

  6. Topological Transformation of Defects in Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Pagel, Zachary; Atherton, Timothy; Guasto, Jeffrey; Cebe, Peggy

    A topological transformation around silica microsphere inclusions in nematic liquid crystal cells (LCC) is experimentally studied. Silica microspheres are coated to induce homeotropic LC anchoring to the spheres. Parallel rub directions of the alignment polymer during LCC construction create a splay wall that traps the microspheres. Application of an out-of-plane electric field then permits a transformation of hedgehog defects, reversing the orientation of the defect around microspheres. The transformation controllably reverses the microsphere's direction of travel during AC electrophoresis due to defect-dependent velocity anisotropy. A similar transformation is studied on chains of microspheres with hedgehog defects, where the defect orientation is reversed on the entire chain. Polarized and confocal microscopies are used to study the defect structures. Results contribute to recent developments in microsphere electrokinetics in nematic LCs, as the transformation adds an additional degree of control in the electrophoretic motion of microspheres and chains of microspheres with dipolar defects. The author thanks NSF Grant DMR-1608126 for funding reseearch and Tufts University for funding travel.

  7. Polymer dispersed nematic liquid crystal for large area displays and light valves

    NASA Astrophysics Data System (ADS)

    Drzaic, Paul S.

    1986-09-01

    A new electro-optical material based on nematic liquid crystal dispersed in a polymer matrix has recently been introduced by Fergason. This technology (termed NCAP, for nematic curvilinear aligned phase) is suitable for making very large area (thousands of square centimeter) light valves and displays. The device consists of micron size droplets of liquid crystal dispersed in and surrounded by a polymer film. Light passing through the film in the absence of an applied field is strongly forward scattered, giving a milky, translucent film. Application of an electric field across the liquid crystal/polymer film places the film in a highly transparent state. Pleochroic dyes may be employed in the system in order to achieve controllable light absorption as well as scattering. Microscopically, it is shown that the liquid-crystal director lies preferentially parallel to the polymer wall, leading to a bipolar-like configuration of the liquid-crystal directors within the droplet. The symmetry axes of the droplets are randomly oriented in the unpowered, scattering state, but align parallel to the field in the powered, transparent state. The electric field required to reorient a given droplet varies inversely with the diameter of that droplet, and it is shown that the macroscopic electro-optical properties of the film can be modeled if the distribution of liquid-crystal droplet sizes is known.

  8. Solar radiation control using nematic curvilinear aligned phase (NCAP) liquid crystal technology

    NASA Astrophysics Data System (ADS)

    vanKonynenburg, Peter; Marsland, Stephen; McCoy, James

    1987-11-01

    A new, advanced liquid crystal technology has made economical, large area, electrically-controlled windows a commercial reality. The new technology, Nematic Curvilinear Aligned Phase (NCAP), is based on a polymeric material containing small droplets of nematic liquid crystal which is coated and laminated between transparent electrodes and fabricated into large area field effect devices. NCAP windows feature variable solar transmission and reflection through a voltage-controlled scattering mechanism. Laminated window constructions provide the excellent transmission and visibility of glass in the powered condition. In the unpowered condition, the windows are highly translucent, and provide 1) blocked vision for privacy, security, and obscuration of information, and 2) glare control and solar shading. The stability is excellent during accelerated aging tests. Degradation mechanisms which can limit performance and lifetime are discussed. Maximum long term stability is achieved by product designs that incorporate the appropriate window materials to provide environmental protection.

  9. Shape-dependent dispersion and alignment of nonaggregating plasmonic gold nanoparticles in lyotropic and thermotropic liquid crystals.

    PubMed

    Liu, Qingkun; Tang, Jianwei; Zhang, Yuan; Martinez, Angel; Wang, Shaowei; He, Sailing; White, Timothy J; Smalyukh, Ivan I

    2014-05-01

    We use both lyotropic liquid crystals composed of prolate micelles and thermotropic liquid crystals made of rod-like molecules to uniformly disperse and unidirectionally align relatively large gold nanorods and other complex-shaped nanoparticles at high concentrations. We show that some of these ensuing self-assembled orientationally ordered soft matter systems exhibit polarization-dependent plasmonic properties with strongly pronounced molar extinction exceeding that previously achieved in self-assembled composites. The long-range unidirectional alignment of gold nanorods is mediated mainly by anisotropic surface anchoring interactions at the surfaces of gold nanoparticles. Polarization-sensitive absorption, scattering, and extinction are used to characterize orientations of nanorods and other nanoparticles. The experimentally measured unique optical properties of these composites, which stem from the collective plasmonic effect of the gold nanorods with long-range order in a liquid crystal matrix, are reproduced in computer simulations. A simple phenomenological model based on anisotropic surface interaction explains the alignment of gold nanorods dispersed in liquid crystals and the physical underpinnings behind our observations.

  10. A new method for solid surface topographical studies using nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Baber, N.; Strugalski, Z.

    1984-03-01

    A new simple method has been developed to investigate the topography of a wide range of solid surfaces using nematic liquid crystals. Polarizing microscopy is employed. The usefulness of the method for detecting weak mechanical effects has been demonstrated. An application in criminology is foreseen.

  11. Perylene bisimide hydrogels and lyotropic liquid crystals with temperature-responsive color change.

    PubMed

    Görl, Daniel; Soberats, Bartolome; Herbst, Stefanie; Stepanenko, Vladimir; Würthner, Frank

    2016-11-01

    The self-assembly of perylene bisimide (PBI) dyes bearing oligo ethylene glycol (OEG) units in water affords responsive functional nanostructures characterized by their lower critical solution temperature (LCST). Tuning of the LCST is realized by a supramolecular approach that relies on two structurally closely related PBI-OEG molecules. The two PBIs socially co-assemble in water and the resulting nanostructures exhibit a single LCST in between the transition temperatures of the aggregates formed by single components. This permits to precisely tune the transition from a hydrogel to a lyotropic liquid crystal state at temperatures between 26 and 51 °C by adjusting the molar fraction of the two PBIs. Owing to concomitant changes in PBI-PBI interactions this phase transition affords a pronounced color change with "fluorescence-on" response that can be utilized as a smart temperature sensory system.

  12. Dynamics of Water in Gemini Surfactant-Based Lyotropic Liquid Crystals

    DOE PAGES

    McDaniel, Jesse G.; Mantha, Sriteja; Yethiraj, Arun

    2016-09-26

    The dynamics of water confined to nanometer-sized domains is important in a variety of applications ranging from proton exchange membranes to crowding effects in biophysics. In this work we study the dynamics of water in gemini surfactant-based lyotropic liquid crystals (LLCs) using molecular dynamics simulations. These systems have well characterized morphologies, e.g., hexagonal, gyroid, and lamellar, and the surfaces of the confining regions can be controlled by modifying the headgroup of the surfactants. This allows one to study the effect of topology, functionalization, and interfacial curvature on the dynamics of confined water. Through analysis of the translational diffusion and rotationalmore » relaxation we conclude that the hydration level and resulting confinement lengthscale is the predominate determiner of the rates of water dynamics, and other effects, namely surface functionality and curvature, are largely secondary. In conclusion, this novel analysis of the water dynamics in these LLC systems provides an important comparison for previous studies of water dynamics in lipid bilayers and reverse micelles.« less

  13. Self-organization processes and topological defects in nanolayers in a nematic liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuvyrov, A. N.; Girfanova, F. M.; Mal'tsev, I. S.

    Atomic force microscopy is used to study the self-organization processes that occur during the formation of topological defects in nanomolecular layers in a nematic liquid crystal with the homeotropic orientation of its molecules with respect to the substrate. In this case, a smectic monolayer with a thickness of one molecule length (about 2.2 nm) forms on the substrate, and a nanomolecular layer of a nematic liquid crystal forms above this monolayer. In such virtually two-dimensional layers, numerous different nanoclusters, namely, hut structures, pyramids, raft structures with symmetry C{sub nm} (where n = 2, 4, 5, 6, 7, ?, {infinity}), cones,more » and nanopools, form [1]. They have a regular shape close to the geometry of solid crystals. Modulated linear structures and topological point defects appear spontaneously in the nanopools and raft structures.« less

  14. Mesoscopic model for the viscosities of nematic liquid crystals.

    PubMed

    Chrzanowska, A; Kröger, M; Sellers, S

    1999-10-01

    Based on the definition of the mesoscopic concept by Blenk et al. [Physica A 174, 119 (1991); J. Noneq. Therm. 16, 67 (1991); Mol. Cryst. Liq. Cryst. 204, 133 (1991)] an approach to calculate the Leslie viscosity coefficients for nematic liquid crystals is presented. The approach rests upon the mesoscopic stress tensor, whose structure is assumed similar to the macroscopic Leslie viscous stress. The proposed form is also the main dissipation part of the mesoscopic Navier-Stokes equation. On the basis of the correspondence between microscopic and mesoscopic scales a mean-field mesoscopic potential is introduced. It allows us to obtain the stress tensor angular velocity of the free rotating molecules with the help of the orientational Fokker-Planck equation. The macroscopic stress tensor is calculated as an average of the mesoscopic counterpart. Appropriate relations among mesoscopic viscosities have been found. The mesoscopic analysis results are shown to be consistent with the diffusional model of Kuzuu-Doi and Osipov-Terentjev with the exception of the shear viscosity alpha(4). In the nematic phase alpha(4) is shown to have two contributions: isotropic and nematic. There exists an indication that the influence of the isotropic part is dominant over the nematic part. The so-called microscopic stress tensor used in the microscopic theories is shown to be the mean-field potential-dependent representation of the mesoscopic stress tensor. In the limiting case of total alignment the Leslie coefficients are estimated for the diffusional and mesoscopic models. They are compared to the results of the affine transformation model of the perfectly ordered systems. This comparison shows disagreement concerning the rotational viscosity, whereas the coefficients characteristic for the symmetric part of the viscous stress tensor remain the same. The difference is caused by the hindered diffusion in the affine model case.

  15. Dynamical Properties of a Living Nematic

    NASA Astrophysics Data System (ADS)

    Genkin, Mikhail

    The systems, which are made of a large number or interacting particles, or agents that convert the energy stored in the environment into mechanical motion, are called active systems, or active matter. The examples of active matter include both living and synthetic systems. The size of agents varies significantly: bird flocks and fish schools represent macroscopic active systems, while suspensions of living organisms or artificial colloidal particles are examples of microscopic ones. In this work, I studied one of the simplest realization of active matter termed living (or active) nematics, that can be conceived by mixing swimming bacteria and nematic liquid crystal. Using modeling, numerical simulations and experiments I studied various dynamical properties of active nematics. This work hints into new methods of control and manipulation of active matter. Active nematic exhibits complex spatiotemporal behavior manifested by formation, proliferation, and annihilation of topological defects. A new computational 2D model coupling nematic liquid crystal and swimming bacteria dynamics have been proposed. We investigated the developed system of partial differential equations analytically and integrated it numerically using the highly efficient parallel GPU code. The integration results are in a very good agreement with other theoretical and experimental studies. In addition, our model revealed a number of testable phenomena. The major model prediction (bacteria accumulation in positive and depletion in negative topological defects) was tested by a dedicated experiment. We extended our model to study active nematics in a biphasic state, where nematic and isotropic phases coexist. Typically this coexistence is manifested by formation of tactoids - isotropic elongated regions surrounded by nematic phase, or nematic regions surrounded by isotropic phase. Using numerical integration, we revealed fundamental properties of such systems. Our main model outcome - spontaneous

  16. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    NASA Astrophysics Data System (ADS)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-05-01

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10-100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  17. The static and dynamic behaviors of the topological defects in a nematic liquid crystal reveal its material characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Yanagimachi, Takuya; Kumar, Nitin; Gardel, Margaret; Nealey, Paul; de Pablo, Juan

    Topological defects in nematic liquid crystals (LCs) play a key role in phase transitions, domain growth, and morphology evolution. Their ability to absorb impurities offers promise for design of self-assembled, hierarchical materials. Past work has primarily studied defects in thermotropic LCs. In this work, we focus on lyotropic chromonic LCs and biopolymer LCs, and investigate how the static and dynamic properties of topological defects depend on the LC's material characteristics. Specifically, we rely on a Landau-de Gennes free energy model that accounts for variable material constants and back-flow effects, and adopt a hybrid lattice Boltzmann simulation method. We first show that the fine structure of half-charge defects is a function of the ratio of splay and bend constants. This morphological information is in turn used to infer the elasticity of an in vitro, actin-based LC suspension. We then examine the annihilation process of a defect pair of opposite topological charge. We find that the ratio of the two defect velocities is an outcome of the interplay between the LC's elastic moduli, its viscosities, and the organization of the defects. Our calculations predict a strong post-annihilation transverse flow that is further confirmed by our experiments with non-equilibrium LCs. An analysis of the asymptotic behavior of the elastic moduli allows us to elucidate the material at phase transitions. Our modelling provides a general, unified framework within which a wide class of LC materials can be understood.

  18. Effects of polymers on the rotational viscosities of nematic liquid crystals and dynamics of field alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D.

    Many of the important physical phenomena exhibited by the nematic phase, such as its unusual flow properties and its responses to the electric and the magnetic fields, can be discussed regarding it as a continous medium. The Leslie-Erickson dynamic theory has the six dissipative coefficients from continuum model of liquid crystal. Parodi showed that only five of them are independent, when Onsagar`s reciprocal relations are used. One of these, which has no counterpart in the isotropic liquids, is the rotational viscosity co-efficient, {gamma}{sub 1}. The main objective of this project is to study the rotational viscosities of selected micellar nematicmore » systems and the effect of dissolved polymers in micellar and thermotropic liqud crystals. We used rotating magnetic field method which allows one to determine {gamma}{sub 1} and the anisotropic magnetic susceptibility, {chi}{sub a}. For the ionic surfactant liquid crystals of SDS and KL systems used in this study, the rotational viscosity exhibited an extraordinary drop after reaching the highest values {gamma}{sub 1} as the temperature was lowered. This behavior is not observed in normal liquid crystals. But this phenomena can be attributed to the existence of nematic biaxial phase below the rod-like nematic N{sub c} phase. The pretransitional increase in {gamma}{sub 1} near the disk-like nematic to smectic-A phase transition of the pure CsPFO/H{sub 2}O systems are better understood with the help of mean-field models of W.L. McMillan. He predicted a critical exponent {nu} = {1/2} for the divergence of {gamma}{sub 1}. The polymer (PEO, molecular weight = 10{sup 5}) dissolved in CsPFO/H{sub 2}O system (which has 0.6% critical polymer concentration), suppressed the nematic to lamellar smectic phase transition in concentrated polymer solutions (0.75% and higher). In dilute polymer solutions with lower than 0.3% polyethylene-oxide, a linear increase of {gamma}{sub 1} is observed, which agrees with Brochard theory.« less

  19. Enhancement of the orientational order parameter of nematic liquid crystals in thin cells.

    PubMed

    Dhara, Surajit; Madhusudana, N V

    2004-04-01

    Abstract. We report measurements of birefringence (Delta n) of several nematic liquid crystals having transverse as well as longitudinal dipole moments in thin (1.4 to 2.3 microm) and thick (7 to 16 microm) cells. Rubbed polyimide-coated glass plates are used to get planar alignment of the nematic director in these cells. We find significant enhancement (6 to 18%) of Delta n (proportional to S, where S is the orientational order parameter) in thin cells in all compounds with aromatic cores even at temperatures far approximately 20 degrees C) below the nematic-isotropic transition point. The enhancement is larger in compounds having several phenyl rings and lower if the number of phenyl rings is reduced. In a compound that does not have an aromatic core no significant enhancement is observed, implying that the strength of the surface potential depends on the aromaticity of the cores. Assuming a perfect orientational order at the surface, calculations based on the Landau-de Gennes theory show that the thickness averaged enhancement of S is sharply reduced as the temperature is lowered in the nematic phase. The measured order parameter S is further enhanced in thin cells because of the stiffening of the elastic constant which reduces the thermal fluctuations of the nematic director. The combined effect is however too small at low temperatures to account for the experimental data.

  20. Theory of elastic interaction between arbitrary colloidal particles in confined nematic liquid crystals.

    PubMed

    Tovkach, O M; Chernyshuk, S B; Lev, B I

    2012-12-01

    We develop the method proposed by Chernyshuk and Lev [Phys. Rev. E 81, 041701 (2010)] for theoretical investigation of elastic interactions between colloidal particles of arbitrary shape and chirality (polar as well as azimuthal anchoring) in the confined nematic liquid crystal (NLC). General expressions for six different types of multipole elastic interactions are obtained in the confined NLC: monopole-monopole (Coulomb type), monopole-dipole, monopole-quadrupole, dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions. The obtained formulas remain valid in the presence of the external electric or magnetic fields. The exact equations are found for all multipole coefficients for the weak anchoring case. For the strong anchoring coupling, the connection between the symmetry of the shape or director and multipole coefficients is obtained, which enables us to predict which multipole coefficients vanish and which remain nonzero. The particles with azimuthal helicoid anchoring are considered as an example. Dipole-dipole interactions between helicoid cylinders and cones are found in the confined NLC. In addition, the banana-shaped particles in homeotropic and planar nematic cells are considered. It is found that the dipole-dipole interaction between banana-shaped particles differs greatly from the dipole-dipole interaction between the axially symmetrical particles in the nematic cell. There is a crossover from attraction to repulsion between banana particles along some directions in nematic cells. It is shown that monopoles do not "feel" the type of nematic cell: monopole-monopole interaction turns out to be the same in homeotropic and planar nematic cells and converges to the Coulomb law as thickness increases, L→∞.

  1. Color Gamut of a Nematic Liquid Crystal Display

    NASA Astrophysics Data System (ADS)

    Shimomura, Teruo; Mada, Hitoshi; Kobayashi, Shunsuke

    1980-05-01

    The theoretical color gamut of a nematic liquid crystal display is described. The color gamut of a tunable birefringence mode and a guest host mode are revealed with the CIE chromaticity diagram and color solid. In order to account for the quantitative color gamut, color matching between the given chromaticity coordinates and those calculated is investigated. Color matching is performed by a combination of three liquid crystal subcells (A, B, C), where each subcell receives the voltage VA, VB, VC or contains the dye amount a, b, c. Calculation of the value of voltage or dye amount was executed by the matrix representation method. The calculated data are in good agreement with the given data within 0.50 CIE-UNIT color difference in the 1964 CIE (U*, V*, W*) color scale.

  2. Biaxiality in Nematic and Smectic Liquid Crystals. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Satyendra; Li, Quan; Srinivasarao, Mohan

    2017-01-24

    During the award period, the project team explored several phenomena in a diverse group of soft condensed matter systems. These include understanding of the structure of the newly discovered twist-bend nematic phase, solving the mystery of de Vries smectic phases, probing of interesting associations and defect structures in chromonic liquid crystalline systems, dispersions of ferroelectric nanoparticles in smectic liquid crystals, investigations of newly synthesized light sensitive and energy harvesting materials with highly desirable transport properties. Our findings are summarized in the following report followed by a list of 36 publications and 37 conference presentations. We achieved this with the supportmore » of Basic Sciences Division of the US DOE for which we are thankful.« less

  3. Micellar-shape anisometry near isotropic-liquid-crystal phase transitions

    NASA Astrophysics Data System (ADS)

    Itri, R.; Amaral, L. Q.

    1993-04-01

    Micellar phases of the sodium dodecyl (lauryl) sulfate (SLS)-water-decanol system have been studied by x-ray scattering in the isotropic (I) phase, with emphasis on the I-->hexagonal (Hα) and I-->nematic-cylindrical (Nc) lyotropic liquid-crystal phase transitions. Analysis of the scattering curves is made through modeling of the product P(q)S(q), where P(q) is the micellar form factor and S(q) is the intermicellar interference function, calculated from screened Coulombic repulsion in a mean spherical approximation. Results show that micelles grow more by decanol addition near the I-->Nc transition (anisometry ν~=3) than by increased amphiphile concentration in the binary system near the I-->Hα phase transition (ν~=2.4). These results compare well with recent theories for isotropic-liquid-crystal phase transitions.

  4. Electron paramagnetic resonance studies of slowly tumbling vanadyl spin probes in nematic liquid crystals

    NASA Technical Reports Server (NTRS)

    Bruno, G. V.; Harrington, J. K.; Eastman, M. P.

    1978-01-01

    The purposes of this vanadyl spin probe study are threefold: (1) to establish when the breakdown of motionally narrowed formulas occurs; (2) to analyze the experimental vanadyl EPR line shapes by the stochastic Lioville method as developed by Polnaszek et al. (1973) for slow tumbling in an anisotropic liquid; and (3) to compare the vanadyl probe study results with those of Polnaszek and Freed (1975). Spectral EPR line shapes are simulated for experimental spectra of vanadyl acetylacetonate (VOAA) in nematic liquid crystal butyl p-(p-ethoxyphenoxycarbonyl) phenyl carbonate (BEPC) and Phase V of EM laboratories. It is shown that the use of typical vanadyl complexes as spin probes for nematic liquid crystals simplifies the theoretical analysis and the subsequent interpretation. Guidelines for the breakdown of motionally narrowed formulas are established. Both the slow tumbling aspects and the effects of non-Brownian rotation should be resolved in order to extract quantitative information about molecular ordering and rotational mobility.

  5. Strong Aggregation-Induced CPL Response Promoted by Chiral Emissive Nematic Liquid Crystals (N*-LCs).

    PubMed

    Li, Xiaojing; Li, Qian; Wang, Yuxiang; Quan, Yiwu; Chen, Dongzhong; Cheng, Yixiang

    2018-05-29

    In this paper we designed a kind of aggregation-induced emission (AIE) chiral fluorescence emitters (R/S-BINOL-CN enantiomers) in the aggregate state. Chiral emissive nematic liquid crystals (N*-LCs) prepared by doping this kind of AIE-active R/S-BINOL-CN enantiomers into a common achiral nematic liquid crystal (N-LC, E7) can self-assemble as the regularly planar Grandjean texture leading to high luminescence dissymmetry factor (glum) of aggregation-induced circularly polarized luminescence (AI-CPL) signal up to 0.41, which can be attributed to dipolar interactions from polar cyano groups and π-π interactions between binaphthyl moiety of the dopant R/S-BINOL-CN and biphenyl group of the host molecules (E7). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Liquid crystal polymers: evidence of hairpin defects in nematic main chains, comparison with side chain polymers

    NASA Astrophysics Data System (ADS)

    Li, M. H.; Brûlet, A.; Keller, P.; Cotton, J. P.

    1996-09-01

    This article describes the conformation of two species of liquid crystalline polymers as revealed by small angle neutron scattering. The results obtained with side chain polymers are recalled. The procedure used to analyze the scattering data of main chains in the nematic phase is reported in this paper. It permits a demonstration of the existence of hairpins. Comparison of both polymer species shows that in the isotropic phase, the two polymers adopt a random coil conformation. In the nematic phase, the conformations are very different; the side chains behave as a melt of penetrable random coils whereas the main chains behave as a nematic phase of non penetrable cylinders.

  7. Co-dispersion of plasmonic nanorods in thermotropic nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sheetah, Ghadah; Liu, Qinkun; Smalukh, Ivan

    Colloidal dispersions of plasmonic metal nanoparticles in liquid crystals promise the capability of pre-engineering tunable optical properties of mesostructured metal-dielectric composites. Recently, concentrated dispersions of anisotropic gold, silver, and metal alloy nanoparticles in nematic hosts have been achieved and successfully controlled by low-voltage fields. However, to enable versatile designs of material behavior of the composites, simultaneous co-dispersion of anisotropic particles with different shapes, alignment properties, and compositions are often needed. We achieve such co-dispersions and explore their switching characteristics in response to external stimuli like light and electric fields. We demonstrated that spectral characteristics of co-dispersions of multiple types of anisotropic nanoparticles in a common nematic host provides unprecedented variety of electrically- and optically-tunable material behavior, with a host of potential practical applications in electro-optic devices and displays Ghadah acknowledges support from the King Faisal University (KFU) graduate fellowship.

  8. Symmetry breaking in nematic liquid crystals: analogy with cosmology and magnetism.

    PubMed

    Repnik, R; Ranjkesh, A; Simonka, V; Ambrozic, M; Bradac, Z; Kralj, S

    2013-10-09

    Universal behavior related to continuous symmetry breaking in nematic liquid crystals is studied using Brownian molecular dynamics. A three-dimensional lattice system of rod-like objects interacting via the Lebwohl-Lasher interaction is considered. We test the applicability of predictions originally derived in cosmology and magnetism. In the first part we focus on coarsening dynamics following the temperature driven isotropic-nematic phase transition for different quench rates. The behavior in the early coarsening regime supports predictions made originally by Kibble in cosmology. For fast enough quenches, symmetry breaking and causality give rise to a dense tangle of defects. When the degree of orientational ordering is large enough, well defined protodomains characterized by a single average domain length are formed. With time subcritical domains gradually vanish and supercritical domains grow with time, exhibiting a universal scaling law. In the second part of the paper we study the impact of random-field-type disorder on a range of ordering in the (symmetry broken) nematic phase. We demonstrate that short-range order is observed even for a minute concentration of impurities, giving rise to disorder in line with the Imry-Ma theorem prediction only for the appropriate history of systems.

  9. Lyotropic Phase Behavior of Polybutadiene-Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simone, Peter M.; Lodge, Timothy P.

    2008-08-26

    The lyotropic phase behavior of three poly(1,2-butadiene-b-ethylene oxide) diblock copolymers (PB-PEO) with different monomer volume fractions has been studied in two different ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMI][PF{sub 6}]), across the complete concentration range. The ordered microstructures present in the solutions were characterized via small-angle X-ray scattering (SAXS). The phase diagrams for the PB-PEO/ionic liquid solutions include regions corresponding to the classical copolymer microstructures: body-centered-cubic lattices of spheres, hexagonally ordered cylinders, and lamellae. Additionally, the phase diagrams also include wide regions of coexisting microstructures and regions apparently corresponding to a disordered network microstructure. The phase behavior ofmore » the PB-PEO copolymers in both ionic liquids was comparable to their previously reported aqueous solution behavior. The temperature dependence of the phase diagrams was very modest, indicative of a highly segregated system. The level of solvent selectivity was also investigated via cryogenic transmission electron microscopy (cryo-TEM) on dilute solutions. On the basis of the morphology of the dilute solution copolymer aggregate structures in the ionic liquid solvents, and on the structural length scales of the concentrated solutions, it was concluded that for PB-PEO [BMI][PF{sub 6}] behaves as a more selective solvent than [EMI][TFSI].« less

  10. Defect dynamics in active nematics

    PubMed Central

    Giomi, Luca; Bowick, Mark J; Mishra, Prashant; Sknepnek, Rastko; Cristina Marchetti, M

    2014-01-01

    Topological defects are distinctive signatures of liquid crystals. They profoundly affect the viscoelastic behaviour of the fluid by constraining the orientational structure in a way that inevitably requires global changes not achievable with any set of local deformations. In active nematic liquid crystals, topological defects not only dictate the global structure of the director, but also act as local sources of motion, behaving as self-propelled particles. In this article, we present a detailed analytical and numerical study of the mechanics of topological defects in active nematic liquid crystals. PMID:25332389

  11. Slow molecular dynamics of water in a lyotropic complex fluid studied by deuterium conventional and spin-lattice relaxometry NMR.

    PubMed

    Rodríguez, C R; Pusiol, D J; Figueiredo Neto, A M; Seitter, R-O

    2002-03-01

    A nuclear magnetic resonance study of protons and deuterons in the mesomorphic phases of the micellar lyotropic mixture potassium laurate/1-decanol/heavy water is reported. The slow dynamical behavior of water molecules has been investigated with deuterons spin-lattice relaxation dispersion in the Larmor frequency range 10(3)nematic phases the water slow reorientational dynamics is closely related to the slow reorientation of the micellar aggregates. In addition, conventional deuterium nuclear magnetic resonance at nu(L)=4.2x10(7) Hz spectra has been measured at different places in the phase diagram. The line shapes show a quadrupolar splitting in nematic phases, meanwhile in the isotropic phase the spectral structure collapses in a single line. This indicates that in the nematic phases the water reorientations are not enough to average the deuterons quadrupolar Hamiltonian. On the other hand, fast isotropic water reorientations reduce the quadrupolar interactions in the isotropic phase.

  12. Electrorheological effect and electro-optical properties of side-on liquid crystalline polysiloxane in a nematic solvent.

    PubMed

    Kaneko, Kosuke; Oto, Kodai; Kawai, Toshiaki; Choi, Hyunseok; Kikuchi, Hirotsugu; Nakamura, Naotake

    2013-08-26

    The electrorheological (ER) effect and the electro-optical properties of a ''side-on'' liquid crystalline polysiloxane (PS) are investigated. A large ER effect is observed and the response to the shear stress of neat PS in the nematic phase is shown to be affected by the shear rate. PS is also mixed with a low-molar nematic liquid crystal (5CB) in order to improve the response behavior to the applied electric field. The rheological properties of such mixtures are highly dependent on the concentration of 5CB. The composites respond faster to the applied electric field and have improved electro-optical properties. This study offers a new perspective on the development of liquid crystal materials for the ER effect. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effects of molecular elongation on liquid crystalline phase behaviour: isotropic-nematic transition

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra; Ram, Jokhan

    2003-08-01

    We present the density-functional approach to study the isotropic-nematic transitions and calculate the values of freezing parameters of the Gay-Berne liquid crystal model, concentrating on the effects of varying the molecular elongation, x0. For this, we have solved the Percus-Yevick integral equation theory to calculate the pair-correlation functions of a fluid the molecules of which interact via a Gay-Berne pair potential. These results have been used in the density-functional theory as an input to locate the isotropic-nematic transition and calculate freezing parameters for a range of length-to-width parameters 3.0⩽ x0⩽4.0 at reduced temperatures 0.95 and 1.25. We observed that as x0 is increased, the isotropic-nematic transition is seen to move to lower density at a given temperature. We find that the density-functional theory is good to study the freezing transitions in such fluids. We have also compared our results with computer simulation results wherever they are available.

  14. Noncovalent Polymerization of Mesogens Crystallizes Lysozyme: Correlation between Nonamphiphilic Lyotropic Liquid Crystal Phase and Protein Crystal Formation

    PubMed Central

    Simon, Karen A.; Shetye, Gauri S.; Englich, Ulrich; Wu, Lei; Luk, Yan-Yeung

    2011-01-01

    Crystallization of proteins is important for fundamental studies and biopharmaceutical development but remains largely an empirical science. Here, we report the use of organic salts that can form a class of unusual non-amphiphilic lyotropic liquid crystals to crystallize the protein lysozyme. Certain non-amphiphilic organic molecules with fused aromatic rings and two charges can assemble into stable thread-like noncovalent polymers that may further form liquid crystal phases in water, traditionally termed chromonic liquid crystals. Using five of these mesogenic molecules as additives to induce protein crystallization, we discover that molecules that can form liquid crystal phases in water are highly effective at inducing the crystal formation of lysozyme, even at concentrations significantly lower than that required for forming liquid crystal phases. This result reveals an example of inducing protein crystallization by the molecular assembly of the additives, and is consistent with a new mechanism by which the strong hydration of an assembly process provides a gradual means to compete for the water molecules to enable solvated proteins to form crystals. PMID:21786812

  15. Experimental NMR spin-lattice relaxometry study in the liquid crystalline nematic phase of propylcyano-phenylcyclohexane.

    PubMed

    Acosta, R H; Pusiol, D J

    2001-01-01

    The NMR spin-lattice proton relaxation dispersion T1(nu(L)) of the liquid crystal propylcyano-phenylcyclohexane is studied over several decades of Larmor frequencies and at different temperatures in the nematic mesophase. The results show that the order fluctuation of the local nematic director contribution to T1(nu(L)) undergoes a transition between two power regimes: from T1(nu(L)) protional to nu(1/2)L to nu(alpha)L (alpha approximately 1/3) on going from low to high Larmor frequencies.

  16. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartan, Chloe C., E-mail: chloe.tartan@eng.ox.ac.uk, E-mail: steve.elston@eng.ox.ac.uk; Salter, Patrick S.; Booth, Martin J.

    2016-05-14

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phasemore » of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.« less

  17. Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time.

    PubMed

    Mohammadimasoudi, Mohammad; Beeckman, Jeroen; Shin, Jungsoon; Lee, Keechang; Neyts, Kristiaan

    2014-08-11

    A wavelength shift of the photonic band gap of 141 nm is obtained by electric switching of a partly polymerized chiral liquid crystal. The devices feature high reflectivity in the photonic band gap without any noticeable degradation or disruption and have response times of 50 µs and 20 µs for switching on and off. The device consists of a mixture of photo-polymerizable liquid crystal, non-reactive nematic liquid crystal and a chiral dopant that has been polymerized with UV light. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.

  18. Spontaneous electrorheological effect in nematic liquid crystals under Taylor-Couette flow configuration

    NASA Astrophysics Data System (ADS)

    Dhar, Jayabrata; Chakraborty, Suman

    2017-09-01

    Electrorheological (ER) characteristics of Nematic Liquid Crystals (NLCs) have been a topic of immense interest in the field of soft matter physics owing to its rheological modulation capabilities. Here we explore the augmentation in rheological characteristics of the nematic fluid confined within the annular region of the concentric cylindrical space with an Electrical Double Layer (EDL) induced at the fluid-substrate interface due to certain physico-chemical interactions. Using a Taylor-Couette flow configuration associated with an EDL induced at the inner cylinder wall, we show that a spontaneous electrorheological effect is generated owing to the intrinsic director anisotropy and structural order of complex nematic fluids. We seek to find the enhancement in torque transfer capability due to the inherent electrorheological nature of the nematic medium, apart from exploiting the innate nature of such homogeneous media to remain free of coagulation, a fact which makes it an excellent candidate for the applications in microfluidic environment. Our analysis reveals that with stronger induced charge density within the EDL, the apparent viscosity enhances, which, in turn, augments torque transfer across the concentric cylinder. The velocity profile tends to flatten in comparison to the classical circular Couette flow in annular geometry as one increases the surface charge density. We further observe a more pronounced ER effect for the nematic medium having larger electrical permittivity anisotropy. Besides the torque transfer qualifications, we also explore the distinct scenarios, wherein the same NLC medium exhibits shear thinning and shear thickening characteristics. The present configuration of the efficient torque transfer mechanism may be proficiently downscaled to micro-level and is relevant in the fabrication of micro-clutch and micro-dampers.

  19. Elastic anisotropy effects on the electrical responses of a thin sample of nematic liquid crystal.

    PubMed

    Gomes, O A; Yednak, C A R; Ribeiro de Almeida, R R; Teixeira-Souza, R T; Evangelista, L R

    2017-03-01

    The electrical responses of a nematic liquid crystal cell are investigated by means of the elastic continuum theory. The nematic medium is considered as a parallel circuit of a resistance and a capacitance and the electric current profile across the sample is determined as a function of the elastic constants. In the reorientation process of the nematic director, the resistance and capacitance of the sample are determined by taking into account the elastic anisotropy. A nonmonotonic profile for the current is observed in which a minimum value of the current may be used to estimate the elastic constants values. This scenario suggests a theoretical method to determine the values of the bulk elastic constants in a single planar aligned cell just by changing the direction of applied electrical field and measuring the resulting electrical current.

  20. Switchable polarization-sensitive surface plasmon resonance of highly stable gold nanorods liquid crystals composites

    NASA Astrophysics Data System (ADS)

    Liu, Qingkun; Qian, Jun; Cai, Fuhong; Smalyukh, Ivan I.; He, Sailing

    2011-12-01

    In this work, we demonstrate the bulk self-alignment of gold nanorods (GNRs) dispersed in lyotropic nematic liquid crystals (LCs) with high optical absorption coefficient at the surface plasmon resonant wavelength. The polymer-coated GNRs which show spontaneous long-range orientational ordering along the director of LC host exhibit long-term stability as well as high concentration. External magnetic field and shearing allow for alignment and realignment of the orientation of gold nanorods by changing the director of the liquid crystal matrix. This results in a switchable polarization-sensitive surface plasmon resonance exhibiting stark differences from that of the same nanorods in isotropic fluids. The devise-scale bulk nanoparticle alignment may enable optical metamaterial mass production and control of surface plasmon resonance of nanoparticles.

  1. Reverse lyotropic liquid crystals from europium nitrate and P123 with enhanced luminescence efficiency.

    PubMed

    Yi, Sijing; Li, Qintang; Liu, Hongguo; Chen, Xiao

    2014-10-02

    Fabrication of lyotropic aggregates containing the lanthanide ions is becoming a preferable way to prepare novel functional materials. Here, the lyotropic liquid crystals (LLCs) of reverse hexagonal, reverse bicontinuous cubic, and lamellar phases have been constructed in sequence directly from the mixtures of Eu(NO3)3·6H2O and Pluronic P123 amphiphilc block copolymer with increasing the salt proportion. Their phase types and structural characteristics were analyzed using polarized optical microscopy (POM) and small-angle X-ray scattering (SAXS) measurements. The driving forces of reverse LLC phase formation were investigated using Fourier-transformed infrared spectroscopy (FTIR) and rheological measurements. The hydrated europium salt was found to act not only as a solvent here, but also as the bridge to form hydrogen bonding between coordinated water molecules and PEO blocks, which played a key role in the reverse LLCs formation. Compared to those in aqueous solutions and solid state, the enhanced luminescence quantum yields and prolonged excited state lifetimes were observed in two europium containing reverse mesophases. The luminescence quenching effect of lanthanide ions was efficiently suppressed, probably due to the substitution of coordinated water molecules by oxyethyl groups of P123 and ordered phase structures of LLCs, where the coordinated europium ions were confined and isolated by PEO blocks. The optimum luminescence performance was then found to exist in the reverse hexagonal phase. The obtained results on such lanthanide-induced reverse LLCs should be referable for designing new luminescent soft materials construction to expand their application fields.

  2. Pattern Formation in Active Nematics

    NASA Astrophysics Data System (ADS)

    Mishra, Prashant

    This thesis presents analytical and numerical studies of the nonequilibrium dynamics of active nematic liquid crystals. Active nematics are a new class of liquid crystals consisting of elongated rod-like units that convert energy into motion and spontaneously organize in large-scale structures with orientational order and self-sustained flows. Examples include suspensions of cytoskeletal filaments and associated motor proteins, monolayers of epithelial cells plated on a substrate, and bacteria swimming in a nematic liquid crystal. In these systems activity drives the continuous generation and annihilation of topological defects and streaming flows, resulting in spatio-temporal chaotic dynamics akin to fluid turbulence, but that occurs in a regime of flow of vanishing Reynolds number, where inertia is negligible. Quantifying the origin of this nonequilibrium dynamics has implications for understanding phenomena ranging from bacterial swarming to cytoplasmic flows in living cells. After a brief review (Chapter 2) of the properties of equilibrium or passive nematic liquid crystals, in Chapter 3 we discuss how the hydrodynamic equations of nematic liquid crystals can be modified to account for the effect of activity. We then use these equations of active nemato-hydrodynamics to characterize analytically the nonequilibrium steady states of the system and their stability. We supplement the analytical work with numerical solution of the full nonlinear equations for the active suspension and construct a phase diagram that identifies the various emergent patterns as a function of activity and nematic stiffness. In Chapter 4 we compare results obtained with two distinct hydrodynamic models that have been employed in previous studies. In both models we find that the chaotic spatio-temporal dynamics in the regime of fully developed active turbulence is controlled by a single active scale determined by the balance of active and elastic stresses. This work provides a unified

  3. Characterization of light scattering in nematic droplet-polymer films

    NASA Astrophysics Data System (ADS)

    Kinugasa, Naoki; Yano, Yuichi; Takigawa, Akio; Kawahara, Hideo

    1992-06-01

    The optical properties of nematic droplet-polymer films were studied both in the on and off state using Lambert-Beer''s law to characterize their scattering phenomena. For the preparation of the devices, NCAP process was employed with the different diameter, distribution, shape, and density of nematic droplets. Their cell thickness and refractive indices concerning the birefringence of liquid crystals were also controlled. The results showed that the scattering phenomena of nematic droplet-polymer films were likely caused by two types of features. One, related to the surface area of nematic droplets, was the difference of the refractive indices in the interface between liquid crystals and polymer matrix. The other, related to the liquid crystal volume inside the nematic droplets, was the birefringence of liquid crystals. Considering such relations, the extinction coefficient of Lambert-Beer''s law could be described by the sum of the area in the interface multiplied by the difference of the refractive indices between two materials and the liquid crystal volume multiplied by their birefringence. Furthermore, it was found their parallel transmittance in the off state and haze ratio in the on state were well characterized by such extinction coefficient of Lambert-Beer''s law.

  4. Linear and nonlinear properties of photonic crystal fibers filled with nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Brzdąkiewicz, K. A.; Laudyn, U. A.; Karpierz, M. A.; Woliński, T. R.; Wójcik, J.

    2006-12-01

    We investigate linear and nonlinear light propagation in the photonic crystal fibers infiltrated with nematic liquid crystals. Such a photonic structure, with periodic modulation of refractive index, which could be additionally controlled by the temperature and by the optical power, allows for the study of discrete optical phenomena. Our theoretical investigations, carried out with the near infrared wavelength of 830 nm, for both focusing and defocusing Kerr-type nonlinearity, show the possibility of the transverse light localization, which can result in the discrete soliton generation. In addition, we present the preliminary experimental results on the linear light propagation in the photonic crystal fiber with the glycerin-water solution and 6CHBT nematics, as the guest materials.

  5. The Landau-de Gennes approach revisited: A minimal self-consistent microscopic theory for spatially inhomogeneous nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Gârlea, Ioana C.; Mulder, Bela M.

    2017-12-01

    We design a novel microscopic mean-field theory of inhomogeneous nematic liquid crystals formulated entirely in terms of the tensor order parameter field. It combines the virtues of the Landau-de Gennes approach in allowing both the direction and magnitude of the local order to vary, with a self-consistent treatment of the local free-energy valid beyond the small order parameter limit. As a proof of principle, we apply this theory to the well-studied problem of a colloid dispersed in a nematic liquid crystal by including a tunable wall coupling term. For the two-dimensional case, we investigate the organization of the liquid crystal and the position of the point defects as a function of the strength of the coupling constant.

  6. Photo-switchable bistable twisted nematic liquid crystal optical switch.

    PubMed

    Wang, Chun-Ta; Wu, Yueh-Chi; Lin, Tsung-Hsien

    2013-02-25

    This work demonstrates a photo-switchable bistable optical switch that is based on an azo-chiral doped liquid crystal (ACDLC). The photo-induced isomerization of the azo-chiral dopant can change the chirality of twisted nematic liquid crystal and the gap/pitch ratio of an ACDLC device, enabling switching between 0° and 180° twist states in a homogeneous aligned cell. The bistable 180° and 0° twist states of the azo-chiral doped liquid crystal between crossed polarizers correspond to the ON and OFF states of a light shutter, respectively, and they can be maintained stably for tens of hours. Rapid switching between 180° and 0° twist states can be carried out using 408 and 532 nm addressing light. Such a photo-controllable optical switch requires no specific asymmetric alignment layer or precise control of the cell gap/pitch ratio, so it is easily fabricated and has the potential for use in optical systems.

  7. Spherical Particle in Nematic Liquid Crystal Under an External Field: The Saturn Ring Regime

    NASA Astrophysics Data System (ADS)

    Alama, Stan; Bronsard, Lia; Lamy, Xavier

    2018-03-01

    We consider a nematic liquid crystal occupying the exterior region in R^3 outside of a spherical particle, with radial strong anchoring. Within the context of the Landau-de Gennes theory, we study minimizers subject to an external field, modeled by an additional term which favors nematic alignment parallel to the field. When the external field is high enough, we obtain a scaling law for the energy. The energy scale corresponds to minimizers concentrating their energy in a boundary layer around the particle, with quadrupolar symmetry. This suggests the presence of a Saturn ring defect around the particle, rather than a dipolar director field typical of a point defect.

  8. Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Roberts, Tyler; Aranson, Igor S.; de Pablo, Juan J.

    2016-02-01

    Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices.

  9. Stability of disclination loop in pure twist nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Kadivar, Erfan

    2018-04-01

    In this work, the annihilations dynamics and stability of disclination loop in a bulk pure twist nematic liquid crystal are investigated. This work is based on the Frank free energy and the nematodynamics equations. The energy dissipation is calculated by using two methods. In the first method, the energy dissipation is obtained from the Frank free energy. In the second method, it is calculated by using the nematodynamics equations. Finally, we derive a critical radius of disclination loop that above this radius, loop creation is energetically forbidden.

  10. Key-lock colloids in a nematic liquid crystal.

    PubMed

    Silvestre, Nuno M; Tasinkevych, M

    2017-01-01

    The Landau-de Gennes free energy is used to study theoretically the effective interaction of spherical "key" and anisotropic "lock" colloidal particles. We assume identical anchoring properties of the surfaces of the key and of the lock particles, and we consider planar degenerate and perpendicular anchoring conditions separately. The lock particle is modeled as a spherical particle with a spherical dimple. When such a particle is introduced into a nematic liquid crystal, it orients its dimple at an oblique angle θ_{eq} with respect to the far field director n_{∞}. This angle depends on the depth of the dimple. Minimization results show that the free energy of a pair of key and lock particles exhibits a global minimum for the configuration when the key particle is facing the dimple of the lock colloidal particle. The preferred orientation ϕ_{eq} of the key-lock composite doublet relative to n_{∞} is robust against thermal fluctuations. The preferred orientation θ_{eq}^{(2)} of the dimple particle in the doublet is different from the isolated situation. This is related to the "direct" interaction of defects accompanying the key particle with the edge of the dimple. We propose that this nematic-amplified key-lock interaction can play an important role in self-organization and clustering of mixtures of colloidal particles with dimple colloids present.

  11. Elastic constants and dynamics in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Humpert, Anja; Allen, Michael P.

    2015-09-01

    In this paper, we present molecular dynamics calculations of the Frank elastic constants, and associated time correlation functions, in nematic liquid crystals. We study two variants of the Gay-Berne potential, and use system sizes of half a million molecules, significantly larger than in previous studies of elastic behaviour. Equilibrium orientational fluctuations in reciprocal (k-) space were calculated, to determine the elastic constants by fitting at low |k|; our results indicate that small system size may be a source of inaccuracy in previous work. Furthermore, the dynamics of the Gay-Berne nematic were studied by calculating time correlation functions of components of the order tensor, together with associated components of the velocity field, for a set of wave vectors k. Confirming our earlier work, we found exponential decay for splay and twist correlations, and oscillatory exponential decay for the bend correlation. In this work, we confirm similar behaviour for the corresponding velocity components. In all cases, the decay rates, and oscillation frequencies, were found to be accurately proportional to k2 for small k, as predicted by the equations of nematodynamics. However, the observation of oscillatory bend fluctuations, and corresponding oscillatory shear flow decay, is in contradiction to the usual assumptions appearing in the literature, and in standard texts. We discuss the advantages and drawbacks of using large systems in these calculations.

  12. X-ray and Raman scattering study of orientational order in nematic and heliconical nematic liquid crystals.

    PubMed

    Singh, Gautam; Fu, Jinxin; Agra-Kooijman, Dena M; Song, Jang-Kun; Vengatesan, M R; Srinivasarao, Mohan; Fisch, Michael R; Kumar, Satyendra

    2016-12-01

    The temperature dependence of the orientational order parameters 〈P_{2}(cosβ)〉 and 〈P_{4}(cosβ)〉 in the nematic (N) and twist-bend nematic (N_{tb}) phases of the liquid crystal dimer CB7CB have been measured using x-ray and polarized Raman scattering. The 〈P_{2}(cosβ)〉 obtained from both techniques are the same, while 〈P_{4}(cosβ)〉, determined by Raman scattering is, as expected, systematically larger than its x-ray value. Both order parameters increase in the N phase with decreasing temperature, drop across the N-N_{tb} transition, and continue to decrease. In the N_{tb} phase, the x-ray value of 〈P_{4}(cosβ)〉 eventually becomes negative, providing a direct and independent confirmation of a conical molecular orientational distribution. The heliconical tilt angle α, determined from orientational distribution functions in the N_{tb} phase, increases to ∼24^{∘} at ∼15 K below the transition. In the N_{tb} phase, α(T)∝(T^{*}-T)^{λ}, with λ=0.19±0.03. The transition supercools by 1.7 K, consistent with its weakly first-order nature. The value of λ is close to 0.25 indicating close proximity to a tricritical point.

  13. A Simple Method to Measure the Twist Elastic Constant of a Nematic Liquid Crystal

    DTIC Science & Technology

    2015-01-01

    for measuring the twist elastic constant (K22) of a nematic liquid crystal (LC). By adding some chiral dopant to an LC host, the LC directors rotate......of Optics and Photonics , University of Central Florida, Orlando, FL, USA (Received 14 June 2015; accepted 6 July 2015) We demonstrate a simple method

  14. Elastic and hydrodynamic torques on a colloidal disk within a nematic liquid crystal.

    PubMed

    Rovner, Joel B; Borgnia, Dan S; Reich, Daniel H; Leheny, Robert L

    2012-10-01

    The orientationally dependent elastic energy and hydrodynamic behavior of colloidal disks with homeotropic surface anchoring suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) have been investigated. In the absence of external torques, the disks align with the normal of the disk face â parallel to the nematic director n[over ^]. When a magnetic field is applied, the disks rotate â by an angle θ so that the magnetic torque and the elastic torque caused by distortion of the nematic director field are balanced. Over a broad range of angles, the elastic torque increases linearly with θ in quantitative agreement with a theoretical prediction based on an electrostatic analogy. When the disks are rotated to angles θ>π/2, the resulting large elastic distortion makes the disk orientation unstable, and the director undergoes a topological transition in which θ→π-θ. In the transition, a defect loop is shed from the disk surface, and the disks spin so that â sweeps through π radians as the loop collapses back onto the disk. Additional measurements of the angular relaxation of disks to θ=0 following removal of the external torque show a quasi-exponential time dependence from which an effective drag viscosity for the nematic can be extracted. The scaling of the angular time dependence with disk radius and observations of disks rotating about â indicate that the disk motion affects the director field at surprisingly modest Ericksen numbers.

  15. Nematic order on the surface of a three-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Lundgren, Rex; Yerzhakov, Hennadii; Maciejko, Joseph

    2017-12-01

    We study the spontaneous breaking of rotational symmetry in the helical surface state of three-dimensional topological insulators due to strong electron-electron interactions, focusing on time-reversal invariant nematic order. Owing to the strongly spin-orbit coupled nature of the surface state, the nematic order parameter is linear in the electron momentum and necessarily involves the electron spin, in contrast with spin-degenerate nematic Fermi liquids. For a chemical potential at the Dirac point (zero doping), we find a first-order phase transition at zero temperature between isotropic and nematic Dirac semimetals. This extends to a thermal phase transition that changes from first to second order at a finite-temperature tricritical point. At finite doping, we find a transition between isotropic and nematic helical Fermi liquids that is second order even at zero temperature. Focusing on finite doping, we discuss various observable consequences of nematic order, such as anisotropies in transport and the spin susceptibility, the partial breakdown of spin-momentum locking, collective modes and induced spin fluctuations, and non-Fermi-liquid behavior at the quantum critical point and in the nematic phase.

  16. Measuring order in disordered systems and disorder in ordered systems: Random matrix theory for isotropic and nematic liquid crystals and its perspective on pseudo-nematic domains

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Stratt, Richard M.

    2018-05-01

    Surprisingly long-ranged intermolecular correlations begin to appear in isotropic (orientationally disordered) phases of liquid crystal forming molecules when the temperature or density starts to close in on the boundary with the nematic (ordered) phase. Indeed, the presence of slowly relaxing, strongly orientationally correlated, sets of molecules under putatively disordered conditions ("pseudo-nematic domains") has been apparent for some time from light-scattering and optical-Kerr experiments. Still, a fully microscopic characterization of these domains has been lacking. We illustrate in this paper how pseudo-nematic domains can be studied in even relatively small computer simulations by looking for order-parameter tensor fluctuations much larger than one would expect from random matrix theory. To develop this idea, we show that random matrix theory offers an exact description of how the probability distribution for liquid-crystal order parameter tensors converges to its macroscopic-system limit. We then illustrate how domain properties can be inferred from finite-size-induced deviations from these random matrix predictions. A straightforward generalization of time-independent random matrix theory also allows us to prove that the analogous random matrix predictions for the time dependence of the order-parameter tensor are similarly exact in the macroscopic limit, and that relaxation behavior of the domains can be seen in the breakdown of the finite-size scaling required by that random-matrix theory.

  17. Detection of a new 'nematic-like' phase in liquid crystal-amphiphile mixture by differential scanning calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan, Kaustabh, E-mail: kaustabhdan@gmail.com; Roy, Madhusudan, E-mail: kaustabhdan@gmail.com; Datta, Alokmay, E-mail: kaustabhdan@gmail.com

    2014-04-24

    Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.

  18. Optical transmission of nematic liquid crystal 5CB doped by single-walled and multi-walled carbon nanotubes.

    PubMed

    Lisetski, L N; Fedoryako, A P; Samoilov, A N; Minenko, S S; Soskin, M S; Lebovka, N I

    2014-08-01

    Comparative studies of optical transmission of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), dispersed in nematic liquid crystal matrix 5CB, were carried out. The data evidence violations of Beer-Lambert-Bouguer (BLB) law both in cell thickness and concentration dependencies. The most striking is the fact that optical transmission dependencies for SWCNTs and MWCNTs were quite different in the nematic phase, but they were practically indistinguishable in the isotropic phase. Monte Carlo simulations of the impact of aggregation on direct transmission and violation of BLB law were also done. The results were discussed accounting for the tortuous shape of CNTs, their physical properties and aggregation, as well as strong impact of perturbations of the nematic 5CB structure inside coils and in the vicinity of CNT aggregates.

  19. Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode

    NASA Astrophysics Data System (ADS)

    Hong, S. H.; Jeong, Y. H.; Kim, H. Y.; Cho, H. M.; Lee, W. G.; Lee, S. H.

    2000-06-01

    We have fabricated a vertically aligned 4-domain nematic liquid crystal display cell with thin film transistor. Unlike the conventional method constructing 4-domain, i.e., protrusion and surrounding electrode which needs additional processes, in this study the pixel design forming 4-domain with interdigital electrodes is suggested. In the device, one pixel is divided into two parts. One part has a horizontal electric field in the vertical direction and the other part has a horizontal one in the horizontal direction. Such fields in the horizontal and vertical direction drive the liquid crystal director to tilt down in four directions. In this article, the electro-optic characteristics of cells with 2 and 4 domain have been studied. The device with 4 domain shows faster response time than normal twisted-nematic and in-plane switching cells, wide viewing angle with optical compensation film, and more stable color characteristics than 2-domain vertical alignment cell with similar structure.

  20. Chiral lyotropic chromonic liquid crystals composed of disodium cromoglycate doped with water-soluble chiral additives.

    PubMed

    Shirai, Tatsuya; Shuai, Min; Nakamura, Keita; Yamaguchi, Akihiro; Naka, Yumiko; Sasaki, Takeo; Clark, Noel A; Le, Khoa V

    2018-02-28

    We investigated the pitches of cholesteric liquid crystals prepared by mixing disodium cromoglycate (DSCG) in water with 5 different water-soluble chiral additives. The measurements are based on the Grandjean-Cano wedge cell method. Overall, the twisting effect is weak, and the shortest pitch of 2.9 ± 0.2 μm is obtained using trans-4-hydroxy-l-proline, by which the cholesteric sample is iridescent at certain viewing angles. Freeze-fracture transmission electron microscopy (FFTEM) was also performed for the first time on both the nematic and cholesteric phases, revealing that stacked chromonic aggregates are very long, up to a few hundred nm, which explains why cholesteric chromonic liquid crystals hardly have pitches in the visible wavelength region.

  1. Bistable director alignments of nematic liquid crystals confined in frustrated substrates

    NASA Astrophysics Data System (ADS)

    Araki, Takeaki; Nagura, Jumpei

    2017-01-01

    We studied in-plane bistable alignments of nematic liquid crystals confined by two frustrated surfaces by means of Monte Carlo simulations of the Lebwohl-Lasher spin model. The surfaces are prepared with orientational checkerboard patterns, on which the director field is locally anchored to be planar yet orthogonal between the neighboring blocks. We found the director field in the bulk tends to be aligned along the diagonal axes of the checkerboard pattern, as reported experimentally [J.-H. Kim et al., Appl. Phys. Lett. 78, 3055 (2001), 10.1063/1.1371246]. The energy barrier between the two stable orientations is increased, when the system is brought to the isotropic-nematic transition temperature. Based on an elastic theory, we found that the bistability is attributed to the spatial modulation of the director field near the frustrated surfaces. As the block size is increased and/or the elastic modulus is reduced, the degree of the director inhomogeneity is increased, enlarging the energy barrier. We also found that the switching rate between the stable states is decreased when the block size is comparable to the cell thickness.

  2. Dynamical properties of nematic liquid crystals subjected to shear flow and magnetic fields: tumbling instability and nonequilibrium fluctuations.

    PubMed

    Fatriansyah, Jaka Fajar; Orihara, Hiroshi

    2013-07-01

    We investigate the dynamical properties of monodomain nematic liquid crystals under shear flow and magnetic fields on the basis of the Ericksen-Leslie theory. Stable and unstable states appear depending on the magnetic field and the shear rate. The trajectory of the unstable state shows tumbling motion. The phase diagram of these states is plotted as a function of the three components of the magnetic field at a constant shear rate. The phase diagram changes depending on the viscous properties of different types of nematic liquid crystals. In this nonequilibrium steady state, we calculate the correlation function of director fluctuations and the response function, and discuss the nonequilibrium fluctuations and the modified fluctuation-dissipation relation in connection with nonconservative forces due to shear flow.

  3. Development of New Supramolecular Lyotropic Liquid Crystals and Their Application as Alignment Media for Organic Compounds.

    PubMed

    Leyendecker, Martin; Meyer, Nils-Christopher; Thiele, Christina M

    2017-09-11

    Most alignment media for the residual dipolar coupling (RDC) based molecular structure determination of small organic compounds consist of rod-like polymers dissolved in organic solvents or of swollen cross-linked polymer gels. Thus far, the synthesis of polymer-based alignment media has been a challenging process, which is often followed by a time-consuming sample preparation. We herein propose the use of non-polymeric alignment media based on benzenetricarboxamides (BTAs), which self-assemble into rod-like supramolecules. Our newly found supramolecular lyotropic liquid crystals (LLCs) are studied in terms of their LLC properties and their suitability as alignment media in NMR spectroscopy. Scalable enantiodifferentiating properties are introduced through a sergeant-and-soldier principle by blending achiral with chiral substituted BTAs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Chirality Differentiation by Diffusion in Chiral Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yang, Deng-Ke

    2017-01-01

    Chirality is of great importance in the living world. It helps differentiate biochemical reactions such as those that take place during digestion. It may also help differentiate physical processes such as diffusion. Aiming to study the latter effect, we investigate the diffusion of guest chiral molecules in chiral nematic (cholesteric) liquid-crystal hosts. We discover that the diffusion dramatically depends on the handedness of the guest and host molecules and the chiral differentiation is greatly enhanced by the proper alignment of the liquid-crystal host. The diffusion of a guest chiral molecule in a chiral host with the same handedness is much faster than in a chiral host with opposite handedness. We also observe that the differentiation of chirality depends on the diffusion direction with respect to the twisting direction (helical axis). These results might be important in understanding effects of chirality on physical processes that take place in biological organisms. In addition, this effect could be utilized for enantiomer separation.

  5. Oil and drug control the release rate from lyotropic liquid crystals.

    PubMed

    Martiel, Isabelle; Baumann, Nicole; Vallooran, Jijo J; Bergfreund, Jotam; Sagalowicz, Laurent; Mezzenga, Raffaele

    2015-04-28

    The control of the diffusion coefficient by the dimensionality d of the structure appears as a most promising lever to efficiently tune the release rate from lyotropic liquid crystalline (LLC) phases and dispersed particles towards sustained, controlled and targeted release. By using phosphatidylcholine (PC)- and monolinoleine (MLO)-based mesophases with various apolar structural modifiers and water-soluble drugs, we present a comprehensive study of the dimensional structural control of hydrophilic drug release, including 3-d bicontinuous cubic, 2-d lamellar, 1-d hexagonal and 0-d micellar cubic phases in excess water. We investigate how the surfactant, the oil properties and the drug hydrophilicity mitigate or even cancel the effect of structure variation on the drug release rate. Unexpectedly, the observed behavior cannot be fully explained by the thermodynamic partition of the drug into the lipid matrix, which points out to previously overlooked kinetic effects. We therefore interpret our results by discussing the mechanism of structural control of the diffusion rate in terms of drug permeation through the lipid membrane, which includes exchange kinetics. A wide range of implications follow regarding formulation and future developments, both for dispersed LLC delivery systems and topical applications in bulk phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Broadband reflection of polymer-stabilized chiral nematic liquid crystals induced by a chiral azobenzene compound.

    PubMed

    Chen, Xingwu; Wang, Ling; Chen, Yinjie; Li, Chenyue; Hou, Guoyan; Liu, Xin; Zhang, Xiaoguang; He, Wanli; Yang, Huai

    2014-01-21

    A chiral nematic liquid crystal-photopolymerizable monomer-chiral azobenzene compound composite was prepared and then polymerized under UV irradiation. The reflection wavelength of the composite can be extended to cover the 1000-2400 nm range and also be adjusted to the visible light region by controlling the concentration of chiral compounds.

  7. Impact of spherical nanoparticles on nematic order parameters

    NASA Astrophysics Data System (ADS)

    Kyrou, C.; Kralj, S.; Panagopoulou, M.; Raptis, Y.; Nounesis, G.; Lelidis, I.

    2018-04-01

    We study experimentally the impact of spherical nanoparticles on the orientational order parameters of a host nematic liquid crystal. We use spherical core-shell quantum dots that are surface functionalized to promote homeotropic anchoring on their interface with the liquid crystal host. We show experimentally that the orientational order may be strongly affected by the presence of spherical nanoparticles even at low concentrations. The orientational order of the composite system is probed by means of polarized micro-Raman spectroscopy and by optical birefringence measurements as function of temperature and concentration. Our data show that the orientational order depends on the concentration in a nonlinear way, and the existence of a crossover concentration χc≈0.004 pw . It separates two different regimes exhibiting pure-liquid crystal like (χ <χc ) and distorted-nematic ordering (χ >χc ), respectively. In the latter phase the degree of ordering is lower with respect to the pure-liquid crystal nematic phase.

  8. Prediction of EPR Spectra of Lyotropic Liquid Crystals using a Combination of Molecular Dynamics Simulations and the Model-Free Approach.

    PubMed

    Prior, Christopher; Oganesyan, Vasily S

    2017-09-21

    We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of the motional electron paramagnetic resonance (EPR) spectra of lyotropic liquid crystals in different aggregation states doped with a paramagnetic spin probe. The purpose of this study is twofold. First, given that EPR spectra are highly sensitive to the motions and order of the spin probes doped within lyotropic aggregates, simulation of EPR line shapes from the results of MD modelling provides an ultimate test bed for the force fields currently employed to model such systems. Second, the EPR line shapes are simulated using the motional parameters extracted from MD trajectories using the Model-Free (MF) approach. Thus a combined MD-EPR methodology allowed us to test directly the validity of the application of the MF approach to systems with multi-component molecular motions. All-atom MD simulations using the General AMBER Force Field (GAFF) have been performed on sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium chloride (DTAC) liquid crystals. The resulting MD trajectories were used to predict and interpret the EPR spectra of pre-micellar, micellar, rod and lamellar aggregates. The predicted EPR spectra demonstrate good agreement with most of experimental line shapes thus confirming the validity of both the force fields employed and the MF approach for the studied systems. At the same time simulation results confirm that GAFF tends to overestimate the packing and the order of the carbonyl chains of the surfactant molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The Viscoelastic Properties of Nematic Monodomains Containing Liquid Crystal Polymers.

    NASA Astrophysics Data System (ADS)

    Gu, Dongfeng

    The work presented here investigates the viscoelastic properties of nematic materials containing liquid crystal polymers (LCP). We focus on how the elastic constants and the viscosity coefficients of the mixture systems are influenced by polymer architectures. In dynamic light scattering studies of the relaxation of the director orientation fluctuations for the splay, twist, and bend deformation modes, decrease of the relaxation rates was observed when LCPs were dissolved into low molar mass nematics (LMMN). For the side-chain LCPs, the slowing down in the bend mode is comparable to or larger than those of the splay and twist modes. For main-chain LCPs, the relative changes in the relaxation rates for the twist and splay modes are about one order of magnitude larger than that for the bend mode. The results of light scattering under an electric field show that the decrease in the twist relaxation rate is due to a large increase in the twist viscosity and a minor decrease in the twist elastic constant. These changes were found to increase with decrease of the spacer length, with increase of molecular weight, and with decrease of the backbone flexibility. In Freedericksz transition measurements, the splay and bend elastic constants and the dielectric anisotropies of the nematic mixtures were determined and the values are 5~15% lower than those of the pure solvent. From the analysis of the results of Freedericksz transition and light scattering experiments, a complete set of the elastic constants and viscosity coefficients corresponding to the three director deformation modes were obtained for the LCP mixtures. The changes in the viscosity coefficients due to addition of LCPs were analysed to estimate the anisotropic shapes of the polymer backbone via a hydrodynamic model. The results suggest that an oblate backbone configuration is maintained by the side-chain LCPs and a prolate chain configuration appears for the main-chain LCPs. The rheological behavior of a side

  10. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals.

    PubMed

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations.

  11. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals

    PubMed Central

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations. PMID:28243062

  12. Laser beam propagation in nematic liquid crystals at the temperature close to the nematicisotropic critical point.

    PubMed

    Chen, Yu-Jen; Lin, Yu-Sung; Jiang, I-Min; Tsai, Ming-Shan

    2008-03-17

    This study investigates the optical nonlinearity of beam propagation in homogeneously aligned nematic liquid crystal (NLC) cells at a temperature close to the nematic-isotropic temperature (TNI). The undulate propagation mode with convergent and divergent loops appearing alternately is reported and the thermally enhanced optical reorientation nonlinearity at the focus is described. The optically induced phase transition exists along the pump beam direction. With the application of the conscopic technique, the arrangements of LC at the focus are proposed in this study. Results of this study demonstrate that the evolution of the LC configuration was affected by the pump beam based on the analysis of conoscopic patterns.

  13. Microstructure and phase behavior in colloids and liquid crystals

    NASA Astrophysics Data System (ADS)

    Lohr, Matthew Alan

    This thesis describes our investigation of microstructure and phase behavior in colloids and liquid crystals. The first set of experiments explores the phase behavior of helical packings of thermoresponsive microspheres inside glass capillaries as a function of volume fraction. Stable helical packings are observed with long-range orientational order. Some of these packings evolve abruptly to disordered states as the volume fraction is reduced. We quantify these transitions using correlation functions and susceptibilities of an orientational order parameter. The emergence of coexisting metastable packings, as well as coexisting ordered and disordered states, is also observed. These findings support the notion of phase-transition-like behavior in quasi-one-dimensional systems. The second set of experiments investigates cross-over behavior from glasses with attractive interactions to sparse gel-like states. In particular, the vibrational modes of quasi-two-dimensional disordered colloidal packings of hard colloidal spheres with short-range attractions are measured as a function of packing fraction. A crossover from glassy to sparse gel-like states is indicated by an excess of low-frequency phonon modes. This change in vibrational mode distribution appears to arise from highly localized vibrations that tend to involve individual and/or small clusters of particles with few local bonds. These mode behaviors and corresponding structural insights may serve as a useful signature for glass-gel transitions in wider classes of attractive packings. A third set of experiments explores the director structures of aqueous lyotropic chromonic liquid crystal (LCLC) films created on square lattice cylindrical-micropost substrates. The structures are manipulated by modulating of the concentration-dependent elastic properties of LCLC s via drying. Nematic LCLC films exhibit preferred bistable alignment along the diagonals of the micropost lattice. Columnar LCLC films form two distinct

  14. Optical studies of blue phase III, twist-bend and bent-core nematic liquid crystals in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Challa, Pavan Kumar

    This dissertation is mainly divided into three parts. First, the dynamic light scattering measurements on both calamitic and bent-core nematic liquid crystals, carried out in the new split-helix resistive magnet at the National High Magnetic Field Laboratory, Tallahassee is discussed. In a nematic liquid crystal the molecules tend to be aligned along a constant direction, labeled by a unit vector (or "director") n. However, there are fluctuations from this average configuration. These fluctuations are very large for long wavelengths and give rise to a strong scattering of light. The magnetic field reduces the fluctuations of liquid crystal director n. Scattered light was detected at each scattering angle ranging from 0° to 40°. The relaxation rate and inverse scattered intensity of director fluctuations exhibit a linear dependence on field-squared up to 25 Tesla. We also observe evidence of field dependence of certain nematic material parameters. In the second part of the dissertation, magneto-optical measurements on two liquid crystals that exhibit a wide temperature-range amorphous blue phase (BPIII) are discussed. Blue phase III is one of the phases that occur between chiral nematic and isotropic liquid phases. Samples were illuminated with light from blue laser; the incident polarization direction of the light was parallel to the magnetic field. The transmitted light was passed through another polarizer oriented at 90° with respect to the first polarizer and was detected by a photo-detector. Magnetic fields up to 25Tesla are found to suppress the onset of BPIII in both materials by almost 1 degree celcius. This effect appears to increase non-linearly with the field strength. The effect of high fields on established BPIII's is also discussed, in which we find significant hysteresis and very slow dynamics. Possible explanations of these results are discussed. In the third part of the dissertation, magneto-optic measurements on two odd-numbered dimer molecules

  15. Global Well-Posedness and Temporal Decay Estimates for the 3D Nematic Liquid Crystal Flows

    NASA Astrophysics Data System (ADS)

    Liu, Qiao

    2018-03-01

    In this paper, we investigate global well-posedness and large time behavior of the Cauchy problem for the 3D incompressible nematic liquid crystal flows. By using the advantage of suitable weighted function, we show that for any initial data (u0,d0-\\overline{d}0) in critical Besov spaces \\dot{B}^{3/p-1}_{p,1}(R3)× \\dot{B}^{3/q}_{q,1}(R3) with 1< p, q<∞ and -\\inf {1/3,1/2p}≤1/q-1/p≤1/3 , if the initial orientation d0-\\overline{d}0 and a certain nonlinear function of initial velocity u0 are small enough, then there exists a global-in-time solution to the nematic liquid crystal flows. We also give an example of initial velocity satisfying that nonlinear smallness condition, but each component of its norm may be arbitrarily large. Moreover, if we further assume that (u0,d0-\\overline{d}0)\\in \\dot{B}^{-s}_{r,∞}(R3)× \\dot{B}^{-s+1}_{r,∞}(R3) with 1nematic liquid crystal flows admits the following temporal decay rate \\Vert {u}(t)\\Vert _{\\dot{B}^{ℓ}_{p,1}} ≤ C(1+t)^{-ℓ +s/2-3/2( 1/r-1/p) } \\quad for all -s-3( 1/r-1/p)<ℓ ≤ 3/p-1; \\Vert {d}(t)-\\overline{d}0\\Vert _{\\dot{B}^{ℓ}_{q,1}} ≤ C(1+t)^{-ℓ +s+1/2-3/2( 1/r-1/q) } \\quad for all -s+1-3( 1/r-1/q) <ℓ ≤ 3/q. Here, \\overline{{d}}0\\in S2 is a constant unit vector.

  16. Inverse hexagonal and cubic micellar lyotropic liquid crystalline phase behaviour of novel double chain sugar-based amphiphiles.

    PubMed

    Feast, George C; Lepitre, Thomas; Tran, Nhiem; Conn, Charlotte E; Hutt, Oliver E; Mulet, Xavier; Drummond, Calum J; Savage, G Paul

    2017-03-01

    The lyotropic phase behaviour of a library of sugar-based amphiphiles was investigated using high-throughput small-angle X-ray scattering (SAXS). Double unsaturated-chain monosaccharide amphiphiles formed inverse hexagonal and cubic micellar (Fd3m) lyotropic phases under excess water conditions. A galactose-oleyl amphiphile from the library was subsequently formulated into hexosome nanoparticles, which have potential uses as drug delivery vehicles. The nanoparticles were shown to be stable at elevated temperatures and non-cytotoxic up to at least 200μgmL -1 . Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  17. Effect of Molecular Flexibility on the Nematic-to-Isotropic Phase Transition for Highly Biaxial Molecular Non-Symmetric Liquid Crystal Dimers

    PubMed Central

    Sebastián, Nerea; López, David Orencio; Diez-Berart, Sergio; de la Fuente, María Rosario; Salud, Josep; Pérez-Jubindo, Miguel Angel; Ros, María Blanca

    2011-01-01

    In this work, a study of the nematic (N)–isotropic (I) phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the α-(4-cyanobiphenyl-4’-yloxy)-ω-(1-pyrenimine-benzylidene-4’-oxy) alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (NB) phase, as they exhibit both molecular biaxiality and flexibility. According to the theory, the uniaxial nematic (NU)–isotropic (I) phase transition is first-order in nature, whereas the NB–I phase transition is second-order. Thus, a fine analysis of the critical behavior of the N–I phase transition would allow us to determine the presence or not of the biaxial nematic phase and understand how the molecular biaxiality and flexibility of these compounds influences the critical behavior of the N–I phase transition. PMID:28824100

  18. Swimming in an anisotropic fluid: How speed depends on alignment angle

    NASA Astrophysics Data System (ADS)

    Shi, Juan; Powers, Thomas R.

    2017-12-01

    Orientational order in a fluid affects the swimming behavior of flagellated microorganisms. For example, bacteria tend to swim along the director in lyotropic nematic liquid crystals. To better understand how anisotropy affects propulsion, we study the problem of a sheet supporting small-amplitude traveling waves, also known as the Taylor swimmer, in a nematic liquid crystal. For the case of weak anchoring of the nematic director at the swimmer surface and in the limit of a minimally anisotropic model, we calculate the swimming speed as a function of the angle between the swimmer and the nematic director. The effect of the anisotropy can be to increase or decrease the swimming speed, depending on the angle of alignment. We also show that elastic torque dominates the viscous torque for small-amplitude waves and that the torque tends to align the swimmer along the local director.

  19. Dynamics of colloidal particles in electrohydrodynamic convection of nematic liquid crystal.

    PubMed

    Takahashi, Kentaro; Kimura, Yasuyuki

    2014-07-01

    We have studied the dynamics of micrometer-sized colloidal particles in electrohydrodynamic convection of nematic liquid crystal. Above the onset voltage of electroconvection, the parallel array of convection rolls appears to be perpendicular to the nematic field at first. The particles are forced to rotate by convection flow and are trapped within a single roll in this voltage regime. A slow glide motion along the roll axis is also observed. The frequency of rotational motion and the glide velocity increase with the applied voltage. Under a much larger voltage where the roll axis temporally fluctuates, the particles occasionally hop to the neighbor rolls. In this voltage regime, the motion of the particles becomes two-dimensional. The motion perpendicular to the roll axis exhibits diffusion behavior at a long time period. The effective diffusion constant is 10(3)-10(4) times larger than the molecular one. The observed behavior is compared with the result obtained by a simple stochastic model for the transport of the particles in convection. The enhancement of diffusion can be quantitatively described well by the rotation frequency in a roll, the width of the roll, and the hopping probability to the neighbor rolls.

  20. Gels and lyotropic liquid crystals: using an imidazolium-based catanionic surfactant in binary solvents.

    PubMed

    Cheng, Ni; Hu, Qiongzheng; Bi, Yanhui; Xu, Wenwen; Gong, Yanjun; Yu, Li

    2014-08-05

    The self-assembly behavior of an imidazolium-based catanionic surfactant, 1-butyl-3-methylimidazolium dodecylsulfate ([C4mim][C12H25SO4]), was investigated in water-ethylammonium nitrate (EAN) mixed solvents with different volume ratios. It is particular interesting that this simple surfactant could not only form lyotropic liquid crystals (LLC) with multimesophases, i.e., normal hexagonal (H1), lamellar liquid crystal (Lα), and reverse bicontinuous cubic phase (V2), in the water-rich environment but also act as an efficient low-molecular-weight gelator (LMWG) which gelated EAN-abundant binary media in a broad concentration range. The peculiar nanodisk cluster morphology of gels composed of similar bilayer units was first observed. FT-IR spectra and density functional theory (DFT) calculations reveal that strong H bonding and electrostatic interactions between EAN and the headgroups of [C4mim][C12H25SO4] are primarily responsible for gelation. The self-assembled gels displayed excellent mechanical strength and a thermoreversible sol-gel transition. It is for the first time that a rich variety of controllable ordered aggregates could be observed only by simply modulating the concentration of a single imidazolium-based catanionic surfactant or the ratio of mixed solvents. This environmentally friendly system is expected to have broad applications in various fields, such as materials science, drug delivery systems, and supramolecular chemistry.

  1. Self-assembled Lyotropic Liquid Crystalline Phase Behavior of Monoolein-Capric Acid-Phospholipid Nanoparticulate Systems.

    PubMed

    Zhai, Jiali; Tran, Nhiem; Sarkar, Sampa; Fong, Celesta; Mulet, Xavier; Drummond, Calum J

    2017-03-14

    We report here the lyotropic liquid crystalline phase behavior of two lipid nanoparticulate systems containing mixtures of monoolein, capric acid, and saturated diacyl phosphatidylcholines dispersed by the Pluronic F127 block copolymer. Synchrotron small-angle X-ray scattering (SAXS) was used to screen the phase behavior of a library of lipid nanoparticles in a high-throughput manner. It was found that adding capric acid and phosphatidylcholines had opposing effects on the spontaneous membrane curvature of the monoolein lipid layer and hence the internal mesophase of the final nanoparticles. By varying the relative concentration of the three lipid components, we were able to establish a library of nanoparticles with a wide range of mesophases including at least the inverse bicontinuous primitive and double diamond cubic phases, the inverse hexagonal phase, the fluid lamellar phase, and possibly other phases. Furthermore, the in vitro cytotoxicity assay showed that the endogenous phospholipid-containing nanoparticles were less toxic to cultured cell lines compared to monoolein-based counterparts, improving the potential of the nonlamellar lipid nanoparticles for biomedical applications.

  2. Phase diagrams of orientational transitions in absorbing nematic liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolot’ko, A. S., E-mail: zolotko@lebedev.ru; Ochkin, V. N.; Smayev, M. P.

    2015-05-15

    A theory of orientational transitions in nematic liquid crystals (NLCs), which employs the expansion of optical torques acting on the NLC director with respect to the rotation angle, has been developed for NLCs with additives of conformationally active compounds under the action of optical and low-frequency electric and magnetic fields. Phase diagrams of NLCs are constructed as a function of the intensity and polarization of the light field, the strength of low-frequency electric field, and a parameter that characterizes the feedback between the rotation of the NLC director and optical torque. Conditions for the occurrence of first- and second-order transitionsmore » are determined. The proposed theory agrees with available experimental data.« less

  3. Orientational order of motile defects in active nematics

    DOE PAGES

    DeCamp, Stephen J.; Redner, Gabriel S.; Baskaran, Aparna; ...

    2015-08-17

    The study of equilibrium liquid crystals has led to fundamental insights into the nature of ordered materials, as well as many practical applications such as display technologies. Active nematics are a fundamentally different class of liquid crystals, which are driven away from equilibrium by the autonomous motion of their constituent rodlike particles. This internally-generated activity powers the continuous creation and annihilation of topological defects, leading to complex streaming flows whose chaotic dynamics appear to destroy long-range order. Here, we study these dynamics in experimental and computational realizations of active nematics. By tracking thousands of defects over centimeter distances in microtubule-basedmore » active nematics, we identify a non-equilibrium phase characterized by system-spanning orientational order of defects. This emergent order persists over hours despite defect lifetimes of only seconds. Lastly, similar dynamical structures are observed in coarse-grained simulations, suggesting that defect-ordered phases are a generic feature of active nematics.« less

  4. Dielectric properties of nematic liquid crystal doped with Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Maleki, A.; Ara, M. H. Majles; Saboohi, F.

    2017-04-01

    The influence of Fe3O4 nanoparticles (NPs) on dielectric properties of planar and homeotropic oriented nematic liquid crystals (NLCs) were studied during the temperature interval of 298-322 °K. It was found that the dielectric permittivity was considerably increased by adding NPs mass percentages. The structural characterization of the synthesized NPs with the scale 14-18 nm has been analyzed by the X-ray diffraction and field-emission scanning electron microscopy results. The obtained dielectric anisotropy (?) and mean dielectric (?) have shown an immense increment in the value of 1% and 10% wt. NPs doped NLCs, respectively. These results were assigned to the strong dipole-dipole interaction between the superparamagnetic particles and the surrounding liquid crystal molecules.

  5. Convection in a nematic liquid crystal with homeotropic alignment and heated from below

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlers, G.

    Experimental results for convection in a thin horizontal layer of a homeotropically aligned nematic liquid crystal heated from below and in a vertical magnetic field are presented. A subcritical Hopf bifurcation leads to the convecting state. There is quantitative agreement between the measured and the predicted bifurcation line as a function of magnetic field. The nonlinear state near the bifurcation is one of spatio-temporal chaos which seems to be the result of a zig-zag instability of the straight-roll state.

  6. Active nematic gels as active relaxing solids

    NASA Astrophysics Data System (ADS)

    Turzi, Stefano S.

    2017-11-01

    I propose a continuum theory for active nematic gels, defined as fluids or suspensions of orientable rodlike objects endowed with active dynamics, that is based on symmetry arguments and compatibility with thermodynamics. The starting point is our recent theory that models (passive) nematic liquid crystals as relaxing nematic elastomers. The interplay between viscoelastic response and active dynamics of the microscopic constituents is naturally taken into account. By contrast with standard theories, activity is not introduced as an additional term of the stress tensor, but it is added as an external remodeling force that competes with the passive relaxation dynamics and drags the system out of equilibrium. In a simple one-dimensional channel geometry, we show that the interaction between nonuniform nematic order and activity results in either a spontaneous flow of particles or a self-organization into subchannels flowing in opposite directions.

  7. Soliton-like defects in nematic liquid crystal thin layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuvyrov, A. N.; Krekhov, A. P.; Lebedev, Yu. A., E-mail: lebedev@anrb.ru

    The nonsingular soliton-like defects in plane nematic liquid crystal (NLC) layers and spherical NLC drops are experimentally detected and studied when the interaction of NLC molecules with a bounding surface is varied. The dynamics and the annihilation of nonsingular defects of opposite signs on a plane surface are investigated. Periodic transformations of the soliton-like defects in NLC drops in an electric field are detected. The theory of elasticity is used to show that the surface energy taken into account in the total free energy of NLC in the case of weak anchoring leads to the possibility of nonsingular solutions ofmore » a director equilibrium equation. The calculated pictures of director distribution in a plane NLC layer and in a spherical NLC drop characterized by weak surface anchoring agree well with the results of polarized light optical observations.« less

  8. Influence of nematic range on birefringence, heat capacity and elastic modulus near a nematic-smectic-A phase transition

    NASA Astrophysics Data System (ADS)

    Beaubois, F.; Claverie, T.; Marcerou, J. P.; Rouillon, J. C.; Nguyen, H. T.; Garland, C. W.; Haga, H.

    1997-11-01

    The birefringence Δn, the specific heat Cp, and the layer compressional elastic modulus B are reported for two liquid crystals near the nematic (N) to smectic-A (SmA) phase transition. As predicted long ago by MacMillan and de Gennes [P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993)] the coupling of the nematic orientational order parameter to the smectic-A layering order parameter can substantially alter the critical behavior near the N-SmA transition if the nematic range is small and the nematic order parameter susceptibility is large. In this paper, we present a direct experimental comparison of two compounds: 4-octyloxy-4'-cyanobiphenyl (8OCB) with a short nematic range and 4-octyloxybenzoyloxy-4'-cyanotolane (C8tolane) with a very large N range. The temperature variations of the apparent birefringence Δn and the specific heat Cp across the N-SmA phase transition show the definite influence of the proximity of the isotropic phase in the case of 8OCB while the C8tolane behaves as expected for the three-dimensional XY universality class. The elastic modulus B in the SmA phase, measured at several wave vectors by the second-sound resonance technique, was studied with high resolution as a function of temperature on approaching Tc(N-SmA). These elastic data confirm the B leveling off in both cases with an apparent breakdown of hydrodynamics in the case of the C8tolane compound.

  9. Light Scattering Studies of Defects in Nematic/Twist-Bend Liquid Crystals and Layer Fluctuations in Free-Standing Smectic Membranes

    NASA Astrophysics Data System (ADS)

    Pardaev, Shokir A.

    This research described in this dissertation comprises three experimental topics and includes the development of an appropriate theoretical framework to understand the various observations in each. In the first part, we present results from angle-resolved second-harmonic light scattering measurements on three different classes of thermotropic nematic liquid crystals: polar and non-polar rodlike compounds, and a bent-core compound. We analyze the data in terms of the "flexoelectric" polarization induced by distortions of the nematic director field around topological defects known as inversion walls, which are analogous to Neel walls in magnetic spin systems and which often exhibit a closed loop morphology in nematic systems. The second part of this dissertation explores the possible existence of a helical polarization field in the nematic twist-bend (NTB) phase of dimeric liquid crystals, utilizing a similar nonlinear light scattering approach. The NTB phase is characterized by a heliconical winding of the local molecular long axis (director) with a remarkably short, nanoscale pitch. According to theoretical conjecture, a helical electric polarization field accompanies this director modulation, but, due to the short pitch, presents a significant challenge for experimental detection. Our study focuses on topological defects, classified as parabolic focal conics, in two achiral, NTB-forming liquid crystals. These defects generate distortions of the polarization field on sufficiently long (micron) lengths to enable a confirmation of the existence of polar structure. We analyze our results with a coarse-grained free energy density that combines a Landau-deGennes expansion of the polarization field, the elastic energy of a nematic, and a bilinear coupling between the two. The last part of the dissertation focuses on the layer dynamics of thin, free-standing membranes of a smectic-A liquid crystal, with a particular consideration of the surface (interfacial) parameters

  10. The Determination of Birefringence Dispersion in Nematic Liquid Crystals by Using the S-Transform

    NASA Astrophysics Data System (ADS)

    Coşkun, E.; Özder, S.; Kocahan, Ö.; Köysal, O.

    2007-04-01

    Transmittance spectra of 5CB and ZLI-6000 coded nematic liquid crystals were acquired in the 12600-22200 cm-1 region at room temperature. The S-transform was applied to analyze the transmittance signal. Dispersion curves of the birefringence were obtained for 5CB and ZLI-6000 by this analysis and data were fitted to the Cauchy formula whereby the dispersion parameters were extracted. Results are found to be in favorable accordance with the published values.

  11. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal.

    PubMed

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  12. Spontaneous topological charging of tactoids in a living nematic

    NASA Astrophysics Data System (ADS)

    Genkin, Mikhail M.; Sokolov, Andrey; Aranson, Igor S.

    2018-04-01

    Living nematic is a realization of an active matter combining a nematic liquid crystal with swimming bacteria. The material exhibits a remarkable tendency towards spatio-temporal self-organization manifested in formation of dynamic textures of self-propelled half-integer topological defects (disclinations). Here we report on the study of such living nematic near normal inclusions, or tactoids, naturally realized in liquid crystals close to the isotropic-nematic (I–N) phase transition. On the basis of the computational analysis, we have established that tactoid’s I–N interface spontaneously acquire negative topological charge which is proportional to the tactoid’s size and depends on the concentration of bacteria. The observed negative charging is attributed to the drastic difference in the mobilities of +1/2 and ‑1/2 topological defects in active systems. The effect is described in the framework of a kinetic theory for point-like weakly-interacting defects with different mobilities. Our dedicated experiment fully confirmed the theoretical prediction. The results hint into new strategies for control of active matter.

  13. Spontaneous topological charging of tactoids in a living nematic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genkin, Mikhail M.; Sokolov, Andrey; Aranson, Igor S.

    Living nematic is a realization of an active matter combining a nematic liquid crystal with swimming bacteria. The material exhibits a remarkable tendency towards spatio-temporal self-organization manifested in formation of dynamic textures of self-propelled half-integer topological defects (disclinations). Here we report on the study of such living nematic near normal inclusions, or tactoids, naturally realized in liquid crystals close to the isotropic-nematic (I-N) phase transition. On the basis of the computational analysis, we have established that tactoid's I-Ninterface spontaneously acquire negative topological charge which is proportional to the tactoid's size and depends on the concentration of bacteria. The observed negativemore » charging is attributed to the drastic difference in the mobilities of +1/2 and -1/2 topological defects in active systems. The effect is described in the framework of a kinetic theory for point-like weakly-interacting defects with different mobilities. Our dedicated experiment fully confirmed the theoretical prediction. Here, the results hint into new strategies for control of active matter.« less

  14. Spontaneous topological charging of tactoids in a living nematic

    DOE PAGES

    Genkin, Mikhail M.; Sokolov, Andrey; Aranson, Igor S.

    2018-04-13

    Living nematic is a realization of an active matter combining a nematic liquid crystal with swimming bacteria. The material exhibits a remarkable tendency towards spatio-temporal self-organization manifested in formation of dynamic textures of self-propelled half-integer topological defects (disclinations). Here we report on the study of such living nematic near normal inclusions, or tactoids, naturally realized in liquid crystals close to the isotropic-nematic (I-N) phase transition. On the basis of the computational analysis, we have established that tactoid's I-Ninterface spontaneously acquire negative topological charge which is proportional to the tactoid's size and depends on the concentration of bacteria. The observed negativemore » charging is attributed to the drastic difference in the mobilities of +1/2 and -1/2 topological defects in active systems. The effect is described in the framework of a kinetic theory for point-like weakly-interacting defects with different mobilities. Our dedicated experiment fully confirmed the theoretical prediction. Here, the results hint into new strategies for control of active matter.« less

  15. Equivalent retarder-rotator approach to on-state twisted nematic liquid crystal displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duran, Vicente; Lancis, Jesus; Tajahuerce, Enrique

    2006-06-01

    Polarization properties of a twisted nematic liquid crystal cell are fully characterized by an equivalent optical system that consists of a retarder wave plate and a rotator. In this paper we show that this result is of interest to optimize the light-modulation capabilities of a voltage-addressed liquid crystal display (LCD). We provide two examples. First, we demonstrate a calibration method that can be carried out by a standard polarimetric technique with a high degree of precision. Second, we propose an optical device to generate a family of equiazimuth polarization states by adding a quarter-wave plate to the LCD. We findmore » that the design procedure is best described in geometrical terms on the Poincare sphere by use of the equivalent model. Finally, laboratory results corresponding to a commercial LCD are presented.« less

  16. Liquid crystalline pattern formation in drying droplets of biopolymers

    NASA Astrophysics Data System (ADS)

    Smalyukh, Ivan; Zribi, Olena; Butler, John; Lavrentovich, Oleg; Wong, Gerard

    2006-03-01

    When a droplet of DNA in water dries out, a ring-like deposit is observed along the perimeter, similar to the stains in spilled drops of coffee. However, the dried ring of DNA is a self-similar birefringent pattern composed of extended molecules. We examine dynamics of the pattern formation at the droplet's rim. This gives us an insight into the underlining physics. During the major part of drying process the contact line is pinned so that DNA molecules are brought to the perimeter and extended by the radial capillary flow. Lyotropic nematic phase is formed in which highly concentrated DNA aligns along the triple line to minimize elastic energy. When the contact angle becomes small, the contact line starts to retract and the radial dilative stress causes buckling distortions at the rim which then propagate deep into the elastic liquid- crystalline medium and give rise to the pattern.

  17. Advection of nematic liquid crystals by chaotic flow

    NASA Astrophysics Data System (ADS)

    O'Náraigh, Lennon

    2017-04-01

    Consideration is given to the effects of inhomogeneous shear flow (both regular and chaotic) on nematic liquid crystals in a planar geometry. The Landau-de Gennes equation coupled to an externally prescribed flow field is the basis for the study: this is solved numerically in a periodic spatial domain. The focus is on a limiting case where the advection is passive, such that variations in the liquid-crystal properties do not feed back into the equation for the fluid velocity. The main tool for analyzing the results (both with and without flow) is the identification of the fixed points of the dynamical equations without flow, which are relevant (to varying degrees) when flow is introduced. The fixed points are classified as stable/unstable and further as either uniaxial or biaxial. Various models of passive shear flow are investigated. When tumbling is present, the flow is shown to have a strong effect on the liquid-crystal morphology; however, the main focus herein is on the case without tumbling. Accordingly, the main result of the work is that only the biaxial fixed point survives as a solution of the Q-tensor dynamics under the imposition of a general flow field. This is because the Q-tensor experiences not only transport due to advection but also co-rotation relative to the local vorticity field. A second result is that all families of fixed points survive for certain specific velocity fields, which we classify. We single out for close study those velocity fields for which the influence of co-rotation effectively vanishes along the Lagrangian trajectories of the imposed velocity field. In this scenario, the system exhibits coarsening arrest, whereby the liquid-crystal domains are "frozen in" to the flow structures, and the growth in their size is thus limited.

  18. Photonic crystals, light manipulation, and imaging in complex nematic structures

    NASA Astrophysics Data System (ADS)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  19. Influence of the nematic order on the rheology and conformation of stretched comb-like liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Fourmaux-Demange, V.; Brûlet, A.; Boué, F.; Davidson, P.; Keller, P.; Cotton, J. P.

    2000-04-01

    We have studied the rheology and the conformation of stretched comb-like liquid-crystalline polymers. Both the influence of the comb-like structure and the specific effect of the nematic interaction on the dynamics are investigated. For this purpose, two isomers of a comb-like polymetacrylate polymer, of well-defined molecular weights, were synthesized: one displays a nematic phase over a wide range of temperature, the other one has only an isotropic phase. Even with high degrees of polymerization N, between 40 and 1000, the polymer chains studied were not entangled. The stress-strain curves during the stretching and relaxation processes show differences between the isotropic and nematic comb-like polymers. They suggest that, in the nematic phase, the chain dynamics is more cooperative than for a usual linear polymer. Small-angle neutron scattering has been used in order to determine the evolution of the chain conformation after stretching, as a function of the duration of relaxation t_r. The conformation can be described with two parameters only: λ_p, the global deformation of the polymer chain, and p, the number of statistical units of locally relaxed sub-chains. For the comb-like polymer, the chain deformation is pseudo-affine: λ_p is always smaller than λ (the deformation ratio of the whole sample). In the isotropic phase, λ_p has a constant value, while p increases as t_r. This latter behavior is not that expected for non-entangled chains, in which p varies as {t_r}^{1/2} (Rouse model). In the nematic phase, λ_p decreases as a stretched exponential function of t_r, while p remains constant. The dynamics of the comb-like polymers is discussed in terms of living clusters from which junctions are produced by interactions between side chains. The nematic interaction increases the lifetime of these junctions and, strikingly, the relaxation is the same at all scales of the whole polymer chain.

  20. Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects

    NASA Astrophysics Data System (ADS)

    Poddar, Antarip; Dhar, Jayabrata; Chakraborty, Suman

    2017-07-01

    Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric, flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes, the EDL potential in this case was found to be dependent on the external field strength. Through a systematic investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.

  1. Optical sensor platform based on cellulose nanocrystals (CNC) - 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films.

    PubMed

    Santos, Moliria V; Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Napoli, Mariana; Nalin, Marcelo; Ribeiro, Sidney J L

    2017-07-15

    The preparation of composite materials has gained tremendous attention due to the potential synergy of the combined materials. Here we fabricate novel thermal/electrical responsive photonic composite films combining cellulose nanocrystals (CNC) with a low molecular weight nematic liquid crystal (NLC), 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC). The obtained composite material combines both intense structural coloration of photonic cellulose and thermal and conductive properties of NLC. Scanning electron microscopy (SEM) results confirmed that liquid crystals coated CNC films maintain chiral nematic structure characteristic of CNC film and simultaneously, transversal cross-section scanning electron microscopy images indicated penetration of liquid crystals through the CNC layers. Investigated composite film maintain NLC optical properties being switchable as a function of temperature during heating/cooling cycles. The relationship between the morphology and thermoresponsive in the micro/nanostructured materials was investigated by using transmission optical microscopy (TOM). Conductive response of the composite films was proved by Electrostatic force microscopy (EFM) measurement. Designed thermo- and electro-responsive materials open novel simple pathway of fabrication of CNC-based materials with tunable properties. Copyright © 2017. Published by Elsevier Ltd.

  2. Mathematical Studies and Simulations of Nematic Liquid Crystal Polymers and Nanocomposites

    DTIC Science & Technology

    2010-01-01

    around the folding point of the phase curve. As the Peclet number increases, the stable branch and the unstable branch of the fold are peeled off from...shaped, boomerang-shaped or banana shaped.76 Recall that in a nematic phase the molecules tend to align along the director n. A biax- ial nematic phase

  3. From the molecular structure to spectroscopic and material properties: computational investigation of a bent-core nematic liquid crystal.

    PubMed

    Greco, Cristina; Marini, Alberto; Frezza, Elisa; Ferrarini, Alberta

    2014-05-19

    We present a computational investigation of the nematic phase of the bent-core liquid crystal A131. We use an integrated approach that bridges density functional theory calculations of molecular geometry and torsional potentials to elastic properties through the molecular conformational and orientational distribution function. This unique capability to simultaneously access different length scales enables us to consistently describe molecular and material properties. We can reassign (13)C NMR chemical shifts and analyze the dependence of phase properties on molecular shape. Focusing on the elastic constants we can draw some general conclusions on the unconventional behavior of bent-core nematics and highlight the crucial role of a properly-bent shape. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electronic structure and pair potential energy analysis of 4-n-methoxy-4′-cyanobiphenyl: A nematic liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Dipendra, E-mail: d-11sharma@rediffmail.com; Tiwari, S. N., E-mail: sntiwari123@rediffmail.com; Dwivedi, M. K., E-mail: dwivedi-ji@gmail.com

    2016-05-06

    Electronic structure properties of 4-n-methoxy-4′-cyanobiphenyl, a pure nematic liquid crystal have been examined using an ab‒initio, HF/6‒31G(d,p) technique with GAMESS program. Conformational and charge distribution analysis have been carried out. MEP, HOMO and LUMO surfaces have been scanned. Ionization potential, electron affinity, electronegativity, global hardness and softness of the liquid crystal molecule have been calculated. Further, stacking, side by side and end to end interactions between a molecular pair have been evaluated. Results have been used to elucidate the physico-chemical and liquid crystalline properties of the system.

  5. Gradient polymer-disposed liquid crystal single layer of large nematic droplets for modulation of laser light.

    PubMed

    Hadjichristov, Georgi B; Marinov, Yordan G; Petrov, Alexander G

    2011-06-01

    The light modulating ability of gradient polymer-disposed liquid crystal (PDLC) single layer of large droplets formed by nematic E7 in UV-cured polymer NOA65 is studied. Operating at relatively low voltages, such PDLC film with a of thickness 10-25 μm and droplet size up to 50 μm exhibits a good contrast ratio and is capable of producing a large phase shift for the propagating coherent light. For a linearly polarized He-Ne laser (λ=633 nm), an electrically commanded phase shift as large as π/2 can be obtained by the large-droplet region of the film. The electrically produced phase shift and its spatial profile controlled by the thickness of the gradient PDLC single layers of large nematic droplets can be useful for tunable spatial light modulators and other devices for active control of laser light.

  6. Molecular dynamics study of the isotropic-nematic quench.

    PubMed

    Bradac, Z; Kralj, S; Zumer, S

    2002-02-01

    Effects of cylindrical and spherical confinement on the kinetics of the isotropic-nematic quench is studied numerically. The nematic liquid crystal structure was modeled by a modified induced-dipole--induced-dipole interaction. Molecules were allowed to wander around points of a hexagonal lattice. Brownian molecular dynamics was used in order to access macroscopic time scales. In the bulk we distinguish between the early, domain, and late stage regime. The early regime is characterized by the exponential growth of the nematic uniaxial order parameter. In the domain regime domains are clearly visible and the average nematic domain size xi(d) obeys the dynamical scaling law xi(d)-t(gamma). The late stage evolution is dominated by dynamics of individual defects. In a confined system the qualitative change of the scaling behavior appears when xi(d) becomes comparable to a typical linear dimension R of the confinement. In the confining regime (xi(d)>or=R) the scaling coefficient gamma depends on the details of the confinement and also the final equilibrium nematic structure. The domain growth is well described with the Kibble-Zurek mechanism.

  7. Coupling between the Dynamics of Water and Surfactants in Lyotropic Liquid Crystals

    DOE PAGES

    McDaniel, Jesse G.; Yethiraj, Arun

    2017-04-26

    Bilayers composed of lipid or surfactant molecules are central to biological membranes and lamellar lyotropic liquid crystalline (LLC) phases. Common to these systems are phases that exhibit either ordered or disordered packing of the hydrophobic tails. In this work, we study the impact of surfactant ordering, i.e., disordered L α and ordered L β LLC phases, on the dynamics of water and sodium ions in the lamellar phases of dicarboxylate gemini surfactants. We study the different phases at identical hydration levels by changing the length of the hydrophobic tails; surfactants with shorter tails form L α phases and those withmore » longer tails form L β phases. We find that the L α phases exhibit lower density and greater compressibility than the L β phases, with a hydration-dependent headgroup surface area. These structural differences significantly affect the relative dynamic properties of the phases, primarily the mobility of the surfactant molecules tangential to the bilayer surface, as well as the rates of water and ion diffusion. We find ~20–50% faster water diffusion in the L α phases compared to the L β phases, with the differences most pronounced at low hydration. This coupling between water dynamics and surfactant mobility is verified using additional simulations in which the surfactant tails are frozen. Our study indicates that gemini surfactant LLCs provide an important prototypical system for characterizing properties shared with more complex biological lipid membranes.« less

  8. Coupling between the Dynamics of Water and Surfactants in Lyotropic Liquid Crystals.

    PubMed

    McDaniel, Jesse G; Yethiraj, Arun

    2017-05-18

    Bilayers composed of lipid or surfactant molecules are central to biological membranes and lamellar lyotropic liquid crystalline (LLC) phases. Common to these systems are phases that exhibit either ordered or disordered packing of the hydrophobic tails. In this work, we study the impact of surfactant ordering, i.e., disordered L α and ordered L β LLC phases, on the dynamics of water and sodium ions in the lamellar phases of dicarboxylate gemini surfactants. We study the different phases at identical hydration levels by changing the length of the hydrophobic tails; surfactants with shorter tails form L α phases and those with longer tails form L β phases. We find that the L α phases exhibit lower density and greater compressibility than the L β phases, with a hydration-dependent headgroup surface area. These structural differences significantly affect the relative dynamic properties of the phases, primarily the mobility of the surfactant molecules tangential to the bilayer surface, as well as the rates of water and ion diffusion. We find ∼20-50% faster water diffusion in the L α phases compared to the L β phases, with the differences most pronounced at low hydration. This coupling between water dynamics and surfactant mobility is verified using additional simulations in which the surfactant tails are frozen. Our study indicates that gemini surfactant LLCs provide an important prototypical system for characterizing properties shared with more complex biological lipid membranes.

  9. Relaxation Dynamics of Spatiotemporal Chaos in the Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Nugroho, Fahrudin; Ueki, Tatsuhiro; Hidaka, Yoshiki; Kai, Shoichi

    2011-11-01

    We are working on the electroconvection of nematic liquid crystals, in which a kind of spatiotemporal chaos called as a soft-mode turbulence (SMT) is observed. The SMT is caused by the nonlinear interaction between the convective modes and the Nambu--Goldstone (NG) modes. By applying an external magnetic field H, the NG mode is suppressed and an ordered pattern can be observed. By removing the suppression effect the ordered state relax to its original SMT pattern. We revealed two types of instability govern the relaxation process: the zigzag instability and the free rotation of wavevector q(r). This work is partially supported by Grant-in-Aid for Scientific Research (Nos. 20111003, 21340110, and 21540391) from the Ministry of Education, Culture, Sport, Science, and Technology of Japan and the Japan Society for the Promotion of Science (JSPS).

  10. 1,2,4-oxadiazole-based bent-core liquid crystals with cybotactic nematic phases.

    PubMed

    Shanker, Govindaswamy; Prehm, Marko; Nagaraj, Mamatha; Vij, Jagdish K; Weyland, Marvin; Eremin, Alexey; Tschierske, Carsten

    2014-05-19

    Several series of bent-core mesogens derived from 3,5-diphenyl-1,2,4-oxadiazole with or without lateral groups and with different length terminal chains at both ends, and polycatenar molecules with three to six alkoxy chains are synthesized and their mesomorphic behaviour is investigated by polarizing microscopy, differential scanning calorimetry, X-ray diffraction (XRD), dielectric, electro-optical and second-harmonic generation (SHG) experiments. Most compounds exhibit broad regions of skewed cybotactic nematic (NcybC ) and tilted smectic (SmC) phases with a strong tilt of the aromatic cores (up to 63°), but non-tilted SmA and NcybA phases are also observed for a compound that has only one terminal chain. The XRD patterns of the nematic phases of most of the compounds investigated indicate a 2D periodicity with short correlation length in the magnetically aligned samples. This is of importance for the general interpretation of the small-angle XRD splitting patterns typically observed for aligned samples of bent-core nematic phases. In most nematic phases one current peak is observed in the half period of an applied electric field, though no coherent signal is found in the SHG experiments. Based on additional electro-optical and dielectric results, the nematic phases are considered to be cybotactic nematic phases with local polar order, and show a dielectric reorientation of the polar domains. Only chiral nematic phases (NcybC *), but not blue phases, are obtained for compounds with one or two chiral (3S)-3,7-dimethyloctyloxy tail(s). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Kibble-Zurek Scaling during Defect Formation in a Nematic Liquid Crystal.

    PubMed

    Fowler, Nicholas; Dierking, Dr Ingo

    2017-04-05

    Symmetry-breaking phase transitions are often accompanied by the formation of topological defects, as in cosmological theories of the early universe, superfluids, liquid crystals or solid-state systems. This scenario is described by the Kibble-Zurek mechanism, which predicts corresponding scaling laws for the defect density ρ. One such scaling law suggests a relation ρ≈τ Q -1/2 with τ Q the change of rate of a control parameter. In contrast to the scaling of the defect density during annihilation with ρ≈t -1 , which is governed by the attraction of defects of the same strength but opposite sign, the defect formation process, which depends on the rate of change of a physical quantity initiating the transition, has only rarely been investigated. Herein, we use nematic liquid crystals as a different system to demonstrate the validity of the predicted scaling relation for defect formation. It is found that the scaling exponent is independent of temperature and material employed, thus universal, as predicted. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Reverse-mode thermoresponsive light attenuators produced by optical anisotropic composites of nematic liquid crystals and reactive mesogens

    NASA Astrophysics Data System (ADS)

    Kakiuchida, Hiroshi; Ogiwara, Akifumi

    2018-04-01

    Polymer network liquid crystals (PNLCs) whose optical transmittance state switches between transparence at low temperatures and haze at high temperatures were fabricated from mixtures of nematic liquid crystals (LCs) and reactive mesogens (RMs). This PNLC structure is simple but effective, namely, consists of micro-scale domains of orientation-ordered LCs and anisotropically polymerized RMs. The domains form through photopolymerization induced phase separation with inhomogeneous irradiation projected by laser speckling techniques. This irradiation method enables you to control the size and shape of phase-separation domains, and these PNLCs can be applied to novel thermoresponsive optical devices; optical isolators, thermometric sheets, and smart windows.

  13. Thermodynamics of the Electric Field Induced Orientation of Nematic Droplet/Polymer Films

    NASA Astrophysics Data System (ADS)

    Drzaic, Paul S.

    1989-07-01

    Films consisting of micron-sized nematic liquid crystal droplets dispersed in a polymer matrix (NCAP) represent an important new class of electro-optical devices. These films strongly scatter light in the tm powered state, but achieve a high degree of clarity when an electric field is applied. In this report we describe the aspects of liquid crystal and polymer composition that control the magnitude of the electric field required to orient the nematic droplets. The droplet shape is found to be an important factor in the electro-optical response of these films. In films deposited from aqueous solutions the nematic cavities in the film are usually oblate in nature, with the short axis perpendicular to the film plane. The nematic, which adopts a bipolar configuration within the cavity, is preferentially aligned so that each droplet's symmetry axis is aligned parallel to the film plane in the rest state, but rotates to lie parallel with the field in the powered state. Capacitance data is presented which supports this picture. It is shown that the nematic droplet shape can be a major factor in determining the thermodynamics of droplet orientation.

  14. Negative stiffness and modulated states in active nematics.

    PubMed

    Srivastava, Pragya; Mishra, Prashant; Marchetti, M Cristina

    2016-10-04

    We examine the dynamics of an active nematic liquid crystal on a frictional substrate. When frictional damping dominates over viscous dissipation, we eliminate flow in favor of active stresses to obtain a minimal dynamical model for the nematic order parameter, with elastic constants renormalized by activity. The renormalized elastic constants can become negative at large activity, leading to the selection of spatially inhomogeneous patterns via a mechanism analogous to that responsible for modulated phases arising at an equilibrium Lifshitz point. Tuning activity and the degree of nematic order in the passive system, we obtain a linear stability phase diagram that exhibits a nonequilibrium tricritical point where ordered, modulated and disordered phases meet. Numerical solution of the nonlinear equations yields a succession of spatial structures of increasing complexity with increasing activity, including kink walls and active turbulence, as observed in experiments on microtubule bundles confined at an oil-water interface. Our work provides a minimal model for an overdamped active nematic that reproduces all the nonequilibrium structures seen in simulations of the full active nematic hydrodynamics and provides a framework for understanding some of the mechanisms for selection of the nonequilibrium patterns in the language of equilibrium critical phenomena.

  15. FAST TRACK COMMUNICATION: Ferroelectricity in low-symmetry biaxial nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Osipov, Mikhail A.; Gorkunov, Maxim V.

    2010-09-01

    Order parameters and phenomenological theory for both high- and low-symmetry biaxial nematic phases are presented and it is predicted that the chiral low-symmetry biaxial phase must be ferroelectric. This conclusion is based on general symmetry arguments and on the results of the Landau-de Gennes theory. The microscopic mechanism of the ferroelectric ordering in this chiral biaxial phase is illustrated using a simple molecular model based on dispersion interactions between biaxial molecules of low symmetry. Similar to the chiral smectic C* phase, the ferroelectricity in the chiral biaxial nematic phase is improper, i.e., polarization is not a primary order parameter and is not determined by dipolar interactions. Ferroelectric ordering in biaxial nematics may be found, in principle, in materials composed of chiral analogues of the tetrapod molecules which are known to exhibit biaxial phases.

  16. Modulated nematic structures induced by chirality and steric polarization

    NASA Astrophysics Data System (ADS)

    Longa, Lech; PajÄ k, Grzegorz

    2016-04-01

    What kind of one-dimensional modulated nematic structures (ODMNS) can form nonchiral and chiral bent-core and dimeric materials? Here, using the Landau-de Gennes theory of nematics, extended to account for molecular steric polarization, we study a possibility of formation of ODMNS, both in nonchiral and intrinsically chiral liquid crystalline materials. Besides nematic and cholesteric phases, we find four bulk ODMNS for nonchiral materials, two of which, to the best of our knowledge, have not been reported so far. These two structures are longitudinal (NLP) and transverse (NTP) periodic waves where the polarization field being periodic in one dimension stays parallel and perpendicular, respectively, to the wave vector. The other two phases are the twist-bend nematic phase (NTB) and the splay-bend nematic phase (NSB), but their fine structure appears more complex than that considered so far. The presence of molecular chirality converts nonchiral NTP and NSB into new NTB phases. Surprisingly, the nonchiral NLP phase can stay stable even in the presence of intrinsic chirality.

  17. Lyotropic liquid crystal engineering moving beyond binary compositional space - ordered nanostructured amphiphile self-assembly materials by design.

    PubMed

    van 't Hag, Leonie; Gras, Sally L; Conn, Charlotte E; Drummond, Calum J

    2017-05-22

    Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).

  18. Electrically modulated capillary filling imbibition of nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Dhar, Jayabrata; Chakraborty, Suman

    2018-04-01

    The flow of nematic liquid crystals (NLCs) in the presence of an electric field is typically characterized by the variation in its rheological properties due to transition in its molecular arrangements. Here, we bring out a nontrivial interplay of a consequent alteration in the resistive viscous effects and driving electrocapillary interactions, toward maneuvering the capillary filling dynamics over miniaturized scales. Considering a dynamic interplay of the relevant bulk and interfacial forces acting in tandem, our results converge nicely to previously reported experimental data. Finally, we attempt a scaling analysis to bring forth further insight to the reported observations. Our analysis paves the way for the development of microfluidic strategies with previously unexplored paradigms of interaction between electrical and fluidic phenomenon, providing with an augmented controllability on capillary filling as compared to tthose reported to be achievable by the existing strategies. This, in turn, holds utilitarian scopes in improved designs of functional capillarities in electro-optical systems, electrorheological utilities, electrokinetic flow control, as well as in interfacing and imaging systems for biomedical microdevices.

  19. Direct Visualisation of the Structural Transformation between the Lyotropic Liquid Crystalline Lamellar and Bicontinuous Cubic Mesophase.

    PubMed

    Tran, Nhiem; Zhai, Jiali; Conn, Charlotte E; Mulet, Xavier; Waddington, Lynne J; Drummond, Calum J

    2018-05-29

    The transition between the lyotropic liquid crystalline lamellar and the bicontinuous cubic mesophase drives multiple fundamental cellular processes involving changes in cell membrane topology including endocytosis and membrane budding. While several theoretical models have been proposed to explain this dynamic transformation, experimental validation of these models has been challenging due to the short lived nature of the intermediates present during the phase transition. Herein, we report the direct observation of a lamellar to bicontinuous cubic phase transition in nanoscale dispersions using a combination of cryogenic transmission electron microscopy and static small angle X-ray scattering. The results represent the first experimental confirmation of a theoretical model which proposed that the bicontinuous cubic phase originates from the centre of a lamellar vesicle, then propagates outward via the formation of inter-lamellar attachments and stalks. The observation was possible due to the precise control of the lipid composition to place the dispersion systems at the phase boundary of a lamellar and a cubic phase, allowing for the creation of long-lived structural intermediates. By surveying the nanoparticles using cryogenic transmission electron microscopy, a complete phase transition sequence was established.

  20. Optical solitons in nematic liquid crystals: model with saturation effects

    NASA Astrophysics Data System (ADS)

    Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego; de la Vega, Constanza Sánchez F.

    2018-04-01

    We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2-norm. For sufficiently large L 2-norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles.

  1. SANS study of deformation and relaxation of a comb-like liquid crystal polymer in the nematic phase

    NASA Astrophysics Data System (ADS)

    Brûlet, A.; Boué, F.; Keller, P.; Davidson, P.; Strazielle, C.; Cotton, J. P.

    1994-06-01

    A comb-like liquid crystal polymer is stretched and quenched after a certain time in the nematic phase. The conformation of the deformed chain is determined using small angle neutron scattering (SANS) as a function of the temperature of stretching, the stretching ratio and the duration of the relaxation. The scattering data are well fitted to junction affine and phantom network models. Some data are even well fitted by a totally affine model that we call “ pseudo affine ” because the only parameter, the stretching ratio, is found to be well below the macroscopic stretching ratio. The latter result, never encountered with amorphous polymers, is attributed to the cooperative effects of the nematic phase. We also note that the form factors of the chain in the underformed sample remain similar in the isotropic, nematic and glassy state ; they correspond to a Gaussian chain. The same samples were studied by wide angle X-ray scattering. On one hand, the orientation of the mesogenic groups is found to be parallel or perpendicular to the stretching direction depending on the stretching temperature. This result is discussed as a function of the presence of smectic fluctuations. On the other hand, longer relaxations at constant elongation ratio do not lead to a disorganization of the mesogenic group orientation whereas the polymer chains are partly relaxed.

  2. Transient shear banding in the nematic dumbbell model of liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Adams, J. M.; Corbett, D.

    2018-05-01

    In the shear flow of liquid crystalline polymers (LCPs) the nematic director orientation can align with the flow direction for some materials but continuously tumble in others. The nematic dumbbell (ND) model was originally developed to describe the rheology of flow-aligning semiflexible LCPs, and flow-aligning LCPs are the focus in this paper. In the shear flow of monodomain LCPs, it is usually assumed that the spatial distribution of the velocity is uniform. This is in contrast to polymer solutions, where highly nonuniform spatial velocity profiles have been observed in experiments. We analyze the ND model, with an additional gradient term in the constitutive model, using a linear stability analysis. We investigate the separate cases of constant applied shear stress and constant applied shear rate. We find that the ND model has a transient flow instability to the formation of a spatially inhomogeneous flow velocity for certain starting orientations of the director. We calculate the spatially resolved flow profile in both constant applied stress and constant applied shear rate in start up from rest, using a model with one spatial dimension to illustrate the flow behavior of the fluid. For low shear rates flow reversal can be seen as the director realigns with the flow direction, whereas for high shear rates the director reorientation occurs simultaneously across the gap. Experimentally, this inhomogeneous flow is predicted to be observed in flow reversal experiments in LCPs.

  3. Nematic fluctuations balancing the zoo of phases in half-filled quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Mesaros, Andrej; Lawler, Michael J.; Kim, Eun-Ah

    2017-03-01

    Half-filled Landau levels form a zoo of strongly correlated phases. These include non-Fermi-liquids (NFLs), fractional quantum Hall (FQH) states, nematic phases, and FQH nematic phases. This diversity begs the following question: what keeps the balance between the seemingly unrelated phases? The answer is elusive because the Halperin-Lee-Read description that offers a natural departure point is inherently strongly coupled. However, the observed nematic phases suggest that nematic fluctuations play an important role. To study this possibility, we apply a recently formulated controlled double-expansion approach in large-N composite fermion flavors and small ɛ nonanalytic bosonic action to the case with both gauge and nematic boson fluctuations. In the vicinity of a nematic quantum critical line, we find that depending on the amount of screening of the gauge- and nematic-mediated interactions controlled by ɛ 's, the renormalization-group flow points to all four mentioned correlated phases. When pairing preempts the nematic phase, NFL behavior is possible at temperatures above the pairing transition. We conclude by discussing measurements at low tilt angles, which could reveal the stabilization of the FQH phase by nematic fluctuations.

  4. Myelin structures formed by thermotropic smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Peddireddy, Karthik Reddy; Kumar, Pramoda; Thutupalli, Shashi; Herminghaus, Stephan; Bahr, Christian

    2014-03-01

    We report on transient structures, formed by thermotropic smectic-A liquid crystals, resembling the myelin figures of lyotropic lamellar liquid crystals. The thermotropic myelin structures form during the solubilization of a smectic-A droplet in an aqueous phase containing a cationic surfactant at concentrations above the critical micelle concentration. Similar to the lyotropic myelin figures, the thermotropic myelins appear in an optical microscope as flexible tube-like structures growing at the smectic/aqueous interface. Polarizing microscopy and confocal fluorescence microscopy show that the smectic layers are parallel to the tube surface and form a cylindrically bent arrangement around a central line defect in the tube. We study the growth behavior of this new type of myelins and discuss similarities and differences to the classical lyotropic myelin figures.

  5. Vogel-Fulcher dependence of relaxation rates in a nematic monomer and elastomer

    NASA Astrophysics Data System (ADS)

    Shenoy, D.; Filippov, S.; Aliev, F.; Keller, P.; Thomsen, D.; Ratna, B.

    2000-12-01

    Dielectric relaxation spectroscopy is used to study the relaxation processes in a nematic monomer and the corresponding cross-linked polymer nematic liquid crystal (elastomer). In the frequency window 10 mHz to 2 GHz the monomer liquid crystal shows a single relaxation whereas the polymer exhibits three relaxation processes, two of which are quantitatively analyzed. The temperature dependence of relaxation times in both the monomer and polymer follows a Vogel-Fulcher behavior. The relaxation processes are identified with specific molecular motions and activation energies are calculated in a linear approximation for comparison with literature data.

  6. Thin film polarizer and color filter based on photo-polymerizable nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Mohammadimasoudi, Mohammad; Neyts, Kristiaan; Beeckman, Jeroen

    2015-03-01

    We present a method to fabricate a thin film color filter based on a mixture of photo-polymerizable liquid crystal and chiral dopant. A chiral nematic liquid crystal layer reflects light for a certain wavelength interval Δλ (= Δn.P) with the period and Δn the birefringence of the liquid crystal. The reflection band is determined by the chiral dopant concentration. The bandwidth is limited to 80nm and the reflectance is at most 50% for unpolarized incident light. The thin color filter is interesting for innovative applications like polarizer-free reflective displays, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. The reflected light has strong color saturation without absorption because of the sharp band edges. A thin film polarizer is developed by using a mixture of photo-polymerizable liquid crystal and color-neutral dye. The fabricated thin film absorbs light that is polarized parallel to the c axis of the LC. The obtained polarization ratio is 80% for a film of only 12 μm. The thin film polarizer and the color filter feature excellent film characteristics without domains and can be detached from the substrate which is useful for e.g. flexible substrates.

  7. Effect of surface viscosity, anchoring energy, and cell gap on the response time of nematic liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, R.F. de; Yang, D.-Ke; Lenzi, E.K.

    2014-07-15

    An analytical expression for the relaxation time of a nematic liquid crystal is obtained for the first time by considering the influence of surface viscosity, anchoring energy strength and cell gap, validated numerically by using the so-called relaxation method. This general equation for the molecular response time (τ{sub 0}) was derived for a vertical aligned cell and by solving an eigenvalue equation coming from the usual balance of torque equation in the Derzhanskii and Petrov formulation, recovering the usual equations in the appropriate limit. The results show that τ∼d{sup b}, where b=2 is observed only for strongly anchored cells, whilemore » for moderate to weak anchored cells, the exponent lies between 1 and 2, depending on both, surface viscosity and anchoring strength. We found that the surface viscosity is important when calculating the response time, specially for thin cells, critical for liquid crystal devices. The surface viscosity’s effect on the optical response time with pretilt is also explored. Our results bring new insights about the role of surface viscosity and its effects in applied physics. - Highlights: • The relaxation of nematic liquid crystals is calculated by taking the surface viscosity into account. • An analytical expression for the relaxation time depending on surface viscosity, anchoring strength and cell gap is obtained. • The results are numerically verified. • Surface viscosity is crucial for thin and weak anchored cells. • The effect on optical time and pretilt angle is also studied.« less

  8. Light scattering by a nematic liquid crystal droplet: Wentzel–Kramers–Brillouin approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, V. A., E-mail: loiko@dragon.bas-net.by; Konkolovich, A. V.; Miskevich, A. A.

    2016-01-15

    Light scattering by an optically anisotropic liquid crystal (LC) droplet of a nematic in an isotropic polymer matrix is considered in the Wentzel–Kramers–Brillouin (WKB) approximation. General relations are obtained for elements of the amplitude matrix of light scattering by a droplet of arbitrary shape and for the structure of the director field. Analytic expressions for the amplitude matrices are derived for spherical LC droplets with a uniformly oriented structure of local optical axes for strictly forward and strictly backward scattering. The efficiency factors of extinction and backward scattering for a spherical nonabsorbing LC droplet depending on the LC optical anisotropy,more » refractive index of the polymer, illumination conditions, and orientation of the optical axis of the droplet are analyzed. Verification of the obtained solutions has been performed.« less

  9. Electric-field-induced flow-aligning state in a nematic liquid crystal.

    PubMed

    Fatriansyah, Jaka Fajar; Orihara, Hiroshi

    2015-04-01

    The response of shear stress to a weak ac electric field as a probe is measured in a nematic liquid crystal under shear flow and dc electric fields. Two states with different responses are clearly observed when the dc electric field is changed at a constant shear rate: the flow aligning and non-flow aligning states. The director lies in the shear plane in the flow aligning state and out of the plane in the non-flow aligning state. Through application of dc electric field, the non-flow aligning state can be changed to the flow aligning state. In the transition from the flow aligning state to the non-flow aligning state, it is found that the response increases and the relaxation time becomes longer. Here, the experimental results in the flow aligning state are discussed on the basis of the Ericksen-Leslie theory.

  10. Observation of hairpin defects in a nematic main-chain polyester

    NASA Astrophysics Data System (ADS)

    Li, M. H.; Brûlet, A.; Davidson, P.; Keller, P.; Cotton, J. P.

    1993-04-01

    The conformation of a main-chain liquid crystalline polyester in its oriented nematic phase has been determined by small-angle neutron scattering. The data are fitted by a model of rigid cylinder with orientational fluctuations. For a low degree of polymerization (~9) the chain is almost completely elongated in the direction of the nematic field. For a polymer 3 times longer, the existence of two hairpins is shown at high temperature; this number decreases with decreasing temperature.

  11. Toward the Fabrication of Advanced Nanofiltration Membranes by Controlling Morphologies and Mesochannel Orientations of Hexagonal Lyotropic Liquid Crystals.

    PubMed

    Wang, Guang; Garvey, Christopher J; Zhao, Han; Huang, Kang; Kong, Lingxue

    2017-07-21

    Water scarcity has been recognized as one of the major threats to human activity, and, therefore, water purification technologies are increasingly drawing attention worldwide. Nanofiltration (NF) membrane technology has been proven to be an efficient and cost-effective way in terms of the size and continuity of the nanostructure. Using a template based on hexagonal lyotropic liquid crystals (LLCs) and partitioning monomer units within this structure for subsequent photo-polymerisation presents a unique path for the fabrication of NF membranes, potentially producing pores of uniform size, ranging from 1 to 5 nm, and large surface areas. The subsequent orientation of this pore network in a direction normal to a flat polymer film that provides ideal transport properties associated with continuous pores running through the membrane has been achieved by the orientation of hexagonal LLCs through various strategies. This review presents the current progresses on the strategies for structure retention from a hexagonal LLCs template and the up-to-date techniques used for the reorientation of mesochanels for continuity through the whole membrane.

  12. Polarity-sensitive transient patterned state in a twisted nematic liquid crystal driven by very low frequency fields.

    PubMed

    Krishnamurthy, K S; Kumar, Pramoda; Kumar, M Vijay

    2013-02-01

    We report, for a rodlike nematic liquid crystal with small positive dielectric and conductivity anisotropies, and in the 90°-twisted configuration, low frequency (<2 Hz) square wave electric field generated Carr-Helfrich director modulation appearing transiently over a few seconds at each polarity reversal and vanishing almost completely under steady field conditions. Significantly, the instability is polarity sensitive, with the maximum distortion localized in the vicinity of the negative electrode, rather than in the midplane of the layer. This is revealed by the wave vector alternating in the two halves of the driving cycle between the alignment directions at the two substrates. Besides the Carr-Helfrich mechanism, quadrupolar flexoelectric polarization arising under electric field gradient is strongly indicated as being involved in the development of the transient periodic order. Similar transient instability is also observed in other nematic compounds with varying combinations of dielectric and conductivity anisotropies, showing its general nature. The study also deals with various characteristics of the electro-optic effect that emerge from the temporal variation of optical response for different driving voltages, frequencies, and temperatures.

  13. Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems

    PubMed Central

    Chen, Yulin; Ma, Ping; Gui, Shuangying

    2014-01-01

    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330

  14. Characteristic Exponent of Normal and Oblique Rolls in Homeotropically Aligned Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Saraswati, V.; Nugroho, F.

    2018-04-01

    Soft-mode turbulence (SMT) is one of an experimental example of spatiotemporal chaos, observed in electroconvection system of homeotropically aligned nematic liquid crystal (NLC), due to a non-linear interaction between Nambu-Goldstone mode denoted by the C(r)- director and the convective mode q(r). There are two types of stripe patterns in the SMT, namely normal rolls (NR) and oblique rolls (OR) which separated by a point of applied frequency, called the Lifshitz frequency (f L ). We report a study of the phase transition from normal to oblique rolls by observing the patterns with an applied frequency below and beyond of fL . The temporal fluctuations of the pattern images had been analyzed using autocorrelation function. It fits with Kohlrausch Williams Watts (KWW) function, showing there is a dynamical glass-forming liquid in the transition of NR-OR regime. Also, we found a new type of defect in the NR regime which never been reported before, a dynamic defect which takes the shape of a ring first to a spot in the end.

  15. Homogeneous alignment of nematic liquid crystals by ion beam etched surfaces

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Mahmood, R.; Johnson, D. L.

    1979-01-01

    A wide range of ion beam etch parameters capable of producing uniform homogeneous alignment of nematic liquid crystals on SiO2 films are discussed. The alignment surfaces were generated by obliquely incident (angles of 5 to 25 deg) argon ions with energies in the range of 0.5 to 2.0 KeV, ion current densities of 0.1 to 0.6 mA sq cm and etch times of 1 to 9 min. A smaller range of ion beam parameters (2.0 KeV, 0.2 mA sq cm, 5 to 10 deg and 1 to 5 min.) were also investigated with ZrO2 films and found suitable for homogeneous alignment. Extinction ratios were very high (1000), twist angles were small ( or = 3 deg) and tilt-bias angles very small ( or = 1 deg). Preliminary scanning electron microscopy results indicate a parallel oriented surface structure on the ion beam etched surfaces which may determine alignment.

  16. A molecular nematic liquid crystalline material for high-performance organic photovoltaics

    PubMed Central

    Sun, Kuan; Xiao, Zeyun; Lu, Shirong; Zajaczkowski, Wojciech; Pisula, Wojciech; Hanssen, Eric; White, Jonathan M.; Williamson, Rachel M.; Subbiah, Jegadesan; Ouyang, Jianyong; Holmes, Andrew B.; Wong, Wallace W.H.; Jones, David J.

    2015-01-01

    Solution-processed organic photovoltaic cells (OPVs) hold great promise to enable roll-to-roll printing of environmentally friendly, mechanically flexible and cost-effective photovoltaic devices. Nevertheless, many high-performing systems show best power conversion efficiencies (PCEs) with a thin active layer (thickness is ~100 nm) that is difficult to translate to roll-to-roll processing with high reproducibility. Here we report a new molecular donor, benzodithiophene terthiophene rhodanine (BTR), which exhibits good processability, nematic liquid crystalline behaviour and excellent optoelectronic properties. A maximum PCE of 9.3% is achieved under AM 1.5G solar irradiation, with fill factor reaching 77%, rarely achieved in solution-processed OPVs. Particularly promising is the fact that BTR-based devices with active layer thicknesses up to 400 nm can still afford high fill factor of ~70% and high PCE of ~8%. Together, the results suggest, with better device architectures for longer device lifetime, BTR is an ideal candidate for mass production of OPVs. PMID:25586307

  17. Shear flow simulations of biaxial nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1997-08-01

    We have calculated the viscosities of a biaxial nematic liquid crystal phase of a variant of the Gay-Berne fluid [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)] by performing molecular dynamics simulations. The equations of motion have been augmented by a director constraint torque that fixes the orientation of the directors. This makes it possible to fix them at different angles relative to the stream lines in shear flow simulations. In equilibrium simulations the constraints generate a new ensemble. One finds that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals in this ensemble whereas they are complicated rational functions in the conventional canonical ensemble. We have evaluated these Green-Kubo relations for all the shear viscosities and all the twist viscosities. We have also calculated the alignment angles, which are functions of the viscosity coefficients. We find that there are three real alignment angles but a linear stability analysis shows that only one of them corresponds to a stable director orientation. The Green-Kubo results have been cross checked by nonequilibrium shear flow simulations. The results from the different methods agree very well. Finally, we have evaluated the Miesowicz viscosities [D. Baalss, Z. Naturforsch. Teil A 45, 7 (1990)]. They vary by more than 2 orders of magnitude. The viscosity is consequently highly orientation dependent.

  18. Communication: Orientational structure manipulation in nematic liquid crystal droplets induced by light excitation of azodendrimer dopant

    NASA Astrophysics Data System (ADS)

    Shvetsov, Sergey A.; Emelyanenko, Alexander V.; Boiko, Natalia I.; Liu, Jui-Hsiang; Khokhlov, Alexei R.

    2017-06-01

    Reversible orientational transitions in the droplets of a nematic liquid crystal (NLC) caused by the change of boundary conditions under the low intensity diode illumination are investigated. Photosensitivity of NLC is achieved by the addition of the dendrimer compound with azobenzene terminal groups. Two types of NLC droplets in glycerol are considered: the spherical droplets in the bulk of glycerol and the droplets laid-down onto the solid substrate. In the second case, the first order phase transition is revealed. The effects described can be useful for the development of highly sensitive chemical detectors and microsized photo-tunable optical devices.

  19. Synergistic effect of non-covalent interaction in colloidal nematic liquid crystal doped with magnetic functionalized single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dalir, Nima; Javadian, Soheila

    2018-03-01

    Single-walled carbon nanotubes (SWCNTs), CNT@Fe3O4, and Fe3O4 nanocomposites were doped to eutectic uniaxial nematic liquid crystal (NLC's) (E5CN7) to improve physiochemical properties such as phase transition temperature, activation energy (Ea), dielectric anisotropy, and electro-optical properties. The thermal study of nematic phase shows a decrease in the nematic to isotropic phase transition temperature as CNT is doped. However, higher doping concentration of CNTs leads to the further increase in transition temperature. The anchoring effect or π-π interaction plays a key role in N-I phase transition. The functionalization of SWCNTs with Fe3O4 diminishes the CNT aggregation while the magnetic susceptibility is increased. The functionalized CNT doping to NLC's decrease significantly the phase transition temperature compared to doping of non-functionalized CNTs. Attractive interaction between guest and host molecules by magnetic and geometry effect increased the enthalpy and entropy of phase transition in the SWCNT@Fe3O4 sample compared to non-functionalized CNT doped system. Also, the Ea values are decreased as SWCNT@Fe3O4 is doped to pure E5CN7. The difference of N-I phase transition temperature was observed in Fe3O4 and CNT@Fe3O4 compared to SWCNT doped systems. Finally, dielectric anisotropy was increased in the doped system compared to pure NLC.

  20. Density of photon states in dye-doped chiral nematic liquid crystal cells in the presence of losses and gain.

    PubMed

    Mavrogordatos, Th K; Morris, S M; Castles, F; Hands, P J W; Ford, A D; Coles, H J; Wilkinson, T D

    2012-07-01

    We calculate the density of photon states (DOS) of the normal modes in dye-doped chiral nematic liquid crystal (LC) cells in the presence of various loss mechanisms. Losses and gain are incorporated into the transmission characteristics through the introduction of a small imaginary part in the dielectric constant perpendicular and along the director, for which we assume no frequency dispersion. Theoretical results are presented on the DOS in the region of the photonic band gap for a range of values of the loss coefficient and different values of the optical anisotropy. The obtained values of the DOS at the photonic band gap edges predict a reversal of the dominant modes in the structure. Our results are found to be in good agreement with the experimentally obtained excitation thresholds in chiral nematic LC lasers. The behavior of the DOS is also discussed for amplifying LC cells providing additional insight to the lasing mechanism of these structures.

  1. Formation and field-driven dynamics of nematic spheroids.

    PubMed

    Fu, Fred; Abukhdeir, Nasser Mohieddin

    2017-07-19

    Unlike the canonical application of liquid crystals (LCs), LC displays, emerging technologies based on LC materials are increasingly leveraging the presence of nanoscale defects. The inherent nanoscale characteristics of LC defects present both significant opportunities as well as barriers for the application of this fascinating class of materials. Simulation-based approaches to the study of the effects of confinement and interface anchoring conditions on LC domains has resulted in significant progress over the past decade, where simulations are now able to access experimentally-relevant length scales while simultaneously capturing nanoscale defect structures. In this work, continuum simulations were performed in order to study the dynamics of micron-scale nematic LC spheroids of varying shape. Nematic spheroids are one of the simplest inherently defect-containing LC structures and are relevant to polymer-dispersed LC-based "smart" window technology. Simulation results include nematic phase formation and external field-switching dynamics of nematic spheroids ranging in shape from oblate to prolate. Results include both qualitative and quantitative insight into the complex coupling of nanoscale defect dynamics and structure transitions to micron-scale reorientation. Dynamic mechanisms are presented and related to structural transitions in LC defects present in the nematic domain. Domain-averaged metrics including order parameters and response times are determined for a range of experimentally-accessible electric field strengths. These results have both fundamental and technological relevance, in that increased understanding of LC dynamics in the presence of defects is a key barrier to continued advancement in the field.

  2. Director gliding in a nematic liquid crystal layer: Quantitative comparison with experiments

    NASA Astrophysics Data System (ADS)

    Mema, E.; Kondic, L.; Cummings, L. J.

    2018-03-01

    The interaction between nematic liquid crystals and polymer-coated substrates may lead to slow reorientation of the easy axis (so-called "director gliding") when a prolonged external field is applied. We consider the experimental evidence of zenithal gliding observed by Joly et al. [Phys. Rev. E 70, 050701 (2004), 10.1103/PhysRevE.70.050701] and Buluy et al. [J. Soc. Inf. Disp. 14, 603 (2006), 10.1889/1.2235686] as well as azimuthal gliding observed by S. Faetti and P. Marianelli [Liq. Cryst. 33, 327 (2006), 10.1080/02678290500512227], and we present a simple, physically motivated model that captures the slow dynamics of gliding, both in the presence of an electric field and after the electric field is turned off. We make a quantitative comparison of our model results and the experimental data and conclude that our model explains the gliding evolution very well.

  3. Space-time derivative estimates of the Koch-Tataru solutions to the nematic liquid crystal system in Besov spaces

    NASA Astrophysics Data System (ADS)

    Liu, Qiao

    2015-06-01

    In recent paper [7], Y. Du and K. Wang (2013) proved that the global-in-time Koch-Tataru type solution (u, d) to the n-dimensional incompressible nematic liquid crystal flow with small initial data (u0, d0) in BMO-1 × BMO has arbitrary space-time derivative estimates in the so-called Koch-Tataru space norms. The purpose of this paper is to show that the Koch-Tataru type solution satisfies the decay estimates for any space-time derivative involving some borderline Besov space norms.

  4. Self-assembly of skyrmion-dressed chiral nematic colloids with tangential anchoring.

    PubMed

    Pandey, M B; Porenta, T; Brewer, J; Burkart, A; Copar, S; Zumer, S; Smalyukh, Ivan I

    2014-06-01

    We describe dipolar nematic colloids comprising mutually bound solid microspheres, three-dimensional skyrmions, and point defects in a molecular alignment field of chiral nematic liquid crystals. Nonlinear optical imaging and numerical modeling based on minimization of Landau-de Gennes free energy reveal that the particle-induced skyrmions resemble torons and hopfions, while matching surface boundary conditions at the interfaces of liquid crystal and colloidal spheres. Laser tweezers and videomicroscopy reveal that the skyrmion-colloidal hybrids exhibit purely repulsive elastic pair interactions in the case of parallel dipoles and an unexpected reversal of interaction forces from repulsive to attractive as the center-to-center distance decreases for antiparallel dipoles. The ensuing elastic self-assembly gives rise to colloidal chains of antiparallel dipoles with particles entangled by skyrmions.

  5. Lasing in a nematic liquid crystal cell with an interdigitated electrode system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtykov, N M; Palto, S P; Umanskii, B A

    2015-04-30

    Waveguide lasing in a layer of a dye-doped nematic liquid crystal has been observed. The liquid-crystal layer was sandwiched between a quartz substrate and a glass cover plate on whose surface was deposited an interdigitated electrode system. This system had a period of 3.75 μm and played a dual role, namely, it created a spatial periodicity of the waveguide medium refractive index (thus creating distributed feedback) and served as a diffraction grating coupling out a part of waveguide radiation into the glass cover plate. The distributed feedback ensured lasing in the 18th diffraction order for the TE modes and inmore » the 19th order for the TM modes of the waveguide. The generated radiation was observed at the exit from the glass plate end face at the angles to the waveguide plane of 33.1 ± 1.5° for TM modes and 21.8 ± 1.8° for TE modes. The intensity and position of the TE emission line showed no regular dependence on the voltage on the electrodes. In the case of TM radiation, an increase in the voltage led to a short-wavelength shift of the laser line and to a decrease in its intensity. (lasers)« less

  6. Perturbation Theory versus Thermodynamic Integration. Beyond a Mean-Field Treatment of Pair Correlations in a Nematic Model Liquid Crystal.

    PubMed

    Schoen, Martin; Haslam, Andrew J; Jackson, George

    2017-10-24

    The phase behavior and structure of a simple square-well bulk fluid with anisotropic interactions is described in detail. The orientation dependence of the intermolecular interactions allows for the formation of a nematic liquid-crystalline phase in addition to the more conventional isotropic gas and liquid phases. A version of classical density functional theory (DFT) is employed to determine the properties of the model, and comparisons are made with the corresponding data from Monte Carlo (MC) computer simulations in both the grand canonical and canonical ensembles, providing a benchmark to assess the adequacy of the DFT results. A novel element of the DFT approach is the assumption that the structure of the fluid is dominated by intermolecular interactions in the isotropic fluid. A so-called augmented modified mean-field (AMMF) approximation is employed accounting for the influence of anisotropic interactions. The AMMF approximation becomes exact in the limit of vanishing density. We discuss advantages and disadvantages of the AMMF approximation with respect to an accurate description of isotropic and nematic branches of the phase diagram, the degree of orientational order, and orientation-dependent pair correlations. The performance of the AMMF approximations is found to be good in comparison with the MC data; the AMMF approximation has clear advantages with respect to an accurate and more detailed description of the fluid structure. Possible strategies to improve the DFT are discussed.

  7. Self-organized composites of multiwalled carbon nanotubes and nematic liquid crystal 5CB: optical singularities and percolation behavior in electrical conductivity

    NASA Astrophysics Data System (ADS)

    Ponevchinsky, V. V.; Goncharuk, A. I.; Vasil'ev, V. I.; Lebovka, N. I.; Soskin, M. S.

    2009-10-01

    This work discusses optical singularities and electrical conductivity behavior in a thin electrooptical cell filled with composites including multi-walled carbon nanotubes (MWCNTs) and nematic liquid crystal (LC). The MWCNTs with high aspect ratio L/d~300 ÷ 1000 and nematic LC 5CB (4-pentyl-40-cyanobiphenyl) were used. The composites were prepared by introduction of MWCNTs (0.0001÷0.1% wt) into LC solvent with subsequent sonication. The increase of MWCNT concentration (between 0.005÷0.05 % wt) resulted in self-organization of MWCNTs and formation of micronsized aggregates with fractal boundaries. The visually observed formation of spanning MWCNT networks near the percolation threshold at ~0.025 % wt was accompanied with transition from non-conductive to conductive state and generation of optical singularities. The observed effects were explained by the strong interactions between MWCNTs and LC medium and planar orientation of 5CB molecules near the lateral surface of MWCNTs. It was speculated that optical singularities arose as a results of interaction of an incident laser beam with LC perturbed interfacial shells covering the MWCNT clusters. Behavior of the interfacial shell thickness in external electric field and in the vicinity of the nematic to isotropic transition was discussed.

  8. Dissolution of steroid crystals in a nematic droplet: effect of rotation

    NASA Astrophysics Data System (ADS)

    Gvozdovskyy, I. A.; Terenetskaya, Irina P.; Reshetnyak, Victor Y.

    2003-12-01

    The nematic liquid crystals (LCs) can be converted into cholesteric LCs by different chiral dopants. For the first time the dynamics of a cholesteric phase induction was investigated on dissolution of the single steroid crystal (vitamin D isomers and relative compounds) at the nematic droplet and the new effect of the crystal rotation has been discovered. In all cases the correlation between the rotation direction and screw sense of the cholesteric helix was found. A theoretical model and interpretation of the rotation effect has been proposed.

  9. Instabilities in the electric Freedericksz state of the twist-bend nematic liquid crystal CB7CB.

    PubMed

    Krishnamurthy, Kanakapura S; Kanakala, Madhu B; Yelamaggad, Channabasaveshwar V; Kleman, Maurice

    2018-06-22

    We report on the instabilities in the Freedericksz state of the twist-bend nematic (NTB) liquid crystal 1'',7''-bis(4-cyanobiphenyl-4'-yl)heptane (CB7CB). The quasi homeotropic NTB state, into which a planar (untwisted or 90°-twisted) nematic CB7CB layer transits under a strong electric field, is found to be unstable despite the material being dielectrically positive. Close to the NTB melting point, destabilization occurs through the formation of metastable toric focal conic domains (TFCDs) that, in time, transform into parabolic focal conic domains (PFCDs) with the confocal parabolae in vertical planes through the layer normal. This transformation occurs by a novel process of continued dissociation of TFCDs. We outline how the extended Volterra process could help in a general appreciation of focal conic defects in the NTB phase. At relatively lower temperatures, stripes develop competingly with TFCDs. Identifiable as oily streaks, they are both localized and polarity sensitive; they form close to the substrates; and in low frequency square wave fields, they get suppressed at the cathode and augmented at the anode at each polarity switch. The study also dwells on the N-NTB-N sandwich region, found between the N and NTB states under a small temperature gradient.

  10. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    PubMed

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle

  11. Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Lesiak, Piotr; Budaszewski, Daniel; Bednarska, Karolina; Wójcik, Michał; Sobotka, Piotr; Chychłowski, Miłosz; Woliński, Tomasz R.

    2017-05-01

    In this work we studied a newly reported class of nonlinear effects observed in 5CB liquid crystals doped with gold nanoparticles (GNPs). The size of the GNP was determined by direct TEM imaging and by X-ray scattering of the diluted NP solution. GNPs was coated by thiols with the ratio of mesogenic to n-alkyl thiols varying from 1:2 to 1:1. The research involved comparing properties of both undoped and doped 5CB (nematic LC) by infiltrating LC cell and microholes of the photonic crystal fiber (PCF) separately. In our experiment the PCF fiber type LMA-10 made by NKT Photonics as host material has been used.

  12. Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange

    NASA Astrophysics Data System (ADS)

    Taillefumier, Mathieu; Benton, Owen; Yan, Han; Jaubert, L. D. C.; Shannon, Nic

    2017-10-01

    Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho2 Ti2 O7 and Dy2 Ti2 O7 exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related "quantum spin-ice" materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.

  13. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals

    PubMed Central

    Tortora, Luana; Lavrentovich, Oleg D.

    2011-01-01

    In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement. PMID:21402929

  14. Orientational order in bipolar nematic microdroplets close to the phase transition

    NASA Astrophysics Data System (ADS)

    Vilfan, I.; Vilfan, M.; Žumer, S.

    1989-10-01

    The ordering in bipolar liquid-crystal droplets close to the nematic-paranematic phase translation is studied. Here, ``paranematic'' refers to the phase above the nematic-isotropic transition temperature. The structure of spherical droplets is obtained after the minimization of the Landau-de Gennes-type free energy assuming a constant value of the surface order parameter and strong anchoring of the molecules parallel to the surface. Disordered defect regions caused by elastic deformations are found close to the poles. The defect regions grow into the droplet as the coexistence temperature between the paranematic and nematic phases is approached from below. The temperature-radius phase diagram shows the first-order coexistence curve terminating in the critical point and a pronounced decrease of the coexistence temperature on approaching the critical radius.

  15. Electron paramagnetic resonance study of alinement induced by magnetic fields in two smectic-A liquid crystals not exhibiting nematic phases

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Gelerinter, E.

    1972-01-01

    Using vanadyl acetylacetonate (VAAC) as a paramagnetic probe, the molecular ordering in two smectic-A liquid crystals that do not display nematic phases were studied. Reproducible alinement was attained by slow cooling throughout the isotropic smectic-A transition in dc magnetic fields of 1.1 and 2.15 teslas. The degree of order attained is small for a smectic-A liquid crystal. Measurements were made of the variation of the average hyperfine splitting of the alined samples as a function of orientation relative to the dc magnetic field of the spectrometer. This functional dependence is in agreement with the theoretical prediction except where the viscosity of the liquid crystal becomes large enough to slow the tumbling of the VAAC, as indicated by asymmetry in the end lines of the spectrum.

  16. The development of chiral nematic mesoporous materials.

    PubMed

    Kelly, Joel A; Giese, Michael; Shopsowitz, Kevin E; Hamad, Wadood Y; MacLachlan, Mark J

    2014-04-15

    Cellulose nanocrystals (CNCs) are obtained from the sulfuric acid-catalyzed hydrolysis of bulk cellulose. The nanocrystals have diameters of ~5-15 nm and lengths of ~100-300 nm (depending on the cellulose source and hydrolysis conditions). This lightweight material has mostly been investigated to reinforce composites and polymers because it has remarkable strength that rivals carbon nanotubes. But CNCs have an additional, less explored property: they organize into a chiral nematic (historically referred to as cholesteric) liquid crystal in water. When dried into a thin solid film, the CNCs retain the helicoidal chiral nematic order and assemble into a layered structure where the CNCs have aligned orientation within each layer, and their orientation rotates through the stack with a characteristic pitch (repeating distance). The cholesteric ordering can act as a 1-D photonic structure, selectively reflecting circularly polarized light that has a wavelength nearly matching the pitch. During CNC self-assembly, it is possible to add sol-gel precursors, such as Si(OMe)4, that undergo hydrolysis and condensation as the solvent evaporates, leading to a chiral nematic silica/CNC composite material. Calcination of the material in air destroys the cellulose template, leaving a high surface area mesoporous silica film that has pore diameters of ~3-10 nm. Importantly, the silica is brilliantly iridescent because the pores in its interior replicate the chiral nematic structure. These films may be useful as optical filters, reflectors, and membranes. In this Account, we describe our recent research into mesoporous films with chiral nematic order. Taking advantage of the chiral nematic order and nanoscale of the CNC templates, new functional materials can be prepared. For example, heating the silica/CNC composites under an inert atmosphere followed by removal of the silica leaves highly ordered, mesoporous carbon films that can be used as supercapacitor electrodes. The composition

  17. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    PubMed Central

    Dierking, Ingo

    2017-01-01

    Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i) addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii) novel functionalities can be added to the liquid crystal; and (iii) the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide. PMID:28974025

  18. Triply Periodic Multiply Continuous Lyotropic Liquid Crystals Derived from Gemini Surfactants

    NASA Astrophysics Data System (ADS)

    Sorenson, Gregory P.

    A subtle balance of non-covalent interactions directs the self-assembly of small molecule amphiphiles in aqueous media into supramolecular assemblies known as aqueous lyotropic liquid crystals (LLCs). Aqueous LLCs form many intricate, ordered nanoscale morphologies comprising distinct and structurally periodic hydrophobic and hydrophilic domains. Triply periodic multiply continuous (TPMC) LLC morphologies, which exhibit continuous hydrophobic and aqueous domains that percolate in three-dimensions, are of particular interest by virtue of their potentially wide ranging technological applications including advanced membranes for electrical energy storage and utilization, therapeutic delivery, and templates for new organic and inorganic mesoporous materials. However, robust molecular design criteria for amphiphiles that readily form TMPC morphologies are notably lacking in the literature. Recent reports have described the increased propensity for quaternary ammonium and phosphonium gemini surfactants, derived from dimerization of traditional single-tail surfactants at or near the hydrophilic headgroups through a hydrophobic linker, to stabilize TMPC mesophases. The generality of this surfactant design strategy remains untested in other amphiphiles classes bearing different headgroup chemistries. In this thesis, we describe the unusual aqueous LLC phase behavior of series of gemini dicarboxylate amphiphiles as a function of the alkyl tail length, hydrophobic linker length, and the charge-compensating counterion. These dicarboxylate surfactants unexpectedly exhibit a strong propensity to form TPMC LLCs over amphiphile concentration windows as wide as 20 wt% over a temperature range T = 25--100 °C. Through systematic modifications of the length of the hydrophobic linker and alkyl tails, we use small-angle X-ray scattering to demonstrate that these surfactants adopt new LLC mesophases including the first report of a single-gyroid phase (I4132 symmetry) and a new

  19. Surface nematic order in iron pnictides

    DOE PAGES

    Song, Kok Wee; Koshelev, Alexei E.

    2016-09-09

    Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. In addition, we found that themore » interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. Lastly, the intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe 2As 2-xP x .« less

  20. Surface nematic order in iron pnictides

    NASA Astrophysics Data System (ADS)

    Song, Kok Wee; Koshelev, Alexei E.

    2016-09-01

    Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. We found that the interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. The intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe2As2 -xPx .

  1. Chem I Supplement: Liquid Crystals--The Chameleon Chemicals.

    ERIC Educational Resources Information Center

    Brown, Glenn H.

    1983-01-01

    Presents information relevant to everyday life so as to stimulate student interest in the properties of the two basic types of liquid crystals: thermotropic and lyotropic. Describes the applications of liquid crystals to electronics, biomedicine, and polymer science and appraises the future of liquid crystal research. (JM)

  2. Influence of a change in helical twisting power of photoresponsive chiral dopants on rotational manipulation of micro-objects on the surface of chiral nematic liquid crystalline films.

    PubMed

    Thomas, Reji; Yoshida, Yohei; Akasaka, Takehito; Tamaoki, Nobuyuki

    2012-09-24

    Herein we report a group of five planar chiral molecules as photon-mode chiral switches for the reversible control of the self-assembled superstructures of doped chiral nematic liquid crystals. The chiral switches are composed of an asymmetrically substituted aromatic moiety and a photoisomerizing azobenzene unit connected in a cyclic manner through methylene spacers of varying lengths. All the molecules show conformational restriction in the rotation of the asymmetrically substituted aromatic moiety in both the E and Z states of the azobenzene units resulting in planar chirality with separable enantiomers. Our newly synthesized compounds in pure enantiomeric form show high helical twisting power (HTP) in addition to an improved change in HTP between the E and Z states. The molecule with a diphenylnaphthalene unit shows the highest ever known initial helical twisting power among chiral dopants with planar chirality. In addition to the reversible tuning of reflection colors, we employed the enantiomers of these five compounds in combination with four nematic liquid crystalline hosts to study their properties as molecular machines; the change in HTP of the chiral dopant upon photoisomerization induces rotation of the texture of the liquid crystal surfaces. Importantly, this study has revealed a linear dependence of the ratio of the difference between HTPs before and after irradiation against the absolute value of the initial HTP, not the absolute value of the change in helical twisting power between two states, on the angle of rotation of micro-objects on chiral nematic liquid crystalline films. This study has also revealed that a change in irradiation intensity does not affect the maximum angle of rotation, but it does affect the speed of rotational reorganization of the cholesteric helix. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Self-assembled structures of Gaussian nematic particles.

    PubMed

    Nikoubashman, Arash; Likos, Christos N

    2010-03-17

    We investigate the stable crystalline configurations of a nematic liquid crystal made of soft parallel ellipsoidal particles interacting via a repulsive, anisotropic Gaussian potential. For this purpose, we use genetic algorithms (GA) in order to predict all relevant and possible solid phase candidates into which this fluid can freeze. Subsequently we present and discuss the emerging novel structures and the resulting zero-temperature phase diagram of this system. The latter features a variety of crystalline arrangements, in which the elongated Gaussian particles in general do not align with any one of the high-symmetry crystallographic directions, a compromise arising from the interplay and competition between anisotropic repulsions and crystal ordering. Only at very strong degrees of elongation does a tendency of the Gaussian nematics to align with the longest axis of the elementary unit cell emerge.

  4. Stacking Nematic Elastomers for Artificial Muscle Applications

    DTIC Science & Technology

    2006-04-01

    nematic to isotropic phase transition. In this eport, a new approach is introduced by layering liquid crystal elastomer films to create thermally...actuated stacks. A heating element and thermally onductive grease embedded between elastomer films provide a means for rapid internal heat application...voltage application, stacks composed f two 100 m-thick films and a single heating element produce 18% strain between contracted and relaxed states. In

  5. Nucleation type instabilities in partially wetting nanoscale nematic liquid films

    NASA Astrophysics Data System (ADS)

    Lam, Michael; Cummings, Linda; Kondic, Lou

    2016-11-01

    Nucleation type instabilities are studied in nematic liquid crystal (NLC) films with thicknesses less than a micrometer. Within the framework of the long wave approximation, a 4th order nonlinear partial differential equation is proposed for the free surface height. Unlike simple fluids, NLC molecules have a dipole moment which induces an elastic response due to deformation in the bulk of the fluid. The model includes the balance between the bulk elasticity energy and the anchoring (boundary) energy at the substrate and free surface, and van der Waals' intermolecular forces, by means of a structural disjoining pressure. In this presentation, we focus on two-dimensional flow and present simulation results for a flat film with a localized perturbation. We are interested in the morphology of the dewetted film as a function of the initial film thickness. We will show that there exists a range of film thicknesses within the linearly unstable flat film regime where stability analysis does not explain the morphology of the dewetted film. Marginal stability criterion (MSC) is used to derive an analytical expression for the velocity at which a perturbation propagates into the unstable flat film. Finally, we discuss the degree to which MSC can be used to explain the observed morphology.

  6. Pair creation, motion, and annihilation of topological defects in two-dimensional nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Cortese, Dario; Eggers, Jens; Liverpool, Tanniemola B.

    2018-02-01

    We present a framework for the study of disclinations in two-dimensional active nematic liquid crystals and topological defects in general. The order tensor formalism is used to calculate exact multiparticle solutions of the linearized static equations inside a planar uniformly aligned state so that the total charge has to vanish. Topological charge conservation then requires that there is always an equal number of q =1 /2 and q =-1 /2 charges. Starting from a set of hydrodynamic equations, we derive a low-dimensional dynamical system for the parameters of the static solutions, which describes the motion of a half-disclination pair or of several pairs. Within this formalism, we model defect production and annihilation, as observed in experiments. Our dynamics also provide an estimate for the critical density at which production and annihilation rates are balanced.

  7. Fractional quantum Hall systems near nematicity: Bimetric theory, composite fermions, and Dirac brackets

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung Xuan; Gromov, Andrey; Son, Dam Thanh

    2018-05-01

    We perform a detailed comparison of the Dirac composite fermion and the recently proposed bimetric theory for a quantum Hall Jain states near half filling. By tuning the composite Fermi liquid to the vicinity of a nematic phase transition, we find that the two theories are equivalent to each other. We verify that the single mode approximation for the response functions and the static structure factor becomes reliable near the phase transition. We show that the dispersion relation of the nematic mode near the phase transition can be obtained from the Dirac brackets between the components of the nematic order parameter. The dispersion is quadratic at low momenta and has a magnetoroton minimum at a finite momentum, which is not related to any nearby inhomogeneous phase.

  8. 3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order.

    PubMed

    Kotikian, Arda; Truby, Ryan L; Boley, John William; White, Timothy J; Lewis, Jennifer A

    2018-03-01

    Liquid crystal elastomers (LCEs) are soft materials capable of large, reversible shape changes, which may find potential application as artificial muscles, soft robots, and dynamic functional architectures. Here, the design and additive manufacturing of LCE actuators (LCEAs) with spatially programed nematic order that exhibit large, reversible, and repeatable contraction with high specific work capacity are reported. First, a photopolymerizable, solvent-free, main-chain LCE ink is created via aza-Michael addition with the appropriate viscoelastic properties for 3D printing. Next, high operating temperature direct ink writing of LCE inks is used to align their mesogen domains along the direction of the print path. To demonstrate the power of this additive manufacturing approach, shape-morphing LCEA architectures are fabricated, which undergo reversible planar-to-3D and 3D-to-3D' transformations on demand, that can lift significantly more weight than other LCEAs reported to date. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Symmetry Breaking and Restoration in the Ginzburg-Landau Model of Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Clerc, Marcel G.; Kowalczyk, Michał; Smyrnelis, Panayotis

    2018-06-01

    In this paper we study qualitative properties of global minimizers of the Ginzburg-Landau energy which describes light-matter interaction in the theory of nematic liquid crystals near the Fréedericksz transition. This model depends on two parameters: ɛ >0 which is small and represents the coherence scale of the system and a≥0 which represents the intensity of the applied laser light. In particular, we are interested in the phenomenon of symmetry breaking as a and ɛ vary. We show that when a=0 the global minimizer is radially symmetric and unique and that its symmetry is instantly broken as a>0 and then restored for sufficiently large values of a. Symmetry breaking is associated with the presence of a new type of topological defect which we named the shadow vortex. The symmetry breaking scenario is a rigorous confirmation of experimental and numerical results obtained earlier in Barboza et al. (Phys Rev E 93(5):050201, 2016).

  10. Nano to Meso-scale Structure in Liquid Crystals: the Cybotactic Nematic Phase of Bent-core Mesogens

    NASA Astrophysics Data System (ADS)

    Francescangeli, Oriano

    2012-02-01

    The extent of molecular order and the resulting broken symmetry determine the properties and mesophase type of liquid crystals (LCs). Thermotropic bent-core mesogens (BCMs) represent a new class of LCs exhibiting substantially different physical properties than traditional linear (calamitic) materials. In recent years BCMs have become the focus of intense experimental and theoretical investigation, with several exciting new developments. These include chiral mesophases composed of achiral BCMs, giant flexoelectricity, biaxial nematic (N) order, a ferroelectric response in the N phase, and a large flow birefringence. A key issue that is currently widely debated concerns the actual nature of the N phase of BCMs which gives rise to some of the above mentioned effects and is unambiguously identified by a peculiar low-angle X-ray diffraction pattern (the ``four-spot pattern''). The consensus emerging is that this N phase of BCMs constitutes a new type of mesophase, namely, a cybotactic nematic (Ncyb) phase unrelated to pretransition cybotaxis, in agreement with experimental [1-3] and theoretical findings [4]. This Ncyb phase is composed of nanometer-size clusters of BCMs exhibiting a relatively high degree of internal order---orientational as well as translational order (strata) imposed by close packing the BCM nonlinear shape. This peculiar supramolecular structure of the Ncyb mesophase of BCMs---evanescent, biaxial clusters of tilted and stratified nonlinear mesogens percolating the nematic fluid---accounts for their unusual properties, e.g., biaxial order [4], ferroelectric response [1], and extraordinary field-induced effects [5]. In this talk I will give an overview of the most recent developments and the current state of research on this subject. [4pt] [1] O. Francescangeli et al., Adv. Funct. Mater. 19,2592 (2009). [0pt] [2] O. Francescangeli and E.T. Samulski, Soft Matter 6, 2413 (2010) [0pt] [3] O. Francescangeli et al., Soft Matter 7, 895 (2011). [0pt] [4] A

  11. Multistable orientation in a nematic liquid crystal cell induced by external field and interfacial interaction

    NASA Astrophysics Data System (ADS)

    Ong, Hiap Liew; Meyer, Robert B.; Hurd, Alan J.

    1984-04-01

    The effects of a short-range, arbitrary strength interfacial potential on the magnetic field, electric field, and optical field induced Freedericksz transition in a nematic liquid crystal cell are examined and the exact solution is obtained. By generalizing the criterion for the existence of a first-order optical field induced Freedericksz transition that was obtained previously [H. L. Ong, Phys. Rev. A 28, 2393 (1983)], the general criterion for the transition to be first order is obtained. Based on the existing experimental results, the possibility of surface induced first-order transitions is discussed and three simple empirical approaches are suggested for observing multistable orientation. The early results on the magnetic and electric fields induced Freedericksz transition and the inadequacy of the usual experimental observation methods (phase shift and capacitance measurements) are also discussed.

  12. Dielectric Anistropy and Elastic Constants Near the Nematic-Smectic A Transition

    NASA Astrophysics Data System (ADS)

    Visco, Angelo; Mahmood, Rizwan; Zapien, Donald

    The present work examines the behavior of dielectric anisotropy and the elastic constants associated with the deformation of liquid crystal molecules under the influence of an AC electric field and measured by an Automatic Liquid Crystal Tester (ALCT). The systems investigated are of various concentrations of 5CB (4-Cyano-4'-pentylbiphenyl) and 8CB (4-octyl-4'-cyanobiphenyl) liquid crystal as a function of temperature. These studies are important due to the complexity of the coupling between the orientational (nematic) and positional (smectic A) order parameters that can drive this transition to be either continuous or discontinuous. Theoretically, NA transition is weakly first order due to nematic director fluctuations in semctic A phase. This is similar to the transition from normal to superconductor. Thus, there exists a triple point similar to He3/He4 mixtures. Moreover, despite more than four decades of intense work, our understanding of this complex and interesting problem remains unclear. The funding for the project was provided by Slippery Rock University (2015-2016).

  13. Periodic Grating-like Patterns Induced by Self-Assembly of Gelator Fibres in Nematic Gels.

    PubMed

    Topnani, Neha B; Prutha, N; Pratibha, R

    2018-03-15

    Periodic orientation patterns occurring in nematic gels, revealed by optical and scanning electron microscopy, are found to be formed by spontaneous self-assembly of fibrous aggregates of a low-molecular-weight organogelator in an aligned thermotropic liquid crystal (LC). Self-organization into periodic structures is also reflected in a calorimetric study, which shows the occurrence of three thermoreversible states, namely, isotropic liquid, nematic and nematic gel. The segregation and self-assembly of the fibrous aggregates leading to pattern formation are attributed to the highly polar LC and to hydrogen bonding between gelator molecules, as shown by X-ray diffraction and vibrational spectroscopy. This study aims to investigate in detail the effect of the chemical nature and alignment of an anisotropic solvent on the morphology of the gelator fibres and the resulting gelation process. The periodic organization of LC-rich and fibre-rich regions can also provide a way to obtain templates for positioning nanoparticle arrays in an LC matrix, which can lead to novel devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cholesterol-Based Grafted Polymer Brushes as Alignment Coating with Temperature-Tuned Anchoring for Nematic Liquid Crystals.

    PubMed

    Stetsyshyn, Yurij; Raczkowska, Joanna; Budkowski, Andrzej; Awsiuk, Kamil; Kostruba, Andriy; Nastyshyn, Svyatoslav; Harhay, Khrystyna; Lychkovskyy, Edward; Ohar, Halyna; Nastishin, Yuriy

    2016-10-11

    Novel alignment coating with temperature-tuned anchoring for nematic liquid crystals (NLCs) was successfully fabricated in three step process, involving polymerization of poly(cholesteryl methacrylate) (PChMa) from oligoproxide grafted to the glass surface premodified with 3-aminopropyltriethoxysilane. Molecular composition, thickness, wettability of the PChMa coating and its alignment action for a NLC were examined with time of flight-secondary ion mass spectrometry, ellipsometry, contact angle measurements, polarization optical microscopy and commercially produced PolScope technique allowing for mapping of the optic axis and optical retardance within the microscope field view. We find that the PChMa coating provides a specific monotonous increase (decrease) in the tilt angle of the NLC director with respect to the substrates normal upon heating (cooling) referred to as anchoring tuning.

  15. Monte Carlo simulations of nematic and chiral nematic shells

    NASA Astrophysics Data System (ADS)

    Wand, Charlie R.; Bates, Martin A.

    2015-01-01

    We present a systematic Monte Carlo simulation study of thin nematic and cholesteric shells with planar anchoring using an off-lattice model. The results obtained using the simple model correspond with previously published results for lattice-based systems, with the number, type, and position of defects observed dependent on the shell thickness with four half-strength defects in a tetrahedral arrangement found in very thin shells and a pair of defects in a bipolar (boojum) configuration observed in thicker shells. A third intermediate defect configuration is occasionally observed for intermediate thickness shells, which is stabilized in noncentrosymmetric shells of nonuniform thickness. Chiral nematic (cholesteric) shells are investigated by including a chiral term in the potential. Decreasing the pitch of the chiral nematic leads to a twisted bipolar (chiral boojum) configuration with the director twist increasing from the inner to the outer surface.

  16. Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching

    NASA Astrophysics Data System (ADS)

    Basu, Rajratan

    2017-07-01

    A small quantity of monolayer graphene flakes is doped in a nematic liquid crystal (LC), and the effective polar anchoring strength coefficient between the LC and the alignment substrate is found to increase by an order of magnitude. The hexagonal pattern of graphene can interact with the LC's benzene rings via π -π electron stacking, enabling the LC to anchor to the graphene surface homogeneously (i.e., planar anchoring). When the LC cell is filled with the graphene-doped LC, some graphene flakes are preferentially attached to the alignment layer and modify the substrate's anchoring property. These spontaneously deposited graphene flakes promote planar anchoring at the substrate and the polar anchoring energy at alignment layer is enhanced significantly. The enhanced anchoring energy is found to impact favorably on the electro-optic response of the LC. Additional studies reveal that the nematic electro-optic switching is significantly faster in the LC-graphene hybrid than that of the pure LC.

  17. Interactions of carbon nanotubes in a nematic liquid crystal. II. Experiment

    NASA Astrophysics Data System (ADS)

    Agha, Hakam; Galerne, Yves

    2016-04-01

    Multiwall carbon nanotube (CNT) colloids with different anchoring conditions are dispersed in pentyl-cyanobiphenyl (5CB), a thermotropic liquid crystal (LC) that exhibits a room-temperature nematic phase. The experiments make use of CNTs treated for strong planar, homeotropic, or Janus anchorings. Observations with a polarizing microscope show that the CNTs placed in a uniform nematic field stabilize parallel or perpendicular to n depending on their anchoring conditions. In the presence of a splay-bend disclination line, they are first attracted toward it and ultimately, they get trapped on it. Their orientation relative to the line is then found to be parallel or perpendicular to it, again depending on the anchoring conditions. When a sufficient number of particles are deposited on a disclination line, they form a micro- or nanonecklace in the shape of a thin thread or of a bottle brush, with the CNTs being oriented parallel or perpendicular to the disclination line according to the anchoring treatment. The system exhibits a rich versatility, even if until now the weak anchorings appear to be difficult to control. In a next step, the necklaces may be glued by means of pyrrole electropolymerization. In this manner, we realize a true materialization of the disclination lines, and we obtain nanowires capable of conducting the electricity in the place of the initial disclinations that just worked as templates. The advantage of the method is that it finally provides nanowires that are automatically connected to predesignated three-dimensional (3D) electrodes. Such a 3D nanowiring could have important applications, as it could allow one to develop electronic circuits in the third dimension. They could thus help with increasing the transistor density per surface unit, although downsizing of integrated circuits will soon be limited to atomic sizes or so. In other words, the predicted limitation to Moore's law could be avoided. For the moment, the nanowires that we obtain

  18. Linear-dichroic infrared spectroscopy—Validation and experimental design of the new orientation technique of solid samples as suspension in nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Ivanova, B. B.; Simeonov, V. D.; Arnaudov, M. G.; Tsalev, D. L.

    2007-05-01

    A validation of the developed new orientation method of solid samples as suspension in nematic liquid crystal (NLC), applied in linear-dichroic infrared (IR-LD) spectroscopy has been carried out using a model system DL-isoleucine ( DL-isoleu). Accuracy, precision and the influence of the liquid crystal medium on peak positions and integral absorbances of guest molecules have been presented. Optimization of experimental conditions has been performed as well. An experimental design for quantitative evaluation of the impact of four input factors: the number of scans, the rubbing-out of KBr-pellets, the amount of studied compounds included in the liquid crystal medium and the ratios of Lorentzian to Gaussian peak functions in the curve fitting procedure on the spectroscopic signal at five different frequencies, indicating important specifities of the system has been studied.

  19. Elastic and viscous properties of the nematic dimer CB7CB

    NASA Astrophysics Data System (ADS)

    Babakhanova, Greta; Parsouzi, Zeinab; Paladugu, Sathyanarayana; Wang, Hao; Nastishin, Yu. A.; Shiyanovskii, Sergij V.; Sprunt, Samuel; Lavrentovich, Oleg D.

    2017-12-01

    We present a comprehensive set of measurements of optical, dielectric, diamagnetic, elastic, and viscous properties in the nematic (N) phase formed by a liquid crystalline dimer. The studied dimer, 1,7-bis-4-(4'-cyanobiphenyl) heptane (CB7CB), is composed of two rigid rodlike cyanobiphenyl segments connected by a flexible aliphatic link with seven methyl groups. CB7CB and other nematic dimers are of interest due to their tendency to adopt bent configurations and to form two states possessing a modulated nematic director structure, namely, the twist-bend nematic, NTB, and the oblique helicoidal cholesteric, C hOH , which occurs when the achiral dimer is doped with a chiral additive and exposed to an external electric or magnetic field. We characterize the material parameters as functions of temperature in the entire temperature range of the N phase, including the pretransitional regions near the N -NTB and N-to-isotropic (I) transitions. The splay constant K11 is determined by two direct and independent techniques, namely, detection of the Frederiks transition and measurement of director fluctuation amplitudes by dynamic light scattering (DLS). The bend K33 and twist K22 constants are measured by DLS. K33, being the smallest of the three constants, shows a strong nonmonotonous temperature dependence with a negative slope in both N-I and N -NTB pretransitional regions. The measured ratio K11/K22 is larger than 2 in the entire nematic temperature range. The orientational viscosities associated with splay, twist, and bend fluctuations in the N phase are comparable to those of nematics formed by rodlike molecules. All three show strong temperature dependence, increasing sharply near the N -NTB transition.

  20. In vitro permeation of diclofenac salts from lyotropic liquid crystalline systems.

    PubMed

    Yariv, Doron; Efrat, Rivka; Libster, Dima; Aserin, Abraham; Garti, Nissim

    2010-07-01

    In this paper we examined feasible correlations between the structure of different lyotropic mesophases and transdermal administration of three diclofenac derivatives with varying degrees of kosmotropic or chaotropic properties, solubilized within the mesophases. It was found that the most chaotropic derivative of diclofenac diethyl amine (DEA-DFC) interacted with the polar heads of glycerol monooleate (GMO), thus expanding the water-lipid interface of the lamellar and cubic mesophases. This effect was detected by an increase in the lattice parameter of both mesophases, enhanced elastic properties, and increased solid-like response of the systems in the presence of DEA. Potassium diclofenac (K-DFC), a less chaotropic salt, had less pronounced effect on the structural features of the mesophases. Kosmotropic Na+ salt (Na-DFC) had only minor influence on both lamellar and cubic structures. The locus of solubilization of the molecules with the host mesophases was correlated with their delivery. It was suggested that transdermal delivery of kosmotropic Na-DFC was accelerated by the aqueous phase and less constrained by the interaction with monoglyceride. On the other hand, the chaotropic cations (K+ and DEA+), presumably entrapped in the water-lipid interface, interacted with monoglyceride headgroups, which is likely to be the key cause for their sustained administration. 2010 Elsevier B.V. All rights reserved.

  1. Technical Report: Understanding Functional Lyotropic Liquid Crystal Network Phase Self-Assembly and the Properties of Nanoconfined Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahanthappa, Mahesh K; Yethiraj, Arun

    Through the synergistic interplay of molecular dynamics (MD) simulations, chemical synthesis, and materials characterization by X-ray and neutron scattering techniques, this project investigated the phase behaviors of new classes of aqueous lyotropic liquid crystals (LLCs) and the properties of water nanoconfined within their pores. A portion of our studies focused on the synthesis of new classes of alkylsulfonic acid and alkylphosphonate amphiphiles, which were shown to undergo water-induced self-assembly to form a wide variety of nanostructured morphologies with unusually high degrees of long-range translational order observed by small- angle X-ray scattering (SAXS). Sample LLC morphologies that were observed include themore » lamellar (L!), tricontinuous double gyroid (G), hexagonally-packed cylinders (H), and low symmetry discontinuous micellar (I) Frank-Kasper phases. Since the G and H phases are the most promising for the development of selective ion transporting membranes for energy applications, we sought the characterize the structure and dynamics of water confined within the sub-3 nm pores of these LLCs using wide-angle neutron diffraction (WAND) and quasielastic neutron scattering (QENS) experiments performed at the Spallation Neutron Source at Oak Ridge National Laboratory. Using molecular dynamics (MD) simulations, we validated models for analyzing this QENS data to obtain water self-diffusion coefficients in LLC G and H phases of carboxylate and sulfonate surfactant LLCs as a function of the identities of their charge compensating counterions.« less

  2. Computer simulations of nematic drops: Coupling between drop shape and nematic order

    NASA Astrophysics Data System (ADS)

    Rull, L. F.; Romero-Enrique, J. M.; Fernandez-Nieves, A.

    2012-07-01

    We perform Monte Carlo computer simulations of nematic drops in equilibrium with their vapor using a Gay-Berne interaction between the rod-like molecules. To generate the drops, we initially perform NPT simulations close to the nematic-vapor coexistence region, allow the system to equilibrate and subsequently induce a sudden volume expansion, followed with NVT simulations. The resultant drops coexist with their vapor and are generally not spherical but elongated, have the rod-like particles tangentially aligned at the surface and an overall nematic orientation along the main axis of the drop. We find that the drop eccentricity increases with increasing molecular elongation, κ. For small κ the nematic texture in the drop is bipolar with two surface defects, or boojums, maximizing their distance along this same axis. For sufficiently high κ, the shape of the drop becomes singular in the vicinity of the defects, and there is a crossover to an almost homogeneous texture; this reflects a transition from a spheroidal to a spindle-like drop.

  3. Numerical investigation of nematic liquid crystals in the THz band based on EIT sensor.

    PubMed

    Wang, Peng-Yuan; Jin, Tao; Meng, Fan-Yi; Lyu, Yue-Long; Erni, Daniel; Wu, Qun; Zhu, Lei

    2018-04-30

    This paper introduces the concept of electromagnetically induced transparency (EIT) into the permittivity extraction of an anisotropic material-nematic liquid crystal (NLC). A novel two-step strategy is presented to extract the complex permittivity of the NLC at the THz band, which evaluates the relative permittivity tensor from the resonant frequencies and then determines the loss tangent from the quality factor Q of the EIT sensor. The proposed method features high accuracy due to the sharp resonance of the EIT sensor and also high robustness to the thickness of the NLC layer because only amplitude rather than phase information of the transmission coefficients is required. The NLC filled EIT sensor shows a sensitivity of 56.8 μm/RIU (the resonance wavelength shift over the refractive index change unit (RIU)) and Figure of Merit (FoM) of 6.92. The uncertainty of the proposed technique in the relative permittivity and loss tangent is 3% and 8.2%, respectively.

  4. Modeling out-of-plane actuation in thin-film nematic polymer networks: From chiral ribbons to auto-origami boxes via twist and topology

    PubMed Central

    Gimenez-Pinto, Vianney; Ye, Fangfu; Mbanga, Badel; Selinger, Jonathan V.; Selinger, Robin L. B.

    2017-01-01

    Various experimental and theoretical studies demonstrate that complex stimulus-responsive out-of-plane distortions such as twist of different chirality, emergence of cones, simple and anticlastic bending can be engineered and pre-programmed in a liquid crystalline rubbery material given a well-controlled director microstructure. Via 3-d finite element simulation studies, we demonstrate director-encoded chiral shape actuation in thin-film nematic polymer networks under external stimulus. Furthermore, we design two complex director fields with twisted nematic domains and nematic disclinations that encode a pattern of folds for an auto-origami box. This actuator will be flat at a reference nematic state and form four well-controlled bend distortions as orientational order changes. Device fabrication is applicable via current experimental techniques. These results are in qualitative agreement with theoretical predictions, provide insight into experimental observations, and demonstrate the value of finite element methods at the continuum level for designing and engineering liquid crystal polymeric devices. PMID:28349949

  5. Quantum Hall Ferroelectrics and Nematics in Multivalley Systems

    NASA Astrophysics Data System (ADS)

    Sodemann, Inti; Zhu, Zheng; Fu, Liang

    2017-10-01

    We study broken symmetry states at integer Landau-level fillings in multivalley quantum Hall systems whose low-energy dispersions are anisotropic. When the Fermi surface of individual pockets lacks twofold rotational symmetry, like in bismuth (111) [Feldman et al. , Observation of a Nematic Quantum Hall Liquid on the Surface of Bismuth, Science 354, 316 (2016), 10.1126/science.aag1715] and in Sn1 -xPbxSe (001) [Dziawa et al., Topological Crystalline Insulator States in Pb1 -xSnxSe , Nat. Mater. 11, 1023 (2012), 10.1038/nmat3449] surfaces, interactions tend to drive the formation of quantum Hall ferroelectric states. We demonstrate that the dipole moment in these states has an intimate relation to the Fermi surface geometry of the parent metal. In quantum Hall nematic states, like those arising in AlAs quantum wells, we demonstrate the existence of unusually robust Skyrmion quasiparticles.

  6. Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals.

    PubMed

    Hashemi, S Masoomeh; Ejtehadi, Mohammad Reza

    2015-01-01

    A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the particle size to nanoscale, the equilibrium angle follows a descending or ascending trend in such a way that the equilibrium angle of a particle with the aspect ratio bigger than 1:1 (a discotic particle) goes to a parallel alignment with respect to the far-field nematic, whereas the equilibrium angle for a particle with the aspect ratio 1:1 and smaller (a rodlike particle) tends toward a perpendicular alignment to the uniform nematic direction. The discrepancy between the equilibrium angles of the mesoscopic and nanoscopic particles originates from the significant differences between their defect structures. The possible defect structures related to mesoscopic and nanoscopic colloidal particles of this geometry are also introduced.

  7. Nematic fluctuations and resonance in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Gallais, Yann

    The spontaneous appearance of nematicity, a state of matter that breaks rotation but not translation symmetry, is ubiquitous in many iron based superconductors (Fe SC), and has relevance for the cuprates as well. Here I will review recent electronic Raman scattering experiments which report the presence of critical nematic fluctuations in the charge channel in the tetragonal phase of several Fe SC systems. In electron doped Co-BaFe2As2 (Co-Ba122), these fluctuations extend over most of the superconducting dome. Their associated nematic susceptibility shows Curie-Weiss behavior, and its doping dependence suggests the presence of a nematic quantum critical point near optimal TC Similar nematic fluctuations are also observed in FeSe despite the absence of magnetic order, raising the question of the link between nematicity and magnetism in Fe SC. In FeSe I will further contrast the evolution of nematic fluctuations under isoelectronic S substitution and hydrostatic pressures up to 8 GPa, with only the former showing evidence for a nematic quantum critical point. In the superconducting state of Co-Ba122, I will show that a resonance emerges in the Raman spectra near the nematic quantum critical point. This nematic resonance is a clear fingerprint of the coupling between nematic fluctuations and Bogoliubov quasiparticles, and can be thought as the nematic counterpart of the spin resonance observed in neutron scattering experiments. Support from Agence Nationale de la Recherche via ANR Grant ''Pnictides'' is acknowledged.

  8. Smectic phase in suspensions of gapped DNA duplexes

    DOE PAGES

    Salamonczyk, Miroslaw; Zhang, Jing; Portale, Giuseppe; ...

    2016-11-15

    Smectic ordering in aqueous solutions of monodisperse stiff double-stranded DNA fragments is known not to occur, in spite of the fact that these systems exhibit both chiral nematic and columnar mesophases. Here, we show, unambiguously, that a smectic-A type of phase is formed by increasing the DNA's flexibility through the introduction of an unpaired single-stranded DNA spacer in the middle of each duplex. This is unusual for a lyotropic system, where flexibility typically destabilizes the smectic phase. We also report on simulations suggesting that the gapped duplexes (resembling chain-sticks) attain a folded conformation in the smectic layers, and argue thatmore » this layer structure, which we designate as smectic-fA phase, is thermodynamically stabilized by both entropic and energetic contributions to the system's free energy. These results demonstrate that DNA as a building block offers an exquisitely tunable means to engineer a potentially rich assortment of lyotropic liquid crystals.« less

  9. Synthesis of liquid crystal silane-functionalized gold nanoparticles and their effects on the optical and electro-optic properties of a structurally related nematic liquid crystal.

    PubMed

    Mirzaei, Javad; Urbanski, Martin; Kitzerow, Heinz-S; Hegmann, Torsten

    2014-05-19

    Chemically and thermally robust liquid crystal silane-functionalized gold nanoparticles (i.e. AuNP1-AuNP3) were synthesized through silane conjugation. Colloidal dispersions of these particles with mesogenic ligands that are structurally identical (as in AuNP1, AuNP2) or compatible (as in AuNP3) with molecules of the nematic liquid crystal (N-LC) host showed superior colloidal stability and dispersibility. The thermal, optical, and electro-optic behaviors of the N-LC composites at different concentrations of each gold nanoparticle were investigated. All dispersions showed lower values for the rotational viscosity and elastic constant, but only AuNP3 with a dissimilar structure between the nanoparticle ligand and the host displayed the most drastic thermal effects and overall strongest impact on the electro-optic properties of the host. The observed results were explained considering both the structure and the density of the surface ligands of each gold nanoparticle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Cholesteric-nematic transitions induced by a shear flow and a magnetic field

    NASA Astrophysics Data System (ADS)

    Zakhlevnykh, A. N.; Makarov, D. V.; Novikov, A. A.

    2017-10-01

    The untwisting of the helical structure of a cholesteric liquid crystal under the action of a magnetic field and a shear flow has been studied theoretically. Both factors can induce the cholesteric-nematic transition independently; however, the difference in the orienting actions of the magnetic field and the shear flow leads to competition between magnetic and hydrodynamic mechanisms of influence on the cholesteric liquid crystal. We have analyzed different orientations of the magnetic field relative to the direction of the flow in the shear plane. In a number of limiting cases, the analytic dependences are obtained for the pitch of the cholesteric helix deformed by the shear flow. The phase diagrams of the cholesteric-nematic transitions and the pitch of the cholesteric helix are calculated for different values of the magnetic field strength and the angle of orientation, the flow velocity gradient, and the reactive parameter. It is shown that the magnetic field stabilizes the orientation of the director in the shear flow and expands the boundaries of orientability of cholesterics. It has been established that the shear flow shifts the critical magnetic field strength of the transition. It is shown that a sequence of reentrant orientational cholesteric-nematic-cholesteric transitions can be induced by rotating the magnetic field in certain intervals of its strength and shear flow velocity gradients.

  11. Investigations of the local environment and macroscopic alignment behavior of novel polymerizeable lyotropic liquid crystals using nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Juang, Elizabeth

    In this dissertation, a variety of NMR techniques were used to explore the local environment of novel polymerizeable lyotropic liquid crystals (LLC). The LLC monomers examined in this study self-assemble in the presence of a small amount of water to form uniform, nanometer-scale tubes with aqueous interiors. The phase architecture is retained upon photopolymerization to yield the resulting nanoporous material. By dissolving reactive precursors into the aqueous phase, well- structured nancomposite materials have also been formed. Proposed uses for these novel polymerizeable LLCs are as porous water filtration membranes, as heterogeneous organic catalysts, and as nanocomposite materials for load bearing and optical applications. In order to better exploit these polymerizeable LLCs for materials development, the local environment must be examined. In addition, the macroscopic orientation of these materials remains an important step in their advancement. Various NMR studies were conducted on these novel LLCs. NMR T1 relaxation measurements were conducted to elucidate the local environment and dynamics of the 23Na counterions located inside the aqueous channels. 2H NMR line shape analyses were used to characterize the local structure and dynamics near the hydrophilic headgroup. 29 Si NMR studies were performed on silica nanocomposites formed with these LLC structures. Finally, the macroscopic alignment behavior of these novel LLCs using shear and magnetic fields was examined.

  12. Behaviour of nematic liquid crystals doped with ferroelectric nanoparticles in the presence of an electric field

    NASA Astrophysics Data System (ADS)

    Emdadi, M.; Poursamad, J. B.; Sahrai, M.; Moghaddas, F.

    2018-06-01

    A planar nematic liquid crystal cell (NLC) doped with spherical ferroelectric nanoparticles is considered. Polarisation of the nanoparticles are assumed to be along the NLC molecules parallel and antiparallel to the director with equal probability. The NLC molecules anchoring to the cell walls are considered to be strong, while soft anchoring at the nanoparticles surface is supposed. Behaviour of the NLC molecules and nanoparticles in the presence of a perpendicular electric field to the NLC cell is theoretically investigated. The electric field of the nanoparticles is taken into account in the calculations. Freedericksz transition (FT) threshold field in the presence of nanoparticles is found. Then, the director and particles reorientations for the electric fields larger than the threshold field are studied. Measuring the onset of the nanoparticles reorientation is proposed as a new method for the FT threshold measurement.

  13. Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field.

    PubMed

    Xiang, Ying; Zhou, Meng-jie; Xu, Ming-Ya; Salamon, Péter; Éber, Nándor; Buka, Ágnes

    2015-04-01

    Electric-field-induced patterns of diverse morphology have been observed over a wide frequency range in a recently synthesized bent-core nematic (BCN) liquid crystal. At low frequencies (up to ∼25 Hz), the BCN exhibited unusual polarity-dependent patterns. When the amplitude of the ac field was enhanced, these two time-asymmetrical patterns turned into time-symmetrical prewavylike stripes. At ac frequencies in the middle-frequency range (∼50-3000 Hz), zigzag patterns were detected whose obliqueness varied with the frequency. Finally, if the frequency was increased above 3 kHz, the zigzag pattern was replaced by another, prewavylike pattern, whose threshold voltage depended on the frequency; however, the wave vector did not. For a more complete characterization, material parameters such as elastic constants, dielectric permittivities, and the anisotropy of the diamagnetic susceptibility were also determined.

  14. Chiral liquid crystal colloids

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Martinez, Angel; Senyuk, Bohdan; Tasinkevych, Mykola; Smalyukh, Ivan I.

    2018-01-01

    Colloidal particles disturb the alignment of rod-like molecules of liquid crystals, giving rise to long-range interactions that minimize the free energy of distorted regions. Particle shape and topology are known to guide this self-assembly process. However, how chirality of colloidal inclusions affects these long-range interactions is unclear. Here we study the effects of distortions caused by chiral springs and helices on the colloidal self-organization in a nematic liquid crystal using laser tweezers, particle tracking and optical imaging. We show that chirality of colloidal particles interacts with the nematic elasticity to predefine chiral or racemic colloidal superstructures in nematic colloids. These findings are consistent with numerical modelling based on the minimization of Landau-de Gennes free energy. Our study uncovers the role of chirality in defining the mesoscopic order of liquid crystal colloids, suggesting that this feature may be a potential tool to modulate the global orientated self-organization of these systems.

  15. Screening out the non-Arrhenius behaviour of nematic-isotropic transition by room temperature ionic liquid.

    PubMed

    Dan, K; Datta, A; Yoshida, Y; Saito, G; Yoshikawa, K; Roy, M

    2016-02-28

    Differential Scanning Calorimetry (DSC) and optical polarization microscopy of a mixture of the liquid crystalline material (N-(4-methoxybenzylidene)-4-butylaniline, MBBA) and a Fe-based room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrachloroferrate ([Emim](+) [FeCl4](-), EMIF) indicate a decrease in the nematic-isotropic (N-I) phase transition temperature (T(NI)) with an increase in EMIF concentration, explained by a proposed model of Coulomb "screening" of MBBA quadrupoles by the EMIF ions along with ionic "self screening." DSC studies of EMIF-MBBA and pure EMIF and comparison with pure MBBA results show that the major transitions in pure EMIF have Arrhenius behaviour, but more importantly the previously found convex Arrhenius behaviour of the pristine MBBA [K. Dan et al., Europhys. Lett. 108, 36007 (2014)] becomes Arrhenius in the mixture, indicating a conversion of the entropic N-I activation barrier to an enthalpic one. In presence of EMIF, a drastic decrease in the intensity of out-of-plane distortions of benzene rings in MBBA is found from Fourier transform infrared spectroscopy, consistent with significant reduction in the conformational states of MBBA. This suppression of large amplitude motion is again consistent with a Coulomb screening and gives a molecular basis for the entropic-to-enthalpic conversion of the N-I activation barrier.

  16. Structural Transition in Liquid Crystal Bubbles Generated from Fluidic Nanocellulose Colloids.

    PubMed

    Chu, Guang; Vilensky, Rita; Vasilyev, Gleb; Deng, Shengwei; Qu, Dan; Xu, Yan; Zussman, Eyal

    2017-07-17

    The structural transition in micrometer-sized liquid crystal bubbles (LCBs) derived from rod-like cellulose nanocrystals (CNCs) was studied. The CNC-based LCBs were suspended in nematic or chiral nematic liquid-crystalline CNCs, which generated topological defects and distinct birefringent textures around them. The ordering and structure of the LCBs shifted from a nematic to chiral nematic arrangement as water evaporation progressed. These packed LCBs exhibited a specific photonic cross-communication property that is due to a combination of Bragg reflection and bubble curvature and size. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Smectic order induced at homeotropically aligned nematic surfaces: A neutron reflection study

    NASA Astrophysics Data System (ADS)

    Lau, Y. G. J.; Richardson, Robert M.; Cubitt, R.

    2006-06-01

    Neutron reflection was used to measure the buildup of layers at a solid surface as the smectic phase is approached from higher temperatures in a nematic liquid crystal. The liquid crystal was 4-octyl-4'-cyanobiphenyl (8CB), and the solid was silicon with one of five different surface treatments that induce homeotropic alignment: (i) silicon oxide; (ii) a cetyltrimethylammonium bromide coating; (iii) an octadecyltrichlorosilane monolayer; (iv) an n-n-dimethyl-n-octadecyl-3- aminopropyltrimethyloxysilyl chloride monolayer; and (v) a lecithin coating. The development of surface smectic layers in the nematic phase of 8CB was followed by measuring specular reflectivity and monitoring the pseudo-Bragg peak from the layers. The scattering data were processed to remove the scattering from short-ranged smecticlike fluctuations in the bulk nematic phase from the specular reflection. The pseudo-Bragg peak at scattering vector Q ˜0.2Å-1 therefore corresponded to the formation of long-range smectic layers at the surface. The amplitude of the smectic density wave decayed with increasing distance from the surface, and the characteristic thickness of this smectic region diverged as the transition temperature was approached. It was found that the characteristic thickness for some of the surface treatments was greater than the correlation length in the bulk nematic. The different surfaces gave different values of the smectic order parameter at the surface. This suggests that the interaction with the surface is significantly different from a "hard wall" which would give the same values of the smectic order parameter and penetration depths similar to the bulk correlation length. Comparison of the different surfaces also suggested that the strength and range of the surface smectic ordering may be varied independently.

  18. Anisotropy and probe-medium interactions in the microrheology of nematic fluids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordoba, Andres; Stieger, Tillmann; Mazza, Marco G.

    2016-01-01

    A theoretical formalism is presented to analyze and interpret microrheology experiments in anisotropic fluids with nematic order. The predictions of that approach are examined in the context of a simple coarse-grained molecular model which is simulated using nonequilibrium molecular dynamics calculations. The proposed formalism is used to study the effect of confinement, the type of anchoring at the probe-particle surface, and the strength of the nematic field on the rheological response functions obtained from probe-particle active microrheology. As expected, a stronger nematic field leads to increased anisotropy in the rheological response of the material. It is also found that themore » defect structures that arise around the probe particle, which are determined by the type of anchoring and the particle size, have a significant effect on the rheological response observed in microrheology simulations. Independent estimates of the bulk dynamic modulus of the model nematic fluid considered here are obtained from small-amplitude oscillatory shear simulations with Lees Edwards boundary conditions. The results of simulations indicate that the dynamic modulus extracted from particle-probe microrheology is different from that obtained in the absence of the particle, but that the differences decrease as the size of the defect also decreases. Importantly, the results of the nematic microrheology theory proposed here are in much closer agreement with simulations than those from earlier formalisms conceived for isotropic fluids. As such, it is anticipated that the theoretical framework advanced in this study could provide a useful tool for interpretation of microrheology experiments in systems such as liquid crystals and confined macromolecular solutions or gels.« less

  19. Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal.

    PubMed

    Huang, Kuan-Chung; Hsiao, Yu-Cheng; Timofeev, Ivan V; Zyryanov, Victor Ya; Lee, Wei

    2016-10-31

    We report on the spectral properties of an optically switchable tristable chiral-tilted homeotropic nematic liquid crystal (LC) incorporated as a tunable defect layer in one-dimensional photonic crystal. By varying the polarization angle of the incident light and modulating the light intensity ratio between UV and green light, various transmission characteristics of the composite were obtained. The hybrid structure realizes photo-tunability in transmission of defect-mode peaks within the photonic bandgap in addition to optical switchability among three distinct sets of defect modes via photoinduced tristable state transitions. Because the fabrication process is easier and less critical in terms of cell parameters or sample preparation conditions and the LC layer itself possesses an extra stable state compared with the previously reported bistable counterpart operating on the basis of biased-voltage dual-frequency switching, it has much superior potential for photonic applications such as a low-power-consumption multichannel filter and an optically controllable intensity modulator.

  20. Liquid crystalline polymers in good nematic solvents: Free chains, mushrooms, and brushes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, D.R.M.; Halperin, A.

    1993-08-02

    The swelling of main chain liquid crystalline polymers (LCPs) in good nematic solvents is theoretically studied, focusing on brushes of terminally anchored, grafted LCPs. The analysis is concerned with long LCPs, of length L, with n[sub 0] >> 1 hairpin defects. The extension behavior of the major axis, R[parallel], of these ellipsoidal objects gives rise to an Ising elasticity with a free energy penalty of F[sub el](R[parallel])/kT [approx] n[sub 0] [minus] n[sub 0](1 [minus] R[parallel][sup 2]/L[sup 2])[sup 1/2]. The theory of the extension behavior enables the formulation of a Flory type theory of swelling of isolated LCPs yielding R[parallel] [approx]more » exp(2U[sub h]/5kT)N[sup 3/5] and R [perpendicular] [approx] exp([minus]U[sub h]/10kT)N[sup 3/5], with N the degree of polymerization and U[sub h] the hairpin energy. It also allows the generalization of the Alexander model for polymer brushes to the case of grafted LCPs. The behavior of LCP brushes depends on the alignment imposed by the grafting surface and the liquid crystalline solvent. A tilting phase transition is predicted as the grafting density is increased for a surface imposing homogeneous, parallel anchoring. A related transition is expected upon compression of a brush subject to homeotropic, perpendicular alignment. The effect of magnetic or electric fields on these phase transitions is also studied. The critical magnetic/electric field for the Frederiks transition can be lowered to arbitrarily small values by using surfaces coated by brushes of appropriate density.« less

  1. Director configurations in nematic droplets with inhomogeneous boundary conditions

    NASA Astrophysics Data System (ADS)

    Prishchepa, O. O.; Shabanov, A. V.; Zyryanov, V. Ya.

    2005-09-01

    The nematic droplets with director configurations intermediate between the bipolar and radial structures have been investigated experimentally and theoretically. The liquid crystal 4'-n-pentyl-4-cyanobiphenyl (5CB) with a variable addition of the lecithin dispersed in polyvinylbutyral has been used. The characteristic textures of the droplets formed at various lecithin contents have been examined using polarizing microscope both in the crossed polarizers and without analyzer. The computer simulation has been performed for proper ordering of the director in spherical nematic droplets by minimizing the free energy in the one-constant approximation. The inhomogeneous boundary conditions with strong anchoring of the molecules at the interface have been used. The distribution of the anchoring angle at the droplet surface has been estimated based on analysis of observed patterns. The simulated textures of the droplets under crossed polarizers are shown to compare well with the experimental ones.

  2. Self-regulation in self-propelled nematic fluids.

    PubMed

    Baskaran, A; Marchetti, M C

    2012-09-01

    We consider the hydrodynamic theory of an active fluid of self-propelled particles with nematic aligning interactions. This class of materials has polar symmetry at the microscopic level, but forms macrostates of nematic symmetry. We highlight three key features of the dynamics. First, as in polar active fluids, the control parameter for the order-disorder transition, namely the density, is dynamically convected by the order parameter via active currents. The resulting dynamical self-regulation of the order parameter is a generic property of active fluids and destabilizes the uniform nematic state near the mean-field transition. Secondly, curvature-driven currents render the system unstable deep in the nematic state, as found previously. Finally, and unique to self-propelled nematics, nematic order induces local polar order that in turn leads to the growth of density fluctuations. We propose this as a possible mechanism for the smectic order of polar clusters seen in numerical simulations.

  3. Crystallographic phase induced electro-optic properties of nanorod blend nematic liquid crystal.

    PubMed

    Kundu, Sudarshan; Hill, Jonathan P; Richards, Gary J; Ariga, Katsuhiko; Khan, Ali Hossain; Thupakula, Umamahesh; Acharya, Somobrata

    2011-09-01

    Ultrasmall ZnS or PbS nanorods encapsulated in fluid-like soft organic surfactants show excellent miscibility in the nematic liquid crystal (LC ZLI-4792) host resulting in a novel soft matter type blend with enhanced electro-optic properties. The ultranarrow ZnS rods are of wurtzite phase and possess a chemical bipolarity and a net dipole moment. The centrosymmetric ultranarrow PbS rods possess a finite size and shape dependent inherent dipole moment despite their cubic rock-salt structure. When an electric field is applied, the blend aligns along the direction of the field producing a local unidirectional orientation of the rods and LC directors, and defining a unique axis for the system. The local ordering significantly affects the global ordering of the blend allowing a more rapid response of the electro-optic properties. The degree and switching speed of the blends depend upon the magnitude of dipole moments present in the dopant nanorods. We show how a non-mesogenic element designed with preferential crystallographic phase can be introduced within a LC for improvement of the switching properties of the LC blend. These types of unique blends are a model for fundamental conceptual advances in general understanding of interaction behaviour leading consequently to a significant technological advancement for superior device fabrication.

  4. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device

    PubMed Central

    Nayek, Prasenjit; Li, Guoqiang

    2015-01-01

    A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device was addressed in the large signal regime by an amplitude modulated square wave signal at the frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total optical response time (rise time + decay time) for a 5 μm-thick cell is 2.5 ms for ~7 Vrms. This might be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. The possible reason behind the fast response time could be the visco-elastic constant and restoring force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized optical microscopic textural observation shows that the macroscopic dislocation-free excellent contrast have significant impact on improving the image quality and performance of the devices. PMID:26041701

  5. Ferroelectric Nematic and Ferrielectric Smectic Mesophases in an Achiral Bent-Core Azo Compound.

    PubMed

    Kumar, Jitendra; Prasad, Veena

    2018-03-22

    Here, we report the observation of ferroelectric nematic and ferrielectric smectic mesophases in an achiral bent-core azo compound consisting of nonsymmetrical molecules with a lateral fluoro substitution on one of the wings. These mesophases are enantiotropic in nature with fairly low transition temperatures and wide mesophase ranges. The liquid crystalline properties of this compound are investigated using polarizing optical microscope, differential scanning calorimeter, X-ray diffraction, and electro-optical studies. As revealed by X-ray diffraction measurements, the nematic mesophase is composed of skewed cybotactic clusters and, in the smectic mesophase, the molecules are tilted with respect to the layer normal. The polar order in these mesophases was confirmed by the electro-optical switching and dielectric spectroscopy measurements. The dielectric study in the nematic mesophase shows a single relaxation process at low frequency ( f < 1 kHz) measured in the range 10 Hz to 5 MHz, which is attributed to the collective motion of the molecules within cybotactic clusters. The formation of local polar order in these clusters leads to a ferroelectric-like polar switching in the nematic mesophase. Of particular interest is the fact that the smectic phase exhibits a field induced ferrielectric state, which can be exploited for designing of the potential optical devices due to multistate switching.

  6. Electron nematic fluid in a strained S r3R u2O7 film

    NASA Astrophysics Data System (ADS)

    Marshall, Patrick B.; Ahadi, Kaveh; Kim, Honggyu; Stemmer, Susanne

    2018-04-01

    S r3R u2O7 belongs to the family of layered strontium ruthenates and exhibits a range of unusual emergent properties, such as electron nematic behavior and metamagnetism. Here, we show that epitaxial film strain significantly modifies these phenomena. In particular, we observe enhanced magnetic interactions and an electron nematic phase that extends to much higher temperatures and over a larger magnetic-field range than in bulk single crystals. Furthermore, the films show an unusual anisotropic non-Fermi-liquid behavior that is controlled by the direction of the applied magnetic field. At high magnetic fields, the metamagnetic transition to a ferromagnetic phase recovers isotropic Fermi-liquid behavior. The results support the interpretation that these phenomena are linked to the special features of the Fermi surface, which can be tuned by both film strain and an applied magnetic field.

  7. Majorana Kramers pair in a nematic vortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fengcheng; Martin, Ivar

    A time-reversal (TR) invariant topological superconductor is characterized by a Kramers pair of Majorana zero-energy modes on boundaries and in a core of a TR invariant vortex. A vortex defect that preserves TR symmetry has remained primarily of theoretical interest, since typically a magnetic field, which explicitly breaks TR, needs to be applied to create vortices in superconductors. In this paper, we show that an odd-parity topological superconductor with a nematic pairing order parameter can host a nematic vortex that preserves TR symmetry and binds a Majorana Kramers pair. Such a nematic superconductor could be realized in metal-doped Bi 2Semore » 3, as suggested by recent experiments. We provide an analytic solution for the zero modes in a continuous nematic vortex. In lattice, crystalline anisotropy can pin the two-component order parameter along high-symmetry directions. We show that a discrete nematic vortex, which forms when three nematic domains meet, also supports a TR pair of Majorana modes. Lastly, we discuss possible experiments to probe the zero modes.« less

  8. Majorana Kramers pair in a nematic vortex

    DOE PAGES

    Wu, Fengcheng; Martin, Ivar

    2017-06-05

    A time-reversal (TR) invariant topological superconductor is characterized by a Kramers pair of Majorana zero-energy modes on boundaries and in a core of a TR invariant vortex. A vortex defect that preserves TR symmetry has remained primarily of theoretical interest, since typically a magnetic field, which explicitly breaks TR, needs to be applied to create vortices in superconductors. In this paper, we show that an odd-parity topological superconductor with a nematic pairing order parameter can host a nematic vortex that preserves TR symmetry and binds a Majorana Kramers pair. Such a nematic superconductor could be realized in metal-doped Bi 2Semore » 3, as suggested by recent experiments. We provide an analytic solution for the zero modes in a continuous nematic vortex. In lattice, crystalline anisotropy can pin the two-component order parameter along high-symmetry directions. We show that a discrete nematic vortex, which forms when three nematic domains meet, also supports a TR pair of Majorana modes. Lastly, we discuss possible experiments to probe the zero modes.« less

  9. Dynamic Self-Stiffening in Liquid Crystal Elastomers

    PubMed Central

    Agrawal, Aditya; Chipara, Alin C.; Shamoo, Yousif; Patra, Prabir K.; Carey, Brent J.; Ajayan, Pulickel M.; Chapman, Walter G.

    2013-01-01

    Biological tissues have the remarkable ability to remodel and repair in response to disease, injury, and mechanical stresses. Synthetic materials lack the complexity of biological tissues, and man-made materials which respond to external stresses through a permanent increase in stiffness are uncommon. Here, we report that polydomain nematic liquid crystal elastomers increase in stiffness by up to 90% when subjected to a low-amplitude (5%), repetitive (dynamic) compression. Elastomer stiffening is influenced by liquid crystal content, the presence of a nematic liquid crystal phase and the use of a dynamic as opposed to static deformation. Through rheological and X-ray diffraction measurements, stiffening can be attributed to a nematic director which rotates in response to dynamic compression. Stiffening under dynamic compression has not been previously observed in liquid crystal elastomers and may be useful for the development of self-healing materials or for the development of biocompatible, adaptive materials for tissue replacement. PMID:23612280

  10. Probing the shear viscosity of an active nematic film

    NASA Astrophysics Data System (ADS)

    Guillamat, Pau; Ignés-Mullol, Jordi; Shankar, Suraj; Marchetti, M. Cristina; Sagués, Francesc

    2016-12-01

    In vitro reconstituted active systems, such as the adenosine triphosphate (ATP)-driven microtubule bundle suspension developed by the Dogic group [T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann, and Z. Dogic, Nature (London) 491, 431 (2012), 10.1038/nature11591], provide a fertile testing ground for elucidating the phenomenology of active liquid crystalline states. Controlling such novel phases of matter crucially depends on our knowledge of their material and physical properties. In this Rapid Communication, we show that the shear viscosity of an active nematic film can be probed by varying its hydrodynamic coupling to a bounding oil layer. Using the motion of disclinations as intrinsic tracers of the flow field and a hydrodynamic model, we obtain an estimate for the shear viscosity of the nematic film. Knowing this now provides us with an additional handle for robust and precision tunable control of the emergent dynamics of active fluids.

  11. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh

    NASA Astrophysics Data System (ADS)

    DeBenedictis, Andrew; Atherton, Timothy J.; Rodarte, Andrea L.; Hirst, Linda S.

    2018-03-01

    A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.

  12. Shape selection of twist-nematic-elastomer ribbons

    PubMed Central

    Sawa, Yoshiki; Ye, Fangfu; Urayama, Kenji; Takigawa, Toshikazu; Gimenez-Pinto, Vianney; Selinger, Robin L. B.; Selinger, Jonathan V.

    2011-01-01

    How microscopic chirality is reflected in macroscopic scale to form various chiral shapes, such as straight helicoids and spiral ribbons, and how the degree of macroscopic chirality can be controlled are a focus of studies on the shape formation of many biomaterials and supramolecular systems. This article investigates both experimentally and theoretically how the chiral arrangement of liquid crystal mesogens in twist-nematic-elastomer films induces the formation of helicoids and spiral ribbons because of the coupling between the liquid crystalline order and the elasticity. It is also shown that the pitch of the formed ribbons can be tuned by temperature variation. The results of this study will facilitate the understanding of physics for the shape formation of chiral materials and the designing of new structures on basis of microscopic chirality. PMID:21464276

  13. Angular Dependence of Liquid Crystal Based Nematic Acoustic Field Imaging Devices

    DTIC Science & Technology

    1980-04-01

    wave arid a linearl t Polarized light wave# The nematic cell is constructed bv insertinsI the liouid crvstal between two sheets of glass cheicallA...perpendicular to the glass sheets. Noratall no li:. ht is transmitted if the cell is observed between crossed- Folarizers. However, if an ultrasonic...reported the rarrow’ar,:ialar r;n.rte for the effect becomes broadened when thin glass is used for the cell, -el • _____ __ Xi this repcrt we rjescribe

  14. Structural modeling of carbonaceous mesophase amphotropic mixtures under uniaxial extensional flow.

    PubMed

    Golmohammadi, Mojdeh; Rey, Alejandro D

    2010-07-21

    The extended Maier-Saupe model for binary mixtures of model carbonaceous mesophases (uniaxial discotic nematogens) under externally imposed flow, formulated in previous studies [M. Golmohammadi and A. D. Rey, Liquid Crystals 36, 75 (2009); M. Golmohammadi and A. D. Rey, Entropy 10, 183 (2008)], is used to characterize the effect of uniaxial extensional flow and concentration on phase behavior and structure of these mesogenic blends. The generic thermorheological phase diagram of the single-phase binary mixture, given in terms of temperature (T) and Deborah (De) number, shows the existence of four T-De transition lines that define regions that correspond to the following quadrupolar tensor order parameter structures: (i) oblate (perpendicular, parallel), (ii) prolate (perpendicular, parallel), (iii) scalene O(perpendicular, parallel), and (iv) scalene P(perpendicular, parallel), where the symbols (perpendicular, parallel) indicate alignment of the tensor order ellipsoid with respect to the extension axis. It is found that with increasing T the dominant component of the mixture exhibits weak deviations from the well-known pure species response to uniaxial extensional flow (uniaxial perpendicular nematic-->biaxial nematic-->uniaxial parallel paranematic). In contrast, the slaved component shows a strong deviation from the pure species response. This deviation is dictated by the asymmetric viscoelastic coupling effects emanating from the dominant component. Changes in conformation (oblate <==> prolate) and orientation (perpendicular <==> parallel) are effected through changes in pairs of eigenvalues of the quadrupolar tensor order parameter. The complexity of the structural sensitivity to temperature and extensional flow is a reflection of the dual lyotropic/thermotropic nature (amphotropic nature) of the mixture and their cooperation/competition. The analysis demonstrates that the simple structures (biaxial nematic and uniaxial paranematic) observed in pure discotic

  15. Direct and inverted nematic dispersions for soft matter photonics.

    PubMed

    Muševič, I; Skarabot, M; Humar, M

    2011-07-20

    General properties and recent developments in the field of nematic colloids and emulsions are discussed. The origin and nature of pair colloidal interactions in the nematic colloids are explained and an overview of the stable colloidal 2D crystalline structures and superstructures discovered so far is given. The nature and role of topological defects in the nematic colloids is discussed, with an emphasis on recently discovered entangled colloidal structures. Applications of inverted nematic emulsions and binding force mechanisms in nematic colloids for soft matter photonic devices are discussed.

  16. Isotropic-nematic phase transition in aqueous sepiolite suspensions.

    PubMed

    Woolston, Phillip; van Duijneveldt, Jeroen S

    2015-01-01

    Aqueous suspensions of sepiolite clay rods in water tend to form gels on increase of concentration. Here it is shown how addition of a small amount (0.1% of the clay mass) of a common stabiliser for clay suspensions, sodium polyacrylate, can allow the observation of an isotropic-nematic liquid crystal phase transition. This transition was found to move to higher clay concentrations upon adding NaCl, with samples containing 10(-3) M salt or above only displaying a gel phase. Even samples that initially formed liquid crystals had a tendency to form gels after several weeks, possibly due to Mg(2+) ions leaching from the clay mineral. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Geometry of Thin Nematic Elastomer Sheets

    NASA Astrophysics Data System (ADS)

    Aharoni, Hillel; Sharon, Eran; Kupferman, Raz

    A thin sheet of nematic elastomer attains 3D configurations depending on the nematic director field upon heating. In this talk we describe the intrinsic geometry of such a sheet, and derive an expression for the metric induced by general smooth nematic director fields. Furthermore, we investigate the reverse problem of constructing a director field that induces a specified 2D geometry. We provide an explicit analytical recipe for constructing any surface of revolution using this method. We demonstrate how the design of an arbitrary 2D geometry is accessible using approximate numerical methods.

  18. Surfactant induced stabilization of nano liquid crystalline (dodecane-phytantriol) droplet

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Saha, Debasish; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2018-04-01

    The study of formation and stabilization of dodecane-phytantriol (DPT) microemulsions using ionic and nonionic surfactants are investigated. Small Angle Neutron Scattering (SANS) and Dynamic Light Scattering (DLS) techniques have been employed to study the resulting structures of the micro emulsion droplets. We show the formation of stable microemulsion droplets with absence of lyotropic liquid crystalline phase on addition of nonionic surfactant C12E10. The oil to surfactant ratio plays the crucial role in formation of stable droplet and its size. The dense presence of C12E10 molecules between microemulsion droplets protect them from coalescence while less number of C12E10 between the surface of droplets easily triggers the coalescence process. The interaction with both anionic (SDS) as well as cationic (DTAB) surfactants with DPT phase leads to formation of microemulsion droplets with lyotropic liquid crystalline phase.

  19. Theoretical analysis of the influence of flexoelectric effect on the defect site in nematic inversion walls

    NASA Astrophysics Data System (ADS)

    Gui-Li, Zheng; Hui, Zhang; Wen-Jiang, Ye; Zhi-Dong, Zhang; Hong-Wei, Song; Li, Xuan

    2016-03-01

    Based on the experimental phenomena of flexoelectric response at defect sites in nematic inversion walls conducted by Kumar et al., we gave the theoretical analysis using the Frank elastic theory. When a direct-current electric field normal to the plane of the substrate is applied to the parallel aligned nematic liquid crystal cell with weak anchoring, the rotation of ±1 defects in the narrow inversion walls can be exhibited. The free energy of liquid crystal molecules around the +1 and -1 defect sites in the nematic inversion walls under the electric field was formulated and the electric-field-driven structural changes at the defect site characterized by polar and azimuthal angles of the local director were simulated. The results reveal that the deviation of azimuthal angle induced by flexoelectric effect are consistent with the switching of extinction brushes at the +1 and -1 defects obtained in the experiment conducted by Kumar et al. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374087, 11274088, and 11304074), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2014202123 and A2016202282), the Research Project of Hebei Education Department, China (Grant Nos. QN2014130 and QN2015260), and the Key Subject Construction Project of Hebei Province University, China.

  20. New thermotropic chiral nematic polymers. 3. Copolymers containing a cyanobiphenyl group and (S)-(-)-1-phenylethanol or (S)-(-)-1-phenylethylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastrangelo, J.C.; Chen, S.H.

    Thermotropic chiral nematics in thin films on the order of 10 [mu]m possess a unique optical property, selective wavelength reflection, that forms the basis of a number of potential applications including circular polarizers, notch filters, beamsplitters, and so on. Instead of low molar mass chiral nematics, thermotropic copolymers have been actively pursued as an alternative in view of the possibility of achieving long-term mesophase stability and optical characteristics desired for passive device applications. Cyanobiphenyl is a relatively high birefringent group which is known to contribute to the formation of low molar mass liquid crystals; it was found to exhibit amore » nematic mesophase between the glass transition and clearing temperatures in side-chain polyacrylates with spacer lengths in the 2-6 range. However, there exists only one report on the formation of a chiral nematic copolymer with cholesterol as the chiral moiety. Since several chiral building blocks other than cholesterol have been found to possess strong helical twisting powers with selected nematogenic monomers, it would be of interest to explore a cyanobiphenyl group as a building block for the synthesis of new chiral nematic copolymers.« less

  1. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  2. Electrically tunable whispering gallery mode microresonator based on a grapefruit-microstructured optical fiber infiltrated with nematic liquid crystals.

    PubMed

    Yang, Chengkun; Zhang, Hao; Liu, Bo; Lin, Shiwei; Li, Yuetao; Liu, Haifeng

    2017-08-01

    An electrically tunable whispering gallery mode (WGM) microresonator based on an HF-etched microstructured optical fiber (MOF) infiltrated with nematic liquid crystals (NLCs) is proposed and experimentally demonstrated. Experimental results indicate that as the peak-to-peak voltage of the applied AC electric field increases from 160 to 220 V, WGM resonance peaks gradually move toward a shorter wavelength region by 0.527 nm with a wavelength sensitivity up to 0.01  nm/V for a TM1691 mode, and the Q-factor for each WGM resonance peak rapidly decreases with the increment of applied electric voltage. The proposed electrically controlled WGM tuning scheme shows a linear resonance wavelength shift with good spectral reversibility, which makes it a promising candidate to serve as an integrated functional photonic device in practical use and in related fundamental scientific studies.

  3. Spin nematics next to spin singlets

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yuto; Hotta, Chisa

    2018-05-01

    We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.

  4. Evidence for a jacketed nematic polymer

    NASA Astrophysics Data System (ADS)

    Hardouin, F.; Mery, S.; Achard, M. F.; Noirez, L.; Keller, P.

    1991-05-01

    The evidence for a “jacketed” structure at the scale of the chain dimensions in the nematic phase of a “side-on fixed” liquid crystal polysiloxane is reported by using small angle neutron scattering. We relate this anisotropy of chain conformation to the first measurements of the rotational viscosity coefficient in this new type of liquid crystal side-chain polymer. Par des mesures de diffusion des neutrons aux petits angles nous montrons l'existence, pour un polysiloxane “ en haltère ”, d'une structure “ chemisée ” à l'échelle de l'organisation global d'une chaîne en phase nématique. On constate que cette anisotropie de forme du polymère a des conséquences sur l'évolution du coefficient de viscosité de torsion mesuré pour la première fois dans ce nouveau type de polymère à chaînes latérales.

  5. Green-Kubo relations for the viscosity of biaxial nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1996-09-01

    We derive Green-Kubo relations for the viscosities of a biaxial nematic liquid crystal. In this system there are seven shear viscosities, three twist viscosities, and three cross coupling coefficients between the antisymmetric strain rate and the symmetric traceless pressure tensor. According to the Onsager reciprocity relations these couplings are equal to the cross couplings between the symmetric traceless strain rate and the antisymmetric pressure. Our method is based on a comparison of the microscopic linear response generated by the SLLOD equations of motion for planar Couette flow (so named because of their close connection to the Doll's tensor Hamiltonian) and the macroscopic linear phenomenological relations between the pressure tensor and the strain rate. In order to obtain simple Green-Kubo relations we employ an equilibrium ensemble where the angular velocities of the directors are identically zero. This is achieved by adding constraint torques to the equations for the molecular angular accelerations. One finds that all the viscosity coefficients can be expressed as linear combinations of time correlation function integrals (TCFIs). This is much simpler compared to the expressions in the conventional canonical ensemble, where the viscosities are complicated rational functions of the TCFIs. The reason for this is, that in the constrained angular velocity ensemble, the thermodynamic forces are given external parameters whereas the thermodynamic fluxes are ensemble averages of phase functions. This is not the case in the canonical ensemble. The simplest way of obtaining numerical estimates of viscosity coefficients of a particular molecular model system is to evaluate these fluctuation relations by equilibrium molecular dynamics simulations.

  6. Twisted nematic liquid crystal cells with rubbed poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films for active polarization control of terahertz waves

    NASA Astrophysics Data System (ADS)

    Sasaki, Tomoyuki; Okuyama, Hiroki; Sakamoto, Moritsugu; Noda, Kohei; Okamoto, Hiroyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2017-04-01

    We fabricated a terahertz (THz) polarization converter using a twisted nematic (TN) liquid crystal (LC) cell. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) films coated on quartz glass substrates were used as electrode layers in the TN LC cell. The PEDOT/PSS films were rubbed unidirectionally using a rayon cloth to align the nematic LC, thereby also serving as an alignment layer. The azimuthal surface anchoring strength of the PEDOT/PSS films was measured to be 5 × 10-4 J/m2 using the Néel wall method, which is similar to that of typical polymeric alignment layers. The optical constants of the PEDOT/PSS film in the THz range were also characterized using the Drude-Smith model, and the results indicated that the PEDOT/PSS films could be used both as transparent electrodes in the THz range and as alignment layers for the LC. The electro-optical properties of the fabricated TN LC cell were also investigated using a polarized visible laser and THz time-domain spectroscopic system. In particular, the transmission spectra and polarization conversion property of the TN LC cell in the THz range were theoretically analyzed based on a stratified model that considers optical anisotropy, absorption, and multiple interference. This work substantiates the advantages of TN LC cells with rubbed PEDOT/PSS films useful for THz polarization converters with electrical tunability.

  7. High Resolution Displays Using NCAP Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Macknick, A. Brian; Jones, Phil; White, Larry

    1989-07-01

    Nematic curvilinear aligned phase (NCAP) liquid crystals have been found useful for high information content video displays. NCAP materials are liquid crystals which have been encapsulated in a polymer matrix and which have a light transmission which is variable with applied electric fields. Because NCAP materials do not require polarizers, their on-state transmission is substantially better than twisted nematic cells. All dimensional tolerances are locked in during the encapsulation process and hence there are no critical sealing or spacing issues. By controlling the polymer/liquid crystal morphology, switching speeds of NCAP materials have been significantly improved over twisted nematic systems. Recent work has combined active matrix addressing with NCAP materials. Active matrices, such as thin film transistors, have given displays of high resolution. The paper will discuss the advantages of NCAP materials specifically designed for operation at video rates on transistor arrays; applications for both backlit and projection displays will be discussed.

  8. Topological Defects in Liquid Crystals: Studying the Correlation between Defects and Curvature

    NASA Astrophysics Data System (ADS)

    Melton, Charles

    2015-03-01

    Topological defects have recently been the subject of many fascinating studies in soft condensed matter physics. In particular, linking the evolution of topological defects to curvature changes has been a focus, leading possible applications in the areas such as cosmetics, pharmaceuticals, and electronics. In this study, defects in nematic liquid crystal droplets are investigated via laboratory and theoretical techniques. Nematic liquid crystal defects are reproduced via Monte Carlo simulations using a modified 2D XY-Model Hamiltonian. The simulation is performed on a curved surface to replicate a nematic droplet and examine possible defect configurations. To complement this theoretical work, we have trapped nematic droplets inside a dual-beam optical trap. This system allows controllable non-contact droplet deformation on a microscope based platform. Future work will focus on using the trap to stretch nematic droplets, correlating the changing topological defects with theoretical predictions.

  9. Quantitative and qualitative characterization of zigzag spatiotemporal chaos in a system of amplitude equations for nematic electroconvection.

    PubMed

    Oprea, Iuliana; Triandaf, Ioana; Dangelmayr, Gerhard; Schwartz, Ira B

    2007-06-01

    It has been suggested by experimentalists that a weakly nonlinear analysis of the recently introduced equations of motion for the nematic electroconvection by M. Treiber and L. Kramer [Phys. Rev. E 58, 1973 (1998)] has the potential to reproduce the dynamics of the zigzag-type extended spatiotemporal chaos and localized solutions observed near onset in experiments [M. Dennin, D. S. Cannell, and G. Ahlers, Phys. Rev. E 57, 638 (1998); J. T. Gleeson (private communication)]. In this paper, we study a complex spatiotemporal pattern, identified as spatiotemporal chaos, that bifurcates at the onset from a spatially uniform solution of a system of globally coupled complex Ginzburg-Landau equations governing the weakly nonlinear evolution of four traveling wave envelopes. The Ginzburg-Landau system can be derived directly from the weak electrolyte model for electroconvection in nematic liquid crystals when the primary instability is a Hopf bifurcation to oblique traveling rolls. The chaotic nature of the pattern and the resemblance to the observed experimental spatiotemporal chaos in the electroconvection of nematic liquid crystals are confirmed through a combination of techniques including the Karhunen-Loeve decomposition, time-series analysis of the amplitudes of the dominant modes, statistical descriptions, and normal form theory, showing good agreement between theory and experiments.

  10. Liquid crystals of carbon nanotubes and graphene.

    PubMed

    Zakri, Cécile; Blanc, Christophe; Grelet, Eric; Zamora-Ledezma, Camilo; Puech, Nicolas; Anglaret, Eric; Poulin, Philippe

    2013-04-13

    Liquid crystal ordering is an opportunity to develop novel materials and applications with spontaneously aligned nanotubes or graphene particles. Nevertheless, achieving high orientational order parameter and large monodomains remains a challenge. In addition, our restricted knowledge of the structure of the currently available materials is a limitation for fundamental studies and future applications. This paper presents recent methodologies that have been developed to achieve large monodomains of nematic liquid crystals. These allow quantification and increase of their order parameters. Nematic ordering provides an efficient way to prepare conductive films that exhibit anisotropic properties. In particular, it is shown how the electrical conductivity anisotropy increases with the order parameter of the nematic liquid crystal. The order parameter can be tuned by controlling the length and entanglement of the nanotubes. In the second part of the paper, recent results on graphene liquid crystals are reported. The possibility to obtain water-based liquid crystals stabilized by surfactant molecules is demonstrated. Structural and thermodynamic characterizations provide indirect but statistical information on the dimensions of the graphene flakes. From a general point of view, this work presents experimental approaches to optimize the use of nanocarbons as liquid crystals and provides new methodologies for the still challenging characterization of such materials.

  11. Tunable reflectance of an inverse opal-chiral nematic liquid crystal multilayer device by electric- or thermal-control.

    PubMed

    Zhang, Yuxian; Zhao, Weidong; Wen, Jiahui; Li, Jinming; Yang, Zhou; Wang, Dong; Cao, Hui; Quan, Maohua

    2017-05-21

    A new type of electric- or thermal-responsive multilayer device composed of SiO 2 bilayer inverse opal (IOP) and chiral nematic liquid crystals (N*LCs) was developed. Bilayer IOP was fabricated by layer-by-layer assembly of polystyrene (PS) spheres with two different sizes and showed a reflectance in an extended range of the near-infrared region. Furthermore, the electrically or thermally tunable reflectance of the bilayer-IOP-N*LC device was investigated. The device exhibited the photonic bandgap (PBG) of the N*LC-IOP composite structure with the application of an electric field (voltage-on), while it presented the reflectance of N*LCs without an electric field (voltage-off) and the electrically-responsive behaviour could be reversibly switched. Besides, the device exhibited a gradient redshift of reflectance as temperature increased below the clearing point (T C ) while it showed the PBG of the N*LC-IOP composite structure when the temperature was above T C .

  12. Hidden topological constellations and polyvalent charges in chiral nematic droplets

    PubMed Central

    Posnjak, Gregor; Čopar, Simon; Muševič, Igor

    2017-01-01

    Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=−2, −3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules. PMID:28220770

  13. Hidden topological constellations and polyvalent charges in chiral nematic droplets

    NASA Astrophysics Data System (ADS)

    Posnjak, Gregor; Čopar, Simon; Muševič, Igor

    2017-02-01

    Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=-2, -3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules.

  14. Lasing properties of polymerized chiral nematic Bragg onion microlasers.

    PubMed

    Humar, Matjaž; Araoka, Fumito; Takezoe, Hideo; Muševič, Igor

    2016-08-22

    Dye doped photocurable cholesteric liquid crystal was used to produce solid Bragg onion omnidirectional lasers. The lasers were produced by dispersing and polymerizing chiral nematic LC with parallel surface anchoring of LC molecules at the interface, extracted and transferred into another medium. Lasing characteristics were studied in carrier medium with different refractive index. The lasing in spherical cholesteric liquid crystal was attributed to two mechanisms, photonic bandedge lasing and lasing of whispering-gallery modes. The latter can be suppressed by using a higher index carrier fluid to prevent total internal reflection on the interface of the spheres. Pulse-to-pulse stability and threshold characteristics were also studied and compared to non-polymerized lasers. The polymerization process greatly increases the lasing stability.

  15. Optical patterning and dynamics of torons and hopfions in a chiral nematic with photo-tunable equilibrium pitch

    NASA Astrophysics Data System (ADS)

    Sohn, Hayley; Ackerman, Paul; Smalyukh, Ivan

    Three-dimensional (3D) topological solitons arise in field theories ranging from particle physics to condensed matter and cosmology. They are the 3D counterparts of 2D skyrmions (often called ``baby skyrmions''), which attract a great deal of interest in studies of chiral ferromagnets and enable the emerging field of skyrmionics. In chiral nematic liquid crystals, the stability of such solitons is enhanced by the chiral medium's tendency to twist the director field describing the 3D spatial patterns of molecular alignment. However, their experimental realization, control and detailed studies remain limited. We combine experimental realization and numerical modeling of such light-responsive solitonic structures, including elementary torons and hopfions, in confined chiral nematic liquid crystals with photo-tunable cholesteric pitch. We show that the optical tunability of the pitch allows for using low-intensity light to control the soliton stability, dimensions, spatial patterning and dynamics.

  16. Electric-field-induced shape transition of nematic tactoids

    NASA Astrophysics Data System (ADS)

    Metselaar, Luuk; Dozov, Ivan; Antonova, Krassimira; Belamie, Emmanuel; Davidson, Patrick; Yeomans, Julia M.; Doostmohammadi, Amin

    2017-08-01

    The occurrence of new textures of liquid crystals is an important factor in tuning their optical and photonics properties. Here, we show, both experimentally and by numerical computation, that under an electric field chitin tactoids (i.e., nematic droplets) can stretch to aspect ratios of more than 15, leading to a transition from a spindlelike to a cigarlike shape. We argue that the large extensions occur because the elastic contribution to the free energy is dominated by the anchoring. We demonstrate that the elongation involves hydrodynamic flow and is reversible: the tactoids return to their original shapes upon removing the field.

  17. Hybrid molecular-colloidal liquid crystals.

    PubMed

    Mundoor, Haridas; Park, Sungoh; Senyuk, Bohdan; Wensink, Henricus H; Smalyukh, Ivan I

    2018-05-18

    Order and fluidity often coexist, with examples ranging from biological membranes to liquid crystals, but the symmetry of these soft-matter systems is typically higher than that of the constituent building blocks. We dispersed micrometer-long inorganic colloidal rods in a nematic liquid crystalline fluid of molecular rods. Both types of uniaxial building blocks, while freely diffusing, interact to form an orthorhombic nematic fluid, in which like-sized rods are roughly parallel to each other and the molecular ordering direction is orthogonal to that of colloidal rods. A coarse-grained model explains the experimental temperature-concentration phase diagram with one biaxial and two uniaxial nematic phases, as well as the orientational distributions of rods. Displaying properties of biaxial optical crystals, these hybrid molecular-colloidal fluids can be switched by electric and magnetic fields. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Temperature control of the ultra-short laser pulse compression in a one-dimensional photonic band gap structure with nematic liquid crystal as a defect layer

    NASA Astrophysics Data System (ADS)

    Shiri, Ramin; Safari, Ebrahim; Bananej, Alireza

    2018-04-01

    We investigate numerically the controllable chirped pulse compression in a one-dimensional photonic structure containing a nematic liquid crystal defect layer using the temperature dependent refractive index of the liquid crystal. We consider the structure under irradiation by near-infrared ultra-short laser pulses polarized parallel to the liquid crystal director at a normal angle of incidence. It is found that the dispersion behaviour and consequently the compression ability of the system can be changed in a controlled manner due to the variation in the defect temperature. When the temperature increased from 290 to 305 K, the transmitted pulse duration decreased from 75 to 42 fs in the middle of the structure, correspondingly. As a result, a novel low-loss tunable pulse compressor with a really compact size and high compression factor is achieved. The so-called transfer matrix method is utilized for numerical simulations of the band structure and reflection/transmission spectra of the structure under investigation.

  19. Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope.

    PubMed

    Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Li, Dayu; Peng, Zenghui; Liu, Yonggang; Xuan, Li

    2009-02-16

    A nematic liquid crystal adaptive optics system (NLC AOS) was assembled for a 2.16-m telescope to correct for atmospheric turbulence. LC AOS was designed and optimized with Zemax optical software. Second, an adaptive correction experiment was performed in the laboratory to test the performance of the NLC AOS. After the correction, the peak to valley (PV) and root mean square (RMS) of the wavefront were down to 0.2 lambda (lambda=633 nm) and 0.05 lambda, respectively. Finally, the star of Pollux (beta Gem) was tracked using the 2.16-m Reflecting Telescope, and real time correction of the atmospheric turbulence was performed with the NLC AOS. After the adaptive correction, the average PV and RMS of the wavefront were reduced from 11 lambda and 2.5 lambda to 2.3 lambda and 0.6 lambda, respectively. Although the intensity distribution of the beta Gem was converged and its peak was sharp, a halo still existed around the peak. These results indicated that the NLC AOS only partially corrected the vertical atmospheric turbulence. The limitations of our NLC AOS are discussed and some proposals are made.

  20. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  1. PEG-nanotube liquid crystals as templates for construction of surfactant-free gold nanorods.

    PubMed

    Kameta, Naohiro; Shiroishi, Hidenobu

    2018-05-03

    Lyotropic liquid crystals, in which nanotubes coated with polyethylene glycol were aligned side-by-side in aqueous dispersions, acted as templates for the construction of surfactant-free gold nanorods with controllable diameters, functionalizable surfaces, and tunable optical properties.

  2. Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets.

    PubMed

    Aguirre, Luis E; de Oliveira, Alexandre; Seč, David; Čopar, Simon; Almeida, Pedro L; Ravnik, Miha; Godinho, Maria Helena; Žumer, Slobodan

    2016-02-02

    Probing the surface morphology of microthin fibers such as naturally occurring biofibers is essential for understanding their structural properties, biological function, and mechanical performance. The state-of-the-art methods for studying the surfaces of biofibers are atomic force microscopy imaging and scanning electron microscopy, which well characterize surface geometry of the fibers but provide little information on the local interaction potential of the fibers with the surrounding material. In contrast, complex nematic fluids respond very well to external fields and change their optical properties upon such stimuli. Here we demonstrate that liquid crystal droplets deposited on microthin biofibers--including spider silk and cellulosic fibers--reveal characteristics of the fibers' surface, performing as simple but sensitive surface sensors. By combining experiments and numerical modeling, different types of fibers are identified through the fiber-to-nematic droplet interactions, including perpendicular and axial or helicoidal planar molecular alignment. Spider silks align nematic molecules parallel to fibers or perpendicular to them, whereas cellulose aligns the molecules unidirectionally or helicoidally along the fibers, indicating notably different surface interactions. The nematic droplets as sensors thus directly reveal chirality of cellulosic fibers. Different fiber entanglements can be identified by depositing droplets exactly at the fiber crossings. More generally, the presented method can be used as a simple but powerful approach for probing the surface properties of small-size bioobjects, opening a route to their precise characterization.

  3. Theoretical Studies of Nonuniform Orientational Order in Liquid Crystals and Active Particles

    NASA Astrophysics Data System (ADS)

    Duzgun, Ayhan

    I investigate three systems that exhibit complex patterns in orientational order, which are controlled by geometry interacting with the dynamics of phase transitions, metastability, and activity. 1. Liquid Crystal Elastomers: Liquid-crystal elastomers are remarkable materials that combine the elastic properties of cross-linked polymer networks with the anisotropy of liquid crystals. Any distortion of the polymer network affects the nematic order of the liquid crystal, and, likewise, any change in the magnitude or direction of the nematic order influences the shape of the elastomer. When elastomers are prepared without any alignment, they develop disordered polydomain structures as they are cooled into the nematic phase. To model these polydomain structures, I develop a dynamic theory for the isotropic-nematic transition in elastomers. 2. Active Brownian Particles: Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. I perform Langevin dynamics simulations and analytic calculations to explore how systems cross over from equilibrium to active behavior as the activity is increased. Based on these results, I calculate how the pressure depends on wall curvature, and hence make analytic predictions for the motion of curved tracers and other effects of confinement in active matter systems. 3. Skyrmions in Liquid Crystals: Skyrmions are localized topological defects in the orientation of an order parameter field, without a singularity in the magnitude of the field. For many years, such defects have been studied in the context of chiral liquid crystals--for example, as bubbles in a confined cholesteric phase or as double-twist tubes in a blue phase. More recently, skyrmions have been investigated extensively in the context of chiral magnets. In this project, I compare skyrmions in chiral liquid crystals with the analogous magnetic defects. Through simulations based on the nematic order tensor, I model both isolated skyrmions

  4. Transient, polarity-dependent dielectric response in a twisted nematic liquid crystal under very low frequency excitation.

    PubMed

    Krishnamurthy, K S

    2015-09-01

    The electric Freedericksz transition is a second-order quadratic effect, which, in a planarly aligned nematic liquid crystal layer, manifests above a threshold field as a homogeneous symmetric distortion with maximum director-tilt in the midplane. We find that, upon excitation by a low frequency (<0.2Hz) square-wave field, the instability becomes spatially and temporally varying. This is demonstrated using calamitic liquid crystals, initially in the 90°-twisted planar configuration. The distortion occurs close to the negative electrode following each polarity switch and, for low-voltage amplitudes, decays completely in time. We use the elastically favorable geometry of Brochard-Leger walls to establish the location of maximum distortion. Thus, at successive polarity changes, the direction of extension of both annular and open walls switches between the alignment directions at the two substrates. For high voltages, this direction is largely along the midplane director, while remaining marginally oscillatory. These results are broadly understood by taking into account the time-varying and inhomogeneous field conditions that prevail soon after the polarity reverses. Polarity dependence of the instability is traced to the formation of intrinsic double layers that lead to an asymmetry in field distribution in the presence of an external bias. Momentary field elevation near the negative electrode following a voltage sign reversal leads to locally enhanced dielectric and gradient flexoelectric torques, which accounts for the surface-like phenomenon observed at low voltages. These spatiotemporal effects, also found earlier for other instabilities, are generic in nature.

  5. Dimension Reduction for the Landau-de Gennes Model in Planar Nematic Thin Films

    NASA Astrophysics Data System (ADS)

    Golovaty, Dmitry; Montero, José Alberto; Sternberg, Peter

    2015-12-01

    We use the method of Γ -convergence to study the behavior of the Landau-de Gennes model for a nematic liquid crystalline film in the limit of vanishing thickness. In this asymptotic regime, surface energy plays a greater role, and we take particular care in understanding its influence on the structure of the minimizers of the derived two-dimensional energy. We assume general weak anchoring conditions on the top and the bottom surfaces of the film and the strong Dirichlet boundary conditions on the lateral boundary of the film. The constants in the weak anchoring conditions are chosen so as to enforce that a surface-energy-minimizing nematic Q-tensor has the normal to the film as one of its eigenvectors. We establish a general convergence result and then discuss the limiting problem in several parameter regimes.

  6. Stokes parameter studies of spontaneous emission from chiral nematic liquid crystals as a one-dimensional photonic stopband crystal: experiment and theory.

    PubMed

    Woon, Kai L; O'Neill, Mary; Richards, Gary J; Aldred, Matthew P; Kelly, Stephen M

    2005-04-01

    The helical structure of uniformly aligned chiral nematic liquid crystals results in a photonic stopband for only one sense of circular polarization. The spectroscopic Stokes polarimeter is used to analyze spontaneous emission in the stopband. Highly polarized photoluminescence is found and the polarization properties vary with the excitation wavelength. Spontaneous emission is enhanced at the stopband edge and this Purcell effect is greater on excitation at wavelengths where the absorption coefficient is low. This is interpreted as greater overlap between the excited molecules and the electrical modal field of the resonant modes at the stopband edge. Photoluminescence detected from the excitation face of the liquid crystal cell is less polarized because of photon tunneling. Fermi's golden rule in conjunction with Stokes vectors is used to model the polarization of emission taking multiple reflections at the interfaces of the cell into account. The discrepancy between the experiment and the theoretical model is interpreted as direct experimental evidence that virtual photons, which originate from zero point fluctuations of quantum space, are randomly polarized.

  7. Nematic quantum critical point without magnetism in FeSe1-xSx superconductors.

    PubMed

    Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2016-07-19

    In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near [Formula: see text], the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity.

  8. Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy

    PubMed Central

    Gray, Derek G.; Mu, Xiaoyue

    2015-01-01

    Cellulosic liquid crystalline solutions and suspensions form chiral nematic phases that show a rich variety of optical textures in the liquid crystalline state. These ordered structures may be preserved in solid films prepared by evaporation of solvent or suspending medium. Film formation from aqueous suspensions of cellulose nanocrystals (CNC) was investigated by polarized light microscopy, optical profilometry and atomic force microscopy (AFM). An attempt is made to interpret qualitatively the observed textures in terms of the orientation of the cellulose nanocrystals in the suspensions and films, and the changes in orientation caused by the evaporative process. Mass transfer within the evaporating droplet resulted in the formation of raised rings whose magnitude depended on the degree of pinning of the receding contact line. AFM of dry films at short length scales showed a radial orientation of the CNC at the free surface of the film, along with a radial height variation with a period of approximately P/2, ascribed to the anisotropic shrinkage of the chiral nematic structure. PMID:28793684

  9. Instabilities and patterns in an active nematic film

    NASA Astrophysics Data System (ADS)

    Srivastava, Pragya; Marchetti, Cristina

    2015-03-01

    Experiments on microtubule bundles confined to an oil-water interface have motivated extensive theoretical studies of two-dimensional active nematics. Theoretical models taking into account the interplay between activity, flow and order have remarkably reproduced several experimentally observed features of the defect-dynamics in these ``living'' nematics. Here, we derive minimal description of a two-dimensional active nematic film confined between walls. At high friction, we eliminate the flow to obtain closed equations for the nematic order parameter, with renormalized Frank elastic constants. Active processes can render the ``Frank'' constants negative, resulting in the instability of the uniformly ordered nematic state. The minimal model yields emergent patterns of growing complexity with increasing activity, including bands and turbulent dynamics with a steady density of topological defects, as obtained with the full hydrodynamic equations. We report on the scaling of the length scales of these patterns and of the steady state number of defects with activity and system size. National Science Foundation grant DMR-1305184 and Syracuse Soft Matter Program.

  10. Length Scales of Chaotic patterns near the onset of of Electroconvection in the Nematic Liquid Crystal I52

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochao

    2005-03-01

    We report experimental results for Electroconvection of the nematic Liquid Crystal I52 with planar alignment and a conductivity of 1.0x10-8,φ,)-1. The cell spacing was 19.4,m and the driving frequency was 25.0 Hz. Spatio-temporal chaos consisting of a superposition of zig and zag oblique rolls evolved by means of a supercritical Hopf bifurcation from the uniform conduction state.ootnotetextM. Dennin, G. Ahlers and D. S. Cannell, Science, 272, 388 (1996). For small ɛ≡V^2/ Vc^2 -1, we measured the correlation lengths of the envelopes of both zig and zag patterns. These lengths could be fit to a power law in ɛ with an exponent smaller than that predicted from amplitude equations. The disagreement with theory is similar to that found previously for domain chaos in rotating Rayleigh-Benard convection.ootnotetextY. Hu, R. E. Ecke and G. Ahlers, Phys. Rev. Lett. 74, 5040 (1995).

  11. Liquid crystal droplet formation and anchoring dynamics in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Steinhaus, Ben; Shen, Amy; Feng, James; Link, Darren

    2004-11-01

    Liquid crystal drops dispersed in a continuous phase of silicon oil are generated with a narrow distribution in droplet size in microfluidic devices both above and below the nematic to isotropic transition temperature. For these two cases, we observe not only the different LC droplet generation and coalescence dynamics, but also distinct droplet morphology. Our experiments show that the nematic liquid crystalline order is important for the LC droplet formation and anchoring dynamics.

  12. Dynamic states of swimming bacteria in a nematic liquid crystal cell with homeotropic alignment

    DOE PAGES

    Zhou, Shuang; Tovkach, Oleh; Golovaty, Dmitry; ...

    2017-05-17

    Flagellated bacteria such as Escherichia coli and Bacillus subtilis exhibit effective mechanisms for swimming in fluids and exploring the surrounding environment. In isotropic fluids such as water, the bacteria change swimming direction through the run-and-tumble process. Lyotropic chromonic liquid crystals (LCLCs) have been introduced recently as an anisotropic environment in which the direction of preferred orientation, the director, guides the bacterial trajectories. In this work, we describe the behavior of bacteria B. subtilis in a homeotropic LCLC geometry, in which the director is perpendicular to the bounding plates of a shallow cell. We demonstrate that the bacteria are capable ofmore » overcoming the stabilizing elastic forces of the LCLC and swim perpendicularly to the imposed director (and parallel to the bounding plates). The effect is explained by a finite surface anchoring of the director at the bacterial body; the role of surface anchoring is analyzed by numerical simulations of a rod realigning in an otherwise uniform director field. Shear flows produced by a swimming bacterium cause director distortions around its body, as evidenced both by experiments and numerical simulations. These distortions contribute to a repulsive force that keeps the swimming bacterium at a distance of a few micrometers away from the bounding plates. The homeotropic alignment of the director imposes two different scenarios of bacterial tumbling: one with an 180° reversal of the horizontal velocity and the other with the realignment of the bacterium by two consecutive 90° turns. Finally, in the second case, the angle between the bacterial body and the imposed director changes from 90° to 0° and then back to 90°; the new direction of swimming does not correlate with the previous swimming direction.« less

  13. Dynamic states of swimming bacteria in a nematic liquid crystal cell with homeotropic alignment

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang; Tovkach, Oleh; Golovaty, Dmitry; Sokolov, Andrey; Aranson, Igor S.; Lavrentovich, Oleg D.

    2017-05-01

    Flagellated bacteria such as Escherichia coli and Bacillus subtilis exhibit effective mechanisms for swimming in fluids and exploring the surrounding environment. In isotropic fluids such as water, the bacteria change swimming direction through the run-and-tumble process. Lyotropic chromonic liquid crystals (LCLCs) have been introduced recently as an anisotropic environment in which the direction of preferred orientation, the director, guides the bacterial trajectories. In this work, we describe the behavior of bacteria B. subtilis in a homeotropic LCLC geometry, in which the director is perpendicular to the bounding plates of a shallow cell. We demonstrate that the bacteria are capable of overcoming the stabilizing elastic forces of the LCLC and swim perpendicularly to the imposed director (and parallel to the bounding plates). The effect is explained by a finite surface anchoring of the director at the bacterial body; the role of surface anchoring is analyzed by numerical simulations of a rod realigning in an otherwise uniform director field. Shear flows produced by a swimming bacterium cause director distortions around its body, as evidenced both by experiments and numerical simulations. These distortions contribute to a repulsive force that keeps the swimming bacterium at a distance of a few micrometers away from the bounding plates. The homeotropic alignment of the director imposes two different scenarios of bacterial tumbling: one with an 180° reversal of the horizontal velocity and the other with the realignment of the bacterium by two consecutive 90° turns. In the second case, the angle between the bacterial body and the imposed director changes from 90° to 0° and then back to 90° the new direction of swimming does not correlate with the previous swimming direction.

  14. A study of the acoustic-optic effect in nematics

    NASA Astrophysics Data System (ADS)

    Hayes, C. F.

    1980-12-01

    The program of this contract has been to study the acousto-optic effect which occurs in nematic liquid crystals when excited by acoustic waves. Both theory and practical application are presented. Hydrodynamic equations were solved which govern the streaming and obtained a solution for the magnitude of the fluid speed and flow pattern for a small disc shaped liquid crystal. A sample, doped with grains, was used to test the solution experimentally. A series of cells was constructed and tested which, in fact, showed that an acoustic wavefront pattern can be visualized with this technique. During the second year of the contract we developed and tested a mathematical model which prescribes how a cell should be constructed in terms of: the densities of the cell walls, liquid crystal, and surrounding fluids; the thickness of the cell walls and liquid crystal layer; the acoustic speeds in cell wall (shear and longitudinal), liquid crystal, and surrounding fluids; acoustic frequency; and the incident acoustic bean angle. Cells were also constructed and tested in which an electric field could be applied simultaneously with the acoustic wave in such a way that the sensitivity of the cell to the acoustic field could be adjusted.

  15. A novel IMSL tunable phase shifter for HMSIW-LWA-fed rectangular patches based on nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Fu, JiaHui; Raheem, Odai H.

    2017-07-01

    A novel IMSL tunable phase shifter for HMSIW-LWA-fed rectangular patches based on liquid crystal technology is proposed. Rectangular patches are used as radiators for the opening sidewall of the waveguide and matched section part for a unit cell. The transition structure is added for enhancing the efficiency of HMSIW-LWA due to converting most input power to the leaky mode. The novel IMSL phase shifter is used for investigating the tunable dielectric characteristics of N-LC by applying an electric field to the LC cell, which is controlled by the orientation angle of the LC molecules. Theoretically, the orientation angle is derived and solved numerically with the accurate method. As a result, the HMSIW-LWA can be tuned up to ± 25° for a fixed frequency by tuning the nematic LC with applied voltage from 0 to 20 V. In addition, the realized gain changed from 6 to 9.4 dB for a fixed tuned frequency, and 46° steerable for rest main beams range of the HMSIW-LWA in both forward and backward directions.

  16. Connecting and disconnecting nematic disclination lines in microfluidic channels.

    PubMed

    Agha, Hakam; Bahr, Christian

    2016-05-14

    Disclination lines in nematic liquid crystals can be used as "soft rails" for the transport of colloids or droplets through microfluidic channels [A. Sengupta, C. Bahr and S. Herminghaus, Soft Matter, 2013, 9, 7251]. In the present study we report on a method to connect and disconnect disclination lines in microfluidic channels using the interplay between anchoring, flow, and electric field. We show that the application of an electric field establishes a continuous disclination that spans across a channel region in which a disclination usually would not exist (because of different anchoring conditions), demonstrating an interruptible and reconnectable soft rail for colloidal transport.

  17. Nanoscale interfacial defect shedding in a growing nematic droplet.

    PubMed

    Gurevich, Sebastian; Provatas, Nikolas; Rey, Alejandro

    2017-08-01

    Interfacial defect shedding is the most recent known mechanism for defect formation in a thermally driven isotropic-to-nematic phase transition. It manifests in nematic-isotropic interfaces going through an anchoring switch. Numerical computations in planar geometry established that a growing nematic droplet can undergo interfacial defect shedding, nucleating interfacial defect structures that shed into the bulk as +1/2 point defects. By extending the study of interfacial defect shedding in a growing nematic droplet to larger length and time scales, and to three dimensions, we unveil an oscillatory growth mode involving shape and anchoring transitions that results in a controllable regular distributions of point defects in planar geometry, and complex structures of disclination lines in three dimensions.

  18. Optical-to-optical interface device. [consisting of two transparent electrodes on glass substrates that enclose thin film photoconductor and thin layer of nematic liquid crystal

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.

    1973-01-01

    Studies were conducted on the performance of a photoactivated dc liquid crystal light valve. The dc light valve is a thin film device that consists of two transparent electrodes, deposited on glass substrates, that enclose a thin film photoconductor (cadmium sulfide) and a thin layer of a nematic liquid crystal that operates in the dynamic scattering mode. The work was directed toward application of the light valve to high resolution non-coherent light to coherent light image conversion. The goal of these studies was to improve the performance and quality of the already existing dc light valve device and to evaluate quantitatively the properties and performance of the device as they relate to the coherent optical data processing application. As a result of these efforts, device sensitivity was improved by a factor of ten, device resolution was improved by a factor of three, device lifetime was improved by two-orders of magnitude, undesirable secondary liquid crystal scattering effects were eliminated, the scattering characteristics of the liquid crystal were thoroughly documented, the cosmetic quality of the devices was dramatically improved, and the performance of the device was fully documented.

  19. Ultrasonic Resonance Spectrometry with Fourier Synthesized Pseudorandom Noise Excitation and Its Application to a Lyotropiec Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Nakamura, Haruki; Naito, Yasushi; Tsuboi, Yukitoshi; Mitaku, Shigeki; Okano, Koji

    1982-11-01

    Time domain measurement to obtain ultrasonic resonance spectra was made using Fourier Synthesized Pseudorandom Noise (FSPN) excitation in order to observe the viscoelastic property of a lyotropic liquid crystal. The FSPN with multiple frequency components was amplitude-modulated by a carrier signal with a much higher single frequency component, and a quadrature detection technique was used to obtain a shear ultrasonic resonance spectrum produced between two transducers. A reflection method was applied to observe mechanical impedance of viscous and elastic materials at about 3 MHz. The viscosities obtained for standard viscous materials agreed well with literature values, and the rigidity and viscosity of a lyotropic liquid crystal of Sodium Lauryl Sulfate with water were measured; they were ˜ 106 dyn/cm2 and ˜0.1 P, respectively.

  20. Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets

    PubMed Central

    Aguirre, Luis E.; de Oliveira, Alexandre; Seč, David; Čopar, Simon; Almeida, Pedro L.; Ravnik, Miha; Godinho, Maria Helena; Žumer, Slobodan

    2016-01-01

    Probing the surface morphology of microthin fibers such as naturally occurring biofibers is essential for understanding their structural properties, biological function, and mechanical performance. The state-of-the-art methods for studying the surfaces of biofibers are atomic force microscopy imaging and scanning electron microscopy, which well characterize surface geometry of the fibers but provide little information on the local interaction potential of the fibers with the surrounding material. In contrast, complex nematic fluids respond very well to external fields and change their optical properties upon such stimuli. Here we demonstrate that liquid crystal droplets deposited on microthin biofibers—including spider silk and cellulosic fibers—reveal characteristics of the fibers’ surface, performing as simple but sensitive surface sensors. By combining experiments and numerical modeling, different types of fibers are identified through the fiber-to-nematic droplet interactions, including perpendicular and axial or helicoidal planar molecular alignment. Spider silks align nematic molecules parallel to fibers or perpendicular to them, whereas cellulose aligns the molecules unidirectionally or helicoidally along the fibers, indicating notably different surface interactions. The nematic droplets as sensors thus directly reveal chirality of cellulosic fibers. Different fiber entanglements can be identified by depositing droplets exactly at the fiber crossings. More generally, the presented method can be used as a simple but powerful approach for probing the surface properties of small-size bioobjects, opening a route to their precise characterization. PMID:26768844

  1. Application of Δ- and λ-isomerism of octahedral metal complexes for inducing chiral nematic phases.

    PubMed

    Sato, Hisako; Yamagishi, Akihiko

    2009-11-20

    The Delta- and Lambda-isomerism of octahedral metal complexes is employed as a source of chirality for inducing chiral nematic phases. By applying a wide range of chiral metal complexes as a dopant, it has been found that tris(beta-diketonato)metal(III) complexes exhibit an extremely high value of helical twisting power. The mechanism of induction of the chiral nematic phase is postulated on the basis of a surface chirality model. The strategy for designing an efficient dopant is described, together with the results using a number of examples of Co(III), Cr(III) and Ru(III) complexes with C(2) symmetry. The development of photo-responsive dopants to achieve the photo-induced structural change of liquid crystal by use of photo-isomerization of chiral metal complexes is also described.

  2. Application of Δ- and Λ-Isomerism of Octahedral Metal Complexes for Inducing Chiral Nematic Phases

    PubMed Central

    Sato, Hisako; Yamagishi, Akihiko

    2009-01-01

    The Δ- and Λ-isomerism of octahedral metal complexes is employed as a source of chirality for inducing chiral nematic phases. By applying a wide range of chiral metal complexes as a dopant, it has been found that tris(β-diketonato)metal(III) complexes exhibit an extremely high value of helical twisting power. The mechanism of induction of the chiral nematic phase is postulated on the basis of a surface chirality model. The strategy for designing an efficient dopant is described, together with the results using a number of examples of Co(III), Cr(III) and Ru(III) complexes with C2 symmetry. The development of photo-responsive dopants to achieve the photo-induced structural change of liquid crystal by use of photo-isomerization of chiral metal complexes is also described. PMID:20057959

  3. Nanodoping: a route for enhancing electro-optic performance of bent core nematic system

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep; Debnath, Somen; Rao, Nandiraju V. S.; Sinha, Aloka

    2018-03-01

    We report the effect of dispersion of barium titanate (BaTiO3) nanoparticles (BNPs) in a four ring bent core nematic (BCN) liquid crystal. Polarizing optical microscopy reveals the presence of a single nematic phase in pure and doped states. Polar switching has been observed in the bent core system and the value of spontaneous polarization (P s) increases with increase in doping concentration of BNPs in BCN. Dielectric study shows a lower frequency mode, which can be ascribed to the formation of cybotactic clusters. These clusters are also responsible for the observed polar switching in pure, as well as, in doped BCNs. Another higher frequency mode, observed only in pure BCN, indicates the rotation of molecules about their long molecular axis. The conductivity of doped samples is also found to decrease as compared to the pure BCN. This reduction helps in the minimization of negative effects caused by free ions in liquid crystal based devices. This study demonstrates that the interaction between BNPs and BCN molecules improves the P s, dielectric behaviour, viscosity and reduces the conductivity of pure BCN. Hence, nanodoping in a BCN is an effective method for the enhancement of electro-optic performances and will lead to the development of faster electro-optic devices.

  4. Influence of the extrinsic curvature on two-dimensional nematic films.

    PubMed

    Napoli, Gaetano; Vergori, Luigi

    2018-05-01

    Nematic films are thin fluid structures, ideally two dimensional, endowed with an in-plane degenerate nematic order. In this paper we examine a generalization of the classical Plateau problem to an axisymmetric nematic film bounded by two coaxial parallel rings. At equilibrium, the shape of the nematic film results from the competition between surface tension, which favors the minimization of the area, and the nematic elasticity, which instead promotes the alignment of the molecules along a common direction. We find two classes of equilibrium solutions in which the molecules are uniformly aligned along the meridians or parallels. Depending on two dimensionless parameters, one related to the geometry of the film and the other to the constitutive moduli, the Gaussian curvature of the equilibrium shape may be everywhere negative, vanishing, or positive. The stability of these equilibrium configurations is investigated.

  5. Influence of the extrinsic curvature on two-dimensional nematic films

    NASA Astrophysics Data System (ADS)

    Napoli, Gaetano; Vergori, Luigi

    2018-05-01

    Nematic films are thin fluid structures, ideally two dimensional, endowed with an in-plane degenerate nematic order. In this paper we examine a generalization of the classical Plateau problem to an axisymmetric nematic film bounded by two coaxial parallel rings. At equilibrium, the shape of the nematic film results from the competition between surface tension, which favors the minimization of the area, and the nematic elasticity, which instead promotes the alignment of the molecules along a common direction. We find two classes of equilibrium solutions in which the molecules are uniformly aligned along the meridians or parallels. Depending on two dimensionless parameters, one related to the geometry of the film and the other to the constitutive moduli, the Gaussian curvature of the equilibrium shape may be everywhere negative, vanishing, or positive. The stability of these equilibrium configurations is investigated.

  6. Controllable light diffraction in woodpile photonic crystals filled with liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Chih-Hua; Zeng, Hao; Wiersma, Diederik S.

    2015-01-12

    An approach to switching between different patterns of light beams transmitted through the woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern transmitted through the photonic structure. The transmission profiles in the nematic phase also show polarization sensibility due to refractive index dependence on the field polarization. The experimental results are consistent with a numerical calculation by Finite Difference Time Domain method.

  7. Fractal nematic colloids

    NASA Astrophysics Data System (ADS)

    Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.

    2017-01-01

    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter.

  8. Fractal nematic colloids

    PubMed Central

    Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.

    2017-01-01

    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter. PMID:28117325

  9. Improvement of the relaxation time and the order parameter of nematic liquid crystal using a hybrid alignment mixture of carbon nanotube and polyimide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyojin; Yang, Seungbin; Lee, Ji-Hoon, E-mail: jihoonlee@jbnu.ac.kr

    2014-05-12

    We examined the electrooptical properties of a nematic liquid crystal (LC) sample whose substrates were coated with a mixture of carbon nanotube (CNT) and polyimide (PI). The relaxation time of the sample coated with 1.5 wt. % CNT mixture was about 35% reduced compared to the pure polyimide sample. The elastic constant and the order parameter of the CNT-mixture sample were increased and the fast relaxation of LC could be approximated to the mean-field theory. We found the CNT-mixed polyimide formed more smooth surface than the pure PI from atomic force microscopy images, indicating the increased order parameter is related to themore » smooth surface topology of the CNT-polyimide mixture.« less

  10. Paintable band-edge liquid crystal lasers.

    PubMed

    Gardiner, Damian J; Morris, Stephen M; Hands, Philip J W; Mowatt, Carrie; Rutledge, Rupert; Wilkinson, Timothy D; Coles, Harry J

    2011-01-31

    In this paper we demonstrate photonic band-edge laser emission from emulsion-based polymer dispersed liquid crystals. The lasing medium consists of dye-doped chiral nematic droplets dispersed within a polymer matrix that spontaneously align as the film dries. Such lasers can be easily formed on single substrates with no alignment layers. The system combines the self-organizing periodic structure of chiral nematic liquid crystals with the simplicity of the emulsion procedure so as to produce a material that retains the emission characteristics of band-edge lasers yet can be readily coated. Sequential and stacked layers demonstrate the possibility of achieving simultaneous multi-wavelength laser output from glass, metallic, and flexible substrates.

  11. Active nematic emulsions

    PubMed Central

    Hardoüin, Jérôme; Sagués, Francesc

    2018-01-01

    The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equilibrium. We demonstrate one such realization consisting in the encapsulation of an active liquid crystal (LC)–like gel, based on microtubules and kinesin molecular motors, into a thermotropic LC. These active nematic emulsions exhibit a variety of dynamic behaviors that arise from the cross-talk between topological defects separately residing in the active and passive components. Using numerical simulations, we show a feedback mechanism by which active flows continuously drive the passive defects that, in response, resolve the otherwise degenerated trajectories of the active defects. Our experiments show that the choice of surfactant, which stabilizes the active/passive interface, allows tuning the regularity of the self-sustained dynamic events. The hybrid active-passive system demonstrated here provides new perspectives for dynamic self-assembly driven by an active material but regulated by the equilibrium properties of the passive component. PMID:29740605

  12. Active nematic emulsions.

    PubMed

    Guillamat, Pau; Kos, Žiga; Hardoüin, Jérôme; Ignés-Mullol, Jordi; Ravnik, Miha; Sagués, Francesc

    2018-04-01

    The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equilibrium. We demonstrate one such realization consisting in the encapsulation of an active liquid crystal (LC)-like gel, based on microtubules and kinesin molecular motors, into a thermotropic LC. These active nematic emulsions exhibit a variety of dynamic behaviors that arise from the cross-talk between topological defects separately residing in the active and passive components. Using numerical simulations, we show a feedback mechanism by which active flows continuously drive the passive defects that, in response, resolve the otherwise degenerated trajectories of the active defects. Our experiments show that the choice of surfactant, which stabilizes the active/passive interface, allows tuning the regularity of the self-sustained dynamic events. The hybrid active-passive system demonstrated here provides new perspectives for dynamic self-assembly driven by an active material but regulated by the equilibrium properties of the passive component.

  13. Ferroelectric BaTiO3 and LiNbO3 Nanoparticles Dispersed in Ferroelectric Liquid Crystal Mixtures: Electrooptic and Dielectric (Postprint)

    DTIC Science & Technology

    2016-10-14

    Nematic Liquid Crystals allowing for rapidly changing moving pictures during the time frame below about 5-10 ms. Ferroelectric Liquid Crystals (FLCs...could fill this gap bearing some advantages over Nematic Liquid Crystals , mainly a fast switching time in the microsecond range, better optical...AFRL-RX-WP-JA-2017-0210 FERROELECTRIC BaTiO3 AND LiNbO3 NANOPARTICLES DISPERSED IN FERROELECTRIC LIQUID CRYSTAL MIXTURES: ELECTROOPTIC

  14. Interpretation of cw-ESR spectra of p-methyl-thio-phenyl-nitronyl nitroxide in a nematic liquid crystalline phase.

    PubMed

    Collauto, Alberto; Zerbetto, Mirco; Brustolon, Marina; Polimeno, Antonino; Caneschi, Andrea; Gatteschi, Dante

    2012-03-07

    In this paper we report on the characterization by continuous wave electron spin resonance spectroscopy (cw-ESR) of a nitronyl nitroxide radical in a nematic phase. A detailed analysis is performed by exploiting an innovative modeling strategy alternative to the usual spectral simulation approach: most of the molecular parameters needed to calculate the spectrum are evaluated a priori and the ESR spectrum is obtained by direct application of the stochastic Liouville equation. Allowing a limited set of fitting parameters it is possible to reproduce satisfactorily ESR spectra in the temperature range 260 K-340 K including the nematic-to-isotropic phase transition (325.1 K). Our results open the way to a more quantitative understanding of the ordering and mobility of nitronyl nitroxide radicals in nanostructured environments.

  15. Young-Laplace equation for liquid crystal interfaces

    NASA Astrophysics Data System (ADS)

    Rey, Alejandro D.

    2000-12-01

    This letter uses the classical theories of liquid crystal physics to derive the Young-Laplace equation of capillary hydrostatics for interfaces between viscous isotropic (I) fluids and nematic liquid crystals (NLC's), and establishes the existence of four energy contributions to pressure jumps across these unusual anisotropic interfaces. It is shown that in addition to the usual curvature contribution, bulk and surface gradient elasticity, elastic stress, and anchoring energy contribute to pressure differentials across the interface. The magnitude of the effect is proportional to the elastic moduli of the NLC, and to the bulk and surface orientation gradients that may be present in the nematic phase. In contrast to the planar interface between isotropic fluids, flat liquid crystal interfaces support pressure jumps if elastic stresses, bulk and surface gradient energy, and/or anchoring energies are finite.

  16. Patterning nonisometric origami in nematic elastomer sheets

    NASA Astrophysics Data System (ADS)

    Plucinsky, Paul; Kowalski, Benjamin A.; White, Timothy J.; Bhattacharya, Kaushik

    Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \\textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies.

  17. Positional short-range order in the nematic phase of n BABAs

    NASA Astrophysics Data System (ADS)

    Usha Deniz, K.; Pepy, G.; Parette, G.; Keller, P.

    1991-10-01

    The positional short-range order, SRO ⊥, perpendicular to the nematic director n̂ has been studied in the fibre-type nematics, nBABAs, by neutron diffraction. SRO ⊥ is found to be dependent on other types of nematic short-range order but not on the orientational long-range order.

  18. Investigation of thermal and optical properties of some quartet mixed hydrogen-bonded liquid crystals

    NASA Astrophysics Data System (ADS)

    Okumuş, Mustafa

    2017-11-01

    In this study, the thermal and optical properties of quartet mixtures formed at different weight ratios (1:1:1:1 and 1.5:1:1:1) from liquid crystals 4-octyloxy-4‧-cyanobiphenyl (8OCB), 4-hexylbenzoic acid, 4-(octyloxy)benzoic acid and 4-(decyloxy)benzoic acid were investigated by differential scanning calorimeter (DSC) and polarized optic microscopy (POM). The phase transition temperatures of the novel quartet mixtures measured in the DSC experiments are in line with the POM experiments. The experimental results clearly show that the novel liquid crystal mixtures have displayed pure liquid crystalline properties. According to the phase diagram drawn from DSC results, the nematic range of the novel mixture at the eutectic point is larger than the nematic ranges of the components. The mesomorphic structures of produced homolog complex mixtures are found to be smectic and nematic phases. But the smectic phase cannot be observed in the novel complex 1.5:1:1:1 mixture during continuous cooling. The nematic range of the novel complex 1.5:1:1:1 mixture is bigger than the nematic range of the novel complex 1:1:1:1 mixture with increasing 8OCB. Also, the nematic-to-isotropic phase transition temperature decreases with increasing the weight ratio of 8OCB in the complex quartet mixture. Another interesting result is that the produced mixtures are to be like a medical cream at room temperatures. Furthermore, order parameter and thermal stability factor of the transitions are also calculated.

  19. In silico prediction of nematic transition temperature for liquid crystals using quantitative structure-property relationship approaches.

    PubMed

    Fatemi, Mohammad Hossein; Ghorbanzad'e, Mehdi

    2009-11-01

    Quantitative structure-property relationship models for the prediction of the nematic transition temperature (T (N)) were developed by using multilinear regression analysis and a feedforward artificial neural network (ANN). A collection of 42 thermotropic liquid crystals was chosen as the data set. The data set was divided into three sets: for training, and an internal and external test set. Training and internal test sets were used for ANN model development, and the external test set was used for evaluation of the predictive power of the model. In order to build the models, a set of six descriptors were selected by the best multilinear regression procedure of the CODESSA program. These descriptors were: atomic charge weighted partial negatively charged surface area, relative negative charged surface area, polarity parameter/square distance, minimum most negative atomic partial charge, molecular volume, and the A component of moment of inertia, which encode geometrical and electronic characteristics of molecules. These descriptors were used as inputs to ANN. The optimized ANN model had 6:6:1 topology. The standard errors in the calculation of T (N) for the training, internal, and external test sets using the ANN model were 1.012, 4.910, and 4.070, respectively. To further evaluate the ANN model, a crossvalidation test was performed, which produced the statistic Q (2) = 0.9796 and standard deviation of 2.67 based on predicted residual sum of square. Also, the diversity test was performed to ensure the model's stability and prove its predictive capability. The obtained results reveal the suitability of ANN for the prediction of T (N) for liquid crystals using molecular structural descriptors.

  20. Molecular organization of nematic liquid crystals between concentric cylinders: Role of the elastic anisotropy

    NASA Astrophysics Data System (ADS)

    Chiccoli, C.; Pasini, P.; Evangelista, L. R.; Teixeira-Souza, R. T.; Zannoni, C.

    2015-02-01

    The orientational order in a nematic liquid crystal sample confined to an annular region between two concentric cylinders is investigated by means of lattice Monte Carlo simulations. Strong anchoring and homeotropic orientations, parallel to the radial direction, are implemented at the confining surfaces. The elastic anisotropy is taken into account in the bulk interactions by using the pair potential introduced by Gruhn and Hess [T. Gruhn and S. Hess, Z. Naturforsch. A 51, 1 (1996)] and parametrized by Romano and Luckhurst [S. Romano, Int. J. Mod. Phys. B 12, 2305 (1998), 10.1142/S0217979298001344; Phys. Lett. A 302, 203 (2002), 10.1016/S0375-9601(02)01042-3; G. R. Luckhurst and S. Romano, Liq. Cryst. 26, 871 (1999), 10.1080/026782999204561], i.e., the so-called GHRL potential. In the case of equal elastic constants, a small but appreciable deformation along the cylinder axis direction is observed, whereas when the values of K11/K33 if K22=K33 are low enough, all the spins in the bulk follow the orientation imposed by the surfaces. For larger values of K11/K33 , spontaneous deformations, perpendicular to the polar plane, increase significantly. Our findings indicate that the onset of these deformations also depends on the ratio K22/K33 and on the radius of the cylindrical surfaces. Although expected from the elastic theory, no tangential component of the deformations was observed in the simulations for the set of parameters analyzed.

  1. Photopyroelectric Calorimetry Investigations of 8CB Liquid Crystal-Microemulsion System

    NASA Astrophysics Data System (ADS)

    Paoloni, S.; Zammit, U.; Mercuri, F.

    2018-02-01

    In this work, the photopyroelectric technique has been used to investigate the phase transitions in a liquid crystal microemulsion by combining the simultaneous high temperature resolution thermal diffusivity measurements and optical polarization microscopy observations. It has been found that, during the conversion from the isotropic phase into the nematic one, the micelles are expelled from the nematic domains and remain confined in islands of isotropic material which survive down to the smectic temperature range. A hysteresis in the thermal diffusivity profiles between heating and cooling run over the isotropic-nematic transition temperature range has been observed which has been ascribed to the different micelles distribution into the sample volume during cooling and heating runs. Finally, the almost bulk-like behavior of the thermal diffusivity over the nematic-smectic phase transition confirms that a significant fraction of the micelles are expelled during the nucleation of the nematic phase.

  2. Dual gauge field theory of quantum liquid crystals in two dimensions

    NASA Astrophysics Data System (ADS)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Liu, Ke; Slager, Robert-Jan; Nussinov, Zohar; Cvetkovic, Vladimir; Zaanen, Jan

    2017-04-01

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (;stress photons;), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, giving rise to the Anderson-Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this 'deconfined' mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Their special properties

  3. Dual gauge field theory of quantum liquid crystals in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (“stress photons”), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, givingmore » rise to the Anderson–Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this ‘deconfined’ mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Furthermore

  4. Dual gauge field theory of quantum liquid crystals in two dimensions

    DOE PAGES

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; ...

    2017-04-18

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (“stress photons”), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, givingmore » rise to the Anderson–Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this ‘deconfined’ mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Furthermore

  5. Core structure and dynamics of non-Abelian vortices in a biaxial nematic spinor Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Borgh, Magnus O.; Ruostekoski, Janne

    2016-05-01

    We demonstrate that multiple interaction-dependent defect core structures as well as dynamics of non-Abelian vortices can be realized in the biaxial nematic (BN) phase of a spin-2 atomic Bose-Einstein condensate (BEC). An experimentally simple protocol may be used to break degeneracy with the uniaxial nematic phase. We show that a discrete spin-space symmetry in the core may be reflected in a breaking of its spatial symmetry. The discrete symmetry of the BN order parameter leads to non-commuting vortex charges. We numerically simulate reconnection of non-Abelian vortices, demonstrating formation of the obligatory rung vortex. In addition to atomic BECs, non-Abelian vortices are theorized in, e.g., liquid crystals and cosmic strings. Our results suggest the BN spin-2 BEC as a prime candidate for their realization. We acknowledge financial support from the EPSRC.

  6. Flicker in a twisted nematic spatial light modulator

    NASA Astrophysics Data System (ADS)

    Calderón-Hermosillo, Yuliana; García-Márquez, Jorge; Espinosa-Luna, Rafael; Ochoa, Noé Alcalá; López, Víctor; Aguilar, Alberto; Noé-Arias, Enrique; Alayli, Yasser

    2013-06-01

    Liquid Crystal on Silicon (LCoS) Spatial Light Modulators (SLM) are widely used for their capability to control beams howbeit fluctuations in phase and amplitude. It is then necessary to understand the negative effects of these fluctuations, also known as flicker, and the means to mitigate them. The flicker is observed either as high frequency variations of polarization, attenuation or high phase fluctuations on the wave front modulated by the LCoS device. Here, we compare the flicker behavior in a twisted nematic (TN) LCoS-SLM for different polarization schemes and temperatures. The quantitative evaluation shows that flicker is effectively reduced only by chilling the LCoS panel to temperatures just below 0 °C but, the LCoS modulation capability is also affected.

  7. Nuclear magnetic resonance of liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emsley, J.W.

    1984-01-01

    The phenomenon of liquid crystallinity has been known for 100 years, but it is only in recent years that our modern methods have yielded an understanding of this fascinating and important subject in terms of molecular behavior. The great improvements in NMR spectrometers have led to a rapid growth in the study of liquid crystalline systems; concurrently, the increased use of these systems in electro-optic displays, in soaps and membranes, have all focused increased attention on liquid crystallinity. The emphasis is placed first on giving an account of the theory of both the spectroscopy and the liquid crystalline state. Thismore » is followed by descriptions of experiments and their application to thermotropic phases, including discotics, to lyotropics, and finally to the very complex biological membranes.« less

  8. Quantum Hall Electron Nematics

    NASA Astrophysics Data System (ADS)

    MacDonald, Allan

    In 2D electron systems hosted by crystals with hexagonal symmetry, electron nematic phases with spontaneously broken C3 symmetry are expected to occur in the quantum Hall regime when triplets of Landau levels associated with three different Fermi surface pockets are partially filled. The broken symmetry state is driven by intravalley Coulombic exchange interactions that favor spontaneously polarized valley occupations. I will discuss three different examples of 2D electron systems in which this type of broken symmetry state is expected to occur: i) the SnTe (111) surface, ii) the Bi (111) surface. and iii) unbalanced bilayer graphene. This type of quantum Hall electron nematic state has so far been confirmed only in the Bi (111) case, in which the anisotropic quasiparticle wavefunctions of the broken symmetry state were directly imaged. In the SnTe case the nematic state phase boundary is controlled by a competition between intravalley Coulomb interactions and intervalley scattering processes that increase in relative strength with magnetic field. An in-plane Zeeman field alters the phase diagram by lifting the three-fold Landau level degeneracy, yielding a ground state energy with 2 π/3 periodicity as a function of Zeeman-field orientation angle. I will comment on the possibility of observing similar states in the absence of a magnetic field. Supported by DOE Division of Materials Sciences and Engineering Grant DE-FG03-02ER45958.

  9. Incommensurate smectic order at the free surface in the nematic phase of 4-n-heptylphenyl-4'-(4''-nitrobenzoyloxy)benzoate (DB7NO2)

    NASA Astrophysics Data System (ADS)

    Ocko, B. M.; Pershan, P. S.; Safinya, C. R.; Chiang, L. Y.

    1987-02-01

    We report x-ray reflectivity measurements on the free surface of 4-n-heptylphenyl-4'-(4''-nitrobenzoyloxy)benzoate (DB7NO2) at the nematic to smectic-A phase transition, TNA=99.9 °C. The free surface in the nematic phase exhibits smecticlike ordering at two q vectors, one which is commensurate with the smectic-A monolayer q vector q2. The other q vector is incommensurate corresponding to ordering at ~0.59q2. The commensurate peak constructively interferes with the air-liquid interface while the incommensurate peak destructively interferes. These results are compared with bulk-phase x-ray scattering measurements.

  10. Computer simulations of a liquid crystalline dendrimer in liquid crystalline solvents

    NASA Astrophysics Data System (ADS)

    Wilson, Mark R.; Ilnytskyi, Jaroslav M.; Stimson, Lorna M.

    2003-08-01

    Molecular dynamics simulations have been carried out to study the structure of a model liquid crystalline dendrimer (LCDr) in solution. A simplified model is used for a third generation carbosilane LCDr in which united atom Lennard-Jones sites are used to represent all heavy atoms in the dendrimer with the exception of the terminal mesogenic groups, which are represented by Gay-Berne potentials. The model dendrimer is immersed in a mesogenic solvent composed of Gay-Berne particles, which can form nematic and smectic-A phases in addition to the isotropic liquid. Markedly different behavior results from simulations in the different phases, with the dendrimer changing shape from spherical to rodlike in moving from isotropic to nematic solvents. In the smectic-A phase the terminal mesogenic units are able to occupy five separate smectic layers. The change in structure of the dendrimer is mediated by conformational changes in the flexible chains, which link the terminal mesogenic moieties to the dendrimer core.

  11. Dynamical patterns in nematic active matter on a sphere

    NASA Astrophysics Data System (ADS)

    Henkes, Silke; Marchetti, M. Cristina; Sknepnek, Rastko

    2018-04-01

    Using simulations of self-propelled agents with short-range repulsion and nematic alignment, we explore the dynamical phases of a dense active nematic confined to the surface of a sphere. We map the nonequilibrium phase diagram as a function of curvature, alignment strength, and activity. Our model reproduces several phases seen in recent experiments on active microtubule bundles confined the surfaces of vesicles. At low driving, we recover the equilibrium nematic ground state with four +1 /2 defects. As the driving is increased, geodesic forces drive the transition to a polar band wrapping around an equator, with large empty spherical caps corresponding to two +1 defects at the poles. Upon further increasing activity, the bands fold onto themselves, and the system eventually transitions to a turbulent state marked by the proliferation of pairs of topological defects. We highlight the key role of the nematic persistence length in controlling pattern formation in these confined systems with positive Gaussian curvature.

  12. Self-assembled quantum dots in a liquid-crystal-tunable microdisk resonator

    NASA Astrophysics Data System (ADS)

    Piegdon, Karoline A.; Offer, Matthias; Lorke, Axel; Urbanski, Martin; Hoischen, Andreas; Kitzerow, Heinz-S.; Declair, Stefan; Förstner, Jens; Meier, Torsten; Reuter, Dirk; Wieck, Andreas D.; Meier, Cedrik

    2010-09-01

    GaAs-based semiconductor microdisks with high quality whispering gallery modes ( Q>4000) have been fabricated. A layer of self-organized InAs quantum dots (QDs) served as a light source to feed the optical modes at room temperature. In order to achieve frequency tuning of the optical modes, the microdisk devices have been immersed in 4-cyano-4-pentylbiphenyl (5CB), a liquid crystal (LC) with a nematic phase below the clearing temperature of TC≈34C. We have studied the device performance in the temperature range of T=20-50C, in order to investigate the influence of the nematic-isotropic phase transition on the optical modes. Moreover, we have applied an AC electric field to the device, which leads in the nematic phase to a reorientation of the anisotropic dielectric tensor of the liquid crystal. This electrical anisotropy can be used to achieve electrical tunability of the optical modes. Using the finite-difference time domain (FDTD) technique with an anisotropic material model, we are able to describe the influence of the liquid crystal qualitatively.

  13. Formation of a 1,8-octanedithiol self-assembled monolayer on Au(111) prepared in a lyotropic liquid-crystalline medium.

    PubMed

    García Raya, Daniel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa

    2010-07-20

    A characterization of the 1,8-octanedithiol (ODT) self-assembled monolayer (SAM) formed from a Triton X-100 lyotropic medium has been conducted by electrochemical techniques. It is found that an ODT layer of standing-up molecules is obtained at short modification time without removing oxygen from the medium. The electrochemical study shows that the ODT layer formed after 15 min of modification time has similar electron-transfer blocking properties to the layers formed from organic solvents at much longer modification times. On the basis of XPS data, it is demonstrated that the inability to bind gold nanoparticles (AuNPs) is due to the presence of extra ODT molecules either interdigited or on top of the layer. Treatment consisting of an acid washing step following the formation of the ODT-Au(111) SAM produces a layer that is able to attach AuNPs as demonstrated by electrochemical techniques and atomic force microscopy (AFM) images.

  14. Enhance the performance of liquid crystal as an optical switch by doping CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Ahmed, Sudad S.; Ibrahim, Rawa K.; Al-Naimee, Kais; Naje, Asama N.; Ibrahim, Omar A.; Majeed, K. A.

    2018-05-01

    The electrical and optical properties results were studied for Cadmium Sulphide (CdS) Nanoparticles / Nematic liquid crystal (5CB) mixtures. Doping of CdS nanoparticles increases the spontaneous polarization and response time, the increase is due to large dipole-dipole interaction between the liquid crystal (LC) molecules and CdS nanoparticles, which increase the anchoring energy. The electro-optic measurements revealed a decrease (∼40%) in threshold voltage, and faster response time in doped sample cells than Pure 4'-n-pentyl-4-cyanobiphenyl (5CB) nematic liquid crystal.

  15. Liquid Crystal Phase Behaviour of Attractive Disc-Like Particles

    PubMed Central

    Wu, Liang; Jackson, George; Müller, Erich A.

    2013-01-01

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids. PMID:23965962

  16. Liquid crystal phase behaviour of attractive disc-like particles.

    PubMed

    Wu, Liang; Jackson, George; Müller, Erich A

    2013-08-08

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids.

  17. Tunable two-dimensional photonic crystals using liquid crystal infiltration

    NASA Astrophysics Data System (ADS)

    Leonard, S. W.; Mondia, J. P.; van Driel, H. M.; Toader, O.; John, S.; Busch, K.; Birner, A.; Gösele, U.; Lehmann, V.

    2000-01-01

    The photonic band gap of a two-dimensional photonic crystal is continuously tuned using the temperature dependent refractive index of a liquid crystal. Liquid crystal E7 was infiltrated into the air pores of a macroporous silicon photonic crystal with a triangular lattice pitch of 1.58 μm and a band gap wavelength range of 3.3-5.7 μm. After infiltration, the band gap for the H polarized field shifted dramatically to 4.4-6.0 μm while that of the E-polarized field collapsed. As the sample was heated to the nematic-isotropic phase transition temperature of the liquid crystal (59 °C), the short-wavelength band edge of the H gap shifted by as much as 70 nm while the long-wavelength edge was constant within experimental error. Band structure calculations incorporating the temperature dependence of the liquid crystal birefringence can account for our results and also point to an escaped-radial alignment of the liquid crystal in the nematic phase.

  18. Photo-responsive surface topology in chiral nematic media

    NASA Astrophysics Data System (ADS)

    Liu, Danqing; Bastiaansen, Cees W. M.; Toonder, Jaap. M. J.; Broer, Dirk J.

    2012-03-01

    We report on the design and fabrication of 'smart surfaces' that exhibit dynamic changes in their surface topology in response to exposure to light. The principle is based on anisotropic geometric changes of a liquid crystal network upon a change of the molecular order parameter. The photomechanical property of the coating is induced by incorporating an azobenzene moiety into the liquid crystal network. The responsive surface topology consists of regions with two different types of molecular order: planar chiral-nematic areas and homeotropic. Under flood exposure with 365 nm light the surfaces deform from flat to one with a surface relief. The height of the relief structures is of the order of 1 um corresponding to strain difference of around 20%. Furthermore, we demonstrate surface reliefs can form either convex or concave structures upon exposure to UV light corresponding to the decrease or increase molecular order parameter, respectively, related to the isomeric state of the azobenzene crosslinker. The reversible deformation to the initial flat state occurs rapidly after removing the light source.

  19. Stretchable liquid-crystal blue-phase gels.

    PubMed

    Castles, F; Morris, S M; Hung, J M C; Qasim, M M; Wright, A D; Nosheen, S; Choi, S S; Outram, B I; Elston, S J; Burgess, C; Hill, L; Wilkinson, T D; Coles, H J

    2014-08-01

    Liquid-crystalline polymers are materials of considerable scientific interest and technological value. An important subset of these materials exhibit rubber-like elasticity, combining the optical properties of liquid crystals with the mechanical properties of rubber. Moreover, they exhibit behaviour not seen in either type of material independently, and many of their properties depend crucially on the particular mesophase employed. Such stretchable liquid-crystalline polymers have previously been demonstrated in the nematic, chiral-nematic, and smectic mesophases. Here, we report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that remains electro-optically switchable under a moderate applied voltage, and whose optical properties can be manipulated by an applied strain. We also find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and possibilities for low-voltage electro-optic devices.

  20. Apparent Viscosity of Active Nematics in Poiseuille Flow

    NASA Astrophysics Data System (ADS)

    Cui, Zhenlu; Su, Jianbing; Zeng, Xiaoming

    2015-09-01

    A Leslie-Erickson continuum hydrodynamic for flowing active nematics has been used to characterize active particle systems such as bacterial suspensions. The behavior of such a system under a plane pressure-driven Poiseuille flow is analyzed. When plate anchoring is tangential and normal, we find the apparent viscosity formula indicating a significant difference between tangential anchoring and normal anchoring conditions for both active rodlike and discoid nematics.

  1. Enhanced optoelastic interaction range in liquid crystals with negative dielectric anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simoni, F.; Lalli, S.; Lucchetti, L.

    2014-01-06

    We demonstrate that the long-range interaction between surface-functionalized microparticles immersed a nematic liquid crystal—a “nematic colloid”—and a laser-induced “ghost colloid” can be enhanced by a low-voltage quasistatic electric field when the nematic mesophase has a negative dielectric anisotropy. The optoelastic trapping distance is shown to be enhanced by a factor up to 2.5 in presence of an electric field. Experimental data are quantitatively described with a theoretical model accounting for the spatial overlap between the orientational distortions around the microparticle and those induced by the trapping light beam itself.

  2. Large Electro-Optic Kerr Effect in Ionic Liquid Crystals: Connecting Features of Liquid Crystals and Polyelectrolytes.

    PubMed

    Schlick, M Christian; Kapernaum, Nadia; Neidhardt, Manuel M; Wöhrle, Tobias; Stöckl, Yannick; Laschat, Sabine; Giesselmann, Frank

    2018-06-06

    The electro-optic Kerr effect in simple dipolar fluids such as nitrobenzene has been widely applied in electro-optical phase modulators and light shutters. In 2005, the discovery of the large Kerr effect in liquid-crystalline blue phases (Y. Hisakado et al., Adv. Mater. 2005, 17, 96-98.) gave new directions to the search for advanced Kerr effect materials. Even though the Kerr effect is present in all transparent and optically isotropic media, it is well known that the effect can be anomalously large in complex fluids, namely in the isotropic phase of liquid crystals or in polyelectrolyte solutions. Herein, it is shown that the Kerr effect in the isotropic phase of ionic liquid crystals combines the effective counterion polarization mechanism found in polyelectrolytes and the unique pretransitional growth of the Kerr constant found in the isotropic phase of nematic liquid crystals. Maximum Kerr constants in the order of several 10 -11  m V -2 (ten times higher than the Kerr constant of the toxic nitrobenzene and less temperature sensitive than Kerr constants of nematic liquid crystals) make ionic liquid crystals attractive as new class of functional materials in low-speed Kerr effect applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Quantum Hall ferroelectrics and nematics in multivalley systems

    NASA Astrophysics Data System (ADS)

    Sodemann, I.; Zhu, Zheng; Fu, Liang

    We study broken symmetry states in multivalley quantum Hall systems whose low energy dispersions are anisotropic. Interactions tend to select states that are maximally valley polarized and have nematic character. Interestingly, in certain systems like the recently studied Bismuth (111) surfaces, the formation of these nematic states can be accompanied by appearance of an spontaneous dipole moment, leading to formation of a quantum Hall ferroelectric state. We study these states combining mean field calculations with state of the art DMRG numerical approach, and demonstrate that skyrmion-type charged excitations are extremely robust to the presence of nematic anisotropy. Supported by DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Award DE-SC0010526. IS. supported by Pappalardo Fellowship. We used Extreme Science and Engineering Discovery Environment (XSEDE) under NSF Grant ACI-1053575.

  4. Nematic biaxiality in a bent-core material

    NASA Astrophysics Data System (ADS)

    Yoon, Hyung Guen; Kang, Shin-Woong; Dong, Ronald Y.; Marini, Alberto; Suresh, Kattera A.; Srinivasarao, Mohan; Kumar, Satyendra

    2010-05-01

    The results of a recent investigation of the nematic biaxiality in a bent-core mesogen (A131) are in apparent disagreement with earlier claims. Samples of mesogen A131 used in the two studies were investigated with polarized optical microscopy, conoscopy, carbon-13 NMR, and crossover frequency measurements. The results demonstrate that textural changes associated with the growth of biaxial nematic order appear at ˜149°C . The Maltese cross observed in the conoscopic figure gradually splits into two isogyres at lower temperatures indicating phase biaxiality. Presence of the uniaxial to biaxial nematic phase transition is further confirmed by temperature trends of local order parameters based on C13 chemical shifts in NMR experiments. Frequency switching measurements also clearly reveal a transition at 149°C . Differences between the two reports appear to be related to the presence of solvent, impurities, and/or adsorbed gases in samples of A131 used in the study of Van Le [Phys. Rev. E 79, 030701 (2009)].

  5. Multistage electronic nematic transitions in cuprate superconductors: A functional-renormalization-group analysis

    NASA Astrophysics Data System (ADS)

    Tsuchiizu, Masahisa; Kawaguchi, Kouki; Yamakawa, Youichi; Kontani, Hiroshi

    2018-04-01

    Recently, complex rotational symmetry-breaking phenomena have been discovered experimentally in cuprate superconductors. To find the realized order parameters, we study various unconventional charge susceptibilities in an unbiased way by applying the functional-renormalization-group method to the d -p Hubbard model. Without assuming the wave vector of the order parameter, we reveal that the most dominant instability is the uniform (q =0 ) charge modulation on the px and py orbitals, which possesses d symmetry. This uniform nematic order triggers another nematic p -orbital density wave along the axial (Cu-Cu) direction at Qa≈(π /2 ,0 ) . It is predicted that uniform nematic order is driven by the spin fluctuations in the pseudogap region, and another nematic density-wave order at q =Qa is triggered by the uniform order. The predicted multistage nematic transitions are caused by Aslamazov-Larkin-type fluctuation-exchange processes.

  6. Confined Electroconvective and Flexoelectric Instabilities Deep in the Freedericksz State of Nematic CB7CB.

    PubMed

    Krishnamurthy, Kanakapura S; Palakurthy, Nani Babu; Yelamaggad, Channabasaveshwar V

    2017-06-01

    We report wormlike flexoelectric structures evolving deep in the Freedericksz state of a nematic layer of the liquid crystal cyanobiphenyl-(CH2) 7 -cyanobiphenyl. They form in the predominantly splay-bend thin boundary layers and are built up of solitary flexoelectric domains of the Bobylev-Pikin type. Their formation is possibly triggered by the gradient flexoelectric surface instability that remains optically discernible up to unusually high frequencies. The threshold voltage at which the worms form scales as square root of the frequency; in their extended state, worms often appear as labyrinthine structures on a section of loops that separate regions of opposite director deviation. Such asymmetric loops are also derived through pincement-like dissociation of ring-shaped walls. Formation of isolated domains of bulk electroconvection precedes the onset of surface instabilities. In essence, far above the Freedericksz threshold, the twisted nematic layer behaves as a combination of two orthogonally oriented planar half-layers destabilized by localized flexoelectric distortion.

  7. Correlation lengths in hydrodynamic models of active nematics.

    PubMed

    Hemingway, Ewan J; Mishra, Prashant; Marchetti, M Cristina; Fielding, Suzanne M

    2016-09-28

    We examine the scaling with activity of the emergent length scales that control the nonequilibrium dynamics of an active nematic liquid crystal, using two popular hydrodynamic models that have been employed in previous studies. In both models we find that the chaotic spatio-temporal dynamics in the regime of fully developed active turbulence is controlled by a single active scale determined by the balance of active and elastic stresses, regardless of whether the active stress is extensile or contractile in nature. The observed scaling of the kinetic energy and enstrophy with activity is consistent with our single-length scale argument and simple dimensional analysis. Our results provide a unified understanding of apparent discrepancies in the previous literature and demonstrate that the essential physics is robust to the choice of model.

  8. Electric-field effects in the twist-bend nematic phase

    NASA Astrophysics Data System (ADS)

    Meyer, Claire; Dozov, Ivan; Davidson, Patrick; Luckhurst, Geoffrey R.; Dokli, Irena; Knezevic, Anamarija; Lesac, Andreja

    2018-02-01

    In the recently discovered Twist-Bend Nematic (NTB) phase, the nematic director is spontaneously distorted and twisted along a conical helix with an extremely short pitch, 10 nm. We have investigated the behavior of the NTB phase subject to an electric-field. We show that, due to the periodic NTB structure, the electro-optic effects are not nematic-like but are close analogs to those in the smectic and cholesteric phases. In particular, we have studied the fast (sub-microsecond) flexoelectrically-induced rotation of the optic axis, which is similar to the electroclinic effect in the SmA* phase and the flexoelectric response of short-pitch cholesterics. We discuss the possible applications of the fast NTB electro-optic effects.

  9. Large-Scale Chaos and Fluctuations in Active Nematics

    NASA Astrophysics Data System (ADS)

    Ngo, Sandrine; Peshkov, Anton; Aranson, Igor S.; Bertin, Eric; Ginelli, Francesco; Chaté, Hugues

    2014-07-01

    We show that dry active nematics, e.g., collections of shaken elongated granular particles, exhibit large-scale spatiotemporal chaos made of interacting dense, ordered, bandlike structures in a parameter region including the linear onset of nematic order. These results are obtained from the study of both the well-known (deterministic) hydrodynamic equations describing these systems and of the self-propelled particle model they were derived from. We prove, in particular, that the chaos stems from the generic instability of the band solution of the hydrodynamic equations. Revisiting the status of the strong fluctuations and long-range correlations in the particle model, we show that the giant number fluctuations observed in the chaotic phase are a trivial consequence of density segregation. However anomalous, curvature-driven number fluctuations are present in the homogeneous quasiordered nematic phase and characterized by a nontrivial scaling exponent.

  10. Phase separation and emergent structures in an active nematic fluid.

    PubMed

    Putzig, Elias; Baskaran, Aparna

    2014-10-01

    We consider a phenomenological continuum theory for an active nematic fluid and show that there exists a universal, model-independent instability which renders the homogeneous nematic state unstable to order fluctuations. Using numerical and analytic tools we show that, in the vicinity of a critical point, this instability leads to a phase-separated state in which the ordered regions form bands in which the direction of nematic order is perpendicular to the direction of the density gradient. We argue that the underlying mechanism that leads to this phase separation is a universal feature of active fluids of different symmetries.

  11. Spatiotemporal character of the Bobylev-Pikin flexoelectric instability in a twisted nematic bent-core liquid crystal exposed to very low frequency fields.

    PubMed

    Krishnamurthy, K S

    2014-05-01

    The Bobylev-Pikin striped-pattern state induced by a homogeneous electric field is a volume flexoelectric instability, originating in the midregion of a planarly aligned nematic liquid crystal layer. We find that the instability acquires a spatiotemporal character upon excitation by a low frequency (0.5 Hz) square wave field. This is demonstrated using a bent-core liquid crystal, initially in the 90°-twisted planar configuration. The flexoelectric modulation appears close to the cathode at each polarity reversal and, at low voltage amplitudes, decays completely as the field becomes steady. Correspondingly, at successive polarity changes, the stripe direction switches between the alignment directions at the two substrates. For large voltages, the stripes formed nearly along the alignment direction at the cathode gradually reorient toward the midplane director. These observations are generally attributed to inhomogeneous and time-dependent field conditions that come to exist after each polarity reversal. Polarity dependence of the instability is attributed to the formation of intrinsic double layers that bring about an asymmetry in surface fields. Momentary field elevation near the cathode following a voltage sign reversal and concomitant gradient flexoelectric polarization are considered the key factors in accounting for the surfacelike modulation observed at low voltages.

  12. Semiflexible polymers confined in a slit pore with attractive walls: two-dimensional liquid crystalline order versus capillary nematization.

    PubMed

    Milchev, Andrey; Egorov, Sergei A; Binder, Kurt

    2017-03-01

    Semiflexible polymers under good solvent conditions interacting with attractive planar surfaces are investigated by Molecular Dynamics (MD) simulations and classical Density Functional Theory (DFT). A bead-spring type potential complemented by a bending potential is used, allowing variation of chain stiffness from completely flexible coils to rod-like polymers whose persistence length by far exceeds their contour length. Solvent is only implicitly included, monomer-monomer interactions being purely repulsive, while two types of attractive wall-monomer interactions are considered: (i) a strongly attractive Mie-type potential, appropriate for a strictly structureless wall, and (ii) a corrugated wall formed by Lennard-Jones particles arranged on a square lattice. It is found that in dilute solutions the former case leads to the formation of a strongly adsorbed surface layer, and the profile of density and orientational order in the z-direction perpendicular to the wall is predicted by DFT in nice agreement with MD. While for very low bulk densities a Kosterlitz-Thouless type transition from the isotropic phase to a phase with power-law decay of nematic correlations is suggested to occur in the strongly adsorbed layer, for larger densities a smectic-C phase in the surface layer is detected. No "capillary nematization" effect at higher bulk densities is found in this system, unlike systems with repulsive walls. This finding is attributed to the reduction of the bulk density (in the center of the slit pore) due to polymer adsorption on the attractive wall, for a system studied in the canonical ensemble. Consequently in a system with two attractive walls nematic order in the slit pore can occur only at a higher density than for a bulk system.

  13. Formation of radial aligned and uniform nematic liquid crystal droplets via drop-on-demand inkjet printing into a partially-wet polymer layer

    NASA Astrophysics Data System (ADS)

    Parry, Ellis; Kim, Dong-Jin; Castrejón-Pita, Alfonso A.; Elston, Steve J.; Morris, Stephen M.

    2018-06-01

    This paper investigates the drop-on-demand inkjet printing of a nematic liquid crystal (LC) onto a variety of substrates. Achieving both a well-defined droplet boundary and uniformity of the LC director in printed droplets can be challenging when traditional alignment surfaces are employed. Despite the increasing popularity of inkjet printing LCs, the mechanisms that are involved during the deposition process such as drop impact, wetting and spreading have received very little attention, in the way of experiments, as viable routes for promoting alignment of the resultant LC droplets. In this work, radial alignment of the director and uniformity of the droplet boundary are achieved in combination via the use of a partially-wet polymer substrate, which makes use of the forces and flow generated during droplet impact and subsequent wetting process. Our findings could have important consequences for future LC inkjet applications, including the development of smart inks, printable sensors and lasers.

  14. Invited review liquid crystal models of biological materials and silk spinning.

    PubMed

    Rey, Alejandro D; Herrera-Valencia, Edtson E

    2012-06-01

    A review of thermodynamic, materials science, and rheological liquid crystal models is presented and applied to a wide range of biological liquid crystals, including helicoidal plywoods, biopolymer solutions, and in vivo liquid crystals. The distinguishing characteristics of liquid crystals (self-assembly, packing, defects, functionalities, processability) are discussed in relation to biological materials and the strong correspondence between different synthetic and biological materials is established. Biological polymer processing based on liquid crystalline precursors includes viscoelastic flow to form and shape fibers. Viscoelastic models for nematic and chiral nematics are reviewed and discussed in terms of key parameters that facilitate understanding and quantitative information from optical textures and rheometers. It is shown that viscoelastic modeling the silk spinning process using liquid crystal theories sheds light on textural transitions in the duct of spiders and silk worms as well as on tactoidal drops and interfacial structures. The range and consistency of the predictions demonstrates that the use of mesoscopic liquid crystal models is another tool to develop the science and biomimetic applications of mesogenic biological soft matter. Copyright © 2011 Wiley Periodicals, Inc.

  15. Topological switching and orbiting dynamics of colloidal spheres dressed with chiral nematic solitons.

    PubMed

    Porenta, T; Copar, S; Ackerman, P J; Pandey, M B; Varney, M C M; Smalyukh, I I; Žumer, S

    2014-12-05

    Metastable configurations formed by defects, inclusions, elastic deformations and topological solitons in liquid crystals are a promising choice for building photonic crystals and metamaterials with a potential for new optical applications. Local optical modification of the director or introduction of colloidal inclusions into a moderately chiral nematic liquid crystal confined to a homeotropic cell creates localized multistable chiral solitons. Here we induce solitons that "dress" the dispersed spherical particles treated for tangential degenerate boundary conditions, and perform controlled switching of their state using focused optical beams. Two optically switchable distinct metastable states, toron and hopfion, bound to colloidal spheres into structures with different topological charges are investigated. Their structures are examined using Q-tensor based numerical simulations and compared to the profiles reconstructed from the experiments. A topological explanation of observed multistability is constructed.

  16. Liquid Crystalline Behavior and Related Properties of Colloidal Systems of Inorganic Oxide Nanosheets

    PubMed Central

    Nakato, Teruyuki; Miyamoto, Nobuyoshi

    2009-01-01

    Inorganic layered crystals exemplified by clay minerals can be exfoliated in solvents to form colloidal dispersions of extremely thin inorganic layers that are called nanosheets. The obtained “nanosheet colloids” form lyotropic liquid crystals because of the highly anisotropic shape of the nanosheets. This system is a rare example of liquid crystals consisting of inorganic crystalline mesogens. Nanosheet colloids of photocatalytically active semiconducting oxides can exhibit unusual photoresponses that are not observed for organic liquid crystals. This review summarizes experimental work on the phase behavior of the nanosheet colloids as well as photochemical reactions observed in the clay and semiconducting nanosheets system.

  17. Phase separations in mixtures of a liquid crystal and a nanocolloidal particle.

    PubMed

    Matsuyama, Akihiko

    2009-11-28

    We present a mean field theory to describe phase separations in mixtures of a liquid crystal and a nanocolloidal particle. By taking into account a nematic, a smectic A ordering of the liquid crystal, and a crystalline ordering of the nanoparticle, we calculate the phase diagrams on the temperature-concentration plane. We predict various phase separations, such as a smectic A-crystal phase separation and a smectic A-isotropic-crystal triple point, etc., depending on the interactions between the liquid crystal and the colloidal surface. Inside binodal curves, we find new unstable and metastable regions, which are important in the phase ordering dynamics. We also find a crystalline ordering of the nanoparticles dispersed in a smectic A phase and a nematic phase. The cooperative phenomena between liquid-crystalline ordering and crystalline ordering induce a variety of phase diagrams.

  18. Beam-splitter switches based on zenithal bistable liquid-crystal gratings.

    PubMed

    Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E

    2014-10-01

    The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.

  19. The finite-size effect in thin liquid crystal systems

    NASA Astrophysics Data System (ADS)

    Śliwa, I.

    2018-05-01

    Effects of surface ordering in liquid crystal systems confined between cell plates are of great theoretical and experimental interest. Liquid crystals introduced in thin cells are known to be strongly stabilized and ordered by cell plates. We introduce a new theoretical method for analyzing the effect of surfaces on local molecular ordering in thin liquid crystal systems with planar geometry of the smectic layers. Our results show that, due to the interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface interactions, both orientational and translational orders of liquid crystal molecules across confining cells are very complex. In particular, it is demonstrated that the SmA, nematic, and isotropic phases can coexist. The phase transitions from SmA to nematic, as well as from nematic to isotropic phases, occur not simultaneously in the whole volume of the system but begin to appear locally in some regions of the LC sample. Phase transition temperatures are demonstrated to be strongly affected by the thickness of the LC system. The dependence of the corresponding shifts of phase transition temperatures on the layer number is shown to exhibit a power law character. This new type of scaling behavior is concerned with the coexistence of local phases in finite systems. The influence of a specific character of interactions of molecules with surfaces and other molecules on values of the resulting critical exponents is also analyzed.

  20. Low-Absorption Liquid Crystals for Infrared Beam Steering

    DTIC Science & Technology

    2013-10-22

    Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic mixture, deuteration, nematic phase, birefringence, overtone...absorption compounds for LWIR and SWIR are also investigated. Key words: Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic ...the melting point significantly. We did careful investigation and formed a eutectic mixture consisting of five fluorinated compounds without any

  1. Structural Rheology of the Smectic Phase

    PubMed Central

    Fujii, Shuji; Komura, Shigeyuki; Lu, Chun-Yi David

    2014-01-01

    In this review article, we discuss the rheological properties of the thermotropic smectic liquid crystal 8CB with focal conic domains (FCDs) from the viewpoint of structural rheology. It is known that the unbinding of the dislocation loops in the smectic phase drives the smectic-nematic transition. Here we discuss how the unbinding of the dislocation loops affects the evolution of the FCD size, linear and nonlinear rheological behaviors of the smectic phase. By studying the FCD formation from the perpendicularly oriented smectic layers, we also argue that dislocations play a key role in the structural development in layered systems. Furthermore, similarities in the rheological behavior between the FCDs in the smectic phase and the onion structures in the lyotropic lamellar phase suggest that these systems share a common physical origin for the elasticity. PMID:28788123

  2. Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe

    DOE PAGES

    Wang, Qisi; Shen, Yao; Pan, Bingying; ...

    2015-12-07

    In iron-based superconductors the interactions driving the nematic order (that breaks four-fold rotational symmetry in the iron plane) may also mediate the Cooper pairing. The experimental determination of these interactions, which are believed to depend on the orbital or the spin degrees of freedom, is challenging because nematic order occurs at, or slightly above, the ordering temperature of a stripe magnetic phase. In this paper, we study FeSe—which exhibits a nematic (orthorhombic) phase transition at T s = 90 K without antiferromagnetic ordering—by neutron scattering, finding substantial stripe spin fluctuations coupled with the nematicity that are enhanced abruptly on coolingmore » through T s. A sharp spin resonance develops in the superconducting state, whose energy (~4 meV) is consistent with an electron–boson coupling mode revealed by scanning tunnelling spectroscopy. The magnetic spectral weight in FeSe is found to be comparable to that of the iron arsenides. Finally, our results support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.« less

  3. Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qisi; Shen, Yao; Pan, Bingying

    In iron-based superconductors the interactions driving the nematic order (that breaks four-fold rotational symmetry in the iron plane) may also mediate the Cooper pairing. The experimental determination of these interactions, which are believed to depend on the orbital or the spin degrees of freedom, is challenging because nematic order occurs at, or slightly above, the ordering temperature of a stripe magnetic phase. In this paper, we study FeSe—which exhibits a nematic (orthorhombic) phase transition at T s = 90 K without antiferromagnetic ordering—by neutron scattering, finding substantial stripe spin fluctuations coupled with the nematicity that are enhanced abruptly on coolingmore » through T s. A sharp spin resonance develops in the superconducting state, whose energy (~4 meV) is consistent with an electron–boson coupling mode revealed by scanning tunnelling spectroscopy. The magnetic spectral weight in FeSe is found to be comparable to that of the iron arsenides. Finally, our results support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.« less

  4. Nematicity in stripe ordered cuprates probed via resonant x-ray scattering

    DOE PAGES

    Achkar, A. J.; Zwiebler, M.; McMahon, Christopher; ...

    2016-02-05

    We found that in underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M) 2CuO 4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M) 2O 2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M) 2O 2 layers and the electronic nematicity of the CuO 2 planes, with only the latter being enhancedmore » by the onset of CDW order. Our results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.« less

  5. Nematicity in stripe ordered cuprates probed via resonant x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achkar, A. J.; Zwiebler, M.; McMahon, Christopher

    We found that in underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M) 2CuO 4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M) 2O 2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M) 2O 2 layers and the electronic nematicity of the CuO 2 planes, with only the latter being enhancedmore » by the onset of CDW order. Our results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.« less

  6. Free energy perturbation method for measuring elastic constants of liquid crystals

    NASA Astrophysics Data System (ADS)

    Joshi, Abhijeet

    There is considerable interest in designing liquid crystals capable of yielding specific morphological responses in confined environments, including capillaries and droplets. The morphology of a liquid crystal is largely dictated by the elastic constants, which are difficult to measure and are only available for a handful of substances. In this work, a first-principles based method is proposed to calculate the Frank elastic constants of nematic liquid crystals directly from atomistic models. These include the standard splay, twist and bend deformations, and the often-ignored but important saddle-splay constant. The proposed method is validated using a well-studied Gay-Berne(3,5,2,1) model; we examine the effects of temperature and system size on the elastic constants in the nematic and smectic phases. We find that our measurements of splay, twist, and bend elastic constants are consistent with previous estimates for the nematic phase. We further outline the implementation of our approach for the saddle-splay elastic constant, and find it to have a value at the limits of the Ericksen inequalities. We then proceed to report results for the elastic constants commonly known liquid crystals namely 4-pentyl-4'-cynobiphenyl (5CB) using atomistic model, and show that the values predicted by our approach are consistent with a subset of the available but limited experimental literature.

  7. Mesomorphic behaviors of a series of heterocyclic thiophene-imine-ester-based liquid crystals

    NASA Astrophysics Data System (ADS)

    Foo, K.-L.; Ha, S.-T.; Yeap, G. Y.; Lee, S. L.

    2018-05-01

    The synthesis and characterization of a series of heterocyclic liquid crystal, 4-{[(thiophen-2-yl)methylidene]amino}phenyl 4-alkoxybenzoates possessing even number of carbon atoms at the alkoxy chain (CnH2n+1O-, n = 6, 8, 10, 12, 14, 16, 18) are reported. The molecular structures of title compounds were elucidated using Fourier-transform infrared spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopic techniques along with mass spectrometric analysis. The phase behavior of these compounds was characterized and studied by differential scanning calorimetry and polarizing optical microscopy. All members exhibited enantiotropic nematic phase except for the highest member (n = 18) which is a non-mesogen. Influence of alkoxy chain length on the transition temperatures of crystal-to-nematic (melting point) and nematic-to-isotropic (clearing point) was studied. Nematic phase range was found to increase from n = 6 to n = 10, then it started to descend from n = 12 to n = 16 and finally the nematic phase disappeared when n changed to 18.

  8. Nematic elastomers: from a microscopic model to macroscopic elasticity theory.

    PubMed

    Xing, Xiangjun; Pfahl, Stephan; Mukhopadhyay, Swagatam; Goldbart, Paul M; Zippelius, Annette

    2008-05-01

    A Landau theory is constructed for the gelation transition in cross-linked polymer systems possessing spontaneous nematic ordering, based on symmetry principles and the concept of an order parameter for the amorphous solid state. This theory is substantiated with help of a simple microscopic model of cross-linked dimers. Minimization of the Landau free energy in the presence of nematic order yields the neoclassical theory of the elasticity of nematic elastomers and, in the isotropic limit, the classical theory of isotropic elasticity. These phenomenological theories of elasticity are thereby derived from a microscopic model, and it is furthermore demonstrated that they are universal mean-field descriptions of the elasticity for all chemical gels and vulcanized media.

  9. Distinctive orbital anisotropy observed in the nematic state of a FeSe thin film

    DOE PAGES

    Zhang, Y.; Yi, M.; Liu, Z. -K.; ...

    2016-09-26

    Nematic state, where the system is translationally invariant but breaks the rotational symmetry, has drawn great attentions recently due to experimental observations of such a state in both cuprates and iron-based superconductors. The mechanism of nematicity that is likely tied to the pairing mechanism of high-T c, however, still remains controversial. Here, we studied the electronic structure of multilayer FeSe film by angle-resolved photoemission spectroscopy (ARPES). We found that the FeSe film enters the nematic state around 125 K, while the electronic signature of long range magnetic order has not been observed down to 20K indicating the non-magnetic origin ofmore » the nematicity. The band reconstruction in the nematic state is characterized by the splitting of the d xz and d yz bands. More intriguingly, such energy splitting is strong momentum dependent with the largest band splitting of ~80 meV at the zone corner. The simple on-site ferro-orbital ordering is insufficient to reproduce the nontrivial momentum dependence of the band reconstruction. Instead, our results suggest that the nearest-neighbor hopping of d xz and d yz is highly anisotropic in the nematic state, the origin of which holds the key in understanding the nematicity in iron-based superconductors.« less

  10. Ribbon phase in a phase-separated lyotropic lamellar-sponge mixture under shear flow

    NASA Astrophysics Data System (ADS)

    Cristobal, G.; Rouch, J.; Panizza, P.; Narayanan, T.

    2001-07-01

    We report the effect of shear flow on a phase-separated system composed of lyotropic lamellar (Lα) and sponge (L3) phases in a mixture of brine, surfactant, and cosurfactant. Optical microscopy, small-angle light, and x-ray scattering measurements are consistent with the existence of a steady state made of multilamellar ribbonlike structures aligned in the flow direction. At high shear rates, these ribbonlike structures become unstable and break up into monodisperse droplets resulting in a shear-thickening transition.

  11. The novel metallic states of the cuprates: Topological Fermi liquids and strange metals

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir; Chowdhury, Debanjan

    2016-12-01

    We review ideas on the nature of the metallic states of the hole-doped cuprate high temperature superconductors, with an emphasis on the connections between the Luttinger theorem for the size of the Fermi surface, topological quantum field theories (TQFTs), and critical theories involving changes in the size of the Fermi surface. We begin with the derivation of the Luttinger theorem for a Fermi liquid, using momentum balance during a process of flux insertion in a lattice electronic model with toroidal boundary conditions. We then review the TQFT of the ℤ spin liquid, and demonstrate its compatibility with the toroidal momentum balance argument. This discussion leads naturally to a simple construction of "topological" Fermi liquid states: the fractionalized Fermi liquid (FL*) and the algebraic charge liquid (ACL). We present arguments for a description of the pseudogap metal of the cuprates using ℤ-FL* or ℤ-ACL states with Ising-nematic order. These pseudogap metal states are also described as Higgs phases of a SU(2) gauge theory. The Higgs field represents local antiferromagnetism, but the Higgs-condensed phase does not have long-range antiferromagnetic order: the magnitude of the Higgs field determines the pseudogap, the reconstruction of the Fermi surface, and the Ising-nematic order. Finally, we discuss the route to the large Fermi surface Fermi liquid via the critical point where the Higgs condensate and Ising nematic order vanish, and the application of Higgs criticality to the strange metal.

  12. Spontaneous Division and Motility in Active Nematic Droplets

    NASA Astrophysics Data System (ADS)

    Giomi, Luca; DeSimone, Antonio

    2014-04-01

    We investigate the mechanics of an active droplet endowed with internal nematic order and surrounded by an isotropic Newtonian fluid. Using numerical simulations we demonstrate that, due to the interplay between the active stresses and the defective geometry of the nematic director, this system exhibits two of the fundamental functions of living cells: spontaneous division and motility, by means of self-generated hydrodynamic flows. These behaviors can be selectively activated by controlling a single physical parameter, namely, an active variant of the capillary number.

  13. Spontaneous emission from radiative chiral nematic liquid crystals at the photonic band-gap edge: an investigation into the role of the density of photon states near resonance.

    PubMed

    Mavrogordatos, Th K; Morris, S M; Wood, S M; Coles, H J; Wilkinson, T D

    2013-06-01

    In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data.

  14. Report on twisted nematic and supertwisted nematic device characterization program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In this study we measured the optical characteristics of normally white twisted nematic (NWTN) and super twisted nematic (STN ) cells. Though no dynamic computer model was available, the static observations were compared with computer simulated behavior. The measurements were taken as a function of both viewing angle and applied voltage and included in the static case not only luminance but also contrast ratio and chromaticity . We employed the computer model Twist Cell Optics, developed at Kent State in conjunction with this study, and whose optical modeling foundation, Iike the ViDEOS program, is the 4 x 4 matrix method of Berreman. In order to resolve discrepancies between the experimental and modeled data the optical parameters of the individual cell components, where not known, were determined using refractometry, profilometry, and various forms of ellipsometry. The resulting agreement between experiment and model is quite good due primarily to a better understanding of the structure and optics of dichroic sheet polarizers. A description of the model and test cells employed are given in section 2. Section 3 contains the experimental data gathered and section 4 gives examples of the fit between model and experiment. Also included with this report are a pair of papers which resulted from the research and which detail the polarizer properties and some of the cell characterization methods.

  15. Compression induced phase transition of nematic brush: A mean-field theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jiuzhou; Zhang, Xinghua, E-mail: zhangxh@bjtu.edu.cn; Yan, Dadong, E-mail: yandd@bnu.edu.cn

    2015-11-28

    Responsive behavior of polymer brush to the external compression is one of the most important characters for its application. For the flexible polymer brush, in the case of low grafting density, which is widely studied by the Gaussian chain model based theory, the compression leads to a uniform deformation of the chain. However, in the case of high grafting density, the brush becomes anisotropic and the nematic phase will be formed. The normal compression tends to destroy the nematic order, which leads to a complex responsive behaviors. Under weak compression, chains in the nematic brush are buckled, and the bendingmore » energy and Onsager interaction give rise to the elasticity. Under deep compression, the responsive behaviors of the nematic polymer brush depend on the chain rigidity. For the compressed rigid polymer brush, the chains incline to re-orientate randomly to maximize the orientational entropy and its nematic order is destroyed. For the compressed flexible polymer brush, the chains incline to fold back to keep the nematic order. A buckling-folding transition takes place during the compressing process. For the compressed semiflexible brush, the chains are collectively tilted to a certain direction, which leads to the breaking of the rotational symmetry in the lateral plane. These responsive behaviors of nematic brush relate to the properties of highly frustrated worm-like chain, which is hard to be studied by the traditional self-consistent field theory due to the difficulty to solve the modified diffusion equation. To overcome this difficulty, a single chain in mean-field theory incorporating Monte Carlo simulation and mean-field theory for the worm-like chain model is developed in present work. This method shows high performance for entire region of chain rigidity in the confined condition.« less

  16. Topological Switching and Orbiting Dynamics of Colloidal Spheres Dressed with Chiral Nematic Solitons

    PubMed Central

    Porenta, T.; Čopar, S.; Ackerman, P. J.; Pandey, M. B.; Varney, M. C. M.; Smalyukh, I. I.; Žumer, S.

    2014-01-01

    Metastable configurations formed by defects, inclusions, elastic deformations and topological solitons in liquid crystals are a promising choice for building photonic crystals and metamaterials with a potential for new optical applications. Local optical modification of the director or introduction of colloidal inclusions into a moderately chiral nematic liquid crystal confined to a homeotropic cell creates localized multistable chiral solitons. Here we induce solitons that “dress” the dispersed spherical particles treated for tangential degenerate boundary conditions, and perform controlled switching of their state using focused optical beams. Two optically switchable distinct metastable states, toron and hopfion, bound to colloidal spheres into structures with different topological charges are investigated. Their structures are examined using Q-tensor based numerical simulations and compared to the profiles reconstructed from the experiments. A topological explanation of observed multistability is constructed. PMID:25477195

  17. Conformational distribution of n-hexane in a nematic liquid crystal obtained from nuclear spin dipolar couplings by Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luzar, M.; Rosen, M.E.; Caldarelli, S.

    Motionally averaged proton-proton dipolar couplings measured by nuclear magnetic resonance (NMR) spectroscopy can provide information about the conformations and orientations sampled by partially oriented molecules. In this study, the measured dipolar couplings between pairs of protons on n-hexane dissolved in a nematic liquid crystal solvent are used as constraints in a Monte Carlo sampling of the conformations and orientations of n-hexane. Rotation about each carbon-carbon bond in the molecule is modeled by the complete sinusoidal torsional potential of Ryckaert and Bellemans rather than by the three-state rotational isomeric states (RIS) model that has been used in previous studies. Comparison ofmore » the results of the simulations using the Ryckaert-Bellemans potential and the RIS model indicates little difference in the values of the adjustable parameters and the quality of the fits to the experimental data. The primary difference between the models appears in the calculated conformer probability distributions for n-hexane, highlighting the importance of the exact shape of the torsional potential used to model carbon-carbon bond rotation in organic molecules. 23 refs., 3 figs., 4 tabs.« less

  18. Relationship between thermodynamic parameter and thermodynamic scaling parameter for orientational relaxation time for flip-flop motion of nematic liquid crystals.

    PubMed

    Satoh, Katsuhiko

    2013-03-07

    Thermodynamic parameter Γ and thermodynamic scaling parameter γ for low-frequency relaxation time, which characterize flip-flop motion in a nematic phase, were verified by molecular dynamics simulation with a simple potential based on the Maier-Saupe theory. The parameter Γ, which is the slope of the logarithm for temperature and volume, was evaluated under various conditions at a wide range of temperatures, pressures, and volumes. To simulate thermodynamic scaling so that experimental data at isobaric, isothermal, and isochoric conditions can be rescaled onto a master curve with the parameters for some liquid crystal (LC) compounds, the relaxation time was evaluated from the first-rank orientational correlation function in the simulations, and thermodynamic scaling was verified with the simple potential representing small clusters. A possibility of an equivalence relationship between Γ and γ determined from the relaxation time in the simulation was assessed with available data from the experiments and simulations. In addition, an argument was proposed for the discrepancy between Γ and γ for some LCs in experiments: the discrepancy arises from disagreement of the value of the order parameter P2 rather than the constancy of relaxation time τ1(*) on pressure.

  19. Low-Absorption Liquid Crystals for Infrared Beam Steering

    DTIC Science & Technology

    2015-09-30

    liquid crystals for infrared laser beam steering applications. To suppress the optical loss in MW1R and LW1R, we have investigated following...dielectric anisotropy, and low optical loss nematic liquid crystals for infrared laser beam steering applications. To suppress the optical loss in MWIR and...modulators. 1. Objective The main objective of this program is to develop low-loss liquid crystals for electronic laser beam steering in the infrared

  20. Nanoparticles in ionic liquids: interactions and organization.

    PubMed

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  1. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-24

    The properties of water under confinement are of practical and fundamental interest. Here in this work we study the properties of water in the self-assembled lyotropic phases of gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, D T , and rotational relaxation time, τ R. We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparingmore » the values to those directly measured in the simulations. We find that the decoupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of D T and τ R can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale and neutron spin echo measurements would be a valuable technique in addition to QENS.« less

  2. On the field-induced switching of molecular organization in a biaxial nematic cell and its relaxation

    NASA Astrophysics Data System (ADS)

    Ricci, Matteo; Berardi, Roberto; Zannoni, Claudio

    2015-08-01

    We investigate the switching of a biaxial nematic filling a flat cell with planar homogeneous anchoring using a coarse-grained molecular dynamics simulation. We have found that an aligning field applied across the film, and acting on specific molecular axes, can drive the reorientation of the secondary biaxial director up to one order of magnitude faster than that for the principal director. While the π/2 switching of the secondary director does not affect the alignment of the long molecular axes, the field-driven reorientation of the principal director proceeds via a concerted rotation of the long and transversal molecular axes. More importantly, while upon switching off a (relatively) weak or intermediate field, the biaxial nematic liquid crystal is always able to relax to the initial surface aligned director state; this is not the case when using fields above a certain threshold. In that case, while the secondary director always recovers the initial state, the principal one remains, occasionally, trapped in a nonuniform director state due to the formation of domain walls.

  3. Liquid crystalline phase behavior in systems of hard-sphere chains

    NASA Astrophysics Data System (ADS)

    Williamson, Dave C.; Jackson, George

    1998-06-01

    A study of the liquid crystalline phase transitions in a system of hard-sphere chains is presented. The chains comprise m=7 tangentially bonded hard-sphere segments in a linear conformation (LHSC). The isothermal-isobaric Monte Carlo simulation technique is used to obtain the equation of state of the system both by compressing the isotropic (I) liquid and by expanding the solid (K). As well as the usual isotropic and solid phases, nematic and smectic-A liquid crystalline states are seen. A large degree of hysteresis is found in the neighborhood of the I-N transition. The results for the rigid LHSC system were compared with existing data for the corresponding semiflexible hard-sphere chains (FHSC): the flexibility has a large destabilizing effect on the nematic phase and consequently it postpones the I-N transition. The results of the simulations are also compared with rescaled Onsager theories for the I-N transition. It is rather surprising to find that the Parsons approach, which has been so successful for other hard-core models such as spherocylinders and ellipsoids, gives very poor results. The related approach of Vega and Lago gives a good description of the I-N phase transition. The procedure of Vega and Lago, as with all two-body resummations of the Onsager theory, only gives a qualitative description of the nematic order.

  4. Elastic continuum theory: towards understanding of the twist-bend nematic phases.

    PubMed

    Barbero, G; Evangelista, L R; Rosseto, M P; Zola, R S; Lelidis, I

    2015-09-01

    The twist-bend nematic phase, N_{TB}, may be viewed as a heliconical molecular arrangement in which the director n precesses uniformly about an extra director field, t. It corresponds to a nematic ground state exhibiting nanoscale periodic modulation. To demonstrate the stability of this phase from the elastic point of view, a natural extension of the Frank elastic energy density is proposed. The elastic energy density is built in terms of the elements of symmetry of the new phase in which intervene the components of these director fields together with the usual Cartesian tensors. It is shown that the ground state corresponds to a deformed state for which K_{22}>K_{33}. In the framework of the model, the phase transition between the usual and the twist-bend nematic phase is of second order with a finite wave vector. The model does not require a negative K_{33} in agreement with recent experimental data that yield K_{33}>0. A threshold is predicted for the molecular twist power below which no transition to a twist-bend nematic may occur.

  5. Wetting of cholesteric liquid crystals.

    PubMed

    Silvestre, Nuno M; Figueirinhas Pereira, Maria Carolina; Bernardino, Nelson R; Telo da Gama, Margarida M

    2016-02-01

    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted, the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal.

  6. Transverse fields to tune an Ising-nematic quantum phase transition [Transverse fields to tune an Ising-nematic quantum critical transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.

    Here, the paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated withmore » spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.« less

  7. Transverse fields to tune an Ising-nematic quantum phase transition [Transverse fields to tune an Ising-nematic quantum critical transition

    DOE PAGES

    Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.; ...

    2017-12-05

    Here, the paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated withmore » spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.« less

  8. Nematic and chiral superconductivity induced by odd-parity fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fengcheng; Martin, Ivar

    Recent experiments indicate that superconductivity in Bi 2Se 3 intercalated with Cu, Nb, or Sr is nematic with rotational symmetry breaking. Motivated by this observation, we present a model study of nematic and chiral superconductivity induced by odd-parity fluctuations. Additionally, we show that odd-parity fluctuations in the two-component E u representation of D 3d crystal point group can generate attractive interaction in both the even-parity s-wave and odd-parity E-u pairing channels, but repulsive interaction in other odd-parity pairing channels. Coulomb repulsion can suppress s-wave pairing relative to E u pairing, and thus the latter can have a higher critical temperature.more » E u pairing has two distinct phases: a nematic phase and a chiral phase, both of which can be realized in our model. Finally, when s-wave and E u pairings have similar instability temperature, we find an intermediate phase in which both types of pairing coexist.« less

  9. Nematic and chiral superconductivity induced by odd-parity fluctuations

    DOE PAGES

    Wu, Fengcheng; Martin, Ivar

    2017-10-09

    Recent experiments indicate that superconductivity in Bi 2Se 3 intercalated with Cu, Nb, or Sr is nematic with rotational symmetry breaking. Motivated by this observation, we present a model study of nematic and chiral superconductivity induced by odd-parity fluctuations. Additionally, we show that odd-parity fluctuations in the two-component E u representation of D 3d crystal point group can generate attractive interaction in both the even-parity s-wave and odd-parity E-u pairing channels, but repulsive interaction in other odd-parity pairing channels. Coulomb repulsion can suppress s-wave pairing relative to E u pairing, and thus the latter can have a higher critical temperature.more » E u pairing has two distinct phases: a nematic phase and a chiral phase, both of which can be realized in our model. Finally, when s-wave and E u pairings have similar instability temperature, we find an intermediate phase in which both types of pairing coexist.« less

  10. Phase behavior of thermotropic chiral liquid crystal with wide blue phase

    NASA Astrophysics Data System (ADS)

    Jessy, P. J.; Radha, S.; Nainesh, Patel

    2018-04-01

    We modified the phase transitions of a thermotropic chiral nematic liquid crystal system with various concentrations of chiral component and investigated their phase behavior and optical properties. The study shows that coupling between chirality and nematicity of liquid crystals lead to changes in phase morphology with extended temperature window of blue phase including human body temperatures and enhanced thermochromism performance. The temperature dependent refractive index analysis in the visible spectral region reveals that the optical modulation due to pitch variation of helical pattern results in the creation of new mesophases and more pronounced chirality in mixtures leading to blue phase which can be controlled by the chiral concentration. The appearance of extended blue phases with primary colors will pave way for the development of new photonic devices.

  11. Defect Proliferation in Active Nematic Suspensions

    NASA Astrophysics Data System (ADS)

    Mishra, Prashant; Bowick, Mark J.; Giomi, Luca; Marchetti, M. Cristina

    2014-03-01

    The rich structure of equilibrium nematic suspensions, with their characteristic disclination defects, is modified when active forces come into play. The uniform nematic state is known to be unstable to splay (extensile) or bend (contractile) deformations above a critical activity. At even higher activity the flow becomes oscillatory and eventually turbulent. Using hydrodynamics, we classify the active flow regimes as functions of activity and order parameter friction for both contractile and extensile systems. The turbulent regime is marked by a non-zero steady state density of mobile defect pairs. The defect density itself scales with an ``active Ericksen number,'' defined as the ratio of the rate at which activity is injected into the system to the relaxation rate of orientational deformations. The work at Syracuse University was supported by the NSF on grant DMR-1004789 and by the Syracuse Soft Matter Program.

  12. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong

    2018-03-01

    We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.

  13. Liquid Crystals for Laser Applications

    DTIC Science & Technology

    1992-07-01

    336. Zei’dovich, B . Ya. and Tabiryan, N. V., Induced light scattering in the mesophase of a nematic liquid crystal (NLC), JETP Lett., 30, 478- 482 ...and devices. ADVANCES IN MATERIALS I Ferroelectric LC’s Ferroelectricity in liquid crystals was first suggested in 1974 by R. B . Meyer2 3 who, by means...most recently, 2 4 the M* phase. These tilted chiral smectic phases are classified according to the nature of the intermolecular I I packing within

  14. Neutron scattering studies of molecular conformations in liquid crystal polymers

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Moussa, F.; Cotton, J. P.; Keller, P.; Pépy, G.

    1991-03-01

    A comblike liquid crystal polymer (LPC) is a polymer on which mesogenic molecules have been grafted. It exhibits a succession of liquid crystal phases. Usually the equilibrium conformation of an ordinary polymeric chain corresponds to a maximum entropy, i.e., to an isotropic spherical coil. How does the backbone of a LCP behave in the nematic and smectic field? Small-angle neutron scattering may answer this question. Such measurements are presented here on four different polymers as a function of temperature. An anisotropy of the backbone conformation is found in all these studied compounds, much more pronounced in the smectic phase than in the nematic phase: the backbone spreads more or less perpendicularly to its hanging cores. A comparison with existing theories and a discussion of these results is outlined.

  15. Magnetic domains and defects in ferromagnetic liquid crystal colloids realized with optical patterning

    NASA Astrophysics Data System (ADS)

    Hess, Andrew; Liu, Qingkun; Smalyukh, Ivan

    A promising approach in designing composite materials with unusual physical behavior combines solid nanostructures and orientationally ordered soft matter at the mesoscale. Such composites not only inherit properties of their constituents but also can exhibit emergent behavior, such as ferromagnetic ordering of colloidal metal nanoparticles forming mesoscopic magnetization domains when dispersed in a nematic liquid crystal. Here we demonstrate the optical patterning of domain structures and topological defects in such ferromagnetic liquid crystal colloids which allows for altering their response to magnetic fields. Our findings reveal the nature of the defects in this soft matter system which is different as compared to non-polar nematic and ferromagnetic systems alike. This research was supported by the NSF Grant DMR-1420736.

  16. Reflection Spectra of Distorted Cholesteric Liquid Crystal Structures in Cells with Interdigitated Electrodes (Postprint)

    DTIC Science & Technology

    2014-07-01

    adjusting the magnitude of the electric field. 15. SUBJECT TERMS liquid crystals , liquid- crystal devices, Bragg reflectors, optical properties, chiral ...160.3710) Liquid crystals ; (230.3720) Liquid- crystal devices; (230.1480) Bragg reflectors; (160.4760) Optical properties; (160.1585) Chiral media...White, and T. J. Bunning, “Local optical spectra and texture for chiral nematic liquid crystals in cells with interdigitated electrodes,” Mol

  17. Imaging domain walls between nematic quantum Hall phases on the surface of bismuth

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Randeria, Mallika T.; Feldman, Benjamin E.; Ji, Huiwen; Cava, Robert J.; Yazdani, Ali

    The sensitivity of nematic electronic phases to disorder results in short range ordering and the formation of domains. Local probes are required to investigate the character of these domains and the boundaries between them, which remain hidden in global measurements that average over microscopic configurations. In this talk, I will describe measurements performed with a scanning tunneling microscope to study local nematic order on the surface of bismuth at high magnetic field. By imaging individual anisotropic cyclotron orbit wavefunctions that are pinned to atomic-scale surface defects, we directly resolve local nematic behavior and study the evolution of nematic states across a domain wall. Through spectroscopic mapping, we explore how the broken-symmetry Landau levels disperse across the domain wall, the influence of exchange interactions at such a boundary, and the formation of one-dimensional edge states.

  18. Anisotropic surface melting in lyotropic cubic crystals: part 2: facet-by-facet melting at Ia3d/vapor interfaces.

    PubMed

    Leroy, S; Grenier, J; Rohe, D; Even, C; Pieranski, P

    2006-05-01

    From experiments with metal crystals, in the vicinity of their crystal/liquid/vapor triple points, it is known that melting of crystals starts on their surfaces and is anisotropic. Recently, we have shown that anisotropic surface melting occurs also in lyotropic systems. In our previous paper (Eur. Phys. J. E 19, 223 (2006)), we have focused on the case of poor faceting at the Pn3m/L1 interface in C12EO2/water binary mixtures. There anisotropic melting occurs in the vicinity of a Pn3m/L3/L1 triple point. In the present paper, we focus on the opposite case of a rich devil's-staircase-type faceting at Ia3d/vapor interfaces in monoolein/water and phytantriol/water mixtures. We show that anisotropic surface melting takes place in these systems in a narrow humidity range close to the Ia3d-L2 transition. As whole (hkl) sets of facets disappear one after another when the transition is approached, surface melting occurs in a facet-by-facet type.

  19. Probing Active Nematic Films with Magnetically Manipulated Colloids

    NASA Astrophysics Data System (ADS)

    Rivas, David; Chen, Kui; Henry, Robert; Reich, Daniel; Leheny, Robert

    We study microtubule-based extensile active nematic films using rod-like and disk-shaped magnetic colloids to probe the mechanical and hydrodynamic properties of this quasi-two dimensional out-of-equilibrium system. The active nematics are driven by molecular motors that hydrolyze ATP and cause sliding motion between microtubular bundles. This motion produces a dynamic nematic director field, which continuously creates pairs of +1/2 and -1/2 defects. In the absence of externally applied forces or torques, we observe that the magnetic rods in contact with the films align with the local director, indicating the existence of mechanical coupling between the film and probe. By applying known magnetic torques to the rods and observing their rotation with respect to the director, we gain insight into this coupling. We also find that by rotating magnetic microdisks using magnetic fields, hydrodynamic flows are produced that compete with the films' intrinsic flow, leading to significant effects on the director field and the defect landscape. At certain rotation rates, the disks produce a vortex-like structure in the director field and cause the creation and shedding of defects from the disk boundary.

  20. Effect of hockey-stick-shaped molecules on the critical behavior at the nematic to isotropic and smectic-A to nematic phase transitions in octylcyanobiphenyl

    NASA Astrophysics Data System (ADS)

    Chakraborty, Anish; Chakraborty, Susanta; Das, Malay Kumar

    2015-03-01

    In the field of soft matter research, the characteristic behavior of both nematic-isotropic (N -I ) and smectic-A nematic (Sm -A N ) phase transitions has gained considerable attention due to their several attractive features. In this work, a high-resolution measurement of optical birefringence (Δ n ) has been performed to probe the critical behavior at the N -I and Sm -A N phase transitions in a binary system comprising the rodlike octylcyanobiphenyl and a laterally methyl substituted hockey-stick-shaped mesogen, 4-(3-n -decyloxy-2-methyl-phenyliminomethyl)phenyl 4-n -dodecyloxycinnamate. For the investigated mixtures, the critical exponent β related to the limiting behavior of the nematic order parameter close to the N -I phase transition has come out to be in good conformity with the tricritical hypothesis. Moreover, the yielded effective critical exponents (α', β', γ') characterizing the critical fluctuation near the Sm -A N phase transition have appeared to be nonuniversal in nature. With increasing hockey-stick-shaped dopant concentration, the Sm -A N phase transition demonstrates a strong tendency to be driven towards a first-order nature. Such a behavior has been accounted for by considering a modification of the effective intermolecular interactions and hence the related coupling between the nematic and smectic order parameters, caused by the introduction of the angular mesogenic molecules.

  1. Conductivity of an inverse lyotropic lamellar phase under shear flow

    NASA Astrophysics Data System (ADS)

    Panizza, P.; Soubiran, L.; Coulon, C.; Roux, D.

    2001-08-01

    We report conductivity measurements on solutions of closed compact monodisperse multilamellar vesicles (the so-called ``onion texture'') formed by shearing an inverse lyotropic lamellar Lα phase. The conductivity measured in different directions as a function of the applied shear rate reveals a small anisotropy of the onion structure due to the existence of free oriented membranes. The results are analyzed in terms of a simple model that allows one to deduce the conductivity tensor of the Lα phase itself and the proportion of free oriented membranes. The variation of these two parameters is measured along a dilution line and discussed. The high value of the conductivity perpendicular to the layers with respect to that of solvent suggests the existence of a mechanism of ionic transport through the insulating solvent.

  2. Compression driven 2D nematic phase in a columnar Langmuir monolayer

    NASA Astrophysics Data System (ADS)

    El Abed, A.; Goldmann, M.

    2012-08-01

    Langmuir films of pyramidic liquid crystals were studied using surface pressure versus molecular area isotherms and synchrotron grazing incidence X-ray diffraction. The used molecule, named 3BCN/14, consists of a pyramidal central core to which are bound symmetrically six lateral C14 alkyl chains. These molecules spread spontaneously at the air-water interface in a metastable side-on phase which relax rapidly upon compression towards a stable edge-on phase. Our results suggest that the new edge-on phase consists of an in-plane organization of columns which are made of about 11 stacked edge-on molecules. This structure remains stable after several expansion-compression cycles. Comparing these results with those obtained previously on two other pyramidic liquid crystals with shorter and longer lateral alkyl chains, C9 and C15 respectively, we attribute the formation of the obtained 2D nematic phase to a suitable lateral chains length which allow for the establishing of strong short smectic order within of the 3BCN/14 columns.

  3. Electrically activated artificial muscles made with liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen

    2000-06-01

    Composites of monodomain nematic liquid crystal elastomers and a conducting material distributed within their network are shown to exhibit large deformations, i.e. contraction, expansion, bending with strains of over 200% and appreciable force, by Joule heating through electrical activation. The electrical activation of the conducting material induces a rapid Joule heating in the sample leading to a nematic to isotropic phase transition where the elastomer of dimensions 32 mm x 7 mm x 0.4 mm contracted in less than a second. The cooling process, isotropic to nematic transition where the elastomer expands back to its original length, was slow and took 8 seconds. The material studied here is a highly novel liquid crystalline co-elastomer, invented and developed by Heino Finkelmann and co-workers at Albert-Ludwigs-Universitaet in Freiburg, Germany. The material is such that in which the mesogenic units are in both the side chains and the main chains of the elastomer. This co-elastomer was then mechanically loaded to induce a uniaxial network anisotropy before the cross-linking reaction was completed. These samples were then made into a composite with a conducting material such as dispersed silver particles or graphite fibers. The final samples was capable of undergoing more than 200% reversible strain in a few seconds.

  4. An investigation of the structure and bond rotational potential of some fluorinated ethanes by NMR spectroscopy of solutions in nematic liquid crystalline solvents

    NASA Astrophysics Data System (ADS)

    Emsley, J. W.; Longeri, M.; Merlet, D.; Pileio, G.; Suryaprakash, N.

    2006-06-01

    NMR spectra of 1,2-dibromo-1,1-difluoroethane and 1-bromo-2-iodo-tetrafluoroethane dissolved in nematic liquid crystalline solvents have been analysed to yield the magnitudes and signs of the scalar couplings, Jij, and total anisotropic couplings, Tij, between all the 1H, 19F, and 13C nuclei, except for those between two 13C nuclei. The values obtained for Tij in principle contain a contribution from Jijaniso, the component along the static applied magnetic field of the anisotropic part of the electron-mediated spin-spin coupling. Neglecting this contribution allows partially averaged dipolar couplings, Dij, to be extracted from the Tij, and these were used to determine the structure, orientational order, and the conformational distribution generated by rotation about the C-C bond. The values obtained are compared with the results of calculations by ab initio and density functional methods. The differences found are no greater than those obtained for similar compounds which do not contain fluorine, so that there is no definitive evidence for significant contributions from JCFaniso or JFFaniso in the two compounds studied.

  5. Emergence of periodic order in electric-field-driven planar nematic liquid crystals: An exclusive ac effect absent in static fields

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, K. S.; Kumar, Pramoda

    2007-11-01

    We report, for a nematic liquid crystal with a low conductivity anisotropy, an ac field generated transition from a uniformly planar to a periodically modulated director configuration with the wave vector parallel to the initial director. Significantly, with unblocked electrodes, this instability is not excited by dc fields. Additionally, in very low frequency square wave fields, it occurs transiently after each polarity reversal, vanishing completely during field constancy. The time of occurrence of maximum distortion after polarity reversal decreases exponentially with voltage. The time dependence of optical phase change during transient distortion is nearly Gaussian. The pattern threshold Vc is linear in f , f denoting the frequency; the critical wave number qc of the modulation scales nearly linearly as f to a peak at ˜50Hz before falling slightly thereafter. The observed Vc(f) and qc(f) characteristics differ from the predictions of the standard model (SM). The instability may be interpreted as a special case of the Carr-Helfrich distortion suppressed in static fields due to weak charge focusing and strong charge injection. Its transient nature in the low frequency regime is suggestive of the possible role of gradient flexoelectric effect in its occurrence. The study includes measurement of certain elastic and viscosity parameters relevant to the application of the SM.

  6. Dynamic and magneto-optic properties of bent-core liquid crystals

    NASA Astrophysics Data System (ADS)

    Salili, Seyyed Muhammad

    In this work, we describe dynamic behavior of free-standing bent-core liquid crystal filaments under dilative and axial compressive stresses in the B7 phase. We found that such filaments demonstrate very complex structures depending on the filament's temperature relative to the isotropic phase, initial filament thickness, and velocity at which the filament is pulled or compressed. We also present our experimental methods, results and analysis of the rupture and recoil properties of several bent-core liquid crystal filaments, anticipating that they may serve as a model system for complex biological fibers. After that, we systematically describe rheological measurements for dimeric liquid crystal compounds. We studied the shear-induced alignment properties, measured the viscoelastic properties as a function of temperature, shear rate, stress and frequency, and compared the results with the rheological properties of conventional chiral nematic and smectic phases. Then we present results of chiral nematic liquid crystals composed of flexible dimer molecules subject to large DC magnetic fields between 0 and 31T. We observe that these fields lead to selective reflection of light depending on temperature and magnetic field. The band of reflected wavelengths can be tuned from ultraviolet to beyond the IR-C band. A similar effect induced by electric fields has been presented previously, and was explained by a field-induced oblique-heliconical director deformation in accordance with early theoretical predictions. Finally, we report an unprecedented magnetic field-induced shifts of the isotropic-nematic phase transition temperature observed in liquid crystal dimers where two rigid linear mesogens are linked by flexible chains of either even- or odd-numbered hydrocarbon groups. This effect is explained in terms of quenching of the thermal fluctuations and decrease of the average bend angle of molecules in the odd-numbered dimers.

  7. Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, Rajratan, E-mail: basu@usna.edu; Kinnamon, Daniel; Skaggs, Nicole

    2016-05-14

    The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Abovemore » this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.« less

  8. Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension

    NASA Astrophysics Data System (ADS)

    Basu, Rajratan; Kinnamon, Daniel; Skaggs, Nicole; Womack, James

    2016-05-01

    The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.

  9. Liquid crystal dynamic flow control by bidirectional alignment surface

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Lee, C. Y.; Kwok, H. S.

    2009-02-01

    We investigate the behavior of liquid crystal dynamic flow in a cell with a bidirectional alignment (BDA) surface. Numerical simulations show that with a BDA surface having a pitch comparable to the cell gap d, the liquid crystal dynamic flow direction can be controlled by the driving voltage. Such an effect can be applied to bistable twisted nematic displays without the need for anchoring breaking.

  10. Rotaxane liquid crystals with variable length: The effect of switching efficiency on the isotropic-nematic transition

    NASA Astrophysics Data System (ADS)

    He, Hao; Sevick, Edith M.; Williams, David R. M.

    2018-04-01

    We examine a solution of non-adaptive two-state rotaxane molecules which can switch from a short state of length L to a long state of length qL, using statistical thermodynamics. This molecular switching is externally driven and can result in an isotropic-nematic phase transition without altering temperature and concentration. Here we concentrate on the limitation imposed by switching inefficiency, i.e., on the case where molecular switching is not quantitative, leading to a solution of rotaxanes in different states. We present switching diagrams that can guide in the design of rotaxanes which affect a macroscopic phase change.

  11. Liquid crystalline cellulose-based nematogels

    DOE PAGES

    Liu, Qingkun; Smalyukh, Ivan I.

    2017-08-18

    Physical properties of composite materials can be pre-engineered by controlling their structure and composition at the mesoscale. However, approaches to achieving this are limited and rarely scalable. We introduce a new breed of self-assembled nematogels formed by an orientationally ordered network of thin cellulose nanofibers infiltrated with a thermotropic nematic fluid. The interplay between orientational ordering within the nematic network and that of the small-molecule liquid crystal around it yields a composite with highly tunable optical properties. By means of combining experimental characterization and modeling, we demonstrate submillisecond electric switching of transparency and facile responses of the composite to temperaturemore » changes. Finally, we discuss a host of potential technological uses of these self-assembled nematogel composites, ranging from smart and privacy windows to novel flexible displays.« less

  12. Alternating twist structures formed by electroconvection in the nematic phase of an achiral bent-core molecule.

    PubMed

    Tanaka, Shingo; Dhara, Surajit; Sadashiva, B K; Shimbo, Yoshio; Takanishi, Yoichi; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo

    2008-04-01

    We report an unusual electroconvection in the nematic phase of a bent-core liquid crystal. In a voltage-frequency diagram, two frequency regions exhibiting prewavy stripe patterns were found, as reported by Wiant We found that these stripes never show extinction dark when cells were rotated under crossed polarizers. Based on the color interchange in between neighboring stripes by the rotation of the cells or an analyzer, twisted molecular orientation is suggested; i.e., the directors are alternately twisted from the top to the bottom surfaces with a pretilt angle in adjacent stripes, which is an analogue of the twisted (splayed) structure observed in surface-stabilized ferroelectric liquid crystal cells. The transmittance spectra calculated using the 4x4 matrix method from the model structure are consistent with the experimental observation.

  13. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems.

    PubMed

    Broer, Dirk J; Bastiaansen, Cees M W; Debije, Michael G; Schenning, Albertus P H J

    2012-07-16

    Functional organic materials are of great interest for a variety of applications. To obtain precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals has proven to be an extremely useful tool in the development of well-defined nanostructured materials. We have chosen the illustrative example of photopolymerizable hydrogen-bonding mesogens to show that a wide variety of functional materials can be made from a relatively simple set of building blocks. Upon mixing these compounds with other reactive mesogens, nematic, chiral nematic, and smectic or columnar liquid-crystalline phases can be formed that can be applied as actuators, sensors and responsive reflectors, and nanoporous membranes, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nonlinear experimental dye-doped nematic liquid crystal optical transmission spectra estimated by neural network empirical physical formulas

    NASA Astrophysics Data System (ADS)

    Yildiz, Nihat; San, Sait Eren; Köysal, Oğuz

    2010-09-01

    In this paper, two complementary objectives related to optical transmission spectra of nematic liquid crystals (NLCs) were achieved. First, at room temperature, for both pure and dye (DR9) doped E7 NLCs, the 10-250 W halogen lamp transmission spectra (wavelength 400-1200 nm) were measured at various bias voltages. Second, because the measured spectra were inherently highly nonlinear, it was difficult to construct explicit empirical physical formulas (EPFs) to employ as transmittance functions. To avoid this difficulty, layered feedforward neural networks (LFNNs) were used to construct explicit EPFs for these theoretically unknown nonlinear NLC transmittance functions. As we theoretically showed in a previous work, a LFNN, as an excellent nonlinear function approximator, is highly relevant to EPF construction. The LFNN-EPFs efficiently and consistently estimated both the measured and yet-to-be-measured nonlinear transmittance response values. The experimentally obtained doping ratio dependencies and applied bias voltage responses of transmittance were also confirmed by LFFN-EPFs. This clearly indicates that physical laws embedded in the physical data can be faithfully extracted by the suitable LFNNs. The extraordinary success achieved with LFNN here suggests two potential applications. First, although not attempted here, these LFNN-EPFs, by such mathematical operations as derivation, integration, minimization etc., can be used to obtain further transmittance related functions of NLCs. Second, for a given NLC response function, whose theoretical nonlinear functional form is yet unknown, a suitable experimental data based LFNN-EPF can be constructed to predict the yet-to-be-measured values.

  15. Perylene bisimide hydrogels and lyotropic liquid crystals with temperature-responsive color change† †Electronic supplementary information (ESI) available: Detailed procedures and results for all reported experiments, along with synthetic details for PBI 1. See DOI: 10.1039/c6sc02249a Click here for additional data file.

    PubMed Central

    Görl, Daniel; Soberats, Bartolome; Herbst, Stefanie; Stepanenko, Vladimir

    2016-01-01

    The self-assembly of perylene bisimide (PBI) dyes bearing oligo ethylene glycol (OEG) units in water affords responsive functional nanostructures characterized by their lower critical solution temperature (LCST). Tuning of the LCST is realized by a supramolecular approach that relies on two structurally closely related PBI–OEG molecules. The two PBIs socially co-assemble in water and the resulting nanostructures exhibit a single LCST in between the transition temperatures of the aggregates formed by single components. This permits to precisely tune the transition from a hydrogel to a lyotropic liquid crystal state at temperatures between 26 and 51 °C by adjusting the molar fraction of the two PBIs. Owing to concomitant changes in PBI–PBI interactions this phase transition affords a pronounced color change with “fluorescence-on” response that can be utilized as a smart temperature sensory system. PMID:28451124

  16. Note: Formation of the nematic splay-bend in two-dimensional systems of bow-shaped particles

    NASA Astrophysics Data System (ADS)

    Karbowniczek, Paweł

    2018-04-01

    Recently, Tavarone et al. (J. Chem. Phys. 143, 114505 (2015)) discussed phase behavior of zig-zag and bow-shaped particles composed of three needles. The authors presented very interesting results of extensive Monte Carlo simulations with periodic boundary conditions in the constant-NVT and the constant-NPT ensembles. In addition to isotropic, nematic, and smectic phases, they identified a modulated nematic, which is actually the nematic splay-bend phase ($N_{SB}$), long-anticipated for bent-core systems (Europhys. Lett. 56, 247 (2001)). They also described isotropic-nematic and nematic-smectic transitions using Density Functional Theory in mean-field approximation. The authors, however, did not provided a theoretical description of the $N_{SB}$. Here, we present a simple theory of a phase transition to the $N_{SB}$ phase to fill the gap. In our study, we use Onsager-type Density Functional Theory with perfect order approximation and Meyer parametrization of modulated structures. We present results for arbitrary ratios of the length of central and side segments and opening angles of bow-shaped particles.

  17. Optical filters for linearly polarized light using sculptured nematic thin flim of TiO2

    NASA Astrophysics Data System (ADS)

    Muhammad, Zahir; Wali, Faiz; Rehman, Zia ur

    2018-05-01

    A study of optical filters using sculptured nematic thin films is presented in this article. A central 90◦ twist-defect between two sculptured nematic thin films (SNTFs) sections transmit light of same polarization state and reflect other in the spectral Bragg regime. The SNTFs reflect light of both linearly polarized states in the Bragg regime if the amplitude of modulation of vapor incident angle is increased. A twist-defect in a tilt-modulated sculptured nematic thin films as a result produces bandpass or ultra-narrow bandpass filter depending upon the thickness of the SNTFs. However, both the bandpass or/and ultra-narrow bandpass filters can make polarization-insensitive Bragg mirrors by the appropriate modulation of the tilted 2D nanostructures of a given sculptured nematic thin films. Moreover, it is also observed that the sculptured nematic thin films are very tolerant of the structural defects if the amplitude of modulating vapor incident angle of the structural nano-materials is sufficiently large. Similarly, we observed the affect of incident angles on Bragg filters.

  18. Stresses in curved nematic membranes.

    PubMed

    Santiago, J A

    2018-05-01

    Ordering configurations of a director field on a curved membrane induces stress. In this work, we present a theoretical framework to calculate the stress tensor and the torque as a consequence of the nematic ordering; we use the variational principle and invariance of the energy under Euclidean motions. Euler-Lagrange equations of the membrane as well as the corresponding boundary conditions also appear as natural results. The stress tensor found includes attraction-repulsion forces between defects; likewise, defects are attracted to patches with the same sign in Gaussian curvature. These forces are mediated by the Green function of the Laplace-Beltrami operator of the surface. In addition, we find nonisotropic forces that involve derivatives of the Green function and the Gaussian curvature, even in the normal direction to the membrane. We examine the case of axial membranes to analyze the spherical one. For spherical vesicles we find the modified Young-Laplace law as a consequence of the nematic texture. In the case of spherical cap with defect at the north pole, we find that the force is repulsive with respect to the north pole, indicating that it is an unstable equilibrium point.

  19. Stresses in curved nematic membranes

    NASA Astrophysics Data System (ADS)

    Santiago, J. A.

    2018-05-01

    Ordering configurations of a director field on a curved membrane induces stress. In this work, we present a theoretical framework to calculate the stress tensor and the torque as a consequence of the nematic ordering; we use the variational principle and invariance of the energy under Euclidean motions. Euler-Lagrange equations of the membrane as well as the corresponding boundary conditions also appear as natural results. The stress tensor found includes attraction-repulsion forces between defects; likewise, defects are attracted to patches with the same sign in Gaussian curvature. These forces are mediated by the Green function of the Laplace-Beltrami operator of the surface. In addition, we find nonisotropic forces that involve derivatives of the Green function and the Gaussian curvature, even in the normal direction to the membrane. We examine the case of axial membranes to analyze the spherical one. For spherical vesicles we find the modified Young-Laplace law as a consequence of the nematic texture. In the case of spherical cap with defect at the north pole, we find that the force is repulsive with respect to the north pole, indicating that it is an unstable equilibrium point.

  20. Calorimetric and counterion binding studies of the interactions between micelles and ions. The observation of lyotropic series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, J.W.; Magid, L.J.

    1974-09-04

    Heats of transfer of a variety of salts from water to solutions of hexadecyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and sodium dodecyl sulfate (NaLS) were measured. Lyotropic series for both cations and anions were observed for all soaps, the series for the 2 cationic soaps being almost identical. The dependence of the observed heats of transfer for anions from H/sub 2/O to CTAB and DTAB solutions and for cations from H2O to NaLS solutions on the hydrated radii of the ions involved supports the contention that favorable binding of counterions depends on how closely they can approach the charged micellarmore » surfaces. It is clear that a lyotropic series similar to that existing for proteins exists for ion binding to micelles. The controlling factor in this binding seems to be the distance of closest approach of the ion to the micelle, although polarizable organic ions may be the exceptions. Chain length has little effect on binding. It is felt that the work discussed has established the usefulness of a calorimetric investigation and the use of ion-specific electrodes for characterizing surfactant systems containing more than one species of counterions. (37 refs.)« less

  1. Vestigial nematicity from spin and/or charge order in the cuprates

    DOE PAGES

    Nie, Laimei; Maharaj, Akash V.; Fradkin, Eduardo; ...

    2017-08-01

    Nematic order has manifested itself in a variety of materials in the cuprate family. We propose an effective field theory of a layered system with incommensurate, intertwined spin- and charge-density wave (SDW and CDW) orders, each of which consists of two components related by C4 rotations. Using a variational method (which is exact in a large N limit), we study the development of nematicity from partially melting those density waves by either increasing temperature or adding quenched disorder. As temperature decreases we first find a transition to a nematic phase, but depending on the range of parameters (e.g. doping concentration)more » the strongest fluctuations associated with this phase reflect either proximate SDW or CDW order. We also discuss the changes in parameters that can account for the differences in the SDW-CDW interplay between the (214) family and the other hole-doped cuprates.« less

  2. On the Landau-de Gennes Elastic Energy of a Q-Tensor Model for Soft Biaxial Nematics

    NASA Astrophysics Data System (ADS)

    Mucci, Domenico; Nicolodi, Lorenzo

    2017-12-01

    In the Landau-de Gennes theory of liquid crystals, the propensities for alignments of molecules are represented at each point of the fluid by an element Q of the vector space S_0 of 3× 3 real symmetric traceless matrices, or Q-tensors. According to Longa and Trebin (1989), a biaxial nematic system is called soft biaxial if the tensor order parameter Q satisfies the constraint tr(Q^2) = {const}. After the introduction of a Q-tensor model for soft biaxial nematic systems and the description of its geometric structure, we address the question of coercivity for the most common four-elastic-constant form of the Landau-de Gennes elastic free-energy (Iyer et al. 2015) in this model. For a soft biaxial nematic system, the tensor field Q takes values in a four-dimensional sphere S^4_ρ of radius ρ ≤ √{2/3} in the five-dimensional space S_0 with inner product < Q, P > = tr(QP). The rotation group it{SO}(3) acts orthogonally on S_0 by conjugation and hence induces an action on S^4_ρ \\subset {S}_0. This action has generic orbits of codimension one that are diffeomorphic to an eightfold quotient S^3/H of the unit three-sphere S^3, where H={± 1, ± i, ± j, ± k} is the quaternion group, and has two degenerate orbits of codimension two that are diffeomorphic to the projective plane RP^2. Each generic orbit can be interpreted as the order parameter space of a constrained biaxial nematic system and each singular orbit as the order parameter space of a constrained uniaxial nematic system. It turns out that S^4_ρ is a cohomogeneity one manifold, i.e., a manifold with a group action whose orbit space is one-dimensional. Another important geometric feature of the model is that the set Σ _ρ of diagonal Q-tensors of fixed norm ρ is a (geodesic) great circle in S^4_ρ which meets every orbit of S^4_ρ orthogonally and is then a section for S^4_ρ in the sense of the general theory of canonical forms. We compute necessary and sufficient coercivity conditions for the elastic

  3. Recent Advances in Chiral Nematic Structure and Iridescent Color of Cellulose Nanocrystal Films

    PubMed Central

    Gray, Derek G.

    2016-01-01

    One unique property of cellulose nanocrystals (CNC) is their property of forming suspensions with chiral nematic order. This order can be preserved in films cast from the suspensions, raising the possibility of applications as photonic materials and templates. However, it has proved difficult to generate uniform, well-ordered chiral nematic materials from CNC. Recently, the importance of kinetic arrest due to gel formation in the later stages of evaporation has been recognized as a key step in film formation. In this brief review, recent developments regarding the structure of chiral nematic suspensions and films as monitored by polarized light microscopy are outlined, and attention is drawn to the importance of shear forces on the self-organization process. PMID:28335340

  4. Smectic A Filled Birefringent Elements and Fast Switching Twisted Dual Frequency Nematic Cells Used for Digital Light Deflection

    NASA Technical Reports Server (NTRS)

    Pishnyak, Oleg; Golovin, Andrii; Kreminskia, Liubov; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.; Lavrentovich, Oleg D.

    2006-01-01

    We describe the application of smectic A (SmA) liquid crystals for beam deflection. SmA materials can be used in digital beam deflectors (DBDs) as fillers for passive birefringent prisms. SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Fast rotation of the incident light polarization in DBDs is achieved by an electrically switched 90 twisted nematic (TN) cell.

  5. Light scattering from liquid crystal director fluctuations in steady magnetic fields up to 25 tesla.

    PubMed

    Challa, Pavan K; Curtiss, O; Williams, J C; Twieg, R; Toth, J; McGill, S; Jákli, A; Gleeson, J T; Sprunt, S N

    2012-07-01

    We report on homodyne dynamic light scattering measurements of orientational fluctuation modes in both calamitic and bent-core nematic liquid crystals, carried out in the new split-helix resistive magnet at the National High Magnetic Field Laboratory. The relaxation rate and inverse scattered intensity of director fluctuations exhibit a linear dependence on field-squared up to 25 tesla, which is consistent with strictly lowest order coupling of the tensor order parameter Q to field (Q(αβ)B(α)B(β)) in the nematic free energy. However, we also observe evidence of field dependence of certain nematic material parameters, an effect which may be expected from the mean field scaling of these quantities with the magnitude of Q and the predicted variation of Q with field.

  6. Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals.

    PubMed

    Porter, Daniel; Savage, John R; Cohen, Itai; Spicer, Patrick; Caggioni, Marco

    2012-04-01

    Droplet breakup of many Newtonian fluids is well described by current experiments, theory, and simulations. Breakup in complex fluids where interactions between mesoscopic structural features can affect the flows remains poorly understood and a burgeoning area of research. Here, we report on our investigations of droplet breakup in thermotropic liquid crystals. We investigate breakup in the smectic, nematic, and isotropic phases of 4-cyano 4-octylbiphenyl (8CB) and the nematic and isotropic phases of 4-cyano 4-pentylbiphenyl (5CB). The experiment consists of varying the ambient temperature to control liquid crystalline phase and imaging breakup using a fast video camera at up to 110000 frames/s. We expand on previous work [John R. Savage et al., Soft Matter 6, 892 (2010)] that shows breakup in the smectic phase is symmetric, producing no satellite droplets, and is well described by a similarity solution for a shear-thinning power-law fluid. We show that in the nematic phase the breakup occurs in two stages. In the first stage, the breakup is symmetric and the power-law exponent for the minimum radius dependence on the time left to breakup is 1.2nematic phase. These results are surprising because rheological measurements of 8CB and 5CB in the nematic phases indicate Newtonian behavior that cannot account for the observed breakup dynamics. Finally, in the isotropic phase, the exponents are consistent with theoretical predictions and experiments for Newtonian fluid breakup in the inertial viscous regime.

  7. Nematicity, magnetism and superconductivity in FeSe

    NASA Astrophysics Data System (ADS)

    Böhmer, Anna E.; Kreisel, Andreas

    2018-01-01

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c, ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of these phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. The experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.

  8. Nematicity, magnetism and superconductivity in FeSe.

    PubMed

    Böhmer, Anna E; Kreisel, Andreas

    2018-01-17

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c , ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of these phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. The experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.

  9. Three dielectric constants and orientation order parameters in nematic mesophases

    NASA Astrophysics Data System (ADS)

    Yoon, Hyung Guen; Jeong, Seung Yeon; Kumar, Satyendra; Park, Min Sang; Park, Jung Ok; Srinivasarao, M.; Shin, Sung Tae

    2011-03-01

    Temperature dependence of the three components ɛ1 , ɛ2 , and ɛ3 of dielectric constant and orientation order parameters in the nematic phase of mesogens with rod, banana, and zero-order dendritic shape were measured using the in-plane and vertical switching geometries, and micro-Raman technique. Results on the well-known uniaxial (Nu) nematogens, E7 and 5CB, revealed two components ɛ1 = ~ɛ| | and ɛ2 = ~ɛ3 = ~ɛ⊥ , as expected. The three dielectric constants were different for two azo substituted (A131 and A103) and an oxadiazole based (ODBP-Ph-C12) bent core mesogens, and a Ge core tetrapode. In some cases, two of the components became the same indicating a loss of biaxiality at temperatures coinciding with the previously reported Nu to biaxial nematic transition. This interpretation is substantiated by micro-Raman measurements of the uniaxial and biaxial nematic order parameters. Supported by the US Department of Energy, Basic Energy Sciences grant ER46572 and by Samsung Electronics Corporation.

  10. Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals.

    PubMed

    Li, Yunfeng; Prince, Elisabeth; Cho, Sangho; Salari, Alinaghi; Mosaddeghian Golestani, Youssef; Lavrentovich, Oleg D; Kumacheva, Eugenia

    2017-02-28

    An important goal of the modern soft matter science is to discover new self-assembly modalities to precisely control the placement of small particles in space. Spatial inhomogeneity of liquid crystals offers the capability to organize colloids in certain regions such as the cores of the topological defects. Here we report two self-assembly modes of nanoparticles in linear defects-disclinations in a lyotropic colloidal cholesteric liquid crystal: a continuous helicoidal thread and a periodic array of discrete beads. The beads form one-dimensional arrays with a periodicity that matches half a pitch of the cholesteric phase. The periodic assembly is governed by the anisotropic surface tension and elasticity at the interface of beads with the liquid crystal. This mode of self-assembly of nanoparticles in disclinations expands our ability to use topological defects in liquid crystals as templates for the organization of nanocolloids.

  11. Local nematic susceptibility in stressed BaFe2As2 from NMR electric field gradient measurements

    NASA Astrophysics Data System (ADS)

    Kissikov, T.; Sarkar, R.; Lawson, M.; Bush, B. T.; Timmons, E. I.; Tanatar, M. A.; Prozorov, R.; Bud'ko, S. L.; Canfield, P. C.; Fernandes, R. M.; Goh, W. F.; Pickett, W. E.; Curro, N. J.

    2017-12-01

    The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As p orbitals and is a sensitive probe of local nematicity in BaFe2As2 . We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. Our work establishes an alternative method to extract the nematic susceptibility which, in contrast to transport methods, can be extended inside the superconducting state.

  12. Cluster self-organization of nanotubes in a nematic phase: The percolation behavior and appearance of optical singularities

    NASA Astrophysics Data System (ADS)

    Ponevchinsky, V. V.; Goncharuk, A. I.; Vasil'Ev, V. I.; Lebovka, N. I.; Soskin, M. S.

    2010-03-01

    The structural features, as well as the optical and electrophysical properties of a 5CB nematic liquid crystal with additions of multilayer carbon nanotubes, have been investigated in the concentration range C = 0.0025-0.1 wt %. The self-aggregation of nanotubes into clusters with a fractal structure occurs in the liquid crystal. At 0.025 wt %, the clusters are merged, initiating the percolation transition of the composite to a state with a high electric conductivity. The strong interaction of 5CB molecules with the surface of nanotube clusters is responsible for the formation of micron surface liquid crystal layers with an irregular field of elastic stresses and a complex structure of birefringence. They are easily observed in a polarization microscope and visualize directly invisible submicron nanotube aggregates. Their transverse size increases when an electric field is applied to the liquid crystal cell. Two mechanisms of the generation of optical singularities in the passing laser beam have been revealed. Optical vortices appear in the speckle fields of laser radiation scattered at the indented boundaries of the nanotube clusters, whereas the birefringence of the beam in surface liquid-crystal layers is accompanied by the appearance of polarization C points.

  13. An investigation of the structure and bond rotational potential of some fluorinated ethanes by NMR spectroscopy of solutions in nematic liquid crystalline solvents.

    PubMed

    Emsley, J W; Longeri, M; Merlet, D; Pileio, G; Suryaprakash, N

    2006-06-01

    NMR spectra of 1,2-dibromo-1,1-difluoroethane and 1-bromo-2-iodo-tetrafluoroethane dissolved in nematic liquid crystalline solvents have been analysed to yield the magnitudes and signs of the scalar couplings, J(ij), and total anisotropic couplings, T(ij), between all the (1)H, (19)F, and (13)C nuclei, except for those between two (13)C nuclei. The values obtained for T(ij) in principle contain a contribution from J(ij)(aniso), the component along the static applied magnetic field of the anisotropic part of the electron-mediated spin-spin coupling. Neglecting this contribution allows partially averaged dipolar couplings, D(ij), to be extracted from the T(ij), and these were used to determine the structure, orientational order, and the conformational distribution generated by rotation about the C-C bond. The values obtained are compared with the results of calculations by ab initio and density functional methods. The differences found are no greater than those obtained for similar compounds which do not contain fluorine, so that there is no definitive evidence for significant contributions from J(CF)(aniso) or J(FF)(aniso) in the two compounds studied.

  14. Sorption and selective chromatographic properties of isomer-selective composite sorbent based on a eutectic mixture of nematic liquid crystals and perbenzoylated β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Onuchak, L. A.; Kapralova, T. S.; Kuraeva, Yu. G.; Belousova, Z. P.; Stepanova, R. F.

    2015-12-01

    Mesomorphic, sorption, and selective properties of a three-component sorbent based on a mixture of nematic ( N) liquid crystals of 4-methoxy-4'-ethoxyazoxybenzene (MEAB) and 4,4'-diethoxyazoxybenzene (azoxyphenetol, AOP) of an eutectic composition and heptakis-(2,3,6-tri- O-benzoyl)-β-cyclodextrin (Bz-β-CD) are studied. For 30 organic compounds of different classes with linear and cyclic molecular structures, including optical isomers of limonene, pinene, camphene, and butanediol-2,3, thermodynamic functions are determined for their gas-phase sorption using a three-component MEAB-AOP-Bz-β- CD sorbent (62: 28: 10 wt %). It is found that the investigated sorbent possesses high structural selectivity (αp/m = 1.128-1.059, 100-130°C, N) and moderate enantioselectivity (1.07-1.02) within a broad temperature range (95-170°C) including both mesomorphic and isotropic phases of the sorbent. It is shown that the enantioselectivity of the sorbent is apparent under conditions of both increasing retention when a chiral Bz-β-CD additive is introduced into the MEAB-AOP system (limonenes, pinenes, camphenes) and decreasing retention (butanediols-2,3).

  15. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armas-Perez, Julio C.; Londono-Hurtado, Alejandro; Guzman, Orlando

    2015-07-27

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystalmore » droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.« less

  16. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armas-Pérez, Julio C.; Londono-Hurtado, Alejandro; Guzmán, Orlando

    2015-07-28

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystalmore » droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.« less

  17. Stripes developed at the strong limit of nematicity in FeSe film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Zhang, Yan; Deng, Peng

    A single monolayer of iron selenide grown on strontium titanate shows an impressive enhancement of superconductivity compared with the bulk, as well as a novel Fermi surface topology, extreme two-dimensionality, and the possibility of phonon-enhanced electron pairing. For films thicker than one unit cell, however, the electronic structure is markedly different, with a drastically suppressed superconductivity and strong nematicity appearing. The physics driving this extraordinary dichotomy of superconducting behaviour is far from clear. In this paper, we use low-temperature scanning tunnelling microscopy to study multilayers of iron selenide grown by molecular beam epitaxy, and find a stripe-type charge ordering instabilitymore » that develops beneath the nematic state. The charge ordering is visible and pinned in the vicinity of impurities. And as it emerges in the strong limit of nematicity, it suggests that a magnetic fluctuation with a rather small wavevector may be competing with the ordinary collinear antiferromagnetic ordering in multilayer films. Finally, the existence of stripes in iron-based superconductors, which resemble the stripe order in cuprates, not only suggests that electronic anisotropy and correlation are playing an important role, but also provides a platform for probing the complex interactions between nematicity, charge ordering, magnetism and superconductivity in high-temperature superconductors.« less

  18. Stripes developed at the strong limit of nematicity in FeSe film

    DOE PAGES

    Li, Wei; Zhang, Yan; Deng, Peng; ...

    2017-07-17

    A single monolayer of iron selenide grown on strontium titanate shows an impressive enhancement of superconductivity compared with the bulk, as well as a novel Fermi surface topology, extreme two-dimensionality, and the possibility of phonon-enhanced electron pairing. For films thicker than one unit cell, however, the electronic structure is markedly different, with a drastically suppressed superconductivity and strong nematicity appearing. The physics driving this extraordinary dichotomy of superconducting behaviour is far from clear. In this paper, we use low-temperature scanning tunnelling microscopy to study multilayers of iron selenide grown by molecular beam epitaxy, and find a stripe-type charge ordering instabilitymore » that develops beneath the nematic state. The charge ordering is visible and pinned in the vicinity of impurities. And as it emerges in the strong limit of nematicity, it suggests that a magnetic fluctuation with a rather small wavevector may be competing with the ordinary collinear antiferromagnetic ordering in multilayer films. Finally, the existence of stripes in iron-based superconductors, which resemble the stripe order in cuprates, not only suggests that electronic anisotropy and correlation are playing an important role, but also provides a platform for probing the complex interactions between nematicity, charge ordering, magnetism and superconductivity in high-temperature superconductors.« less

  19. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles.

    PubMed

    Siarkowska, Agata; Chychłowski, Miłosz; Budaszewski, Daniel; Jankiewicz, Bartłomiej; Bartosewicz, Bartosz; Woliński, Tomasz R

    2017-01-01

    Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF) enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs), 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic-isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  20. Nematicity, magnetism and superconductivity in FeSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohmer, Anna E.; Kreisel, Andreas

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c, ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of thesemore » phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. In conclusion, the experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.« less

  1. Nematicity, magnetism and superconductivity in FeSe

    DOE PAGES

    Bohmer, Anna E.; Kreisel, Andreas

    2017-12-15

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c, ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of thesemore » phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. In conclusion, the experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.« less

  2. Local nematic susceptibility in stressed BaFe 2 As 2 from NMR electric field gradient measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kissikov, T.; Sarkar, R.; Lawson, M.

    The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As p orbitals and is a sensitive probe of local nematicity in BaFe 2As 2. We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. In conclusion,more » our work establishes an alternative method to extract the nematic susceptibility which, in contrast to transport methods, can be extended inside the superconducting state.« less

  3. Local nematic susceptibility in stressed BaFe 2 As 2 from NMR electric field gradient measurements

    DOE PAGES

    Kissikov, T.; Sarkar, R.; Lawson, M.; ...

    2017-12-15

    The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As p orbitals and is a sensitive probe of local nematicity in BaFe 2As 2. We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. In conclusion,more » our work establishes an alternative method to extract the nematic susceptibility which, in contrast to transport methods, can be extended inside the superconducting state.« less

  4. Engineered liquid crystal anchoring energies with nanopatterned surfaces.

    PubMed

    Gear, Christopher; Diest, Kenneth; Liberman, Vladimir; Rothschild, Mordechai

    2015-01-26

    The anchoring energy of liquid crystals was shown to be tunable by surface nanopatterning of periodic lines and spaces. Both the pitch and height were varied using hydrogen silsesquioxane negative tone electron beam resist, providing for flexibility in magnitude and spatial distribution of the anchoring energy. Using twisted nematic liquid crystal cells, it was shown that this energy is tunable over an order of magnitude. These results agree with a literature model which predicts the anchoring energy of sinusoidal grooves.

  5. Dislocations and other topological oddities

    NASA Astrophysics Data System (ADS)

    Pieranski, Pawel

    2016-03-01

    We will show that the book Dislocations by Jacques Friedel, published half a century ago, can still be recommended, in agreement with the author's intention, as a textbook ;for research students at University and for students at engineering schools as well as for research engineers;. Indeed, today dislocations are known to occur not only in solid crystals but also in many other systems discovered more recently such as colloidal crystals or liquid crystals having periodic structures. Moreover, the concept of dislocations is an excellent starting point for lectures on topological defects occurring in systems equipped with order parameters resulting from broken symmetries: disclinations in nematic or hexatic liquid crystals, dispirations in chiral smectics or disorientations in lyotropic liquid crystals. The discussion of dislocations in Blue Phases will give us an opportunity to call on mind Sir Charles Frank, friend of Jacques Friedel since his Bristol years, who called these ephemeral mesophases ;topological oddities;. Being made of networks of disclinations, Blue Phases are similar to Twist Grain Boundary (TGB) smectic phases, which are made of networks of screw dislocations and whose existence was predicted by de Gennes in 1972 on the basis of the analogy between smectics and superconductors. We will stress that the book by Jacques Friedel contains seeds of this analogy.

  6. Bistability in dual-frequency nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.

    2007-03-01

    Different modes of bistable switching in liquid crystals with frequency inversion of the dielectric anisotropy sign are discussed. The study is performed by numerical simulation and experimentally. It is shown that dual frequency driving can be effectively used to control switching between topologically equivalent and non-equivalent director field distributions. The experimental results on temperature performance of the dual-frequency switching and possible driving methods for energy consumption and expanding the temperature range are presented.

  7. Magnetic quasi-long-range ordering in nematic systems due to competition between higher-order couplings

    NASA Astrophysics Data System (ADS)

    Žukovič, Milan; Kalagov, Georgii

    2018-05-01

    Critical properties of the two-dimensional X Y model involving solely nematic-like terms of the second and third orders are investigated by spin-wave analysis and Monte Carlo simulation. It is found that, even though neither of the nematic-like terms alone can induce magnetic ordering, their coexistence and competition leads to an extended phase of the magnetic quasi-long-range-order phase, wedged between the two nematic-like phases induced by the respective couplings. Thus, except for the multicritical point, at which all the phases meet, for any finite value of the coupling parameters ratio there are two phase transition: one from the paramagnetic phase to one of the two nematic-like phases followed by another one at lower temperatures to the magnetic phase. The finite-size scaling analysis indicates that the phase transitions between the magnetic and nematic-like phases belong to the Ising and three-state Potts universality classes. Inside the competition-induced algebraic magnetic phase, the spin-pair correlation function is found to decay even much more slowly than in the standard X Y model with purely magnetic interactions. Such a magnetic phase is characterized by an extremely low vortex-antivortex pair density attaining a minimum close to the point at which the two couplings are of about equal strength.

  8. Unconventional Superconductivity in Luttinger Semimetals: Theory of Complex Tensor Order and the Emergence of the Uniaxial Nematic State

    NASA Astrophysics Data System (ADS)

    Boettcher, Igor; Herbut, Igor F.

    2018-02-01

    We investigate unconventional superconductivity in three-dimensional electronic systems with the chemical potential close to a quadratic band touching point in the band dispersion. Short-range interactions can lead to d -wave superconductivity, described by a complex tensor order parameter. We elucidate the general structure of the corresponding Ginzburg-Landau free energy and apply these concepts to the case of an isotropic band touching point. For a vanishing chemical potential, the ground state of the system is given by the superconductor analogue of the uniaxial nematic state, which features line nodes in the excitation spectrum of quasiparticles. In contrast to the theory of real tensor order in liquid crystals, however, the ground state is selected here by the sextic terms in the free energy. At a finite chemical potential, the nematic state has an additional instability at weak coupling and low temperatures. In particular, the one-loop coefficients in the free energy indicate that at weak coupling genuinely complex orders, which break time-reversal symmetry, are energetically favored. We relate our analysis to recent measurements in the half-Heusler compound YPtBi and discuss the role of cubic crystal symmetry.

  9. Neutron-scattering measurements of spin excitations in LaFeAsO and Ba(Fe 0.953Co 0.047)2As 2: Evidence for a sharp enhancement of spin fluctuations by nematic order [Sharp enhancement of spin fluctuations by nematic order in iron pnictides

    DOE PAGES

    Zhang, Qiang; Fernandes, Rafael M.; Lamsal, Jagat; ...

    2015-02-04

    Inelastic neutron scattering is employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe 0.953Co 0.047) 2As 2. These materials are ideal to study the paramagnetic-nematic state, since the nematic order, signaled by the tetragonal-to-orthorhombic transition at T S, sets in well above the stripe antiferromagnetic ordering at T N. We find that the temperature-dependent dynamic susceptibility displays an anomaly at T S followed by a sharp enhancement in the spin-spin correlation length, revealing a strong feedback effect of nematic order on the low-energy magnetic spectrum. As a result, our findings can bemore » consistently described by a model that attributes the structural or nematic transition to magnetic fluctuations, and unveils the key role played by nematic order in promoting the long-range stripe antiferromagnetic order in iron pnictides.« less

  10. Neutron-scattering measurements of spin excitations in LaFeAsO and Ba(Fe 0.953Co 0.047)2As 2: Evidence for a sharp enhancement of spin fluctuations by nematic order [Sharp enhancement of spin fluctuations by nematic order in iron pnictides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qiang; Fernandes, Rafael M.; Lamsal, Jagat

    Inelastic neutron scattering is employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe 0.953Co 0.047) 2As 2. These materials are ideal to study the paramagnetic-nematic state, since the nematic order, signaled by the tetragonal-to-orthorhombic transition at T S, sets in well above the stripe antiferromagnetic ordering at T N. We find that the temperature-dependent dynamic susceptibility displays an anomaly at T S followed by a sharp enhancement in the spin-spin correlation length, revealing a strong feedback effect of nematic order on the low-energy magnetic spectrum. As a result, our findings can bemore » consistently described by a model that attributes the structural or nematic transition to magnetic fluctuations, and unveils the key role played by nematic order in promoting the long-range stripe antiferromagnetic order in iron pnictides.« less

  11. Strong cooperative coupling of pressure-induced magnetic order and nematicity in FeSe

    NASA Astrophysics Data System (ADS)

    Kreyssig, Andreas

    In iron-based superconductors, the lattice, magnetism and electronic system show a fascinating interplay. Nematic order breaks the tetragonal symmetry and yields an orthorhombic lattice distortion. The same symmetry is broken by the stripe-like antiferromagnetic order suggesting a symmetry-related coupling between both phenomena. The phase transitions in to both ordered states can be simultaneous and of first-order character like in CaFe2As2, or separated in temperature like in Co-doped BaFe2As2 with second or first-order character depending on the doping level. Stripe-type magnetic fluctuations are discussed as correlation-driven electronic mechanism of the nematicity and important for the superconducting electron pairing establishing a coupling mechanism. However, a universal picture has been confounded by measurements of FeSe where the nematic and magnetic transitions appear to be decoupled by the observation of the lattice distortion without antiferromagnetic order at ambient pressure. In this talk I will present our recent study on the relation between the nematic and magnetic order in FeSe single crystals investigated by synchrotron-based high-energy x-ray diffraction and time-domain Moessbauer spectroscopy as function of temperature and pressure. Distinct nematic and magnetic transitions are observed for low pressures and merge into a single first-order transition for higher pressures reminiscent of what has been found for the evolution of these transitions in Co-doped BaFe2As2. Our results are consistent with a spin-driven mechanism for nematic order in FeSe and provide an important step towards a universal description of the interplay between the different ordering phenomena in the iron-based superconductors. This work was performed in collaboration with K. Kothapalli, A. E. Böhmer, W. T. Jayasekara, B. G. Ueland, P. Das, A. Sapkota, V. Taufour, Y. Xiao, E. Alp, S. L. Bud'ko, P.C. Canfield, and A.I. Goldman; and supported by the Department of Energy

  12. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides. Polypeptide vesicles by conformation-specific assembly. Ordered chiral macroporous hybrid silica-polypeptide composites

    NASA Astrophysics Data System (ADS)

    Bellomo, Enrico Giuseppe

    2005-07-01

    Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides . The aqueous, lyotropic liquid-crystalline phase behavior of an alpha helical polypeptide, has been studied using optical microscopy and X-ray scattering. Solutions of optically pure polypeptide were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of this polypeptide in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent. Polypeptide vesicles by conformation-specific assembly. We have found that block copolymers composed of polypeptide segments provide significant advantages in controlling both the function and supramolecular structure of bioinspired self-assemblies. Incorporation of the stable chain conformations found in proteins into block copolymers was found to provide an additional element of control, beyond amphiphilicity and composition that defines self-assembled architecture. The abundance of functionality present in amino acids, and the ease by which they can be incorporated into these materials, also provides a powerful mechanism to impart block copolypeptides with function. This combination of structure and function work synergistically to enable significant advantages in the preparation of therapeutic agents as well as provide insight into design of self-assemblies beginning to approach the complexity of natural structures such as virus capsids. Ordered

  13. Generalized Liquid Crystals: Giant Fluctuations and the Vestigial Chiral Order of I , O , and T Matter

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Nissinen, Jaakko; Slager, Robert-Jan; Wu, Kai; Zaanen, Jan

    2016-10-01

    The physics of nematic liquid crystals has been the subject of intensive research since the late 19th century. However, the focus of this pursuit has been centered around uniaxial and biaxial nematics associated with constituents bearing a D∞ h or D2 h symmetry, respectively. In view of general symmetries, however, these are singularly special since nematic order can in principle involve any point-group symmetry. Given the progress in tailoring nanoparticles with particular shapes and interactions, this vast family of "generalized nematics" might become accessible in the laboratory. Little is known because the order parameter theories associated with the highly symmetric point groups are remarkably complicated, involving tensor order parameters of high rank. Here, we show that the generic features of the statistical physics of such systems can be studied in a highly flexible and efficient fashion using a mathematical tool borrowed from high-energy physics: discrete non-Abelian gauge theory. Explicitly, we construct a family of lattice gauge models encapsulating nematic ordering of general three-dimensional point-group symmetries. We find that the most symmetrical generalized nematics are subjected to thermal fluctuations of unprecedented severity. As a result, novel forms of fluctuation phenomena become possible. In particular, we demonstrate that a vestigial phase carrying no more than chiral order becomes ubiquitous departing from high point-group symmetry chiral building blocks, such as I , O , and T symmetric matter.

  14. Transverse fields to tune an Ising-nematic quantum phase transition

    NASA Astrophysics Data System (ADS)

    Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.; Berg, Erez; Fernandes, Rafael M.; Fisher, Ian R.; Kivelson, Steven A.

    2017-12-01

    The paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated with spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.

  15. Organic Glasses with Tunable Liquid-Crystalline Order

    NASA Astrophysics Data System (ADS)

    Teerakapibal, Rattavut; Huang, Chengbin; Gujral, Ankit; Ediger, Mark D.; Yu, Lian

    2018-02-01

    Liquid crystals (LCs) are known to undergo rapid ordering transitions with virtually no hysteresis. We report a remarkable counterexample, itraconazole, where the nematic to smectic transition is avoided at a cooling rate exceeding 20 K /s . The smectic order trapped in a glass is the order reached by the equilibrium liquid before the kinetic arrest of the end-over-end molecular rotation. This is attributed to the fact that smectic ordering requires orientational ordering and suggests a general condition for preparing organic glasses with tunable LC order for electronic applications.

  16. A novel method to produce nonlinear empirical physical formulas for experimental nonlinear electro-optical responses of doped nematic liquid crystals: Feedforward neural network approach

    NASA Astrophysics Data System (ADS)

    Yildiz, Nihat; San, Sait Eren; Okutan, Mustafa; Kaya, Hüseyin

    2010-04-01

    Among other significant obstacles, inherent nonlinearity in experimental physical response data poses severe difficulty in empirical physical formula (EPF) construction. In this paper, we applied a novel method (namely layered feedforward neural network (LFNN) approach) to produce explicit nonlinear EPFs for experimental nonlinear electro-optical responses of doped nematic liquid crystals (NLCs). Our motivation was that, as we showed in a previous theoretical work, an appropriate LFNN, due to its exceptional nonlinear function approximation capabilities, is highly relevant to EPF construction. Therefore, in this paper, we obtained excellently produced LFNN approximation functions as our desired EPFs for above-mentioned highly nonlinear response data of NLCs. In other words, by using suitable LFNNs, we successfully fitted the experimentally measured response and predicted the new (yet-to-be measured) response data. The experimental data (response versus input) were diffraction and dielectric properties versus bias voltage; and they were all taken from our previous experimental work. We conclude that in general, LFNN can be applied to construct various types of EPFs for the corresponding various nonlinear physical perturbation (thermal, electronic, molecular, electric, optical, etc.) data of doped NLCs.

  17. Functional Nanostructured Materials Based on Polymerized Surfactant Liquid Crystal Assemblies Liquid Crystal Assemblies

    NASA Astrophysics Data System (ADS)

    Gin, Douglas

    2003-03-01

    The development of materials with controlled nanostructures is one of the most important new areas of scientific research in chemistry and engineering. Our research group has developed a novel approach for making nanostructured polymer materials with unique functional properties using liquid crystals as starting materials. In this approach, we design polymerizable organic building blocks based on lyotropic liquid crystals (LLCs) (i.e., amphiphiles or surfactants) that carry, or can accommodate, a functional property of general interest. Through appropriate molecular design, these monomers self-assemble in the presence of water into fluid, yet ordered phase-separated, water-hydrocarbon assemblies with predictable nanoscale geometries. The architectures of these LLC phases can range from stacked two-dimensional lamellae to hexagonally ordered cylindrical channels with uniform feature sizes in the 1-10 nm range. These LLC phases are then photopolymerized into robust polymer networks with preservation of their small-scale structures. This approach allows us to investigate the effect of nanometer-scale architecture on important bulk properties, as well as to engineer chemical environments on the nanometer-scale for several areas of application. In this talk, new functional materials based on the polymerization of the lyotropic inverted hexagonal phase will be presented as one example of our general approach. Issues in the design and photopolymerization of functional amphiphilic monomers that adopt this LC architecture will be discussed. More importantly, the use of the resulting nanostructured polymer networks in three areas of application will be presented: (1) as templates for the synthesis of functional nanocomposites; (2) as tunable heterogeneous catalysts, and (3) as nanoporous membrane and separation media. In particular, issues pertaining to the contribution of nanoscale architecture to the performance of these systems will be highlighted. Opportunities for

  18. Individual behavior and pairwise interactions between microswimmers in anisotropic liquid

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Lavrentovich, Oleg D.; Aranson, Igor S.

    2015-01-01

    A motile bacterium swims by generating flow in its surrounding liquid. Anisotropy of the suspending liquid significantly modifies the swimming dynamics and corresponding flow signatures of an individual bacterium and impacts collective behavior. We study the interactions between swimming bacteria in an anisotropic environment exemplified by lyotropic chromonic liquid crystal. Our analysis reveals a significant localization of the bacteria-induced flow along a line coaxial with the bacterial body, which is due to strong viscosity anisotropy of the liquid crystal. Despite the fact that the average viscosity of the liquid crystal is two to three orders of magnitude higher than the viscosity of pure water, the speed of bacteria in the liquid crystal is of the same order of magnitude as in water. We show that bacteria can transport a cargo (a fluorescent particle) along a predetermined trajectory defined by the direction of molecular orientation of the liquid crystal. We demonstrate that while the hydrodynamic interaction between flagella of two close-by bacteria is negligible, the observed convergence of the swimming speeds as well as flagella waves' phase velocities may occur due to viscoelastic interaction between the bacterial bodies.

  19. Measurement of photoluminescence from a twisted-nematic liquid crystal/dye cell for an application in an energy-harvesting display

    NASA Astrophysics Data System (ADS)

    Ohta, Masamichi; Itaya, Shunsuke; Ozawa, Shintaro; Binti, M. Azmi; Dianah, Nada; Fujieda, Ichiro

    2016-09-01

    One can convert a Luminescent Solar Concentrator (LSC) to an energy-harvesting display by scanning a laser beam on it. By incorporating a guest-host system of liquid crystal (LC) and dye materials in an LSC, the power of photoluminescence (PL) utilized for either display or energy-harvesting can be adjusted to the changes in ambient lighting conditions. We have measured basic characteristics of an LC/dye cell with twisted-nematic (TN) alignment. These are absorption of the laser light, PL radiation pattern, contrast of luminance, spreading of the PL generated by a narrow laser beam, and their dependencies on the bias. The results are similar to those of the LC/dye cell with antiparallel (AP) alignment with the following exceptions. First, absorption by the TN cell depends on the bias for both polarization components of the excitation light, while the AP cell exhibits a bias dependency only for the component polarized along the alignment direction. Second, the PL from the TN cell is mostly polarized along the alignment direction on the exit side of the cell while the PL from the AP cell is mostly polarized along its alignment direction. These observations can be attributed to the fact that the polarization plane of a linearly polarized light rotates as it propagated the TN-LC layer. For both AP and TN cells, low-intensity PL is observed from the whole cell surfaces. This can degrade the contrast of a displayed image. Bias application to the cell suppresses this effect.

  20. Computer simulation study of the nematic-vapour interface in the Gay-Berne model

    NASA Astrophysics Data System (ADS)

    Rull, Luis F.; Romero-Enrique, José Manuel

    2017-06-01

    We present computer simulations of the vapour-nematic interface of the Gay-Berne model. We considered situations which correspond to either prolate or oblate molecules. We determine the anchoring of the nematic phase and correlate it with the intermolecular potential parameters. On the other hand, we evaluate the surface tension associated to this interface. We find a corresponding states law for the surface tension dependence on the temperature, valid for both prolate and oblate molecules.

  1. Magnetic and Nematic Orders of the Two-Dimensional Electron Gas at Oxide (111) Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    Boudjada, Nazim; Wachtel, Gideon; Paramekanti, Arun

    2018-02-01

    Recent experiments have explored two-dimensional electron gases (2DEGs) at oxide (111) surfaces and interfaces, finding evidence for hexagonal symmetry breaking in SrTiO3 at low temperature. We discuss many-body instabilities of such (111) 2DEGs, incorporating multiorbital interactions in the t2 g manifold which can induce diverse magnetic and orbital orders. Such broken symmetries may partly account for the observed nematicity, cooperating or competing with phonon mechanisms. We present an effective field theory for the interplay of magnetism and nematic charge order, and discuss implications of the nematicity for transport and superconductivity in (111) 2DEGs.

  2. Topological structure dynamics revealing collective evolution in active nematics

    PubMed Central

    Shi, Xia-qing; Ma, Yu-qiang

    2013-01-01

    Topological defects frequently emerge in active matter like bacterial colonies, cytoskeleton extracts on substrates, self-propelled granular or colloidal layers and so on, but their dynamical properties and the relations to large-scale organization and fluctuations in these active systems are seldom touched. Here we reveal, through a simple model for active nematics using self-driven hard elliptic rods, that the excitation, annihilation and transportation of topological defects differ markedly from those in non-active media. These dynamical processes exhibit strong irreversibility in active nematics in the absence of detailed balance. Moreover, topological defects are the key factors in organizing large-scale dynamic structures and collective flows, resulting in multi-spatial temporal effects. These findings allow us to control the self-organization of active matter through topological structures. PMID:24346733

  3. Reverse-mode microdroplet liquid crystal display

    NASA Astrophysics Data System (ADS)

    Ma, Yao-Dong; Wu, Bao Gang; Xu, Gang

    1990-04-01

    This paper presents the production of the a reverse-mode microdroplet liquid crystal (RMLC) light shutter display. In this unit, the display is formed by a thin polymer film with dispersed liquid crystal microdroplets. The display is light transmissive in the absence of an applied electrical field. The display is converted to a non-transmissive state (i.e. absorbing or scattering) when an electrical field is applied. The "off' and "on" state. of this display are thus exactly opposite to that encountered in "normal-mode" microdroplet liquid crystal display devices such as polymer dispersed liquid crystals (PDLC)15 or Nematic Curvilinear Aligned Phase (NCAP)6. The Reverse Mode Microdroplet Liquid Crystal is obtained by modification of the surface energy of the polymer which encases liquid crystals via reaction of a dopant incorporated inside of the microdroplet during the droplet formation within the inside polymer layer. The liquid crystal used in RMLC is of negative dielectric anisotropy.

  4. Nematic fluctuations in iron arsenides NaFeAs and LiFeAs probed by 75As NMR

    NASA Astrophysics Data System (ADS)

    Toyoda, Masayuki; Kobayashi, Yoshiaki; Itoh, Masayuki

    2018-03-01

    75As NMR measurements have been made on single crystals to study the nematic state in the iron arsenides NaFeAs, which undergoes a structural transition from a high-temperature (high-T ) tetragonal phase to a low-T orthorhombic phase at Ts=57 K and an antiferromagnetic transition at TN=42 K, and LiFeAs having a superconducting transition at Tc=18 K. We observe the in-plane anisotropy of the electric field gradient η even in the tetragonal phase of NaFeAs and LiFeAs, showing the local breaking of tetragonal C4 symmetry. Then, η is found to obey the Curie-Weiss (CW) law as well as in Ba (Fe1-xCox) 2As2 . The good agreement between η and the nematic susceptibility obtained by electronic Raman spectroscopy indicates that η is governed by the nematic susceptibility. From comparing η in NaFeAs and LiFeAs with η in Ba (Fe1-xCox) 2As2 , we discuss the carrier-doping dependence of the nematic susceptibility. The spin contribution to nematic susceptibility is also discussed from comparing the CW terms in η with the nuclear spin-lattice relaxation rate divided by temperature 1 /T1T . Finally, we discuss the nematic transition in the paramagnetic orthorhombic phase of NaFeAs from the in-plane anisotropy of 1 /T1T .

  5. Elasticity-driven partial demixing in cholesteric liquid crystal films.

    PubMed

    Schmidtke, Jürgen; Coles, Harry J

    2009-07-01

    We discuss the partial demixing of a chiral nematic mixture of a chiral and an achiral compound, induced by inhomogeneous confinement between substrates. While the effect is tiny in low molar mass mixtures, it is predicted to be noticeable in polymeric systems. The potential of the effect for improving performance of liquid crystal based photonic devices is discussed.

  6. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations.

    PubMed

    Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M

    2007-09-01

    We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.

  7. Maier-Saupe model of polymer nematics: Comparing free energies calculated with Self Consistent Field theory and Monte Carlo simulations.

    PubMed

    Greco, Cristina; Jiang, Ying; Chen, Jeff Z Y; Kremer, Kurt; Daoulas, Kostas Ch

    2016-11-14

    Self Consistent Field (SCF) theory serves as an efficient tool for studying mesoscale structure and thermodynamics of polymeric liquid crystals (LC). We investigate how some of the intrinsic approximations of SCF affect the description of the thermodynamics of polymeric LC, using a coarse-grained model. Polymer nematics are represented as discrete worm-like chains (WLC) where non-bonded interactions are defined combining an isotropic repulsive and an anisotropic attractive Maier-Saupe (MS) potential. The range of the potentials, σ, controls the strength of correlations due to non-bonded interactions. Increasing σ (which can be seen as an increase of coarse-graining) while preserving the integrated strength of the potentials reduces correlations. The model is studied with particle-based Monte Carlo (MC) simulations and SCF theory which uses partial enumeration to describe discrete WLC. In MC simulations the Helmholtz free energy is calculated as a function of strength of MS interactions to obtain reference thermodynamic data. To calculate the free energy of the nematic branch with respect to the disordered melt, we employ a special thermodynamic integration (TI) scheme invoking an external field to bypass the first-order isotropic-nematic transition. Methodological aspects which have not been discussed in earlier implementations of the TI to LC are considered. Special attention is given to the rotational Goldstone mode. The free-energy landscape in MC and SCF is directly compared. For moderate σ the differences highlight the importance of local non-bonded orientation correlations between segments, which SCF neglects. Simple renormalization of parameters in SCF cannot compensate the missing correlations. Increasing σ reduces correlations and SCF reproduces well the free energy in MC simulations.

  8. NMR evidence for static local nematicity and its cooperative interplay with low-energy magnetic fluctuations in FeSe under pressure

    DOE PAGES

    Wiecki, P.; Nandi, M.; Bohmer, Anna; ...

    2017-11-13

    Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.

  9. NMR evidence for static local nematicity and its cooperative interplay with low-energy magnetic fluctuations in FeSe under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiecki, P.; Nandi, M.; Bohmer, Anna

    Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.

  10. Short range smectic order driving long range nematic order: Example of cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markiewicz, R. S.; Lorenzana, J.; Seibold, G.

    We present a model for describing the combined presence of nematic and ‘smectic’ or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a ‘Pomeranchuk wave’. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. Lastly, a variety of experimental results are shown to be consistent with our theoretical predictions.

  11. Short range smectic order driving long range nematic order: Example of cuprates

    DOE PAGES

    Markiewicz, R. S.; Lorenzana, J.; Seibold, G.; ...

    2016-01-27

    We present a model for describing the combined presence of nematic and ‘smectic’ or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a ‘Pomeranchuk wave’. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. Lastly, a variety of experimental results are shown to be consistent with our theoretical predictions.

  12. Electron spin resonance for the detection of long-range spin nematic order

    NASA Astrophysics Data System (ADS)

    Furuya, Shunsuke C.; Momoi, Tsutomu

    2018-03-01

    Spin nematic phase is a quantum magnetic phase characterized by a quadrupolar order parameter. Since the quadrupole operators are directly coupled to neither the magnetic field nor the neutron, currently, it is an important issue to develop a method for detecting the long-range spin nematic order. In this paper, we propose that electron spin resonance (ESR) measurements enable us to detect the long-range spin nematic order. We show that the frequency of the paramagnetic resonance peak in the ESR spectrum is shifted by the ferroquadrupolar order parameter together with other quantities. The ferroquadrupolar order parameter is extractable from the angular dependence of the frequency shift. In contrast, the antiferroquadrupolar order parameter is usually invisible in the frequency shift. Instead, the long-range antiferroquadrupolar order yields a characteristic resonance peak in the ESR spectrum, which we call a magnon-pair resonance peak. This resonance corresponds to the excitation of the bound magnon pair at the wave vector k =0 . Reflecting the condensation of bound magnon pairs, the field dependence of the magnon-pair resonance frequency shows a singular upturn at the saturation field. Moreover, the intensity of the magnon-pair resonance peak shows a characteristic angular dependence and it vanishes when the magnetic field is parallel to one of the axes that diagonalize the weak anisotropic interactions. We confirm these general properties of the magnon-pair resonance peak in the spin nematic phase by studying an S =1 bilinear-biquadratic model on the square lattice in the linear flavor-wave approximation. In addition, we argue applications to the S =1/2 frustrated ferromagnets and also the S =1/2 orthogonal dimer spin system SrCu2(BO3)2, both of which are candidate materials of spin nematics. Our theory for the antiferroquadrupolar ordered phase is consistent with many features of the magnon-pair resonance peak experimentally observed in the low

  13. An Exploration of the Phases and Structure Formation in Active Nematic Materials Using an Overdamped Continuum Theory

    NASA Astrophysics Data System (ADS)

    Putzig, Elias

    Active nematics are a class of nonequilibrium systems which have received much attention in the form of continuum models in recent years. For the dense, highly ordered case which is of particular interest, these models focus almost exclusively on suspensions of active particles in which the flow of the medium plays a key role in the dynamical equations. Many active nematics, however, reside at an interface or on a surface where friction excludes the effects of long-range flow. In the following pages we shall construct a general model which describes these systems with overdamped dynamical equations. Through numerical and analytical investigation we detail how many of the striking nonequilibrium behaviors of active nematics arise in such systems. We shall first discuss how the activity in these systems gives rise to an instability in the nematic ordered state. This instability leads to phase-separation in which bands of ordered active nematic are interspersed with bands of the disordered phase. We expose the factors which control the density contrast and the stability of these bands through numerical investigation. We then turn to the highly ordered phase of active nematic materials, in which striking nonequilibrium behaviors such as the spontaneous formation, self-propulsion, and ordering of charge-half defects occurs. We extend the overdamped model of an active nematic to describe these behaviors by including the advection of the director by the active forces in the dynamical equations. We find a new instability in the ordered state which gives rise to defect formation, as well as an analog of the instability which is seen in models of active nematic suspensions. Through numerical investigations we expose a rich phenomenology in the neighborhood of this new instability. The phenomenology includes a state in which the orientations of motile, transient defects form long-range order. This is the first continuum model to contain such a state, and we compare the

  14. Evidence for a Nematic Phase in La 1.75 Sr 0.25 NiO 4

    DOE PAGES

    Zhong, Ruidan; Winn, Barry L.; Gu, Genda; ...

    2017-04-28

    Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La 2 - xSr xNiO 4, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature “disordered” state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, in this paper we use neutron scattering measurements on an x = 0.25 crystal to demonstrate that the dispersion of themore » charge-stripe excitations is anisotropic. Finally, this observation provides compelling evidence for the presence of electronic nematic order.« less

  15. Evidence for a Nematic Phase in La 1.75 Sr 0.25 NiO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Ruidan; Winn, Barry L.; Gu, Genda

    Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La 2 - xSr xNiO 4, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature “disordered” state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, in this paper we use neutron scattering measurements on an x = 0.25 crystal to demonstrate that the dispersion of themore » charge-stripe excitations is anisotropic. Finally, this observation provides compelling evidence for the presence of electronic nematic order.« less

  16. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    NASA Astrophysics Data System (ADS)

    Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.

  17. Bioinspired Mesoporous Chiral Nematic Graphitic Carbon Nitride Photocatalysts modulated by Polarized Light.

    PubMed

    Lin, Wensheng; Hong, Wei; Sun, Lu; Yu, Di; Yu, Dingshan; Chen, Xudong

    2018-01-10

    Endowing materials with chirality and exploring the responses of the material under circularly polarized light (CPL) can enable further insight into the physical and chemical properties of the semiconductors to be gained, thus expanding on optoelectronic applications. Herein a bioinspired mesoporous chiral nematic graphitic carbon nitride (g-C 3 N 4 ) for efficient hydrogen evolution with polarized light modulation based on chiral nematic cellulose nanocrystal films prepared through silica templating is described. The mesoporous nematic chiral g-C 3 N 4 exhibits an ultrahigh hydrogen evolution rate of 219.9 μmol h -1 (for 20 mg catalyst), corresponding to a high enhancement factor of 55 when compared to the bulk g-C 3 N 4 under λ>420 nm irradiation. Furthermore, the chiral g-C 3 N 4 material exhibits unique photocatalytic activity modulated by CPL within the absorption region. This CPL-assisted photocatalytic regulation strategy holds great promise for a wide range of applications including optical devices, asymmetric photocatalysis, and chiral recognition/separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Possible bicollinear nematic state with monoclinic lattice distortions in iron telluride compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Christopher B.; Herbrych, Jacek W.; Dagotto, Elbio R.

    2017-07-15

    Here, iron telluride (FeTe) is known to display bicollinear magnetic order at low temperatures together with a monoclinic lattice distortion. Because the bicollinear order can involve two different wave vectors (π/2,π/2) and (π/2,–π/2), symmetry considerations allow for the possible stabilization of a nematic state with short-range bicollinear order coupled to monoclinic lattice distortions at a T S higher than the temperature T N where long-range bicollinear order fully develops. As a concrete example, the three-orbital spin-fermion model for iron telluride is studied with an additional coupling ˜λ 12 between the monoclinic lattice strain and an orbital-nematic order parameter with Bmore » 2g symmetry. Monte Carlo simulations show that with increasing ˜λ 12 the first-order transition characteristic of FeTe splits and bicollinear nematicity is stabilized in a (narrow) temperature range. In this new regime, the lattice is monoclinically distorted and short-range spin and orbital order breaks rotational invariance. A discussion of possible realizations of this exotic state is provided.« less

  19. A Cost-Effective Optical Device for the Characterization of Liquid Crystals

    ERIC Educational Resources Information Center

    Millier, Brian; Aleman Milán, Gianna

    2014-01-01

    The design and construction of an apparatus to measure the optical birefringence of a liquid crystal is described. The instrument also includes temperature control and monitoring circuitry to allow for the measurement of the nematic-to-isotropic phase transition temperature. An important feature of this design is that the students are able to…

  20. Sunlight-switchable light shutter fabricated using liquid crystals doped with push-pull azobenzene.

    PubMed

    Oh, Seung-Won; Baek, Jong-Min; Yoon, Tae-Hoon

    2016-11-14

    We propose a sunlight-switchable light shutter using liquid crystal/polymer composite doped with push-pull azobenzene. The proposed light shutter is switchable between the translucent and transparent states by application of an electric field or by UV irradiation. Switching by UV irradiation is based on the change of the liquid crystal (LC) clearing point by the photo-isomerization effect of push-pull azobenzene. Under sunlight, the light shutter can be switched from the translucent to the transparent state by the nematic-isotropic phase transition of the LC domains triggered by trans-cis photo-isomerization of the push-pull azobenzene molecules. When the amount of sunlight is low because of cloud cover or when there is no sunlight at sunset, the light shutter rapidly relaxes from its transparent state back to its initial translucent state by the isotropic-nematic phase transition induced by cis-trans back-isomerization of the push-pull azobenzene molecules.