Science.gov

Sample records for nematode suppressive banana

  1. Quantitative digital imaging of banana growth suppression by plant parasitic nematodes.

    PubMed

    Roderick, Hugh; Mbiru, Elvis; Coyne, Danny; Tripathi, Leena; Atkinson, Howard J

    2012-01-01

    A digital camera fitted with a hemispherical lens was used to generate canopy leaf area index (LAI) values for a banana (Musa spp.) field trial with the aim of establishing a method for monitoring stresses on tall crop plants. The trial in Uganda consisted of two cultivars susceptible to nematodes, a plantain, Gonja manjaya and an East African Highland banana, Mbwazirume, plus a nematode resistant dessert banana, Yangambi km5. A comparative approach included adding a mixed population of Radopholus similis, Helicotylenchus multicinctus and Meloidogyne spp. to the soil around half the plants of each cultivar prior to field planting. Measurements of LAI were made fortnightly from 106 days post-planting over two successive cropping cycles. The highest mean LAI during the first cycle for Gonja manjaya was suppressed to 74.8±3.5% by the addition of nematodes, while for Mbwazirume the values were reduced to 71.1±1.9%. During the second cycle these values were 69.2±2.2% and 72.2±2.7%, respectively. Reductions in LAI values were validated as due to the biotic stress by assessing nematode numbers in roots and the necrosis they caused at each of two harvests and the relationship is described. Yield losses, including a component due to toppled plants, were 35.3% and 55.3% for Gonja manjaya and 31.4% and 55.8% for Mbwazirume, at first and second harvests respectively. Yangambi km5 showed no decrease in LAI and yield in the presence of nematodes at both harvests. LAI estimated by hemispherical photography provided a rapid basis for detecting biotic growth checks by nematodes on bananas, and demonstrated the potential of the approach for studies of growth checks to other tall crop plants caused by biotic or abiotic stresses.

  2. Quantitative Digital Imaging of Banana Growth Suppression by Plant Parasitic Nematodes

    PubMed Central

    Roderick, Hugh; Mbiru, Elvis; Coyne, Danny; Tripathi, Leena; Atkinson, Howard J.

    2012-01-01

    A digital camera fitted with a hemispherical lens was used to generate canopy leaf area index (LAI) values for a banana (Musa spp.) field trial with the aim of establishing a method for monitoring stresses on tall crop plants. The trial in Uganda consisted of two cultivars susceptible to nematodes, a plantain, Gonja manjaya and an East African Highland banana, Mbwazirume, plus a nematode resistant dessert banana, Yangambi km5. A comparative approach included adding a mixed population of Radopholus similis, Helicotylenchus multicinctus and Meloidogyne spp. to the soil around half the plants of each cultivar prior to field planting. Measurements of LAI were made fortnightly from 106 days post-planting over two successive cropping cycles. The highest mean LAI during the first cycle for Gonja manjaya was suppressed to 74.8±3.5% by the addition of nematodes, while for Mbwazirume the values were reduced to 71.1±1.9%. During the second cycle these values were 69.2±2.2% and 72.2±2.7%, respectively. Reductions in LAI values were validated as due to the biotic stress by assessing nematode numbers in roots and the necrosis they caused at each of two harvests and the relationship is described. Yield losses, including a component due to toppled plants, were 35.3% and 55.3% for Gonja manjaya and 31.4% and 55.8% for Mbwazirume, at first and second harvests respectively. Yangambi km5 showed no decrease in LAI and yield in the presence of nematodes at both harvests. LAI estimated by hemispherical photography provided a rapid basis for detecting biotic growth checks by nematodes on bananas, and demonstrated the potential of the approach for studies of growth checks to other tall crop plants caused by biotic or abiotic stresses. PMID:23285286

  3. The Nematicidal Effect of Camellia Seed Cake on Root-Knot Nematode Meloidogyne javanica of Banana

    PubMed Central

    Yang, Xiujuan; Wang, Xuan; Wang, Kang; Su, Lanxi; Li, Hongmei; Li, Rong; Shen, Qirong

    2015-01-01

    Suppression of root-knot nematodes is crucially important for maintaining the worldwide development of the banana industry. Growing concerns about human and environmental safety have led to the withdrawal of commonly used nematicides and soil fumigants, thus motivating the development of alternative nematode management strategies. In this study, Meloidogyne javanica was isolated, and the nematicidal effect of Camellia seed cake on this pest was investigated. The results showed that in dish experiments, Camellia seed cake extracts under low concentration (2 g/L) showed a strong nematicidal effect. After treatment for 72 h, the eggs of M. javanica were gradually dissolved, and the intestine of the juveniles gradually became indistinct. Nematicidal compounds, including saponins identified by HPLC-ESI-MS and 8 types of volatile compounds identified by GC-MS, exhibited effective nematicidal activities, especially 4-methylphenol. The pot experiments demonstrated that the application of Camellia seed cake suppressed M. javanica, and promoted the banana plant growth. This study explored an effective nematicidal agent for application in soil and revealed its potential mechanism of nematode suppression. PMID:25849382

  4. The nematicidal effect of camellia seed cake on root-knot nematode Meloidogyne javanica of banana.

    PubMed

    Yang, Xiujuan; Wang, Xuan; Wang, Kang; Su, Lanxi; Li, Hongmei; Li, Rong; Shen, Qirong

    2015-01-01

    Suppression of root-knot nematodes is crucially important for maintaining the worldwide development of the banana industry. Growing concerns about human and environmental safety have led to the withdrawal of commonly used nematicides and soil fumigants, thus motivating the development of alternative nematode management strategies. In this study, Meloidogyne javanica was isolated, and the nematicidal effect of Camellia seed cake on this pest was investigated. The results showed that in dish experiments, Camellia seed cake extracts under low concentration (2 g/L) showed a strong nematicidal effect. After treatment for 72 h, the eggs of M. javanica were gradually dissolved, and the intestine of the juveniles gradually became indistinct. Nematicidal compounds, including saponins identified by HPLC-ESI-MS and 8 types of volatile compounds identified by GC-MS, exhibited effective nematicidal activities, especially 4-methylphenol. The pot experiments demonstrated that the application of Camellia seed cake suppressed M. javanica, and promoted the banana plant growth. This study explored an effective nematicidal agent for application in soil and revealed its potential mechanism of nematode suppression.

  5. Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis.

    PubMed

    Hölscher, Dirk; Dhakshinamoorthy, Suganthagunthalam; Alexandrov, Theodore; Becker, Michael; Bretschneider, Tom; Buerkert, Andreas; Crecelius, Anna C; De Waele, Dirk; Elsen, Annemie; Heckel, David G; Heklau, Heike; Hertweck, Christian; Kai, Marco; Knop, Katrin; Krafft, Christoph; Maddula, Ravi K; Matthäus, Christian; Popp, Jürgen; Schneider, Bernd; Schubert, Ulrich S; Sikora, Richard A; Svatoš, Aleš; Swennen, Rony L

    2014-01-07

    The global yield of bananas-one of the most important food crops-is severely hampered by parasites, such as nematodes, which cause yield losses up to 75%. Plant-nematode interactions of two banana cultivars differing in susceptibility to Radopholus similis were investigated by combining the conventional and spatially resolved analytical techniques (1)H NMR spectroscopy, matrix-free UV-laser desorption/ionization mass spectrometric imaging, and Raman microspectroscopy. This innovative combination of analytical techniques was applied to isolate, identify, and locate the banana-specific type of phytoalexins, phenylphenalenones, in the R. similis-caused lesions of the plants. The striking antinematode activity of the phenylphenalenone anigorufone, its ingestion by the nematode, and its subsequent localization in lipid droplets within the nematode is reported. The importance of varying local concentrations of these specialized metabolites in infected plant tissues, their involvement in the plant's defense system, and derived strategies for improving banana resistance are highlighted.

  6. [Evaluation of the resistance to two nematodes: Radopholus similis and Meloidogyne spp. in four banana genotypes in Morocco].

    PubMed

    Guedira, Abdelkarim; Rammah, Abdellah; Triqui, Zine-el-abidine; Chlyah, Hassan; Chlyah, Bouchra; Haïcour, Robert

    2004-08-01

    Radopholus similis and Meloidogyne spp. are the main nematode parasites of banana plants grown under plastic shelters in Morocco. A test was made in pots to evaluate the resistance of four genotypes of banana to these nematodes. Infection by Meloidogyne spp. brought about an increase in root weight in all banana plants tested because of gall formation. The inoculation of R. similis produced a reduction in length and diameter of the pseudo-trunk as well as in root and aerial mass in all genotypes. Pisang jari buaya showed the significantly lowest number of Meloidogyne nematodes per 10 g of roots, whereas for R. similis, the significantly smallest numbers were obtained in Pisang berlin and Pisang jari buaya. Therefore, Pisang jari buaya was the only banana genotype studied to show some degree of resistance to both nematodes.

  7. Detection and Description of Soils with Specific Nematode Suppressiveness

    PubMed Central

    Westphal, Andreas

    2005-01-01

    Soils with specific suppressiveness to plant-parasitic nematodes are of interest to define the mechanisms that regulate population density. Suppressive soils prevent nematodes from establishing and from causing disease, and they diminish disease severity after initial nematode damage in continuous culturing of a host. A range of non-specific and specific soil treatments, followed by infestation with a target nematode, have been employed to identify nematode-suppressive soils. Biocidal treatments, soil transfer tests, and baiting approaches together with observations of the plant-parasitic nematode in the root zone of susceptible host plants have improved the understanding of nematode-suppressive soils. Techniques to demonstrate specific soil suppressiveness against plant-parasitic nematodes are compared in this review. The overlap of studies on soil suppressiveness with recent advances in soil health and quality is briefly discussed. The emphasis is on methods (or criteria) used to detect and identify soils that maintain specific soil suppressiveness to plant-parasitic nematodes. While biocidal treatments can detect general and specific soil suppressiveness, soil transfer studies, by definition, apply only to specific soil suppressiveness. Finally, potential strategies to exploit suppressive soils are presented. PMID:19262851

  8. Curative and Residual Efficacy of Injection Applications of Avermectins for Control of Plant-parasitic Nematodes on Banana

    PubMed Central

    Jansson, Richard K.; Rabatin, Susan

    1997-01-01

    Studies were conducted to determine the curative and residual efficacy of avermectins at controlling plant-parasitic nematodes when injected into the pseudostem of banana, Musa acuminata cv. Cavendish. In addition, we determined the lowest concentration of avermectins that provided satisfactory efficacy as protectants when injected into banana pseudostems. Experiments were conducted with a root-knot nematode, Meleidogyne javanica, and the burrowing nematode, Radopholus similis. Injections (1 ml) of ≥ 100 μg a.i./plant of abamectin into pseudostems were effective at controlling M. javanica and R. similis, and were comparable to control achieved with a conventional chemical nemaficide, fenamiphos, in a protectant assay. Abamecfin injections of 250 and 500 μg a.i./plant were effective at reducing nematode infections 28 to 56 days after inoculation. Abamectin was more effective than ivermectin at controlling nematodes after nematode populations were established in banana roots. Injections of between 100 and 1,000 μg a.i./plant were effective at controlling nematodes for at least 56 days after treatment. These studies confirmed earlier results and demonstrated that abamecfin has potential for controlling nematode parasites on banana when injected into the pseudostem. PMID:19274271

  9. Curative and Residual Efficacy of Injection Applications of Avermectins for Control of Plant-parasitic Nematodes on Banana.

    PubMed

    Jansson, R K; Rabatin, S

    1997-12-01

    Studies were conducted to determine the curative and residual efficacy of avermectins at controlling plant-parasitic nematodes when injected into the pseudostem of banana, Musa acuminata cv. Cavendish. In addition, we determined the lowest concentration of avermectins that provided satisfactory efficacy as protectants when injected into banana pseudostems. Experiments were conducted with a root-knot nematode, Meleidogyne javanica, and the burrowing nematode, Radopholus similis. Injections (1 ml) of >/= 100 mug a.i./plant of abamectin into pseudostems were effective at controlling M. javanica and R. similis, and were comparable to control achieved with a conventional chemical nemaficide, fenamiphos, in a protectant assay. Abamecfin injections of 250 and 500 mug a.i./plant were effective at reducing nematode infections 28 to 56 days after inoculation. Abamectin was more effective than ivermectin at controlling nematodes after nematode populations were established in banana roots. Injections of between 100 and 1,000 mug a.i./plant were effective at controlling nematodes for at least 56 days after treatment. These studies confirmed earlier results and demonstrated that abamecfin has potential for controlling nematode parasites on banana when injected into the pseudostem.

  10. Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis

    PubMed Central

    Hölscher, Dirk; Dhakshinamoorthy, Suganthagunthalam; Alexandrov, Theodore; Becker, Michael; Bretschneider, Tom; Buerkert, Andreas; Crecelius, Anna C.; De Waele, Dirk; Elsen, Annemie; Heckel, David G.; Heklau, Heike; Hertweck, Christian; Kai, Marco; Knop, Katrin; Krafft, Christoph; Maddula, Ravi K.; Matthäus, Christian; Popp, Jürgen; Schneider, Bernd; Schubert, Ulrich S.; Sikora, Richard A.; Svatoš, Aleš; Swennen, Rony L.

    2014-01-01

    The global yield of bananas—one of the most important food crops—is severely hampered by parasites, such as nematodes, which cause yield losses up to 75%. Plant–nematode interactions of two banana cultivars differing in susceptibility to Radopholus similis were investigated by combining the conventional and spatially resolved analytical techniques 1H NMR spectroscopy, matrix-free UV-laser desorption/ionization mass spectrometric imaging, and Raman microspectroscopy. This innovative combination of analytical techniques was applied to isolate, identify, and locate the banana-specific type of phytoalexins, phenylphenalenones, in the R. similis-caused lesions of the plants. The striking antinematode activity of the phenylphenalenone anigorufone, its ingestion by the nematode, and its subsequent localization in lipid droplets within the nematode is reported. The importance of varying local concentrations of these specialized metabolites in infected plant tissues, their involvement in the plant’s defense system, and derived strategies for improving banana resistance are highlighted. PMID:24324151

  11. Breeding a super nematode for enhanced insect pest suppression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes in the genera Heterorhabditis and Steinernema are important regulators of natural insect populations, and are used commercially as biological control agents for pest suppression. Successful biocontrol applications depend on the introduced organism having an array of benef...

  12. Suppression of plant parasitic nematodes in the chinampa agricultural soils.

    PubMed

    Zuckerman, B M; Dicklow, M B; Coles, G C; Garcia-E, R; Marban-Mendoza, N

    1989-06-01

    Soil from the chinampa agricultural system in the Valley of Mexico suppressed damage by plant-parasitic nematodes to tomatoes and beans in greenhouse and growth chamber trials. Sterilization of the chinampa soil resulted in a loss of the suppressive effect, thereby indicating that one or more biotic factors were responsible for the low incidence of nematode damage. Nine organisms were isolated from chinampa soil, which showed antinematodal properties in culture. Naturally occurring populations of plant-parasitic nematodes were of lower incidence in chinampa soil than in Chapingo soil.

  13. Organic and Inorganic Nitrogen Amendments to Soil as Nematode Suppressants

    PubMed Central

    Rodríguez-Kábana, R.

    1986-01-01

    Inorganic fertilizers containing ammoniacal nitrogen or formulations releasing this form of N in the soil are most effective for suppressing nematode populations. Anhydrous ammonia has been shown to reduce soil populations of Tylenchorhynchus claytoni, Helicotylenchus dihystera, and Heterodera glycines. The rates required to obtain significant suppression of nematode populations are generally in excess of 150 kg N/ha. Urea also suppresses several nematode species, including Meloidogyne spp., when applied at rates above 300 kg N/ha. Additional available carbon must be provided with urea to permit soil microorganisms to metabolize excess N and avoid phytotoxic effects. There is a direct relation between the amount of "protein" N in organic amendments and their effectiveness as nematode population suppressants. Most nematicidal amendments are oil cakes, or animal excrements containing 2-7% (w:w) N; these materials are effective at rates of 4-10 t/ha. Organic soil amendments containing mucopolysaccharides (e.g., mycelial wastes, chitinous matter) are also effective nematode suppressants. PMID:19294153

  14. Studies onPaecilomyces marquandii from nematode suppressive chinampa soils.

    PubMed

    Marban-Mendoza, N; Garcia-E, R; Dicklow, M B; Zuckerman, B M

    1992-05-01

    Two applications of isolates ofPaecilomyces marquandii from suppressive chinampa soils or P. lilacinus from Peru, fungi that parasitize nematode eggs, generally gave better control of tomato root-knot due toMeloidogyne incognita than did a single application. The effects on root galling by each of thePaecilomyces isolates varied between experiments; however, the ovicidal potential of the three isolates did not differ significantly. Proteins specific for each of the isolates were demonstrated by SDS gel electrophoresis. The results indicate thatP. marquandii is one of the natural soil organisms that contribute to nematode suppression in the chinampa agricultural soils.

  15. Histochemical and Cytochemical Investigations of Phenols in Roots of Banana Infected by the Burrowing Nematode Radopholus similis.

    PubMed

    Valette, C; Andary, C; Geiger, J P; Sarah, J L; Nicole, M

    1998-11-01

    ABSTRACT The burrowing nematode Radopholus similis is one of the most damaging pathogens on banana plantations. The role of phenolics in plant defense responses to the nematode was histochemically and ultrastructurally investigated in susceptible and partially resistant cultivars. Histochemical observations of healthy roots revealed that high levels of lignin, flavonoids, dopamine, cafeic esters, and ferulic acids were associated with a very low rate of nematode root penetration in the resistant cultivar. The presence of lignified and suberized layers in endodermal cells contributed to limit invasion of the vascular bundle by the pathogen. After infection, flavonoids were seen to accumulate early in walls of cells close to the nematode-migrating channel in both cultivars and in all tissues of the infected resistant roots including the vascular tissues. The labeling pattern obtained with the gold-complexed laccase and with anti-pectin monoclonal antibodies showed that phenolics were distributed in a loosened pectin-rich material surrounding the nematode. This study provides indications that constitutive phenolics in banana roots are associated with the limitation of host penetration and colonization by R. similis. Accumulation of flavonoids in response to infection was detected in the vascular tissues of susceptible plants and in all root tissues in the partially resistant plants.

  16. Anthelminthic efficacy of banana crop residues on gastrointestinal nematodes of sheep: in vitro and in vivo tests.

    PubMed

    Nogueira, Flávia Aparecida; Oliveira, Lincoln Nunes; da Silva, Rayana Brito; Nery, Patrícia Silva; Virgínio, Gercino Ferreira; Geraseev, Luciana Castro; Duarte, Eduardo Robson

    2012-07-01

    Resistance to anthelminthics is common due to intensive and incorrect use. In searching for alternatives, extracts of banana plant were evaluated for egg hatching inhibition and fecal egg count reduction of sheep nematodes. Aqueous extracts of the leaf, pseudostem, and heart of the banana plant cv. Prata anã were tested at concentrations of 0.31, 0.62, 1.25, 2.5, 5.0, and 10.0 mg ml(-1) in egg hatching inhibition tests. For in vivo analysis, aqueous extracts were evaluated at dosages calculated according to the 10% lethal dose derived from acute toxicity testing in mice. Efficacy was evaluated at two time periods following oral administration. For the banana extracts at 2.5 mg ml(-1), egg hatching was significantly fewer than the negative control, with an LC(50) and LC(90) of 0.19 and 0.84 mg ml(-1), respectively. In vivo analysis for weeks 1 and 2 following a single treatment with aqueous leaf extract showed 33.1% and 32.5% anthelminthic efficacy, respectively. Further research on higher dosages with more frequent administration is needed to evaluate the potential for utilizing banana plant residues in gastrointestinal nematode control.

  17. Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by a cystatin.

    PubMed

    Atkinson, Howard J; Grimwood, Sam; Johnston, Kate; Green, Jayne

    2004-04-01

    Cavendish banana was transformed using Agrobacterium tumefaciens to express a protein engineered rice cystatin (OcIdeltaD86) of value for control of plant parasitic nematodes. Expression for each line was under control of a constitutive promoter from the maize ubiquitin gene (UBI-1), a constitutive, chimeric promoter from the octopine and mannopine synthase genes of A. tumefaciens or a promoter from a root-preferentially expressed tubulin gene Arabidopsis (TUB-1). Lines were selected as of potential interest after 8 weeks challenge in containment if their mean R. similis/25 g roots for three sibling plants were more than 1 standard normal variate below the grand mean for all plants in c7-15 lines challenged concurrently. A total of 16 lines were selected on this basis as putative positives. Western blots confirmed that eight of these lines expressed cystatin with a mean of 0.08 +/- 0.04% tsp. All but two of 19 negatively selected lines from bioassays did not express cystatin. The mean resistance level of the confirmed positive lines was 69 +/- 17%. ELISA established the positive lines under control of UBI provided significantly higher expression levels of OcIdeltaD86 than recorded for the other two promoters. Lines of interest were confirmed as producing a transcript for OcIdeltaD86 by RT-PCR. Eight plants of one UBI promoter line expressing only 0.1 +/- 0.004% tsp as cystatin were re-challenged with R. similis and achieved a resistance of 70 +/- 10%. Subsequent repeat western blotting confirmed that this line still produced the cystatin after the trial. This is the first report of transgenic resistance against a major pest or disease of banana.

  18. Root-Knot Nematode Parasitism Suppresses Host RNA Silencing.

    PubMed

    Walsh, E; Elmore, J M; Taylor, C G

    2017-04-12

    Root-knot nematodes damage crops around the world by developing complex feeding sites from normal root cells of their hosts. The ability to initiate and maintain this feeding site (composed of individual "giant cells") is essential to their parasitism process. RNA silencing pathways in plants serve a diverse set of functions, from directing growth and development to defending against invading pathogens. Influencing a host's RNA silencing pathways as a pathogenicity strategy has been well-documented for viral plant pathogens, but recently, it has become clear that silencing pathways also play an important role in other plant pathosystems. To determine if RNA silencing pathways play a role in nematode parasitism, we tested the susceptibility of plants that express a viral suppressor of RNA silencing. We observed an increase in susceptibility to nematode parasitism in plants expressing viral suppressors of RNA silencing. Results from studies utilizing a silenced reporter gene suggest that active suppression of RNA silencing pathways may be occurring during nematode parasitism. With these studies, we provide further evidence to the growing body of plant-biotic interaction research that suppression of RNA silencing is important in the successful interaction between a plant-parasitic animal and its host.

  19. Spatial distribution of nematodes in three banana ( Musa AAA) root parts considering two root thickness in three farm management systems

    NASA Astrophysics Data System (ADS)

    Araya, M.; De Waele, D.

    2004-10-01

    The spatial location of the banana ( Musa AAA) root parasitic nematodes within three root parts considering two root thickness was determined in three commercial farm management systems, which differ in weed and nematode management. Roots in each farm management system were classified in thick (>5 mm-d) and thin (1 ≤ 5 mm-d) roots. From each root type, the epidermis, the cortical parenchyma (CP) and the vascular cylinder (VC) were separated by fingernail, and nematodes were extracted by maceration of each root part. Independent of the farm management system, and for either root thickness, highest numbers of Radopholus similis per gram of root was found in the CP, followed by the epidermis and VC. The highest number of Helicotylencus spp., Pratylenchus spp. and the total nematode population per gram of root was found in the epidermis. Considering the number of nematodes per root part, the highest number of R. similis and total nematodes was located in the CP, while Helicotylenchus spp. and Pratylenchus spp. were concentrated in the epidermis. These patterns were approximately reproduced in the two root thickness and in the three farm management systems. This behavior suggests that injection of systemic nematicides into the plant pseudostem to replace the granular applications on surface soil might be promissory.

  20. Specific microbial attachment to root knot nematodes in suppressive soil.

    PubMed

    Adam, Mohamed; Westphal, Andreas; Hallmann, Johannes; Heuer, Holger

    2014-05-01

    Understanding the interactions of plant-parasitic nematodes with antagonistic soil microbes could provide opportunities for novel crop protection strategies. Three arable soils were investigated for their suppressiveness against the root knot nematode Meloidogyne hapla. For all three soils, M. hapla developed significantly fewer galls, egg masses, and eggs on tomato plants in unsterilized than in sterilized infested soil. Egg numbers were reduced by up to 93%. This suggested suppression by soil microbial communities. The soils significantly differed in the composition of microbial communities and in the suppressiveness to M. hapla. To identify microorganisms interacting with M. hapla in soil, second-stage juveniles (J2) baited in the test soil were cultivation independently analyzed for attached microbes. PCR-denaturing gradient gel electrophoresis of fungal ITS or 16S rRNA genes of bacteria and bacterial groups from nematode and soil samples was performed, and DNA sequences from J2-associated bands were determined. The fingerprints showed many species that were abundant on J2 but not in the surrounding soil, especially in fungal profiles. Fungi associated with J2 from all three soils were related to the genera Davidiella and Rhizophydium, while the genera Eurotium, Ganoderma, and Cylindrocarpon were specific for the most suppressive soil. Among the 20 highly abundant operational taxonomic units of bacteria specific for J2 in suppressive soil, six were closely related to infectious species such as Shigella spp., whereas the most abundant were Malikia spinosa and Rothia amarae, as determined by 16S rRNA amplicon pyrosequencing. In conclusion, a diverse microflora specifically adhered to J2 of M. hapla in soil and presumably affected female fecundity.

  1. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression.

    PubMed

    Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong

    2016-06-16

    Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation.

  2. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression

    PubMed Central

    Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong

    2016-01-01

    Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation. PMID:27306096

  3. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong

    2016-06-01

    Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation.

  4. Banana peel extract suppressed prostate gland enlargement in testosterone-treated mice.

    PubMed

    Akamine, Kiichiro; Koyama, Tomoyuki; Yazawa, Kazunaga

    2009-09-01

    A methanol extract of banana peel (BPEx, 200 mg/kg, p.o.) significantly suppressed the regrowth of ventral prostates and seminal vesicles induced by testosterone in castrated mice. Further studies in the androgen-responsive LNCaP human prostate cancer cell line showed that BPEx inhibited dose-dependently testosterone-induced cell growth, while the inhibitory activities of BPEx did not appear against dehydrotestosterone-induced cell growth. These results indicate that methanol extract of banana peel can inhibit 5alpha-reductase and might be useful in the treatment of benign prostate hyperplasia.

  5. Nematode 18S rRNA gene is a reliable tool for environmental biosafety assessment of transgenic banana in confined field trials.

    PubMed

    Nakacwa, R; Kiggundu, A; Talwana, H; Namaganda, J; Lilley, C; Tushemereirwe, W; Atkinson, H

    2013-10-01

    Information on relatedness in nematodes is commonly obtained by DNA sequencing of the ribosomal internal transcribed spacer region. However, the level of diversity at this locus is often insufficient for reliable species differentiation. Recent findings suggest that the sequences of a fragment of the small subunit nuclear ribosomal DNA (18S rRNA or SSU), identify genera of soil nematodes and can also distinguish between species in some cases. A database of soil nematode genera in a Ugandan soil was developed using 18S rRNA sequences of individual nematodes from a GM banana confined field trial site at the National Agricultural Research Laboratories, Kawanda in Uganda. The trial was planted to evaluate transgenic bananas for resistance to black Sigatoka disease. Search for relatedness of the sequences gained with entries in a public genomic database identified a range of 20 different genera and sometimes distinguished species. Molecular markers were designed from the sequence information to underpin nematode faunal analysis. This approach provides bio-indicators for disturbance of the soil environment and the condition of the soil food web. It is being developed to support environmental biosafety analysis by detecting any perturbance by transgenic banana or other GM crops on the soil environment.

  6. Suppression on plant-parasitic nematodes using a soil fumigation strategy based on ammonium bicarbonate and its effects on the nematode community

    PubMed Central

    Su, Lanxi; Ruan, Yunze; Yang, Xiujuan; Wang, Kang; Li, Rong; Shen, Qirong

    2015-01-01

    Banana production is severely hindered by plant-parasitic nematodes in acidic, sandy soil. This study investigated the possibility of applying a novel fumigation agent based on ammonium bicarbonate as a strategy for controlling plant-parasitic nematodes under sealed conditions. Moreover, its effects on the nematode community in pot and field experiments were also measured using morphology and feeding-habit based classification and the PCR-DGGE method. Results showed that a mixture (LAB) of lime (L) and ammonium bicarbonate (AB) in suitable additive amounts (0.857 g kg−1 of L and 0.428 g kg−1 of AB) showed stronger nematicidal ability than did the use of AB alone or the use of ammonium hydroxide (AH) and calcium cyanamide (CC) with an equal nitrogen amount. The nematode community was altered by the different fumigants, and LAB showed an excellent plant-parasitic nematicidal ability, especially for Meloidogyne and Rotylenchulus, as revealed by morphology and feeding-habit based classification, and for Meloidogyne, as revealed by the PCR-DGGE method. Fungivores and omnivore-predators were more sensitive to the direct effects of the chemicals than bacterivores. This study explored a novel fumigation agent for controlling plant-parasitic nematodes based on LAB and provides a potential strategy to ensure the worldwide development of the banana industry. PMID:26621630

  7. Nematode suppression and growth stimulation in corn plants (Zea mays L.) irrigated with domestic effluent.

    PubMed

    Barros, Kenia Kelly; do Nascimento, Clístenes Williams Araújo; Florencio, Lourdinha

    2012-01-01

    Treated wastewater has great potential for agricultural use due to its concentrations of nutrients and organic matter, which are capable of improving soil characteristics. Additionally, effluents can induce suppression of plant diseases caused by soil pathogens. This study evaluates the effect of irrigation with effluent in a UASB reactor on maize (Zea mays L.) development and on suppression of the diseases caused by nematodes of the genus Meloidogyne. Twelve lysimeters of 1 m(3) each were arranged in a completely randomized design, with four treatments and three replicates. The following treatments were used: T1 (W+I), irrigation with water and infestation with nematodes; T2 (W+I+NPK), irrigation with water, infestation with nematodes and fertilization with nitrogen (N), phosphorus (P) and potassium (K); T3 (E+I), irrigation with effluent and infestation with nematodes; and T4 (E+I+P), irrigation with effluent, infestation with nematodes and fertilization with phosphorus. The plants irrigated with the effluent plus the phosphorus fertilizer had better growth and productivity and were more resistant to the disease symptoms caused by the nematodes. The suppression levels may have been due to the higher levels of Zn and NO(3)(-) found in the leaf tissue of the plants irrigated with the effluent and phosphorus fertilizer.

  8. Factors associated with the suppressiveness of sugarcane soils to plant-parasitic nematodes.

    PubMed

    Stirling, Graham R; Rames, Emily; Stirling, A Marcelle; Hamill, Sharon

    2011-09-01

    Observations in three Australian sugarcane fields suggested that the soil just under the trash blanket (the covering of crop residue that remains on the soil surface after crops are harvested) was suppressive to plant-parasitic nematodes. Roots were concentrated in this upper layer of soil but plant-parasitic nematode populations were relatively low and roots showed few signs of nematode damage. Root biomass was much lower 15 cm further down the soil profile, where root health was poor and populations of plant-parasitic nematodes were 3-5 times higher than near the soil surface. A bioassay in which Radopholus similis (a nematode that does not occur in sugarcane soils) was inoculated into heat-sterilized and untreated soils, confirmed that biological factors were limiting nematode populations in some of the soils, with soil from 0-2 cm much more suppressive than soil from 15-17 cm. Surface soil from one site was highly suppressive, as only 16% of R. similis recoverable from heated soil were retrieved from this soil after 8 days. Numerous soil chemical, biochemical, and biological properties were measured, and non-linear regression analysis identified two major groups of factors that were significantly associated with suppressiveness. One group reflected the amount of organic matter in soil (total C, total N, and labile C) and the other was associated with the size of the free-living nematode community (total numbers of free-living nematodes, and numbers of plant associates, bacterial feeders, fungal feeders, and carnivores). These results suggested that suppressiveness was biologically mediated and was sustained by C inputs from crop residues and roots. Since nematode-trapping fungi in the test soils could not be quantified using traditional dilution plating methods, their possible role as suppressive agents was assessed by generating TRFLP profiles with Orbiliales-specific primers, and by sequencing cloned PCR products. Although the molecular data were obtained

  9. Diversity and complexity complement apparent competition: Nematode assemblages in banana plantations

    NASA Astrophysics Data System (ADS)

    Ferris, Howard; Pocasangre, Luis E.; Serrano, Edgardo; Muñoz, Jorge; Garcia, Socorro; Perichi, Guillermo; Martinez, Gustavo

    2012-04-01

    The structure of communities of soil organisms, and, therefore, their ecosystem functions, respond to spatial and temporal changes in plant diversity and to subsidies of organic matter. We introduce the concept of amplifiable and target prey in directing the impact of shared predators on pest organisms. In soil nematode assemblages, rather than overt apparent competition between the two prey categories, the effects were more subtle and expressed as increased predation pressure on the target prey when resources for the amplifiable prey were greater. We conclude that the connectance complexity of the food web subverts resource flow through a sequential chain of trophic interactions so that interaction strength decreases at successive trophic exchange. However, the effect of resource diversion is that the net regulatory pressure on the target prey is potentially enhanced by the increase in alternate predators of each prey category. The system requires that certain criteria are met, including that predator populations are resource limited, that conditions are conducive for predator survival and increase, and that predators, amplifiable and target prey are co-located in a majority of patches associated with resource subsidy, favorable conditions or migration patterns.

  10. Revisiting Suppression of Interspecies Hybrid Male Lethality in Caenorhabditis Nematodes

    PubMed Central

    Ryan, Lauren E.; Haag, Eric S.

    2017-01-01

    Within the nematode genus Caenorhabditis, Caenorhabditis briggsae and C. nigoni are among the most closely related species known. They differ in sexual mode, with C. nigoni retaining the ancestral XO male–XX female outcrossing system, while C. briggsae recently evolved self-fertility and an XX-biased sex ratio. Wild-type C. briggsae and C. nigoni can produce fertile hybrid XX female progeny, but XO progeny are either 100% inviable (when C. briggsae is the mother) or viable but sterile (when C. nigoni is the mother). A recent study provided evidence suggesting that loss of the Cbr-him-8 meiotic regulator in C. briggsae hermaphrodites allowed them to produce viable and fertile hybrid XO male progeny when mated to C. nigoni. Because such males would be useful for a variety of genetic experiments, we sought to verify this result. Preliminary crosses with wild-type C. briggsae hermaphrodites occasionally produced fertile males, but they could not be confirmed to be interspecies hybrids. Using an RNA interference (RNAi) protocol that eliminates any possibility of self-progeny in Cbr-him-8 hermaphrodites, we found sterile males bearing the C. nigoni X chromosome, but no fertile males bearing the C. briggsae X, as in wild-type crosses. Our results suggest that the apparent rescue of XO hybrid viability and fertility is due to incomplete purging of self-sperm prior to mating. PMID:28209763

  11. Revisiting Suppression of Interspecies Hybrid Male Lethality in Caenorhabditis Nematodes.

    PubMed

    Ryan, Lauren E; Haag, Eric S

    2017-02-16

    Within the nematode genus Caenorhabditis, C. briggsae and C. nigoni are among the most closely related species known. They differ in sexual mode, with C. nigoni retaining the ancestral XO male-XX female outcrossing system, while C. briggsae recently evolved self-fertility and an XX-biased sex ratio. Wild-type C. briggsae and C. nigoni can produce fertile hybrid XX female progeny, but XO progeny are either 100% inviable (when C. briggsae is the mother) or viable but sterile (when C. nigoni is the mother). A recent study provided evidence suggesting that loss of the Cbr-him-8 meiotic regulator in C. briggsae hermaphrodites allowed them to produce viable and fertile hybrid XO male progeny when mated to C. nigoni Because such males would be useful for a variety of genetic experiments, we sought to verify this result. Preliminary crosses with wild-type C. briggsae hermaphrodites occasionally produced fertile males, but they could not be confirmed to be interspecies hybrids. Using an RNA interference protocol that eliminates any possibility of self-progeny in Cbr-him-8 hermaphrodites, we find sterile males bearing the C. nigoni X chromosome, but no fertile males bearing the C. briggsae X, as in wild-type crosses. Our results suggest that the apparent rescue of XO hybrid viability and fertility is due to incomplete purging of self-sperm prior to mating.

  12. Systemic Suppression of the Shoot Metabolism upon Rice Root Nematode Infection

    PubMed Central

    Kyndt, Tina; Denil, Simon; Bauters, Lander; Van Criekinge, Wim; De Meyer, Tim

    2014-01-01

    Hirschmanniella oryzae is the most common plant-parasitic nematode in flooded rice cultivation systems. These migratory animals penetrate the plant roots and feed on the root cells, creating large cavities, extensive root necrosis and rotting. The objective of this study was to investigate the systemic response of the rice plant upon root infection by this nematode. RNA sequencing was applied on the above-ground parts of the rice plants at 3 and 7 days post inoculation. The data revealed significant modifications in the primary metabolism of the plant shoot, with a general suppression of for instance chlorophyll biosynthesis, the brassinosteroid pathway, and amino acid production. In the secondary metabolism, we detected a repression of the isoprenoid and shikimate pathways. These molecular changes can have dramatic consequences for the growth and yield of the rice plants, and could potentially change their susceptibility to above-ground pathogens and pests. PMID:25216177

  13. Systemic suppression of the shoot metabolism upon rice root nematode infection.

    PubMed

    Kyndt, Tina; Denil, Simon; Bauters, Lander; Van Criekinge, Wim; De Meyer, Tim

    2014-01-01

    Hirschmanniella oryzae is the most common plant-parasitic nematode in flooded rice cultivation systems. These migratory animals penetrate the plant roots and feed on the root cells, creating large cavities, extensive root necrosis and rotting. The objective of this study was to investigate the systemic response of the rice plant upon root infection by this nematode. RNA sequencing was applied on the above-ground parts of the rice plants at 3 and 7 days post inoculation. The data revealed significant modifications in the primary metabolism of the plant shoot, with a general suppression of for instance chlorophyll biosynthesis, the brassinosteroid pathway, and amino acid production. In the secondary metabolism, we detected a repression of the isoprenoid and shikimate pathways. These molecular changes can have dramatic consequences for the growth and yield of the rice plants, and could potentially change their susceptibility to above-ground pathogens and pests.

  14. Biocontrol Efficacy Among Strains of Pochonia chlamydosporia Obtained from a Root-Knot Nematode Suppressive Soil

    PubMed Central

    Yang, Jiue-in; Loffredo, Angelo; Borneman, James; Becker, J. Ole

    2012-01-01

    Three Pochonia chlamydosporia var. chlamydosporia strains were isolated from a Meloidogyne incognita-suppressive soil, and then genetically characterized with multiple Pochonia-selective typing methods based on analysis of ß-tubulin, rRNA internal transcribed spacer (ITS), rRNA small subunit (SSU), and enterobacterial repetitive intergenic consensus (ERIC) PCR. All strains exhibited different patterns with the ERIC analysis. Strains 1 and 4 were similar with PCR analysis of ß-tubulin and ITS. The strains' potential as biological control agents against root-knot nematodes were examined in greenhouse trials. All three P. chlamydosporia strains significantly reduced the numbers of nematode egg masses. When chlamydospores were used as inoculum, strain 4 reduced egg numbers on tomato roots by almost 50%, and showed effects on the numbers of J2 and on nematode-caused root-galling. A newly developed SSU-based PCR analysis differentiated strain 4 from the others, and could therefore potentially be used as a screening tool for identifying other effective biocontrol strains of P. chlamydosporia var. chlamydosporia. PMID:23483846

  15. Effect of Soil Moisture and a Surfactant on Entomopathogenic Nematode Suppression of the Pecan Weevil, Curculio caryae.

    PubMed

    Shapiro-Ilan, David I; Cottrell, Ted E; Brown, Ian; Gardner, Wayne A; Hubbard, Robert K; Wood, Bruce W

    2006-12-01

    Our overall goal was to investigate several aspects of pecan weevil, Curculio caryae, suppression with entomopathogenic nematodes. Specifically, our objectives were to: 1) determine optimum moisture levels for larval suppression, 2) determine suppression of adult C. caryae under field conditions, and 3) measure the effects of a surfactant on nematode efficacy. In the laboratory, virulence of Heterorhabditis megidis (UK211) and Steinernema carpocapsae (All) were tested in a loamy sand at gravimetric water contents of negative 0.01, 0.06, 0.3, 1.0, and 15 bars. Curculio caryae larval survival decreased as moisture levels increased. The nematode effect was most pronounced at -0.06 bars. At -0.01 bars, larval survival was nematode presence, thus indicating that intense irrigation alone might reduce C. caryae populations. Overall, our results indicated no effect of a surfactant (Kinetic) on C. caryae suppression with entomopathogenic nematodes. In a greenhouse test, C. caryae larval survival was lower in all nematode treatments compared with the control, yet survival was lower in S. carpocapsae (Italian) and S. riobrave (7-12) treatments than in S. carpocapsae (Agriotos), S. carpocapsae (Mexican), and S. riobrave (355) treatments (survival was reduced to approximately 20% in the S. riobrave [7-12] treatment). A mixture of S. riobrave strains resulted in intermediate larval survival. In field experiments conducted over two consecutive years, S. riobrave (7-12) applications resulted in no observable control, and, although S. carpocapsae (Italian) provided some suppression, treatment effects were generally only detectable one day after treatment. Nematode strains possessing both high levels of virulence and a greater ability to withstand environmental conditions in the field need to be developed and tested.

  16. Effect of Soil Moisture and a Surfactant on Entomopathogenic Nematode Suppression of the Pecan Weevil, Curculio caryae

    PubMed Central

    Shapiro-Ilan, David I.; Cottrell, Ted E.; Brown, Ian; Gardner, Wayne A.; Hubbard, Robert K.; Wood, Bruce W.

    2006-01-01

    Our overall goal was to investigate several aspects of pecan weevil, Curculio caryae, suppression with entomopathogenic nematodes. Specifically, our objectives were to: 1) determine optimum moisture levels for larval suppression, 2) determine suppression of adult C. caryae under field conditions, and 3) measure the effects of a surfactant on nematode efficacy. In the laboratory, virulence of Heterorhabditis megidis (UK211) and Steinernema carpocapsae (All) were tested in a loamy sand at gravimetric water contents of negative 0.01, 0.06, 0.3, 1.0, and 15 bars. Curculio caryae larval survival decreased as moisture levels increased. The nematode effect was most pronounced at –0.06 bars. At –0.01 bars, larval survival was ≤5% regardless of nematode presence, thus indicating that intense irrigation alone might reduce C. caryae populations. Overall, our results indicated no effect of a surfactant (Kinetic) on C. caryae suppression with entomopathogenic nematodes. In a greenhouse test, C. caryae larval survival was lower in all nematode treatments compared with the control, yet survival was lower in S. carpocapsae (Italian) and S. riobrave (7–12) treatments than in S. carpocapsae (Agriotos), S. carpocapsae (Mexican), and S. riobrave (355) treatments (survival was reduced to approximately 20% in the S. riobrave [7–12] treatment). A mixture of S. riobrave strains resulted in intermediate larval survival. In field experiments conducted over two consecutive years, S. riobrave (7–12) applications resulted in no observable control, and, although S. carpocapsae (Italian) provided some suppression, treatment effects were generally only detectable one day after treatment. Nematode strains possessing both high levels of virulence and a greater ability to withstand environmental conditions in the field need to be developed and tested. PMID:19259466

  17. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants.

    PubMed

    Yuan, Jun; Ruan, Yunze; Wang, Beibei; Zhang, Jian; Waseem, Raza; Huang, Qiwei; Shen, Qirong

    2013-04-24

    Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF). To determine the beneficial mechanism of the strain, the colonization of NJN-6 strain on banana roots was evaluated using scanning electron microscopy (SEM). The plant growth-promoting hormones indole-3-acetic acid (IAA) and gibberellin A3 (GA3), along with antifungal lipopeptides iturin A, were detected when the NJN-6 strain was incubated in both Landy medium with additional l-tryptophan and in root exudates of banana plants. In addition, some antifungal volatile organic compounds and iturin A were also detected in BIO. In summary, strain NJN-6 could colonize the roots of banana plants after the application of BIO and produced active compounds which were beneficial for the growth of banana plants.

  18. Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi.

    PubMed

    Veresoglou, Stavros D; Rillig, Matthias C

    2012-04-23

    Arbuscular mycorrhizal (AM) fungi represent ubiquitous mutualists of terrestrial plants. Through the symbiosis, plant hosts, among other benefits, receive protection from pathogens. A meta-analysis was conducted on 106 articles to determine whether, following pathogen infection of AM-colonized plants, the identity of the organisms involved (pathogens, AM fungi and host plants) had implications for the extent of the AM-induced pathogen suppression. Data on fungal and nematode pathogens were analysed separately. Although we found no differences in AM effectiveness with respect to the identity of the plant pathogen, the identity of the AM isolate had a dramatic effect on the level of pathogen protection. AM efficiency differences with respect to nematode pathogens were mainly limited to the number of AM isolates present; by contrast, modification of the ability to suppress fungal pathogens could occur even through changing the identity of the Glomeraceae isolate applied. N-fixing plants received more protection from fungal pathogens than non-N-fixing dicotyledons; this was attributed to the more intense AM colonization in N-fixing plants. Results have implications for understanding mycorrhizal ecology and agronomic applications.

  19. Characterization of Soil Suppressiveness to Root-Knot Nematodes in Organic Horticulture in Plastic Greenhouse

    PubMed Central

    Giné, Ariadna; Carrasquilla, Marc; Martínez-Alonso, Maira; Gaju, Núria; Sorribas, Francisco J.

    2016-01-01

    The fluctuation of Meloidogyne population density and the percentage of fungal egg parasitism were determined from July 2011 to July 2013 in two commercial organic vegetable production sites (M10.23 and M10.55) in plastic greenhouses, located in northeastern Spain, in order to know the level of soil suppressiveness. Fungal parasites were identified by molecular methods. In parallel, pot tests characterized the level of soil suppressiveness and the fungal species growing from the eggs. In addition, the egg parasitic ability of 10 fungal isolates per site was also assessed. The genetic profiles of fungal and bacterial populations from M10.23 and M10.55 soils were obtained by Denaturing Gradient Gel Electrophoresis (DGGE), and compared with a non-suppressive soil (M10.33). In M10.23, Meloidogyne population in soil decreased progressively throughout the rotation zucchini, tomato, and radish or spinach. The percentage of egg parasitism was 54.7% in zucchini crop, the only one in which eggs were detected. Pochonia chlamydosporia was the only fungal species isolated. In M10.55, nematode densities peaked at the end of the spring-summer crops (tomato, zucchini, and cucumber), but disease severity was lower than expected (0.2–6.3). The percentage of fungal egg parasitism ranged from 3 to 84.5% in these crops. The results in pot tests confirmed the suppressiveness of the M10.23 and M10.55 soils against Meloidogyne. The number of eggs per plant and the reproduction factor of the population were reduced (P < 0.05) in both non-sterilized soils compared to the sterilized ones after one nematode generation. P. chlamydosporia was the only fungus isolated from Meloidogyne eggs. In in vitro tests, P. chlamydosporia isolates were able to parasitize Meloidogyne eggs from 50 to 97% irrespective of the site. DGGE fingerprints revealed a high diversity in the microbial populations analyzed. Furthermore, both bacterial and fungal genetic patterns differentiated suppressive from non-suppressive

  20. Evolutionary Expansion of WRKY Gene Family in Banana and Its Expression Profile during the Infection of Root Lesion Nematode, Pratylenchus coffeae

    PubMed Central

    Suthanthiram, Backiyarani; Subbaraya, Uma; Marimuthu Somasundram, Saraswathi; Muthu, Mayilvaganan

    2016-01-01

    The WRKY family of transcription factors orchestrate the reprogrammed expression of the complex network of defense genes at various biotic and abiotic stresses. Within the last 96 million years, three rounds of Musa polyploidization events had occurred from selective pressure causing duplication of MusaWRKYs with new activities. Here, we identified a total of 153 WRKY transcription factors available from the DH Pahang genome. Based on their phylogenetic relationship, the MusaWRKYs available with complete gene sequence were classified into the seven common WRKY sub-groups. Synteny analyses data revealed paralogous relationships, with 17 MusaWRKY gene pairs originating from the duplication events that had occurred within the Musa lineage. We also found 15 other MusaWRKY gene pairs originating from much older duplication events that had occurred along Arecales and Poales lineage of commelinids. Based on the synonymous and nonsynonymous substitution rates, the fate of duplicated MusaWRKY genes was predicted to have undergone sub-functionalization in which the duplicated gene copies retain a subset of the ancestral gene function. Also, to understand the regulatory roles of MusaWRKY during a biotic stress, Illumina sequencing was performed on resistant and susceptible cultivars during the infection of root lesion nematode, Pratylenchus coffeae. The differential WRKY gene expression analysis in nematode resistant and susceptible cultivars during challenged and unchallenged conditions had distinguished: 1) MusaWRKYs participating in general banana defense mechanism against P.coffeae common to both susceptible and resistant cultivars, 2) MusaWRKYs that may aid in the pathogen survival as suppressors of plant triggered immunity, 3) MusaWRKYs that may aid in the host defense as activators of plant triggered immunity and 4) cultivar specific MusaWRKY regulation. Mainly, MusaWRKY52, -69 and -92 are found to be P.coffeae specific and can act as activators or repressors in a

  1. Bacterial rRNA Genes Associated with Soil Suppressiveness against the Plant-Parasitic Nematode Heterodera schachtii

    PubMed Central

    Yin, Bei; Valinsky, Lea; Gao, Xuebiao; Becker, J. Ole; Borneman, James

    2003-01-01

    The goal of this study was to identify bacteria involved in soil suppressiveness against the plant-parasitic nematode Heterodera schachtii. Since H. schachtii cysts isolated from the suppressive soil can transfer this beneficial property to nonsuppressive soils, analysis of the cyst-associated microorganisms should lead to the identification of the causal organisms. Our experimental approach was to identify bacterial rRNA genes (rDNA) associated with H. schachtii cysts obtained from soil mixtures with various levels of suppressiveness. We hypothesized that we would be able to identify bacteria involved in the suppressiveness by correlating population shifts with differing levels of suppressiveness. Soil treatments containing different amounts of suppressive and fumigation-induced nonsuppressive soils exhibited various levels of suppressiveness after two nematode generations. The 10%-suppressive-soil treatment contained numbers of eggs per gram of soil similar to those of the 100%-suppressive-soil treatment, indicating that the suppressive factor(s) had been transferred. Bacterial rDNA associated with H. schachtii cysts were identified using a culture-independent method termed oligonucleotide fingerprinting of rRNA genes. Bacteria from five major taxonomic groups (Actinobacteria, Cytophaga-Flexibacter-Bacteroides, α-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria) were identified. Three bacterial rDNA groups contained clones that were more prevalent in the highly suppressive soil treatments than in the less suppressive treatments, indicating a potential involvement in the H. schachtii suppressiveness. When these three groups were examined with specific PCR analyses performed on H. schachtii cysts that developed in soils treated with three biocidal compounds, only one bacterial rDNA group with moderate to high sequence identity to rDNA from several Rhizobium species and uncultured α-proteobacterial clones was consistently associated with the highly

  2. Characterization of resistance to pine wood nematode infection in Pinus thunbergii using suppression subtractive hybridization

    PubMed Central

    2012-01-01

    Background Pine wilt disease is caused by the pine wood nematode, Bursaphelenchus xylophilus, which threatens pine forests and forest ecosystems worldwide and causes serious economic losses. In the 40 years since the pathogen was identified, the physiological changes occurring as the disease progresses have been characterized using anatomical and biochemical methods, and resistant trees have been selected via breeding programs. However, no studies have assessed the molecular genetics, e.g. transcriptional changes, associated with infection-induced physiological changes in resistant or susceptible trees. Results We constructed seven subtractive suppression hybridization (SSH) cDNA libraries using time-course sampling of trees inoculated with pine wood nematode at 1, 3, or 7 days post-inoculation (dpi) in susceptible trees and at 1, 3, 7, or 14 dpi in resistant trees. A total of 3,299 sequences was obtained from these cDNA libraries, including from 138 to 315 non-redundant sequences in susceptible SSH libraries and from 351 to 435 in resistant SSH libraries. Using Gene Ontology hierarchy, those non-redundant sequences were classified into 15 subcategories of the biological process Gene Ontology category and 17 subcategories of the molecular function category. The transcriptional components revealed by the Gene Ontology classification clearly differed between resistant and susceptible libraries. Some transcripts were discriminative: expression of antimicrobial peptide and putative pathogenesis-related genes (e.g., PR-1b, 2, 3, 4, 5, 6) was much higher in susceptible trees than in resistant trees at every time point, whereas expression of PR-9, PR-10, and cell wall-related genes (e.g., for hydroxyproline-rich glycoprotein precursor and extensin) was higher in resistant trees than in susceptible trees at 7 and 14 dpi. Conclusions Following inoculation with pine wood nematode, there were marked differences between resistant and susceptible trees in transcript diversity

  3. Nematicides increase grain yields in spring wheat cultivars and suppress plant-parasitic and bacterial-feeding nematodes.

    PubMed

    Kimpinski, J; Martin, R A; Sturz, A V

    2005-12-01

    Grain yields of spring wheat (Triticum aestivum L. cvs. AC Barrie, AC Walton, AC Wilmot, Belvedere, Glenlea) in field plots over a 3-year period were increased (P < 0.001) by an average of 0.56 (25.1%) and 1.17 (52.5%) tonnes/ha in comparison to untreated check plots when aldicarb at 2.24 kg or fosthiazate at 13.5 a.i./ha, respectively, were broadcast and incorporated into the soil to suppress nematodes. The planned F test using orthogonal coefficients indicated that the mean response of grain yields to nematicide treatments of AC Barrie and Glenlea, which are grown primarily in the prairie provinces of Canada, was greater (48.5%) than the mean response of Belvedere, AC Walton, and AC Wilmot (33.7%), which are more common in the Maritime region of Canada (P < 0.001). Root lesion nematodes (primarily Pratylenchus penetrans) in wheat roots and in root zone soil at harvest were reduced by the nematicide applications (P < 0.001). Bacterial-feeding nematodes (primarily Diplogaster lheritieri (Maupas)) in root zone soil were also suppressed by fosthiazate (P < 0.01) but not by aldicarb. These data indicate that root lesion nematodes cause substantial yield losses in spring wheat in the Maritime region of Canada.

  4. A Novel Meloidogyne incognita Effector Misp12 Suppresses Plant Defense Response at Latter Stages of Nematode Parasitism

    PubMed Central

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Wang, Gaofeng; Xiao, Xueqiong; Xiao, Yannong

    2016-01-01

    Secreted effectors in plant root-knot nematodes (RKNs, or Meloidogyne spp.) play key roles in their parasite processes. Currently identified effectors mainly focus on the early stage of the nematode parasitism. There are only a few reports describing effectors that function in the latter stage. In this study, we identified a potential RKN effector gene, Misp12, that functioned during the latter stage of parasitism. Misp12 was unique in the Meloidogyne spp., and highly conserved in Meloidogyne incognita. It encoded a secretory protein that specifically expressed in the dorsal esophageal gland, and highly up-regulated during the female stages. Transient expression of Misp12-GUS-GFP in onion epidermal cell showed that Misp12 was localized in cytoplast. In addition, in planta RNA interference targeting Misp12 suppressed the expression of Misp12 in nematodes and attenuated parasitic ability of M. incognita. Furthermore, up-regulation of jasmonic acid (JA) and salicylic acid (SA) pathway defense-related genes in the virus-induced silencing of Misp12 plants, and down-regulation of SA pathway defense-related genes in Misp12-expressing plants indicated the gene might be associated with the suppression of the plant defense response. These results demonstrated that the novel nematode effector Misp12 played a critical role at latter parasitism of M. incognita. PMID:27446188

  5. Effects of iron and boron combinations on the suppression of Fusarium wilt in banana

    PubMed Central

    Dong, Xian; Wang, Min; Ling, Ning; Shen, Qirong; Guo, Shiwei

    2016-01-01

    The effects of mineral nutrient on banana wilt disease, which are the result of a competitive relationship between host plants and pathogens, can affect the interactions of plants with microorganisms. To investigate the mineral nutrient effect, hydroponic experiments were conducted in glasshouse containing combinations of low, medium, and high iron (Fe) and boron (B) concentrations, followed by pathogen inoculation. High Fe and B treatment significantly reduced the disease index and facilitated plants growth. With increasing Fe and B concentrations, more Fe and B accumulated in plants. High Fe and B treatment dramatically reduced the Fusarium oxysporum conidial germination rate and fungal growth compared with the other two treatments, contributing to decreased numbers of the pathogen on infected plants. Furthermore, High Fe and B treatment decreased the fusaric acid production of F. oxysporum in vitro and also increased the mannitol content of the plants, which in turn decreased the phytotoxin production of infected plants and finally reduced the disease index due to the virulence factor of phytotoxin. Taken together, these results indicate that Fe and B play a multifunctional role in reducing the severity of diseases by affecting the growth of F. oxysporum and the responses between plants and pathogens. PMID:27941854

  6. Resiliency of a nematode community and suppressive service to tillage and nematicide application.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that populations of predatory and omnivorous nematodes would be slower to recover from conventional tillage and nematicide application than the other nematode trophic groups, and that lower populations of predators and omnivores would lead to greater survival and reproduction of plan...

  7. A novel nematode effector suppresses plant immunity by activating host reactuve oxygen species-scavenging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative burst is a hallmark event of the pathogen-associated molecular pattern (PAMP) triggered immunity (PTI), which is the first line of plant defense mechanisms, but it remains unclear how nematodes can overcome this defense mechanism. In this study, we show that plant-parasitic nematode Meloid...

  8. Product evaluation for reniform nematode suppression in Mississippi Delta sweetpotato production, 2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reniform nematode, Rotylenchulus reniformis, can cause significant losses in sweetpotato, Ipomoea batatas, production in the Mississippi Delta. Reniform nematode is a microscopic plant parasite that feeds on sweetpotato roots causing severe stunting of root growth. Reduction in yield due to the ...

  9. Suppression of Root-knot Nematode Populations with Selected Rapeseed Cultivars as Green Manure

    PubMed Central

    Mojtahedi, H.; Santo, G. S.; Hang, A. N.; Wilson, J. H.

    1991-01-01

    Meloidogyne chitwoodi races 1 and 2 and M. hapla reproduced on 12 cultivars of Brassica napus and two cultivars of B. campestris. The mean reproductive factors (Rf), Rf = Pf at 55 days ÷ 5,000, for the three nematodes were 8.3, 2.2, and 14.3, respectively. All three nematodes reproduced more efficiently (P < 0.05) on B. campestris than on B. napus. Amending M. chitwoodi-infested soil in plastic bags with chopped shoots of Jupiter rapeseed reduced the nematode population more (P < 0.05) than amendment with wheat shoots. Incorporating Jupiter shoots to soil heavily infested with M. chitwoodi in microplots reduced the nematode population more (P < 0.05) than fallow or corn shoot treatments. The greatest reduction in nematode population density was attained by cropping rapeseed for 2 months and incorporating it into the soil as a green manure. PMID:19283108

  10. Potential of Sahelian Native Shrub Materials to Suppress the Spiral Nematode Helicotylenchus dihystera

    PubMed Central

    Chapuis-Lardy, L.; Diakhaté, S.; Djigal, D.; Ba, A. O.; Dick, R. P.; Sembéne, P. M.; Masse, D.

    2015-01-01

    Pearl millet (Pennisetum glaucum) is a drought-tolerant cereal commonly grown for grain and fodder in arid areas throughout the world. Senegalese millet fields are infested with Helicotylenchus. The native evergreen woody shrub Piliostigma reticulatum is widely distributed in sub-Saharan Africa. Its coppiced residues are used by small farmers as mulch in crop fields. The shrub’s nematicidal effect on the spiral nematode Helicotylenchus dihystera was evaluated in a pearl millet pot experiment. The abundance of nematodes decreased by 64% after application of either leaf powder or a pulverized mixing of leaves and stems, suggesting the use of aboveground materials of P. reticulatum as a potential nematicide. The results show promise for use of a local resource by subsistence farmers in the Sahel. Further research is needed on application to fully develop this approach as a biopesticide. PMID:26527843

  11. Root-Lesion Nematodes Suppress Cabbage Aphid Population Development by Reducing Aphid Daily Reproduction

    PubMed Central

    Hol, W. H. G.; Raaijmakers, Ciska E.; Mons, Ilse; Meyer, Katrin M.; van Dam, Nicole M.

    2016-01-01

    Empirical studies have shown that belowground feeding herbivores can affect the performance of aboveground herbivores in different ways. Often the critical life-history parameters underlying the observed performance effects remain unexplored. In order to better understand the cause for the observed effects on aboveground herbivores, these ecological mechanisms must be better understood. In this study we combined empirical experiments with a modeling approach to analyze the effect of two root feeding endoparasitic nematodes with different feeding strategies on the population growth of the aboveground feeding specialist aphid Brevicoryne brassicae on Brassica nigra. The aim was to test whether emerging differences in life history characteristics (days until reproduction, daily reproduction) would be sufficient to explain observed differences in aphid population development on plants with and without two species of nematodes. Aphid numbers were lower on plants with Pratylenchus penetrans in comparison to aphid numbers on plants with Meloidogyne spp. A dedicated experiment showed that aphid daily reproduction was lower on plants with P. penetrans (3.08 offspring female–1 day–1) in comparison to both uninfested plants and plants with Meloidogyne spp. (3.50 offspring female–1 day–1). The species-specific reduction of aphid reproduction appeared independent of changes in amino acids, soluble sugars or the glucosinolate sinigrin in the phloem. An individual-based model revealed that relatively small differences in reproduction rate per female were sufficient to yield a similar difference in aphid populations as was found in the empirical experiments. PMID:26904074

  12. Potential of foliar, dip, and injection applications of avermectins for control of plant-parasitic nematodes.

    PubMed

    Jansson, R K; Rabatin, S

    1998-03-01

    Studies were conducted to determine the potential of two avermectin compounds, abamectin and emamectin benzoate, for controlling plant-parasitic nematodes when applied by three methods: foliar spray, root dip, and pseudostem injection. Experiments were conducted against Meloidogyne incognita on tomato, M. javanica on banana, and Radopholus similis on banana. Foliar applications of both avermectins to banana and tomato were not effective for controlling any of the nematodes evaluated. Root dips of banana and tomato were moderately effective for controlling M. incognita on tomato and R. similis on banana. Injections (1 ml) of avermectins into banana pseudostems were effective for controlling M. javanica and R similis, and were comparable to control achieved with a conventional chemical nematicide, fenamiphos. Injections of 125 to 2,000 mug/plant effectively controlled one or both nematodes on banana; abamectin was more effective than emamectin benzoate for controlling nematodes.

  13. Potential of Foliar, Dip, and Injection Applications of Avermectins for Control of Plant-Parasitic Nematodes

    PubMed Central

    Jansson, Richard K.; Rabatin, Susan

    1998-01-01

    Studies were conducted to determine the potential of two avermectin compounds, abamectin and emamectin benzoate, for controlling plant-parasitic nematodes when applied by three methods: foliar spray, root dip, and pseudostem injection. Experiments were conducted against Meloidogyne incognita on tomato, M. javanica on banana, and Radopholus similis on banana. Foliar applications of both avermectins to banana and tomato were not effective for controlling any of the nematodes evaluated. Root dips of banana and tomato were moderately effective for controlling M. incognita on tomato and R. similis on banana. Injections (1 ml) of avermectins into banana pseudostems were effective for controlling M. javanica and R similis, and were comparable to control achieved with a conventional chemical nematicide, fenamiphos. Injections of 125 to 2,000 μg/plant effectively controlled one or both nematodes on banana; abamectin was more effective than emamectin benzoate for controlling nematodes. PMID:19274200

  14. BANANA GEL.

    PubMed

    McGuire, G; Falk, K G

    1922-03-20

    The conditions for the formation of gels from banana extracts were studied. Gels were obtained with extracts more alkaline than pH 7.0 with very small quantities of calcium, strontium, and barium salts, the gel formation with these salts decreasing in the indicated order. In solutions more acid than pH 6.0, no gels were obtained with these salts. Magnesium, lithium, and sodium salts did not cause gel formation either in acid or alkaline solutions. Pancreatine gave a gel on incubation with banana extract at pH 5.0. The gel-forming property of banana extracts was destroyed on boiling.

  15. Analysis of Putative Apoplastic Effectors from the Nematode, Globodera rostochiensis, and Identification of an Expansin-Like Protein That Can Induce and Suppress Host Defenses

    PubMed Central

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses. PMID:25606855

  16. Deep 16S rRNA Pyrosequencing Reveals a Bacterial Community Associated with Banana Fusarium Wilt Disease Suppression Induced by Bio-Organic Fertilizer Application

    PubMed Central

    Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas. PMID:24871319

  17. Deep 16S rRNA pyrosequencing reveals a bacterial community associated with Banana Fusarium Wilt disease suppression induced by bio-organic fertilizer application.

    PubMed

    Shen, Zongzhuan; Wang, Dongsheng; Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas.

  18. Detection of Invertebrate Suppressive Soils, and Identification of a Possible Biological Control Agent for Meloidogyne Nematodes Using High Resolution Rhizosphere Microbial Community Analysis

    PubMed Central

    Bell, Nigel L.; Adam, Katharine H.; Jones, Rhys J.; Johnson, Richard D.; Mtandavari, Yeukai F.; Burch, Gabriela; Cave, Vanessa; Cameron, Catherine; Maclean, Paul; Popay, Alison J.; Fleetwood, Damien

    2016-01-01

    White clover (Trifolium repens) is the key legume component of New Zealand pastoral agriculture due to the high quality feed and nitrogen inputs it provides. Invertebrate pests constrain white clover growth and this study investigated rhizosphere-associated fungal controls for two of these pests and attempts to disentangle the underpinning mechanisms. The degree of suppressiveness of 10 soils, in a latitudinal gradient down New Zealand, to added Meloidogyne hapla and Costelytra zealandica scarab larvae was measured in untreated soil. Most of the soils showed no suppressive activity against these pests but two showed activity against M. hapla and two against C. zealandica. Rhizosphere fungi responsible for pest suppressive responses were elucidated via next-generation sequencing. In the M. hapla-suppressive soils nematode-trapping Orbiliomycetes fungi were present in significantly greater abundance than non-suppressive soils and their abundance increased further with addition of M. hapla. A comparison of plant growth and the rhizosphere fungal community between untreated and irradiated soil was carried out on 5 of the 10 soils using Pyronota as the scarab larvae. Soil irradiation either: reduced (by 60–70%); increased (16×) or made no difference to white clover growth across the five soils tested, illustrating the range of microbial impacts on plant production. In one of the M. hapla suppressive soils irradiation resulted in a significant increase in nematode galling suggesting that Orbiliomycetes fungi were indeed responsible for the suppressive effect. Lack of consistent changes in soil macronutrients and pH post-irradiation suggest these were not responsible for plant or invertebrate responses. The use of next generation sequencing in controlled pot trials has allowed identification of a potential biological control organism and bioindicator for M. hapla suppression. PMID:28082997

  19. A nematode immunomodulator suppresses grass pollen-specific allergic responses by controlling excessive Th2 inflammation.

    PubMed

    Daniłowicz-Luebert, Emilia; Steinfelder, Svenja; Kühl, Anja A; Drozdenko, Gennadiy; Lucius, Richard; Worm, Margitta; Hamelmann, Eckard; Hartmann, Susanne

    2013-03-01

    Helminth parasites modulate the immune system by complex mechanisms to ensure persistence in the host. Released immunomodulatory parasite components lead to a beneficial environment for the parasite by targeting different host cells and in parallel to a modulation of unrelated inflammatory responses in the host, such as allergy. The aim of this study was to investigate the effect of the potent helminth immunomodulator, filarial cystatin, in a murine model of airway inflammation and hyperreactivity induced by a clinically relevant aeroallergen (timothy grass (Phleum pratense) pollen) and on the function of peripheral blood mononuclear cells (PBMCs) from timothy grass pollen allergic patients. BALB/c mice were systemically sensitised with a recombinant major allergen of timothy grass pollen (rPhl p 5b) and then challenged with timothy grass pollen extract (GPE) via the airways. Filarial cystatin was applied i.p. during the sensitisation phase. Airway hyperresponsiveness to methacholine challenges, inflammation of airways, inflammatory cell recruitment, cytokine production and lung histopathology were investigated. In a translational approach, PBMCs from allergic subjects and healthy controls were treated in vitro with cystatin prior to stimulation with GPE. Administration of filarial cystatin suppressed rPhl p 5b-induced allergen-specific Th2-responses and airway inflammation, inhibited local recruitment of eosinophils, reduced levels of allergen-specific IgE and down-regulated IL-5 and IL-13 in the bronchoalveolar lavage (BAL). Ex vivo restimulation with cystatin of spleen cells from cystatin-treated mice induced the production of IL-10, while cystatin inhibited allergen-specific IL-5 and IL-13 levels. Human PBMCs from timothy grass pollen allergic patients displayed a shift towards a Th1 response after treatment with cystatin. These results show that filarial cystatin ameliorates allergic inflammation and disease in a clinically relevant model of allergy. This data

  20. Effect of Endophytic Fusarium oxysporum on Host Preference of Radopholus similis to Tissue Culture Banana Plants.

    PubMed

    Athman, Shahasi Y; Dubois, Thomas; Coyne, Daniel; Gold, Clifford S; Labuschagne, Nico; Viljoen, Altus

    2006-12-01

    The burrowing nematode Radopholus similis is one of the major constraints to banana (Musa spp.) production worldwide. Resource-poor farmers can potentially manage R. similis by using naturally occurring banana endophytes, such as nonpathogenic Fusarium oxysporum, that are inoculated into tissue culture banana plantlets. At present, it is unclear at what stage in the R. similis infection process the endophytes are most effective. In this study, the effect of three endophytic F. oxysporum isolates (V5w2, Eny1.31i and Eny7.11o) on R. similis host preference of either endophyte-treated or untreated banana plants was investigated. No differences were observed between the proportion of nematodes attracted to either root segments excised from endophyte-treated or untreated plants, or in experiments using endophyte-treated and untreated tissue culture banana plantlets. These results imply that the early processes of banana plant host recognition by R. similis are not affected by endophyte infection.

  1. Nematicidal effects of oxamyl applied to leaves of banana seedlings.

    PubMed

    Gowen, S R

    1977-04-01

    Foliar applications of oxamyl prevented nematodes from invading roots of diploid bananas. One spray with 1,250 microg/ml was more effective than 1, 2, or 3 sprays with 625 microg/ml applied at 5-day intervals. After 3 sprays with 1,250 microg/ml, invasion may be prevented for up to 4 weeks and possibly longer. Washing roots after oxamyl treatments prevented nematicidal control. When applied to nematode-infected plants, three sprays of oxamyl decreased nematode populations in the roots.

  2. Let's Go Bananas.

    ERIC Educational Resources Information Center

    Brown, Helen; And Others

    1995-01-01

    Presents a hands-on primary science unit of activities designed to teach students concepts about bananas. Real bananas are used as students investigate and use the process skills of observation, measurement, and communication. Using bananas as a theme, science, mathematics, social studies, music, and writing are integrated into the curriculum of…

  3. Nematode problems affecting agriculture in the Philippines.

    PubMed

    Davide, R G

    1988-04-01

    Nematodes are considered major pests on most economic crops in the Philippines, particularly on banana, pineapple, citrus, tomato, ramie, and sugarcane. Radopholus similis is the most destructive nematode on banana, while Meloidogyne spp. are more serious on various vegetable crops such as tomato, okra, and celery and on fiber crops such as ramie. Tylenchulus semipenetrans is a problem on citrus and Rotylenchulus reniformis on pineapple and some legume crops. Hirschmanniella oryzae and Aphelenchoides besseyi are becoming serious on rice, and Pratylenchus zeae is affecting corn in some areas. Lately, Globodera rostochiensis has been causing serious damage on potato in the highlands. Control measures such as crop rotation, planting resistant varieties, chemical nematicide application, and biological control have been recommended to control these nematodes.

  4. Efficacy of Paecilomyces lilacinus (strain 251) for the control of Radopholus similis in banana.

    PubMed

    Mendoza, A; Sikora, R A; Kiewnick, S

    2004-01-01

    Paecilomyces lilacinus is a common soil fungus that has been isolated from many different habitats around the world. It is well known as a facultative egg pathogen of sedentary nematodes and also an important option to control Radopholus similis juvenile and adults in banana. This nematode antagonistic fungus may be used in an integrated approach to control banana plant parasitic nematodes. Dose response and form of application experiments were conducted with burrowing nematode, R. similis, on banana using a commercial water dispersible granulate formulated P. lilacinus (strain 251) product. The results revealed that nematode activity decreased in the presence of this fungus. An important correlation between rates of application and the degree of control of R. simnilis penetration and banana root weight was observed. The best control was achieved in the treatment were plantlets and soil were pre-inoculated with P. lilacinus and reinoculated during transplantation. The results showed that the biocontrol agent P. lilacinus is an excellent candidate for an IPM program against nematodes such as Radopholus similis.

  5. Suppression of the root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] on tomato by dual inoculation with arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria.

    PubMed

    Liu, Runjin; Dai, Mei; Wu, Xia; Li, Min; Liu, Xingzhong

    2012-05-01

    Arbuscular mycorrhizal (AM) fungi and plant growth-promoting rhizobacteria (PGPR) have potential for the biocontrol of soil-borne diseases. The objectives of this study were to quantify the interactions between AM fungi [Glomus versiforme (Karsten) Berch and Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe] and PGPR [Bacillus polymyxa (Prazmowski) Mace and Bacillus sp.] during colonization of roots and rhizosphere of tomato (Lycopersicon esculentum Mill) plants (cultivar Jinguan), and to determine their combined effects on the root-knot nematode, Meloidogyne incognita, and on tomato growth. Three greenhouse experiments were conducted. PGPR increased colonization of roots by AM fungi, and AM fungi increased numbers of PGPR in the rhizosphere. Dual inoculations of AM fungi plus PGPR provided greater control of M. incognita and greater promotion of plant growth than single inoculations, and the best combination was G. mosseae plus Bacillus sp. The results indicate that specific AM fungi and PGPR can stimulate each other and that specific combinations of AM fungi and PGPR can interact to suppress M. incognita and disease development.

  6. DYNAMICS OF NEMATODE POPULATIONS IN CACAO GROWN UNDER TRADIONALLY SYSTEM OF MANAGEMENT IN PERUVIAN AMAZON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nature of crops and management systems greatly influences population dynamics of parasitic and nonparasitic nematodes in soil. An experiment was undertaken at Tropical Crop Research institute (ICT), Tarapoto, Peru to assess the population dynamics of nematodes in a Cocoa (Theobroma cacao L.)-Banana ...

  7. Phenotypic analysis of apoplastic effectors from the phytopathogenic nematode, Globodera rostochiensis demonstrates that an expansin can induce and suppress host defenses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potato cyst nematode Globodera rostochiensis (Woll.) is an important pest of potato. Like other biotrophic pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm to successfully infect their hosts. We have identifie...

  8. Aggressiveness and Damage Potential of Central American and Caribbean Populations of Radopholus spp. in Banana.

    PubMed

    Marin, D H; Barker, K R; Kaplan, D T; Sutton, T B; Opperman, C H

    1999-12-01

    Monoxenic cultures of burrowing nematode populations extracted from banana roots from Belize, Guatemala, Honduras, and Costa Rica were established on carrot discs. Cultures of Radopholus spp. were also obtained from Florida, Puerto Rico, Dominican Republic, and Ivory Coast. The aggressiveness (defined as reproductive fitness and root necrosis) of these populations was evaluated by inoculating banana plants (Musa AAA, cv. Grande Naine) with 200 nematodes/plant. Banana plants produced by tissue culture were grown in 0.4-liter styrofoam cups, containing a 1:1 mix of a coarse and a fine sand, at ca. 27 degrees C and 80% RH. Banana plants were acclimated and allowed to grow for 4 weeks prior to inoculation. Plant height, fresh shoot and root weights, root necrosis, and nematode population densities were determined 8 weeks after inoculation. Burrowing-nematode populations varied in aggressiveness, and their reproductive fitness was generally related to damage reported in the field. Plant height and fresh shoot and root weight did not reflect damage caused by nematodes under our experimental conditions. Necrosis of primary roots was closely related to the reproductive fitness of the nematode populations. Variation in aggressiveness among nematode populations followed a similar trend in the two susceptible hosts tested, Grande Naine and Pisang mas. All nematode populations had a low reproductive factor (Rf nematode population parasitizing this important source of resistance to R. similis.

  9. Aggressiveness and Damage Potential of Central American and Caribbean Populations of Radopholus spp. in Banana

    PubMed Central

    Marin, D. H.; Barker, K. R.; Kaplan, D. T.; Sutton, T. B.; Opperman, C. H.

    1999-01-01

    Monoxenic cultures of burrowing nematode populations extracted from banana roots from Belize, Guatemala, Honduras, and Costa Rica were established on carrot discs. Cultures of Radopholus spp. were also obtained from Florida, Puerto Rico, Dominican Republic, and Ivory Coast. The aggressiveness (defined as reproductive fitness and root necrosis) of these populations was evaluated by inoculating banana plants (Musa AAA, cv. Grande Naine) with 200 nematodes/plant. Banana plants produced by tissue culture were grown in 0.4-liter styrofoam cups, containing a 1:1 mix of a coarse and a fine sand, at ca. 27 °C and 80% RH. Banana plants were acclimated and allowed to grow for 4 weeks prior to inoculation. Plant height, fresh shoot and root weights, root necrosis, and nematode population densities were determined 8 weeks after inoculation. Burrowing-nematode populations varied in aggressiveness, and their reproductive fitness was generally related to damage reported in the field. Plant height and fresh shoot and root weight did not reflect damage caused by nematodes under our experimental conditions. Necrosis of primary roots was closely related to the reproductive fitness of the nematode populations. Variation in aggressiveness among nematode populations followed a similar trend in the two susceptible hosts tested, Grande Naine and Pisang mas. All nematode populations had a low reproductive factor (Rf ≤2.5) in the resistant host except for the Ivory Coast population which had a moderate reproductive factor (Rf ≤ 5) on Pisang Jari Buaya. This is the first report of a burrowing nematode population parasitizing this important source of resistance to R. similis. PMID:19270910

  10. Fermentation of Foc TR4-infected bananas and Trichoderma spp.

    PubMed

    Yang, J; Li, B; Liu, S W; Biswas, M K; Liu, S; Wei, Y R; Zuo, C W; Deng, G M; Kuang, R B; Hu, C H; Yi, G J; Li, C Y

    2016-10-17

    Fusarium wilt (also known as Panama disease) is one of the most destructive banana diseases, and greatly hampers the global production of bananas. Consequently, it has been very detrimental to the Chinese banana industry. An infected plant is one of the major causes of the spread of Fusarium wilt to nearby regions. It is essential to develop an efficient and environmentally sustainable disease control method to restrict the spread of Fusarium wilt. We isolated Trichoderma spp from the rhizosphere soil, roots, and pseudostems of banana plants that showed Fusarium wilt symptoms in the infected areas. Their cellulase activities were measured by endoglucanase activity, β-glucosidase activity, and filter paper activity assays. Safety analyses of the Trichoderma isolates were conducted by inoculating them into banana plantlets. The antagonistic effects of the Trichoderma spp on the Fusarium pathogen Foc tropical Race 4 (Foc TR4) were tested by the dual culture technique. Four isolates that had high cellulase activity, no observable pathogenicity to banana plants, and high antagonistic capability were identified. The isolates were used to biodegrade diseased banana plants infected with GFP-tagged Foc TR4, and the compost was tested for biological control of the infectious agent; the results showed that the fermentation suppressed the incidence of wilt and killed the pathogen. This study indicates that Trichoderma isolates have the potential to eliminate the transmission of Foc TR4, and may be developed into an environmentally sustainable treatment for controlling Fusarium wilt in banana plants.

  11. Evaluation of Streptomyces sp. strain g10 for suppression of Fusarium wilt and rhizosphere colonization in pot-grown banana plantlets.

    PubMed

    Getha, K; Vikineswary, S; Wong, W H; Seki, T; Ward, A; Goodfellow, M

    2005-01-01

    Streptomyces sp. strain g10 exhibited strong antagonism towards Fusarium oxysporum f.sp. cubense (Foc) races 1, 2 and 4 in plate assays by producing extracellular antifungal metabolites. Treating the planting hole and roots of 4-week-old tissue-culture-derived 'Novaria' banana plantlets with strain g10 suspension (10(8) cfu/ml), significantly (P < 0.05) reduced wilt severity when the plantlets were inoculated with 10(4) spores/ml Foc race 4. The final disease severity index for leaf symptom (LSI) and rhizome discoloration (RDI) was reduced about 47 and 53%, respectively, in strain g10-treated plantlets compared to untreated plantlets. Reduction in disease incidence was not significant (P < 0.05) when plantlets were inoculated with a higher concentration (10(6) spores/ml) of Foc race 4. Rhizosphere population of strain g10 showed significant (P = 0.05) increase of more than 2-fold at the end of the 3rd week compared to the 2nd week after soil amendment with the antagonist. Although the level dropped, the rhizosphere population at the end of the 6th week was still nearly 2-fold higher than the level detected after 2 weeks. In contrast, the root-free population declined significantly (P = 0.05), nearly 4-fold after 6 weeks when compared to the level detected after 2 weeks. Neither growth-inhibiting nor growth-stimulating effects were observed in plantlets grown in strain g10-amended soil.

  12. VIEWPOINT: Bananas go paraelectric

    NASA Astrophysics Data System (ADS)

    Loidl, A.; Krohns, S.; Hemberger, J.; Lunkenheimer, P.

    2008-05-01

    Using a banana as an example, we demonstrate how the ferroelectric-like hysteresis loops measured in inhomogeneous, conducting materials can easily be identified as non-intrinsic. With simple experiments, the response of a banana to electric fields is revealed as characteristic for an inhomogeneous paraelectric ion conductor. Not even absolute beginners in dielectrics should identify this biological matter as ferroelectric.

  13. Effects of endophytic Fusarium oxysporum towards Radopholus similis activity in absence of banana.

    PubMed

    Vu, T T; Sikora, R A; Hauschild, R

    2004-01-01

    Four endophytic fungi (Fusarium spp.) isolated from the cortical tissue of surface-sterilised banana as well as from tomato roots were tested for their capacity of biological control towards the burrowing nematode Radopholus similis on banana. The pathogenic and parasitic capacities of endophytic fungi towards R. similis were tested in in vitro experiments. No parasitism of fungi on R. similis was observed. However, nematode activity decreased significantly in the presence of all endophytic fungi in vitro when compared to nematodes in the absence of fungi. The effects of fungi on R. similis activities in the soil were tested in the absence of plants. Nematode activities were reduced significantly by 16-30% by endophytic fungi when compared to untreated soil.

  14. The banana genome hub.

    PubMed

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D'Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world's favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/

  15. Natural Radioactivity in Bananas

    NASA Astrophysics Data System (ADS)

    Zagatto, V. A. B.; Medina, N. H.; Okuno, E.; Umisedo, N. K.

    2008-08-01

    The content of 40K natural radionuclide in bananas (Musa sapientum) from the Vale do Ribeira region, São Paulo, Brazil, has been measured. We have collected several samples of bananas prata and nanica, its peels, leaves, and also different soils where the banana tree was planted, such as soil with a standard amount of fertilizer, the fertilizer itself and also soil without fertilizer for comparison. We have used the gamma-ray spectroscopy technique with a NaI(T1) crystal inside a 12 cm thick lead shield to detect the gamma-radiation. The results indicate that only part of the available potassium is absorbed by the plant, which is mainly concentrated in the banana peel.

  16. Natural Radioactivity in Bananas

    SciTech Connect

    Zagatto, V. A. B.; Medina, N. H.; Okuno, E.; Umisedo, N. K.

    2008-08-07

    The content of {sup 40}K natural radionuclide in bananas (Musa sapientum) from the Vale do Ribeira region, Sao Paulo, Brazil, has been measured. We have collected several samples of bananas prata and nanica, its peels, leaves, and also different soils where the banana tree was planted, such as soil with a standard amount of fertilizer, the fertilizer itself and also soil without fertilizer for comparison. We have used the gamma-ray spectroscopy technique with a NaI(T1) crystal inside a 12 cm thick lead shield to detect the gamma-radiation. The results indicate that only part of the available potassium is absorbed by the plant, which is mainly concentrated in the banana peel.

  17. Extraction and partial characterization of polyphenol oxidase from banana (Musa acuminata Grande naine) roots.

    PubMed

    Wuyts, Nathalie; De Waele, Dirk; Swennen, Rony

    2006-01-01

    Polyphenol oxidase activity (PPO, EC 1.14.18.1, monophenol monooxygenase, and EC 1.10.3.2, o-diphenoloxidase) has been extensively studied in banana fruit for its role in enzymatic browning. Rapid discolouration of leaf, stem and root tissue after injury and strong pigmentation of tissue extracts indicate that PPO and phenolic compounds are ubiquitous in vegetative tissue of banana as well. They hamper biochemical and molecular studies in banana, as cumbersome adaptations of extraction protocols are required. On the other hand, PPO and phenolic compounds could be an important part of the plant's defence system against pests and diseases, including root parasitic nematodes. To facilitate future studies in this area, extraction and assay conditions for PPO from roots of banana (Musa acuminata AAA, Grande naine) were optimized. Highest enzyme activities were obtained in a 0.2 M phosphate buffer at pH 7.0 with 5% insoluble polyvinylpyrrolidone and 0.25% Triton X-100. The lowest K(m) values were obtained for dopamine and D-catechin. Monophenolase activity was shown with p-cresol. Banana root PPO was strongly inhibited by dithiothreitol and sodium metabisulfite. In root sections, oxidation of dopamine strongly co-localized with aerenchyma in the cortex. The experiments revealed indications for the involvement of root PPO and dopamine in resistance of banana against the parasitic nematode Radopholus similis.

  18. Going Bananas over The Rainforest

    ERIC Educational Resources Information Center

    Curriculum Review, 2005

    2005-01-01

    With a market of nearly $5 billion a year, the banana is the world's most popular fruit, and the most important food crop after rice, wheat, and maize. Banana businesses are economic pillars in many tropical countries, providing millions of jobs for rural residents. But, for much of its history, the banana industry was notorious for destructive…

  19. Prototheca associated with banana.

    PubMed

    Pore, R S

    1985-06-01

    Prototheca stagnora was found to be a habitant of older harvested banana (Musa sapientum) and plantain (M. paradisiaca) stumps while P. wickerhamii colonized fresh Musa sp. stumps and flower bract water of Heliconia sp. While Prototheca sp. were known to habituate woody plants, this is the first evidence that herbaceous plants also serve as habitats.

  20. Suitability of Pueraria phaseoloides, Chromolaena odorata and Tithonia diversifolia as in-situ mulch for nematode management in musa cropping systems.

    PubMed

    Schösser, B; Hauser, S; Sikora, R A

    2006-01-01

    Mulching with plant organic matter has been shown to reduce nematode population densities in various cropping systems. The level of nematode control is increased when such mulches are incorporated into the soil as organic amendments. Chromolaena odorata, Tithonia diversifolia and Pueraria phaseoloides are common cover crops in West and Central Africa that produce large quantities of nutrient rich biomass. The aim of this study was to determine, if in-situ mulching of C. odorata, T. diversifolia and P. phaseoloides is suitable for nematode control in Musa production. In a pot trial, the susceptibility of these plants to spiral nematodes was investigated. The effects of different quantities of surface mulch on nematode population densities in the soil and in banana roots also were determined. All mulch types and all quantities led to a reduction in nematode population densities in the soil. The strongest nematode reductions were observed in the Pueraria treatments. In treatments containing banana plants mulching improved plant growth compared to the clean-fallowed soil and induced lower root infestation rates. However, nematode soil populations were higher in mulched than in non-mulched banana treatments. Plant parasitic nematodes also were isolated from roots of all three cover crop species and all three plants caused an increase in nematode numbers in the soil. Therefore, the tested cover crops proved unsuitable for nematode control in a system with the highly susceptible bananas. Further examinations are needed to determine whether or not the positive effects of surface mulching on plantain plant growth and root infestation rates also have positive effects on yield in an in-situ mulching system in the presence of nematodes.

  1. Effects of Rhizophagus irregularis MUCL 41833 on the reproduction of Radopholus similis in banana plantlets grown under in vitro culture conditions.

    PubMed

    Koffi, Marie Chantal; Vos, Christine; Draye, Xavier; Declerck, Stéphane

    2013-05-01

    The role of arbuscular mycorrhizal fungi (AMF) in the control of migratory endoparasitic nematodes is nowadays largely admitted. Most studies were conducted under greenhouse conditions and a few used in vitro cultures with transgenic root organs. Here, we reported, for the first time, on the interaction between an AMF, Rhizophagus irregularis MUCL 41833 and Radopholus similis in roots of banana plantlets grown under in vitro culture conditions. The banana plantlets were pre-mycorrhized in an extraradical mycelium network arising from a Medicago truncatula donor seedling, before transfer to an autotrophic in vitro cultivation system and subsequent nematode inoculation. Both microorganisms were able to complete their life cycle in the absence as well as in presence of each other. The total R. similis population (i.e., summed over the roots and growth medium) as well as the surface of root necrosis was significantly reduced by 60 and 56 %, respectively, in the AMF-colonized banana plantlets. By contrast, nematodes had no visible impact on root colonization (i.e., percentage of arbuscules, intraradical spores/vesicles, and hyphae) by AMF and on the number of spores and hyphal length produced in the medium. These results clearly demonstrated that pre-mycorrhized banana plants could outcompete R. similis, while root colonization was not affected by the nematodes. They underline the interest of the novel in vitro cultivation system as a promising tool to investigate the biochemical factors and molecular mechanisms involved in the bio-protection conferred by AMF to a major root pathogen of banana.

  2. Banana Dehydration Utilizing Infrared Radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enzyme of polyphenol oxidase (PPO) has been found to be the main cause of browning in bananas. Infrared radiation (IR) drying could be used to minimize biochemical degradation hence eliminating the need for pre-treatments. This study was to investigate quality characteristics of bananas dried ...

  3. Banana Gold: Problem or Solution?

    ERIC Educational Resources Information Center

    Joseph, Garnet

    1992-01-01

    Since 1955, the British banana industry has dominated the lives of the Caribs and other peoples in Dominica. Banana growing supplants other economic activities, including local food production; toxic chemicals and fertilizers pollute the land; community is dwindling; suicide is common; and child labor diminishes school attendance. (SV)

  4. Combating the Sigatoka disease complex on banana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Banana is the fourth most important staple food in the world behind rice, wheat and maize, with more than 100 million tons produced annually. Although the majority of bananas produced are consumed locally, banana export is a multi-billion dollar business. Bananas are grown in more than 100 countri...

  5. The interaction of banana MADS-box protein MuMADS1 and ubiquitin-activating enzyme E-MuUBA in post-harvest banana fruit.

    PubMed

    Liu, Ju-Hua; Zhang, Jing; Jia, Cai-Hong; Zhang, Jian-Bin; Wang, Jia-Shui; Yang, Zi-Xian; Xu, Bi-Yu; Jin, Zhi-Qiang

    2013-01-01

    KEY MESSAGE : The interaction of MuMADS1 and MuUBA in banana was reported, which will help us to understand the mechanism of the MADS-box gene in regulating banana fruit development and ripening. The ubiquitin-activating enzyme E1 gene fragment MuUBA was obtained from banana (Musa acuminata L.AAA) fruit by the yeast two-hybrid method using the banana MADS-box gene MuMADS1 as bait and 2-day post-harvest banana fruit cDNA library as prey. MuMADS1 interacted with MuUBA. The interaction of MuMADS1 and MuUBA in vivo was further proved by bimolecular fluorescence complementation assay. Real-time quantitative PCR evaluation of MuMADS1 and MuUBA expression patterns in banana showed that they are highly expressed in the ovule 4 stage, but present in low levels in the stem, which suggests a simultaneously differential expression action exists for both MuMADS1 and MuUBA in different tissues and developmental fruits. MuMADS1 and MuUBA expression was highly stimulated by exogenous ethylene and suppressed by 1-methylcyclopropene. These results indicated that MuMADS1 and MuUBA were co-regulated by ethylene and might play an important role in post-harvest banana fruit ripening.

  6. Conserving and enhancing biological control of nematodes.

    PubMed

    Timper, Patricia

    2014-06-01

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and

  7. Conserving and Enhancing Biological Control of Nematodes

    PubMed Central

    Timper, Patricia

    2014-01-01

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and

  8. A SNARE-like protein and biotin are implicated in soybean cyst nematode virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some phytoparasitic nematodes have the ability to infect and reproduce on plants that are normally considered resistant to nematode infection. Such nematodes are referred to as virulent and the mechanisms they use to evade or suppress host plant defenses are not well understood. Here, we report the ...

  9. Suppression of pecan and peach pathogens using metabolites or broths of from symbiotic bacteria obtained from the guts of entomopathogenic nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrated metabolites from the bacteria Xenorhabdus spp. and Photorhabdus spp. have previously been shown to suppress growth of peach and pecan pathogens in vitro, and reduce disease on detached leaves or terminals. The objectives of this study were 1) determine if bacterial broths (in addition t...

  10. Degradation of Methyldopa by Banana.

    PubMed

    Uesawa, Yoshihiro; Mohri, Kiminori

    2010-03-02

    Methyldopa, an antihypertensive, is a very close analogue of DOPA. Drug interaction accompanied by degradation in a banana juice mixture was reported for DOPA. However, the effect of banana on methyldopa has not been reported. Therefore, we have investigated the impact of banana juice on methyldopa. The drug and supernatant of banana pulp were mixed, and the mixture was observed for changes in color, drug concentration, and ultraviolet-visible absorption spectra at 30 °C. The originally clear and colorless mixture started to acquire a yellow coloration after about 30 seconds after the mixing. The color tone increasingly deepened, then blistered solid particles that do not dissolve were observed after 3 hours. Concentration of methyldopa in the mixture decreased by 60% after 5 min, to 0.5% after 30 min of the mixing. From these findings, it was suggested that the drastic alterations were caused by banana polyphenol oxidase that plays a role in the biosynthesis of melanin pigment from levodopa in banana pulp. Because the degradation of methyldopa occurs extremely fast, it was suggested concomitant use of this anti-hypertensive and banana juice consumption should be avoided in clinical practice.

  11. Nematodes (Rhabditida: Steinernematidae and Heterorhabditidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematodes are roundworms in the phylum Nematoda. Although most are free-living, some nematodes are parasites of plants, humans, or livestock. Entomopathogenic nematodes in the families Steinernematidae & Heterorhabditidae only parasitize insects. These nematodes are used as environmentally friend...

  12. A High-Throughput Regeneration and Transformation Platform for Production of Genetically Modified Banana.

    PubMed

    Tripathi, Jaindra N; Oduor, Richard O; Tripathi, Leena

    2015-01-01

    Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties "Cavendish Williams" and "Gros Michel" were developed using multiple buds, whereas ECS of "Sukali Ndiizi" was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000-50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20-70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa.

  13. A High-Throughput Regeneration and Transformation Platform for Production of Genetically Modified Banana

    PubMed Central

    Tripathi, Jaindra N.; Oduor, Richard O.; Tripathi, Leena

    2015-01-01

    Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties “Cavendish Williams” and “Gros Michel” were developed using multiple buds, whereas ECS of “Sukali Ndiizi” was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000–50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20–70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa. PMID:26635849

  14. Sheep fed with banana leaf hay reduce ruminal protozoa population.

    PubMed

    Freitas, Cláudio Eduardo Silva; Duarte, Eduardo Robson; Alves, Dorismar David; Martinele, Isabel; D'Agosto, Marta; Cedrola, Franciane; de Moura Freitas, Angélica Alves; Dos Santos Soares, Franklin Delano; Beltran, Makenzi

    2017-04-01

    A ciliate protozoa suppression can reduce methane production increasing the energy efficiency utilization by ruminants. The physicochemical characteristics of rumen fluid and the profile of the rumen protozoa populations were evaluated for sheep fed banana leaf hay in replacement of the Cynodon dactylon cv. vaqueiro hay. A total of 30 male sheep were raised in intensive system during 15 days of adaptation and 63 days of experimental period. The animals were distributed in a completely randomized design that included six replicates of five treatments with replacement levels (0, 25, 50, 75, and 100%) of the grass vaquero for the banana leaf hay. Samples of fluid were collected directly from the rumen with sterile catheters. Color, odor, viscosity, and the methylene blue reduction potential (MBRP) were evaluated and pH estimated using a digital potentiometer. After decimal dilutions, counts of genus protozoa were performed in Sedgewick Rafter chambers. The averages of pH, MBRP, color, odor, and viscosity were not influenced by the inclusion of the banana leaf hay. However, the total number of protozoa and Entodinium spp. population significantly decreased at 75 and 100% inclusions of banana leaf hay as roughage.

  15. Pesticide residues in heterogeneous plant populations, a model-based approach applied to nematicides in banana (Musa spp.).

    PubMed

    Tixier, Philippe; Chabrier, Christian; Malézieux, Eric

    2007-03-21

    Nematicides are widely used to control plant-parasitic nematodes in intensive export banana (Musa spp.) cropping systems. Data show that the concentration of fosthiazate in banana fruits varies from zero to 0.035 g kg-1, under the maximal residue limit (MRL=0.05 mg kg-1). The fosthiazate concentration in fruit is described by a Gaussian envelope curve function of the interval between pesticide application and fruit harvest (preharvest interval). The heterogeneity of phenological stages in a banana population increases over time, and thus the preharvest interval of fruits harvested after a pesticide application varies over time. A phenological model was used to simulate the long-term harvest dynamics of banana at field scale. Simulations show that the mean fosthiazate concentration in fruits varies according to nematicide application program, climate (temperature), and planting date of the banana field. This method is used to assess the percentage of harvested bunches that exceed a residue threshold and to help farmers minimize fosthiazate residues in bananas.

  16. Banana Ovate Family Protein MaOFP1 and MADS-Box Protein MuMADS1 Antagonistically Regulated Banana Fruit Ripening

    PubMed Central

    Hu, Wei; Miao, Hongxia; Zhang, Jianbin; Jia, Caihong; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    The ovate family protein named MaOFP1 was identified in banana (Musa acuminata L.AAA) fruit by a yeast two-hybrid (Y2H) method using the banana MADS-box gene MuMADS1 as bait and a 2 day postharvest (DPH) banana fruit cDNA library as prey. The interaction between MuMADS1 and MaOFP1 was further confirmed by Y2H and Bimolecular Fluorescence Complementation (BiFC) methods, which showed that the MuMADS1 K domain interacted with MaOFP1. Real-time quantitative PCR evaluation of MuMADS1 and MaOFP1 expression patterns in banana showed that they are highly expressed in 0 DPH fruit, but present in low levels in the stem, which suggests that simultaneous but different expression patterns exist for both MuMADS1 and MaOFP1 in different tissues and developing fruits. Meanwhile, MuMADS1 and MaOFP1 expression was highly stimulated and greatly suppressed, respectively, by exogenous ethylene. In contrast, MaOFP1 expression was highly stimulated while MuMADS1 was greatly suppressed by the ethylene competitor 1-methylcyclopropene (1-MCP). These results indicate that MuMADS1 and MaOFP1 are antagonistically regulated by ethylene and might play important roles in postharvest banana fruit ripening. PMID:25886169

  17. Phenotyping bananas for drought resistance

    PubMed Central

    Ravi, Iyyakkutty; Uma, Subbaraya; Vaganan, Muthu Mayil; Mustaffa, Mohamed M.

    2012-01-01

    Drought has emerged as one of the major constraints in banana production. Its effects are pronounced substantially in the tropics and sub-tropics of the world due to climate change. Bananas are quite sensitive to drought; however, genotypes with “B” genome are more tolerant to abiotic stresses than those solely based on “A” genome. In particular, bananas with “ABB” genomes are more tolerant to drought and other abiotic stresses than other genotypes. A good phenotyping plan is a prerequisite for any improvement program for targeted traits. In the present article, known drought tolerant traits of other crop plants are validated in bananas with different genomic backgrounds and presented. Since, banana is recalcitrant to breeding, strategies for making hybrids between different genomic backgrounds are also discussed. Stomatal conductance, cell membrane stability (CMS), leaf emergence rate, rate of leaf senescence, RWC, and bunch yield under soil moisture deficit stress are some of the traits associated with drought tolerance. Among these stress bunch yield under drought should be given top priority for phenotyping. In the light of recently released Musa genome draft sequence, the molecular breeders may have interest in developing molecular markers for drought resistance. PMID:23443573

  18. Phenylpropanoid enzymes, phenolic polymers and metabolites as chemical defenses to infection of Pratylenchus coffeae in roots of resistant and susceptible bananas (Musa spp.).

    PubMed

    Vaganan, M Mayil; Ravi, I; Nandakumar, A; Sarumathi, S; Sundararaju, P; Mustaffa, M M

    2014-03-01

    Activity differences of the first (phenylalanine ammonia lyase, PAL) and the last (cinnamyl alcohol dehydrogenase, CAD) enzymes of phenylpropanoid pathway in the roots of resistant (Yangambi Km5 and Anaikomban) and susceptible (Nendran and Robusta) banana cultivars caused by root lesion nematode, Pratylenchus coffeae, were investigated. Also, the accumulation of phenolics and deposition of lignin polymers in cell walls in relation to resistance of the banana cultivars to the nematode were analyzed. Compared to the susceptible cultivars, the resistant cultivars had constitutively significantly higher PAL activity and total soluble and cell wall-bound phenolics than in susceptible cultivars. The resistant cultivars responded strongly to the infection of the nematode by induction of several-time higher PAL and CAD enzymes activities, soluble and wall-bound phenolics and enrichment of lignin polymers in cell wall and these biochemical parameters reached maximum at 7th day postinoculation. In addition, profiles of phenolic acid metabolites in roots of Yangambi Km5 and Nendran were analyzed by HPLC to ascertain the underlying biochemical mechanism of bananas resistance to the nematode. Identification and quantification of soluble and cell wall-bound phenolic acids showed six metabolites and only quantitative, no qualitative, differences occurred between the resistant and susceptible cvs. and between constitutive and induced contents. A very prominent increase of p-coumaric, ferulic and sinapic acids, which are precursors of monolignols of lignin, in resistant cv. was found. These constitutive and induced biochemical alterations are definitely the chemical defenses of resistant cvs. to the nematode infection.

  19. Fusarium Wilt of Banana.

    PubMed

    Ploetz, Randy C

    2015-12-01

    Banana (Musa spp.) is one of the world's most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the 'Gros Michel'-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a 'Cavendish'-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere.

  20. Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture.

    PubMed

    Kenney, Eric; Eleftherianos, Ioannis

    2016-01-01

    Plant-parasitic nematodes are responsible for substantial damages within the agriculture industry every year, which is a challenge that has thus far gone largely unimpeded. Chemical nematicides have been employed with varying degrees of success, but their implementation can be cumbersome, and furthermore they could potentially be neutralising an otherwise positive effect from the entomopathogenic nematodes that coexist with plant-parasitic nematodes in soil environments and provide protection for plants against insect pests. Recent research has explored the potential of employing entomopathogenic nematodes to protect plants from plant-parasitic nematodes, while providing their standard degree of protection against insects. The interactions involved are highly complex, due to both the three-organism system and the assortment of variables present in a soil environment, but a strong collection of evidence has accumulated regarding the suppressive capacity of certain entomopathogenic nematodes and their mutualistic bacteria, in the context of limiting the infectivity of plant-parasitic nematodes. Specific factors produced by certain entomopathogenic nematode complexes during the process of insect infection appear to have a selectively nematicidal, or at least repellant, effect on plant-parasitic nematodes. Using this information, an opportunity has formed to adapt this relationship to large-scale, field conditions and potentially relieve the agricultural industry of one of its most substantial burdens.

  1. Entomopathogenic nematodes and insect management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes (genera Heterorhabditis, Steinernema, and Neosteinernema) are used as bioinsecticides. The nematodes are ubiquitous and have been isolated in soil of every continent except Antarctica. The nematodes kill insects through a mutualism with a bacterium (Photorhabdus spp. or ...

  2. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... From Hawaii and the Territories § 318.13-22 Bananas from Hawaii. (a) Green bananas (Musa spp.) of the... picked while green and packed for shipment within 24 hours after harvest. If the green bananas will be... bananas in a cluster of otherwise green bananas) may be harvested or packed for shipment; (3) The...

  3. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... From Hawaii and the Territories § 318.13-22 Bananas from Hawaii. (a) Green bananas (Musa spp.) of the... picked while green and packed for shipment within 24 hours after harvest. If the green bananas will be... bananas in a cluster of otherwise green bananas) may be harvested or packed for shipment; (3) The...

  4. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... From Hawaii and the Territories § 318.13-22 Bananas from Hawaii. (a) Green bananas (Musa spp.) of the... picked while green and packed for shipment within 24 hours after harvest. If the green bananas will be... bananas in a cluster of otherwise green bananas) may be harvested or packed for shipment; (3) The...

  5. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... From Hawaii and the Territories § 318.13-22 Bananas from Hawaii. (a) Green bananas (Musa spp.) of the... picked while green and packed for shipment within 24 hours after harvest. If the green bananas will be... bananas in a cluster of otherwise green bananas) may be harvested or packed for shipment; (3) The...

  6. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... From Hawaii and the Territories § 318.13-22 Bananas from Hawaii. (a) Green bananas (Musa spp.) of the... picked while green and packed for shipment within 24 hours after harvest. If the green bananas will be... bananas in a cluster of otherwise green bananas) may be harvested or packed for shipment; (3) The...

  7. Antioxidant activity of banana flavonoids.

    PubMed

    Vijayakumar, S; Presannakumar, G; Vijayalakshmi, N R

    2008-06-01

    The antioxidant activity of flavonoids from banana (Musa paradisiaca) was studied in rats fed normal as well as high fat diets. Concentrations of peroxidation products namely malondialdehyde, hydroperoxides and conjugated diens were significantly decreased whereas the activities of catalase and superoxide dismutase were enhanced significantly. Concentrations of glutathione were also elevated in the treated animals.

  8. Plant-parasitic Nematode Problems in the Pacific Islands.

    PubMed

    Bridge, J

    1988-04-01

    The Pacific islands have a diverse range of food and cash crops with indigenous and introduced nematode problems. The staple food crops have serious nematode pests, such as Meloidogyne spp. on sweet potato, Hirschmanniella miticausa causing corm rot of taro, and Pratylenchus coffeae and Radopholus sp. producing tuber dry rot of yams. Bananas are infested with P. coffeae or R. similis, citrus with Tylenchulus semipenetrans, rice with Aphelenchoides besseyi, and ginger with Meloidogyne spp. and R. similis. Rotylenchulus reniformis, P. zeae, P. brachyurus, and Helicotylenchus spp. are important on all of these and other crops, such as sugarcane, passion fruit, pawpaw, and cassava. Meloidogyne spp. cause serious damage to local and introduced leaf and fruit vegetables and other crops, such as tobacco, sugarcane, pawpaw, black pepper, and pyrethrum. Many other plant-parasitic genera and species, some undescribed, occur in the Pacific, and there are many islands still to be investigated.

  9. Nematode nervous systems.

    PubMed

    Schafer, William

    2016-10-24

    Nematodes comprise one of the largest phyla in the animal kingdom, both in terms of individual numbers and species diversity. Although only 20,000-30,000 species have been described, it is estimated that the true number ranges between 100,000 and 10 million. Marine, freshwater, and terrestrial species are all widespread, and some nematodes have even been isolated from such inhospitable environments as deserts, hot springs, and polar seas. Some nematode species are parasitic, with either plant or animal hosts; other species are free-living microbivores, scavengers, or predators of insects or other nematodes. Nematodes vary widely in size, from small microbivores that grow no larger than 100 μm to large animal parasites growing to several meters in length. They adopt a variety of reproductive strategies: most species are gonochoristic (i.e., have male and female sexes), but self-fertile hermaphroditic species are not uncommon, and parthenogenetic species are also known. Nematodes belong to the superphylum Ecdysozoa, a clade of moulting animals that also includes arthropods, tardigrades and priapulids. Although nematode fossils are rare, the origin of the nematode phylum is believed to be very ancient, with the divergence from arthropods estimated based on molecular data to have been between 900 and 1,300 Ma.

  10. The Nematode Caenorhabditis Elegans.

    ERIC Educational Resources Information Center

    Kenyon, Cynthia

    1988-01-01

    Discusses advantages of nematode use for studying patterns of cell division, differentiation, and morphogenesis. Describes nematode development. Cites experimental approaches available for genetic studies. Reviews the topics of control of cell division and differentiation, the nervous system, and muscle assembly and function of the organism. (RT)

  11. Generation of transgenic plantain (Musa spp.) with resistance to plant pathogenic nematodes.

    PubMed

    Roderick, Hugh; Tripathi, Leena; Babirye, Annet; Wang, Dong; Tripathi, Jaindra; Urwin, Peter E; Atkinson, Howard J

    2012-10-01

    Plant parasitic nematodes impose a severe constraint on plantain and banana productivity; however, the sterile nature of many cultivars precludes conventional breeding for resistance. Transgenic plantain cv. Gonja manjaya (Musa AAB) plants, expressing a maize cystatin that inhibits nematode digestive cysteine proteinases and a synthetic peptide that disrupts nematode chemoreception, were assessed for their ability to resist nematode infection. Lines were generated that expressed each gene singly or both together in a stacked defence. Nematode challenge with a single species or a mixed population identified 10 lines with significant resistance. The best level of resistance achieved against the major pest species Radopholus similis was 84% ± 8% for the cystatin, 66% ± 14% for the peptide and 70% ± 6% for the dual defence. In the mixed population, trial resistance was also demonstrated to Helicotylenchus multicinctus. A fluorescently labelled form of the chemodisruptive peptide underwent retrograde transport along certain sensory dendrites of R. similis as required to disrupt chemoreception. The peptide was degraded after 30 min in simulated intestinal fluid or boiling water and after 1 h in nonsterile soil. In silico sequence analysis suggests that the peptide is not a mammalian antigen. This work establishes the mode of action of a novel nematode defence, develops the evidence for its safe and effective deployment against multiple nematode species and identifies transgenic plantain lines with a high level of resistance for a proposed field trial.

  12. Production of ethyl alcohol from bananas

    SciTech Connect

    Jones, R.L.; Towns, T.

    1983-12-01

    The production of ethyl alcohol from waste bananas presents many special problems. During cooking, matting of the latex fibers from the banana peel recongeal when cooled and left untreated. This problem has been addressed by Alfaro by the use of CaC1/sub 2/. Separation of solids prior to distillation of the mashes in an economical fashion and use of the by product are also of concern to banana processors.

  13. Shifts in banana root exudate profiles after colonization with the non-pathogenic Fusarium oxysporum strain Fo162.

    PubMed

    Kurtz, Andreas; Schouten, Alexander

    2009-01-01

    The non-pathogenic fungus Fusorium oxysporum strain Fo162 can efficiently colonize banana roots and reduce infecting by the burrowing nematode Radopholus similis. It is assumed that the fungus triggers a systemic reaction in the plant, which is affecting the biochemical composition of the root exudates and is thus causing the reduction in nematode colonization. To characterize these shifts, a continuous flow experiment was set up to collect root metabolites on a matrix (XAD-4). Based on HPLC analysis, the extracts, collected from the XAD-4, showed no differences in the composition of the root exudates between plants colonized by the endophyte and the controls. However, the accumulation of several compounds differed significantly. When these extracts were used in a bioassay with Radopholus similis none of the sample-treatment combinations had a significant attracting or repelling effect on the nematodes. This experiment shows that non-pathogenic Fusarium oxysporum strain Fo162 is able to upregulate the synthesis of at least some, so far unidentified compounds released by banana roots under hydroponic conditions. Further studies and optimization of the experimental setup are required to determine whether or not increase in metabolite concentration can affect nematode responses in vitro and ultimately in vivo.

  14. Banana-Associated Microbial Communities in Uganda Are Highly Diverse but Dominated by Enterobacteriaceae

    PubMed Central

    Rossmann, Bettina; Müller, Henry; Smalla, Kornelia; Mpiira, Samuel; Tumuhairwe, John Baptist; Staver, Charles

    2012-01-01

    Bananas are among the most widely consumed foods in the world. In Uganda, the country with the second largest banana production in the world, bananas are the most important staple food. The objective of this study was to analyze banana-associated microorganisms and to select efficient antagonists against fungal pathogens which are responsible for substantial yield losses. We studied the structure and function of microbial communities (endosphere, rhizosphere, and soil) obtained from three different traditional farms in Uganda by cultivation-independent (PCR-SSCP fingerprints of 16S rRNA/ITS genes, pyrosequencing of enterobacterial 16S rRNA gene fragments, quantitative PCR, fluorescence in situ hybridization coupled with confocal laser scanning microscopy, and PCR-based detection of broad-host-range plasmids and sulfonamide resistance genes) and cultivation-dependent methods. The results showed microhabitat-specific microbial communities that were significant across sites and treatments. Furthermore, all microhabitats contained a high number and broad spectrum of indigenous antagonists toward identified fungal pathogens. While bacterial antagonists were found to be enriched in banana plants, fungal antagonists were less abundant and mainly found in soil. The banana stem endosphere was the habitat with the highest bacterial counts (up to 109 gene copy numbers g−1). Here, enterics were found to be enhanced in abundance and diversity; they provided one-third of the bacteria and were identified by pyrosequencing with 14 genera, including not only potential human (Escherichia, Klebsiella, Salmonella, and Yersinia spp.) and plant (Pectobacterium spp.) pathogens but also disease-suppressive bacteria (Serratia spp.). The dominant role of enterics can be explained by the permanent nature and vegetative propagation of banana and the amendments of human, as well as animal, manure in these traditional cultivations. PMID:22562988

  15. Banana-associated microbial communities in Uganda are highly diverse but dominated by Enterobacteriaceae.

    PubMed

    Rossmann, Bettina; Müller, Henry; Smalla, Kornelia; Mpiira, Samuel; Tumuhairwe, John Baptist; Staver, Charles; Berg, Gabriele

    2012-07-01

    Bananas are among the most widely consumed foods in the world. In Uganda, the country with the second largest banana production in the world, bananas are the most important staple food. The objective of this study was to analyze banana-associated microorganisms and to select efficient antagonists against fungal pathogens which are responsible for substantial yield losses. We studied the structure and function of microbial communities (endosphere, rhizosphere, and soil) obtained from three different traditional farms in Uganda by cultivation-independent (PCR-SSCP fingerprints of 16S rRNA/ITS genes, pyrosequencing of enterobacterial 16S rRNA gene fragments, quantitative PCR, fluorescence in situ hybridization coupled with confocal laser scanning microscopy, and PCR-based detection of broad-host-range plasmids and sulfonamide resistance genes) and cultivation-dependent methods. The results showed microhabitat-specific microbial communities that were significant across sites and treatments. Furthermore, all microhabitats contained a high number and broad spectrum of indigenous antagonists toward identified fungal pathogens. While bacterial antagonists were found to be enriched in banana plants, fungal antagonists were less abundant and mainly found in soil. The banana stem endosphere was the habitat with the highest bacterial counts (up to 10(9) gene copy numbers g(-1)). Here, enterics were found to be enhanced in abundance and diversity; they provided one-third of the bacteria and were identified by pyrosequencing with 14 genera, including not only potential human (Escherichia, Klebsiella, Salmonella, and Yersinia spp.) and plant (Pectobacterium spp.) pathogens but also disease-suppressive bacteria (Serratia spp.). The dominant role of enterics can be explained by the permanent nature and vegetative propagation of banana and the amendments of human, as well as animal, manure in these traditional cultivations.

  16. Stem nematode counteracts plant resistance of aphids in alfalfa, Medicago sativa.

    PubMed

    Ramirez, Ricardo A; Spears, Lori R

    2014-10-01

    Plants are exploited by a diverse community of insect herbivores and phytopathogens that interact indirectly through plant-mediated interactions. Generally, plants are thought to respond to insects and pathogens through different defensive signaling pathways. As plants are selected for resistance to one phytophagous organism type (insect vs. pathogen) in managed systems, it is not clear how this selection may affect community interactions. This study examined the effect of nematode-resistant varieties on aphid (Acyrthosiphon pisum) suppression, and then determined how infection by the stem nematode, Ditylenchus dipsaci, mediated ecological effects on aphids and on plant defense proteins. Four alfalfa (Medicago sativa) varieties were selected with resistance to nematodes only (+,-), aphids only (-,+), nematodes and aphids (+,+), and susceptibility to nematodes and aphids (-,-). Field and greenhouse experiments were conducted to isolate the effect of nematode infection and aphid abundance on each variety. We found that varieties resistant to nematode, regardless of aphid resistance, had the lowest aphid counts, suggesting possible cross-resistance. Aphid abundance, however, increased when plants were exposed to nematodes. Resistant varieties were associated with elevated saponins but these compounds were not affected by insect or pathogen feeding. Concentrations of peroxidases and trypsin inhibitors, however, were increased in nematode resistant varieties when exposed to nematodes and aphids, respectively. The patterns of plant defense were variable, and a combination of resistance traits and changes in nutrient availability may drive positive interactions between nematodes and aphids aboveground.

  17. Entomopathogenic nematode application technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biocontrol success when using entomopathogenic nematodes (EPNs) in the genera Heterorhabditis and Steinernema relies on a variety of factors including components of the application event itself. Successful application encompasses both abiotic and biotic influences. For example, adverse array of equi...

  18. Randomly Amplified Polymorphic DNA Differs with Burrowing Nematode Collection Site, but not with Host Range.

    PubMed

    Marin, D H; Kaplan, D T; Opperman, C H

    1999-06-01

    The genetic variability of 12 burrowing nematode (Radopholus sp.) isolates from Central America, the Caribbean, and Florida, and one isolate from Ivory Coast were compared with RAPD analysis. A high degree of genetic similarity (>0.82) was determined for isolates from the Western Hemisphere. Genome similarity was greatest among isolates collected within a country. Among isolates collected in Central America and the Caribbean, burrowing nematodes from Belize and Guatemala were genetically more distant. However, the genome of the isolate from Ivory Coast was most dissimilar (>0.30). These results suggest that African and American burrowing-nematode isolates may have had different origins or that they have been geographically isolated for a sufficient amount of time to have accumulated genetic changes detectable by RAPD analysis. No relationship was found between the genomic similarity and extent of reproduction or damage to banana or citrus roots. Morphometric analysis involving eight of the isolates indicated that they were morphologically identical and values for morphometric parameters were well within the range previously published for banana and citrusparasitic burrowing nematodes.

  19. Allelopathy in the Management of Plant-Parasitic Nematodes

    PubMed Central

    Halbrendt, J. M.

    1996-01-01

    There are numerous reports of nematicidal chemicals in crude plant homogenates, leachates, and decomposing residues. These compounds are usually assumed to be secondary metabolites, which serve as chemical defenses against disease and parasites. When such compounds are released into the rhizosphere, they are known as allelochemicals. The possibility exists to exploit allelochemicals for nematode control, and there have been many attempts to use this approach either by rotation, intercropping, or green manure treatments. Results have met with mixed success. Proof of allelochemical activity in field situations is difficult to obtain, but it is evident that some rotation crops are significantly better at reducing nematode populations than others. Rotations with non-host plants may simply deny the nematode population an adequate food source for reproduction (passive suppression), whereas allelopathic crops kill nematodes by the production of toxic compounds (active suppression). Progress toward sustainable agriculture should benefit from studies on allelopathic nematode control. However, grower acceptance of new plant-rotation strategies are based on economic and logistical considerations as well as efficacy. A potential practical application of allelopathic nematode control that involves using rapeseed as a green manure crop to reduce populations of Xiphinema americanum sensu lato in temperate orchards is presented. PMID:19277340

  20. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers...

  1. Banana orchard inventory using IRS LISS sensors

    NASA Astrophysics Data System (ADS)

    Nishant, Nilay; Upadhayay, Gargi; Vyas, S. P.; Manjunath, K. R.

    2016-04-01

    Banana is one of the major crops of India with increasing export potential. It is important to estimate the production and acreage of the crop. Thus, the present study was carried out to evolve a suitable methodology for estimating banana acreage. Area estimation methodology was devised around the fact that unlike other crops, the time of plantation of banana is different for different farmers as per their local practices or conditions. Thus in order to capture the peak signatures, biowindow of 6 months was considered, its NDVI pattern studied and the optimum two months were considered when banana could be distinguished from other competing crops. The final area of banana for the particular growing cycle was computed by integrating the areas of these two months using LISS III data with spatial resolution of 23m. Estimated banana acreage in the three districts were 11857Ha, 15202ha and 11373Ha for Bharuch, Anand and Vadodara respectively with corresponding accuracy of 91.8%, 90% and 88.16%. Study further compared the use of LISS IV data of 5.8m spatial resolution for estimation of banana using object based as well as per-pixel classification and the results were compared with statistical reports for both the approaches. In the current paper we depict the various methodologies to accurately estimate the banana acreage.

  2. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers...

  3. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers...

  4. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers...

  5. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers...

  6. The Future of Nematode Management in Cotton

    PubMed Central

    Starr, J. L.; Koenning, S. R.; Kirkpatrick, T. L.; Robinson, A. F.; Roberts, P. A.; Nichols, R. L.

    2007-01-01

    The importance of plant-parasitic nematodes as yield-limiting pathogens of cotton has received increased recognition and attention in the United States in the recent past. This paper summarizes the remarks made during a symposium of the same title that was held in July 2007 at the joint meeting of the Society of Nematologists and the American Phytopathological Society in San Diego, California. Although several cultural practices, including crop rotation, can be effective in suppressing the populations of the important nematode pathogens of cotton, the economic realities of cotton production limit their use. The use of nematicides is also limited by issues of efficacy and economics. There is a need for development of chemistries that will address these limitations. Also needed are systems that would enable precise nematicide application in terms of rate and placement only in areas where nematode population densities warrant application. Substantial progress is being made in the identification, characterization and mapping of loci for resistance to Meloidogyne incognita and Rotylenchulus reniformis. These data will lead to efficient marker-assisted selection systems that will likely result in development and release of nematode-resistant cotton cultivars with superior yield potential and high fiber quality. PMID:19259500

  7. Soil Organic Matter and Management of Plant-Parasitic Nematodes

    PubMed Central

    Widmer, T. L.; Mitkowski, N. A.; Abawi, G. S.

    2002-01-01

    Organic matter and its replenishment has become a major component of soil health management programs. Many of the soil's physical, chemical, and biological properties are a function of organic matter content and quality. Adding organic matter to soil influences diverse and important biological activities. The diversity and number of free-living and plant-parasitic nematodes are altered by rotational crops, cover crops, green manures, and other sources of organic matter. Soil management programs should include the use of the proper organic materials to improve soil chemical, physical, and biological parameters and to suppress plant-parasitic nematodes and soilborne pathogens. It is critical to monitor the effects of organic matter additions on activities of major and minor plant-parasitic nematodes in the production system. This paper presents a general review of information in the literature on the effects of crop rotation, cover crops, and green manures on nematodes and their damage to economic crops. PMID:19265946

  8. Response of Pinus ponderosa Seedlings to Stylet-Bearing Nematodes

    PubMed Central

    Viglierchio, D. R.

    1979-01-01

    Of 12 stylet-bearing nematodes used for inoculations, Pratylenchus penetrans, P. brachyurus, P. vulnus, Ditylenchus destructor, Meloidogyne incognita, M. javanica, and M. hapla reproduced on Pinus ponderosa, while Xiphinema index, Aphelenchus avenae, Paratylenehus neoamblycephalus, Tylenchulus semipenetrans, and Macroposthonia xenoplax did not. P. vulnus, P. brachyurus, P. penetrans, A. avenae, D. destructor, T. semipenetrans, and P. neoamblycephalus significantly suppressed both the shoot and root wet weights of ponderosa pine seedlings obtained from stands in five different locations. X. index significantly suppressed root wet weights, M. xenoplax siguificantly suppressed shoot wet weight, and M. incognita, M. javanica, and M. hapla suppressed neither at the inoculation levels used. Injurious nematodes tended to suppress root growth more than shoot growth. Seedlings from two locations produced greater shoot growth wet weight than did seedlings from the other three locations. The more injurious nematodes tended to cause an increase in the water content of shoots. Frequency analyses of seedling population shoot-root ratios indicated that ponderosa pine seedlings could be selected for better shoot-root ratios as well as for resistance to several pathogenic nematodes. PMID:19300659

  9. Crop Rotation and Herbicide Effects on Population Densities of Plant-Parasitic Nematodes

    PubMed Central

    Johnson, A. W.; Dowler, C. C.; Hauser, E. W.

    1975-01-01

    The influence of herbicides and mono- and multicropping sequences on population densities of nematode species common in corn, cotton, peanut, and soybean fields in the southeastern United States was studied for 4 years. Each experimental plot was sampled at monthly intervals. The application of herbicides did not significantly affect nematode population densities. Meloidogyne incognita and Trichodorus christiei increased rapidly on corn and cotton, but were suppressed by peanut and soybean. More Pratylenchus spp. occurred on corn and soybean than on cotton and peanut. Criconemoides ornatus increased rapidly on corn and peanut, but was suppressed by cotton and soybean. Helicotylenchus dihystera was more numerous on cotton and soybean than on corn and peanut. Numbers of Xiphinema americanum remained low on all crops. The peanut sequence was the most effective monocrop system for suppressing most nematode species. Multi-crop systems, corn-peanut-cotton-soybean and cotton-soybean-corn-peanut, were equally effective in suppressing nematode densities. PMID:19308149

  10. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect.

    PubMed

    Elsen, A; Gervacio, D; Swennen, R; De Waele, D

    2008-07-01

    Although mycorrhizal colonization provides a bioprotectional effect against a broad range of soil-borne pathogens, including plant parasitic nematodes, the commercial use of arbuscular mycorrhizal fungi (AMF) as biocontrol agents is still in its infancy. One of the main reasons is the poor understanding of the modes of action. Most AMF mode of action studies focused on AMF-bacterial/fungal pathogens. Only few studies so far examined AMF-plant parasitic nematode interactions. Therefore, the aim of the study was to determine whether the AMF Glomus intraradices was able to incite systemic resistance in banana plants towards Radopholus similis and Pratylenchus coffeae, two plant parasitic nematodes using a split-root compartmental set-up. The AMF reduced both nematode species by more than 50%, even when the AMF and the plant parasitic nematodes were spatially separated. The results obtained demonstrate for the first time that AMF have the ability to induce systemic resistance against plant parasitic nematodes in a root system.

  11. Development of Agrobacterium-mediated transformation of highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease.

    PubMed

    Elayabalan, Sivalingam; Kalaiponmani, Kalaimughilan; Subramaniam, Sreeramanan; Selvarajan, Ramasamy; Panchanathan, Radha; Muthuvelayoutham, Ramlatha; Kumar, Krish K; Balasubramanian, Ponnuswami

    2013-04-01

    One of the most severe viral diseases of hill banana is caused by banana bunchy top virus (BBTV), a nanovirus transmitted by the aphid Pentalonia nigronervosa. In this study, we reported the Agrobacterium-mediated transformation on a highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease. The target of the RNA interference (RNAi) is the rep gene, encoded by the BBTV-DNA1. In order to develop RNAi construct targeting the BBTV rep gene, the full-length rep gene of 870 bp was polymerase chain reaction amplified from BBTV infected hill banana sample DNA, cloned and confirmed by DNA sequencing. The partial rep gene fragment was cloned in sense and anti sense orientation in the RNAi intermediate vector, pSTARLING-A. After cloning in pSTARLING-A, the cloned RNAi gene cassette was released by NotI enzyme digestion and cloned into the NotI site of binary vector, pART27. Two different explants, embryogenic cells and embryogenic cell suspension derived microcalli were used for co-cultivation. Selection was done in presence of 100 mg/L kanamycin. In total, 143 putative transgenic hill banana lines were generated and established in green house condition. The presence of the transgenes was confirmed in the selected putative transgenic hill banana lines by PCR and reverse transcription PCR analyses. Transgenic hill banana plants expressing RNAi-BBTV rep were obtained and shown to resist infection by BBTV. The transformed plants are symptomless, and the replication of challenge BBTV almost completely suppressed. Hence, the RNAi mediating resistances were shown to be effective management of BBTV in hill banana.

  12. Overview of organic amendments for management of plant-parasitic nematodes, with case studies from Florida.

    PubMed

    McSorley, Robert

    2011-06-01

    Organic amendments have been widely used for management of plant-parasitic nematodes. Relatively rapid declines in nematode population levels may occur when decomposing materials release toxic compounds, while longer-term effects might include increases in nematode antagonists. Improved crop nutrition and plant growth following amendment use may lead to tolerance of plant-parasitic nematodes. Results depend on a great variety of factors such as material used, processing/composting of material, application rate, test arena, crop rotation and agronomic practices, soil type, climate, and other environmental factors. Reasons for variable performance and interpretation of results from amendment studies are discussed. Case studies of amendments for nematode management are reviewed from Florida, where composts and crop residues are the most frequently used amendments. Plant growth was often improved by amendment application, free-living nematodes (especially bacterivores) were often stimulated, but suppression of plant-parasitic nematodes was inconsistent. Amendments were generally not as effective as soil fumigation with methyl bromide for managing root-knot nematodes (Meloidogyne spp.), and often population levels or galling of root-knot nematodes in amended plots did not differ from those in non-amended control plots. While amendments may improve plant growth and stimulate soil food webs, additional study and testing are needed before they could be used reliably for management of plant-parasitic nematodes under Florida conditions.

  13. Overview of Organic Amendments for Management of Plant-Parasitic Nematodes, with Case Studies from Florida

    PubMed Central

    2011-01-01

    Organic amendments have been widely used for management of plant-parasitic nematodes. Relatively rapid declines in nematode population levels may occur when decomposing materials release toxic compounds, while longer-term effects might include increases in nematode antagonists. Improved crop nutrition and plant growth following amendment use may lead to tolerance of plant-parasitic nematodes. Results depend on a great variety of factors such as material used, processing/composting of material, application rate, test arena, crop rotation and agronomic practices, soil type, climate, and other environmental factors. Reasons for variable performance and interpretation of results from amendment studies are discussed. Case studies of amendments for nematode management are reviewed from Florida, where composts and crop residues are the most frequently used amendments. Plant growth was often improved by amendment application, free-living nematodes (especially bacterivores) were often stimulated, but suppression of plant-parasitic nematodes was inconsistent. Amendments were generally not as effective as soil fumigation with methyl bromide for managing root-knot nematodes (Meloidogyne spp.), and often population levels or galling of root-knot nematodes in amended plots did not differ from those in non-amended control plots. While amendments may improve plant growth and stimulate soil food webs, additional study and testing are needed before they could be used reliably for management of plant-parasitic nematodes under Florida conditions. PMID:22791915

  14. Manipulating the banana rhizosphere microbiome for biological control of Panama disease.

    PubMed

    Xue, Chao; Penton, C Ryan; Shen, Zongzhuan; Zhang, Ruifu; Huang, Qiwei; Li, Rong; Ruan, Yunze; Shen, Qirong

    2015-08-05

    Panama disease caused by Fusarium oxysporum f. sp. cubense infection on banana is devastating banana plantations worldwide. Biological control has been proposed to suppress Panama disease, though the stability and survival of bio-control microorganisms in field setting is largely unknown. In order to develop a bio-control strategy for this disease, 16S rRNA gene sequencing was used to assess the microbial community of a disease-suppressive soil. Bacillus was identified as the dominant bacterial group in the suppressive soil. For this reason, B. amyloliquefaciens NJN-6 isolated from the suppressive soil was selected as a potential bio-control agent. A bioorganic fertilizer (BIO), formulated by combining this isolate with compost, was applied in nursery pots to assess the bio-control of Panama disease. Results showed that BIO significantly decreased disease incidence by 68.5%, resulting in a doubled yield. Moreover, bacterial community structure was significantly correlated to disease incidence and yield and Bacillus colonization was negatively correlated with pathogen abundance and disease incidence, but positively correlated to yield. In total, the application of BIO altered the rhizo-bacterial community by establishing beneficial strains that dominated the microbial community and decreased pathogen colonization in the banana rhizosphere, which plays an important role in the management of Panama disease.

  15. Manipulating the banana rhizosphere microbiome for biological control of Panama disease

    PubMed Central

    Xue, Chao; Ryan Penton, C.; Shen, Zongzhuan; Zhang, Ruifu; Huang, Qiwei; Li, Rong; Ruan, Yunze; Shen, Qirong

    2015-01-01

    Panama disease caused by Fusarium oxysporum f. sp. cubense infection on banana is devastating banana plantations worldwide. Biological control has been proposed to suppress Panama disease, though the stability and survival of bio-control microorganisms in field setting is largely unknown. In order to develop a bio-control strategy for this disease, 16S rRNA gene sequencing was used to assess the microbial community of a disease-suppressive soil. Bacillus was identified as the dominant bacterial group in the suppressive soil. For this reason, B. amyloliquefaciens NJN-6 isolated from the suppressive soil was selected as a potential bio-control agent. A bioorganic fertilizer (BIO), formulated by combining this isolate with compost, was applied in nursery pots to assess the bio-control of Panama disease. Results showed that BIO significantly decreased disease incidence by 68.5%, resulting in a doubled yield. Moreover, bacterial community structure was significantly correlated to disease incidence and yield and Bacillus colonization was negatively correlated with pathogen abundance and disease incidence, but positively correlated to yield. In total, the application of BIO altered the rhizo-bacterial community by establishing beneficial strains that dominated the microbial community and decreased pathogen colonization in the banana rhizosphere, which plays an important role in the management of Panama disease. PMID:26242751

  16. Roles of Steroids in Nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inability of nematodes to biosynthesize steroids de novo and the resulting dependence of parasitic nematodes upon their hosts have enhanced the importance of elucidating the metabolism of sterols and the hormonal and other functions of steroids in nematodes. Biochemical research has revealed th...

  17. Multidisciplinary perspectives on banana (Musa spp.) domestication.

    PubMed

    Perrier, Xavier; De Langhe, Edmond; Donohue, Mark; Lentfer, Carol; Vrydaghs, Luc; Bakry, Frédéric; Carreel, Françoise; Hippolyte, Isabelle; Horry, Jean-Pierre; Jenny, Christophe; Lebot, Vincent; Risterucci, Ange-Marie; Tomekpe, Kodjo; Doutrelepont, Hugues; Ball, Terry; Manwaring, Jason; de Maret, Pierre; Denham, Tim

    2011-07-12

    Original multidisciplinary research hereby clarifies the complex geodomestication pathways that generated the vast range of banana cultivars (cvs). Genetic analyses identify the wild ancestors of modern-day cvs and elucidate several key stages of domestication for different cv groups. Archaeology and linguistics shed light on the historical roles of people in the movement and cultivation of bananas from New Guinea to West Africa during the Holocene. The historical reconstruction of domestication processes is essential for breeding programs seeking to diversify and improve banana cvs for the future.

  18. Nematode cholinergic pharmacology

    SciTech Connect

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs.

  19. Comparative genomics of nematodes.

    PubMed

    Mitreva, Makedonka; Blaxter, Mark L; Bird, David M; McCarter, James P

    2005-10-01

    Recent transcriptome and genome projects have dramatically expanded the biological data available across the phylum Nematoda. Here we summarize analyses of these sequences, which have revealed multiple unexpected results. Despite a uniform body plan, nematodes are more diverse at the molecular level than was previously recognized, with many species- and group-specific novel genes. In the genus Caenorhabditis, changes in chromosome arrangement, particularly local inversions, are also rapid, with breakpoints occurring at 50-fold the rate in vertebrates. Tylenchid plant parasitic nematode genomes contain several genes closely related to genes in bacteria, implicating horizontal gene transfer events in the origins of plant parasitism. Functional genomics techniques are also moving from Caenorhabditis elegans to application throughout the phylum. Soon, eight more draft nematode genome sequences will be available. This unique resource will underpin both molecular understanding of these most abundant metazoan organisms and aid in the examination of the dynamics of genome evolution in animals.

  20. Space Curvature and the "Heavy Banana 'Paradox.'"

    ERIC Educational Resources Information Center

    Gruber, Ronald P.; And Others

    1991-01-01

    Two ways to visually enhance the concept of space curvature are described. Viewing space curvature as a meterstick contraction and the heavy banana "paradox" are discussed. The meterstick contraction is mathematically explained. (KR)

  1. Nematode management in pecans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2002, the pecan root-knot nematode (Meloidogyne partityla = PRKN) was found on pecan in the southeastern U.S. and was associated with stressed trees exhibiting dead branches in the upper canopy and (or) typical mouse ear (ME) associated foliar symptoms. This research evaluates the host susceptib...

  2. How nematode sperm crawl.

    PubMed

    Bottino, Dean; Mogilner, Alexander; Roberts, Tom; Stewart, Murray; Oster, George

    2002-01-15

    Sperm of the nematode, Ascaris suum, crawl using lamellipodial protrusion, adhesion and retraction, a process analogous to the amoeboid motility of other eukaryotic cells. However, rather than employing an actin cytoskeleton to generate locomotion, nematode sperm use the major sperm protein (MSP). Moreover, nematode sperm lack detectable molecular motors or the battery of actin-binding proteins that characterize actin-based motility. The Ascaris system provides a simple 'stripped down' version of a crawling cell in which to examine the basic mechanism of cell locomotion independently of other cellular functions that involve the cytoskeleton. Here we present a mechanochemical analysis of crawling in Ascaris sperm. We construct a finite element model wherein (a) localized filament polymerization and bundling generate the force for lamellipodial extension and (b) energy stored in the gel formed from the filament bundles at the leading edge is subsequently used to produce the contraction that pulls the rear of the cell forward. The model reproduces the major features of crawling sperm and provides a framework in which amoeboid cell motility can be analyzed. Although the model refers primarily to the locomotion of nematode sperm, it has important implications for the mechanics of actin-based cell motility.

  3. Characterization of a New Burrowing Nematode Population, Radopholus citrophilus, from Hawaii.

    PubMed

    Huettel, R N; Kaplan, D T; Dickson, D W

    1986-01-01

    Karyotype, host preference, isozyzme patterns, morphometrics, and mating behavior of two burrowing nematode populations from Hawaii, one infecting Anthurium sp. and the second infecting Musa sp., were compared with Radopholus similis and R. citrophilus populations from Florida. The population from Anthurium sp. had five chromosomes (n = 5), and that from Musa sp. had four (n = 4). Neither of the Hawaiian nematode populations persisted in roots of Citrus limon or C. aurantium. Anthurium clarinerivum and A. hookeri were hosts of the burrowing nematode population from anthurium in Hawaii and of R. citrophilus from Florida, whereas the two anthurium species were poor hosts of the population from Musa sp. in Hawaii and R. similis from Florida. The isozyme pattern of the population isolated from anthurium was identical to that of R. citrophigus, whereas the pattern of the population from banana in Hawaii was identical to that of R. similis. Mating behavior between the burrowing nematode population isolated from Anthurium sp. and a Florida population of R. citrophilus supports their close taxonomic relationship. Mating was observed between the population from Anthurium sp. and the Florida population of R. citrophilus but not between the Hawaiian burrowing nematode population isolated from Musa sp. and a Florida population of R. citrophilus. These findings indicate that a previously unidentified population of R. citrophilus which does not parasitize citrus occurs in Hawaii.

  4. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes

    PubMed Central

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-01-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1–MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein–protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes. PMID:23599278

  5. Entomopathogenic Nematode Production and Application Technology

    PubMed Central

    Shapiro-Ilan, David I.; Han, Richou; Dolinksi, Claudia

    2012-01-01

    Production and application technology is critical for the success of entomopathogenic nematodes (EPNs) in biological control. Production approaches include in vivo, and in vitro methods (solid or liquid fermentation). For laboratory use and small scale field experiments, in vivo production of EPNs appears to be the appropriate method. In vivo production is also appropriate for niche markets and small growers where a lack of capital, scientific expertise or infrastructure cannot justify large investments into in vitro culture technology. In vitro technology is used when large scale production is needed at reasonable quality and cost. Infective juveniles of entomopathogenic nematodes are usually applied using various spray equipment and standard irrigation systems. Enhanced efficacy in EPN applications can be facilitated through improved delivery mechanisms (e.g., cadaver application) or optimization of spray equipment. Substantial progress has been made in recent years in developing EPN formulations, particularly for above ground applications, e.g., mixing EPNs with surfactants or polymers or with sprayable gels. Bait formulations and insect host cadavers can enhance EPN persistence and reduce the quantity of nematodes required per unit area. This review provides a summary and analysis of factors that affect production and application of EPNs and offers insights for their future in biological insect suppression. PMID:23482883

  6. Integrated management of root-knot nematode, Meloidogyne incognita infestation in tomato and grapevine.

    PubMed

    Kumari, N Swarna; Sivakumar, C V

    2005-01-01

    An integrated approach with the obligate bacterial parasite, Pasteuria penetrans and nematicides was assessed for the management of the root-knot nematode, Meloidogyne incognita infestation in tomato and grapevine. Seedlings of tomato cv. Co3 were transplanted into pots filled with sterilized soil and inoculated with nematodes (5000 juveniles/pot). The root powder of P. penetrans at 10 mg/pot was applied alone and in combination with carbofuran at 6 mg/pot. Application of P. penetrans along with carbofuran recorded lowest nematode infestation (107 nematodes/200 g soil) compared to control (325 nematodes/200 g soil). The rate of parasitization was 83.1% in the carbofuran and P. penetrans combination treatment as against 61.0% in the P. penetrans treatment only. The plant growth was also higher in the combination treatment compared to all other treatments. A field trial was carried out to assess the efficacy of P. penetrans and nematicides viz., carbofuran and phorate in the management of root-knot nematode, M. incognita infestation of grapevine cv. Muscat Hamburg. A nematode and P. penetrans infested grapevine field was selected and treatments either with carbofuran or phorate at 1 g a.i/vine was given. The observations were recorded at monthly interval. The results showed that the soil nematode population was reduced in nematicide treated plots. Suppression of nematodes was higher under phorate (117 nematodes/200 g soil) than under carbofuran (126.7 nematodes/200 g soil) treatment. The number of juveniles parasitized was also influenced by nematicides and spore load carried/juvenile with phorate being superior and the increase being 17.0 and 29.0% respectively over the control. The results of these experiment confirmed the compatibility of P. penetrans with nematicides and its biological control potential against the root-knot nematode.

  7. Effects of Tagetes patula on Active and Inactive Stages of Root-Knot Nematodes

    PubMed Central

    Marahatta, Sharadchandra P.; Wang, Koon-Hui; Sipes, Brent S.; Hooks, Cerruti R. R.

    2012-01-01

    Although marigold (Tagetes patula) is known to produce allelopathic compounds toxic to plant-parasitic nematodes, suppression of Meloidogyne incognita can be inconsistent. Two greenhouse experiments were conducted to test whether marigold is more effective in suppressing Meloidogyne spp. when it is active rather than dormant. Soils infested with Meloidogyne spp. were collected and conditioned in the greenhouse either by 1) keeping the soil dry (DRY), 2) irrigating with water (IRR), or 3) drenching with cucumber (Cucumis sativus) leachate (CL) for 5 wk. These soils were then either planted with cucumber, marigold or remained bare for 10 wk. Suppression of nematode by marigold was then assayed using cucumber. DRY conditioning resulted in the highest number of inactive nematodes, whereas CL and IRR had higher numbers of active nematodes than DRY. At the end of the cucumber bioassay, marigold suppressed the numbers of Meloidogyne females in cucumber roots if the soil was conditioned in IRR or CL, but not in DRY. However, in separate laboratory assays, marigold root leachate slightly reduced M. incognita J2 activity but did not reduce egg hatch (P > 0.05). These finding suggest that marigold can only suppress Meloidogyne spp. when marigold is actively growing. This further suggests that marigold will more efficiently suppress Meloidogyne spp. if planted when these nematodes are in active stage. PMID:23482862

  8. I Have a Banana Tree in My Classroom

    ERIC Educational Resources Information Center

    Williams, Patricia A.

    2007-01-01

    When the banana is growing, the broadest part of the banana is located at the bottom, while the tapered end points upward. It appears upside down, however, from the banana tree's perspective, it is growing right side up. The author observes that the students in her classroom labeled by society as "at risk," are also, in a sense, "upside down."…

  9. Postharvest quality of specialty bananas after irradiation for quarantine security

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit quality and ripening of 'Dwarf Brazilian' ("apple") bananas were determined following x-ray irradiation for disinfestation of quarantine pests. The USDA-approved minimum absorbed dosage for banana exports from Hawaii is either 400 Gy with inspection for the presence of banana moth, or 150 Gy ...

  10. Neuroparasitic Infections: Nematodes

    PubMed Central

    Walker, M.D.; Zunt, J.R.

    2009-01-01

    Globalization has produced an increase in the number of people at risk for contracting parasitic infection. Central nervous system infection by nematodal parasites can be devastating. Early recognition and treatment of infection can significantly decrease morbidity of the parasitic infection, as well as the risk of secondary superinfection. The clinical presentation, diagnosis, and treatment for five of the more common nematodal infections of the nervous system—Angiostrongylus spp., Baylisacaris procyonis, Gnathostoma spinigerum, Strongyloides stercoralis, and Toxocara spp.—is reviewed. Objectives On completion of this article, the reader should be able to summarize the clinical presentation, diagnosis, and treatment of the common nematodal infections of the nervous system. Accreditation The Indiana University School of Medicine is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. Credit The Indiana University School of Medicine designates this educational activity for a maximum of 1 Category 1 credit toward the AMA Physicians Recognition Award. Each physician should claim only those credits that he/she actually spent in the educational activity. Disclosure Statements of disclosure have been obtained regarding the authors’ relevant financial relationships. The authors have nothing to disclose. PMID:16170738

  11. New Frontiers in Nematode Ecology

    PubMed Central

    Ferris, Howard

    1993-01-01

    Future areas of emphasis for research and scholarship in nematode ecology are indicated by pressing agricultural and environmental issues, by new directions in applied nematology, and by current technological advances. Studies in nematode ecology must extend beyond observation, counting, and simple statistical analysis. Experimentation and the testing of hypotheses are needed for understanding the biological mechanisms of ecological systems. Opportunities for fruitful experimentation in nematode ecology are emerging at the ecosystem, community, population, and individual levels. Nematode ecologists will best promote their field of study by closely monitoring and participating in the advances, initiatives, developments, and directions in the larger field of ecology. PMID:19279783

  12. Plant-parasitic nematode infections in rice: molecular and cellular insights.

    PubMed

    Kyndt, Tina; Fernandez, Diana; Gheysen, Godelieve

    2014-01-01

    Being one of the major staple foods in the world, and an interesting model monocot plant, rice (Oryza sativa L.) has recently received attention from molecular nematologists studying the cellular and molecular aspects of the interaction between this crop and plant-parasitic nematodes. In this review, we highlight recent advances in this field, with a focus on the best-studied root-knot nematodes. Histological studies have revealed the cellular changes inside root-knot nematode-induced feeding sites, both in the compatible interaction with Oryza sativa and the incompatible interaction with the related species Oryza glaberrima. After comparing the published data from transcriptome analyses, mutant studies, and exogenous hormone applications, we provide a comprehensive model showing the role and interaction of plant hormone pathways in defense of this monocot crop against root nematodes, where jasmonate seems to play a key role. Finally, recent evidence indicates that effectors secreted from rice-infecting nematodes can suppress plant defense.

  13. Olfactory responses of banana weevil predators to volatiles from banana pseudostem tissue and synthetic pheromone.

    PubMed

    Tinzaara, W; Gold, C S; Dicke, M; van Huis, A

    2005-07-01

    As a response to attack by herbivores, plants can emit a variety of volatile substances that attract natural enemies of these insect pests. Predators of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) such as Dactylosternum abdominale (Coleoptera: Hydrophilidae) and Pheidole megacephala (Hymenoptera: Formicidae), are normally found in association with weevil-infested rotten pseudostems and harvested stumps. We investigated whether these predators are attracted to such environments in response to volatiles produced by the host plant, by the weevil, or by the weevil plant complex. We evaluated predator responses towards volatiles from banana pseudostem tissue (synomones) and the synthetic banana weevil aggregation pheromone Cosmolure+ in a two-choice olfactometer. The beetle D. abdominale was attracted to fermenting banana pseudostem tissue and Cosmolure+, whereas the ant P. megacephala was attracted only to fermented pseudostem tissue. Both predators were attracted to banana pseudostem tissue that had been damaged by weevil larvae irrespective of weevil presence. Adding pheromone did not enhance predator response to volatiles from pseudostem tissue fed on by weevils. The numbers of both predators recovered with pseudostem traps in the field from banana mats with a pheromone trap were similar to those in pseudostem traps at different distance ranges from the pheromone. Our study shows that the generalist predators D. abdominale and P. megacephala use volatiles from fermented banana pseudostem tissue as the major chemical cue when searching for prey.

  14. Thermotherapy, chemotherapy, and meristem culture in banana.

    PubMed

    Lassois, Ludivine; Lepoivre, Philippe; Swennen, Rony; van den Houwe, Ines; Panis, Bart

    2013-01-01

    Bananas that provide a staple food to the millions of people are adversely affected by several viruses such as Banana bunchy Top Virus (BBTV), Banana Streak Virus (BSV), and Cucumber Mosaic Virus (CMV). These viruses are known to have a devastating effect on crop production and constraint to the international exchange and conservation of banana germplasm-a cornerstone for breeding new cultivars. The viruses are particularly problematic in vegetative propagated crops, like bananas, because of their transmission in the planting material. Different virus eradication techniques have been developed, such as thermotherapy, chemotherapy, and meristem culture for providing virus-free planting material. Meristem culture proved to be the most effective procedure to eradicate phloem-associated viruses. This method requires isolation of meristematic dome of plant under the aseptic conditions and culture in an appropriate nutrient medium to develop new virus-free plants. Thermotherapy is another widely used virus eradication technique, which is initially carried out on in vivo or in vitro plants and eventually combined with meristem culture technique. The plantlets are initially grown at 28°C day temperature and increase it by 2°C per day until reaches 40°C and the night temperature at 28°C; maintain plants at 40°C for 4 weeks; excise meristem and culture onto the regeneration medium. In chemotherapy technique, antiviral chemical compound Virazole(®) is applied on meristem culture. Combination of these techniques is also applied to improve the eradication rate.

  15. Remote quality monitoring in the banana chain

    PubMed Central

    Jedermann, Reiner; Praeger, Ulrike; Geyer, Martin; Lang, Walter

    2014-01-01

    Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and non-optimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container. PMID:24797132

  16. Remote quality monitoring in the banana chain.

    PubMed

    Jedermann, Reiner; Praeger, Ulrike; Geyer, Martin; Lang, Walter

    2014-06-13

    Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and non-optimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container.

  17. Differential gene expression in ripening banana fruit.

    PubMed

    Clendennen, S K; May, G D

    1997-10-01

    During banana (Musa acuminata L.) fruit ripening ethylene production triggers a developmental cascade that is accompanied by a massive conversion of starch to sugars, an associated burst of respiratory activity, and an increase in protein synthesis. Differential screening of cDNA libraries representing banana pulp at ripening stages 1 and 3 has led to the isolation of 11 nonredundant groups of differentially expressed mRNAs. Identification of these transcripts by partial sequence analysis indicates that two of the mRNAs encode proteins involved in carbohydrate metabolism, whereas others encode proteins thought to be associated with pathogenesis, senescence, or stress responses in plants. Their relative abundance in the pulp and tissue-specific distribution in greenhouse-grown banana plants were determined by northern-blot analyses. The relative abundance of transcripts encoding starch synthase, granule-bound starch synthase, chitinase, lectin, and a type-2 metallothionein decreased in pulp during ripening. Transcripts encoding endochitinase, beta-1,3-glucanase, a thaumatin-like protein, ascorbate peroxidase, metallothionein, and a putative senescence-related protein increased early in ripening. The elucidation of the molecular events associated with banana ripening will facilitate a better understanding and control of these processes, and will allow us to attain our long-term goal of producing candidate oral vaccines in transgenic banana plants.

  18. Unfolding energetics and stability of banana lectin.

    PubMed

    Gupta, Garima; Sinha, Sharmistha; Surolia, Avadhesha

    2008-08-01

    The unfolding pathway of banana lectin from Musa paradisiaca was determined by isothermal denaturation induced by the chaotrope GdnCl. The unfolding was found to be a reversible process. The data obtained by isothermal denaturation provided information on conformational stability of banana lectin. The high values of DeltaG of unfolding at various temperatures indicated the strength of intersubunit interactions. It was found that banana lectin is a very stable and denatures at high chaotrope concentrations only. The basis of the stability may be attributed to strong hydrogen bonds of the order 2.5-3.1 A at the dimeric interface along with the presence of water bridges. This is perhaps very unique example in proteins where subunit association is not a consequence of the predominance of hydrophobic interactions.

  19. DEBDOM: Database Exploring Banana Diversity of Manipur

    PubMed Central

    Singh, Warepam Amuchou; Gopalrao, Somkuwar Bharat; Gourshyam, Thingnam; Handique, Pratap Jyoti; Devi, Huidrom Sunitibala

    2013-01-01

    Being poor man's apple, banana has a wide popularity worldwide. It's one of the important horticultural crops used irrespective of rich and poor alike. Manipur along with the other states of Northeast India harboured with plenty of wild and cultivated species of banana that are not fully explored. A data base named DEBDOM has been developed here describing the diversity of banana resources of Manipur and it comprises twenty eight genotypes of Musaceae. The database DEBDOM provides a sophisticated web base access to the details of the taxonomy, morphological characteristics, utility as well as sites of collection of Musa genotypes, and it would have contribute as a potential gene pool sources for the conservation, sustainability as well as for crop improvement in the future breeding programmes. Availability http://ibsd.gov.in/debdom/ PMID:23516335

  20. Bacteria can mobilize nematode-trapping fungi to kill nematodes.

    PubMed

    Wang, Xin; Li, Guo-Hong; Zou, Cheng-Gang; Ji, Xing-Lai; Liu, Tong; Zhao, Pei-Ji; Liang, Lian-Ming; Xu, Jian-Ping; An, Zhi-Qiang; Zheng, Xi; Qin, Yue-Ke; Tian, Meng-Qing; Xu, You-Yao; Ma, Yi-Cheng; Yu, Ze-Fen; Huang, Xiao-Wei; Liu, Shu-Qun; Niu, Xue-Mei; Yang, Jin-Kui; Huang, Ying; Zhang, Ke-Qin

    2014-12-16

    In their natural habitat, bacteria are consumed by bacterivorous nematodes; however, they are not simply passive preys. Here we report a defensive mechanism used by certain bacteria to mobilize nematode-trapping fungi to kill nematodes. These bacteria release urea, which triggers a lifestyle switch in the fungus Arthrobotrys oligospora from saprophytic to nematode-predatory form; this predacious form is characterized by formation of specialized cellular structures or 'traps'. The bacteria significantly promote the elimination of nematodes by A. oligospora. Disruption of genes involved in urea transport and metabolism in A. oligospora abolishes the urea-induced trap formation. Furthermore, the urea metabolite ammonia functions as a signal molecule in the fungus to initiate the lifestyle switch to form trap structures. Our findings highlight the importance of multiple predator-prey interactions in prey defense mechanisms.

  1. Host Suitability of the Olive Cultivars Arbequina and Picual for Plant-Parasitic Nematodes

    PubMed Central

    Nico, A. I.; Jiménez-Díaz, R. M.; Castillo, P.

    2003-01-01

    Host suitability of olive cultivars Arbequina and Picual to several plant-parasitic nematodes was studied under controlled conditions. Arbequina and Picual were not suitable hosts for the root-lesion nematodes Pratylenchus fallax, P. thornei, and Zygotylenchus guevarai. However, the ring nematode Mesocriconema xenoplax and the spiral nematodes Helicotylenchus digonicus and H. pseudorobustus reproduced on both olive cultivars. The potential of Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica, as well as P. vulnus and P. penetrans to damage olive cultivars, was also assessed. Picual planting stocks infected by root-knot nematodes showed a distinct yellowing affecting the uppermost leaves, followed by a partial defoliation. Symptoms were more severe on M. arenaria and M. javanica-infected plants than on M. incognita-infected plants. Inoculation of plants with 15,000 eggs + second-stage juveniles/pot of these Meloidogyne spp. suppressed the main height of shoot and number of nodes of Arbequina, but not Picual. Infection by each of the two lesion nematodes (5,000 nematodes/pot) or by each of the three Meloidogyne spp. suppressed (P < 0.05) the main stem diameter of both cultivars. On Arbequina, the reproduction rate of Meloidogyne spp. was higher (P < 0.05) than that of Pratylenchus spp.; on Picual, Pratylenchus spp. reproduction was higher (P < 0.05) than that of Meloidogyne spp. PMID:19265971

  2. Nematicides and nonconventional soil amendments in the management of root-knot nematode on cotton.

    PubMed

    Jorgenson, E C

    1984-04-01

    Granular and liquid commercial humates, with micronutrients, and a microbial fermentation product were compared in several combinations with nematicides for their effects on cotton lint yield and root-knot nematode suppression. Fumigant nematicides effectively reduced cotton root galling caused by root-knot nematodes, and cotton lint yields increased. Organophosphates and carbamates were not effective. Occasionally, cotton lint yields were increased or maintained with combination treatments o f humates, micronutrients, and a microbial fermentation product, but galling o f cotton roots by root-knot nematodes was usually not reduced by these treatments.

  3. New microsatellite markers for bananas (Musa spp).

    PubMed

    Amorim, E P; Silva, P H; Ferreira, C F; Amorim, V B O; Santos, V J; Vilarinhos, A D; Santos, C M R; Souza Júnior, M T; Miller, R N G

    2012-04-27

    Thirty-four microsatellite markers (SSRs) were identified in EST and BAC clones from Musa acuminata burmannicoides var. Calcutta 4 and validated in 22 Musa genotypes from the Banana Germplasm Bank of Embrapa-CNPMF, which includes wild and improved diploids. The number of alleles per locus ranged from 2 to 14. The markers were considered highly informative based on their polymorphism information content values; more than 50% were above 0.5. These SSRs will be useful for banana breeding programs, for studies of genetic diversity, germplasm characterization and selection, development of saturated genetic linkage maps, and marker assisted selection.

  4. Social networks of educated nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes are obligate lethal parasitoids of insect larvae that navigate a chemically complex belowground environment while interacting with their insect hosts, plants, and each other. In this environment, prior exposure to volatile compounds appears to prime nematodes in a compound...

  5. Managing Nematodes without Methyl Bromide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl bromide is an effective pre-plant soil fumigant used to control nematodes in many high-input, high-value production systems including vegetables, nurseries, ornamentals, tree fruits, strawberries, and grapes. Because methyl bromide has provided a reliable return on investment for nematode c...

  6. Biological Control of Soil Pests by Mixed Application of Entomopathogenic and Fungivorous Nematodes

    PubMed Central

    Ishibashi, N.; Choi, D-R.

    1991-01-01

    In greenhouse experiments, massive application of the fungivorous nematode, Aphelenchus avenae, in summer at 26-33 C (1 x l0⁵ nematodes/500 cm³ autoclaved soil) or in autumn at 18-23 C (5 x 10⁴ nematodes/500 cm³ autoclaved soil) suppressed pre-emergence damping-off of cucumber seedlings due to Rhizoctonia solani AG-4 by 67% or 87%, respectively. Application of 2 x l0⁵ A. avenae to sterilized soil infested with R. solani caused leafminer-like symptom on the cotyledons, which did not occur in mixed inoculations with the entomopathogenic nematode, Steinernema carpocapsae. When 1 x 10⁶ A. avenae were applied 3 days before inoculation with 100 Meloidogyne incognita juveniles, gall numbers on tomato roots were reduced to 50% of controls. Gall numbers also were suppressed by S. carpocapsae (str. All). Reduction in gall numbers was no greater with mixed application of A. avenae and S. carpocapsae than with application of single species, even though twice the number of nematodes were added in the former case. These nematodes were positively attracted to tomato root tips. Aphelenchus avenae suppressed infection of the turnip moth, Agrotis segetum, but not the common cutworm, Spodoptera litura, by S. carpocapsae. PMID:19283109

  7. Phenylphenalenones Accumulate in Plant Tissues of Two Banana Cultivars in Response to Herbivory by the Banana Weevil and Banana Stem Weevil.

    PubMed

    Hölscher, Dirk; Buerkert, Andreas; Schneider, Bernd

    2016-08-25

    Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars-Musa acuminata cv. "Grande Naine" (AAA) and Musa acuminata × balbisiana Colla cv. "Bluggoe" (ABB)-when these were fed on by the banana weevil (Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae)) and the banana stem weevil (Odoiporus longicollis (Oliver) (Coleoptera: Curculionidae)). The chemical constituents of the banana material were separated by means of chromatographic techniques and identified by NMR spectroscopy. One new compound, 2-methoxy-4-phenylphenalen-1-one, was found exclusively in the corm material of "Bluggoe" that had been fed on by the weevils.

  8. Phenylphenalenones Accumulate in Plant Tissues of Two Banana Cultivars in Response to Herbivory by the Banana Weevil and Banana Stem Weevil

    PubMed Central

    Hölscher, Dirk; Buerkert, Andreas; Schneider, Bernd

    2016-01-01

    Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars—Musa acuminata cv. “Grande Naine” (AAA) and Musa acuminata × balbisiana Colla cv. “Bluggoe” (ABB)—when these were fed on by the banana weevil (Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae)) and the banana stem weevil (Odoiporus longicollis (Oliver) (Coleoptera: Curculionidae)). The chemical constituents of the banana material were separated by means of chromatographic techniques and identified by NMR spectroscopy. One new compound, 2-methoxy-4-phenylphenalen-1-one, was found exclusively in the corm material of “Bluggoe” that had been fed on by the weevils. PMID:27571112

  9. A possible scenario for the evolution of Banana streak virus in banana.

    PubMed

    Iskra-Caruana, Marie-Line; Chabannes, Matthieu; Duroy, Pierre-Olivier; Muller, Emmanuelle

    2014-06-24

    Outbreaks of Banana streak virus (BSV) have been recorded worldwide where Musa spp. is grown during the last 20 years with no convincing evidence of epidemics. Epidemics were previously reported in Uganda where BSV is currently endemic. BSV is a plant pararetrovirus of the family Caulimoviridae, genus Badnavirus it causes chlorosis leaf streak disease. The information currently available on banana streak disease makes it possible to identify a complex of distinct BSV species each causing the same disease. BSV exists in two states: one as an episomal form, infecting plant cells; the other as viral DNA integrated within the B genome of banana (endogenous BSV-eBSV) forming a viral genome for de novo viral particles. Both forms can be infectious in banana plants. The BSV phylogeny is polyphyletic with BSV distributed in two clades. Clade 1 clusters BSV species that occur worldwide and may have an eBSV counterpart, whereas Clade 3 only comprises BSV species from Uganda. Clearly, two distinct origins explain such BSV diversity. However, the epidemiology/outbreaks of BSV remains unclear and the role of eBSV needs to be clarified. In this review, the biodiversity of BSV is explained and discussed in the light of field and molecular epidemiology data. A scheme is proposed for the co-evolution of BSV and banana based on old or recent infection hypotheses related to African domestication sites and banana dissemination to explain the disease context.

  10. Interactions of microfungi and plant parasitic nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant parasitic nematodes and microfungi inhabit many of the same ecological habitats and interact in almost every conceivable way. Nematodes can feed on fungi, and conversely fungi can use nematodes as a food source. Fungi have been widely studied as biological controls of plant parasitic nematod...

  11. Field resistance of transgenic plantain to nematodes has potential for future African food security.

    PubMed

    Tripathi, Leena; Babirye, Annet; Roderick, Hugh; Tripathi, Jaindra N; Changa, Charles; Urwin, Peter E; Tushemereirwe, Wilberforce K; Coyne, Danny; Atkinson, Howard J

    2015-01-30

    Plant parasitic nematodes impose losses of up to 70% on plantains and cooking bananas in Africa. Application of nematicides is inappropriate and resistant cultivars are unavailable. Where grown, demand for plantain is more than for other staple crops. Confined field testing demonstrated that transgenic expression of a biosafe, anti-feedant cysteine proteinase inhibitor and an anti-root invasion, non-lethal synthetic peptide confers resistance to plantain against the key nematode pests Radopholus similis and Helicotylenchus multicinctus. The best peptide transgenic line showed improved agronomic performance relative to non-transgenic controls and provided about 99% nematode resistance at harvest of the mother crop. Its yield was about 186% in comparison with the nematode challenged control non-transgenic plants based on larger bunches and diminished plant toppling in storms, due to less root damage. This is strong evidence for utilizing this resistance to support the future food security of 70 million, mainly poor Africans that depend upon plantain as a staple food.

  12. Field resistance of transgenic plantain to nematodes has potential for future African food security

    PubMed Central

    Tripathi, Leena; Babirye, Annet; Roderick, Hugh; Tripathi, Jaindra N.; Changa, Charles; Urwin, Peter E.; Tushemereirwe, Wilberforce K.; Coyne, Danny; Atkinson, Howard J.

    2015-01-01

    Plant parasitic nematodes impose losses of up to 70% on plantains and cooking bananas in Africa. Application of nematicides is inappropriate and resistant cultivars are unavailable. Where grown, demand for plantain is more than for other staple crops. Confined field testing demonstrated that transgenic expression of a biosafe, anti-feedant cysteine proteinase inhibitor and an anti-root invasion, non-lethal synthetic peptide confers resistance to plantain against the key nematode pests Radopholus similis and Helicotylenchus multicinctus. The best peptide transgenic line showed improved agronomic performance relative to non-transgenic controls and provided about 99% nematode resistance at harvest of the mother crop. Its yield was about 186% in comparison with the nematode challenged control non-transgenic plants based on larger bunches and diminished plant toppling in storms, due to less root damage. This is strong evidence for utilizing this resistance to support the future food security of 70 million, mainly poor Africans that depend upon plantain as a staple food. PMID:25634654

  13. Ecuadorian banana farms should consider organic banana with low price risks in their land-use portfolios.

    PubMed

    Castro, Luz Maria; Calvas, Baltazar; Knoke, Thomas

    2015-01-01

    Organic farming is a more environmentally friendly form of land use than conventional agriculture. However, recent studies point out production tradeoffs that often prevent the adoption of such practices by farmers. Our study shows with the example of organic banana production in Ecuador that economic tradeoffs depend much on the approach of the analysis. We test, if organic banana should be included in economic land-use portfolios, which indicate how much of the land is provided for which type of land-use. We use time series data for productivity and prices over 30 years to compute the economic return (as annualized net present value) and its volatility (with standard deviation as risk measure) for eight crops to derive land-use portfolios for different levels of risk, which maximize economic return. We find that organic banana is included in land-use portfolios for almost every level of accepted risk with proportions from 1% to maximally 32%, even if the same high uncertainty as for conventional banana is simulated for organic banana. A more realistic, lower simulated price risk increased the proportion of organic banana substantially to up to 57% and increased annual economic returns by up to US$ 187 per ha. Under an assumed integration of both markets, for organic and conventional banana, simulated by an increased coefficient of correlation of economic return from organic and conventional banana (ρ up to +0.7), organic banana holds significant portions in the land-use portfolios tested only, if a low price risk of organic banana is considered. We conclude that uncertainty is a key issue for the adoption of organic banana. As historic data support a low price risk for organic banana compared to conventional banana, Ecuadorian farmers should consider organic banana as an advantageous land-use option in their land-use portfolios.

  14. Ecuadorian Banana Farms Should Consider Organic Banana with Low Price Risks in Their Land-Use Portfolios

    PubMed Central

    Castro, Luz Maria; Calvas, Baltazar; Knoke, Thomas

    2015-01-01

    Organic farming is a more environmentally friendly form of land use than conventional agriculture. However, recent studies point out production tradeoffs that often prevent the adoption of such practices by farmers. Our study shows with the example of organic banana production in Ecuador that economic tradeoffs depend much on the approach of the analysis. We test, if organic banana should be included in economic land-use portfolios, which indicate how much of the land is provided for which type of land-use. We use time series data for productivity and prices over 30 years to compute the economic return (as annualized net present value) and its volatility (with standard deviation as risk measure) for eight crops to derive land-use portfolios for different levels of risk, which maximize economic return. We find that organic banana is included in land-use portfolios for almost every level of accepted risk with proportions from 1% to maximally 32%, even if the same high uncertainty as for conventional banana is simulated for organic banana. A more realistic, lower simulated price risk increased the proportion of organic banana substantially to up to 57% and increased annual economic returns by up to US$ 187 per ha. Under an assumed integration of both markets, for organic and conventional banana, simulated by an increased coefficient of correlation of economic return from organic and conventional banana (ρ up to +0.7), organic banana holds significant portions in the land-use portfolios tested only, if a low price risk of organic banana is considered. We conclude that uncertainty is a key issue for the adoption of organic banana. As historic data support a low price risk for organic banana compared to conventional banana, Ecuadorian farmers should consider organic banana as an advantageous land-use option in their land-use portfolios. PMID:25799506

  15. Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish).

    PubMed

    Wang, Zhuo; Jia, Caihong; Li, Jingyang; Huang, Suzhen; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubens (Foc) is the most serious disease that attacks banana plants. Salicylic acid (SA) can play a key role in plant-microbe interactions. Our study is the first to examine the role of SA in conferring resistance to Foc TR4 in banana (Musa acuminata L. AAA group, cv. Cavendish), which is the greatest commercial importance cultivar in Musa. We used quantitative real-time reverse polymerase chain reaction (qRT-PCR) to analyze the expression profiles of 45 genes related to SA biosynthesis and downstream signaling pathways in a susceptible banana cultivar (cv. Cavendish) and a resistant banana cultivar (cv. Nongke No. 1) inoculated with Foc TR4. The expression of genes involved in SA biosynthesis and downstream signaling pathways was suppressed in a susceptible cultivar and activated in a resistant cultivar. The SA levels in each treatment arm were measured using high-performance liquid chromatography. SA levels were decreased in the susceptible cultivar and increased in the resistant cultivar. Finally, we examined the contribution of exogenous SA to Foc TR4 resistance in susceptible banana plants. The expression of genes involved in SA biosynthesis and signal transduction pathways as well as SA levels were significantly increased. The results suggest that one reason for banana susceptibility to Foc TR4 is that expression of genes involved in SA biosynthesis and SA levels are suppressed and that the induced resistance observed in banana against Foc TR4 might be a case of salicylic acid-dependent systemic acquired resistance.

  16. Love Is Like a Squished Banana

    ERIC Educational Resources Information Center

    Brown, Stephen

    1976-01-01

    An unemployed poet obtained a CETA public service job as a teacher's aide in Marin County, California, where he has guided elementary children's imaginative projects. His experiences are described. He has published a volume of the children's verse under the title "Love Is Like a Squished Banana." (AJ)

  17. Anthocyanin composition of wild bananas in Thailand.

    PubMed

    Kitdamrongsont, Kasipong; Pothavorn, Pongsagon; Swangpol, Sasivimon; Wongniam, Siripope; Atawongsa, Kanokporn; Svasti, Jisnuson; Somana, Jamorn

    2008-11-26

    Anthocyanins were isolated from male bracts of 10 wild species of bananas (Musa spp. and Ensete spp.) distributed in Thailand. Six major anthocyanin pigments were identified by high performance liquid chromatography (HPLC), mass spectrometry (MS), and tandem mass spectrometry (MS/MS). They are delphinidin-3-rutinoside (m/z 611.2), cyanidin-3-rutinoside (m/z 595.8), petunidin-3-rutinoside (m/z 624.9), pelargonidin-3-rutinoside (m/z 579.4), peonidin-3-rutinoside (m/z 608.7), and malvidin-3-rutinoside (m/z 638.8). On the basis of the types of pigment present, the wild bananas can be divided into 5 groups. The first group comprises M. itinerans, Musa sp. one, Musa sp. two, and M. acuminata accessions, which contain almost or all anthocyanin pigments except for pelargonidin-3-rutinoside, including both nonmethylated and methylated anthocyanins. The second group, M. acuminata subsp. truncata, contains only malvidin-3-rutinoside while the third group, M. coccinea, contains cyanidin-3-rutinoside and pelargonidin-3-rutinoside. The forth group, M. acuminata yellow bract and E. glaucum do not appear to contain any anthocyanin pigment. The fifth group consists of M. balbisiana, M. velutina, M. laterita, and E. superbum which contain only nonmethylated anthocyanin, delphinidin-3-rutinoside, and cyanidin-3-rutinoside. Total anthocyanin content in the analyzed bracts ranged from 0-119.70 mg/100 g bract fresh weight. The differences in the type of anthocyanin and variation in the amounts present indicate that wild bananas show biochemical diversity, which may be useful for identifying specific groups of bananas or for clarifying the evolution of flavonoid metabolism in each banana group.

  18. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism

    PubMed Central

    Niu, Junhai; Liu, Pei; Liu, Qian; Chen, Changlong; Guo, Quanxin; Yin, Junmei; Yang, Guangsui; Jian, Heng

    2016-01-01

    Root-knot nematodes (RKNs) are obligate biotrophic parasites that invade plant roots and engage in prolonged and intimate relationships with their hosts. Nematode secretions, some of which have immunosuppressing activity, play essential roles in successful parasitism; however, their mechanisms of action remain largely unknown. Here, we show that the RKN-specific gene MiMsp40, cloned from Meloidogyne incognita, is expressed exclusively in subventral oesophageal gland cells and is strongly upregulated during early parasitic stages. Arabidopsis plants overexpressing MiMsp40 were more susceptible to nematode infection than were wild type plants. Conversely, the host-derived MiMsp40 RNAi suppressed nematode parasitism and/or reproduction. Moreover, overexpression of MiMsp40 in plants suppressed the deposition of callose and the expression of marker genes for bacterial elicitor elf18-triggered immunity. Transient expression of MiMsp40 prevented Bax-triggered defence-related programmed cell death. Co-agroinfiltration assays indicated that MiMsp40 also suppressed macroscopic cell death triggered by MAPK cascades or by the ETI cognate elicitors R3a/Avr3a. Together, these results demonstrate that MiMsp40 is a novel Meloidogyne-specific effector that is injected into plant cells by early parasitic stages of the nematode and that plays a role in suppressing PTI and/or ETI signals to facilitate RKN parasitism. PMID:26797310

  19. Bacteria can mobilize nematode-trapping fungi to kill nematodes

    PubMed Central

    Wang, Xin; Li, Guo-Hong; Zou, Cheng-Gang; Ji, Xing-Lai; Liu, Tong; Zhao, Pei-Ji; Liang, Lian-Ming; Xu, Jian-Ping; An, Zhi-Qiang; Zheng, Xi; Qin, Yue-Ke; Tian, Meng-Qing; Xu, You-Yao; Ma, Yi-Cheng; Yu, Ze-Fen; Huang, Xiao-Wei; Liu, Shu-Qun; Niu, Xue-Mei; Yang, Jin-Kui; Huang, Ying; Zhang, Ke-Qin

    2014-01-01

    In their natural habitat, bacteria are consumed by bacterivorous nematodes; however, they are not simply passive preys. Here we report a defensive mechanism used by certain bacteria to mobilize nematode-trapping fungi to kill nematodes. These bacteria release urea, which triggers a lifestyle switch in the fungus Arthrobotrys oligospora from saprophytic to nematode–predatory form; this predacious form is characterized by formation of specialized cellular structures or ‘traps’. The bacteria significantly promote the elimination of nematodes by A. oligospora. Disruption of genes involved in urea transport and metabolism in A. oligospora abolishes the urea-induced trap formation. Furthermore, the urea metabolite ammonia functions as a signal molecule in the fungus to initiate the lifestyle switch to form trap structures. Our findings highlight the importance of multiple predator–prey interactions in prey defense mechanisms. PMID:25514608

  20. Differentiation between cooking bananas and dessert bananas. 2. Thermal and functional characterization of cultivated Colombian Musaceae (Musa sp.).

    PubMed

    Dufour, Dominique; Gibert, Olivier; Giraldo, Andrés; Sánchez, Teresa; Reynes, Max; Pain, Jean-Pierre; González, Alonso; Fernández, Alejandro; Díaz, Alberto

    2009-09-09

    The starch and flour thermal and functional characteristics of 23 cultivated varieties of bananas in Colombia were assessed. Onset temperature for gelatinization of starches measured by differential scanning calorimetry (DSC) varied from 59.7 to 67.8 degrees C, thereby significantly differentiating dessert bananas (63.2 degrees C) from nonplantain cooking bananas (65.7 degrees C) from FHIA hybrids (66.6 degrees C) and plantains (67.1 degrees C). FHIA hybrids are significantly discriminated from dessert banana landraces but not from the cooking group. The starch amylose contents varied from 15.4 to 24.9%; most dessert banana starch amylose contents were below 19%, whereas in cooking banana starches the contents were over 21%. Flour functional properties were assessed by Rapid ViscoAnalyser (RVA) using silver nitrate as alpha-amylase inhibitor. The flour pasting temperature was relevant to differentiate dessert bananas (69.5 degrees C) from FHIA dessert hybrids and nonplantain cooking bananas (72.8 degrees C) from cooking hybrids and plantains (75.8 degrees C). Among other criteria, the cooking ability also helped to differentiate dessert bananas and FHIA hybrids from cooking bananas. A close relation between cultivar genotypes and uses with the thermal and pasting properties were revealed.

  1. Banana infecting fungus, Fusarium musae, is also an opportunistic human pathogen: are bananas potential carriers and source of fusariosis?

    PubMed

    Triest, David; Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Detandt, Monique; Hendrickx, Marijke

    2015-01-01

    During re-identification of Fusarium strains in the BCCM™/IHEM fungal collection by multilocus sequence-analysis we observed that five strains, previously identified as Fusarium verticillioides, were Fusarium musae, a species described in 2011 from banana fruits. Four strains were isolated from blood samples or biopsies of immune-suppressed patients and one was isolated from the clinical environment, all originating from different hospitals in Belgium or France, 2001-2008. The F. musae identity of our isolates was confirmed by phylogenetic analysis using reference sequences of type material. Absence of the gene cluster necessary for fumonisin biosynthesis, characteristic to F. musae, was also the case for our isolates. In vitro antifungal susceptibility testing revealed no important differences in their susceptibility compared to clinical F. verticillioides strains and terbinafine was the most effective drug. Additional clinical F. musae strains were searched by performing BLAST queries in GenBank. Eight strains were found, of which six were keratitis cases from the U.S. multistate contact lens-associated outbreak in 2005 and 2006. The two other strains were also from the U.S., causing either a skin infection or sinusitis. This report is the first to describe F. musae as causative agent of superficial and opportunistic, disseminated infections in humans. Imported bananas might act as carriers of F. musae spores and be a potential source of infection with F. musae in humans. An alternative hypothesis is that the natural distribution of F. musae is geographically a lot broader than originally suspected and F. musae is present on different plant hosts.

  2. Nematode-trapping fungi eavesdrop on nematode pheromones

    PubMed Central

    Hsueh, Yen-Ping; Mahanti, Parag; Schroeder, Frank C.; Sternberg, Paul W.

    2013-01-01

    Summary The recognition of molecular patterns associated with specific pathogens or food sources is fundamental to ecology and plays a major role in the evolution of predator-prey relationships [1]. Recent studies showed that nematodes produce an evolutionarily highly conserved family of small molecules, the ascarosides, which serve essential functions in regulating nematode development and behavior [2-4]. Here we show that nematophagous fungi, natural predators of soil-dwelling nematodes [5], can detect and respond to ascarosides. Nematophagous fungi use specialized trapping devices to catch and consume nematodes, and previous studies demonstrated that most fungal species do not produce traps constitutively but rather initiate trap-formation in response to their prey [6]. We found that ascarosides, which are constitutively secreted by many species of soil-dwelling nematodes, represent a conserved molecular pattern used by nematophagous fungi to detect prey and trigger trap formation. Ascaroside-induced morphogenesis is conserved in several closely related species of nematophagous fungi and occurs only under nutrient-deprived condition. Our results demonstrate that microbial predators eavesdrop on chemical communication among their metazoan prey to regulate morphogenesis, providing a striking example of predator-prey co-evolution. We anticipate that these findings will have broader implications for understanding other inter-kingdom interactions involving nematodes, which are found in almost any ecological niche on Earth. PMID:23246407

  3. Nematode-trapping fungi eavesdrop on nematode pheromones.

    PubMed

    Hsueh, Yen-Ping; Mahanti, Parag; Schroeder, Frank C; Sternberg, Paul W

    2013-01-07

    The recognition of molecular patterns associated with specific pathogens or food sources is fundamental to ecology and plays a major role in the evolution of predator-prey relationships. Recent studies showed that nematodes produce an evolutionarily highly conserved family of small molecules, the ascarosides, which serve essential functions in regulating nematode development and behavior. Here, we show that nematophagous fungi, natural predators of soil-dwelling nematodes, can detect and respond to ascarosides. Nematophagous fungi use specialized trapping devices to catch and consume nematodes, and previous studies demonstrated that most fungal species do not produce traps constitutively but rather initiate trap formation in response to their prey. We found that ascarosides, which are constitutively secreted by many species of soil-dwelling nematodes, represent a conserved molecular pattern used by nematophagous fungi to detect prey and trigger trap formation. Ascaroside-induced morphogenesis is conserved in several closely related species of nematophagous fungi and occurs only under nutrient-deprived conditions. Our results demonstrate that microbial predators eavesdrop on chemical communication among their metazoan prey to regulate morphogenesis, providing a striking example of predator-prey coevolution. We anticipate that these findings will have broader implications for understanding other interkingdom interactions involving nematodes, which are found in almost any ecological niche on Earth.

  4. Entomopathogenic nematodes in agricultural areas in Brazil.

    PubMed

    de Brida, Andressa Lima; Rosa, Juliana Magrinelli Osório; Oliveira, Cláudio Marcelo Gonçalves de; Castro, Bárbara Monteiro de Castro E; Serrão, José Eduardo; Zanuncio, José Cola; Leite, Luis Garrigós; Wilcken, Silvia Renata Siciliano

    2017-04-06

    Entomopathogenic nematodes (EPNs) (Steinernematidae and Heterorhabditidae) can control pests due to the mutualistic association with bacteria that kill the host by septicemia and make the environment favorable for EPNs development and reproduction. The diversity of EPNs in Brazilian soils requires further study. The identification of EPNs, adapted to environmental and climatic conditions of cultivated areas is important for sustainable pest suppression in integrated management programs in agricultural areas of Brazil. The objective was to identify EPNs isolated from agricultural soils with annual, fruit and forest crops in Brazil. Soil samples were collected and stored in 250 ml glass vials. The nematodes were isolated from these samples with live bait traps ([Galleria mellonella L. (Lepidoptera: Pyralidae) larvae]. Infective juveniles were collected with White traps and identified by DNA barcoding procedures by sequencing the D2/D3 expansion of the 28S rDNA region by PCR. EPNs identified in agricultural areas in Brazil were Heterorhabditis amazonensis, Metarhabditis rainai, Oscheios tipulae and Steinernema rarum. These species should be considered pest biocontrol agents in Brazilian agricultural areas.

  5. Entomopathogenic nematodes in agricultural areas in Brazil

    PubMed Central

    de Brida, Andressa Lima; Rosa, Juliana Magrinelli Osório; Oliveira, Cláudio Marcelo Gonçalves de; Castro, Bárbara Monteiro de Castro e; Serrão, José Eduardo; Zanuncio, José Cola; Leite, Luis Garrigós; Wilcken, Silvia Renata Siciliano

    2017-01-01

    Entomopathogenic nematodes (EPNs) (Steinernematidae and Heterorhabditidae) can control pests due to the mutualistic association with bacteria that kill the host by septicemia and make the environment favorable for EPNs development and reproduction. The diversity of EPNs in Brazilian soils requires further study. The identification of EPNs, adapted to environmental and climatic conditions of cultivated areas is important for sustainable pest suppression in integrated management programs in agricultural areas of Brazil. The objective was to identify EPNs isolated from agricultural soils with annual, fruit and forest crops in Brazil. Soil samples were collected and stored in 250 ml glass vials. The nematodes were isolated from these samples with live bait traps ([Galleria mellonella L. (Lepidoptera: Pyralidae) larvae]. Infective juveniles were collected with White traps and identified by DNA barcoding procedures by sequencing the D2/D3 expansion of the 28S rDNA region by PCR. EPNs identified in agricultural areas in Brazil were Heterorhabditis amazonensis, Metarhabditis rainai, Oscheios tipulae and Steinernema rarum. These species should be considered pest biocontrol agents in Brazilian agricultural areas. PMID:28382937

  6. Social Networks of Educated Nematodes

    PubMed Central

    Willett, Denis S.; Alborn, Hans T.; Duncan, Larry W.; Stelinski, Lukasz L.

    2015-01-01

    Entomopathogenic nematodes are obligate lethal parasitoids of insect larvae that navigate a chemically complex belowground environment while interacting with their insect hosts, plants, and each other. In this environment, prior exposure to volatile compounds appears to prime nematodes in a compound specific manner, increasing preference for volatiles they previously were exposed to and decreasing attraction to other volatiles. In addition, persistence of volatile exposure influences this response. Longer exposure not only increases preference, but also results in longer retention of that preference. These entomopathogenic nematodes display interspecific social behavioral plasticity; experienced nematodes influence the behavior of different species. This interspecific social behavioral plasticity suggests a mechanism for rapid adaptation of belowground communities to dynamic environments. PMID:26404058

  7. Nematode Chemosensilla: Form and Function

    PubMed Central

    Wright, K. A.

    1983-01-01

    As an introduction to a symposium of nematode chemoreception, the anatomy of nematode chemosensilla, their distribution on plant parasitic nematodes, and their possible functional roles is briefly reviewed. Comparison of nematode chemosensilla with those of other animals shows their greater resemblance to olfactory primary sense cells of vertebrates. Although the sensory process is obviously derived from a cilium, the absence of many ciliary features is noted. Retention of the ciliary necklace may be important functionally. A simple model is proposed, wherein binding of stimulant molecules to receptors in the membrane of the cilium-derived process results in entry of Na⁺ and Ca⁺⁺ (the latter via the ciliary necklace) to produce a receptor potential that spreads along the dendrite to the cell body where action potentials continue along the short axon to synapses. PMID:19295785

  8. Response of Plant Parasitic and Free Living Soil Nematodes to Composted Animal Manure Soil Amendments

    PubMed Central

    Renčo, M.; Kováčik, P.

    2012-01-01

    In an outside pot experiment, dry pig manure processed on pine sawdust litter and fermented for seven days by house fly larvae (fermented manure), and pine sawdust applied alone, and in combination with a spring application of inorganic nitrogen fertilizer were used to determine their effects on plant parasitic and free-living soil nematodes on sugar beets (cv. Antek). Non amended soil was used as a control. All treatments with fermented pig manure and sawdust with nitrogen fertilizer decreased number of plant parasitic nematodes and also root-fungal feeding nematodes compared to the untreated control. Sawdust applied alone had no effect on plant parasitic and root-fungal feeding nematode suppression. Free-living nematodes which were mainly bacteriovores and fungivores were significantly more abundant in soil amended with fermented pig manure, while the sawdust had no effect on these nematodes. The effect of all tested treatments on omnivores-predators was rather random, and in general, the number of these nematodes decreased after soil amendment applications compared to the untreated control. PMID:23482503

  9. Allergy to banana in a 5-month-old infant.

    PubMed

    Moreno-Ancillo, Alvaro; Domínguez-Noche, Carmen; Gil-Adrados, Ana C; Cosmes, Pedro M

    2004-06-01

    Food proteins can sensitize the infants via different sources. A 5-month-old boy suffered three episodes of generalized urticaria 20 min after the ingestion of a fruit purée containing apple, banana and orange. Skin testing showed positive results to banana and chestnut. Other tests were negative. The value of specific immunoglobulin E (Pharmacia CAP-FEIA, Uppsala, Sweden) to banana was 58 KU/l, to orange was 9.7 KU/l, to chestnut was 5.6 KU/l and to latex was 1.6 KU/l. Orange, apple and latex products were well tolerated. He never had eaten chestnut. The parents rejected a banana challenge test. The route of sensitization in our case might be via placenta, breast-milk, and inadvertent oral intake of food or even via inhalation. An early frequent exposure to banana allergens was considered a possibility factor for the development of banana sensitization. We found that the banana consumption during pregnancy and lactation by the mother of our patient was greater than usual. It is not frequent to find so high levels of sensitization to any fruit in first year of life. In our case, latex, chestnut and orange sensitizations did not seem to be clinically relevant. However, latex and foods known to cross-react with banana antigens should be given to banana-sensitive individuals with great caution.

  10. Members of Gammaproteobacteria as indicator species of healthy banana plants on Fusarium wilt-infested fields in Central America

    PubMed Central

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2017-01-01

    Culminating in the 1950’s, bananas, the world’s most extensive perennial monoculture, suffered one of the most devastating disease epidemics in history. In Latin America and the Caribbean, Fusarium wilt (FW) caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (FOC), forced the abandonment of the Gros Michel-based export banana industry. Comparative microbiome analyses performed between healthy and diseased Gros Michel plants on FW-infested farms in Nicaragua and Costa Rica revealed significant shifts in the gammaproteobacterial microbiome. Although we found substantial differences in the banana microbiome between both countries and a higher impact of FOC on farms in Costa Rica than in Nicaragua, the composition especially in the endophytic microhabitats was similar and the general microbiome response to FW followed similar rules. Gammaproteobacterial diversity and community members were identified as potential health indicators. Healthy plants revealed an increase in potentially plant-beneficial Pseudomonas and Stenotrophomonas, while diseased plants showed a preferential occurrence of Enterobacteriaceae known for their plant-degrading capacity. Significantly higher microbial rhizosphere diversity found in healthy plants could be indicative of pathogen suppression events preventing or minimizing disease expression. This first study examining banana microbiome shifts caused by FW under natural field conditions opens new perspectives for its biological control. PMID:28345666

  11. Domestication, Genomics and the Future for Banana

    PubMed Central

    Heslop-Harrison, J. S.; Schwarzacher, Trude

    2007-01-01

    Background Cultivated bananas and plantains are giant herbaceous plants within the genus Musa. They are both sterile and parthenocarpic so the fruit develops without seed. The cultivated hybrids and species are mostly triploid (2n = 3x = 33; a few are diploid or tetraploid), and most have been propagated from mutants found in the wild. With a production of 100 million tons annually, banana is a staple food across the Asian, African and American tropics, with the 15 % that is exported being important to many economies. Scope There are well over a thousand domesticated Musa cultivars and their genetic diversity is high, indicating multiple origins from different wild hybrids between two principle ancestral species. However, the difficulty of genetics and sterility of the crop has meant that the development of new varieties through hybridization, mutation or transformation was not very successful in the 20th century. Knowledge of structural and functional genomics and genes, reproductive physiology, cytogenetics, and comparative genomics with rice, Arabidopsis and other model species has increased our understanding of Musa and its diversity enormously. Conclusions There are major challenges to banana production from virulent diseases, abiotic stresses and new demands for sustainability, quality, transport and yield. Within the genepool of cultivars and wild species there are genetic resistances to many stresses. Genomic approaches are now rapidly advancing in Musa and have the prospect of helping enable banana to maintain and increase its importance as a staple food and cash crop through integration of genetical, evolutionary and structural data, allowing targeted breeding, transformation and efficient use of Musa biodiversity in the future. PMID:17766312

  12. Pervaporation of ethanol produced from banana waste.

    PubMed

    Bello, Roger Hoel; Linzmeyer, Poliana; Franco, Cláudia Maria Bueno; Souza, Ozair; Sellin, Noeli; Medeiros, Sandra Helena Westrupp; Marangoni, Cintia

    2014-08-01

    Banana waste has the potential to produce ethanol with a low-cost and sustainable production method. The present work seeks to evaluate the separation of ethanol produced from banana waste (rejected fruit) using pervaporation with different operating conditions. Tests were carried out with model solutions and broth with commercial hollow hydrophobic polydimethylsiloxane membranes. It was observed that pervaporation performance for ethanol/water binary mixtures was strongly dependent on the feed concentration and operating temperature with ethanol concentrations of 1-10%; that an increase of feed flow rate can enhance the permeation rate of ethanol with the water remaining at almost the same value; that water and ethanol fluxes was increased with the temperature increase; and that the higher effect in flux increase was observed when the vapor pressure in the permeate stream was close to the ethanol vapor pressure. Better results were obtained with fermentation broth than with model solutions, indicated by the permeance and membrane selectivity. This could be attributed to by-products present in the multicomponent mixtures, facilitating the ethanol permeability. By-products analyses show that the presence of lactic acid increased the hydrophilicity of the membrane. Based on this, we believe that pervaporation with hollow membrane of ethanol produced from banana waste is indeed a technology with the potential to be applied.

  13. Further Screening of Entomopathogenic Fungi and Nematodes as Control Agents for Drosophila suzukii

    PubMed Central

    Cuthbertson, Andrew G. S.; Audsley, Neil

    2016-01-01

    Drosophila suzukii populations remain low in the UK. To date, there have been no reports of widespread damage. Previous research demonstrated that various species of entomopathogenic fungi and nematodes could potentially suppress D. suzukii population development under laboratory trials. However, none of the given species was concluded to be specifically efficient in suppressing D. suzukii. Therefore, there is a need to screen further species to determine their efficacy. The following entomopathogenic agents were evaluated for their potential to act as control agents for D. suzukii: Metarhizium anisopliae; Isaria fumosorosea; a non-commercial coded fungal product (Coded B); Steinernema feltiae, S. carpocapsae, S. kraussei and Heterorhabditis bacteriophora. The fungi were screened for efficacy against the fly on fruit while the nematodes were evaluated for the potential to be applied as soil drenches targeting larvae and pupal life-stages. All three fungi species screened reduced D. suzukii populations developing from infested berries. Isaria fumosorosea significantly (p < 0.001) reduced population development of D. suzukii from infested berries. All nematodes significantly reduced adult emergence from pupal cases compared to the water control. Larvae proved more susceptible to nematode infection. Heterorhabditis bacteriophora proved the best from the four nematodes investigated; readily emerging from punctured larvae and causing 95% mortality. The potential of the entomopathogens to suppress D. suzukii populations is discussed. PMID:27294962

  14. [Effects of continuous application of bio-organic fertilizer on banana production and cultural microflora of bulk soil in orchard with serious disease incidence].

    PubMed

    Zhong, Shu-tang; Shen, Zong-zhuan; Sun, Yi-fei; Lyu, Na-na; Ruan, Yun-ze; Li, Rong; Shen, Qi-rong

    2015-02-01

    A field experiment was conducted for two years to investigate the effects of different fertilization applications on the suppression of banana fusarium wilt disease, crop yield, fruit quality and culturable microflora in a banana orchard which has been monocultured with banana for 12 years and suffered serious banana fusarium wilt disease. The fertilizers included chemical fertilizer (CF), cow manure compost (CM), pig manure compost (PM) and bio-organic fertilizer (BIO). The banana soil microflora was invested using plate-counting method and culture-dependent polymerase chain reaction denaturing gradient gel electrophoresis method (CD PCR-DGGE). Results showed that, compared with the other treatments, 2-year consecutive application of BIO significantly reduced the banana fusarium wilt disease incidence, and improved the banana mass per tree, crop yield, total soluble sugar content and the ratio of total soluble sugar to titratable acidity of fruits (sugar/acid ratio). Moreover, the analysis of culturable microflora showed that BIO application significantly increased the soil microbial biomass, soil culturable bacteria, bacillus and actinomycetes, and the ratio of bacteria to fungi (B/F) , while decreased the Fusarium oxysporum. Based on the CD PCR-DGGE results, the BIO application significantly altered the soil culturable bacterial structure and showed highest richness and diversity after 2 years of BIO application. The phylogenetic analysis of the selected bands showed that BIO application enriched the soil with the species of Paenibacillus sp., Burkholderia sp., uncultured Verrucomicrobia sp. and Bacillus aryabhattai, and depressed the species of Ralstonia sp., Chryseobacterium gleum, Fluviicola taffensis, Enterobacter sp. and Bacillus megaterium. These results confirmed that the continuous application of BIO effectively controlled the fusarium wilt disease, improved the crop yield and fruit quality, and modulated the soil culturable microflora under field

  15. A chorismate mutase from the soybean cyst nematode Heterodera glycines shows polymorphisms that correlate with virulence.

    PubMed

    Bekal, Sadia; Niblack, Terry L; Lambert, Kris N

    2003-05-01

    Parasitism genes from phytoparasitic nematodes are thought to be essential for nematode invasion of the host plant, to help the nematode establish feeding sites, and to aid nematodes in the suppression of host plant defenses. One gene that may play several roles in nematode parasitism is chorismate mutase (CM). This secreted enzyme is produced in the nematode's esophageal glands and appears to function within the plant cell to manipulate the plant's shikimate pathway, which controls plant cell growth, development, structure, and pathogen defense. Using degenerate polymerase chain reaction primers, we amplified and cloned a chorismate mutase (Hg-cm-1) from Heterodera glycines, the soybean cyst nematode (SCN), and showed it had CM activity. RNA in situ hybridization of Hg-cm-1 cDNA to SCN sections confirms that it is specifically expressed in the nematodes' esophageal glands. DNA gel blots of genomic DNA isolated from SCN inbred lines that have differing virulence on SCN resistant soybean show Hg-cm-1 is a member of a polymorphic gene family. Some Hg-cm family members predominate in SCN inbred lines that are virulent on certain SCN resistant soybean cultivars. The same polymorphisms and correlation with virulence are seen in the Hg-cm-1 expressed in the SCN second-stage juveniles. Based on the enzymatic activity of Hg-cm-1 and the observation that different forms of the mutase are expressed in virulent nematodes, we hypothesize that the Hg-cm-1 is a virulence gene, some forms of which allow SCN to parasitize certain resistant soybean plants.

  16. Basic and applied research: Entomopathogenic nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes in the genera Heterorhabditis and Steinernema kill arthropods with the aid of their bacterial symbionts. These nematodes are potent microbial control agents that have been widely commercialized for control of economically important insect pests. Biocontrol efficacy relies...

  17. Application and commercialization of nematodes.

    PubMed

    Peters, Arne

    2013-07-01

    While nematodes are most commonly known for their negative impact on plants, animals, and humans, there are a number of species which are commercially explored. This review highlights some of the most important success stories for the application of nematodes. They are used as bioindicators in ecological and toxicity studies, as model organisms for elucidating fundamental biological questions and for high throughput screening of drugs. Besides these indirect uses, direct applications include the use of Beddingia siricidicola against a major forest pest and the commercialization of Steinernema, Heterorhabditis, and Phasmarhabditis as biological pest control products. New directions for the commercialization of nematodes are the use as living food, specifically loaded with essential nutrients for various fish and shrimp larvae. Even human parasites or closely related species have been successfully used for curing autoimmune disorders and are currently in the process of being developed as drugs. With the striving development of life sciences, we are likely to see more applications for nematodes in the future. A prerequisite is that we continue to explore the vast number of yet undiscovered nematode species.

  18. Nematode neuropeptides as transgenic nematicides.

    PubMed

    Warnock, Neil D; Wilson, Leonie; Patten, Cheryl; Fleming, Colin C; Maule, Aaron G; Dalzell, Johnathan J

    2017-02-01

    Plant parasitic nematodes (PPNs) seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods. Nematodes can assimilate exogenous peptides through retrograde transport along the chemosensory amphid neurons. Peptides can accumulate within cells of the central nerve ring and can elicit physiological effects when released to interact with receptors on adjoining cells. We have profiled bioactive neuropeptides from the neuropeptide-like protein (NLP) family of PPNs as novel nematicides, and have identified numerous discrete NLPs that negatively impact chemosensation, host invasion and stylet thrusting of the root knot nematode Meloidogyne incognita and the potato cyst nematode Globodera pallida. Transgenic secretion of these peptides from the rhizobacterium, Bacillus subtilis, and the terrestrial microalgae Chlamydomonas reinhardtii reduce tomato infection levels by up to 90% when compared with controls. These data pave the way for the exploitation of nematode neuropeptides as a novel class of plant protective nematicide, using novel non-food transgenic delivery systems which could be deployed on farmer-preferred cultivars.

  19. Nematode neuropeptides as transgenic nematicides

    PubMed Central

    Patten, Cheryl; Fleming, Colin C.; Maule, Aaron G.

    2017-01-01

    Plant parasitic nematodes (PPNs) seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods. Nematodes can assimilate exogenous peptides through retrograde transport along the chemosensory amphid neurons. Peptides can accumulate within cells of the central nerve ring and can elicit physiological effects when released to interact with receptors on adjoining cells. We have profiled bioactive neuropeptides from the neuropeptide-like protein (NLP) family of PPNs as novel nematicides, and have identified numerous discrete NLPs that negatively impact chemosensation, host invasion and stylet thrusting of the root knot nematode Meloidogyne incognita and the potato cyst nematode Globodera pallida. Transgenic secretion of these peptides from the rhizobacterium, Bacillus subtilis, and the terrestrial microalgae Chlamydomonas reinhardtii reduce tomato infection levels by up to 90% when compared with controls. These data pave the way for the exploitation of nematode neuropeptides as a novel class of plant protective nematicide, using novel non-food transgenic delivery systems which could be deployed on farmer-preferred cultivars. PMID:28241060

  20. Control of Soybean Cyst Nematode by Chitinolytic Bacteria with Chitin Substrate

    PubMed Central

    Tian, Honglin; Riggs, Robert D.; Crippen, Devany L.

    2000-01-01

    Sixty-four chitinolytic bacterial isolates from soybean fields in Arkansas were tested for suppression of soybean cyst nematode (Heterodera glycines) in a heat-treated silt loam soil amended with 0.6% (w/w) chitin in a greenhouse. Five isolates consistently reduced numbers of H. glycines compared to controls receiving neither chitin nor bacteria, or only chitin. Four of the five isolates interacted with the chitin substrate to enhance its effectiveness in reducing numbers of the nematode. The size of the clear-zone produced by some of the isolates in colloidal chitin medium, an indication of chitinolytic activity in vitro, was not related to suppression of nematode numbers in soil. PMID:19270991

  1. Drying characteristics and quality of bananas under infrared radiation heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hot air (HA) drying of banana has low drying efficiency and results in undesirable product quality. The objectives of this research were to investigate the feasibility of infrared (IR) heating to improve banana drying rate, evaluate quality of the dried product, and establish models for predicting d...

  2. Using banana to generate lactic acid through batch process fermentation.

    PubMed

    Chan-Blanco, Y; Bonilla-Leiva, A R; Velázquez, A C

    2003-12-01

    We evaluated the usefulness of waste banana for generating lactic acid through batch fermentation, using Lactobacillus casei under three treatments. Two treatments consisted of substrates of diluted banana purée, one of which was enriched with salts and amino acids. The control treatment comprised a substrate suitable for L. casei growth. When fermentation was evaluated over time, significant differences (P<0.05) were found in the three treatments for each of five variables analyzed (generation and productivity of lactic acid, and consumption of glucose, fructose, and sucrose). Maximum productivity was (in g l(-1) h(-1)) 0.13 for the regular banana treatment, 1.49 for the enriched banana, and 1.48 for the control, with no significant differences found between the latter two treatments. Glucose consumption curves showed that L. casei made greater use of the substrate in the enriched banana and control treatments than in the regular banana treatment. For fructose intake, the enriched banana treatment showed significantly better (P<0.05) results than the regular one. Sucrose consumption was insignificant (P<0.05), probably because fermentation time was too short. Even when enriched, diluted banana purée is an ineffective substrate for L. casei, probably because it lacks nutrients.

  3. Agronomic performance of five banana cultivars under protected cultivation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Banana has been grown both in open-field and protected cultivation in Turkey. So far protected cultivation is very popular due to the high yield and quality. The objective of the study was to evaluate agronomic performance of five new banana cultivars under plastic greenhouse. ‘MA 13’, ‘Williams’, ‘...

  4. [Banana tree pests attacking Heliconia latispatha Benth. (Heliconiaceae)].

    PubMed

    Watanabe, Maria A

    2007-01-01

    In mid-May 2005, the caterpillars Antichloris eriphia (Fabr.) (Lepidoptera: Arctiidae) and Calligo illioneus (Cramer) (Lepidoptera: Nymphalidae) which are banana tree pests, were found attacking six-month old stalks of Heliconia latispatha Benth., planted near a banana tree plantation in Jaguariuna, SP, Brazil. The attack by C. illioneus is observed by the first time in Brazil.

  5. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana...

  6. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana...

  7. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana...

  8. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana...

  9. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana...

  10. Using entomopathogenic nematodes for crop insect control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this paper is to provide an overview on using entomopathogenic nematodes for insect pest control. Entomopathogenic nematodes (genera Steinernema and Heterorhabditis), are be used as natural biopesticides. Unlike plant parasitic nematodes, which can be serious crop pests, entomopat...

  11. In vivo production of entomopathogenic nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In nature, entomopathogenic nematodes in the genera Heterorhabditis and Steinernema are obligate parasites of insects. The nematodes are used widely as biocontrol agents for insect pests. More than a dozen entomopathogenic nematode species have been commercialized for use as biopesticides. One of ...

  12. Banana streak virus is very diverse in Uganda.

    PubMed

    Harper, Glyn; Hart, Darren; Moult, Sarah; Hull, Roger

    2004-03-01

    Banana streak virus (BSV) is a badnavirus that causes a viral leaf streak disease of banana and plantain (Musa spp.). Identified in essentially all Musa growing areas of the world, it has a deleterious effect on the productivity of infected plants as well as being a major constraint to Musa breeding programmes and germplasm dissemination. Banana is a staple food in Uganda which is, per capita, one of the worlds largest banana producers and consumers. BSV was isolated from infected plants sampled across the Ugandan Musa growing area and the isolates were analysed using molecular and serological techniques. These analyses showed that BSV is very highly variable in Uganda. They suggest that the variability is, in part, due to a series of introductions of banana into Uganda, each with a different complement of infecting viruses.

  13. Apoplastic Venom Allergen-like Proteins of Cyst Nematodes Modulate the Activation of Basal Plant Innate Immunity by Cell Surface Receptors

    PubMed Central

    Lozano-Torres, Jose L.; Wilbers, Ruud H. P.; Warmerdam, Sonja; Finkers-Tomczak, Anna; Diaz-Granados, Amalia; van Schaik, Casper C.; Helder, Johannes; Bakker, Jaap; Goverse, Aska; Schots, Arjen; Smant, Geert

    2014-01-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize

  14. Mustard seed meal for management of root-knot nematode and weeds in tomato production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mustard seed meals of indian mustard [InM (Brassica juncea)] and yellow mustard [YeM (Sinapis alba)], alone and combined, were tested for effects on tomato (Solanum lycopersicum) plants and for suppression of southern root-knot nematode [RKN (Meloidogyne incognita)] and weed populations. In the gree...

  15. Transgenic Potatoes for Potato Cyst Nematode Control Can Replace Pesticide Use without Impact on Soil Quality

    PubMed Central

    Lilley, Catherine J.; Urwin, Peter E.; Atkinson, Howard J.

    2012-01-01

    Current and future global crop yields depend upon soil quality to which soil organisms make an important contribution. The European Union seeks to protect European soils and their biodiversity for instance by amending its Directive on pesticide usage. This poses a challenge for control of Globodera pallida (a potato cyst nematode) for which both natural resistance and rotational control are inadequate. One approach of high potential is transgenically based resistance. This work demonstrates the potential in the field of a new transgenic trait for control of G. pallida that suppresses root invasion. It also investigates its impact and that of a second transgenic trait on the non-target soil nematode community. We establish that a peptide that disrupts chemoreception of nematodes without a lethal effect provides resistance to G. pallida in both a containment and a field trial when precisely targeted under control of a root tip-specific promoter. In addition we combine DNA barcoding and quantitative PCR to recognise nematode genera from soil samples without microscope-based observation and use the method for nematode faunal analysis. This approach establishes that the peptide and a cysteine proteinase inhibitor that offer distinct bases for transgenic plant resistance to G. pallida do so without impact on the non-target nematode soil community. PMID:22359559

  16. Transgenic potatoes for potato cyst nematode control can replace pesticide use without impact on soil quality.

    PubMed

    Green, Jayne; Wang, Dong; Lilley, Catherine J; Urwin, Peter E; Atkinson, Howard J

    2012-01-01

    Current and future global crop yields depend upon soil quality to which soil organisms make an important contribution. The European Union seeks to protect European soils and their biodiversity for instance by amending its Directive on pesticide usage. This poses a challenge for control of Globodera pallida (a potato cyst nematode) for which both natural resistance and rotational control are inadequate. One approach of high potential is transgenically based resistance. This work demonstrates the potential in the field of a new transgenic trait for control of G. pallida that suppresses root invasion. It also investigates its impact and that of a second transgenic trait on the non-target soil nematode community. We establish that a peptide that disrupts chemoreception of nematodes without a lethal effect provides resistance to G. pallida in both a containment and a field trial when precisely targeted under control of a root tip-specific promoter. In addition we combine DNA barcoding and quantitative PCR to recognise nematode genera from soil samples without microscope-based observation and use the method for nematode faunal analysis. This approach establishes that the peptide and a cysteine proteinase inhibitor that offer distinct bases for transgenic plant resistance to G. pallida do so without impact on the non-target nematode soil community.

  17. Eicosanoids mediate Galleria mellonella immune response to hemocoel injection of entomopathogenic nematode cuticles.

    PubMed

    Yi, Yunhong; Wu, Gongqing; Lv, Junliang; Li, Mei

    2016-02-01

    Entomopathogenic nematodes are symbiotically associated with bacteria and widely used in biological control of insect pests. The interference of symbiotic bacteria with insect host immune responses is fairly well documented. However, knowledge of mechanisms regulating parasite–host interactions still remains fragmentary. In this study, we used nematode (Steinernema carpocapsae and Heterorhabditis bacteriophora) cuticles and Galleria mellonella larvae as parasite–host model, focused on the changes of innate immune parameters of the host in the early phase of nematode cuticle infection and investigated the role of eicosanoid biosynthesis pathway in the process. The results showed that injection of either S. carpocapsae or H. bacteriophora cuticles into the larval hemocoel both resulted in significant decreases in the key innate immune parameters (e.g., hemocyte density, microaggregation, phagocytosis and encapsulation abilities of hemocyte, and phenoloxidase and antibacterial activities of the cell-free hemolymph). Our study indicated that the parasite cuticles could actively suppress the innate immune response of the G. mellonella host. We also found that treating G. mellonella larvae with dexamethasone and indomethacin induced similar depression in the key innate immune parameters to the nematode cuticles. However, these effects were reversed when dexamethasone, indomethacin, or nematode cuticles were injected together with arachidonic acid. Additionally, we found that palmitic acid did not reverse the influence of the dexamethasone, indomethacin, or nematode cuticles on the innate immune responses. Therefore, we inferred from our results that both S. carpocapsae and H. bacteriophora cuticles inhibited eicosanoid biosynthesis to induce host immunodepression.

  18. Phytoparasitic Nematode Populations in Festuca arundinacea Field Plots in Southwestern Missouri

    PubMed Central

    O'Day, M. H.; Niblack, T. L.; Bailey, W. C.

    1993-01-01

    Field plots of tall rescue (Festuca arundinacea) at two locations on the same experimental farm in southwestern Missouri were sampled (one in 1987-88, the other in 1988-89) to inventory root-parasitic nematodes and to determine whether cultivars or endophyte (Acremonium coenophialum) infection frequencies (EIF) affected nematode population densities within single growing seasons. Plots were planted with seven tall rescue cultivars: Kentucky-31, Kenhy, Johnstone, Martin, Mozark, Missouri-96, and Forager. Kentucky-31 seed with high and low EIF were planted in separate plots. Plant-parasitic nematodes were extracted from soil samples, identified to genus, and enumerated four and three times per year for the 1987-1988 and 1988-1989 studies, respectively. Several plant-parasitic genera were identified from both fields, including Helicotylenchus, Heterodera, Hoplolaimus, Paratylenchus, Pratylenchus, Tylenchorhynchus, and members of genera grouped in the family Tylenchidae. Densities of five of these seven groups of nematodes differed among tall fescue cultivars in the 1987-88 study, but only two out of eight groups did so in the 1988-89 study. Irrespective of tall rescue cultivar, EIF had no consistent impact on nematode densities. The putative suppressive effect of endophyte infection on infection by plant-parasitic nematodes is not detectable within single growing seasons and deserves long-term study in field situations. PMID:19279861

  19. Nonhost Root Penetration by Soybean Cyst Nematode

    PubMed Central

    Riggs, R. D.

    1987-01-01

    A total of 66 plants in 50 species were inoculated with eggs and juveniles of soybean cyst nematode, Heterodera glycines. Roots were stained and observed for penetration and development of the nematode. Twenty-six plants were not penetrated; twenty-three were penetrated, but there was no development of the nematode; eight were penetrated with some nematode development; two were penetrated and had considerable nematode development, but few nematodes, if any, matured; and seven were penetrated with many nematodes maturing. The penetration of nonhosts may imply some susceptibility and that populations eventually would build up on the penetrated plants. Plants not penetrated may be useful as rotation plants because no reproduction would occur. PMID:19290137

  20. Agrobacteria Enhance Plant Defense Against Root-Knot Nematodes on Tomato.

    PubMed

    Lamovšek, Janja; Gerič Stare, Barbara; Mavrič Pleško, Irena; Širca, Saša; Urek, Gregor

    2017-01-30

    The increased incidence of the crown gall disease caused by Agrobacterium tumefaciens has long been associated with activities of root-knot nematodes, Meloidogyne spp. Pot experiments on tomato were designed to assess plant vitality, nematode reproduction and crown gall incidence in combined infection with Agrobacterium and Meloidogyne on tomato roots. Results suggest that tomato plants infected with pathogenic A. tumefaciens two days before the nematodes show enhanced plant defense against M. ethiopica resulting in lower egg and gall counts on roots 45 and 90 days post inoculation (dpi); no significantly enhanced defense was observed when the plant was inoculated with bacteria and nematodes at the same time. Split-root experiments also showed that the observed interaction was systemic. RT-qPCR analysis that targeted several genes under plant hormonal control suggests that the suppression was mediated via systemic acquired resistance by the pathogenesis-related protein 1 (PR1) and that M. ethiopica did not enhance the defense reaction of tomato against Agrobacterium. Nematodes completely inhibited tumor growth in a 45-day experiment if inoculated onto the roots before the pathogenic bacteria. We conclude that the observed antagonism in the tested pathosystem was the result of initially strong plant defense that was later suppressed by the invading pathogen and pest.

  1. Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice.

    PubMed

    Kyndt, T; Nahar, K; Haegeman, A; De Vleesschauwer, D; Höfte, M; Gheysen, G

    2012-03-01

    Complex defence signalling pathways, controlled by different hormones, are known to be involved in the reaction of plants to a wide range of biotic and abiotic stress factors. Here, we studied the differential expression of genes involved in stress and defence responses in systemic tissue of rice infected with the root knot nematode (RKN) Meloidogyne graminicola and the migratory root rot nematode Hirschmanniella oryzae, two agronomically important rice pathogens with very different lifestyles. qRT-PCR revealed that all investigated systemic tissues had significantly lower expression of isochorismate synthase, a key enzyme for salicylic acid production involved in basal defence and systemic acquired resistance. The systemic defence response upon migratory nematode infection was remarkably similar to fungal rice blast infection. Almost all investigated defence-related genes were up-regulated in rice shoots 3 days after root rot nematode attack, including the phenylpropanoid pathway, ethylene pathway and PR genes, but many of which were suppressed at 7 dpi. Systemic shoot tissue of RKN-infected plants showed similar attenuation of expression of almost all studied genes already at 3 dpi, with clear attenuation of the ethylene pathway and methyl jasmonate biosynthesis. These results provide an interesting starting point for further studies to elucidate how nematodes are able to suppress systemic plant defence mechanisms and the effect in multitrophic interactions.

  2. Isolation and characterization of nucleotide-binding site and C-terminal leucine-rich repeat-resistance gene candidates in bananas.

    PubMed

    Lu, Y; Xu, W H; Xie, Y X; Zhang, X; Pu, J J; Qi, Y X; Li, H P

    2011-12-15

    Commercial banana varieties are highly susceptible to fungal pathogens, as well as bacterial pathogens, nematodes, viruses, and insect pests. The largest known family of plant resistance genes encodes proteins with nucleotide-binding site (NBS) and C-terminal leucine-rich repeat (LRR) domains. Conserved motifs in such genes in diverse plant species offer a means for the isolation of candidate genes in banana that may be involved in plant defense. Six degenerate PCR primers were designed to target NBS and additional domains were tested on commercial banana species Musa acuminata subsp malaccensis and the Musa AAB Group propagated in vitro and plants maintained in a greenhouse. Total DNA was isolated by a modified CTAB extraction technique. Four resistance gene analogs were amplified and deposited in GenBank and assigned numbers HQ199833-HQ199836. The predicted amino acid sequences compared to the amino acid sequences of known resistance genes (MRGL1, MRGL2, MRGL3, and MRGL4) revealed significant sequence similarity. The presence of consensus domains, namely kinase-1a, kinase-2 and hydrophobic domain, provided evidence that the cloned sequences belong to the typical non-Toll/interleukin-1 receptor-like domain NBS-LRR gene family.

  3. Free-living nematode peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All nematodes employ a wide array of peptide messengers to control nearly all aspects of the life cycle, including hatching, locomotion, feeding, defense, mating, reproduction, and other behavioral and metabolic events. There are molecular and biological similarities, as well as significant differen...

  4. Facilitation and predation structure a grassland detrital food web: the responses of soil nematodes to isopod processing of litter.

    PubMed

    Bastow, Justin L

    2011-09-01

    1. Detritus can support successive consumers, whose interactions may be structured by changes in the condition of their shared resource. One model of such species interactions is a processing chain, in which consumers feeding on the resource in a less processed state change the resource condition for subsequent consumers. 2. In a series of experiments, the hypothesis was tested that a common detritivore, the terrestrial isopod Porcellio scaber, affects soil nematodes through the processing of plant litter. Different detrital resources were added to soil from a California coastal prairie in order to simulate litter processing by the detritivore. Treatments that included only whole grass litter corresponded to detrital food webs lacking detritivores, while treatments that included mixtures of P. scaber faeces and grass litter corresponded to different densities or feeding rates of P. scaber. 3. Simulated litter processing by P. scaber increased the abundance of bacterivorous nematodes by between 32% and 202% after 24-44 days in laboratory experiments, but had no effect on fungivorous or predaceous nematodes. 4. In a subsequent field experiment, however, fungivorous nematodes were suppressed by isopod litter processing while bacterivores showed no response. Instead, P. scaber processing of litter increased the abundance of predaceous nematodes in the field experiment by 176%. 5. When simulated litter processing of litter was crossed in laboratory experiments with predaceous nematode addition (comparable to the response of predators in the field experiment), the abundance of bacterivores was increased by isopod processing of litter (by an average of 122%), but suppressed by elevated densities of predaceous nematodes (by an average of 41%). 6. This suggests that litter processing by P. scaber facilitates the bacterial channel of the soil food web, but that predaceous nematodes suppress the response of bacterivores in the field. Processing chain interactions may

  5. Rhizobacteria in mycorrhizosphere improved plant health and yield of banana by offering proper nourishment and protection against diseases.

    PubMed

    Phirke, Niteen V; Kothari, Raman M; Chincholkar, Sudhir B

    2008-12-01

    The corporate R&D banana orchards of Musa paradisiaca (dwarf Cavendish AAA, var. shrimanti) on a medium black alluvial soil with low nutrients harboured diversified species of vesicular-arbuscular mycorrhizal (VAM) fungi. These fungi infected the roots severely (69.2%), showed elevated (69.8 g(-1) soil) spore density, increased soil bacterial density (245 x 10(8) cfu g(-1)), produced siderophores (58.2%) and reduced nematode population (2.3 g(-1)) in the mycorrhizosphere of plants for integrated plant nutrition management (IPNM) system as compared to traditional treatment of applying chemical fertilisers alone and other test treatments. The interactions of plant roots with native VAM and local and applied rhizobacteria in the matrix of soil conditioner enabled proper nourishment and protection of crop in IPNM treatment as compared to traditional way. Hence, exploitation of plant growth promoting rhizobacteria through judiciously designed IPNM system revealed the (a) relatively increased banana productivity (21.6%, 76 MT ha(-1)), (b) least occurrence of fusarial wilt and negligible evidence of Sigatoka, (c) saving of 50% chemical fertilisers and (d) permitted control over soil fertility in producer's favour over traditional cultivation practices. These findings are discussed in detail.

  6. Strip-tilled Cover Cropping for Managing Nematodes, Soil Mesoarthropods, and Weeds in a Bitter Melon Agroecosystem

    PubMed Central

    Wang, Koon-Hui; Sipes, Brent S.; Hooks, Cerruti R.R.

    2010-01-01

    A field trial was conducted to examine whether strip-tilled cover cropping followed by living mulch practice could suppress root-knot nematode (Meloidogyne incognita) and enhance beneficial nematodes and other soil mesofauna, while suppressing weeds throughout two vegetable cropping seasons. Sunn hemp (SH), Crotalaria juncea, and French marigold (MG), Tagetes patula, were grown for three months, strip-tilled, and bitter melon (Momordica charantia) seedlings were transplanted into the tilled strips; the experiment was conducted twice (Season I and II). Strip-tilled cover cropping with SH prolonged M. incognita suppression in Season I but not in Season II where suppression was counteracted with enhanced crop growth. Sunn hemp also consistently enhanced bacterivorous and fungivorous nematode population densities prior to cash crop planting, prolonged enhancement of the Enrichment Index towards the end of both cash crop cycles, and increased numbers of soil mesoarthropods. Strip-tilled cover cropping of SH followed by clipping of the living mulch as surface mulch also reduced broadleaf weed populations up to 3 to 4 weeks after cash crop planting. However, SH failed to reduce soil disturbance as indicated by the Structure Index. Marigold suppressed M. incognita efficiently when planted immediately following a M. incognita-susceptible crop, but did not enhance beneficial soil mesofauna including free-living nematodes and soil mesoarthropods. Strip-tilled cover cropping of MG reduced broadleaf weed populations prior to cash crop planting in Season II, but this weed suppression did not last beyond the initial cash crop cycle. PMID:22736847

  7. Cloning and sequence analysis of banana streak virus DNA.

    PubMed

    Harper, G; Hull, R

    1998-01-01

    Banana streak virus (BSV), a member of the Badnavirus group of plant viruses, causes severe problems in banana cultivation, reducing fruit yield and restricting plant breeding and the movement of germplasm. Current detection methods are relatively insensitive. In order to develop a PCR-based diagnostic method that is both reliable and sensitive, the genome of a Nigerian isolate of BSV has been sequenced and shown to comprise 7389 bp and to be organized in a manner characteristic of badnaviruses. Comparison of this sequence with those of other badnaviruses showed that BSV is a distinct virus. PCR with primers based on sequence data indicated that BSV sequences are present in the banana genome.

  8. An improved choice of oscillator basis for banana shaped nuclides

    SciTech Connect

    Chasman, R.R.

    1994-03-01

    The question of the appropriate choice of oscillator basis functions for studying exotic nuclear shapes is raised. Difficulties with the conventional choice of oscillator basis states are noted for shapes having a large banana component. A prescription for an improved oscillator basis to study these shapes is given. It can be applied in a more general context. New calculations with this improved basis are presented for the banana deformation mode. The change of basis gives results that improve the prospects of finding states in the banana minimum for many isotopes of Tl, Pb and Bi.

  9. Carbohydrate Analysis: Can We Control the Ripening of Bananas?

    NASA Astrophysics Data System (ADS)

    Deal, S. Todd; Farmer, Catherine E.; Cerpovicz, Paul F.

    2002-04-01

    We have developed an experiment for nutritional/introductory biochemistry courses that focuses on carbohydrate analysis--specifically, the carbohydrates found in bananas and the change in carbohydrate composition as the banana ripens. Pairs of students analyze the starch and reducing sugar content of green, ripe, and overripe bananas. Using the techniques and knowledge gained from these analyses, they then investigate the influence of various storage methods on the ripening process. While this experiment was developed for an introductory-level biochemistry lab, it can easily be adapted for use in other laboratory programs that seek to teach the fundamentals of carbohydrate analysis.

  10. Exploring the Host Parasitism of the Migratory Plant-Parasitic Nematode Ditylenchus destuctor by Expressed Sequence Tags Analysis

    PubMed Central

    Peng, Huan; Gao, Bing-li; Kong, Ling-an; Yu, Qing; Huang, Wen-kun; He, Xu-feng; Long, Hai-bo; Peng, De-liang

    2013-01-01

    The potato rot nematode, Ditylenchus destructor, is a very destructive nematode pest on many agriculturally important crops worldwide, but the molecular characterization of its parasitism of plant has been limited. The effectors involved in nematode parasitism of plant for several sedentary endo-parasitic nematodes such as Heterodera glycines, Globodera rostochiensis and Meloidogyne incognita have been identified and extensively studied over the past two decades. Ditylenchus destructor, as a migratory plant parasitic nematode, has different feeding behavior, life cycle and host response. Comparing the transcriptome and parasitome among different types of plant-parasitic nematodes is the way to understand more fully the parasitic mechanism of plant nematodes. We undertook the approach of sequencing expressed sequence tags (ESTs) derived from a mixed stage cDNA library of D. destructor. This is the first study of D. destructor ESTs. A total of 9800 ESTs were grouped into 5008 clusters including 3606 singletons and 1402 multi-member contigs, representing a catalog of D. destructor genes. Implementing a bioinformatics' workflow, we found 1391 clusters have no match in the available gene database; 31 clusters only have similarities to genes identified from D. africanus, the most closely related species to D. destructor; 1991 clusters were annotated using Gene Ontology (GO); 1550 clusters were assigned enzyme commission (EC) numbers; and 1211 clusters were mapped to 181 KEGG biochemical pathways. 22 ESTs had similarities to reported nematode effectors. Interestedly, most of the effectors identified in this study are involved in host cell wall degradation or modification, such as 1,4-beta-glucanse, 1,3-beta-glucanse, pectate lyase, chitinases and expansin, or host defense suppression such as calreticulin, annexin and venom allergen-like protein. This result implies that the migratory plant-parasitic nematode D. destructor secrets similar effectors to those of sedentary

  11. Development of an In Vivo RNAi Protocol to Investigate Gene Function in the Filarial Nematode, Brugia malayi

    PubMed Central

    Song, Chuanzhe; Gallup, Jack M.; Day, Tim A.

    2010-01-01

    Our ability to control diseases caused by parasitic nematodes is constrained by a limited portfolio of effective drugs and a paucity of robust tools to investigate parasitic nematode biology. RNA interference (RNAi) is a reverse-genetics tool with great potential to identify novel drug targets and interrogate parasite gene function, but present RNAi protocols for parasitic nematodes, which remove the parasite from the host and execute RNAi in vitro, are unreliable and inconsistent. We have established an alternative in vivo RNAi protocol targeting the filarial nematode Brugia malayi as it develops in an intermediate host, the mosquito Aedes aegypti. Injection of worm-derived short interfering RNA (siRNA) and double stranded RNA (dsRNA) into parasitized mosquitoes elicits suppression of B. malayi target gene transcript abundance in a concentration-dependent fashion. The suppression of this gene, a cathepsin L-like cysteine protease (Bm-cpl-1) is specific and profound, both injection of siRNA and dsRNA reduce transcript abundance by 83%. In vivo Bm-cpl-1 suppression results in multiple aberrant phenotypes; worm motility is inhibited by up to 69% and parasites exhibit slow-moving, kinked and partial-paralysis postures. Bm-cpl-1 suppression also retards worm growth by 48%. Bm-cpl-1 suppression ultimately prevents parasite development within the mosquito and effectively abolishes transmission potential because parasites do not migrate to the head and proboscis. Finally, Bm-cpl-1 suppression decreases parasite burden and increases mosquito survival. This is the first demonstration of in vivo RNAi in animal parasitic nematodes and results indicate this protocol is more effective than existing in vitro RNAi methods. The potential of this new protocol to investigate parasitic nematode biology and to identify and validate novel anthelmintic drug targets is discussed. PMID:21203489

  12. From crossbreeding to biotechnology-facilitated improvement of banana and plantain.

    PubMed

    Ortiz, Rodomiro; Swennen, Rony

    2014-01-01

    The annual harvest of banana and plantain (Musa spp.) is approximately 145 million tons worldwide. About 85% of this global production comes from small plots and kitchen or backyard gardens from the developing world, and only 15% goes to the export trade. Musa acuminata and Musa balbisiana are the ancestors of several hundreds of parthenocarpic Musa diploid and polyploid cultivars, which show multiple origins through inter- and intra-specific hybridizations from these two wild diploid species. Generating hybrids combining host plant resistance to pathogens and pests, short growth cycles and height, high fruit yield, parthenocarpy, and desired quality from the cultivars remains a challenge for Musa crossbreeding, which started about one century ago in Trinidad. The success of Musa crossbreeding depends on the production of true hybrid seeds in a crop known for its high levels of female sterility, particularly among polyploid cultivars. All banana export cultivars grown today are, however, selections from somatic mutants of the group Cavendish and have a very narrow genetic base, while smallholders in sub-Saharan Africa, tropical Asia and Latin America use some bred-hybrids (mostly cooking types). Musa improvement goals need to shift to address emerging threats because of the changing climate. Innovative cell and molecular biology tools have the potential to enhance the pace and efficiency of genetic improvement in Musa. Micro-propagation has been successful for high throughput of clean planting materials while in vitro seed germination assists in obtaining seedlings after inter-specific and across ploidy hybridization. Flow cytometry protocols are used for checking ploidy among genebank accessions and breeding materials. DNA markers, the genetic maps based on them, and the recent sequencing of the banana genome offer means for gaining more insights in the genetics of the crops and to identifying genes that could lead to accelerating Musa betterment. Likewise, DNA

  13. Iron absorption in raw and cooked bananas: a field study using stable isotopes in women

    PubMed Central

    García, Olga P.; Martínez, Mara; Romano, Diana; Camacho, Mariela; de Moura, Fabiana F.; Abrams, Steve A.; Khanna, Harjeet K.; Dale, James L.; Rosado, Jorge L.

    2015-01-01

    Background Banana is a staple food in many regions with high iron deficiency and may be a potential vehicle for iron fortification. However, iron absorption from bananas is not known. Objective The objective of this study was to evaluate total iron absorption from raw and cooked bananas. Design Thirty women (34.9±6.6 years) from rural Mexico were randomly assigned to one of two groups each consuming: 1) 480 g/day of raw banana for 6 days, or 2) 500 g/day of cooked banana for 4 days. Iron absorption was measured after extrinsically labeling with 2 mg of 58Fe and a reference dose of 6 mg 57Fe; analysis was done using ICP-MS. Results Iron content in cooked bananas was significantly higher than raw bananas (0.53 mg/100 g bananas vs. 0.33 mg/100 mg bananas, respectively) (p<0.001). Percent iron absorption was significantly higher in raw bananas (49.3±21.3%) compared with cooked banana (33.9±16.2%) (p=0.035). Total amount of iron absorbed from raw and cooked bananas was similar (0.77±0.33 mg vs. 0.86±0.41 mg, respectively). Conclusion Total amount of absorbed iron is similar between cooked and raw bananas. The banana matrix does not affect iron absorption and is therefore a potential effective target for genetic modification for iron biofortification. PMID:25660254

  14. Comparative susceptibility of two banana cultivars to Banana bunchy top virus under laboratory and field environments.

    PubMed

    Hooks, C R R; Manandhar, R; Perez, E P; Wang, K H; Almeida, R P P

    2009-06-01

    Field and laboratory experiments were carried out on the island of Oahu, HI, to compare the susceptibility of the two most commonly grown banana (Musa sp.) cultivars in the state ('Dwarf Brazilian' or Santa Catarina [locally known as dwarf apple] and 'Williams') to the aphid-borne Banana bunchy top virus (genus Babuvirus, family Nanoviridae, BBTV). Several morphological and physiological features of the two cultivars were monitored to determine whether the banana aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae), transmits BBTV to both cultivars at a similar rate; and whether after successful inoculation, does each cultivar respond similarly to viral infection. Results from the laboratory experiment showed that a similar percentage of both cultivars were infected with BBTV by aphid vectors (> 90% for both cultivars). However, field results showed a significantly lower percentage of dwarf apple (39%) infected with BBTV compared with Williams (79%). We also found that all physiological and morphological features measured (i.e., plant height, leaf area, canopy, chlorophyll level, and moisture content) for both cultivars were impacted similarly by BBTV. The incubation period, or the time between plant infection and initial appearance of disease symptoms, was similar for both cultivars. Results also showed that BBTV transmission efficiency was lower in the field than in the laboratory, despite that more aphids per plant were used for field than laboratory inoculation tests. The results highlight the potential use of less susceptible cultivars to help manage BBTV and the importance of screening banana varieties in the field to determine their response to vectors and associated diseases.

  15. Detection of plant-parasitic nematode DNA in the gut of predatory and omnivorous nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A protocol for molecular gut analysis of nematodes was developed to determine if predatory and omnivorous nematodes from five different guilds prey on Rotylenchulus reniformis, Meloidogyne incognita, and Radopholus similis. Mononchoides, Mononchus, Neoactinolaimus, Mesodorylaimus, and Aporcelaimell...

  16. Characterisation of Colletotrichum Species Associated with Anthracnose of Banana

    PubMed Central

    Zakaria, Latiffah; Sahak, Shamsiah; Zakaria, Maziah; Salleh, Baharuddin

    2009-01-01

    A total of 13 Colletotrichum isolates were obtained from different banana cultivars (Musa spp.) with symptoms of anthracnose. Colletotrichum isolates from anthracnose of guava (Psidium guajava) and water apple (Syzygium aqueum) were also included in this study. Based on cultural and morphological characteristics, isolates from banana and guava were identified as Colletotrichum musae and from water apple as Colletotrichum gloeosporiodes. Isolates of C. musae from banana and guava had similar banding patterns in a randomly amplified polymorphic DNA (RAPD) analysis with four random primers, and they clustered together in a UPGMA analysis. C. gloeosporiodes from water apple was clustered in a separate cluster. Based on the present study, C. musae was frequently isolated from anthracnose of different banana cultivars and the RAPD banding patterns of C. musae isolates were highly similar but showed intraspecific variations. PMID:24575184

  17. Lipophilic phytochemicals from banana fruits of several Musa species.

    PubMed

    Vilela, Carla; Santos, Sónia A O; Villaverde, Juan J; Oliveira, Lúcia; Nunes, Alberto; Cordeiro, Nereida; Freire, Carmen S R; Silvestre, Armando J D

    2014-11-01

    The chemical composition of the lipophilic extract of ripe pulp of banana fruit from several banana cultivars belonging to the Musa acuminata and Musa balbisiana species (namely 'Chinese Cavendish', 'Giant Cavendish', 'Dwarf Red', 'Grand Nain', 'Eilon', 'Gruesa', 'Silver', 'Ricasa', 'Williams' and 'Zelig') was studied by gas chromatography-mass spectrometry for the first time. The banana cultivars showed similar amounts of lipophilic extractives (ca. 0.4% of dry material weight) as well as qualitative chemical compositions. The major groups of compounds identified in these fractions were fatty acids and sterols making up 68.6-84.3% and 11.1-28.0%, respectively, of the total amount of lipophilic components. Smaller amounts of long chain aliphatic alcohols and α-tocopherol were also identified. These results are a relevant contribution for the valorisation of these banana cultivars as sources of valuable phytochemicals (ω-3 and ω-6 fatty acids, and sterols) with well-established beneficial nutritional and health effects.

  18. Acetylation and characterization of banana (Musa paradisiaca) starch.

    PubMed

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  19. Betaine acts on a ligand-gated ion channel in the nervous system of the nematode C. elegans

    PubMed Central

    Peden, Aude S.; Mac, Patrick; Fei, You-Jun; Castro, Cecilia; Jiang, Guoliang; Murfitt, Kenneth J.; Miska, Eric A.; Griffin, Julian L.; Ganapathy, Vadivel; Jorgensen, Erik M.

    2014-01-01

    Prior to the advent of synthetic nematocides, natural products such as seaweed were used to control nematode infestations. The nematocidal agent in seaweed is betaine, an amino acid that functions as an osmolyte and methyl donor. However, the molecular mechanisms of betaine toxicity are unknown. Here, we identify the betaine transporter SNF-3 and a betaine receptor ACR-23 in the nematode C. elegans. Mutating snf-3 in a sensitized background causes the animals to be hypercontracted and paralyzed, presumably because of excess extracellular betaine. These behavioral defects are suppressed by mutations in acr-23, which encodes a ligand-gated cation channel of the cys-loop family. ACR-23 is activated by betaine and functions in the mechanosensory neurons to maintain basal levels of locomotion. However, overactivation of the receptor by excess betaine or by the allosteric modulator monepantel causes hypercontraction and death of the nematode. Thus, monepantel targets a betaine signaling pathway in nematodes. PMID:24212673

  20. Survey of Nematodes on Coffee in Hawaii

    PubMed Central

    Schenck, S.; Schmitt, D. P.

    1992-01-01

    Surveys of coffee fields in Hawaii during 1989-1991 indicated the presence of 10 nematode species in 8 genera. After coffee was planted in fields previously in sugarcane, populations of Criconemella sp. and Pratylenchus zeae gradually decreased, while Rotylenchulus reniformis and, in one field, Meloidogyne incognita, increased in numbers. Coffee is a poor host of R. reniformis, but weeds in coffee plantations may support this nematode. At present, nematodes pose no serious threat to Hawaii's expanding coffee industry. PMID:19283060

  1. Sap phytochemical compositions of some bananas in Thailand.

    PubMed

    Pothavorn, Pongsagon; Kitdamrongsont, Kasipong; Swangpol, Sasivimon; Wongniam, Siripope; Atawongsa, Kanokporn; Savasti, Jisnuson; Somana, Jamorn

    2010-08-11

    Banana sap has some special properties relating to various phenomena such as browning of fruits after harvesting, permanent staining of cloth and fibers, and antioxidant and antibleeding properties. Analysis of banana sap using high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) indicated the presence of phenolic and aromatic amino compounds of interest due to their special properties. With the online positive electrospray ionization mode (ESI), the possible structures of specific compounds were determined from the fragmentation patterns of each particular ion appearing in the mass spectra. The major compounds revealed from the sap of banana accessions, namely, Musa balbisiana , Musa laterita , Musa ornata , and Musa acuminata , and some cultivars were apigenin glycosides, myricetin glycoside, myricetin-3-O-rutinoside, naringenin glycosides, kaempferol-3-O-rutinoside, quercetin-3-O-rutinoside, dopamine, and N-acetylserotonin. The results indicated that there was a variety of phenolic and aromatic amino contents in many banana species. These compounds were reported to relate with biological activities. Moreover, the identities of these phytochemical compositions may be used as markers for banana diet, the assessment of physiochemical status, or the classification of banana clones.

  2. Protocol for simultaneous isolation of three important banana allergens.

    PubMed

    Nikolic, Jasna; Mrkic, Ivan; Grozdanovic, Milica; Popovic, Milica; Petersen, Arnd; Jappe, Uta; Gavrovic-Jankulovic, Marija

    2014-07-01

    Banana fruit (Musa acuminata) has become an important food allergen source in recent years. So far, 5 IgE reactive banana proteins have been identified, and the major allergens are: Mus a 2 (a class I chitinase, 31kDa), Mus a 4 (thaumatin-like protein, 21kDa), and Mus a 5 (β-1,3-glucanase, 33kDa). Due to variations in allergen expression levels, diagnostic reagents for food allergy can be improved by using individual allergen components instead of banana allergen extracts. The purpose of this study was to optimize the purification protocol of the three major allergens present in banana fruit: Mus a 2, Mus a 4 and Mus a 5. By employing a three-step purification protocol (a combination of anion-exchange, cation-exchange and reversed-phase chromatography) three important banana allergens were obtained in sufficient yield and high purity. Characterization of the purified proteins was performed by both biochemical (2-D PAGE, mass fingerprint and N-terminal sequencing) and immunochemical (immunoblot) methods. IgE reactivity to the purified allergens was tested by employing sera of five allergic patients. The purified allergens displayed higher sensitivity in IgE detection than the routinely used extracts. The three purified allergens are good candidates for reagents in component-based diagnosis of banana allergy.

  3. Metabolism of Flavonoids in Novel Banana Germplasm during Fruit Development

    PubMed Central

    Dong, Chen; Hu, Huigang; Hu, Yulin; Xie, Jianghui

    2016-01-01

    Banana is a commercially important fruit, but its flavonoid composition and characteristics has not been well studied in detail. In the present study, the metabolism of flavonoids was investigated in banana pulp during the entire developmental period of fruit. ‘Xiangfen 1,’ a novel flavonoid-rich banana germplasm, was studied with ‘Brazil’ serving as a control. In both varieties, flavonoids were found to exist mainly in free soluble form and quercetin was the predominant flavonoid. The most abundant free soluble flavonoid was cyanidin-3-O-glucoside chloride, and quercetin was the major conjugated soluble and bound flavonoid. Higher content of soluble flavonoids was associated with stronger antioxidant activity compared with the bound flavonoids. Strong correlation was observed between antioxidant activity and cyanidin-3-O-glucoside chloride content, suggesting that cyanidin-3-O-glucoside chloride is one of the major antioxidants in banana. In addition, compared with ‘Brazil,’ ‘Xiangfen 1’ fruit exhibited higher antioxidant activity and had more total flavonoids. These results indicate that soluble flavonoids play a key role in the antioxidant activity of banana, and ‘Xiangfen 1’ banana can be a rich source of natural antioxidants in human diets. PMID:27625665

  4. Effect of cooking on banana and plantain texture.

    PubMed

    Qi, B; Moore, K G; Orchard, J

    2000-09-01

    The effect of temperature and duration of cooking on plantain and banana fruit texture and cytpoplasmic and cell wall components was investigated. The firmness of both banana and plantain pulp tissues decreased rapidly during the first 10 min of cooking in water above 70 degrees C, although plantain was much firmer than banana. Cooking resulted in pectin solubilzation and middle lamella dissolution leading to cell wall separation (as observed by SEM). Dessert banana showed more advanced and extensive breakdown than plantain. Although dessert banana had a higher total pectin content than plantain, the former had smaller-sized carboxyethylenediaminetetraacetic acid (CDTA) soluble pectic polymers which are associated with plant tissues that have a propensity to soften. Plantain had higher levels of starch and amylose than banana but this was associated with a firmer fruit texture rather than a softening due to cell swelling during starch gelatinization. Different cooking treatments showed that cooking in 0.5% of CaCl(2) solution and temperatures below 70 degrees C had significant effects on maintenance of pulp firmness.

  5. Management of Plant-parasitic Nematodes on Peanut with Selected Nematicides in North Carolina.

    PubMed

    Koenning, S R; Bailey, J E; Schmitt, D P; Barker, K R

    1998-12-01

    Field experiments were conducted to determine peanut growth and yield responses to selected fumigant and nonfumigant nemaficide treatments in 1988 and 1989. All treatments with the fumigant 1, 3-D significantly suppressed nematode reproduction (Meloidogyne arenaria, M. hapla, and Mesocriconema ornatum) and enhanced peanut yields over the other treatments in four tests in 1988. Yield increases with the fumigant ranged from about 20% to 100% over the untreated control. Test sites in 1989 had lower nematode levels than those for 1988, and fewer positive plant and nematode responses were detected. Treatments with 1,3-D improved peanut quality but not yield in one experiment with low levels of M. hapla and M. ornatum in 1988. The 1,3-D + chloropicrin treatments at another site gave higher peanut yields than 1,3-D alone.

  6. Management of the Citrus Nematode, Tylenchulus semipenetrans

    PubMed Central

    Verdejo-Lucas, S.; McKenry, M. V.

    2004-01-01

    Of the many nematode species that parasitize citrus, Tylenchulus semipenetrans is the most important on a worldwide basis. Management of the citrus nematode remains problematic as no one tactic gives adequate control of the nematode. An overall management strategy must include such components as site selection, use of non-infected nursery stock, use of at lease one post-plant nematode control tactic, and careful management of other elements of the environment that may stress the trees. Nematicides continue to play a key role in management of this pest. Optimum results require careful attention to application techniques. PMID:19262822

  7. Banana peel: an effective biosorbent for aflatoxins.

    PubMed

    Shar, Zahid Hussain; Fletcher, Mary T; Sumbal, Gul Amer; Sherazi, Syed Tufail Hussain; Giles, Cindy; Bhanger, Muhammad Iqbal; Nizamani, Shafi Muhammad

    2016-05-01

    This work reports the application of banana peel as a novel bioadsorbent for in vitro removal of five mycotoxins (aflatoxins (AFB1, AFB2, AFG1, AFG2) and ochratoxin A). The effect of operational parameters including initial pH, adsorbent dose, contact time and temperature were studied in batch adsorption experiments. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHpzc) analysis were used to characterise the adsorbent material. Aflatoxins' adsorption equilibrium was achieved in 15 min, with highest adsorption at alkaline pH (6-8), while ochratoxin has not shown any significant adsorption due to surface charge repulsion. The experimental equilibrium data were tested by Langmuir, Freundlich and Hill isotherms. The Langmuir isotherm was found to be the best fitted model for aflatoxins, and the maximum monolayer coverage (Q0) was determined to be 8.4, 9.5, 0.4 and 1.1 ng mg(-1) for AFB1, AFB2, AFG1 and AFG2 respectively. Thermodynamic parameters including changes in free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were determined for the four aflatoxins. Free energy change and enthalpy change demonstrated that the adsorption process was exothermic and spontaneous. Adsorption and desorption study at different pH further demonstrated that the sorption of toxins was strong enough to sustain pH changes that would be experienced in the gastrointestinal tract. This study suggests that biosorption of aflatoxins by dried banana peel may be an effective low-cost decontamination method for incorporation in animal feed diets.

  8. The effects of compost prepared from waste material of banana plants on the nutrient contents of banana leaves.

    PubMed

    Doran, Ilhan; Sen, Bahtiyar; Kaya, Zülküf

    2003-10-01

    In this study, the possible utilization of removed shoots and plant parts of banana as compost after fruit harvest were investigated. Three doses (15-30-45 kg plan(-1)) of the compost prepared from the clone of Dwarf Cavendish banana were compared with Farmyard manure (50 kg plant(-1), Mineral fertilizers (180 g N + 150 g P + 335 g K plant(-1)) and Farmyard manure + Mineral fertilizers (25 kg FM + 180 g N + 150 g P + 335 g K plant(-1)) which determined positive effects on the nutrient contents of banana leaves. The banana plants were grown under a heated glasshouse and in a soil with physical and chemical properties suitable for banana growing. The contents of N, P, K and Mg in compost and in farmyard manure were found to be similar. Nitrogen, phosphorus and potassium contents of leaves in all applications except control, and Ca, Mg, Fe, Zn, Mn, Cu contents in all applications were determined between optimum levels of reference values. There were positive correlations among some nutrient contents of leaves, growth, yield and fruit quality characteristics. Farmyard manure, Farmyard manure + Mineral fertilizers and 45 kg plant(-1) of compost increased the nutrient contents of banana leaves. According to obtained results, 45 kg plant(-1) of compost was determined more suitable in terms of economical production and organic farming than the other fertiliser types.

  9. Selection of Heterodera glycines chorismate mutase-1 alleles on nematode-resistant soybean.

    PubMed

    Lambert, Kris N; Bekal, Sadia; Domier, Leslie L; Niblack, Terry L; Noel, Gregory R; Smyth, Charles A

    2005-06-01

    The soybean cyst nematode Heterodera glycines is the most destructive pathogen of soybean in the Unites States. Diversity in the parasitic ability of the nematode allows it to reproduce on nematode-resistant soybean. H. glycines chorismate mutase-1 (Hg-CM-1) is a nematode enzyme with the potential to suppress host plant defense compounds; therefore, it has the potential to enhance the parasitic ability of nematodes expressing the gene. Hg-cm-1 is a member of a gene family where two alleles, Hg-cm-1A and Hg-cm-1B, have been identified. Analysis of the Hg-cm-1 gene copy number revealed that there are multiple copies of Hg-cm-1 alleles in the H. glycines genome. H. glycines inbred lines were crossed to ultimately generate three F2 populations of second-stage juveniles (J2s) segregating for Hg-cm-1A and Hg-cm-1B. Segregation of Hg-cm-1A and 1B approximated a 1:2:1 ratio, which suggested that Hg-cm-1 is organized in a cluster of genes that segregate roughly as a single locus. The F2 H. glycines J2 populations were used to infect nematode-resistant (Hartwig, PI88788, and PI90763) and susceptible (Lee 74) soybean plants. H. glycines grown on Hartwig, Lee 74, and PI90763 showed allelic frequencies similar to Hg-cm-1A/B, but nematodes grown on PI88788 contained predominately Hg-cm-1A allele as a result of a statistically significant drop of Hg-cm-1B in the population. This result suggests that specific Hg-cm-1 alleles, or a closely linked gene, may aid H. glycines in adapting to particular soybean hosts.

  10. Biochemical changes in grape rootstocks resulted from humic acid treatments in relation to nematode infection

    PubMed Central

    Kesba, Hosny H; El-Beltagi, Hossam S

    2012-01-01

    Objective To investigate the effect of humic acid on nematode infected, resistant and susceptible grapes in relation to lipid peroxidation and antioxidant mechanisms on selected biochemical parameters known as proactive substances. Methods The grape rootstocks, superior, superior/freedom and freedom were reacted differently to Meloidogyne incognita and Rotylenchulus reniformis according to rootstock progenitor. Two weeks after inoculation, two commercial products of humic acid were applied at the rate of (2, 4 mL or grams/plant) as soil drench. After 4 months, nematode soil populations were extracted and counted. A subsample of roots from each plant was stained and gall numbers, embedded stages per root were calculated, final population, nematode build up (Pf/Pi), average of eggs/eggmass were estimated. Subsamples of fresh root of each treatment were chemically analyzed. Results Freedom reduced significantly the nematode criteria and build up. Humic acid granules appeared to be more suppressive to nematode build up on superior and the higher dose on superior/freedom than liquid treatments. On freedom, all treatments reduced significantly the nematode build up regardless to the material nature. The higher dose was more effective than the lower one. As a result of humic acid applications, the malondialdehyde (MDA) and H2O2 contents were significantly reduced after humic acid treatments while the antioxidant compounds glutathione (GSH), ascorbic acid (ASA) and total phenol contents were significantly increased when compared with check. Antioxidant defense enzymes ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and polyphenol oxidase (PPO)showed significant increase in their specific activities in treated plants compared with nematode treated check. Conclusions Humic acid treatments improve the yield of grape by increasing the contents of antioxidant compounds and the specific activities of antioxidant enzymes. PMID:23569915

  11. Biochemical characterization of fruit-specific pathogenesis-related antifungal protein from basrai banana.

    PubMed

    Yasmin, Nusrat; Saleem, Mahjabeen

    2014-01-01

    Pathogenesis-related/thaumatin like (PR-5/TL) antifungal protein from basrai banana was purified by using a simple protocol consisting of ammonium sulphate precipitation, affinity chromatography (Affi-gel blue gel), Q-Sepharose chromatography and gel filtration on Sephadex G-75. The purified protein with acidic character (pI 6.67) has molecular weight of 21.155 kDa, as determined by MALDI-TOF mass spectrometry. The purified protein shared N-terminal sequence homology with other TLPs. Crude banana extract inhibited the growth of Fusarium oxysporum, Aspergillus niger, Aspergillus fumigatus and Trichoderma viride with IC₅₀ values (determined by Probit analysis) 15 μM (slope=0.086, χ(2)=17.843, P=0.033), 17 μM (slope=0.183, χ(2)=61.533, P=0.011), 6.5 μM (slope=0.211, χ(2)=14.380, P=0.023) and 29.11 μM (slope=0.072, χ(2)=45.768, P=0.014). The purified antifungal protein repressed the growth of F. oxysporum, A. niger, A. fumigatus and T. viride with IC₅₀ values 9.7 μM (slope=0.056, χ(2)=11.538, P=0.021), 11.83 μM (slope=0.127, χ(2)=42.82, P=0.00), 4.61 μM (slope=0.150, χ(2)=10.199, P=0.017) and 21.43 μM (slope=0.053, χ(2)=33.693, P=0.00), respectively. The IC50 values of antifungal activity of crude banana extract were higher than the purified antifungal protein. It indicated that proteins in crude banana extract have antagonistic effect on the fungal growth. White bread is particularly vulnerable by fungal pathogens. Purified antifungal protein suppressed the growth of Aspergillus phoenicis and Aspergillus flavus on white bread suggesting that this protein can be used as a preservative in the bakery industry as well as in other relevant food processing industries.

  12. Optimization of a Host Diet for in vivo Production of Entomopathogenic Nematodes

    PubMed Central

    Shapiro-Ilan, David; Guadalupe Rojas, M.; Morales-Ramos, Juan A.; Louis Tedders, W.

    2012-01-01

    To facilitate improved in vivo culture of entomopathogenic nematodes, production of both insect hosts and nematodes should be optimized for maximum fitness, quality, and cost efficiency. In previous studies, we developed an improved diet for Tenebrio molitor, a host that is used for in vivo nematode production, and we demonstrated that single insect diet components (e.g., lipids and proteins) can have a positive or negative impact on entomopathogenic nematode fitness and quality. In this study, we tested components of our improved T. molitor diet (lipids, cholesterol, and a salt [MnSO4]) alone and in combination for effects on host susceptibility and reproductive capacity of Heterorhabditis indica and Steinernema carpocapsae. Our results indicated that moderate levels of lipids (10%) increased host susceptibility to S. carpocapsae but did not affect H. indica, whereas cholesterol and MnSO4 increased host susceptibility to H. indica but not S. carpocapsae. The combined T. molitor diet (improved for increased insect growth) increased host susceptibility to S. carpocapsae and had a neutral effect on H. indica; interactions among single diet ingredients were observed. No effects of insect host diet were detected on the reproductive capacity of either nematode species in T. molitor. Subsequently, progeny infective juveniles, derived from nematodes grown in T. molitor that were fed diets with varying nutritive components were tested for virulence to and reproduction capacity in the target pest Diaprepes abbreviatus. The progeny nematodes produced from differing T. molitor diet treatments did not differ in virulence except H. indica derived from a diet that lacked cholesterol or MnS04 (but contained lipids) did not cause significant D. abbreviatus suppression relative to the water control. We conclude that the improved insect host diet is compatible with production of H. indica and S. carpocapsae, and increases host susceptibility in S. carpocapsae. Furthermore, in a

  13. Transcriptional reprogramming by root knot and migratory nematode infection in rice.

    PubMed

    Kyndt, Tina; Denil, Simon; Haegeman, Annelies; Trooskens, Geert; Bauters, Lander; Van Criekinge, Wim; De Meyer, Tim; Gheysen, Godelieve

    2012-11-01

    Rice is one of the most important staple crops worldwide, but its yield is compromised by different pathogens, including plant-parasitic nematodes. In this study we have characterized specific and general responses of rice (Oryza sativa) roots challenged with two endoparasitic nematodes with very different modes of action. Local transcriptional changes in rice roots upon root knot (Meloidogyne graminicola) and root rot nematode (RRN, Hirschmanniella oryzae) infection were studied at two time points (3 and 7 d after infection, dai), using mRNA-seq. Our results confirm that root knot nematodes (RKNs), which feed as sedentary endoparasites, stimulate metabolic pathways in the root, and enhance nutrient transport towards the induced root gall. The migratory RRNs, on the other hand, induce programmed cell death and oxidative stress, and obstruct the normal metabolic activity of the root. While RRN infection causes up-regulation of biotic stress-related genes early in the infection, the sedentary RKNs suppress the local defense pathways (e.g. salicylic acid and ethylene pathways). Interestingly, hormone pathways mainly involved in plant development were strongly induced (gibberellin) or repressed (cytokinin) at 3 dai. These results uncover previously unrecognized nematode-induced expression profiles related to their specific infection strategy.

  14. Molecular cloning and characterisation of banana fruit polyphenol oxidase.

    PubMed

    Gooding, P S; Bird, C; Robinson, S P

    2001-09-01

    Polyphenol oxidase (PPO; EC 1.10.3.2) is the enzyme thought to be responsible for browning in banana [Musa cavendishii (AAA group, Cavendish subgroup) cv. Williams] fruit. Banana flesh was high in PPO activity throughout growth and ripening. Peel showed high levels of activity early in development but activity declined until ripening started and then remained constant. PPO activity in fruit was not substantially induced after wounding or treatment with 5-methyl jasmonate. Banana flowers and unexpanded leaf roll had high PPO activities with lower activities observed in mature leaves, roots and stem. Four different PPO cDNA clones were amplified from banana fruit (BPO1, BPO11, BPO34 and BPO35). Full-length cDNA and genomic clones were isolated for the most abundant sequence (BPO1) and the genomic clone was found to contain an 85-bp intron. Introns have not been previously found in PPO genes. Northern analysis revealed the presence of BPO1 mRNA in banana flesh early in development but little BPO1 mRNA was detected at the same stage in banana peel. BPO11 transcript was only detected in very young flesh and there was no detectable expression of BPO34 or BPO35 in developing fruit samples. PPO transcripts were also low throughout ripening in both flesh and peel. BPO1 transcripts were readily detected in flowers, stem, roots and leaf roll samples but were not detected in mature leaves. BPO11 showed a similar pattern of expression to BPO1 in these tissues but transcript levels were much lower. BPO34 and BPO35 mRNAs were only detected at a low level in flowers and roots and BPO34 transcript was detected in mature leaves, the only clone to do so. The results suggest that browning of banana fruit during ripening results from release of pre-existing PPO enzyme, which is synthesised very early in fruit development.

  15. Endemic Oscheius Nematodes of Hawai'i

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes (EPNs) parasitize insects utilizing mutualistic bacteria to kill the host, allowing the nematode to feed and reproduce within the insect cadaver. Consequently EPNs are highly sought after for their biological control potential. A survey for EPNs was conducted on O’ahu and...

  16. Blends of ascarosides regulate dispersal in nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blends of ascarosides regulate dispersal in nematodes Presenter: Dr. Fatma Kaplan Dispersal is an important behavior for many organisms. It can easily be observed when infectious juveniles of entomopathogenic nematodes (Steinernema and Heterorhabditis) leave a consumed insect host. Dauer larvae of ...

  17. Interspecific nematode signals regulate dispersal behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dispersal is an important nematode behavior. Upon crowding or food depletion, the free living bacteriovorus nematode Caenorhabditis elegans produces stress resistant dispersal larvae, called dauer, which are analogous to second stage juveniles (J2) of plant parasitic Meloidogyne spp. and infective ...

  18. Biological Control of Nematodes with Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control of nematodes is receiving increased attention as environmental considerations with the use of nematicides have increased in importance and their high cost prohibits use on many crops. In addition, nematode resistant cultivars are not available for many crops and resistance that i...

  19. How do humans affect wildlife nematodes?

    USGS Publications Warehouse

    Weinstein, Sara B.; Lafferty, Kevin D.

    2015-01-01

    Human actions can affect wildlife and their nematode parasites. Species introductions and human-facilitated range expansions can create new host–parasite interactions. Novel hosts can introduce parasites and have the potential to both amplify and dilute nematode transmission. Furthermore, humans can alter existing nematode dynamics by changing host densities and the abiotic conditions that affect larval parasite survival. Human impacts on wildlife might impair parasites by reducing the abundance of their hosts; however, domestic animal production and complex life cycles can maintain transmission even when wildlife becomes rare. Although wildlife nematodes have many possible responses to human actions, understanding host and parasite natural history, and the mechanisms behind the changing disease dynamics might improve disease control in the few cases where nematode parasitism impacts wildlife.

  20. How do humans affect wildlife nematodes?

    PubMed

    Weinstein, Sara B; Lafferty, Kevin D

    2015-05-01

    Human actions can affect wildlife and their nematode parasites. Species introductions and human-facilitated range expansions can create new host-parasite interactions. Novel hosts can introduce parasites and have the potential to both amplify and dilute nematode transmission. Furthermore, humans can alter existing nematode dynamics by changing host densities and the abiotic conditions that affect larval parasite survival. Human impacts on wildlife might impair parasites by reducing the abundance of their hosts; however, domestic animal production and complex life cycles can maintain transmission even when wildlife becomes rare. Although wildlife nematodes have many possible responses to human actions, understanding host and parasite natural history, and the mechanisms behind the changing disease dynamics might improve disease control in the few cases where nematode parasitism impacts wildlife.

  1. Improved nematode extraction from carrot disk culture.

    PubMed

    Kaplan, D T; Davis, E L

    1990-07-01

    Radopholus spp. were reared in carrot tissue culture via established procedures, with slight modification. Several plant tissue maceration enzymes and flotation media (salts and sucrose) were evaluated with regard to nematode toxicity and extraction efficiency. Best extraction of viable nematodes and eggs was attained when carrot tissue infested with Radopholus citrophilus or R. similis was macerated with a mixture of 0.50% driselase and 0.50% cellulysin, w/v each, with 2.5 ml of enzyme solution based for each gram of carrot tissue. Maceration slurries containing carrot tissue and nematodes were maintained in open flasks on a rotary shaker (175 rpm) at 26 C for 24 hours. Nematodes and eggs were extracted from resultant culture slurries by flotation with MgSO-7H0 (sp gr 1.1). A protocol is presented to extract large quantities of viable burrowing nematodes and their eggs from carrot disk cultures.

  2. Evaluation of Information and Communication Technology Utilization by Small Holder Banana Farmers in Gatanga District, Kenya

    ERIC Educational Resources Information Center

    Mwombe, Simon O. L.; Mugivane, Fred I.; Adolwa, Ivan S.; Nderitu, John H.

    2014-01-01

    Purpose: The study was carried out to identify information communication technologies (ICTs) used in production and marketing of bananas, to determine factors influencing intensity of use of ICT tools and to assess whether use of ICT has a significant influence on adoption of tissue culture bananas by small-scale banana farmers in Gatanga…

  3. 77 FR 31829 - Importation of Fresh Bananas From the Philippines Into the Continental United States...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... Animal and Plant Health Inspection Service Importation of Fresh Bananas From the Philippines Into the... the importation of fresh bananas from the Philippines into the continental United States. The... INFORMATION: Background In a proposed rule \\1\\ titled ``Importation of Fresh Bananas from the Philippines...

  4. Iron absorption in raw and cooked bananas: A field study using stable isotopes in women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Banana is a staple food in many regions with high iron deficiency and may be a potential vehicle for iron fortification. However, iron absorption from bananas is not known. The objective of this study was to evaluate total iron absorption from raw and cooked bananas. Thirty women (34.9 +/- 6.6 years...

  5. Factors Affecting the Suppression of Heterodera glycines by N-Viro Soil

    PubMed Central

    Zasada, I. A.

    2005-01-01

    Previous laboratory research demonstrated that N-Viro Soil (NVS), an alkaline-stabilized municipal biosolid, suppressed plant-parasitic nematodes. This study continued to explore the use of NVS as a nematode management tool specifically addressing factors that could influence its use. N-Viro Soil from different locations, the components of NVS (de-watered biosolids and fly ash admixtures), and sterilized NVS were applied to sand microcosms to determine effects on nematode survival sand solution pH and ammonia concentrations. This study confirmed the previous finding that an important mechanism of Heterodera glycines suppression by NVS was the generation of alkaline soil conditions. Only the fly ash admixture that resulted in an increase in pH to 10.0 suppressed H. glycines to the same level as NVS. Alkaline-stabilization of biosolids was necessary to achieve nematode suppression. Biosolids applied at rates <3% dry w/w did not suppress H. glycines to the same level as equivalent amounts of NVS. Sand solution pH levels after biosolid application, regardless of rate, were approximately 8.5 whereas 1% and 4% w/w NVS amendment resulted in pH levels of 10.3 and 11.6, respectively. NVS from different processing facilities were all effective in suppressing H. glycines. The NVS source that produced the highest concentration of ammonia did not reduce H. glycines survival to the same level as those sources generating pH levels above 10.1. Microbes associated with NVS appeared not to be responsible for the nematode suppressiveness of the amendment; there was no difference in nematode suppression between autoclaved and nonautoclaved NVS. The role that ammonia plays in the suppression of H. glycines by NVS is still unclear. PMID:19262864

  6. Subpopulation level variation of banana streak viruses in India and common evolution of banana and sugarcane badnaviruses.

    PubMed

    Sharma, Susheel Kumar; Vignesh Kumar, P; Geetanjali, A Swapna; Pun, Khem Bahadur; Baranwal, Virendra Kumar

    2015-06-01

    Genome sequences of three episomal Banana streak MY virus (BSMYV) isolates sampled from triploid banana hybrids (Chini Champa: AAB; Malbhog: AAB and Monthan: ABB), grown in North-East and South India are reported in this study by sequence-independent improved rolling circle amplification (RCA). RCA coupled with restriction fragment length polymorphism revealed diverse restriction profiles of five BSMYV isolates. Nucleotide substitution rates of BSMYV subpopulation and Banana streak OL virus subpopulation was 7.13 × 10(-3) to 1.59 × 10(-2) and 2.65 × 10(-3) to 5.49 × 10(-3), respectively, for the different coding regions. Analysis of the genetic diversity of banana and sugarcane badnaviruses revealed a total of 32 unique recombination events among banana and sugarcane badnaviruses (inter BSV-SCBV), in addition to the extensive recombination with in banana streak viruses and sugarcane bacilliform viruses (intra-BSV and intra-SCBV). Many unique fragments were shown to contain similar ruminant sequence fragments which indicated the possibility that the two groups of badnaviruses or their ancestors to colonise same host before making the host shift. The distribution of recombination events, hot-spots (intergenic region and C-terminal of ORF3) as well as cold-spots (distributed in ORF3) displayed the mirroring of recombination traces in both group of badnaviruses. These results support the hypothesis of relatedness of banana and sugarcane badnaviruses and the host and geographical shifts that followed the fixation of the species complex appear to be a recent event.

  7. Natural suppression of Meloidogyne incognita by Pasteuria penetrans in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The endospore-forming bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). This bacterium is commonly found in agricultural soils and has been associated with suppression of Meloidogyne spp. In a field site naturally infested with both P. penetrans and M...

  8. Antioxidant and Antihyperglycemic Properties of Three Banana Cultivars (Musa spp.)

    PubMed Central

    Oboh, Ganiyu

    2016-01-01

    Background. This study sought to investigate the antioxidant and antihyperglycemic properties of Musa sapientum (Latundan banana) (MSL), Musa acuminata (Cavendish banana) (MAC), and Musa acuminate (Red Dacca) (MAR). Materials and Methods. The sugar, starch, amylose, and amylopectin contents and glycemic index (GI) of the three banana cultivars were determined. Furthermore, total phenol and vitamin C contents and α-amylase and α-glucosidase inhibitory effects of banana samples were also determined. Results. MAC and MAR had the highest starch, amylose, and amylopectin contents and estimated glycemic index (eGI) with no significant different while MSL had the lowest. Furthermore, MAR (1.07 mg GAE/g) had a higher total phenol content than MAC (0.94 mg GAE/g) and MSL (0.96 mg GAE/g), while there was no significant difference in the vitamin C content. Furthermore, MAR had the highest α-amylase (IC50 = 3.95 mg/mL) inhibitory activity while MAC had the least (IC50 = 4.27 mg/mL). Moreover, MAC and MAR inhibited glucosidase activity better than MSL (IC50 3.47 mg/mL). Conclusion. The low sugar, GI, amylose, and amylopectin contents of the three banana cultivars as well as their α-amylase and α-glucosidase inhibitory activities could be possible mechanisms and justification for their recommendation in the management of type-2 diabetes. PMID:27872791

  9. Antioxidant and Antihyperglycemic Properties of Three Banana Cultivars (Musa spp.).

    PubMed

    Adedayo, Bukola C; Oboh, Ganiyu; Oyeleye, Sunday I; Olasehinde, Tosin A

    2016-01-01

    Background. This study sought to investigate the antioxidant and antihyperglycemic properties of Musa sapientum (Latundan banana) (MSL), Musa acuminata (Cavendish banana) (MAC), and Musa acuminate (Red Dacca) (MAR). Materials and Methods. The sugar, starch, amylose, and amylopectin contents and glycemic index (GI) of the three banana cultivars were determined. Furthermore, total phenol and vitamin C contents and α-amylase and α-glucosidase inhibitory effects of banana samples were also determined. Results. MAC and MAR had the highest starch, amylose, and amylopectin contents and estimated glycemic index (eGI) with no significant different while MSL had the lowest. Furthermore, MAR (1.07 mg GAE/g) had a higher total phenol content than MAC (0.94 mg GAE/g) and MSL (0.96 mg GAE/g), while there was no significant difference in the vitamin C content. Furthermore, MAR had the highest α-amylase (IC50 = 3.95 mg/mL) inhibitory activity while MAC had the least (IC50 = 4.27 mg/mL). Moreover, MAC and MAR inhibited glucosidase activity better than MSL (IC50 3.47 mg/mL). Conclusion. The low sugar, GI, amylose, and amylopectin contents of the three banana cultivars as well as their α-amylase and α-glucosidase inhibitory activities could be possible mechanisms and justification for their recommendation in the management of type-2 diabetes.

  10. Fruit-specific lectins from banana and plantain.

    PubMed

    Peumans, W J; Zhang, W; Barre, A; Houlès Astoul, C; Balint-Kurti, P J; Rovira, P; Rougé, P; May, G D; Van Leuven, F; Truffa-Bachi, P; Van Damme, E J

    2000-09-01

    One of the predominant proteins in the pulp of ripe bananas (Musa acuminata L.) and plantains (Musa spp.) has been identified as a lectin. The banana and plantain agglutinins (called BanLec and PlanLec, respectively) were purified in reasonable quantities using a novel isolation procedure, which prevented adsorption of the lectins onto insoluble endogenous polysaccharides. Both BanLec and PlanLec are dimeric proteins composed of two identical subunits of 15 kDa. They readily agglutinate rabbit erythrocytes and exhibit specificity towards mannose. Molecular cloning revealed that BanLec has sequence similarity to previously described lectins of the family of jacalin-related lectins, and according to molecular modelling studies has the same overall fold and three-dimensional structure. The identification of BanLec and PlanLec demonstrates the occurrence of jacalin-related lectins in monocot species, suggesting that these lectins are more widespread among higher plants than is actually believed. The banana and plantain lectins are also the first documented examples of jacalin-related lectins, which are abundantly present in the pulp of mature fruits but are apparently absent from other tissues. However, after treatment of intact plants with methyl jasmonate, BanLec is also clearly induced in leaves. The banana lectin is a powerful murine T-cell mitogen. The relevance of the mitogenicity of the banana lectin is discussed in terms of both the physiological role of the lectin and the impact on food safety.

  11. Role for the banana AGAMOUS-like gene MaMADS7 in regulation of fruit ripening and quality.

    PubMed

    Liu, Juhua; Liu, Lin; Li, Yujia; Jia, Caihong; Zhang, Jianbin; Miao, Hongxia; Hu, Wei; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-11-01

    MADS-box transcription factors play important roles in organ development. In plants, most studies on MADS-box genes have mainly focused on flower development and only a few concerned fruit development and ripening. A new MADS-box gene named MaMADS7 was isolated from banana fruit by rapid amplification of cDNA ends (RACE) based on a MADS-box fragment obtained from a banana suppression subtractive hybridization (SSH) cDNA library. MaMADS7 is an AGAMOUS-like MADS-box gene that is preferentially expressed in the ovaries and fruits and in tobacco its protein product localizes to the nucleus. This study found that MaMADS7 expression can be induced by exogenous ethylene. Ectopic expression of MaMADS7 in tomato resulted in broad ripening phenotypes. The expression levels of seven ripening and quality-related genes, ACO1, ACS2, E4, E8, PG, CNR and PSY1 in MaMADS7 transgenic tomato fruits were greatly increased while the expression of the AG-like MADS-box gene TAGL1 was suppressed. Compared with the control, the contents of β-carotene, lycopene, ascorbic acid and organic acid in transformed tomato fruits were increased, while the contents of glucose and fructose were slightly decreased. MaMADS7 interacted with banana 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene 1 (MaACO1) and tomato phytoene synthase gene (LePSY1) promoters. Our results indicated that MaMADS7 plays an important role in initiating endogenous ethylene biosynthesis and fruit ripening.

  12. Current research on the major nematode problems in Japan.

    PubMed

    Ichinohe, M

    1988-04-01

    AMONG IMPORTANT NEMATODE SPECIES OCCURRING IN JAPAN, CURRENT RESEARCH ACHIEVEMENTS WITH THE FOLLOWING FOUR NEMATODES ARE REVIEWED: 1) Soybean cyst nematode (SCN), Heterodera glycines - breeding for resistance, race determination, association with Cephalosporium gregatum in azuki bean disease, and isolation of hatching stimulant. 2) Potato-cyst nematode (PCN), Globodera rostochiensis - pathotype determination (Ro 1), breeding for resistance, and control recommendations. 3) Pinewood nematode (PWN), Bursaphelenchus xylophilus - primary pathogen in pine wilt disease, life cycle exhibiting a typical symbiosis with Japanese pine sawyer, Monochamus alternatus, and project for control. 4) Rice root nematodes (RRN), Hirschmanniella imamuri and H. oryzae - distribution of species, population levels in roots, and role of these nematodes in rice culture.

  13. Inducing effect of PGRs on small regulatory si/miRNA in resistance to sugar beet cyst nematode.

    PubMed

    Tsygankova, V A; Stefanovska, T R; Galkin, A P; Ponomarenko, S P; Blume, Ya B

    2012-01-01

    Sugar beet cyst nematode Heterodera schachtii Schmidt is an economically important plant parasite of sugar beet in Ukraine. The pest control options are limited. Sugar beet cyst nematode resistant varieties are not available on the market. Carbamate and organophosphate pesticides have been banned due to the high toxicity. The problem is aggravated by continuously increasing of oilseed rape (which is suitable host for H. schachtii) growing area due to biofuel demands. Several studies' results indicate that PGRs have role in management of plant parasitic nematodes but for sugar beet it is not studied well. We had an objective- studying of the role of four compositional PGRs created based of avermectin in suppression of sugar beet cyst nematode population on sugar beet and oilseed rape caused by enhancing of endogenous si/miRNA complementary to H. schachtii mRNA. Laboratory study was conducted in 2011 with using method DOT-blot hybridization si/miRNA with mRNA and by testing inhibitory activity in cell free system protein biosynthesis. That was shown that application of the PGRs enhances sugar beet and oilseeds rape plant immune-protective properties and resistance against plant-parasitic nematode Heterodera schochtii through enhancement of synthesis of small regulatory si/miRNA related (complementary) to an mRNA structure of the parasitic organisms. As a result, translation of mRNA of the nematode is blocked and causes the mortality of plant parasite juveniles.

  14. Banana leaf and glucose mineralization and soil organic matter in microhabitats of banana plantations under long-term pesticide use.

    PubMed

    Blume, Elena; Reichert, José Miguel

    2015-06-01

    Soil organic matter (SOM) and microbial activity are key components of soil quality and sustainability. In the humid tropics of Costa Rica 3 pesticide regimes were studied-fungicide (low input); fungicide and herbicide (medium input); and fungicide, herbicide, and nematicide (high input)-under continuous banana cultivation for 5 yr (young) or 20 yr (old) in 3 microhabitats-nematicide ring around plants, litter pile of harvested banana, and bare area between litter pile and nematicide ring. Soil samples were incubated sequentially in the laboratory: unamended, amended with glucose, and amended with ground banana leaves. Soil organic matter varied with microhabitat, being greatest in the litter pile, where microbes had the greatest basal respiration with ground banana leaf, whereas microbes in the nematicide ring had the greatest respiration with glucose. These results suggest that soil microbes adapt to specific microhabitats. Young banana plantations had similar SOM compared with old plantations, but the former had greater basal microbial respiration in unamended and in glucose-amended soil and greater first-order mineralization rates in glucose-amended soil, thus indicating soil biological quality decline over time. High pesticide input did not decrease microbial activity or mineralization rate in surface soil. In conclusion, microbial activity in tropical volcanic soil is highly adaptable to organic and inorganic inputs.

  15. Evolution of endogenous sequences of banana streak virus: what can we learn from banana (Musa sp.) evolution?

    PubMed

    Gayral, Philippe; Blondin, Laurence; Guidolin, Olivier; Carreel, Françoise; Hippolyte, Isabelle; Perrier, Xavier; Iskra-Caruana, Marie-Line

    2010-07-01

    Endogenous plant pararetroviruses (EPRVs) are viral sequences of the family Caulimoviridae integrated into the nuclear genome of numerous plant species. The ability of some endogenous sequences of Banana streak viruses (eBSVs) in the genome of banana (Musa sp.) to induce infections just like the virus itself was recently demonstrated (P. Gayral et al., J. Virol. 83:6697-6710, 2008). Although eBSVs probably arose from accidental events, infectious eBSVs constitute an extreme case of parasitism, as well as a newly described strategy for vertical virus transmission in plants. We investigated the early evolutionary stages of infectious eBSV for two distinct BSV species-GF (BSGFV) and Imové (BSImV)-through the study of their distribution, insertion polymorphism, and structure evolution among selected banana genotypes representative of the diversity of 60 wild Musa species and genotypes. To do so, the historical frame of host evolution was analyzed by inferring banana phylogeny from two chloroplast regions-matK and trnL-trnF-as well as from the nuclear genome, using 19 microsatellite loci. We demonstrated that both BSV species integrated recently in banana evolution, circa 640,000 years ago. The two infectious eBSVs were subjected to different selective pressures and showed distinct levels of rearrangement within their final structure. In addition, the molecular phylogenies of integrated and nonintegrated BSVs enabled us to establish the phylogenetic origins of eBSGFV and eBSImV.

  16. Genetic variants of Banana streak virus in Mauritius.

    PubMed

    Jaufeerally-Fakim, Y; Khorugdharry, Ashwin; Harper, Glyn

    2006-01-01

    Genetic variations among isolates of Banana streak virus (BSV) were assessed using two sets of primers. The virus, found in banana accessions in Mauritius, was compared to a Nigerian isolate from cultivar Obino l'Ewai (BSOEV). On the basis of the observed size of amplicons, some Mauritius strains were different from l'Ewai BSOEV. Both Southern blot hybridization and the nucleotide sequences of the PCR products confirmed that they were of episomal BSV origin. An isolate of sugarcane bacilliform virus (SCBV) was found to be also very similar to the BSV isolated from banana samples. Nucleotide sequence analysis showed that even the same size PCR products had differing sequences. The dendrogram placed the isolates from Mauritius in a cluster separate from BSV and SCBV from other geographical locations.

  17. Hyperspectral imaging system for disease scanning on banana plants

    NASA Astrophysics Data System (ADS)

    Ochoa, Daniel; Cevallos, Juan; Vargas, German; Criollo, Ronald; Romero, Dennis; Castro, Rodrigo; Bayona, Oswaldo

    2016-05-01

    Black Sigatoka (BS) is a banana plant disease caused by the fungus Mycosphaerella fijiensis. BS symptoms can be observed at late infection stages. By that time, BS has probably spread to other plants. In this paper, we present our current work on building an hyper-spectral (HS) imaging system aimed at in-vivo detection of BS pre-symptomatic responses in banana leaves. The proposed imaging system comprises a motorized stage, a high-sensitivity VIS-NIR camera and an optical spectrograph. To capture images of the banana leaf, the stage's speed and camera's frame rate must be computed to reduce motion blur and to obtain the same resolution along both spatial dimensions of the resulting HS cube. Our continuous leaf scanning approach allows imaging leaves of arbitrary length with minimum frame loss. Once the images are captured, a denoising step is performed to improve HS image quality and spectral profile extraction.

  18. Aseptic multiplication of banana from excised floral apices.

    PubMed

    Cronauer, S S; Krikorian, A D

    1985-08-01

    Most economically important bananas and plantains are large triploid seedless herbs that must be propagated vegetatively by removing small side shoots or "suckers" from the parent plant or by planting seed pieces of larger corms. Consequently, multiplication of stock material is time consuming, Recently, the rapid production of young banana plantlets suitable for use as "seed" material has been described. Vegetative shoot apices were isolated and multiplied using aseptic tissue culture techniques. Although these multiplication systems, once established, can produce thousands of plants in a relatively short period of time, their establishment necessitates the initial sacrifice of an individual specimen, which may not always be desirable or prudent should a limited parent stock be available. We describe here the production and multiplication of rooted banana plantlets from the isolation and culture of terminal floral apices.

  19. Visualization of internal structure of banana starch granule through AFM.

    PubMed

    Peroni-Okita, Fernanda H G; Gunning, A Patrick; Kirby, Andrew; Simão, Renata A; Soares, Claudinéia A; Cordenunsi, Beatriz R

    2015-09-05

    Atomic force microscopy (AFM) is a high resolution technique for studying the external and internal structures of starch granules. For this purpose granules were isolated from bananas and embedded in a non-penetrating resin. To achieve image contrast of the ultrastructure, the face of the cut blocks were wetted in steam and force modulation mode imaging was used. Images of starch from green bananas showed large variation of height across the granule due to a locational specific absorption of water and swelling of amorphous regions; the data reveal that the center of the granules are structurally different and have different viscoelastic properties. Images of starches from ripe bananas showed an even greater different level of organization: absence of growth rings around the hilum; the central region of the granule is richer in amylose; very porous surface with round shaped dark structures; the size of blocklets are larger than the green fruits.

  20. Biosynthesis of CdS nanoparticles in banana peel extract.

    PubMed

    Zhou, Guang Ju; Li, Shuo Hao; Zhang, Yu Cang; Fu, Yun Zhi

    2014-06-01

    Cadmium sulfide (CdS) nanoparticles (NPs) were synthesized by using banana peel extract as a convenient, non-toxic, eco-friendly 'green' capping agent. Cadmium nitrate and sodium sulfide are main reagents. A variety of CdS NPs are prepared through changing reaction conditions (banana extracts, the amount of banana peel extract, solution pH, concentration and reactive temperature). The prepared CdS colloid displays strong fluorescence spectrum. X-ray diffraction analysis demonstrates the successful formation of CdS NPs. Fourier transform infra-red (FTIR) spectrogram indicates the involvement of carboxyl, amine and hydroxyl groups in the formation of CdS NPs. Transmission electron microscope (TEM) result reveals that the average size of the NPs is around 1.48 nm.

  1. Ascaroside Signaling is Widely Conserved Among Nematodes

    PubMed Central

    Choe, Andrea; von Reuss, Stephan H.; Kogan, Dima; Gasser, Robin B.; Platzer, Edward G.; Schroeder, Frank C.; Sternberg, Paul W.

    2012-01-01

    Summary Background Nematodes are among the most successful animals on earth and include important human pathogens, yet little is known about nematode pheromone systems. A group of small molecules called ascarosides has been found to mediate mate finding, aggregation, and developmental diapause in Caenorhabditis elegans, but it is unknown whether ascaroside signaling exists outside of the genus Caenorhabditis. Results To determine whether ascarosides are used as signaling molecules by other nematode species, we performed a mass spectrometry-based screen for ascarosides in secretions from a variety of both free-living and parasitic (plant, insect, and animal) nematodes. We found that most of the species analyzed, including nematodes from several different clades, produce species-specific ascaroside mixtures. In some cases, ascaroside biosynthesis patterns appear to correlate with phylogeny, whereas in other cases, biosynthesis seems to correlate with lifestyle and ecological niche. We further show that ascarosides mediate distinct nematode behaviors, such as retention, avoidance, and long-range attraction, and that different nematode species respond to distinct, but overlapping, sets of ascarosides. Conclusions Our findings indicate that nematodes utilize a conserved family of signaling molecules despite having evolved to occupy diverse ecologies. Their structural features and level of conservation are evocative of bacterial quorum sensing, where acyl homoserine lactones (AHLs) are both produced and sensed by many species of Gram-negative bacteria. The identification of species-specific ascaroside profiles may enable pheromone-based approaches to interfere with reproduction and survival of parasitic nematodes, which are responsible for significant agricultural losses and many human diseases worldwide. PMID:22503501

  2. [Nematodes of humans in the Primorye Territory].

    PubMed

    Ermolenko, A V; Rumiantseva, E E; Bartkova, A D; Voronok, V M; Poliakova, L F

    2013-01-01

    Nematodes occupy the top in the general pattern of human parasitic diseases in the Primorye Territory. In the south of the Far East, there are a total of 28 nematode species that can parasitize man. However, the authors have identified only 8 nematode-induced diseases, such as ascariasis, enterobiasis, toxocariasis, trichocephaliasis, anisakiasis, trichinosis, dirofilariasis, dioctophymosis. The latter has been found only once in the 1920s. According to official statistical data, the proportion of ascariasis and enterobiasis accounted for 43.8 and 53.5% of the total number of helminthiases, respectively.

  3. Banana production systems: identification of alternative systems for more sustainable production.

    PubMed

    Bellamy, Angelina Sanderson

    2013-04-01

    Large-scale, monoculture production systems dependent on synthetic fertilizers and pesticides, increase yields, but are costly and have deleterious impacts on human health and the environment. This research investigates variations in banana production practices in Costa Rica, to identify alternative systems that combine high productivity and profitability, with reduced reliance on agrochemicals. Farm workers were observed during daily production activities; 39 banana producers and 8 extension workers/researchers were interviewed; and a review of field experiments conducted by the National Banana Corporation between 1997 and 2002 was made. Correspondence analysis showed that there is no structured variation in large-scale banana producers' practices, but two other banana production systems were identified: a small-scale organic system and a small-scale conventional coffee-banana intercropped system. Field-scale research may reveal ways that these practices can be scaled up to achieve a productive and profitable system producing high-quality export bananas with fewer or no pesticides.

  4. Nematode endogenous small RNA pathways

    PubMed Central

    Hoogstrate, Suzanne W; Volkers, Rita JM; Sterken, Mark G; Kammenga, Jan E; Snoek, L Basten

    2014-01-01

    The discovery of small RNA silencing pathways has greatly extended our knowledge of gene regulation. Small RNAs have been presumed to play a role in every field of biology because they affect many biological processes via regulation of gene expression and chromatin remodeling. Most well-known examples of affected processes are development, fertility, and maintenance of genome stability. Here we review the role of the three main endogenous small RNA silencing pathways in Caenorhabditis elegans: microRNAs, endogenous small interfering RNAs, and PIWI-interacting RNAs. After providing an entry-level overview on how these pathways function, we discuss research on other nematode species providing insight into the evolution of these small RNA pathways. In understanding the differences between the endogenous small RNA pathways and their evolution, a more comprehensive picture is formed of the functions and effects of small RNAs. PMID:25340013

  5. Nematode molecular diagnostics: from bands to barcodes.

    PubMed

    Powers, Tom

    2004-01-01

    Nematodes are considered among the most difficult animals to identify. DNA-based diagnostic methods have already gained acceptance in applications ranging from quarantine determinations to assessments of biodiversity. Researchers are currently in an information-gathering mode, with intensive efforts applied to accumulating nucleotide sequence of 18S and 28S ribosomal genes, internally transcribed spacer regions, and mitochondrial genes. Important linkages with collateral data such as digitized images, video clips and specimen voucher web pages are being established on GenBank and NemATOL, the nematode-specific Tree of Life database. The growing DNA taxonomy of nematodes has lead to their use in testing specific short sequences of DNA as a "barcode" for the identification of all nematode species.

  6. Interactions between Nematodes and Earthworms: Enhanced Dispersal of Steinernema carpocapsae

    PubMed Central

    Shapiro, D. I.; Berry, E. C.; Lewis, L. C.

    1993-01-01

    Dispersal of the nematode Steinernema carpocapsae (All strain), applied on the top or the bottom of soil columns, was tested in the presence or absence of two earthworm species, Lumbricus terrestris or Aporrectodea trapezoides. Nematode dispersal was estimated after a 2-week period with a bioassay against the greater wax moth, Galleria mellonella. Vertical dispersal of nematodes was increased in the presence of earthworms. When nematodes were placed on the surface of soil columns, significantly more nematodes dispersed to the lower half of the columns when either earthworm species was present than when earthworms were not present. When nematodes were placed on the bottom of soil columns, significantly more nematodes dispersed to the upper half of the columns when L. terrestris was present than when A. trapezoides was present or in the absence of earthworms. Because nematodes were found on the exterior and in the interior of earthworms, nematode dispersal may be enhanced by direct contact with the earthworms. PMID:19279757

  7. Quality Characteristics of Dried Bananas Produced with Infrared Radiation Technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Browning of fruits during drying is a major quality concern. The enzyme polyphenol oxidase has been found to be the main cause of browning in bananas. Infrared radiation (IR) drying could be used to minimize enzymatic browning hence eliminating the need for pre-treatments. This study was to inves...

  8. Digestion of waste bananas to generate energy in Australia.

    PubMed

    Clarke, W P; Radnidge, P; Lai, T E; Jensen, P D; Hardin, M T

    2008-01-01

    This paper presents results from laboratory studies to measure the methane yield and rate of digestion of reject bananas. These parameters were determined in experiments that took into account the likely configuration of a full-scale plant in the banana growing region of north Queensland. The digestion was conducted in a 200-l reactor using fed-batch operation, relying entirely on the natural microbial consortia on the reject bananas to avoid reliance on external inocula such as sludge, an undesirable material around food packaging facilities. An enrichment culture was first established in a highly buffered 200-l batch digestion unit. The fed-batch digester was then started by exchanging leachate with the mature batch reactor. Under loading conditions of 0.6 kg VS m(-3)d(-1) over 70 days where the average working volume was 160 l, the digester produced 398+/-20 l CH4 kg VS(-1). Increasing the loading rate to 1.6 kg VS m(-3)d(-1) resulted in a reduced methane yield of 210 l CH4 kg VS(-1) over 23 days of operation, with a concomitant accumulation of banana waste in the digester. The leachate at the end of digestion contained over 4000 mg l(-1)K, 200 mg l(-1) N and 75 mg l(-1), levels that exceed acceptable limits for general agricultural irrigation.

  9. Predatory feeding behaviour in Pristionchus nematodes is dependent on phenotypic plasticity and induced by serotonin.

    PubMed

    Wilecki, Martin; Lightfoot, James W; Susoy, Vladislav; Sommer, Ralf J

    2015-05-01

    Behavioural innovation and morphological adaptation are intrinsically linked but their relationship is often poorly understood. In nematodes, a huge diversity of feeding morphologies and behaviours can be observed to meet their distinctive dietary and environmental demands. Pristionchus and their relatives show varied feeding activities, both consuming bacteria and also predating other nematodes. In addition, Pristionchus nematodes display dimorphic mouth structures triggered by an irreversible developmental switch, which generates a narrower mouthed form with a single tooth and a wider mouthed form with an additional tooth. However, little is known about the specific predatory adaptations of these mouth forms or the associated mechanisms and behaviours. Through a mechanistic analysis of predation behaviours, in particular in the model organism Pristionchus pacificus, we reveal multifaceted feeding modes characterised by dynamic rhythmic switching and tooth stimulation. This complex feeding mode switch is regulated by the neurotransmitter serotonin in a previously uncharacterised role, a process that appears conserved across several predatory nematode species. Furthermore, we investigated the effects of starvation, prey size and prey preference on P. pacificus predatory feeding kinetics, revealing predation to be a fundamental component of the P. pacificus feeding repertoire, thus providing an additional rich source of nutrition in addition to bacteria. Finally, we found that mouth form morphology also has a striking impact on predation, suppressing predatory behaviour in the narrow mouthed form. Our results therefore hint at the regulatory networks involved in controlling predatory feeding and underscore P. pacificus as a model for understanding the evolution of complex behaviours.

  10. Effects of Tobacco Cyst Nematode on Growth of Flue-cured Tobacco

    PubMed Central

    Wang, J.; Johnson, C. S.; Eisenback, J. D.; Reed, T. D.

    1999-01-01

    The effects of infection by tobacco cyst nematode (Globodera tabacum solanacearum) on growth of flue-cured tobacco cultivars NC 567 (resistant) and K 326 (susceptible) were evaluated in the field in 1993 and 1994. Infection by G. t. solanacearum suppressed number of leaves, plant height, and fresh weight of leaves and feeder roots. Correlations between weekly egg densities of G. t. solanacearum collected from soil and host growth during 11 weeks after transplanting (WAT) were often inconsistent between cultivars and years. However, consistent correlations were obtained between root weight and egg densities collected 9 WAT, as well as between leaf weight from susceptible K 326 and nematode egg densities 6 WAT. Leaf and feeder root weights were significantly correlated with the area under the curve for all nematodes per gram of feeder root for K 326 in 1993 and for both cultivars in 1994. Reduction in feeder root weight by G. t. solanacearum was similar for the resistant and susceptible cultivars. Reduction in fresh leaf weight by G. t. solanacearum was twice as great (P ≤ 0.07) for K 326 as for NC 567 in 1994. Incorporating nematode resistance into germplasm possessing improved yield and quality traits should produce cultivars more acceptable to growers. PMID:19270904

  11. Developmental transcript profiling of cyst nematode feeding cells in soybean roots.

    PubMed

    Ithal, Nagabhushana; Recknor, Justin; Nettleton, Dan; Maier, Tom; Baum, Thomas J; Mitchum, Melissa G

    2007-05-01

    Cyst nematodes of the genus Heterodera are obligate, sedentary endoparasites that have developed highly evolved relationships with specific host plant species. Successful parasitism involves significant physiological and morphological changes to plant root cells for the formation of specialized feeding cells called syncytia. To better understand the molecular mechanisms that lead to the development of nematode feeding cells, transcript profiling was conducted on developing syncytia induced by the soybean cyst nematode Heterodera glycines in soybean roots by coupling laser capture microdissection with high-density oligonucleotide microarray analysis. This approach has identified pathways that may play intrinsic roles in syncytium induction, formation, and function. Our data suggest interplay among phytohormones that likely regulates synchronized changes in the expression of genes encoding cell-wall-modifying proteins. This process appears to be tightly controlled and coordinately regulated with cell wall rigidification processes that may involve lignification of feeding cell walls. Our data also show local downregulation of jasmonic acid biosynthesis and responses in developing syncytia, which suggest a local suppression of plant defense mechanisms. Moreover, we identified genes encoding putative transcription factors and components of signal transduction pathways that may be important in the regulatory processes governing syncytium formation and function. Our analysis provides a broad mechanistic picture that forms the basis for future hypothesis-driven research to understand cyst nematode parasitism and to develop effective management tools against these pathogens.

  12. Physicochemical, digestibility and structural characteristics of starch isolated from banana cultivars.

    PubMed

    Agama-Acevedo, Edith; Nuñez-Santiago, Maria C; Alvarez-Ramirez, José; Bello-Pérez, Luis A

    2015-06-25

    Banana starches from diverse varieties (Macho, Morado, Valery and Enano Gigante) were studied in their physicochemical, structural and digestibility features. X-ray diffraction indicated that the banana starches present a B-type crystallinity pattern, with slight difference in the crystallinity level. Macho and Enano Gigante starches showed the highest pasting temperatures (79 and 78°C, respectively), whilst Valery and Morado varieties presented a slight breakdown and higher setback than the formers. Morado starch presented the highest solubility value and Valery starch the lowest one. The swelling pattern of the banana starches was in agreement with their pasting profile. All banana starches showed a shear-thinning profile. The resistant starch (RS) fraction was the main fraction in the uncooked banana starches. Morado variety showed the highest amount of slowly digestible starch (SDS) and the lowest RS content reported until now in banana starches. Banana starch cooked samples presented an important amount of SDS and RS. Molecular weight and gyration radius of the four banana starches ranged between 2.88-3.14×10(8)g/mol and 286-302nm, respectively. The chain-length distributions of banana amylopectin showed that B1 chains (DP 13-24) is the main fraction, and an important amount of long chains (DP≥37) are present. The information generated from this study can be useful to determine banana varieties for starch isolation with specific functionality.

  13. Influence of metalaxyl on three nematodes of citrus.

    PubMed

    Kaplan, D T

    1983-07-01

    Metalaxyl significantly reduced population of Pratylenchus coffeae, Radopholus similis, and Tylenchulus semipenetrans in roots of Citrus limon (rough lemon) under greenhouse conditions. Postinoculation treatment of rough lemon seedlings was not as effective i n reducing nematode populations as was treatment before inoculation. Fewer nematodes infected metalaxyl-treated roots than nontreated roots. However, incubation of nematodes in metalaxyl did not inhibit nematode motility or their ability to locate and infect roots. Cellular responses to nematode injection differed between treated and nontreated tissues. Metalaxyl appeared to confer nematode contraol by modifying citrus roots such that a normally susceptible rootstock became tolerant.

  14. Induced resistance to nematodes in cotton: a novel contribution to nematode management.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Induced resistance against plant-parasitic nematodes has not previously been shown in cotton. We tested whether co-infection of cotton by Meloidogyne incognita and Rotylenchulus reniformis affected population levels of either nematode compared to single-species infection. In split-root experiments, ...

  15. Traditional Banana Diversity in Oceania: An Endangered Heritage

    PubMed Central

    Kagy, Valérie; Wong, Maurice; Vandenbroucke, Henri; Jenny, Christophe; Dubois, Cécile; Ollivier, Anthony; Cardi, Céline; Mournet, Pierre; Tuia, Valérie; Roux, Nicolas; Doležel, Jaroslav; Perrier, Xavier

    2016-01-01

    This study aims to understand the genetic diversity of traditional Oceanian starchy bananas in order to propose an efficient conservation strategy for these endangered varieties. SSR and DArT molecular markers are used to characterize a large sample of Pacific accessions, from New Guinea to Tahiti and Hawaii. All Pacific starchy bananas are shown of New Guinea origin, by interspecific hybridization between Musa acuminata (AA genome), more precisely its local subspecies M. acuminata ssp. banksii, and M. balbisiana (BB genome) generating triploid AAB Pacific starchy bananas. These AAB genotypes do not form a subgroup sensu stricto and genetic markers differentiate two subgroups across the three morphotypes usually identified: Iholena versus Popoulu and Maoli. The Popoulu/Maoli accessions, even if morphologically diverse throughout the Pacific, cluster in the same genetic subgroup. However, the subgroup is not strictly monophyletic and several close, but different genotypes are linked to the dominant genotype. One of the related genotypes is specific to New Caledonia (NC), with morphotypes close to Maoli, but with some primitive characters. It is concluded that the diffusion of Pacific starchy AAB bananas results from a series of introductions of triploids originating in New Guinea area from several sexual recombination events implying different genotypes of M. acuminata ssp. banksii. This scheme of multiple waves from the New Guinea zone is consistent with the archaeological data for peopling of the Pacific. The present geographic distribution suggests that a greater diversity must have existed in the past. Its erosion finds parallels with the erosion of cultural traditions, inexorably declining in most of the Polynesian or Melanesian Islands. Symmetrically, diversity hot spots appear linked to the local persistence of traditions: Maoli in New Caledonian Kanak traditions or Iholena in a few Polynesian islands. These results will contribute to optimizing the

  16. Expression of hepatitis B surface antigen in transgenic banana plants.

    PubMed

    Kumar, G B Sunil; Ganapathi, T R; Revathi, C J; Srinivas, L; Bapat, V A

    2005-10-01

    Embryogenic cells of bananan cv. Rasthali (AAB) have been transformed with the 's' gene of hepatitis B surface antigen (HBsAg) using Agrobacterium mediated transformation. Four different expression cassettes (pHBS, pHER, pEFEHBS and pEFEHER) were utilized to optimize the expression of HBsAg in banana. The transgenic nature of the plants and expression of the antigen was confirmed by PCR, Southern hybridization and reverse transcription (RT)-PCR. The expression levels of the antigen in the plants grown under in vitro conditions as well as the green house hardened plants were estimated by ELISA for all the four constructs. Maximum expression level of 38 ng/g F.W. of leaves was noted in plants transformed with pEFEHBS grown under in vitro conditions, whereas pHER transformed plants grown in the green house showed the maximum expression level of 19.92 ng/g F.W. of leaves. Higher monoclonal antibody binding of 67.87% of the antigen was observed when it was expressed with a C-terminal ER retention signal. The buoyant density in CsCl of HBsAg derived from transgenic banana leaves was determined and found to be 1.146 g/ml. HBsAg obtained from transgenic banana plants is similar to human serum derived one in buoyant density properties. The transgenic plants were grown up to maturity in the green house and the expression of HBsAg in the fruits was confirmed by RT-PCR. These transgenic plants were multiplied under in vitro using floral apex cultures. Attempts were also made to enhance the expression of HBsAg in the leaves of transgenic banana plants by wounding and/or treatment with plant growth regulators. This is the first report on the expression of HBsAg in transgenic banana fruits.

  17. Traditional Banana Diversity in Oceania: An Endangered Heritage.

    PubMed

    Kagy, Valérie; Wong, Maurice; Vandenbroucke, Henri; Jenny, Christophe; Dubois, Cécile; Ollivier, Anthony; Cardi, Céline; Mournet, Pierre; Tuia, Valérie; Roux, Nicolas; Doležel, Jaroslav; Perrier, Xavier

    2016-01-01

    This study aims to understand the genetic diversity of traditional Oceanian starchy bananas in order to propose an efficient conservation strategy for these endangered varieties. SSR and DArT molecular markers are used to characterize a large sample of Pacific accessions, from New Guinea to Tahiti and Hawaii. All Pacific starchy bananas are shown of New Guinea origin, by interspecific hybridization between Musa acuminata (AA genome), more precisely its local subspecies M. acuminata ssp. banksii, and M. balbisiana (BB genome) generating triploid AAB Pacific starchy bananas. These AAB genotypes do not form a subgroup sensu stricto and genetic markers differentiate two subgroups across the three morphotypes usually identified: Iholena versus Popoulu and Maoli. The Popoulu/Maoli accessions, even if morphologically diverse throughout the Pacific, cluster in the same genetic subgroup. However, the subgroup is not strictly monophyletic and several close, but different genotypes are linked to the dominant genotype. One of the related genotypes is specific to New Caledonia (NC), with morphotypes close to Maoli, but with some primitive characters. It is concluded that the diffusion of Pacific starchy AAB bananas results from a series of introductions of triploids originating in New Guinea area from several sexual recombination events implying different genotypes of M. acuminata ssp. banksii. This scheme of multiple waves from the New Guinea zone is consistent with the archaeological data for peopling of the Pacific. The present geographic distribution suggests that a greater diversity must have existed in the past. Its erosion finds parallels with the erosion of cultural traditions, inexorably declining in most of the Polynesian or Melanesian Islands. Symmetrically, diversity hot spots appear linked to the local persistence of traditions: Maoli in New Caledonian Kanak traditions or Iholena in a few Polynesian islands. These results will contribute to optimizing the

  18. Phylogeny of Banana Streak Virus reveals recent and repetitive endogenization in the genome of its banana host (Musa sp.).

    PubMed

    Gayral, Philippe; Iskra-Caruana, Marie-Line

    2009-07-01

    Banana streak virus (BSV) is a plant dsDNA pararetrovirus (family Caulimoviridae, genus badnavirus). Although integration is not an essential step in the BSV replication cycle, the nuclear genome of banana (Musa sp.) contains BSV endogenous pararetrovirus sequences (BSV EPRVs). Some BSV EPRVs are infectious by reconstituting a functional viral genome. Recent studies revealed a large molecular diversity of episomal BSV viruses (i.e., nonintegrated) while others focused on BSV EPRV sequences only. In this study, the evolutionary history of badnavirus integration in banana was inferred from phylogenetic relationships between BSV and BSV EPRVs. The relative evolution rates and selective pressures (d(N)/d(S) ratio) were also compared between endogenous and episomal viral sequences. At least 27 recent independent integration events occurred after the divergence of three banana species, indicating that viral integration is a recent and frequent phenomenon. Relaxation of selective pressure on badnaviral sequences that experienced neutral evolution after integration in the plant genome was recorded. Additionally, a significant decrease (35%) in the EPRV evolution rate was observed compared to BSV, reflecting the difference in the evolution rate between episomal dsDNA viruses and plant genome. The comparison of our results with the evolution rate of the Musa genome and other reverse-transcribing viruses suggests that EPRVs play an active role in episomal BSV diversity and evolution.

  19. Membrane tubule formation by banana-shaped proteins with or without transient network structure

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2016-02-01

    In living cells, membrane morphology is regulated by various proteins. Many membrane reshaping proteins contain a Bin/Amphiphysin/Rvs (BAR) domain, which consists of a banana-shaped rod. The BAR domain bends the biomembrane along the rod axis and the features of this anisotropic bending have recently been studied. Here, we report on the role of the BAR protein rods in inducing membrane tubulation, using large-scale coarse-grained simulations. We reveal that a small spontaneous side curvature perpendicular to the rod can drastically alter the tubulation dynamics at high protein density, whereas no significant difference is obtained at low density. A percolated network is intermediately formed depending on the side curvature. This network suppresses tubule protrusion, leading to the slow formation of fewer tubules. Thus, the side curvature, which is generated by protein–protein and membrane–protein interactions, plays a significant role in tubulation dynamics. We also find that positive surface tensions and the vesicle membrane curvature can stabilize this network structure by suppressing the tubulation.

  20. Interspecific Nematode Signals Regulate Dispersal Behavior

    PubMed Central

    Kaplan, Fatma; Alborn, Hans T.; von Reuss, Stephan H.; Ajredini, Ramadan; Ali, Jared G.; Akyazi, Faruk; Stelinski, Lukasz L.; Edison, Arthur S.; Schroeder, Frank C.; Teal, Peter E.

    2012-01-01

    Background Dispersal is an important nematode behavior. Upon crowding or food depletion, the free living bacteriovorus nematode Caenorhabditis elegans produces stress resistant dispersal larvae, called dauer, which are analogous to second stage juveniles (J2) of plant parasitic Meloidogyne spp. and infective juveniles (IJ)s of entomopathogenic nematodes (EPN), e.g., Steinernema feltiae. Regulation of dispersal behavior has not been thoroughly investigated for C. elegans or any other nematode species. Based on the fact that ascarosides regulate entry in dauer stage as well as multiple behaviors in C. elegans adults including mating, avoidance and aggregation, we hypothesized that ascarosides might also be involved in regulation of dispersal behavior in C. elegans and for other nematodes such as IJ of phylogenetically related EPNs. Methodology/Principal Findings Liquid chromatography-mass spectrometry analysis of C. elegans dauer conditioned media, which shows strong dispersing activity, revealed four known ascarosides (ascr#2, ascr#3, ascr#8, icas#9). A synthetic blend of these ascarosides at physiologically relevant concentrations dispersed C. elegans dauer in the presence of food and also caused dispersion of IJs of S. feltiae and J2s of plant parasitic Meloidogyne spp. Assay guided fractionation revealed structural analogs as major active components of the S. feltiae (ascr#9) and C. elegans (ascr#2) dispersal blends. Further analysis revealed ascr#9 in all Steinernema spp. and Heterorhabditis spp. infected insect host cadavers. Conclusions/Significance Ascaroside blends represent evolutionarily conserved, fundamentally important communication systems for nematodes from diverse habitats, and thus may provide sustainable means for control of parasitic nematodes. PMID:22701701

  1. A mir-231-Regulated Protection Mechanism against the Toxicity of Graphene Oxide in Nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Yang, Ruilong; Ren, Mingxia; Rui, Qi; Wang, Dayong

    2016-08-01

    Recently, several dysregulated microRNAs (miRNAs) have been identified in organisms exposed to graphene oxide (GO). However, their biological functions and mechanisms of the action are still largely unknown. Here, we investigated the molecular mechanism of mir-231 in the regulation of GO toxicity using in vivo assay system of Caenorhabditis elegans. We found that GO exposure inhibited the expression of mir-231::GFP in multiple tissues, in particular in the intestine. mir-231 acted in intestine to regulate the GO toxicity, and overexpression of mir-231 in intestine caused a susceptible property of nematodes to GO toxicity. smk-1 encoding a homologue to mammalian SMEK functioned as a targeted gene for mir-231, and was also involved in the intestinal regulation of GO toxicity. Mutation of smk-1 gene induced a susceptible property to GO toxicity, whereas the intestinal overexpression of smk-1 resulted in a resistant property to GO toxicity. Moreover, mutation of smk-1 gene suppressed the resistant property of mir-231 mutant to GO toxicity. In nematodes, SMK-1 further acted upstream of the transcriptional factor DAF-16/FOXO in insulin signaling pathway to regulate GO toxicity. Therefore, mir-231 may encode a GO-responsive protection mechanism against the GO toxicity by suppressing the function of the SMK-1 - DAF-16 signaling cascade in nematodes.

  2. Characterization of a new pathovar of Agrobacterium vitis causing banana leaf blight in China.

    PubMed

    Huang, Siliang; Long, Mengling; Fu, Gang; Lin, Shanhai; Qin, Liping; Hu, Chunjin; Cen, Zhenlu; Lu, Jie; Li, Qiqin

    2015-01-01

    A new banana leaf blight was found in Nanning city, China, during a 7-year survey (2003-2009) of the bacterial diseases on banana plants. Eight bacterial strains were isolated from affected banana leaves, and identified as an intraspecific taxon of Agrobacterium vitis based on their 16S rDNA sequence similarities with those of 37 randomly selected bacterial strains registered in GenBank database. The representative strain Ag-1 was virulent on banana leaves and shared similar growth and biochemical reactions with the reference strain IAM14140 of A. vitis. The strains causing banana leaf blight were denominated as A. vitis pv. musae. The traditional A. vitis strains virulent to grapevines were proposed to be revised as A. vitis pv. vitis. This is the first record of a new type of A. vitis causing banana leaf blight in China.

  3. Bioactive compounds in banana and their associated health benefits - A review.

    PubMed

    Singh, Balwinder; Singh, Jatinder Pal; Kaur, Amritpal; Singh, Narpinder

    2016-09-01

    Banana is a very popular fruit in the world market and is consumed as staple food in many countries. It is grown worldwide and constitutes the fifth most important agricultural food crop in terms of world trade. It has been classified into the dessert or sweet bananas and the cooking bananas or plantains. It is either eaten raw or processed, and also as a functional ingredient in various food products. Banana contains several bioactive compounds, such as phenolics, carotenoids, biogenic amines and phytosterols, which are highly desirable in the diet as they exert many positive effects on human health and well-being. Many of these compounds have antioxidant activities and are effective in protecting the body against various oxidative stresses. In the past, bananas were effectively used in the treatment of various diseases, including reducing the risk of many chronic degenerative disorders. In the present review, historical background, cultivar classification, beneficial phytochemicals, antioxidant activity and health benefits of bananas are discussed.

  4. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis.

    PubMed

    Kammerhofer, Nina; Radakovic, Zoran; Regis, Jully M A; Dobrev, Petre; Vankova, Radomira; Grundler, Florian M W; Siddique, Shahid; Hofmann, Julia; Wieczorek, Krzysztof

    2015-08-01

    Heterodera schachtii, a plant-parasitic cyst nematode, invades host roots and induces a specific syncytial feeding structure, from which it withdraws all required nutrients, causing severe yield losses. The system H. schachtii-Arabidopsis is an excellent research model for investigating plant defence mechanisms. Such responses are suppressed in well-established syncytia, whereas they are induced during early parasitism. However, the mechanisms by which the defence responses are modulated and the role of phytohormones are largely unknown. The aim of this study was to elucidate the role of hormone-based defence responses at the onset of nematode infection. First, concentrations of main phytohormones were quantified and the expression of several hormone-related genes was analysed using quantitative real-time (qRT)-PCR or GeneChip. Further, the effects of individual hormones were evaluated via nematode attraction and infection assays using plants with altered endogenous hormone concentrations. Our results suggest a pivotal and positive role for ethylene during nematode attraction, whereas jasmonic acid triggers early defence responses against H. schachtii. Salicylic acid seems to be a negative regulator during later syncytium and female development. We conclude that nematodes are able to impose specific changes in hormone pools, thus modulating hormone-based defence and signal transduction in strict dependence on their parasitism stage.

  5. Genetic variation in resistance to mixed, predominantly Teladorsagia circumcincta nematode infections of sheep: from heritabilities to gene identification.

    PubMed

    Stear, M J; Boag, B; Cattadori, I; Murphy, L

    2009-05-01

    In cool temperate areas, such as Scotland, sheep are infected by a variety of nematodes but the dominant nematode is Teladorsagia circumcincta. Resistant animals have one or more of the following features: fewer adult nematodes, more inhibited larvae, shorter adult nematodes and decreased production of nematode eggs. In lambs at the end of the first grazing season, the heritability of adult worm length is very strong, whereas the heritability of egg production is moderate. The heritability of worm number is low while there is no detectable genetic variation in the number of inhibited larvae. The major mechanisms underlying resistance to T. circumcincta appear to be the IgA mediated suppression of worm growth and the mast cell mediated regulation of worm number. Mast cell responses are slow to develop, possibly because they are responsible for protein loss and reduced growth of the host. Two genes have been repeatedly associated with resistance to T. Circumcincta: the MHC class II DRB1 locus on chromosome 20 and the interferon-gamma locus on chromosome 3. Although the causative mutations are still unknown both genes are plausible candidates.

  6. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis

    PubMed Central

    Kammerhofer, Nina; Radakovic, Zoran; Regis, Jully M A; Dobrev, Petre; Vankova, Radomira; Grundler, Florian M W; Siddique, Shahid; Hofmann, Julia; Wieczorek, Krzysztof

    2015-01-01

    Heterodera schachtii, a plant-parasitic cyst nematode, invades host roots and induces a specific syncytial feeding structure, from which it withdraws all required nutrients, causing severe yield losses. The system H. schachtii–Arabidopsis is an excellent research model for investigating plant defence mechanisms. Such responses are suppressed in well-established syncytia, whereas they are induced during early parasitism. However, the mechanisms by which the defence responses are modulated and the role of phytohormones are largely unknown. The aim of this study was to elucidate the role of hormone-based defence responses at the onset of nematode infection. First, concentrations of main phytohormones were quantified and the expression of several hormone-related genes was analysed using quantitative real-time (qRT)-PCR or GeneChip. Further, the effects of individual hormones were evaluated via nematode attraction and infection assays using plants with altered endogenous hormone concentrations. Our results suggest a pivotal and positive role for ethylene during nematode attraction, whereas jasmonic acid triggers early defence responses against H. schachtii. Salicylic acid seems to be a negative regulator during later syncytium and female development. We conclude that nematodes are able to impose specific changes in hormone pools, thus modulating hormone-based defence and signal transduction in strict dependence on their parasitism stage. PMID:25825039

  7. Two new species of soil nematodes from Manipur, India.

    PubMed

    Chanu, Loukrakpam Bina; Meitei, N Mohilal; Shah, M Manjur

    2016-09-01

    Survey for soil nematodes associated with mulberry plants in valley districts of Manipur revealed the presence of two new species of soil nematodes of the genus Tylenchus sp. and Telotylenchus sp. The two new species are described and illustrated here.

  8. Molecular Transfer of Nematode Resistance Genes

    PubMed Central

    Williamson, V. M.; Ho, J.-Y.; Ma, H. M.

    1992-01-01

    Recombinant DNA techniques have been used to introduce agronomically valuable traits, including resistance to viruses, herbicides, and insects, into crop plants. Introduction of these genes into plants frequently involves Agrobacterium-mediated gene transfer. The potential exists for applying this technology to nematode control by introducing genes conferring resistance to nematodes. Transferred genes could include those encoding products detrimental to nematode development or reproduction as well as cloned host resistance genes. Host genes that confer resistance to cyst or root-knot nematode species have been identified in many plants. The best characterized is Mi, a gene that confers resistance to root-knot nematodes in tomato. A map-based cloning approach is being used to isolate the gene. For development of a detailed map of the region of the genome surrounding Mi, DNA markers genetically linked to Mi have been identified and analyzed in tomato lines that have undergone a recombination event near Mi. The molecular map will be used to identify DNA corresponding to Mi. We estimate that a clone of Mi will be obtained in 2-5 years. An exciting prospect is that introduction of this gene will confer resistance in plant species without currently available sources of resistance. PMID:19282989

  9. Nematodes associated with blackberry in arkansas.

    PubMed

    Wehunt, E J; Golden, A M; Clark, J R; Kirkpatrick, T L; Baker, E C; Brown, M A

    1991-10-01

    A survey of the nematodes in blackberry (Rubus sp.) rhizospheres was conducted in Arkansas from 1986 to 1989. The state was divided arbitrarily into four quadrants. A total of 134 soil samples was collected, and 150-cm 3 subsamples were assayed for nematodes. Twenty-one species of plant-parasitic nematodes in 11 genera were extracted from the samples. There were differences (P = 0.05) among quadrants of the state in percentage occurrence of the nematodes and in population densities in samples. Xiphinema americanum, Helicotylenchus spp. (H. paraplatyurus, H. platyurus, and H. pseudorobustus), and Pratylenchus spp. (P. vulnus and P. zeae) were found in all quadrants. Xiphinema americanum population density was near 1,000 per 150 cm(3) soil in soil samples from two locations. Other nematodes found in one or more quadrants were Criconemella spp. (C. axeste, C. curvata, C. denoudeni, C. ornata, C. sphaerocephala, and C. xenoplax), Paratrichodorus minor, Tylenchorhynchus claytoni, Hirschmanniella oryzae, Hoplolaimus magnistylus, Scutellonema bradys, and undescribed species of Criconema, Tylenchulus, Xiphinema, and Meloidogyne. Criconemella sphaerocephala and Helicotylenchus platyurus are reported from Arkansas for the first time. Helicotylenchus paraplatyurus is reported from the United States for the first time.

  10. Effects of abscisic acid and nitric oxide on trap formation and trapping of nematodes by the fungus Drechslerella stenobrocha AS6.1.

    PubMed

    Xu, Ling-Ling; Lai, Yi-Ling; Wang, Lin; Liu, Xing-Zhong

    2011-02-01

    The in vitro effects of abscisic acid (ABA) and nitric oxide (NO) on the nematode-trapping fungus Drechslerella stenobrocha AS6.1 were examined. The average number of traps (constricting rings) per colony and the percentage of nematodes (Caenorhabditis elegans) trapped were greatly increased by addition of ABA but greatly suppressed by addition of sodium nitroprusside (SNP, an NO donor) to corn meal agar. The suppressive effect of SNP was not negated by addition of an NO synthase competitive inhibitor (l-naphthylacetic acid, L-NNA) or an NO-specific scavenger [2-(4-carboxyphenyl)-4,4, 5,5-tetramethylimidazoline-1-oxyl-3-oxide, cPTIO]. When added without SNP, however, L-NNA and cPTIO caused moderate increases in trap number and trapping. The results indicate that the trap formation and nematode-trapping ability of D. stenobrocha were enhanced by ABA but decreased by exogenous NO.

  11. Nature and Inheritance of Nematode Resistance in Cereals

    PubMed Central

    Cook, R.

    1974-01-01

    Resistance to a number of nematodes is present in varieties of temperate and tropical cereals. The occurrence, nature, and inheritance of varietal resistance in cereals is reviewed. Evaluation of the practical significance of nematode resistance in a particular host-nematode combination is discussed in relation to host efficiency, host sensitivity, genetic control of resistance, and presence of virulence in the nematode population. PMID:19308117

  12. Nematode feeding sites: unique organs in plant roots.

    PubMed

    Kyndt, Tina; Vieira, Paulo; Gheysen, Godelieve; de Almeida-Engler, Janice

    2013-11-01

    Although generally unnoticed, nearly all crop plants have one or more species of nematodes that feed on their roots, frequently causing tremendous yield losses. The group of sedentary nematodes, which are among the most damaging plant-parasitic nematodes, cause the formation of special organs called nematode feeding sites (NFS) in the root tissue. In this review we discuss key metabolic and cellular changes correlated with NFS development, and similarities and discrepancies between different types of NFS are highlighted.

  13. Biocontrol: The Potential of Entomophilic Nematodes in Insect Management

    PubMed Central

    Webster, John M.

    1980-01-01

    A review of the development of entomophilic nematology and a commentary on the potential of entomophilic nematodes in controlling insect pests. The paper considers some of the major contributions to our knowledge of entomophilic nematology; factors involved in insect pest management and how they are applicable to the use of nematodes; nematodes which are most promising as biological control agents; and problems to be solved to facilitate the use of entomophilic nematodes in insect management. PMID:19300702

  14. Urocanic acid is a major chemoattractant for the skin-penetrating parasitic nematode Strongyloides stercoralis

    PubMed Central

    Safer, Daniel; Brenes, Mario; Dunipace, Seth; Schad, Gerhard

    2007-01-01

    Host-seeking behavior by parasitic nematodes relies heavily on chemical cues emanating from potential hosts. Nonspecific cues for Strongyloides stercoralis, a nematode that infects humans and a few other mammals, include carbon dioxide and sodium chloride; however, the characteristic species specificity of this parasite suggested the existence of other, more specific cues. Here we show that the infective larva of S. stercoralis is strongly attracted to an extract of mammalian skin and that the active component in this skin extract is urocanic acid. Urocanic acid, a histidine metabolite, is particularly abundant in mammalian skin and skin secretions, suggesting that it serves as an attractant specific to mammalian hosts. The attractant activity of urocanic acid is suppressed by divalent metal ions, suggesting a possible strategy for preventing infection. PMID:17234810

  15. The effects of different disease-resistant cultivars of banana on rhizosphere microbial communities and enzyme activities.

    PubMed

    Sun, Jianbo; Peng, Ming; Wang, Yuguang; Li, Wenbin; Xia, Qiyu

    2013-08-01

    To understand the mechanism of soil microbial ecosystem and biochemical properties in suppressing soilborne plant diseases, the relationship between the soil rhizosphere microbial communities, hydrolase activities, and different disease-resistant cultivars was investigated. There were statistically significant differences in microbial diversity in the rhizosphere soil between the disease-tolerant cultivar Fj01 and susceptible cultivar Baxi. The rhizosphere soil of Fj01 showed a trend of higher microbial diversity than that of Baxi. At the same growth stage, the similar trends of variation in microbial community diversity between the two different cultivars were observed. The bacterial community abundance in rhizosphere soil from the two banana cultivars was quantified by real-time PCR assays. The size of the rhizosphere bacterial population from the Fj01 was significantly larger than that from the Baxi during the growing stage from July to September. The activities of urease and phosphatase were analyzed to study the effects of the two banana cultivars to soil ecosystem functioning. Urease activity was significantly higher in the rhizosphere soil of Fj01 than that of Baxi in the period from July to September. However, phosphatase activity showed no significant difference between the two different rhizosphere soils.

  16. Tobacco arabinogalactan protein NtEPc can promote banana (Musa AAA) somatic embryogenesis.

    PubMed

    Shu, H; Xu, L; Li, Z; Li, J; Jin, Z; Chang, S

    2014-12-01

    Banana is an important tropical fruit worldwide. Parthenocarpy and female sterility made it impossible to improve banana varieties through common hybridization. Genetic transformation for banana improvement is imperative. But the low rate that banana embryogenic callus was induced made the transformation cannot be performed in many laboratories. Finding ways to promote banana somatic embryogenesis is critical for banana genetic transformation. After tobacco arabinogalactan protein gene NtEPc was transformed into Escherichia coli (DE3), the recombinant protein was purified and filter-sterilized. A series of the sterilized protein was added into tissue culture medium. It was found that the number of banana immature male flowers developing embryogenic calli increased significantly in the presence of NtEPc protein compared with the effect of the control medium. Among the treatments, explants cultured on medium containing 10 mg/l of NtEPc protein had the highest chance to develop embryogenic calli. The percentage of lines that developed embryogenic calli on this medium was about 12.5 %. These demonstrated that NtEPc protein can be used to promote banana embryogenesis. This is the first paper that reported that foreign arabinogalactan protein (AGP) could be used to improve banana somatic embryogenesis.

  17. Genetic transformation of banana and plantain (Musa spp.) via particle bombardment.

    PubMed

    Sági, L; Panis, B; Remy, S; Schoofs, H; De Smet, K; Swennen, R; Cammue, B P

    1995-05-01

    We have developed a simple protocol to allow the production of transgenic banana plants. Foreign genes were delivered into embryogenic suspension cells using accelerated particles coated with DNA. Bombardment parameters were optimized for a modified particle gun resulting in high levels of transient expression of the beta-glucuronidase gene in both banana and plantain cells. Bombarded banana cells were selected with hygromycin and regenerated into plants. Molecular and histochemical characterization of transformants revealed the stable integration of the transferred genes into the banana genome.

  18. Carotenoid-rich bananas: a potential food source for alleviating vitamin A deficiency.

    PubMed

    Englberger, Lois; Darnton-Hill, Ian; Coyne, Terry; Fitzgerald, Maureen H; Marks, Geoffrey C

    2003-12-01

    This review article points out that bananas are an important food for many people in the world. Thus, banana cultivars rich in provitamin A carotenoids may offer a potential food source for alleviating vitamin A deficiency, particularly in developing countries. Many factors are associated with the presently known food sources of vitamin A that limit their effectiveness in improving vitamin A status. Acceptable carotenoid-rich banana cultivars have been identified in Micronesia, and some carotenoid-rich bananas have been identified elsewhere. Bananas are an ideal food for young children and families for many regions of the world, because of their sweetness, texture, portion size, familiarity, availability, convenience, versatility, and cost. Foods containing high levels of carotenoids have been shown to protect against chronic disease, including certain cancers, cardiovascular disease, and diabetes. Because the coloration of the edible flesh of the banana appears to be a good indicator of likely carotenoid content, it may be possible to develop a simple method for selecting carotenoid-rich banana cultivars in the community. Research is needed on the identification of carotenoid-rich cultivars, targeting those areas of the world where bananas are a major staple food; investigating factors affecting production, consumption, and acceptability; and determining the impact that carotenoid-rich bananas may have on improving vitamin A status. Based on these results, interventions should be undertaken for initiating or increasing homestead and commercial production.

  19. Effects of Php Gene-Associated versus Induced Resistance to Tobacco Cyst Nematode in Flue-Cured Tobacco

    PubMed Central

    Johnson, Charles S.; Eisenback, Jon D.

    2009-01-01

    Effects of the systemic acquired resistance (SAR)-inducing compound acibenzolar-S-methyl (ASM) and the plant-growth promoting rhizobacterial mixture Bacillus subtilis A13 and B. amyloliquefaciens IN937a (GB99+GB122) were assessed on the reproduction of a tobacco cyst nematode (TCN- Globodera tabacum solanacearum) under greenhouse conditions. Two sets of two independent experiments were conducted, each involving soil or root sampling. Soil sample experiments included flue-cured tobacco cultivars with (Php+: NC71 and NC102) and without (Php-: K326 and K346) a gene (Php) suppressing TCN parasitism. Root sample experiments examined TCN root parasitism of NC71 and K326. Cultivars possessing the Php gene (Php+) were compared with Php- cultivars to assess the effects of resistance mediated via Php gene vs. induced resistance to TCN. GB99+GB122 consistently reduced nematode reproductive ratio on both Php+ and Php- cultivars, but similar effects of ASM across Php- cultivars were less consistent. In addition, ASM application resulted in leaf yellowing and reduced root weight. GB99+GB122 consistently reduced nematode development in roots of both Php+ and Php- cultivars, while similar effects of ASM were frequently less consistent. The results of this study indicate that GB99+GB122 consistently reduced TCN reproduction in all flue-cured tobacco cultivars tested, while the effects of ASM were only consistent in Php+ cultivars. Under most circumstances, GB99+GB122 suppressed nematode reproduction more consistently than ASM compared to the untreated control. PMID:22736824

  20. Towards a genome sequence for reniform nematode (Rotylenchulus reniformis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reniform nematode (Rotylenchulus reniformis) currently accounts for $130M in annual losses to the U.S. cotton industry and has supplanted root-knot nematode as the major nematode pest of cotton in Mississippi, Louisiana, and Alabama. Moreover, in other cotton-producing states the range and influenc...

  1. A novel flavivirus in the soybean cyst nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterodera glycines, the soybean cyst nematode (SCN) is a subterranean root pathogen that causes the most damaging disease of soybean in the United States. A novel nematode virus genome, soybean cyst nematode virus 5 (SbCNV5), was identified in RNASeq data from SCN eggs and second-stage juveniles. T...

  2. Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-parasitic cyst nematodes secrete CLAVATA3 (CLV3)/ESR(CLE)-like effector proteins. These proteins have been shown to act as ligand mimics of plant CLE peptides and are required for successful nematode infection; however, the receptors for nematode CLE-like peptides have not been identified. Her...

  3. Site-Specific Detection and Management of Nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematode distribution varies significantly throughout a field and is highly correlated to soil texture and other edaphic factors. Field-wide application results in nematicides being applied to areas without nematodes and the application of sub-effective levels in areas with high nematode densities. ...

  4. Opportunity to use native nematodes for pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have surveyed wild cranberry bogs in WI and found three isolates of native nematodes. We have been testing these nematodes as potential biological control agents in for cranberry insect pests including sparganothis fruitworm and flea beetle. The nematodes seem to be effective at finding and killi...

  5. Nematode taxonomy: from morphology to metabarcoding

    NASA Astrophysics Data System (ADS)

    Ahmed, M.; Sapp, M.; Prior, T.; Karssen, G.; Back, M.

    2015-11-01

    Nematodes represent a species rich and morphologically diverse group of metazoans inhabiting both aquatic and terrestrial environments. Their role as biological indicators and as key players in nutrient cycling has been well documented. Some groups of nematodes are also known to cause significant losses to crop production. In spite of this, knowledge of their diversity is still limited due to the difficulty in achieving species identification using morphological characters. Molecular methodology has provided very useful means of circumventing the numerous limitations associated with classical morphology based identification. We discuss herein the history and the progress made within the field of nematode systematics, the limitations of classical taxonomy and how the advent of high throughput sequencing is facilitating advanced ecological and molecular studies.

  6. Remote Sensing of Parasitic Nematodes in Plants

    NASA Technical Reports Server (NTRS)

    Lawrence, Gary W.; King, Roger; Kelley, Amber T.; Vickery, John

    2007-01-01

    A method and apparatus for remote sensing of parasitic nematodes in plants, now undergoing development, is based on measurement of visible and infrared spectral reflectances of fields where the plants are growing. Initial development efforts have been concentrated on detecting reniform nematodes (Rotylenchulus reniformis) in cotton plants, because of the economic importance of cotton crops. The apparatus includes a hand-held spectroradiometer. The readings taken by the radiometer are processed to extract spectral reflectances at sixteen wavelengths between 451 and 949 nm that, taken together, have been found to be indicative of the presence of Rotylenchulus reniformis. The intensities of the spectral reflectances are used to estimate the population density of the nematodes in an area from which readings were taken.

  7. Detection of episomal banana streak badnavirus by IC-PCR.

    PubMed

    Harper, G; Dahal, G; Thottappilly, G; Hull, R

    1999-04-01

    A polymerase chain reaction (PCR) based strategy to detect episomal banana streak badnavirus (BSV) in banana and plantain plants that carry integrated BSV sequences was developed. Antisera used in immuno-capture polymerase chain reaction (IC-PCR) are capable of binding a large number of BSV serotypes. The primers used for PCR are capable of annealing to and amplifying across the aspartic protease-reverse transcriptase domain boundaries of both episomal and integrated BSV sequences and result in similar or identical sequence size fragments from either template. However, we show that under the conditions selected for IC-PCR, nuclear, mitochondrial or chloroplast genomic sequences are not amplified and thus only captured episomal BSV is amplified. IC-PCR is suitable for the large-scale screening of Musa for episomal BSV which is necessary for germplasm movement.

  8. Agricultural "killing fields": the poisoning of Costa Rican banana workers.

    PubMed

    Sass, R

    2000-01-01

    The poisoning of Costa Rican banana workers by multinational corporations' excessive use of pesticides is not a local issue; it is embedded in a dominant ideology expressed by the phenomenon of globalization. This ideology seeps into every aspect of our social institutions--economic, political, and legal. The practice of this ideological perspective is evident in the industrialization of global agriculture and the shift from "developmentalism"--liberal welfarism, industrialization, and urbanization--to a dominant, undemocratic, global financial elite with "economism" and a neoliberal political agenda overriding the nation-state polis. A specific effect is to transform the agricultural workers of developing countries, such as Costa Rican banana workers, into politically superfluous flesh-and-blood human beings.

  9. The diversity of Banana streak virus isolates in Uganda.

    PubMed

    Harper, G; Hart, D; Moult, S; Hull, R; Geering, A; Thomas, J

    2005-12-01

    In a study of the variation among isolates of Banana streak virus (BSV) in Uganda, 140 sequences were obtained from 49 samples by PCR across the conserved reverse transcriptase/RNaseH region of the genome. Pairwise comparison of these sequences suggested that they represented 15 different species and phylogenetic analyses showed that all species fell into three major clades based on 28% sequence difference. In addition to the Ugandan sequences, clade I also contained BSV species that are known as both integrated sequences and episomal viruses; clade II also contained integrated BSV sequences but which have not previously been identified as episomal viruses. Clade III comprised of Sugarcane bacilliform virus isolates and Ugandan BSV sequences and for which there is no evidence of integration. The possible reasons for the extraordinary levels of virus sequence variation and the potential origins and epidemiology of these viruses causing banana streak disease are discussed.

  10. Fosthiazate for Suppression of Pratylenchus penetrans in Potato on Prince Edward Island

    PubMed Central

    Kimpinski, J.; Arsenault, W. J.; Sanderson, J. B.

    1997-01-01

    The impacts of fosthiazate on potato (Solanum tuberosum) tuber yields and populations of root lesion nematodes (primarily Pratylenchus penetrans) were studied during 1991-1994 in experimental plots on Prince Edward Island. Tuber yields were greater in treated plots when compared to untreated plots by 8% and 30% during 1991 and 1993, respectively. Numbers of nematodes in roots were reduced by the treatments in every year, and nematode populations in soil were suppressed in 1991, 1993, and 1994. Tuber yields in 1993 and 1994 were higher, and nematode counts in soil and roots in 1991, 1993, and 1994 were lower in plots treated with the emulsifiable concentrate formulations of fosthiazate than in plots treated with the granular formulations. Yields of plots treated with fosthiazate did not differ consistently from yields of plots treated with aldicarb. The results indicated that fosthiazate should be useful for potato production in the Maritime region of Canada. PMID:19274269

  11. Holographic entanglement entropy for hollow cones and banana shaped regions

    NASA Astrophysics Data System (ADS)

    Dorn, Harald

    2016-06-01

    We consider banana shaped regions as examples of compact regions, whose boundary has two conical singularities. Their regularised holographic entropy is calculated with all divergent as well as finite terms. The coefficient of the squared logarithmic divergence, also in such a case with internally curved boundary, agrees with that calculated in the literature for infinite circular cones with their internally flat boundary. For the otherwise conformally invariant coefficient of the ordinary logarithmic divergence an anomaly under exceptional conformal transformations is observed.

  12. Did backcrossing contribute to the origin of hybrid edible bananas?

    PubMed Central

    De Langhe, Edmond; Hřibová, Eva; Carpentier, Sebastien; Doležel, Jaroslav; Swennen, Rony

    2010-01-01

    Background Bananas and plantains (Musa spp.) provide a staple food for many millions of people living in the humid tropics. The cultivated varieties (cultivars) are seedless parthenocarpic clones of which the origin remains unclear. Many are believed to be diploid and polyploid hybrids involving the A genome diploid M. acuminata and the B genome M. balbisiana, with the hybrid genomes consisting of a simple combination of the parental ones. Thus the genomic constitution of the diploids has been classified as AB, and that of the triploids as AAB or ABB. However, the morphology of many accessions is biased towards either the A or B phenotype and does not conform to predictions based on these genomic formulae. Scope On the basis of published cytotypes (mitochondrial and chloroplast genomes), we speculate here that the hybrid banana genomes are unbalanced with respect to the parental ones, and/or that inter-genome translocation chromosomes are relatively common. We hypothesize that the evolution under domestication of cultivated banana hybrids is more likely to have passed through an intermediate hybrid, which was then involved in a variety of backcrossing events. We present experimental data supporting our hypothesis and we propose a set of experimental approaches to test it, thereby indicating other possibilities for explaining some of the unbalanced genome expressions. Progress in this area would not only throw more light on the origin of one of the most important crops, but provide data of general relevance for the evolution under domestication of many other important clonal crops. At the same time, a complex origin of the cultivated banana hybrids would imply a reconsideration of current breeding strategies. PMID:20858591

  13. Immunological control of gastrointestinal nematode infections.

    PubMed

    Klei, T R

    1997-11-01

    Control of nematode parasitism by an active manipulation of the host immune response has been a goal of veterinary and medical parasitologists for decades. The reality of achieving this goal has been questioned vigorously and demonstrations of the feasibility of using immunological control under field conditions are minimal. Nevertheless, with the rapid growth of modern biotechnology and the identification of novel parasite molecules as vaccine targets, the potential for success in this area has recently generated considerable excitement. The induction and regulation of the ruminant immune response against nematode parasites can be controlled either by management programs which include anthelmintic treatment or by vaccination. Both approaches will be discussed in this session.

  14. Detecting Nematode Features from Digital Images

    PubMed Central

    de la Blanca, N. Pérez; Fdez-Valdivia, J.; Castillo, P.; Gómez-Barcina, A.

    1992-01-01

    Procedures for estimating and calibrating nematode features from digitial images are described and evaluated by illustration and mathematical formulae. Technical problems, such as capturing and cleaning raw images, standardizing the grey level range of images, and the detection of characteristics of the body habitus, presence or absence of stylet knobs, and tail and lip region shape are discussed. This study is the first of a series aimed at developing a set of automated methods to permit more rapid, objective characterizations of nematode features than is achievable by cumbersome conventional methods. PMID:19282998

  15. Molecular characterisation of banana bunchy top virus (BBTV) from Pakistan.

    PubMed

    Amin, Imran; Qazi, Javaria; Mansoor, Shahid; Ilyas, Muhammad; Briddon, Rob W

    2008-02-01

    Banana bunchy top disease is caused by a single-stranded circular DNA virus, banana bunchy top virus (BBTV), which is a member of the genus Babuvirus (family Nanoviridae). We have cloned and sequenced five components (DNA-R, DNA-S, DNA-N, DNA-M and DNA-C) of a BBTV isolate originating from Pakistan. In addition, the DNA-R and several other components of five further isolates, originating from geographically distinct sites across the banana-growing area of Sindh province, Pakistan, were cloned and sequenced. Analysis of the sequences indicates that BBTV present in Pakistan belongs to the "South Pacific" group of isolates and that the genetic diversity of the virus in the country is very low. The virus shows the highest levels of sequence identity to BBTV isolates originating from Egypt, India and Australia. The significance of these results with respect to the possible origin of the virus in Pakistan and the prospects for obtaining genetically engineered resistance to the virus are discussed.

  16. Genetic Diversity Among Banana streak virus Isolates from Australia.

    PubMed

    Geering, A D; McMichael, L A; Dietzgen, R G; Thomas, J E

    2000-08-01

    ABSTRACT Banana streak virus (BSV) is an important pathogen of bananas and plantains (Musa spp.) throughout the world. We have cloned and sequenced part of the genomes of four isolates of BSV from Australia, designated BSV-RD, BSV-Cav, BSV-Mys, and BSV-GF. These isolates originated from banana cvs. Red Dacca, Williams, Mysore, and Goldfinger, respectively. All clones contained a sequence covering part of open reading frame III and the intergenic region of the badnavirus genome. The sequences were compared with those of other badnaviruses, including BSV-Onne, a previously characterized isolate from Nigeria. The BSV-RD sequence was virtually identical to that of BSV-Onne, differing by only two nucleotides over 1,292 bp. However, BSV-Cav, -Mys, and -GF were divergent in nucleotide sequence. Phylogenetic analyses using conserved sequences in the ribonuclease H domain revealed that all BSV isolates were more closely related to each other than to any other badnavirus. BSV-Cav was most closely related to BSV-Onne, and there was 95.1% identity between the two amino acid sequences. Other relationships between the BSV isolates were less similar, with sequence identities ranging from 66.4 to 78.2%, which is a magnitude comparable to the distance between some of the recognized badnavirus species. Immunocapture-polymerase chain reaction assays have been developed, allowing specific detection and differentiation of the four isolates of BSV.

  17. Ripening influences banana and plantain peels composition and energy content.

    PubMed

    Emaga, Thomas Happi; Bindelle, Jérôme; Agneesens, Richard; Buldgen, André; Wathelet, Bernard; Paquot, Michel

    2011-01-01

    Musa sp. peels are widely used by smallholders as complementary feeds for cattle in the tropics. A study of the influence of the variety and the maturation stage of the fruit on fermentability and metabolisable energy (ME) content of the peels was performed using banana (Yangambi Km5) and plantain (Big Ebanga) peels at three stages of maturation in an in vitro model of the rumen. Peel samples were analysed for starch, free sugars and fibre composition. Samples were incubated in the presence of rumen fluid. Kinetics of gas production were modelled, ME content was calculated using prediction equation and short-chain fatty acids production and molar ratio were measured after 72 h of fermentation. Final gas production was higher in plantain (269-339 ml g(-1)) compared to banana (237-328 ml g(-1)) and plantain exhibited higher ME contents (8.9-9.7 MJ/kg of dry matter, DM) compared to banana (7.7-8.8 MJ/kg of DM). Butyrate molar ratio decreased with maturity of the peels. The main influence of the variety and the stage of maturation on all fermentation parameters as well as ME contents of the peels was correlated to changes in the carbohydrate fraction of the peels, including starch and fibre.

  18. Toxicity profile of commercially produced indigenous banana beer.

    PubMed

    Shale, K; Mukamugema, J; Lues, R J; Venter, P

    2012-08-01

    Mycotoxins, together with endotoxins, represent important classes of naturally occurring contaminants in food products, posing significant health risks to consumers. The aim of this study is to investigate the occurrence of both Fusarium mycotoxins and endotoxins in commercially produced traditional banana beer. Two brands of commercially produced traditional banana beer were collected from a local retail market in Kigali, Rwanda. Beer samples were analysed for the presence of deoxynivalenol (DON), fumonisin B₁ and zearalenone (ZEA), using an enzyme-linked immuno-sorbent assay (ELISA) method. The quantification of bacterial endotoxin using Limulus amoeboecyte lysate (LAL) assay was also conducted. The contamination levels were 20 and 6.7 µg kg⁻¹ for DON; 34 and 31.3 µg kg⁻¹ for FB₁; 0.66 and 2.2 µg kg⁻¹ for ZEA in brands A and B of the beers, respectively. Results indicate that the levels of Fusarium toxins and bacterial endotoxin reported in this study did not pose adverse human health effects as a result of drinking/consuming banana beer. However, exposure to low/sub-threshold doses or non-toxic levels of endotoxins magnifies the toxic effect of xenobiotic agents (e.g. fungal toxins) on liver and other target organs. Considering Fusarium toxins and/or endotoxin contamination levels in other agricultural commodities intended for human consumption, health risks might be high and the condition is aggravated when beer is contaminated by mixtures of the mycotoxins, as indicated in this study.

  19. Evidence for two groups of banana bunchy top virus isolates.

    PubMed

    Karan, M; Harding, R M; Dale, J L

    1994-12-01

    Banana bunchy top virus (BBTV) DNA component 1 from isolates from 10 different countries was cloned and sequenced and the sequences were aligned and compared. This analysis indicated two groups: the South Pacific group (isolates from Australia, Burundi, Egypt, Fiji, India, Tonga and Western Samoa) and the Asian group (isolates from the Philippines, Taiwan and Vietnam). The mean sequence difference within each group was 1.9 to 3.0% and between isolates from the two groups was approximately 10%, but some parts of the sequences differed more than others. However, the protein encoded by the major open reading frame, which is probably a replicase, differed by approximately 5%. The region from the beginning of the stem-loop sequence to the potential TATA box was identical in all isolates except for a two nucleotide change in the Western Samoan isolate and a single change in that of the NSW isolate. These results, together with other evidence, suggest that BBTV has spread to bananas after the initial movement of bananas from the Asian Pacific regions to Africa and the Americas.

  20. The influence of crop management on banana weevil, Cosmopolites sordidus (Coleoptera: Curculionidae) populations and yield of highland cooking banana (cv. Atwalira) in Uganda.

    PubMed

    Rukazambuga, N D T M; Gold, C S; Gowen, S R; Ragama, P

    2002-10-01

    A field study was undertaken in Uganda using highland cooking banana (cv. Atwalira) to test the hypothesis that bananas grown under stressed conditions are more susceptible to attack by Cosmopolites sordidus (Germar). Four banana treatments were employed to create different levels of host-plant vitality: (1) high stress: intercrop with finger millet; (2) moderate stress: monoculture without soil amendments; (3) low stress: monoculture with manure; (4) high vigour: monoculture with continuous mulch and manure. Adult C. sordidus were released at the base of banana mats 11 months after planting and populations were monitored for three years using mark and recapture methods. Cosmopolites sordidus density was greatest in the mulched plots which may have reflected increased longevity and/or longer tenure time in moist soils. Lowest C. sordidus numbers were found in intercropped banana. Damage, estimated as percentage corm tissue consumed by larvae, was similar among treatments. However, the total amount of tissue consumed was greater in mulched banana than in other systems. Plants supporting the heaviest levels of C. sordidus damage displayed bunch size reductions of 40-55%. Banana yield losses ranged from 14-20% per plot with similar levels in the intercropped and mulched systems. Yield reductions, reported as t ha-1, were twice as high in the mulched system as in the intercrop. The results from this study indicate that C. sordidus problems are not confined to stressed banana systems or those with low levels of management, but that the weevil can also attain pest status in well-managed and productive banana stands.

  1. Mining nematode genome data for novel drug targets.

    PubMed

    Foster, Jeremy M; Zhang, Yinhua; Kumar, Sanjay; Carlow, Clotilde K S

    2005-03-01

    Expressed sequence tag projects have currently produced over 400 000 partial gene sequences from more than 30 nematode species and the full genomic sequences of selected nematodes are being determined. In addition, functional analyses in the model nematode Caenorhabditis elegans have addressed the role of almost all genes predicted by the genome sequence. This recent explosion in the amount of available nematode DNA sequences, coupled with new gene function data, provides an unprecedented opportunity to identify pre-validated drug targets through efficient mining of nematode genomic databases. This article describes the various information sources available and strategies that can expedite this process.

  2. Population Dynamics of Plant Nematodes in Cultivated Soil: Effect of Sod-based Rotations in Cecil Sandy Loam

    PubMed Central

    Brodie, B. B.; Good, J. M.; Adams, W. E.

    1969-01-01

    In a 6-year study of four nematode species in sod-based corn (Zea mays) rotations, population densities varied with different cropping systems. Continuous corn, with or without a winter rye (Secale cereale) or vetch (Vicia villosa) cover, favored an increase of Pratylenchus zeae and suppressed Trichodorus christiei, Helicotylenchus dihystera, and Xiphinema americanum. A four-year sod-based rotation (3 years sod, 1 year corn) of 'Coastal' bermudagrass (Cynodon dactylon) and fescue (Festuca arundinacea) was less favorable for P. zeae than was monocultured corn but was more favorable for T. christiei. Alfalfa (Medicago sativum) and rescue favored an increase of T. christiei but suppressed the other three species. 'Coastal' bermudagrass and 'Pensacola' bahiagrass (Paspalum notaturn) were not favorable for extensive development of any nematode species present. In longer term studies, of which these are a part, all four species survived for 10 years in relatively low numbers in bermudagrass and bahiagrass sods. PMID:19325691

  3. Golden bananas in the field: elevated fruit pro-vitamin A from the expression of a single banana transgene.

    PubMed

    Paul, Jean-Yves; Khanna, Harjeet; Kleidon, Jennifer; Hoang, Phuong; Geijskes, Jason; Daniells, Jeff; Zaplin, Ella; Rosenberg, Yvonne; James, Anthony; Mlalazi, Bulukani; Deo, Pradeep; Arinaitwe, Geofrey; Namanya, Priver; Becker, Douglas; Tindamanyire, James; Tushemereirwe, Wilberforce; Harding, Robert; Dale, James

    2017-04-01

    Vitamin A deficiency remains one of the world's major public health problems despite food fortification and supplements strategies. Biofortification of staple crops with enhanced levels of pro-vitamin A (PVA) offers a sustainable alternative strategy to both food fortification and supplementation. As a proof of concept, PVA-biofortified transgenic Cavendish bananas were generated and field trialed in Australia with the aim of achieving a target level of 20 μg/g of dry weight (dw) β-carotene equivalent (β-CE) in the fruit. Expression of a Fe'i banana-derived phytoene synthase 2a (MtPsy2a) gene resulted in the generation of lines with PVA levels exceeding the target level with one line reaching 55 μg/g dw β-CE. Expression of the maize phytoene synthase 1 (ZmPsy1) gene, used to develop 'Golden Rice 2', also resulted in increased fruit PVA levels although many lines displayed undesirable phenotypes. Constitutive expression of either transgene with the maize polyubiquitin promoter increased PVA accumulation from the earliest stage of fruit development. In contrast, PVA accumulation was restricted to the late stages of fruit development when either the banana 1-aminocyclopropane-1-carboxylate oxidase or the expansin 1 promoters were used to drive the same transgenes. Wild-type plants with the longest fruit development time had also the highest fruit PVA concentrations. The results from this study suggest that early activation of the rate-limiting enzyme in the carotenoid biosynthetic pathway and extended fruit maturation time are essential factors to achieve optimal PVA concentrations in banana fruit.

  4. "The Rotten Banana" Fires Back: The Story of a Danish Discourse of "Inclusive" Rurality in the Making

    ERIC Educational Resources Information Center

    Winther, Malene Brandt; Svendsen, Gunnar Lind Haase

    2012-01-01

    The popularity of a particular term--the Rotten Banana--has paralleled the one-sided centralisation of public services since the Danish Municipal Reform of 2007. The Rotten Banana denotes peripheral Denmark, which takes a geographically curved form that resembles a banana, and it symbolises the belief that rural areas are backward and (too)…

  5. Evidence for the presence of a female produced sex pheromone in the banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Behavior-modifying chemicals such as pheromones and kairomones have great potential in pest management. Studies reported here investigated chemical cues involved in mating and aggregation behavior of banana weevil, Cosmopolites sordidus, a major insect pest of banana in every country where bananas a...

  6. A Trojan horse mechanism of bacterial pathogenesis against nematodes

    PubMed Central

    Niu, Qiuhong; Huang, Xiaowei; Zhang, Lin; Xu, Jianping; Yang, Dongmei; Wei, Kangbi; Niu, Xuemei; An, Zhiqiang; Bennett, Joan Wennstrom; Zou, Chenggang; Yang, Jinkui; Zhang, Ke-Qin

    2010-01-01

    Understanding the mechanisms of host–pathogen interaction can provide crucial information for successfully manipulating their relationships. Because of its genetic background and practical advantages over vertebrate model systems, the nematode Caenorhabditis elegans model has become an attractive host for studying microbial pathogenesis. Here we report a “Trojan horse” mechanism of bacterial pathogenesis against nematodes. We show that the bacterium Bacillus nematocida B16 lures nematodes by emitting potent volatile organic compounds that are much more attractive to worms than those from ordinary dietary bacteria. Seventeen B. nematocida-attractant volatile organic compounds are identified, and seven are individually confirmed to lure nematodes. Once the bacteria enter the intestine of nematodes, they secrete two proteases with broad substrate ranges but preferentially target essential intestinal proteins, leading to nematode death. This Trojan horse pattern of bacterium–nematode interaction enriches our understanding of microbial pathogenesis. PMID:20733068

  7. Cuticle surface coat of plant-parasitic nematodes.

    PubMed

    Davies, Keith G; Curtis, Rosane H C

    2011-01-01

    The surface coat (SC) of the plant-parasitic nematode cuticle is an understudied area of current research, even though it likely plays key roles in both nematode-plant and nematode-microbe interactions. Although in several ways Caenorhabditis elegans is a poor model for plant-parasitic nematodes, it is a useful starting point for investigations of the cuticle and its SC, especially in the light of recent work using this species as a model for innate immunity and the generic biology underpinning much host-parasite biology. We review the research focused on the involvement of the SC of plant-parasitic nematodes. Using the insights gained from animal-parasitic nematodes and other sequenced nematodes, we discuss the key roles that the SC may play.

  8. Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice.

    PubMed

    Barman, Sumi; Sit, Nandan; Badwaik, Laxmikant S; Deka, Sankar C

    2015-06-01

    Optimization of substrate concentration, time of incubation and temperature for crude pectinase production from A. niger was carried out using Bhimkol banana (Musa balbisiana) peel as substrate. The crude pectinase produced was partially purified using ethanol and effectiveness of crude and partially purified pectinase was studied for banana juice clarification. The optimum substrate concentration, incubation time and temperature of incubation were 8.07 %, 65.82 h and 32.37 °C respectively, and the polygalacturonase (PG) activity achieved was 6.6 U/ml for crude pectinase. The partially purified enzyme showed more than 3 times of polygalacturonase activity as compared to the crude enzyme. The SDS-PAGE profile showed that the molecular weight of proteins present in the different pectinases varied from 34 to 42 kDa. The study further revealed that highest clarification was achieved when raw banana juice was incubated for 60 min with 2 % concentration of partially purified pectinase and the absorbance obtained was 0.10.

  9. A New Approach for the Control of Cockroaches Utilizing the Entomophilic Nematode DD-136 in Conjunction with Attractants.

    DTIC Science & Technology

    1982-08-01

    program aimed at suppression of the German cockroach, Blattella germanica . Entomogenous nematodes potentially could provide a cheap, non-insecticidal...while providing a continuous measure of attraction, foraging behavior in a population of Blattella germanica was observed from videotape at 3X normal...Methods A population of Blattella germanica was housed at the center of a stainless steel circular arena 1.0 meter across and 0.15 meter deep and painted

  10. Meloidogyne incognita nematode resistance QTL in carrot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-knot nematodes (Meloidogyne spp.) are major pests attacking carrots (Daucus carota) worldwide, causing galling and forking of the storage roots, rendering them unacceptable for market. Genetic resistance could significantly reduce the need for broad-spectrum soil fumigants in carrot production....

  11. Potato cyst nematodes: pests of national importance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato cyst nematodes (PCN; G. rostochiensis and G. pallida) are internationally-recognized quarantine pests and considered the most devastating pests of potatoes due to annual worldwide yield losses estimated at 12.2%. PCNs continue to spread throughout North America and were recently detected in I...

  12. Dolichodorus aestuarius n. sp. (Nematode: Dolichodoridae)

    PubMed Central

    Chow, F. H.; Taylor, A. L.

    1978-01-01

    Dolichodorus aestuarius n. sp. from an estuarine habitat near Cedar Key, Florida is described. This nematode has a stylet range of 62-76 μm in females and 60-72 μm in males. The stylet is shorter than those of all described species except D. brevistilus. The probable host plant is Juncus roemerianus. PMID:19305840

  13. Molecular analysis of plant-parasitic nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to traditional morphology-based taxonomic approaches, molecular methods are often required to confirm diagnoses or to establish phylogenetic relationships among plant-parasitic nematodes. Current challenges, including limitations of existing methods, and new research directions will be d...

  14. A Study on the Morphological and PhysicoChemical Characteristics of Five Cooking Bananas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field evaluation of five banana clones was carried out at the National Germplasm Repository in Miami, Florida, USA from July 2006 to July 2008. Bananas (Musa acuminata Colla [AA, AAA]; Musa x paradisiaca Colla (ABB, AAAB, AABB), are one of the worlds most important food crops. Five clones of cookin...

  15. The Draft Genome Sequence of Mycosphaerella fijiensis, the Black Sigatoka Pathogen of Banana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycosphaerella fijiensis is a fungal pathogen of banana and the causal agent of the devastating Black Sigatoka or black leaf streak disease. Its control requires weekly fungicide applications when bananas are grown under disease-conducive conditions, which mostly represent precarious tropical enviro...

  16. Study of Banana Dehydration using Sequential Infrared Radiation Heating and Freeze-Drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The drying and quality characteristics of banana slices processed with a sequential infrared radiation and freeze drying (SIRFD) method were investigated. Cavendish banana slices with 5 mm thickness were predehydrated using IR heating at each one of three radiation intensities, 3000, 4000, and 5000...

  17. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas.

    PubMed

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-04-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance.

  18. Image analysis to evaluate the browning degree of banana (Musa spp.) peel.

    PubMed

    Cho, Jeong-Seok; Lee, Hyeon-Jeong; Park, Jung-Hoon; Sung, Jun-Hyung; Choi, Ji-Young; Moon, Kwang-Deog

    2016-03-01

    Image analysis was applied to examine banana peel browning. The banana samples were divided into 3 treatment groups: no treatment and normal packaging (Cont); CO2 gas exchange packaging (CO); normal packaging with an ethylene generator (ET). We confirmed that the browning of banana peels developed more quickly in the CO group than the other groups based on sensory test and enzyme assay. The G (green) and CIE L(∗), a(∗), and b(∗) values obtained from the image analysis sharply increased or decreased in the CO group. And these colour values showed high correlation coefficients (>0.9) with the sensory test results. CIE L(∗)a(∗)b(∗) values using a colorimeter also showed high correlation coefficients but comparatively lower than those of image analysis. Based on this analysis, browning of the banana occurred more quickly for CO2 gas exchange packaging, and image analysis can be used to evaluate the browning of banana peels.

  19. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas*

    PubMed Central

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-01-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance. PMID:23549844

  20. Pineapple juice and its fractions in enzymatic browning inhibition of banana [Musa (AAA group) Gros Michel].

    PubMed

    Chaisakdanugull, Chitsuda; Theerakulkait, Chockchai; Wrolstad, Ronald E

    2007-05-16

    The effectiveness of pineapple juice in enzymatic browning inhibition was evaluated on the cut surface of banana slices. After storage of banana slices at 15 degrees C for 3 days, pineapple juice showed browning inhibition to a similar extent as 8 mM ascorbic acid but less than 4 mM sodium metabisulfite. Fractionation of pineapple juice by a solid-phase C18 cartridge revealed that the directly eluted fraction (DE fraction) inhibited banana polyphenol oxidase (PPO) about 100% when compared to the control. The DE fraction also showed more inhibitory effect than 8 mM ascorbic acid in enzymatic browning inhibition of banana puree during storage at 5 degrees C for 24 h. Further identification of the DE fraction by fractionation with ion exchange chromatography and confirmation using model systems indicated that malic acid and citric acid play an important role in the enzymatic browning inhibition of banana PPO.

  1. Considering field physical characteristics in assessing risk and delineating nematode management zones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Site-specific management (SSM) of nematodes requires identifying factors affecting nematode distribution, nematode population density, and nematode-induced yield losses, and then using that information to predict where nematode management will cost-effectively reduce yield loss. Using cotton (Gossy...

  2. Lineage-Specific Evolutionary Histories and Regulation of Major Starch Metabolism Genes during Banana Ripening

    PubMed Central

    Jourda, Cyril; Cardi, Céline; Gibert, Olivier; Giraldo Toro, Andrès; Ricci, Julien; Mbéguié-A-Mbéguié, Didier; Yahiaoui, Nabila

    2016-01-01

    Starch is the most widespread and abundant storage carbohydrate in plants. It is also a major feature of cultivated bananas as it accumulates to large amounts during banana fruit development before almost complete conversion to soluble sugars during ripening. Little is known about the structure of major gene families involved in banana starch metabolism and their evolution compared to other species. To identify genes involved in banana starch metabolism and investigate their evolutionary history, we analyzed six gene families playing a crucial role in plant starch biosynthesis and degradation: the ADP-glucose pyrophosphorylases (AGPases), starch synthases (SS), starch branching enzymes (SBE), debranching enzymes (DBE), α-amylases (AMY) and β-amylases (BAM). Using comparative genomics and phylogenetic approaches, these genes were classified into families and sub-families and orthology relationships with functional genes in Eudicots and in grasses were identified. In addition to known ancestral duplications shaping starch metabolism gene families, independent evolution in banana and grasses also occurred through lineage-specific whole genome duplications for specific sub-families of AGPase, SS, SBE, and BAM genes; and through gene-scale duplications for AMY genes. In particular, banana lineage duplications yielded a set of AGPase, SBE and BAM genes that were highly or specifically expressed in banana fruits. Gene expression analysis highlighted a complex transcriptional reprogramming of starch metabolism genes during ripening of banana fruits. A differential regulation of expression between banana gene duplicates was identified for SBE and BAM genes, suggesting that part of starch metabolism regulation in the fruit evolved in the banana lineage. PMID:27994606

  3. Contamination of Bananas with Beauvericin and Fusaric Acid Produced by Fusarium oxysporum f. sp. cubense

    PubMed Central

    Kuang, Ruibin; Yang, Qiaosong; Hu, Chunhua; Sheng, Ou; Zhang, Sheng; Ma, Lijun; Wei, Yuerong; Yang, Jing; Liu, Siwen; Biswas, Manosh Kumar; Viljoen, Altus; Yi, Ganjun

    2013-01-01

    Background Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. Toxins produced by Foc have been proposed to play an important role during the pathogenic process. The objectives of this study were to investigate the contamination of banana with toxins produced by Foc, and to elucidate their role in pathogenesis. Methodology/Principal Findings Twenty isolates of Foc representing races 1 and 4 were isolated from diseased bananas in five Chinese provinces. Two toxins were consistently associated with Foc, fusaric acid (FA) and beauvericin (BEA). Cytotoxicity of the two toxins on banana protoplast was determined using the Alamar Blue assay. The virulence of 20 Foc isolates was further tested by inoculating tissue culture banana plantlets, and the contents of toxins determined in banana roots, pseudostems and leaves. Virulence of Foc isolates correlated well with toxin deposition in the host plant. To determine the natural occurrence of the two toxins in banana plants with Fusarium wilt symptoms, samples were collected before harvest from the pseudostems, fruit and leaves from 10 Pisang Awak ‘Guangfen #1’ and 10 Cavendish ‘Brazilian’ plants. Fusaric acid and BEA were detected in all the tissues, including the fruits. Conclusions/Signficance The current study provides the first investigation of toxins produced by Foc in banana. The toxins produced by Foc, and their levels of contamination of banana fruits, however, were too low to be of concern to human and animal health. Rather, these toxins appear to contribute to the pathogenicity of the fungus during infection of banana plants. PMID:23922960

  4. Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection.

    PubMed

    Shekhawat, Upendra K S; Ganapathi, Thumballi R; Hadapad, Ashok B

    2012-08-01

    The banana aphid-transmitted Banana bunchy top virus (BBTV) is the most destructive viral pathogen of bananas and plantains worldwide. Lack of natural sources of resistance to BBTV has necessitated the exploitation of proven transgenic technologies for obtaining BBTV-resistant banana cultivars. In this study, we have explored the concept of using intron-hairpin-RNA (ihpRNA) transcripts corresponding to viral master replication initiation protein (Rep) to generate BBTV-resistant transgenic banana plants. Two ihpRNA constructs namely ihpRNA-Rep and ihpRNA-ProRep generated using Rep full coding sequence or Rep partial coding sequence together with its 5' upstream regulatory region, respectively, and castor bean catalase intron were successfully transformed into banana embryogenic cells. ihpRNA-Rep- and ihpRNA-ProRep-derived transgenic banana plants, selected based on preliminary screening for efficient reporter gene expression, were completely resistant to BBTV infection as indicated by the absence of disease symptoms after 6 months of viruliferous aphid inoculation. The resistance to BBTV infection was also evident by the inability to detect cDNAs coding for viral coat protein, movement protein and Rep protein by RT-PCR from inoculated transgenic leaf extracts. Southern analysis of the two groups of transgenics showed that ihpRNA transgene was stably integrated into the banana genome. The detection of small interfering RNAs (siRNAs) derived from the ihpRNA transgene sequence in transformed BBTV-resistant plants positively established RNA interference as the mechanism underlying the observed resistance to BBTV. Efficient screening of optimal transformants in this vegetatively propagated non-segregating fruit crop ensured that all the transgenic plants assayed were resistant to BBTV infection.

  5. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes

    PubMed Central

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; de Almeida Engler, Janice; Gheysen, Godelieve

    2016-01-01

    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins during feeding site development in Arabidopsis thaliana roots. Data generated via promoter–reporter line and protein localization analyses evoke a model in which auxin is being imported at the basipetal side of the feeding site by the concerted action of the influx proteins AUX1 and LAX3, and the efflux protein PIN3. Mutants in auxin influx proteins AUX1 and LAX3 bear significantly fewer and smaller galls, revealing that auxin import into the feeding sites is needed for their development and expansion. The feeding site development in auxin export (PIN) mutants was only slightly hampered. Expression of some PINs appears to be suppressed in galls, probably to prevent auxin drainage. Nevertheless, a functional PIN4 gene seems to be a prerequisite for proper nematode development and gall expansion, most likely by removing excessive auxin to stabilize the hormone level in the feeding site. Our data also indicate a role of local auxin peaks in nematode attraction towards the root. PMID:27312670

  6. Virulence of entomopathogenic nematodes to Diaprepes abbreviatus (Coleoptera: Curculionidae) in the laboratory.

    PubMed

    Shapiro, D I; McCoy, C W

    2000-08-01

    The Diaprepes root weevil, Diaprepes abbreviatus (L.) is the most severe weevil pest in Florida citrus. Entomopathogenic nematodes have effectively suppressed larval populations of D. abbreviatus. Our objective was to conduct a broad laboratory comparison of entomopathogenic nematodes for virulence toward larvae of D. abbreviatus. The study was conducted at three temperatures (20, 24, and 29 degrees C) and included nine entomopathogenic species and 17 strains: Heterorhabditis bacteriophora Poinar (Baine, NJl, Hb, Hbl, HP88, and Lewiston strains), H. indica Poinar, Karunakar & David (original and Homl strains), H. marelatus Liu & Berry (IN and Point Reyes strains), H. megidis Poinar, Jackson & Klein (UK21l strain), H. zealandica Poinar (NZH3 strain), Steinernema riobrave Cabanillas, Poinar & Raulston (355 strain), S. carpocapsae (Weiser) (All strain), S. feltiae (Filipjev) (SN and UK76 strains), and S. glaseri (Steiner) (NJ43 strain). At 20 degrees C, the greatest mortality was caused by S. riobrave although it was not significantly greater than H. bacteriophora (Baine), H. bacteriophora (Hb), H. bacteriophora (Hbl), and H. indica (original). At 24 and 29 degrees C, S. riobrave caused greater larval mortality than other nematodes tested. Two strains of H. indica, H. bacteriophora (Baine), and S. glaseri were next in terms of virulence at 29 degrees C. Our results suggest that S. riobrave has the greatest potential for control of D. abbreviatus.

  7. Comparison of Nematode Population Densities on Six Summer Crops at Seven Sites in North Florida

    PubMed Central

    McSorley, R.; Gallaher, R. N.

    1992-01-01

    Densities of plant-parasitic nematodes were compared on six crops grown for forage during the summer of 1991 at seven sites in north central Florida. The cropping treatments were 'Howard' soybean (Glycine max), 'Deltapine 105' soybean, velvetbean (Mucuna deeringiana), 'California Blackeye #5' cowpea (Vigna unguiculata), 'Pioneer 3098' tropical corn (Zea mays), and 'Asgrow Chaparral' sorghum (Sorghum bicolor). Highest final densities (Pf) of Meloidogyne incognita and Criconemella spp. were obtained following corn or sorghum at most sites. The lowest Pf of M. incognita occurred after velvetbean at all seven sites, but Pf after cowpea were equivalent to Pf after velvetbean at four of seven sites. Cultivar choice is critical in planning rotations to suppress M. incognita because results obtained here and elsewhere have shown great differences among sorghum and cowpea cultivars. The Pf of Pratylenchus spp. were lowest following velvetbean at four of seven sites. There were no differences in densities of Paratrichodorus minor among crops, but populations increased at a greater rate if initial density (Pi) was low. Multiplication rates (Pf/Pi) of most nematode species on most crops varied inversely with Pi. An accurate impression of nematode multiplication and host status could not be obtained unless a range of Pi was examined. PMID:19283048

  8. Effect of three organophosphorous nematicides on non-target nematodes and soil microbial community.

    PubMed

    Wada, Satoko; Toyota, Koki

    2008-01-01

    The toxicity of three organophosphorous nematicides, imicyafos, fosthiazate and cadusafos, to non-target organisms in soil was evaluated. Imicyafos and fosthiazate had no significant inhibitory effect on the growth of fungal (Fusarium oxysporum f. sp. lactucae, Rhizoctonia solani and Trichoderma viride) and bacterial (Ralstonia solanacearum and Pseudomonas fluorescens) strains in media at 12.5 to 200 mg L(-1). Cadusafos, however, significantly inhibited the growth of all these strains except R. solanacearum. A pot test was conducted using a soil naturally infested with Pratylenchus penetrans, and treated with imicyafos or fosthiazate, which are less toxic to non-target organisms. The density of P. penetrans decreased to less than 10% of the control level after exposure to imicyafos and fosthiazate at 3 kg active ingredient ha(-1), the conventional dose. No significant effect was observed on the density of free-living nematodes, cellulose decomposition activity, microbial biomass evaluated with the ATP method and number of ammonia oxidizers between the soil treated with imicyafos or fosthiazate and the untreated control soil. Our results revealed that imicyafos and fosthiazate effectively suppressed a plant-parasitic nematode, P. penetrans, but had little impact on free-living nematodes and the soil microbial community.

  9. Influence of Poultry Litter Applications on Nematode Communities in Cotton Agroecosystems

    PubMed Central

    Koenning, S. R.; Barker, K. R.

    2004-01-01

    The effects of the application of poultry litter at 0.0, 6.7, 13.4, and 20.1 tons/ha on population changes during the growing season on nematode communities were evaluated in two cotton production fields in North Carolina. Numbers of bactivorous nematodes increased at midseason in response to the rate at which litter was applied but decreased with increasing litter application rates at cotton harvest. Numbers of fungivores at cotton harvest were related positively to the rate of litter applied, and this affected a positive increase in the fungivore-to-bacterivore ratio at this sampling date. The rate at which poultry litter was applied resulted in an increase in the bacterivore to plant-parasite ratio, and this corresponded with increased cotton lint yield. Trophic diversity was increased by litter application rate at cotton harvest at one location but not at another. The plant-parasite maturity index was greater consistently at one site than at a second site where the Hoplolaimus columbus population density was above the damage threshold for cotton. The population density of H. columbus was suppressed with increasing rates of poultry litter application, but other plant-parasitic nematodes were affected marginally. PMID:19262834

  10. Top 10 plant-parasitic nematodes in molecular plant pathology.

    PubMed

    Jones, John T; Haegeman, Annelies; Danchin, Etienne G J; Gaur, Hari S; Helder, Johannes; Jones, Michael G K; Kikuchi, Taisei; Manzanilla-López, Rosa; Palomares-Rius, Juan E; Wesemael, Wim M L; Perry, Roland N

    2013-12-01

    The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a 'top 10' list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region of the world in which a researcher is based. However, care was taken to include researchers from as many parts of the world as possible when carrying out the survey. The top 10 list emerging from the survey is composed of: (1) root-knot nematodes (Meloidogyne spp.); (2) cyst nematodes (Heterodera and Globodera spp.); (3) root lesion nematodes (Pratylenchus spp.); (4) the burrowing nematode Radopholus similis; (5) Ditylenchus dipsaci; (6) the pine wilt nematode Bursaphelenchus xylophilus; (7) the reniform nematode Rotylenchulus reniformis; (8) Xiphinema index (the only virus vector nematode to make the list); (9) Nacobbus aberrans; and (10) Aphelenchoides besseyi. The biology of each nematode (or nematode group) is reviewed briefly.

  11. Microbiota from Rhabditis regina may alter nematode entomopathogenicity.

    PubMed

    Jiménez-Cortés, Jesús Guillermo; Canales-Lazcano, Jorge; Lara-Reyes, Nancy; Rosenblueth, Mónica; Martínez-Romero, Esperanza; Contreras-Garduño, Jorge

    2016-11-01

    Here we report the presence of the entomopathogenic nematode Rhabditis (Rhabditoides) regina affecting white grubs (Phyllophaga sp. and Anomala sp.) in Mexico and R. regina-associated bacteria. Bioassays were performed to test the entomopathogenic capacity of dauer and L2 and L3 (combined) larval stages. Furthermore, we determined the diversity of bacteria from laboratory nematodes cultivated for 2 years (dauer and L2-L3 larvae) and from field nematodes (dauer and L2-L3 larvae) in addition to the virulence in Galleria mellonella larvae of some bacterial species from both laboratory and field nematodes. Dauer and non-dauer larvae of R. regina killed G. mellonella. Bacteria such as Serratia sp. (isolated from field nematodes) and Klebsiella sp. (isolated from larvae of laboratory and field nematodes) may explain R. regina entomopathogenic capabilities. Different bacteria were found in nematodes after subculturing in the laboratory suggesting that R. regina may acquire bacteria in different environments. However, there were some consistently found bacteria from laboratory and field nematodes such as Pseudochrobactrum sp., Comamonas sp., Alcaligenes sp., Klebsiella sp., Acinetobacter sp., and Leucobacter sp. that may constitute the nematode microbiome. Results showed that some bacteria contributing to entomopathogenicity may be lost in the laboratory representing a disadvantage when nematodes are cultivated to be used for biological control.

  12. [Effects of different organic manure sources and their combinations with chemical fertilization on soil nematode community structure in a paddy field of East China].

    PubMed

    Liu, Ting; Ye, Cheng-Long; Chen, Xiao-Yun; Ran, Wei; Shen, Qi-Rong; Hu, Feng; Li, Hui-Xin

    2013-12-01

    A comparative study was conducted to investigate the effects of different fertilization modes on the soil nematode community structure in a paddy field with paddy rice and wheat rotation in Jintan County (31 degrees 39'41.8" N, 119 degrees 28'23.5" E) of Jiangsu Province, East China. Six treatments were installed, i. e., no fertilization (CK), 100% chemical NPK fertilization (F), pig manure compost plus 50% chemical fertilization (PF), straw returning plus 100% chemical fertilization (SF), pig manure compost and straw returning plus 50% chemical fertilization (PSF), and application of commercial pig manure-inorganic complex fertilizer (PMF). The soil samples were collected from the field after the paddy rice harvested in autumn. The two continuous years study showed that the soil nematode community structure varied with fertilization treatments and years. The combined application of chemical fertilizers and organic manures increased the total number of soil nematodes, decreased the abundance of soil bacterivorous nematodes, and made the abundance of predator- and omnivore nematodes increased significantly. No significant differences were observed in the abundance of soil fungivorous nematodes among all the treatments. Chemical fertilization alone and the application of commercial pig manure-inorganic complex fertilizer had no obvious suppression effect on the soil phytophagous nematodes. The abundance of soil bacteriavorous nematodes under the combined application of chemical fertilizers and organic manures was relatively increased in the second year, as compared with that in the first year, while the abundance of soil phytophagous nematodes (Hirschmanniella) was relatively decreased in the second year. From the aspect of nematode ecological indices, the Margalef diversity index (H) under the combined application of chemical fertilizers and organic manures in the second year had an increasing trend, while the NCR index had less change. The Wasilewka index had a

  13. Folded isometric deformations and banana-shaped seedpod.

    PubMed

    Couturier, Etienne

    2016-08-01

    Thin vegetal shells have recently been a significant source of inspiration for the design of smart materials and soft actuators. Herein is presented a novel analytical family of isometric deformations with a family of θ-folds crossing a family of parallel z-folds; it contains the isometric deformations of a banana-shaped surface inspired by a seedpod, which converts a vertical closing into either an horizontal closing or an opening depending on the location of the fold. Similarly to the seedpod, optimum shapes for opening ease are the most elongated ones.

  14. Folded isometric deformations and banana-shaped seedpod

    NASA Astrophysics Data System (ADS)

    Couturier, Etienne

    2016-08-01

    Thin vegetal shells have recently been a significant source of inspiration for the design of smart materials and soft actuators. Herein is presented a novel analytical family of isometric deformations with a family of θ-folds crossing a family of parallel z-folds; it contains the isometric deformations of a banana-shaped surface inspired by a seedpod, which converts a vertical closing into either an horizontal closing or an opening depending on the location of the fold. Similarly to the seedpod, optimum shapes for opening ease are the most elongated ones.

  15. Water use efficiency of a banana plantation in a screenhouse

    NASA Astrophysics Data System (ADS)

    Tanny, J.; Dicken, U.; Grava, A.; Cohen, S.

    2009-04-01

    Shading banana and other orchard crops with screens is becoming increasingly popular in arid and semi-arid regions due to the resulting decreased water use and increased fruit quality. This study focused on measurements of water vapor and CO2 fluxes in a large commercial flat-roof banana screenhouse in northern Israel whose dimensions were 300 m long, 200 m wide and 6 m high. Measurements were conducted using an eddy covariance system deployed on a pole near the center of the screenhouse, allowing a minimum fetch of 100 m in all wind directions. The system measured the three air velocity components, air sonic temperature, air humidity and CO2 concentration. Measurements were conducted during 21 days between July 7th (DOY 189) and August 17th 2007 (DOY 230). During this period the banana plants grew from 2.8 to 4.6 m height and leaf area index increased from 0.5 to 1.8. Additional measurements of net radiation and soil heat flux enabled the analysis of energy balance closure. Energy balance closure analysis gave the regression line Y = 0.85X - 0.5 (R2 = 0.84) where Y represents the consumed energy (latent plus sensible heat fluxes) and X represents the available energy (net radiation minus soil heat flux). This result (slope close to unity) validates the measured evapotranspiration (latent heat flux). Farmer's irrigation increased during the measurement period due to both plant growth and climate variation. Daily evapotranspiration of the plantation increased from 1.7 to 3.2 mm of water during the measurement period. Daily water consumption was on average 70% of the applied irrigation, suggesting that the plantation was over-irrigated. The water use efficiency (WUE) was defined as the total daily mass of CO2 consumed by the plantation per unit mass of water used. Results show that WUE generally increased during the measurement period, implying that larger banana plants were more efficient in using the available water than smaller plants.

  16. Rolling Circle Amplification of Complete Nematode Mitochondrial Genomes

    PubMed Central

    Tang, Sha; Hyman, Bradley C.

    2005-01-01

    To enable investigation of nematode mitochondrial DNA evolution, methodology has been developed to amplify intact nematode mitochondrial genomes in preparative yields using a rolling circle replication strategy. Successful reactions were generated from whole cell template DNA prepared by alkaline lysis of the rhabditid nematode Caenorhabditis elegans and a mermithid nematode, Thaumamermis cosgrovei. These taxa, representing the two major nematode classes Chromodorea and Enoplea, maintain mitochondrial genomes of 13.8 kb and 20.0 kb, respectively. Efficient amplifications were conducted on template DNA isolated from individual or pooled nematodes that were alive or stored at -80°C. Unexpectedly, these experiments revealed that multiple T. cosgrovei mitochondrial DNA haplotypes are maintained in our local population. Rolling circle amplification products can be used as templates for standard PCR reactions with specific primers that target mitochondrial genes or for direct DNA sequencing. PMID:19262866

  17. Immunity to gastrointestinal nematodes: mechanisms and myths.

    PubMed

    Grencis, Richard K; Humphreys, Neil E; Bancroft, Allison J

    2014-07-01

    Immune responses to gastrointestinal nematodes have been studied extensively for over 80 years and intensively investigated over the last 30-40 years. The use of laboratory models has led to the discovery of new mechanisms of protective immunity and made major contributions to our fundamental understanding of both innate and adaptive responses. In addition to host protection, it is clear that immunoregulatory processes are common in infected individuals and resistance often operates alongside modulation of immunity. This review aims to discuss the recent discoveries in both host protection and immunoregulation against gastrointestinal nematodes, placing the data in context of the specific life cycles imposed by the different parasites studied and the future challenges of considering the mucosal/immune axis to encompass host, parasite, and microbiome in its widest sense.

  18. Mucocutaneous manifestations of helminth infections: Nematodes.

    PubMed

    Lupi, Omar; Downing, Christopher; Lee, Michael; Pino, Livia; Bravo, Francisco; Giglio, Patricia; Sethi, Aisha; Klaus, Sidney; Sangueza, Omar P; Fuller, Claire; Mendoza, Natalia; Ladizinski, Barry; Woc-Colburn, Laila; Tyring, Stephen K

    2015-12-01

    In the 21st century, despite increased globalization through international travel for business, medical volunteerism, pleasure, and immigration/refugees into the United States, there is little published in the dermatology literature regarding the cutaneous manifestations of helminth infections. Approximately 17% of travelers seek medical care because of cutaneous disorders, many related to infectious etiologies. This review will focus on the cutaneous manifestations of helminth infections and is divided into 2 parts: part I focuses on nematode infections, and part II focuses on trematode and cestode infections. This review highlights the clinical manifestations, transmission, diagnosis, and treatment of helminth infections. Nematodes are roundworms that cause diseases with cutaneous manifestations, such as cutaneous larval migrans, onchocerciasis, filariasis, gnathostomiasis, loiasis, dracunculiasis, strongyloidiasis, ascariasis, streptocerciasis, dirofilariasis, and trichinosis. Tremadotes, also known as flukes, cause schistosomiasis, paragonimiasis, and fascioliasis. Cestodes (tapeworms) are flat, hermaphroditic parasites that cause diseases such as sparganosis, cysticercosis, and echinococcus.

  19. All the microbiology nematodes can teach us

    PubMed Central

    Bulgheresi, Silvia

    2016-01-01

    Be it their pervasiveness, experimental tractability or their impact on human health and agriculture, nematode–bacterium associations are far-reaching research subjects. Although the omics hype did not spare them and helped reveal mechanisms of communication and exchange between the associated partners, a huge amount of knowledge still awaits to be harvested from their study. Here, I summarize and compare the kind of research that has been already performed on the model nematode Caenorhabditis elegans and on symbiotic nematodes, both marine and entomopathogenic ones. The emerging picture highlights how complementing genetic studies with ecological ones (in the case of well-established genetic model systems such as C. elegans) and vice versa (in the case of the yet uncultured Stilbonematinae) will deepen our understanding of how microbial symbioses evolved and how they impact our environment. PMID:26839382

  20. Immunity to gastrointestinal nematodes: mechanisms and myths

    PubMed Central

    Grencis, Richard K; Humphreys, Neil E; Bancroft, Allison J

    2014-01-01

    Immune responses to gastrointestinal nematodes have been studied extensively for over 80 years and intensively investigated over the last 30–40 years. The use of laboratory models has led to the discovery of new mechanisms of protective immunity and made major contributions to our fundamental understanding of both innate and adaptive responses. In addition to host protection, it is clear that immunoregulatory processes are common in infected individuals and resistance often operates alongside modulation of immunity. This review aims to discuss the recent discoveries in both host protection and immunoregulation against gastrointestinal nematodes, placing the data in context of the specific life cycles imposed by the different parasites studied and the future challenges of considering the mucosal/immune axis to encompass host, parasite, and microbiome in its widest sense. PMID:24942690

  1. Lipophilic extracts from banana fruit residues: a source of valuable phytosterols.

    PubMed

    Oliveira, Lúcia; Freire, Carmen S R; Silvestre, Armando J D; Cordeiro, Nereida

    2008-10-22

    The chemical composition of the lipophilic extracts of unripe pulp and peel of banana fruit 'Dwarf Cavendish' was studied by gas chromatography-mass spectrometry. Fatty acids, sterols, and steryl esters are the major families of lipophilic components present in banana tissues, followed by diacylglycerols, steryl glucosides, long chain fatty alcohols, and aromatic compounds. Fatty acids are more abundant in the banana pulp (29-90% of the total amount of lipophilic extract), with linoleic, linolenic, and oleic acids as the major compounds of this family. In banana peel, sterols represent about 49-71% of the lipophilic extract with two triterpenic ketones (31-norcyclolaudenone and cycloeucalenone) as the major components. The detection of high amounts of steryl esters (469-24405 mg/kg) and diacylglycerols (119-878 mg/kg), mainly present in the banana peel extract, explains the increase in the abundance of fatty acids and sterols after alkaline hydrolysis. Several steryl glucosides were also found in significative amounts (273-888 mg/kg), particularly in banana pulp (888 mg/kg). The high content of sterols (and their derivatives) in the 'Dwarf Cavendish' fruit can open new strategies for the valorization of the banana residues as a potential source of high-value phytochemicals with nutraceutical and functional food additive applications.

  2. Study on oil absorbency of succinic anhydride modified banana cellulose in ionic liquid.

    PubMed

    Shang, Wenting; Sheng, Zhanwu; Shen, Yixiao; Ai, Binling; Zheng, Lili; Yang, Jingsong; Xu, Zhimin

    2016-05-05

    Banana cellulose contained number of hydrophilic hydroxyl groups which were succinylated to be hydrophobic groups with high oil affinity. Succinic anhydride was used to modify banana cellulose in 1-allyl-3-methylimidazolium chloride ionic liquid in this study. The modified banana cellulose had a high oil absorption capacity. The effects of reaction time, temperature, and molar ratio of succinic anhydride to anhydroglucose on the degree of substitution of modified banana cellulose were evaluated. The optimal reaction condition was at a ratio of succinic anhydride and anhydroglucose 6:1 (m:m), reaction time 60min and temperature 90°C. The maximum degree of acylation reaction reached to 0.37. The characterization analysis of the modified banana cellulose was performed using X-ray diffractometer, Fourier transform infrared spectrometer, scanning electron microscopy and thermogravimetry. The oil absorption capacity and kinetics of the modified banana cellulose were evaluated at the modified cellulose dose (0.025-0.3g), initial oil amount (5-30g), and temperature (15-35°C) conditions. The maximum oil absorption capacity was 32.12g/g at the condition of the cellulose dose (0.05g), initial oil amount (25g) and temperature (15°C). The kinetics of oil absorption of the cellulose followed a pseudo-second-order model. The results of this study demonstrated that the modified banana cellulose could be used as an efficient bio-sorbent for oil adsorption.

  3. The banana E2 gene family: Genomic identification, characterization, expression profiling analysis.

    PubMed

    Dong, Chen; Hu, Huigang; Jue, Dengwei; Zhao, Qiufang; Chen, Hongliang; Xie, Jianghui; Jia, Liqiang

    2016-04-01

    The E2 is at the center of a cascade of Ub1 transfers, and it links activation of the Ub1 by E1 to its eventual E3-catalyzed attachment to substrate. Although the genome-wide analysis of this family has been performed in some species, little is known about analysis of E2 genes in banana. In this study, 74 E2 genes of banana were identified and phylogenetically clustered into thirteen subgroups. The predicted banana E2 genes were distributed across all 11 chromosomes at different densities. Additionally, the E2 domain, gene structure and motif compositions were analyzed. The expression of all of the banana E2 genes was analyzed in the root, stem, leaf, flower organs, five stages of fruit development and under abiotic stresses. All of the banana E2 genes, with the exception of few genes in each group, were expressed in at least one of the organs and fruit developments, which indicated that the E2 genes might involve in various aspects of the physiological and developmental processes of the banana. Quantitative RT-PCR (qRT-PCR) analysis identified that 45 E2s under drought and 33 E2s under salt were induced. To the best of our knowledge, this report describes the first genome-wide analysis of the banana E2 gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family.

  4. Involvement of a banana MADS-box transcription factor gene in ethylene-induced fruit ripening.

    PubMed

    Liu, Juhua; Xu, Biyu; Hu, Lifang; Li, Meiying; Su, Wei; Wu, Jing; Yang, Jinghao; Jin, Zhiqiang

    2009-01-01

    To investigate the regulation of MADS-box genes in banana (Musa acuminata L. AAA group cv. Brazilian) fruit development and postharvest ripening, we isolated from banana fruit a MADS-box gene designated MuMADS1. Amino acid alignment indicated MuMADS1 belongs to the AGAMOUS subfamily, and phylogenetic analysis indicates that this gene is most similar to class D MADS-box genes. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that MuMADS1 is expressed in the stamen and pistil of male and female flowers and in the rhizome, the vegetative reproductive organ of the banana plant. In preharvest banana fruit, MuMADS1 is likely expressed throughout banana fruit development. In postharvest banana ripening, MuMADS1 is associated with ethylene biosynthesis. Expression patterns of MuMADS1 during postharvest ripening as determined by real-time RT-PCR suggest that differential expression of MuMADS1 may not only be induced by ethylene biosynthesis associated with postharvest banana ripening, but also may be induced by exogenous ethylene.

  5. Prediction of textural attributes using color values of banana (Musa sapientum) during ripening.

    PubMed

    Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Poonam Preet; Bhardwaj, Rishi; Singh, Ashish Kumar; Wadhawan, Vishakha

    2014-06-01

    Banana is an important sub-tropical fruit in international trade. It undergoes significant textural and color transformations during ripening process, which in turn influence the eating quality of the fruit. In present study, color ('L', 'a' and 'b' value) and textural attributes of bananas (peel, fruit and pulp firmness; pulp toughness; stickiness) were studied simultaneously using Hunter Color Lab and Texture Analyser, respectively, during ripening period of 10 days at ambient atmosphere. There was significant effect of ripening period on all the considered textural characteristics and color properties of bananas except color value 'b'. In general, textural descriptors (peel, fruit and pulp firmness; and pulp toughness) decreased during ripening except stickiness, while color values viz 'a' and 'b' increased with ripening barring 'L' value. Among various textural attributes, peel toughness and pulp firmness showed highest correlation (r) with 'a' value of banana peel. In order to predict textural properties using color values of banana, five types of equations (linear/polynomial/exponential/logarithmic/power) were fitted. Among them, polynomial equation was found to be the best fit (highest coefficient of determination, R(2)) for prediction of texture using color properties for bananas. The pulp firmness, peel toughness and pulp toughness showed R(2) above 0.84 with indicating its potentiality of the fitted equations for prediction of textural profile of bananas non-destructively using 'a' value.

  6. Effect of the degree of substitution of octenyl succinic anhydride-banana starch on emulsion stability.

    PubMed

    Bello-Pérez, Luis A; Bello-Flores, Christopher A; Nuñez-Santiago, María del Carmen; Coronel-Aguilera, Claudia P; Alvarez-Ramirez, J

    2015-11-05

    Banana starch was esterified with octenylsuccinic anhydride (OSA) at different degree substitution (DS) and used to stabilize emulsions. Morphology, emulsion stability, emulsification index, rheological properties and particle size distribution of the emulsions were tested. Emulsions dyed with Solvent Red 26 showed affinity for the oil phase. Backscattering light showed three regions in the emulsion where the emulsified region was present. Starch concentration had higher effect in the emulsification index (EI) than the DS used in the study because similar values were found with OSA-banana and native starches. However, OSA-banana presented greater stability of the emulsified region. Rheological tests in emulsions with OSA-banana showed G'>G" values and low dependence of G' with the frequency, indicating a dominant elastic response to shear. When emulsions were prepared under high-pressure conditions, the emulsions with OSA-banana starch with different DS showed a bimodal distribution of particle size. The emulsion with OSA-banana starch and the low DS showed similar mean droplet diameter than its native counterpart. In contrast, the highest DS led to the highest mean droplet diameter. It is concluded that OSA-banana starch with DS can be used to stabilize specific emulsion types.

  7. On the Methodology of Nematode Extraction from Field Samples: Density Flotation Techniques

    PubMed Central

    Viglierchio, David R.; Yamashita, Tom T.

    1983-01-01

    Density flotation has been frequently used for the extraction of nematodes from field samples. Density flotation curves for four nematode species and five solutes have been prepared. The curves confirm that flotation was governed by several factors: solute density, solute osmotic activity, and physiological properties of the nematode species. Nematode viability and function can be adversely affected by improper selection of solute for density extraction of nematodes; nevertheless, some nematode species can be enriched from mixtures by density and solute selection. PMID:19295831

  8. Assaying environmental nickel toxicity using model nematodes

    USGS Publications Warehouse

    Rudel, David; Douglas, Chandler; Huffnagle, Ian; Besser, John M.; Ingersoll, Christopher G.

    2013-01-01

    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegansand P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species.

  9. A White Paper on Nematode Comparative Genomics

    PubMed Central

    Bird, David McK.; Blaxter, Mark L.; McCarter, James P.; Mitreva, Makedonka; Sternberg, Paul W.; Thomas, W. Kelley

    2005-01-01

    In response to the new opportunities for genome sequencing and comparative genomics, the Society of Nematology (SON) formed a committee to develop a white paper in support of the broad scientific needs associated with this phylum and interests of SON members. Although genome sequencing is expensive, the data generated are unique in biological systems in that genomes have the potential to be complete (every base of the genome can be accounted for), accurate (the data are digital and not subject to stochastic variation), and permanent (once obtained, the genome of a species does not need to be experimentally re-sampled). The availability of complete, accurate, and permanent genome sequences from diverse nematode species will underpin future studies into the biology and evolution of this phylum and the ecological associations (particularly parasitic) nematodes have with other organisms. We anticipate that upwards of 100 nematode genomes will be solved to varying levels of completion in the coming decade and suggest biological and practical considerations to guide the selection of the most informative taxa for sequencing. PMID:19262884

  10. Evolution of plant parasitism among nematodes.

    PubMed

    Baldwin, J G; Nadler, S A; Adams, B J

    2004-01-01

    Despite extraordinary diversity of free-living species, a comparatively small fraction of nematodes are parasites of plants. These parasites represent at least three disparate clades in the nematode tree of life, as inferred from rRNA sequences. Plant parasites share functional similarities regarding feeding, but many similarities in feeding structures result from convergent evolution and have fundamentally different developmental origins. Although Tylenchida rRNA phylogenies are not fully resolved, they strongly support convergent evolution of sedentary endoparasitism and plant nurse cells in cyst and root-knot nematodes. This result has critical implications for using model systems and genomics to identify and characterize parasitism genes for representatives of this clade. Phylogenetic studies reveal that plant parasites have rich and complex evolutionary histories that involve multiple transitions to plant parasitism and the possible use of genes obtained by horizontal transfer from prokaryotes. Developing a fuller understanding of plant parasitism will require integrating more comprehensive and resolved phylogenies with appropriate choices of model organisms and comparative evolutionary methods.

  11. Assaying environmental nickel toxicity using model nematodes.

    PubMed

    Rudel, David; Douglas, Chandler D; Huffnagle, Ian M; Besser, John M; Ingersoll, Christopher G

    2013-01-01

    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species.

  12. Reniform Nematode Resistance in Selected Soybean Cultivars

    PubMed Central

    Robbins, R. T.; Rakes, L.; Jackson, L. E.; Dombek, D. G.

    1999-01-01

    Two hundred eighty-two soybean cultivars from the variety testing programs of Arkansas and Mississippi were tested in greenhouse pot experiments during summer 1998 to identify soybean cultivars with resistance to the reniform nematode, Rotylenchulus reniformis. Also included in the tests were the resistant cultivars Forrest and Hartwig, the susceptible control Braxton, and fallow infested soil, which were used as controls. Numbers of reniform nematode extracted from the soil and roots and the ratio of the numbers reproducing on each cultivar compared to the number reproducing on Forrest are reported. Cultivars with reproduction not significantly different from Forrest were classified resistant, whereas those with greater reproductive indices were considered susceptible. One of the 18 cultivars of relative maturity group (RMG) ≤4.4 was classified as resistant. For the 86 cultivars of RMG 4.5-4.9, 18 were found to be resistant. Of the 43 cultivars of RMG 5.0-5.4, 16 were resistant, while 43 of the 91 cultivars of RMG 5.5-5.9 were resistant. Fifteen of the cultivars with an RMG of ≥6.0 were classed as resistant. These data will be useful in the selection of soybean cultivars to use in rotation with cotton to help control the reniform nematode. PMID:19270934

  13. Assaying Environmental Nickel Toxicity Using Model Nematodes

    PubMed Central

    Rudel, David; Douglas, Chandler D.; Huffnagle, Ian M.; Besser, John M.; Ingersoll, Christopher G.

    2013-01-01

    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species. PMID:24116204

  14. Nematode locomotion in unconfined and confined fluids

    NASA Astrophysics Data System (ADS)

    Bilbao, Alejandro; Wajnryb, Eligiusz; Vanapalli, Siva A.; Blawzdziewicz, Jerzy

    2013-08-01

    The millimeter-long soil-dwelling nematode Caenorhabditis elegans propels itself by producing undulations that propagate along its body and turns by assuming highly curved shapes. According to our recent study [V. Padmanabhan et al., PLoS ONE 7, e40121 (2012), 10.1371/journal.pone.0040121] all these postures can be accurately described by a piecewise-harmonic-curvature model. We combine this curvature-based description with highly accurate hydrodynamic bead models to evaluate the normalized velocity and turning angles for a worm swimming in an unconfined fluid and in a parallel-wall cell. We find that the worm moves twice as fast and navigates more effectively under a strong confinement, due to the large transverse-to-longitudinal resistance-coefficient ratio resulting from the wall-mediated far-field hydrodynamic coupling between body segments. We also note that the optimal swimming gait is similar to the gait observed for nematodes swimming in high-viscosity fluids. Our bead models allow us to determine the effects of confinement and finite thickness of the body of the nematode on its locomotion. These effects are not accounted for by the classical resistive-force and slender-body theories.

  15. Biochemical and molecular tools reveal two diverse Xanthomonas groups in bananas.

    PubMed

    Adriko, J; Aritua, V; Mortensen, C N; Tushemereirwe, W K; Mulondo, A L; Kubiriba, J; Lund, O S

    2016-02-01

    Xanthomonas campestris pv. musacearum (Xcm) causing the banana Xanthomonas wilt (BXW) disease has been the main xanthomonad associated with bananas in East and Central Africa based on phenotypic and biochemical characteristics. However, biochemical methods cannot effectively distinguish between pathogenic and non-pathogenic xanthomonads. In this study, gram-negative and yellow-pigmented mucoid bacteria were isolated from BXW symptomatic and symptomless bananas collected from different parts of Uganda. Biolog, Xcm-specific (GspDm), Xanthomonas vasicola species-specific (NZ085) and Xanthomonas genus-specific (X1623) primers in PCR, and sequencing of ITS region were used to identify and characterize the isolates. Biolog tests revealed several isolates as xanthomonads. The GspDm and NZ085 primers accurately identified three isolates from diseased bananas as Xcm and these were pathogenic when re-inoculated into bananas. DNA from more isolates than those amplified by GspDm and NZ085 primers were amplified by the X1623 primers implying they are xanthomonads, these were however non-pathogenic on bananas. In the 16-23 ITS sequence based phylogeny, the pathogenic bacteria clustered together with the Xcm reference strain, while the non-pathogenic xanthomonads isolated from both BXW symptomatic and symptomless bananas clustered with group I xanthomonads. The findings reveal dynamic Xanthomonas populations in bananas, which can easily be misrepresented by only using phenotyping and biochemical tests. A combination of tools provides the most accurate identity and characterization of these plant associated bacteria. The interactions between the pathogenic and non-pathogenic xanthomonads in bananas may pave way to understanding effect of microbial interactions on BXW disease development and offer clues to biocontrol of Xcm.

  16. Distribution patterns of entomopathogenic nematodes applied through drip irrigation systems.

    PubMed

    Wennemann, L; Cone, W W; Wright, L C; Perez, J; Conant, M M

    2003-04-01

    The distribution of entomopathogenic nematodes applied by drip irrigation was evaluated by injecting small volumes of Steinernema carpocapsae (Weiser) All strain, Steinernema feltiae (Filipjev) SN strain, Steinernema glaseri Steiner, and Heterorhabditis bacteriophora HP 88 strain Poinar suspensions into drip irrigation lines. Additionally, Steinernema riobrave Cabanillas, Poinar, & Raulston, and S. carpocapsae were injected in a 10-liter volume of water with an injection pump. Overall, the nematodes were evenly distributed along the drip lines. The total number of nematodes recovered from drip emitters was variable ranging from 42 to 92%. However, drip irrigation lines have potential to deliver entomopathogenic nematodes efficiently into pest habitats.

  17. Nematodes Associated with Plants from Naturally Acidic Wetlands Soil

    PubMed Central

    Cox, Robert John; Smart, Grover C.

    1994-01-01

    Four plants, Cyperus ochraceus, Eriocaulon compressum, Lythrum alatum, and Xyris jupicai, growing along the shoreline of an oligotrophic lake in north central Florida were sampled for nematodes. The nematodes recovered were placed in four trophic groups: bacterivores, herbivores, omnivores, and predators. When the nematodes on all plants were considered, 27% were bacterivores, 23% were herbivores, 7% were omnivores, and 43% were predators. Tripyla was the dominant predator and the dominant genus of all nematodes, and Malenchus was the dominant herbivore. Dominance was not clearly pronounced in the other trophic groups. PMID:19279927

  18. Impact Resistance Behaviour of Banana Fiber Reinforced Slabs

    NASA Astrophysics Data System (ADS)

    Che Muda, Zakaria; Syamsir, Agusril; Nasharuddin Mustapha, Kamal; Rifdy Samsudin, Muhamad; Thiruchelvam, Sivadass; Usman, Fathoni; Beddu, Salmia; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Birima, Ahmed H.; Zaroog, O. S.

    2016-03-01

    This paper investigate the performance of banana fibre reinforced slabs 300mm × 300mm size with varied thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.25 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the BF contents and slab thickness. A linear relationship has been established between first and ultimate crack resistance against BF contents and slab thickness by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the BF contents for a constant spacing for various banana fibre reinforced slab thickness. The increment in BF content has more effect on the first crack resistance than the ultimate crack resistance. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the various slab thickness. Overall 1.5% BF content with slab thickness of 40 mm exhibit better first and ultimate crack resistance up to 16 times and up to 17 times respectively against control slab (without BF)

  19. Unusual events involved in Banana bunchy top virus strain evolution.

    PubMed

    Fu, Hui-Chuan; Hu, Jer-Ming; Hung, Ting-Hsuan; Su, Hong-Ji; Yeh, Hsin-Hung

    2009-07-01

    Banana bunchy top virus (BBTV) can be transmitted by aphids and consists of at least six integral components (DNA-R, -U3, -S, -M, -C, and -N). Several additional replication-competent components (additional Reps) are associated with some BBTV isolates. A collected BBTV strain (TW3) that causes mild symptoms was selected to study the processes in BBTV evolution. Southern blot hybridization, polymerase chain reaction (PCR), and real-time PCR did not detect DNA-N in TW3. Real-time PCR quantification of BBTV components revealed that, except for the copy number of TW3 DNA-U3, each detected integral component of BBTV TW3 was at least two orders lower than that of the severe strains. No infection was observed in plants inoculated with aphids, which were first given acquisition access to the TW3-infected banana leaves. Recombination analysis revealed recombination between the integral component TW3 DNA-U3 and the additional Rep DNA-Y. All BBTV integral components contain a replication initiation region (stem-loop common region) that share high sequence identity. Sequence alignment revealed that TW3 DNA-R, -S, -M, and -C all have a stem-loop common region containing a characteristic 9-nucleotide deletion found only in all reported DNA-N. Our data suggest that the additional Rep DNAs can serve as sources of additional genetic diversity for integral BBTV components.

  20. Chemical composition and physicochemical properties of green banana (Musa acuminata x balbisiana Colla cv. Awak) flour.

    PubMed

    Haslinda, W H; Cheng, L H; Chong, L C; Noor Aziah, A A

    2009-01-01

    Flour was prepared from peeled and unpeeled banana Awak ABB. Samples prepared were subjected to analysis for determination of chemical composition, mineral, dietary fibre, starch and total phenolics content, antioxidant activity and pasting properties. In general, flour prepared from unpeeled banana was found to show enhanced nutrition values with higher contents of mineral, dietary fibre and total phenolics. Hence, flour fortified with peel showed relatively higher antioxidant activity. On the other hand, better pasting properties were shown when banana flour was blended with peel. It was found that a relatively lower pasting temperature, peak viscosity, breakdown, final viscosity and setback were evident in a sample blended with peel.

  1. Chlorophyll breakdown as seen in bananas: sign of aging and ripening--a mini-review.

    PubMed

    Müller, Thomas; Kräutler, Bernhard

    2011-01-01

    The ripening of bananas is seen by a characteristic change of their color from deep green to bright yellow. Likewise, their over-ripening and eventual rotting are accompanied by the appearance of an unappetizing brown. Chlorophyll breakdown is a major contributor to the visual signs of these processes in bananas. Outlined here are the basic structures of chlorophyll catabolites in higher plants, with particular reference to ripening and aging bananas. In these fruits, unique fluorescent chlorophyll catabolites accumulate and give rise to their fascinating blue luminescence.

  2. Effect of Entomopathogenic Nematodes on Mesocriconema xenoplax Populations in Peach and Pecan

    PubMed Central

    Nyczepir, A. P.; Shapiro-Ilan, D. I.; Lewis, E. E.; Handoo, Z. A.

    2004-01-01

    The effect of Steinernema riobrave and Heterorhabditis bacteriophora on population density of Mesocriconema xenoplax in peach was studied in the greenhouse. Twenty-one days after adding 112 M. xenoplax adults and juveniles/1,500 cm³ soil to the soil surface of each pot, 50 infective juveniles/cm² soil surface of either S. riobrave or H. bacteriophora were applied. Another entomopathogenic nematode application of the same density was administered 3 months later. The experiment was repeated once. Mesocriconema xenoplax populations were not suppressed (P ≤ 0.05) in the presence of either S. riobrave or H. bacteriophora 180 days following ring nematode inoculation. On pecan, 200 S. riobrave infective-stage juveniles/cm² were applied to the soil surface of 2-year-old established M. xenoplax populations in field microplots. Additional applications of S. riobrave were administered 2 and 4 months later. This study was terminated 150 days following the initial application of S. riobrave. Populations of M. xenoplax were not suppressed in the presence of S. riobrave. PMID:19262805

  3. Effect of Entomopathogenic Nematodes on Mesocriconema xenoplax Populations in Peach and Pecan.

    PubMed

    Nyczepir, A P; Shapiro-Ilan, D I; Lewis, E E; Handoo, Z A

    2004-06-01

    The effect of Steinernema riobrave and Heterorhabditis bacteriophora on population density of Mesocriconema xenoplax in peach was studied in the greenhouse. Twenty-one days after adding 112 M. xenoplax adults and juveniles/1,500 cm(3) soil to the soil surface of each pot, 50 infective juveniles/cm(2) soil surface of either S. riobrave or H. bacteriophora were applied. Another entomopathogenic nematode application of the same density was administered 3 months later. The experiment was repeated once. Mesocriconema xenoplax populations were not suppressed (P nematode inoculation. On pecan, 200 S. riobrave infective-stage juveniles/cm(2) were applied to the soil surface of 2-year-old established M. xenoplax populations in field microplots. Additional applications of S. riobrave were administered 2 and 4 months later. This study was terminated 150 days following the initial application of S. riobrave. Populations of M. xenoplax were not suppressed in the presence of S. riobrave.

  4. Entomopathogenic Nematodes and Bacteria Applications for Control of the Pecan Root-Knot Nematode, Meloidogyne partityla, in the Greenhouse

    PubMed Central

    Shapiro-Ilan, David I.; Nyczepir, Andrew P.; Lewis, Edwin E.

    2006-01-01

    Meloidogyne partityla is a parasite of pecan and walnut. Our objective was to determine interactions between the entomopathogenic nematode-bacterium complex and M. partityla. Specifically, we investigated suppressive effects of Steinernema feltiae (strain SN) and S. riobrave (strain 7–12) applied as infective juveniles and in infected host insects, as well as application of S. feltiae's bacterial symbiont Xenorhabdus bovienii on M. partityla. In two separate greenhouse trials, the treatments were applied to pecan seedlings that were simultaneously infested with M. partityla eggs; controls received only water and M. partityla eggs. Additionally, all treatment applications were re-applied (without M. partityla eggs) two months later. Four months after initial treatment, plants were assessed for number of galls per root system, number of egg masses per root system, number of eggs per root system, number of eggs per egg mass, number of eggs per gram dry root weight, dry shoot weight, and final population density of M. partityla second-stage juveniles (J2). In the first trial, the number of egg masses per plant was lower in the S. riobrave-infected host treatment than in the control (by approximately 18%). In the second trial, dry root weight was higher in the S. feltiae-infected host treatment than in the control (approximately 80% increase). No other treatment effects were detected. The marginal and inconsistent effects observed in our experiments indicate that the treatments we applied are not sufficient for controlling M. partityla. PMID:19259462

  5. Soil nematode assemblages indicate the potential for biological regulation of pest species

    NASA Astrophysics Data System (ADS)

    Steel, Hanne; Ferris, Howard

    2016-05-01

    In concept, regulation or suppression of target nematode pest species should be enhanced when an abundance of predator species is supported by ample availability of bacterial- fungal- and non-damaging plant-feeding prey species. We selected soils from natural and managed environments that represented different levels of resource availability and disturbance. In microcosm chambers of each soil, in its natural state or after heat defaunation, we introduced test prey species not already resident in the soils (Meloidogyne incognita and Steinernema feltiae). Survival of the test prey was determined after a 5-day bioassay exposure. Across the soils tested, predator abundance and biomass were greater in undisturbed soils with plentiful resources and lower in soils from agricultural sites. Suppressiveness to the two introduced species increased with both numerical abundance and metabolic footprint of the predator assemblages. The magnitude of the increase in suppressiveness was greater at low numbers of predators then dampened to an asymptotic level at greater predator abundance, possibly determined by temporal and spatial aspects of the bioassay system and/or satiation of the predators. The more resource-limited the predators were and the higher the metabolic predator footprint, the greater the suppressiveness. The applied implications of this study are that soil suppressiveness to pest species may be enhanced by increasing resources to predators, removing chemical and physical constraints to their survival and increase, and altering management practices so that predators and target prey are co-located in time and space.

  6. High-throughput detection of banana bunchy top virus in banana plants and aphids using real-time TaqMan(®) PCR.

    PubMed

    Chen, Yan; Hu, Xiaoping

    2013-10-01

    Banana bunchy top virus (BBTV) is the causal agent of banana bunchy top disease. Current diagnostic methods for BBTV are laborious and prone to generate false-negative results. A simple, reliable, and high-throughput method for detecting BBTV in plants and aphids has been developed, which involves tissues disruption from banana plants and viruliferous aphids followed by real-time TaqMan(®) PCR. Extraction of BBTV single-stranded DNA using this method is simple and less prone to contamination than using the CTAB (hexadecyltrimethylammonium bromide) method. The high throughput TaqMan(®) PCR system was highly sensitive, detecting as few as 2.76 copies of BBTV genomic DNA or 1.0 ng-1.0mg of infected banana leaves. The entire assay could be completed within 2h. Regression analysis showed that the quantitative results of TaqMan(®) PCR and copies of the virus have good correlation for plasmids (R(2)=0.966) and for infected leaves (R(2)=0.979). The method developed in this study can quantify BBTV in aphids and plants, even before the appearance of symptoms of banana bunchy top disease.

  7. Chemical control of the red palm mite, Raoiella indica (Acari: Tenuipalpidae) in banana and coconut.

    PubMed

    Rodrigues, Jose Carlos Verle; Peña, J E

    2012-08-01

    The red palm mite (RPM), Raoiella indica Hirst, is a predominant pest of coconuts, date palms and other palm species, as well as a major pest of bananas (Musa spp.) in different parts of the world. Recently, RPM dispersed throughout the Caribbean islands and has reached both the North and South American continents. The RPM introductions have caused severe damage to palm species, and bananas and plantains in the Caribbean region. The work presented herein is the result of several acaricide trials conducted in Puerto Rico and Florida on palms and bananas in order to provide chemical control alternatives to minimize the impact of this pest. Spiromesifen, dicofol and acequinocyl were effective in reducing the population of R. indica in coconut in Puerto Rico. Spray treatments with etoxanole, abamectin, pyridaben, milbemectin and sulfur showed mite control in Florida. In addition, the acaricides acequinocyl and spiromesifen were able to reduce the population of R. indica in banana trials.

  8. Discrete Dynamical Systems Meet the Classic Monkey-and-the-Bananas Problem.

    ERIC Educational Resources Information Center

    Gannon, Gerald E.; Martelli, Mario U.

    2001-01-01

    Presents a solution of the three-sailors-and-the-bananas problem and attempts a generalization. Introduces an interesting way of looking at the mathematics with an idea drawn from discrete dynamical systems. (KHR)

  9. Changes in resistant starch from two banana cultivars during postharvest storage.

    PubMed

    Wang, Juan; Tang, Xue Juan; Chen, Ping Sheng; Huang, Hui Hua

    2014-08-01

    Banana resistant starch samples were extracted and isolated from two banana cultivars (Musa AAA group, Cavendish subgroup and Musa ABB group, Pisang Awak subgroup) at seven ripening stages during postharvest storage. The structures of the resistant starch samples were analysed by light microscopy, polarising microscopy, scanning electron microscopy, X-ray diffraction, and infrared spectroscopy. Physicochemical properties (e.g., water-holding capacity, solubility, swelling power, transparency, starch-iodine absorption spectrum, and Brabender microviscoamylograph profile) were determined. The results revealed significant differences in microstructure and physicochemical characteristics among the banana resistant starch samples during different ripening stages. The results of this study provide valuable information for the potential applications of banana resistant starches.

  10. A simple diffraction experiment using banana stem as a natural grating

    NASA Astrophysics Data System (ADS)

    Prasetya Aji, Mahardika; Karunawan, Jotti; Rochimatun Chasanah, Widyastuti; Iman Nursuhud, Puji; Ajeng Wiguna, Pradita; Sulhadi

    2017-03-01

    A simple diffraction experiment was designed using banana stem as natural grating. Coherent beams of lasers with wavelengths of 632.8 nm and 532 nm that pass through banana stem produce periodic diffraction patterns on a screen. The diffraction experiments were able to measure the distances between the slit of the banana stem, i.e. d=≤ft(28.76+/- 0.295\\right)× {{10}-6} \\text{m} for a laser with a wavelength of 632.8 nm and d=≤ft(26.62+/- 0.002\\right)× {{10}-6} \\text{m} for a wavelength of 532 nm. Therefore, banana stem could be used as an easily obtained and low cost grating for diffraction experiments.

  11. [Resistance to anthelmintics in nematodes in sheep and goats].

    PubMed

    Praslicka, J; Corba, J

    1995-08-01

    The article offers a brief view on the most important theoretical knowledge of resistance of gastrointestinal nematodes to anthelmintic drugs in sheep and goats. Besides the definition and basic terms, factors of development and occurrence of resistance on farm are analyzed. Furthermore, methods for detection of resistant nematodes as well as complex of recommended preventive measures are given.

  12. Viability and virulence of entomopathogenic nematodes exposed to ultraviolet radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes can be highly effective biocontrol agents, but their efficacy can be reduced due to exposure environmental stress such as from ultraviolet radiation. Our objective was to compare UV tolerance among a broad array of nematode species. We compared 9 different EPN species and ...

  13. 76 FR 60357 - Golden Nematode; Removal of Regulated Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... nematode (Globodera rostochiensis) is a destructive pest of potatoes and other solanaceous plants. Potatoes... no longer required. From 1977 until 2010, potato production fields in the townships of Elba and Byron... nematode quarantine. In 2007, there were 13 farms in Genesee County that harvested potatoes. These...

  14. Control of the peachtree borer using beneficial nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The peachtree borer, Synanthedon exitiosa, is a major pest of peaches and other stone fruits. Our research indicates that entomopathogenic nematodes, also known as beneficial nematodes, can be used effectively to control the insect. We conducted replicated experiments in randomized block designs ov...

  15. Development of Reniform Nematode Resistance in Upland Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this review is to assess development of resistance to the reniform nematode (Rotylenchulus reniformis) in Upland Cotton (Gossypium hirsutum). Cotton cultivars with reniform nematode resistance are needed. The development of resistant cultivars appears possible but presents a signifi...

  16. Book review: Systematics of Cyst Nematodes (Nematoda: Heteroderinae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cyst nematodes are an important group of plant-parasitic nematodes that cause billions of dollars in economic damage to crops every year. This article reviews a recently published, two-volume monograph that describes the morphological and molecular characteristics of these agriculturally signif...

  17. A SURVEY OF CYST NEMATODES (HETERODERA SPP.) IN NORTHERN EGYPT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information concerning the occurrence and distribution of cyst nematodes (Heterodera spp.) in Egypt is important to assess their potential to cause economic damage to crop plants. A nematode survey was conducted in Alexandria and El-Behera Governorates in northern Egypt to identify the species of cy...

  18. Conserved nematode signaling molecules elicit plant defenses and pathogen resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematodes, which are ubiquitous in soil and are estimated to cause $100 B of agricultural damage annually, produce novel, highly conserved small sugar-based molecules call ascarosides. Ascarosides play critical roles in nematode development and behavior. We report here that plants recognize these un...

  19. Granite rock outcrops: an extreme environment for soil nematodes?

    PubMed

    Austin, Erin; Semmens, Katharine; Parsons, Charles; Treonis, Amy

    2009-03-01

    We studied soil nematode communities from the surface of granite flatrock outcrops in the eastern Piedmont region of the United States. The thin soils that develop here experience high light intensity and extreme fluctuations in temperature and moisture and host unique plant communities. We collected soils from outcrop microsites in Virginia (VA) and North Carolina (NC) in various stages of succession (Primitive, Minimal, and Mature) and compared soil properties and nematode communities to those of adjacent forest soils. Nematodes were present in most outcrop soils, with densities comparable to forest soils (P > 0.05). Nematode communities in Mature and Minimal soils had lower species richness than forest soils (P < 0.05) and contained more bacterial-feeders and fewer fungal-feeders (P < 0.05). Primitive soils contained either no nematodes (NC) or only a single species (Mesodorylaimus sp., VA). Nematode communities were similar between Mature and Minimal soils, according to trophic group representation, MI, PPI, EI, SI, and CI (P > 0.05). Forest soils had a higher PPI value (P < 0.05), but otherwise community indices were similar to outcrop soils (P > 0.05). Outcrop nematode communities failed to group together in a Bray-Curtis cluster analysis, indicating higher variability in community structure than the Forest soils, which did cluster together. A high proportion of the nematodes were extracted from outcrop soils in coiled form (33-89%), indicating that they used anhydrobiosis to persist in this unique environment.

  20. High Sensitivity NMR and Mixture Analysis for Nematode Behavioral Metabolomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematodes are the most abundant animal on earth, and they parasitize virtually all plants and animals. Caenorhabditis elegans is a free-living nematode that lives in soil and composting material. We have shown that C. elegans releases at least 40 small molecules into its environment including many...

  1. Sex-specific mating pheromones in the nematode Panagrellus redivivus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite advances in medicine and crop genetics, nematodes remain significant human pathogens and agricultural pests. This warrants investigation of alternative strategies for pest control, such as interference with pheromone-mediated reproduction. Because only two nematode species have had their phe...

  2. Soybean lines evaluated for resistance to reniform nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seventy-four wild and domestic soybean (Glycine max and G. soja) lines were evaluated for resistance to reniform nematode (Rotylenchulus reniformis) in growth chamber tests with a day length of 16 hours and temperature held constant at 28 C. Several entries for which reactions to reniform nematode w...

  3. Soybean Cyst Nematode in North America - 55 Years Later

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean cyst nematode, Heterodera glycines, was first discovered in North America in 1954 in Hanover County, North Carolina, USA, when it was found on soybean in a field that had been planted to Easter lilies obtained from Japan prior to World War II. The nematode is now distributed throughout soybe...

  4. Pineapple Nematode Research in Hawaii: Past, Present, and Future

    PubMed Central

    Caswell, E. P.; Apt, W. J.

    1989-01-01

    The first written record of pineapple in Hawaii is from 1813. In 1901 commercial pineapple production started, and in 1924 the Experiment Station for pineapple research was established. Nematode-related problems were recognized in the early 1900s by N. A. Cobb. From 1920 to approximately 1945 nematode management in Hawaiian pineapple was based on fallowing and crop rotation. During the 1920s and 1930s G. H. Godfrey conducted research on pineapple nematode management. In the 1930s and 1940s M. B. Linford researched biological control and described several new species of nematodes including Rotylenchulus reniformis. In 1941 nematology and nematode management were advanced by Walter Carter's discovery of the first economical soil fumigant for nematodes, D-D mixture. Subsequently, DBCP was discovered and developed at the Pineapple Research Institute (PRI). Since 1945 soil fumigation has been the main nematode management strategy in Hawaiian pineapple production. Recent research has focused on the development of the nonvolatile nematicides, their potential as systemic nematicides, and their application via drip irrigation. Current and future research addresses biological and cultural alternatives to nematicide-based nematode management. PMID:19287592

  5. Correlations of Nematodes and Soil Properties in Soybean Fields

    PubMed Central

    Norton, D. C.; Frederick, L. R.; Ponchillia, P. E.; Nyhan, J. W.

    1971-01-01

    Soil samples from 40 soybean fields were collected in 1967 and 1968 and analyzed for nematodes and soil properties. Correlations o f total nematodes, non-stylet nematodes, Dorylaimoidea (excluding Xiphinema americanum), X. americanum, Helicotylenchus pseudorobustus, Tylenchus spp., Aphelenchus avenae, and other groupings of nematodes were made with pH; percentage sand, silt, and clay; percentage organic matter; cation exchange capacity; saturation percentage, and percentage saturation. Organic matter, pH, and cation exchange capacity were most consistently highly correlated with the nematodes. H. pseudorobustus had the most consistently significant correlations with the soil factors. Correlations of nematodes were with more soil factors and were stronger in a wet than in a dry year. The highest numbers of nematodes were usually found in the lighter soils, except in the loamy sand where moisture probably was limiting. In general, soil moisture levels below 20% saturation were probably limiting for most nematodes studied, except for the dorylaims which survived in large numbers in soils with less than 20% saturation. PMID:19322361

  6. Aggregative group behavior in insect parasitic nematode disperal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Movement behavior is critical to determination of spatial ecology and success of foraging in predators and parasites. In this study movement behavior of entomopathogenic nematodes was explored. Movement patterns in sand were investigated when nematodes were applied to a specific locus or when the ne...

  7. Nematodes from terrestrial and freshwater habitats in the Arctic.

    PubMed

    Holovachov, Oleksandr

    2014-01-01

    WE PRESENT AN UPDATED LIST OF TERRESTRIAL AND FRESHWATER NEMATODES FROM ALL REGIONS OF THE ARCTIC, FOR WHICH RECORDS OF PROPERLY IDENTIFIED NEMATODE SPECIES ARE AVAILABLE: Svalbard, Jan Mayen, Iceland, Greenland, Nunavut, Northwest territories, Alaska, Lena River estuary, Taymyr and Severnaya Zemlya and Novaya Zemlya. The list includes 391 species belonging to 146 genera, 54 families and 10 orders of the phylum Nematoda.

  8. Persistence and Suppressiveness of Pasteuria penetrans to Meloidogyne arenaria Race

    PubMed Central

    Cetintas, R.; Dickson, D. W.

    2004-01-01

    The long-term persistence and suppressiveness of Pasteuria penetrans against Meloidogyne arenaria race 1 were investigated in a formerly root-knot nematode suppressive site following 9 years of continuous cultivation of three treatments and 4 years of continuous peanut. The three treatments were two M. arenaria race 1 nonhost crops, bahiagrass (Paspalum notatum cv. Pensacola var. Tifton 9), rhizomal peanut (Arachis glabrata cv. Florigraze), and weed fallow. Two root-knot nematode susceptible weeds commonly observed in weed fallow plots were hairy indigo (Indigofera hirsuta) and alyce clover (Alysicarpus vaginalis). The percentage of J2 with endospores attached reached the highest level of 87% in 2000 in weed fallow, and 63% and 53% in 2002 in bahiagrass and rhizomal peanut, respectively. The percentage of endospore-filled females extracted from peanut roots grown in weed fallow plots increased from nondetectable in 1999 to 56% in 2002, whereas the percentages in bahiagrass and rhizomal peanut plots were 41% and 16%, respectively. Over 4 years, however, there was no strong evidence that endospores densities reached suppressive levels because peanut roots, pods, and pegs were heavily galled, and yields were suppressed. This might be attributed to the discovery of M. javanica infecting peanut in this field in early autumn 2001. A laboratory test confirmed that although the P. penetrans isolate specific to M. arenaria attached to M. javanica J2, no development occurred. In summary, P. penetrans increased on M. arenaria over a 4-year period, but apparently because of infection of M. javanica on peanut at the field site root-knot disease was not suppressed. This was confirmed by a suppressive soil test that showed a higher level of soil suppressiveness than occurred in the field (P ≤ 0.01). PMID:19262836

  9. Persistence and Suppressiveness of Pasteuria penetrans to Meloidogyne arenaria Race.

    PubMed

    Cetintas, R; Dickson, D W

    2004-12-01

    The long-term persistence and suppressiveness of Pasteuria penetrans against Meloidogyne arenaria race 1 were investigated in a formerly root-knot nematode suppressive site following 9 years of continuous cultivation of three treatments and 4 years of continuous peanut. The three treatments were two M. arenaria race 1 nonhost crops, bahiagrass (Paspalum notatum cv. Pensacola var. Tifton 9), rhizomal peanut (Arachis glabrata cv. Florigraze), and weed fallow. Two root-knot nematode susceptible weeds commonly observed in weed fallow plots were hairy indigo (Indigofera hirsuta) and alyce clover (Alysicarpus vaginalis). The percentage of J2 with endospores attached reached the highest level of 87% in 2000 in weed fallow, and 63% and 53% in 2002 in bahiagrass and rhizomal peanut, respectively. The percentage of endospore-filled females extracted from peanut roots grown in weed fallow plots increased from nondetectable in 1999 to 56% in 2002, whereas the percentages in bahiagrass and rhizomal peanut plots were 41% and 16%, respectively. Over 4 years, however, there was no strong evidence that endospores densities reached suppressive levels because peanut roots, pods, and pegs were heavily galled, and yields were suppressed. This might be attributed to the discovery of M. javanica infecting peanut in this field in early autumn 2001. A laboratory test confirmed that although the P. penetrans isolate specific to M. arenaria attached to M. javanica J2, no development occurred. In summary, P. penetrans increased on M. arenaria over a 4-year period, but apparently because of infection of M. javanica on peanut at the field site root-knot disease was not suppressed. This was confirmed by a suppressive soil test that showed a higher level of soil suppressiveness than occurred in the field (P

  10. Biology, etiology, and control of virus diseases of banana and plantain.

    PubMed

    Kumar, P Lava; Selvarajan, Ramasamy; Iskra-Caruana, Marie-Line; Chabannes, Matthieu; Hanna, Rachid

    2015-01-01

    Banana and plantain (Musa spp.), produced in 10.3 million ha in the tropics, are among the world's top 10 food crops. They are vegetatively propagated using suckers or tissue culture plants and grown almost as perennial plantations. These are prone to the accumulation of pests and pathogens, especially viruses which contribute to yield reduction and are also barriers to the international exchange of germplasm. The most economically important viruses of banana and plantain are Banana bunchy top virus (BBTV), a complex of banana streak viruses (BSVs) and Banana bract mosaic virus (BBrMV). BBTV is known to cause the most serious economic losses in the "Old World," contributing to a yield reduction of up to 100% and responsible for a dramatic reduction in cropping area. The BSVs exist as episomal and endogenous forms are known to be worldwide in distribution. In India and the Philippines, BBrMV is known to be economically important but recently the virus was discovered in Colombia and Costa Rica, thus signaling its spread into the "New World." Banana and plantain are also known to be susceptible to five other viruses of minor significance, such as Abaca mosaic virus, Abaca bunchy top virus, Banana mild mosaic virus, Banana virus X, and Cucumber mosaic virus. Studies over the past 100 years have contributed to important knowledge on disease biology, distribution, and spread. Research during the last 25 years have led to a better understanding of the virus-vector-host interactions, virus diversity, disease etiology, and epidemiology. In addition, new diagnostic tools were developed which were used for surveillance and the certification of planting material. Due to a lack of durable host resistance in the Musa spp., phytosanitary measures and the use of virus-free planting material are the major methods of virus control. The state of knowledge on BBTV, BBrMV, and BSVs, and other minor viruses, disease spread, and control are summarized in this review.

  11. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance.

    PubMed

    Tak, Himanshu; Negi, Sanjana; Ganapathi, T R

    2017-03-01

    Banana is an important fruit crop and its yield is hampered by multiple abiotic stress conditions encountered during its growth. The NAC (NAM, ATAF, and CUC) transcription factors are involved in plant response to biotic and abiotic stresses. In the present study, we studied the induction of banana NAC042 transcription factor in drought and high salinity conditions and its overexpression in transgenic banana to improve drought and salinity tolerance. MusaNAC042 expression was positively associated with stress conditions like salinity and drought and it encoded a nuclear localized protein. Transgenic lines of banana cultivar Rasthali overexpressing MusaNAC042 were generated by Agrobacterium-mediated transformation of banana embryogenic cells and T-DNA insertion was confirmed by PCR and Southern blot analysis. Our results using leaf disc assay indicated that transgenic banana lines were able to tolerate drought and high salinity stress better than the control plants and retained higher level of total chlorophyll and lower level of MDA content (malondialdehyde). Transgenic lines analyzed for salinity (250 mM NaCl) and drought (Soil gravimetric water content 0.15) tolerance showed higher proline content, better Fv/Fm ratio, and lower levels of MDA content than control suggesting that MusaNAC042 may be involved in responses to higher salinity and drought stresses in banana. Expression of several abiotic stress-related genes like those coding for CBF/DREB, LEA, and WRKY factors was altered in transgenic lines indicating that MusaNAC042 is an efficient modulator of abiotic stress response in banana.

  12. Anti-ulcerogenic effect of banana powder (Musa sapientum var. paradisiaca) and its effect on mucosal resistance.

    PubMed

    Goel, R K; Gupta, S; Shankar, R; Sanyal, A K

    1986-10-01

    Orally administered banana pulp powder (Musa sapientum var. paradisiaca) was shown to have significant anti-ulcerogenic activity in rats subjected to aspirin, indomethacin, phenylbutazone, prednisolone and cysteamine and in guinea-pigs subjected to histamine. Banana powder not only increased mucosal thickness but also significantly increased [3H]thymidine incorporation into mucosal DNA. Relative to untreated control sections, histological studies showed that banana treatment increased staining by alcian blue in the apical cells with staining noted in the deeper layers of the mucosal glands. Banana-treated and control sections were also stained for DNA by the Feulgen reaction. The banana-treated sections showed a greater aggregation and intensity of pink spots when compared to controls. The present study suggests that banana powder treatment not only strengthens mucosal resistance against ulcerogens but also promotes healing by inducing cellular proliferation.

  13. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    PubMed

    Adam, Mohamed; Heuer, Holger; Hallmann, Johannes

    2014-01-01

    The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  14. Antagonists of Plant-parasitic Nematodes in Florida Citrus

    PubMed Central

    Walter, David Evans; Kaplan, David T.

    1990-01-01

    In a survey of antagonists of nematodes in 27 citrus groves, each with a history of Tylenchulus semipenetrans infestation, and 17 noncitrus habitats in Florida, approximately 24 species of microbial antagonists capable of attacking vermiform stages of Radopholus citrophilus were recovered. Eleven of these microbes and a species of Pasteuria also were observed attacking vermiform stages of T. semipenetrans. Verticillium chlamydosporium, Paecilomyces lilacinus, P. marquandii, Streptomyces sp., Arthrobotrys oligospora, and Dactylella ellipsospora were found infecting T. semipenetrans egg masses. Two species of nematophagous amoebae, five species of predatory nematodes, and 29 species of nematophagous arthropods also were detected. Nematode-trapping fungi and nematophagous arthropods were common inhabitants of citrus groves with a history of citrus nematode infestation; however, obligate parasites of nematodes were rare. PMID:19287759

  15. Survey of nematodes associated with terrestrial slugs in Norway.

    PubMed

    Ross, J L; Ivanova, E S; Hatteland, B A; Brurberg, M B; Haukeland, S

    2016-09-01

    A survey of nematodes associated with terrestrial slugs was conducted for the first time in Norway. A total of 611 terrestrial slugs were collected from 32 sample sites. Slugs were identified by means of morphological examination, dissection of genitalia and molecular analysis using mitochondrial DNA. Twelve slug species were identified, representing four different slug families. Internal nematodes were identified by means of morphological analysis and the sequencing of the 18S rRNA gene. Of the sample sites studied, 62.5% were found to be positive for nematode parasites, with 18.7% of all slugs discovered being infected. Five nematode species were identified in this study: Alloionema appendiculatum, Agfa flexilis, Angiostoma limacis, Angiostoma sp. and Phasmarhabditis hermaphrodita. Of these species, only one nematode was previously undescribed (Angiostoma sp.). This is the first record of the presence of A. appendiculatum, A. flexilis and A. limacis in Norway.

  16. Antagonists of Plant-parasitic Nematodes in Florida Citrus.

    PubMed

    Walter, D E; Kaplan, D T

    1990-10-01

    In a survey of antagonists of nematodes in 27 citrus groves, each with a history of Tylenchulus semipenetrans infestation, and 17 noncitrus habitats in Florida, approximately 24 species of microbial antagonists capable of attacking vermiform stages of Radopholus citrophilus were recovered. Eleven of these microbes and a species of Pasteuria also were observed attacking vermiform stages of T. semipenetrans. Verticillium chlamydosporium, Paecilomyces lilacinus, P. marquandii, Streptomyces sp., Arthrobotrys oligospora, and Dactylella ellipsospora were found infecting T. semipenetrans egg masses. Two species of nematophagous amoebae, five species of predatory nematodes, and 29 species of nematophagous arthropods also were detected. Nematode-trapping fungi and nematophagous arthropods were common inhabitants of citrus groves with a history of citrus nematode infestation; however, obligate parasites of nematodes were rare.

  17. Characterization of banana (Musa spp.) plantation wastes as a potential renewable energy source

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Taib, Rahmad Mohd

    2013-05-01

    Agricultural residue such as banana waste is one of the biomass categories that can be used for conversion to bio-char, bio-oil, and gases by using thermochemical process. The aim of this work is to characterize banana leaves and pseudo-stem through proximate analysis, elemental analysis, chemical analysis, thermo-gravimetric analysis, and heating calorific value. The ash contents of the banana leaves and pseudo-stem are 7.5 mf wt.% and 11.0 mf wt.%, while the carbon content of banana leaf and pseudo-stem are 42.4 mf wt.% and 37.9 mf wt.%, respectively. The measured heating value of banana leaf and pseudo-stem are 17.7MJ/kg and 15.5MJ/kg, respectively. By chemical analysis, the lignin, cellulose, and hemicellulose contents in the samples will also be presented. The potential of the banana wastes to be a feedstock for thermochemical process in comparison with other biomass will be discussed in this paper.

  18. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America.

    PubMed

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted.

  19. Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death.

    PubMed

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Jockusch, Steffen; Turro, Nicholas J; Kräutler, Bernhard

    2009-09-15

    Breakdown of chlorophyll is a major contributor to the diagnostic color changes in fall leaves, and in ripening apples and pears, where it commonly provides colorless, nonfluorescent tetrapyrroles. In contrast, in ripening bananas (Musa acuminata) chlorophylls fade to give unique fluorescent catabolites (FCCs), causing yellow bananas to glow blue, when observed under UV light. Here, we demonstrate the capacity of the blue fluorescent chlorophyll catabolites to signal symptoms of programmed cell death in a plant. We report on studies of bright blue luminescent rings on the peel of very ripe bananas, which arise as halos around necrotic areas in 'senescence associated' dark spots. These dark spots appear naturally on the peel of ripe bananas and occur in the vicinity of stomata. Wavelength, space, and time resolved fluorescence measurements allowed the luminescent areas to be monitored on whole bananas. Our studies revealed an accumulation of FCCs in luminescent rings, within senescing cells undergoing the transition to dead tissue, as was observable by morphological textural cellular changes. FCCs typically are short lived intermediates of chlorophyll breakdown. In some plants, FCCs are uniquely persistent, as is seen in bananas, and can thus be used as luminescent in vivo markers in tissue undergoing senescence. While FCCs still remain to be tested for their own hypothetical physiological role in plants, they may help fill the demand for specific endogenous molecular reporters in noninvasive assays of plant senescence. Thus, they allow for in vivo studies, which provide insights into critical stages preceding cell death.

  20. Socioeconomic importance of the banana tree (Musa spp.) in the Guinean Highland Savannah agroforests.

    PubMed

    Mapongmetsem, Pierre Marie; Nkongmeneck, Bernard Aloys; Gubbuk, Hamide

    2012-01-01

    Home gardens are defined as less complex agroforests which look like and function as natural forest ecosystems but are integrated into agricultural management systems located around houses. Investigations were carried out in 187 households. The aim of the study was to identify the different types of banana home gardens existing in the periurban zone of Ngaoundere town. The results showed that the majority of home gardens in the area were very young (less than 15 years old) and very small in size (less than 1 ha). Eleven types of home gardens were found in the periurban area of Ngaoundere town. The different home garden types showed important variations in all their structural characteristics. Two local species of banana are cultivated in the systems, Musa sinensis and Musa paradisiaca. The total banana production is 3.57 tons per year. The total quantity of banana consumed in the periurban zone was 3.54 tons (93.5%) whereas 1.01 tons were sold in local or urban markets. The main banana producers belonged to home gardens 2, 4, 7, and 9. The quantity of banana offered to relatives was more than what the farmers received from others. Farmers, rely on agroforests because the flow of their products helps them consolidate friendship and conserve biodiversity at the same time.

  1. Use of Banana (Musa acuminata Colla AAA) Peel Extract as an Antioxidant Source in Orange Juices.

    PubMed

    Ortiz, Lucía; Dorta, Eva; Gloria Lobo, M; González-Mendoza, L Antonio; Díaz, Carlos; González, Mónica

    2017-03-01

    Using banana peel extract as an antioxidant in freshly squeezed orange juices and juices from concentrate was evaluated. Free radical scavenging capacity increased by adding banana peel extracts to both types of orange juice. In addition, remarkable increases in antioxidant capacity using 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical were observed when equal or greater than 5 mg of banana peel extract per ml of freshly squeezed juice was added. No clear effects were observed in the capacity to inhibit lipid peroxidation. Adding 5 mg banana peel extract per ml of orange juice did not substantially modify the physicochemical and sensory characteristics of either type of juice. However, undesirable changes in the sensory characteristics (in-mouth sensations and colour) were detected when equal or greater than 10 mg banana peel extract per ml of orange juice was added. These results confirm that banana peel is a promising natural additive that increases the capacity to scavenge free radicals of orange juice with acceptable sensory and physicochemical characteristics for the consumer.

  2. Effect of chitosan coating and bamboo FSC (fruit storage chamber) to expand banana shelf life

    NASA Astrophysics Data System (ADS)

    Pratiwi, Aksarani'Sa; Dwivany, Fenny M.; Larasati, Dwinita; Islamia, Hana Cahya; Martien, Ronny

    2015-09-01

    Chitosan has been widely used as fruit preserver and proven to extend the shelf life of many fruits, such as banana. However, banana producers and many industries in Indonesia still facing storage problems which may lead to mechanical damage of the fruits and ripening acceleration. Therefore, we have designed food storage chamber (FSC) based on bamboo material. Bamboo was selected because of material abundance in Indonesia, economically effective, and not causing an autocatalytic reaction to the ethylene gas produced by the banana. In this research, Cavendish banana that has reached the maturity level of mature green were coated with 1% chitosan and placed inside the FSC. As control treatments, uncoated banana was also placed inside the FSC as well as uncoated banana that were placed at open space. All of the treatments were placed at 25°C temperature and observed for 9 days. Water produced by respiration was reduced by the addition of charcoal inside a fabric pouch. The result showed that treatment using FSC and chitosan can delay ripening process.

  3. Effects of Green Banana Flour on the Physical, Chemical and Sensory Properties of Ice Cream.

    PubMed

    Yangılar, Filiz

    2015-09-01

    In the present study, possible effects of the addition of banana flour at different mass fractions (1 and 2%) are investigated on physical (overrun, viscosity), chemical (dry matter, fat and ash content, acidity, pH, water and oil holding capacity and colour), mineral content (Ca, K, Na, P, S, Mg, Fe, Mn, Zn and Ni) and sensory properties of ice cream. Fibre--rich banana pieces were found to contain 66.8 g per 100 g of total dietary fibre, 58.6 g per 100 g of which were insoluble dietary fibre, while 8.2 g per 100 g were soluble dietary fibre. It can be concluded from these results that banana is a valuable dietary fibre source which can be used in food production. Flour obtained from green banana pulp and peel was found to have significant (p<0.05) effect on the chemical composition of ice creams. Sulphur content increased while calcium content decreased in ice cream depending on banana flour content. Sensory results indicated that ice cream sample containing 2% of green banana pulp flour received the highest score from panellists.

  4. Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties.

    PubMed

    Happi Emaga, Thomas; Robert, Christelle; Ronkart, Sébastien N; Wathelet, Bernard; Paquot, Michel

    2008-07-01

    The effects of the ripeness stage of banana (Musa AAA) and plantain (Musa AAB) peels on neutral detergent fibre, acid detergent fibre, cellulose, hemicelluloses, lignin, pectin contents, and pectin chemical features were studied. Plantain peels contained a higher amount of lignin but had a lower hemicellulose content than banana peels. A sequential extraction of pectins showed that acid extraction was the most efficient to isolate banana peel pectins, whereas an ammonium oxalate extraction was more appropriate for plantain peels. In all the stages of maturation, the pectin content in banana peels was higher compared to plantain peels. Moreover, the galacturonic acid and methoxy group contents in banana peels were higher than in plantain peels. The average molecular weights of the extracted pectins were in the range of 132.6-573.8 kDa and were not dependant on peel variety, while the stage of maturation did not affect the dietary fibre yields and the composition in pectic polysaccharides in a consistent manner. This study has showed that banana peels are a potential source of dietary fibres and pectins.

  5. Socioeconomic Importance of the Banana Tree (Musa Spp.) in the Guinean Highland Savannah Agroforests

    PubMed Central

    Mapongmetsem, Pierre Marie; Nkongmeneck, Bernard Aloys; Gubbuk, Hamide

    2012-01-01

    Home gardens are defined as less complex agroforests which look like and function as natural forest ecosystems but are integrated into agricultural management systems located around houses. Investigations were carried out in 187 households. The aim of the study was to identify the different types of banana home gardens existing in the periurban zone of Ngaoundere town. The results showed that the majority of home gardens in the area were very young (less than 15 years old) and very small in size (less than 1 ha). Eleven types of home gardens were found in the periurban area of Ngaoundere town. The different home garden types showed important variations in all their structural characteristics. Two local species of banana are cultivated in the systems, Musa sinensis and Musa paradisiaca. The total banana production is 3.57 tons per year. The total quantity of banana consumed in the periurban zone was 3.54 tons (93.5%) whereas 1.01 tons were sold in local or urban markets. The main banana producers belonged to home gardens 2, 4, 7, and 9. The quantity of banana offered to relatives was more than what the farmers received from others. Farmers, rely on agroforests because the flow of their products helps them consolidate friendship and conserve biodiversity at the same time. PMID:22629136

  6. Effects of Green Banana Flour on the Physical, Chemical and Sensory Properties of Ice Cream

    PubMed Central

    2015-01-01

    Summary In the present study, possible effects of the addition of banana flour at different mass fractions (1 and 2%) are investigated on physical (overrun, viscosity), chemical (dry matter, fat and ash content, acidity, pH, water and oil holding capacity and colour), mineral content (Ca, K, Na, P, S, Mg, Fe, Mn, Zn and Ni) and sensory properties of ice cream. Fibre--rich banana pieces were found to contain 66.8 g per 100 g of total dietary fibre, 58.6 g per 100 g of which were insoluble dietary fibre, while 8.2 g per 100 g were soluble dietary fibre. It can be concluded from these results that banana is a valuable dietary fibre source which can be used in food production. Flour obtained from green banana pulp and peel was found to have significant (p<0.05) effect on the chemical composition of ice creams. Sulphur content increased while calcium content decreased in ice cream depending on banana flour content. Sensory results indicated that ice cream sample containing 2% of green banana pulp flour received the highest score from panellists. PMID:27904363

  7. [Climatic risk zoning for banana and litchi's chilling injury in South China].

    PubMed

    Li, Na; Huo, Zhi-guo; He, Nan; Xiao, Jing-jing; Wen, Quan-pei

    2010-05-01

    Based on the 1951-2006 climatic observation data from 224 meteorological stations in South China (Guangdong Province, Guangxi Autonomous Region, and Fujian Province) and the historical information about the chilling injury losses of banana and litchi, the accumulated harmful chilling for the processes with minimum daily temperature < or = 5.0 degrees C and more than 3 days was used to indicate the climatic risk of chilling injury during the whole growth season, and an integrated climatic index with the background of climate change was constructed. The maps of geographical distribution of climatic risk probability for each grade chilling injury, and of integrated climatic risk zoning for banana and litchi's chilling injury were drawn, and the spatial variation of climatic risk for banana and litchi's chilling injury was commented. The results indicated that in the study area, climate warming might lead to the decrease of cold resistance of banana and litchi, which could increase the disaster risk of chilling injury. The geographical distribution of climatic risk probability for banana and litchi's chilling injury showed a zonal pattern. According to the integrated climatic risk index, the banana and litchi's chilling injury region was divided into three risk types, i.e., high risk, moderate risk, and low risk, which provided an important basis for the adjustment of agricultural production structure.

  8. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America

    PubMed Central

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted. PMID:25717322

  9. Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death

    PubMed Central

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Jockusch, Steffen; Turro, Nicholas J.; Kräutler, Bernhard

    2009-01-01

    Breakdown of chlorophyll is a major contributor to the diagnostic color changes in fall leaves, and in ripening apples and pears, where it commonly provides colorless, nonfluorescent tetrapyrroles. In contrast, in ripening bananas (Musa acuminata) chlorophylls fade to give unique fluorescent catabolites (FCCs), causing yellow bananas to glow blue, when observed under UV light. Here, we demonstrate the capacity of the blue fluorescent chlorophyll catabolites to signal symptoms of programmed cell death in a plant. We report on studies of bright blue luminescent rings on the peel of very ripe bananas, which arise as halos around necrotic areas in ‘senescence associated’ dark spots. These dark spots appear naturally on the peel of ripe bananas and occur in the vicinity of stomata. Wavelength, space, and time resolved fluorescence measurements allowed the luminescent areas to be monitored on whole bananas. Our studies revealed an accumulation of FCCs in luminescent rings, within senescing cells undergoing the transition to dead tissue, as was observable by morphological textural cellular changes. FCCs typically are short lived intermediates of chlorophyll breakdown. In some plants, FCCs are uniquely persistent, as is seen in bananas, and can thus be used as luminescent in vivo markers in tissue undergoing senescence. While FCCs still remain to be tested for their own hypothetical physiological role in plants, they may help fill the demand for specific endogenous molecular reporters in noninvasive assays of plant senescence. Thus, they allow for in vivo studies, which provide insights into critical stages preceding cell death. PMID:19805212

  10. Total soluble solids from banana: evaluation and optimization of extraction parameters.

    PubMed

    Carvalho, Giovani B M; Silva, Daniel P; Santos, Júlio C; Izário Filho, Hélcio J; Vicente, António A; Teixeira, José A; Felipe, Maria das Graças A; Almeida e Silva, João B

    2009-05-01

    Banana, an important component in the diet of the global population, is one of the most consumed fruits in the world. This fruit is also very favorable to industry processes (e.g., fermented beverages) due to its rich content on soluble solids and minerals, with low acidity. The main objective of this work was to evaluate the influence of factors such as banana weight and extraction time during a hot aqueous extraction process on the total soluble solids content of banana. The extract is to be used by the food and beverage industries. The experiments were performed with 105 mL of water, considering the moisture of the ripe banana (65%). Total sugar concentrations were obtained in a beer analyzer and the result expressed in degrees Plato (degrees P, which is the weight of the extract or the sugar equivalent in 100 g solution at 20 degrees C), aiming at facilitating the use of these results by the beverage industries. After previous studies of characterization of the fruit and of ripening performance, a 2(2) full-factorial star design was carried out, and a model was developed to describe the behavior of the dependent variable (total soluble solids) as a function of the factors (banana weight and extraction time), indicating as optimum conditions for extraction 38.5 g of banana at 39.7 min.

  11. Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review.

    PubMed

    Pappu, Asokan; Patil, Vikas; Jain, Sonal; Mahindrakar, Amit; Haque, Ruhi; Thakur, Vijay Kumar

    2015-08-01

    Biological macromolecules enriched resources are rapidly emerging as sustainable, cost effective and environmental friendly materials for several industrial applications. Among different biological macromolecules enriched resources, banana fibres are one of the unexplored high potential bio-resources. Compared to various natural fibres such as jute, coir, palm etc., the banana fibres exhibits a better tensile strength i.e. 458 MPa with 17.14 GPa tensile modulus. Traditionally used petroleum based synthetic fibres have been proven to be toxic, non-biodegradable and energy intensive for manufacturing. Cellulosic banana fibres are potential engineering materials having considerable scope to be used as an environmental friendly reinforcing element for manufacturing of polymer based green materials. This paper summarizes the world scenario of current production of biological macromolecules rich banana residues and fibres; major user's of banana fibres. The quality and quantity of biological macromolecules especially the cellulose, hemicellulose, lignin, wax, engineering and mechanical properties of banana biofibre resources are reported and discussed. Subsequently, the findings of the recent research on bio resource composites, materials performance and opportunities have been discussed which would be a real challenge for the tomorrow world to enhance the livelihood environmental friendly advancement.

  12. Coupling of MIC-3 overexpression with the chromosome 11 and 14 root-knot nematode (RKN) (Meloidogyne incognita) resistance QTLs provides insights into the regulation of the RKN resistance response in Upland cotton...

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High levels of resistance to root-knot nematode (RKN) (Meloidogyne incognita) in Upland cotton (Gossypium hirsutum) is mediated by two major quantitative trait loci (QTL) located on chromosomes 11 and 14. We had previously determined that MIC-3 expression played a direct role in suppressing RKN egg...

  13. Structure analysis and laxative effects of oligosaccharides isolated from bananas.

    PubMed

    Wang, Juan; Huang, Hui Hua; Cheng, Yan Feng; Yang, Gong Ming

    2012-10-01

    Banana oligosaccharides (BOS) were extracted with water, and then separated and purified using column chromatography. Gel penetration chromatography was used to determine the molecular weights. Thin layer chromatogram and capillary electrophoresis were employed to analyze the monosaccharide composition. The indican bond and structure of the BOS molecule were determined using Fourier transform infrared spectroscopy and nuclear magnetic resonance. Results showed that BOS were probably composed of eight β-D-pyran glucose units linked with 1→6 indican bonds. The laxative effects of BOS were investigated in mice using the method described in "Handbook of Technical Standards for Testing and Assessment of Health Food in China." The length of the small intestine over which a carbon suspension solution advanced in mice treated with low-, middle-, and high-dose BOS was significantly greater than that in the model group, suggesting that BOS are effective in accelerating the movement of the small intestine.

  14. Impact of diseases on export and smallholder production of banana.

    PubMed

    Ploetz, Randy C; Kema, Gert H J; Ma, Li-Jun

    2015-01-01

    Banana (Musa spp.) is one of the world's most valuable primary agricultural commodities. Exported fruit are key commodities in several producing countries yet make up less than 15% of the total annual output of 145 million metric tons (MMT). Transnational exporters market fruit of the Cavendish cultivars, which are usually produced in large plantations with fixed infrastructures and high inputs of fertilizers, pesticides, and irrigation. In contrast, smallholders grow diverse cultivars, often for domestic markets, with minimal inputs. Diseases are serious constraints for export as well as smallholder production. Although black leaf streak disease (BLSD), which is present throughout Asian, African, and American production areas, is a primary global concern, other diseases with limited distributions, notably tropical race 4 of Fusarium wilt, rival its impact. Here, we summarize recent developments on the most significant of these problems.

  15. Multifaceted effects of host plants on entomopathogenic nematodes.

    PubMed

    Hazir, Selcuk; Shapiro-Ilan, David I; Hazir, Canan; Leite, Luis G; Cakmak, Ibrahim; Olson, Dawn

    2016-03-01

    The success of parasites can be impacted by multi-trophic interactions. Tritrophic interactions have been observed in parasite-herbivore-host plant systems. Here we investigate aspects of multi-trophic interactions in a system involving an entomopathogenic nematode (EPN), its insect host, and host plant. Novel issues investigated include the impact of tritrophic interactions on nematode foraging behavior, the ability of EPNs to overcome negative tritrophic effects through genetic selection, and interactions with a fourth trophic level (nematode predators). We tested infectivity of the nematode, Steinernema riobrave, to corn earworm larvae (Helicoverpa zea) in three host plants, tobacco, eggplant and tomato. Tobacco reduced nematode virulence and reproduction relative to tomato and eggplant. However, successive selection (5 passages) overcame the deficiency; selected nematodes no longer exhibited reductions in phenotypic traits. Despite the loss in virulence and reproduction nematodes, first passage S. riobrave was more attracted to frass from insects fed tobacco than insects fed on other host plants. Therefore, we hypothesized the reduced virulence and reproduction in S. riobrave infecting tobacco fed insects would be based on a self-medicating tradeoff, such as deterring predation. We tested this hypothesis by assessing predatory success of the mite Sancassania polyphyllae and the springtail Sinella curviseta on nematodes reared on tobacco-fed larvae versus those fed on greater wax moth, Galleria mellonella, tomato fed larvae, or eggplant fed larvae. No advantage was observed in nematodes derived from tobacco fed larvae. In conclusion, our results indicated that insect-host plant diet has an important effect on nematode foraging, infectivity and reproduction. However, negative host plant effects, might be overcome through directed selection. We propose that host plant species should be considered when designing biocontrol programs using EPNs.

  16. Mycotoxin Production by Fusarium Species Isolated from Bananas

    PubMed Central

    Jimenez, M.; Huerta, T.; Mateo, R.

    1997-01-01

    The ability of Fusarium species isolated from bananas to produce mycotoxins was studied with 66 isolates of the following species: F. semitectum var. majus (8 isolates), F. camptoceras (3 isolates), a Fusarium sp. (3 isolates), F. moniliforme (16 isolates), F. proliferatum (9 isolates), F. subglutinans (3 isolates), F. solani (3 isolates), F. oxysporum (5 isolates), F. graminearum (7 isolates), F. dimerum (3 isolates), F. acuminatum (3 isolates), and F. equiseti (3 isolates). All isolates were cultured on autoclaved corn grains. Their toxicity to Artemia salina L. larvae was examined. Some of the toxic effects observed arose from the production of known mycotoxins that were determined by thin-layer chromatography, gas chromatography, or high-performance liquid chromatography. All F. camptoceras and Fusarium sp. isolates proved toxic to A. salina larvae; however, no specific toxic metabolites could be identified. This was also the case with eight isolates of F. moniliforme and three of F. proliferatum. The following mycotoxins were encountered in the corn culture extracts: fumonisin B(inf1) (40 to 2,900 (mu)g/g), fumonisin B(inf2) (150 to 320 (mu)g/g), moniliformin (10 to 1,670 (mu)g/g), zearalenone (5 to 470 (mu)g/g), (alpha)-zearalenol (5 to 10 (mu)g/g), deoxynivalenol (8 to 35 (mu)g/g), 3-acetyldeoxynivalenol (5 to 10 (mu)g/g), neosolaniol (50 to 180 (mu)g/g), and T-2 tetraol (5 to 15 (mu)g/g). Based on the results, additional compounds produced by the fungal isolates may play prominent roles in the toxic effects on larvae observed. This is the first reported study on the mycotoxin-producing abilities of Fusarium species that contaminate bananas. PMID:16535503

  17. Analysis of expressed sequence tags derived from a compatible Mycosphaerella fijiensis-banana interaction.

    PubMed

    Portal, Orelvis; Izquierdo, Yovanny; De Vleesschauwer, David; Sánchez-Rodríguez, Aminael; Mendoza-Rodríguez, Milady; Acosta-Suárez, Mayra; Ocaña, Bárbara; Jiménez, Elio; Höfte, Monica

    2011-05-01

    Mycosphaerella fijiensis, a hemibiotrophic fungus, is the causal agent of black leaf streak disease, the most serious foliar disease of bananas and plantains. To analyze the compatible interaction of M. fijiensis with Musa spp., a suppression subtractive hybridization (SSH) cDNA library was constructed to identify transcripts induced at late stages of infection in the host and the pathogen. In addition, a full-length cDNA library was created from the same mRNA starting material as the SSH library. The SSH procedure was effective in identifying specific genes predicted to be involved in plant-fungal interactions and new information was obtained mainly about genes and pathways activated in the plant. Several plant genes predicted to be involved in the synthesis of phenylpropanoids and detoxification compounds were identified, as well as pathogenesis-related proteins that could be involved in the plant response against M. fijiensis infection. At late stages of infection, jasmonic acid and ethylene signaling transduction pathways appear to be active, which corresponds with the necrotrophic life style of M. fijiensis. Quantitative PCR experiments revealed that antifungal genes encoding PR proteins and GDSL-like lipase are only transiently induced 30 days post inoculation (dpi), indicating that the fungus is probably actively repressing plant defense. The only fungal gene found was induced 37 dpi and encodes UDP-glucose pyrophosphorylase, an enzyme involved in the biosynthesis of trehalose. Trehalose biosynthesis was probably induced in response to prior activation of plant antifungal genes and may act as an osmoprotectant against membrane damage.

  18. First report of the root-lesion nematode, Pratylenchus scribneri, infecting potato in North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-lesion nematodes (Pratylenchus spp.) are the most common nematode pests of potato. Five soil samples were collected from a harvested potato field near Cogswell (Sargent County), ND in October 2014 to investigate the occurrence of root-lesion nematodes. Plant-parasitic nematodes were extracted, ...

  19. Detection of antimicrobial activity of banana peel (Musa paradisiaca L.) on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study

    PubMed Central

    Kapadia, Suraj Premal; Pudakalkatti, Pushpa S.; Shivanaikar, Sachin

    2015-01-01

    Introduction and Aim: Banana is used widely because of its nutritional values. In past, there are studies that show banana plant parts, and their fruits can be used to treat the human diseases. Banana peel is a part of banana fruit that also has the antibacterial activity against microorganisms but has not been studied extensively. Since, there are no studies that relate the antibacterial activity of banana peel against periodontal pathogens. Hence, the aim of this study is to determine the antimicrobial activity of banana peel extract on Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans). Material and Methods: Standard strains of P. gingivalis and A. actinomycetemcomitans were used in this study which was obtained from the in-house bacterial bank of Department of Molecular Biology and Immunology at Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre. The banana peel extract was prepared, and the antibacterial activity was assessed using well agar diffusion method and minimum inhibitory concentration was assessed using serial broth dilution method. Results: In the current study, both the tested microorganisms showed antibacterial activity. In well diffusion method, P. gingivalis and A. actinomycetemcomitans showed 15 mm and 12 mm inhibition zone against an alcoholic extract of banana peel, respectively. In serial broth dilution method P. gingivalis and A. actinomycetemcomitans were sensitive until 31.25 μg/ml dilutions. Conclusion: From results of the study, it is suggested that an alcoholic extract of banana peel has antimicrobial activity against P. gingivalis and A. actinomycetemcomitans. PMID:26681854

  20. Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana.

    PubMed

    Hu, Wei; Hou, Xiaowan; Huang, Chao; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wei, Yunxie; Liu, Juhua; Miao, Hongxia; Lu, Zhiwei; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-08-20

    Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars.

  1. Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana

    PubMed Central

    Hu, Wei; Hou, Xiaowan; Huang, Chao; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wei, Yunxie; Liu, Juhua; Miao, Hongxia; Lu, Zhiwei; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars. PMID:26307965

  2. Vertebrate herbivores influence soil nematodes by modifying plant communities.

    PubMed

    Veen, G F; Olff, Han; Duyts, Henk; van der Putten, Wim H

    2010-03-01

    Abiotic soil properties, plant community composition, and herbivory all have been reported as important factors influencing the composition of soil communities. However, most studies thus far have considered these factors in isolation, whereas they strongly interact in the field. Here, we study how grazing by vertebrate herbivores influences the soil nematode community composition of a floodplain grassland while we account for effects of grazing on plant community composition and abiotic soil properties. Nematodes are the most ubiquitous invertebrates in the soil. They include a variety of feeding types, ranging from microbial feeders to herbivores and carnivores, and they perform key functions in soil food webs. Our hypothesis was that grazing affects nematode community structure and composition through altering plant community structure and composition. Alternatively, we tested whether the effects of grazing may, directly or indirectly, run via changes in soil abiotic properties. We used a long-term field experiment containing plots with and without vertebrate grazers (cattle and rabbits). We compared plant and nematode community structure and composition, as well as a number of key soil abiotic properties, and we applied structural equation modeling to investigate four possible pathways by which grazing may change nematode community composition. Aboveground grazing increased plant species richness and reduced both plant and nematode community heterogeneity. There was a positive relationship between plant and nematode diversity indices. Grazing decreased the number of bacterial-feeding nematodes, indicating that in these grasslands, top-down control of plant production by grazing leads to bottom-up control in the basal part of the bacterial channel of the soil food web. According to the structural equation model, grazing had a strong effect on soil abiotic properties and plant community composition, whereas plant community composition was the main determinant of

  3. Osmoregulation in the parasitic nematode Pseudoterranova decipiens.

    PubMed

    Fusé, M; Davey, K G; Sommerville, R I

    1993-02-01

    When subjected to hyper- or hypo-osmotic stress at 5 degrees C for 24 h, third-stage larvae of the parasitic nematode Pseudoterranova decipiens do not exhibit changes in mass or in the osmotic pressure of the pseudocoelomic fluid. Immersion in solutions containing 3H2O demonstrates that exchange with the water in the pseudocoelomic fluid is substantially complete within 24 h. Sacs composed of cylinders of body wall without the intestine and pseudocoelomic fluid do not gain weight when immersed for 24 h in hypotonic medium. Metabolic poisons abolish the ability of whole worms and sacs to maintain their weight when immersed in hypotonic media. These observations support the conclusion that the nematode is capable of at least short-term osmoregulation and that the site of osmoregulation is the body wall. The observations that more fluid is passed from the anus in some hypo-osmotically stressed worms and that worms ligatured at the tail exhibit a small increase in mass when exposed to hypo-osmotic conditions may indicate that the intestine plays a minor and subsidiary role in osmoregulation.

  4. Effect of packaging materials on shelf life and quality of banana cultivars (Musa spp.).

    PubMed

    Hailu, M; Seyoum Workneh, T; Belew, D

    2014-11-01

    This study was carried out to evaluate the effect of packaging materials on the shelf life of three banana cultivars. Four packaging materials, namely, perforated low density polyethylene bag, perforated high density polyethylene bag, dried banana leaf, teff straw and no packaging materials (control) were used with three banana cultivars, locally known as, Poyo, Giant Cavendish and Williams I. The experiment was carried out in Randomized Complete Block Design in a factorial combination with three replications. Physical parameters including weight loss, peel colour, peel thickness, pulp thickness, pulp to peel ratio, pulp firmness, pulp dry matter, decay, loss percent of marketability were assessed every 3 days. Banana remained marketable for 36 days in the high density polyethylene and low density polyethylene bags, and for 18 days in banana leaf and teff straw packaging treatments. Unpackaged fruits remained marketable for 15 days only. Fruits that were not packaged lost their weight by 24.0 % whereas fruits packaged in banana leaf and teff straw became unmarketable with final weight loss of 19.8 % and 20.9 %, respectively. Packaged fruits remained well until 36th days of storage with final weight loss of only 8.2 % and 9.20 %, respectively. Starting from green mature stage, the colour of the banana peel changed to yellow and this process was found to be fast for unpackaged fruits. Packaging maintained the peel and the pulp thickness, firmness, dry matter and pulp to peel ratio was kept lower. Decay loss for unpackaged banana fruits was16 % at the end of date 15, whereas the decay loss of fruits packaged using high density and low density polyethylene bags were 43.0 % and 41.2 %, respectively at the end of the 36th day of the experiment. It can, thus, be concluded that packaging of banana fruits in high density and low density polyethylene bags resulted in longer shelf life and improved quality of the produce followed by packaging in dried banana leaf

  5. Evolution of Parasitism in Insect-transmitted Plant Nematodes

    PubMed Central

    Giblin-Davis, R. M.; Davies, K. A.; Morris, K.; Thomas, W. K.

    2003-01-01

    Nematode-insect associations have evolved many times in the phylum Nematoda, but these lineages involve plant parasitism only in the Secernentean orders Aphelenchida and Tylenchida. In the Aphelenchida (Aphelenchoidoidea), Bursaphelenchus xylophilus (Pine wood nematode), B. cocophilus (Red ring or Coconut palm nematode) (Parasitaphelenchidae), and the many potential host-specific species of Schistonchus (fig nematodes) (Aphelenchoididae) nematode-insect interactions probably evolved independently from dauer-forming, mycophagous ancestors that were phoretically transmitted to breeding sites of their insect hosts in plants. Mycophagy probably gave rise to facultative or obligate plant-parasitism because of opportunities due to insect host switches or peculiarities in host behavior. In the Tylenchida, there is one significant radiation of insect-associated plant parasites involving Fergusobia nematodes (Fergusobiinae: Neotylenchidae) and Fergusonina (Fergusoninidae) flies as mutualists that gall myrtaceous plant buds or leaves. These dicyclic nematodes have different phases that are parasitic in either the insect or the plant hosts. The evolutionary origin of this association is unclear. PMID:19265987

  6. Susceptibility of the Plum Curculio, Conotrachelus nenuphar, to Entomopathogenic Nematodes

    PubMed Central

    Shapiro-Ilan, David I.; Mizell, Russell F.; Campbell, James F.

    2002-01-01

    The plum curculio, Conotrachelus nenuphar, is a major pest of pome and stone fruit. Our objective was to determine virulence and reproductive potential of six commercially available nematode species in C. nenuphar larvae and adults. Nematodes tested were Heterorhabditis bacteriophora (Hb strain), H. marelatus (Point Reyes strains), H. megidis (UK211 strain), Steinernema riobrave (355 strain), S. carpocapsae (All strain), and S. feltiae (SN strain). Survival of C. nenuphar larvae treated with S. feltiae and S. riobrave, and survival of adults treated with S. carpocapsae and S. riobrave, was reduced relative to non-treated insects. Other nematode treatments were not different from the control. Conotrachelus nenuphar larvae were more susceptible to S. feltiae infection than were adults, but for other nematode species there was no significant insect-stage effect. Reproduction in C. nenuphar was greatest for H. marelatus, which produced approximately 10,000 nematodes in larvae and 5,500 in adults. Other nematodes produced approximately 1,000 to 3,700 infective juveniles per C. nenuphar with no significant differences among nematode species or insect stages. We conclude that S. carpocapsae or S. riobrave appears to have the most potential for controlling adults, whereas S. feltiae or S. riobrave appears to have the most potential for larval control. PMID:19265940

  7. Pack hunting by a common soil amoeba on nematodes.

    PubMed

    Geisen, Stefan; Rosengarten, Jamila; Koller, Robert; Mulder, Christian; Urich, Tim; Bonkowski, Michael

    2015-11-01

    Soils host the most complex communities on Earth, including the most diverse and abundant eukaryotes, i.e. heterotrophic protists. Protists are generally considered as bacterivores, but evidence for negative interactions with nematodes both from laboratory and field studies exist. However, direct impacts of protists on nematodes remain unknown. We isolated the soil-borne testate amoeba Cryptodifflugia operculata and found a highly specialized and effective pack-hunting strategy to prey on bacterivorous nematodes. Enhanced reproduction in presence of prey nematodes suggests a beneficial predatory life history of these omnivorous soil amoebae. Cryptodifflugia operculata appears to selectively impact the nematode community composition as reductions of nematode numbers were species specific. Furthermore, we investigated 12 soil metatranscriptomes from five distinct locations throughout Europe for 18S ribosomal RNA transcripts of C. operculata. The presence of C. operculata transcripts in all samples, representing up to 4% of the active protist community, indicates a potential ecological importance of nematophagy performed by C. operculata in soil food webs. The unique pack-hunting strategy on nematodes that was previously unknown from protists, together with molecular evidence that these pack hunters are likely to be abundant and widespread in soils, imply a considerable importance of the hitherto neglected trophic link 'nematophagous protists' in soil food webs.

  8. Assaying Predatory Feeding Behaviors in Pristionchus and Other Nematodes

    PubMed Central

    Okumura, Misako; Sommer, Ralf J.

    2016-01-01

    This protocol provides multiple methods for the analysis and quantification of predatory feeding behaviors in nematodes. Many nematode species including Pristionchus pacificus display complex behaviors, the most striking of which is the predation of other nematode larvae. However, as these behaviors are absent in the model organism Caenorhabditis elegans, they have thus far only recently been described in detail along with the development of reliable behavioral assays 1. These predatory behaviors are dependent upon phenotypically plastic but fixed mouth morphs making the correct identification and categorization of these animals essential. In P. pacificus there are two mouth types, the stenostomatous and eurystomatous morphs 2, with only the wide mouthed eurystomatous containing an extra tooth and being capable of killing other nematode larvae. Through the isolation of an abundance of size matched prey larvae and subsequent exposure to predatory nematodes, assays including both "corpse assays" and "bite assays" on correctly identified mouth morph nematodes are possible. These assays provide a means to rapidly quantify predation success rates and provide a detailed behavioral analysis of individual nematodes engaged in predatory feeding activities. In addition, with the use of a high-speed camera, visualization of changes in pharyngeal activity including tooth and pumping dynamics are also possible. PMID:27684744

  9. Nematode Assemblages in Native Plant Communities of Molokai, Hawaii

    PubMed Central

    Bernard, E. C.; Schmitt, D. P.

    2005-01-01

    Four native plant community types (in decreasing elevation: montane bog, rain forest, wet mesic forest, drier forest) on Molokai were sampled for nematodes. Six samples of 10 cores each were gathered from each community. Nematodes were extracted from 200 cm³ soil by elutriation. All extracted nematodes were counted and identified to species-level taxa. Sixty-seven species were identified among the four plant communities; only eight species occurred in all four communities. Species diversity and evenness were greater in the rain forest and mesic forest than in the bog and the drier forest, but the drier forest and mesic forest had similar species communities. The bog nematode community was not similar to the other three sites. In a presence/absence cluster analysis, all six bog sample assemblages clustered together. The rain forest samples also clustered together but were associated with the mesic forest sample closest to the rain forest edge. Of 11 nematode orders collected, Tylenchida accounted for 40% to 73% of all individuals, followed by Dorylaimida (5% to 17%). Diplogasterida were absent. No plant-parasitic nematodes of known Hawaiian agricultural importance or occurrence were collected in these native plant communities. Calculated nematode densities (76,000 to 321,300/m²) were comparable to those reported for some other Pacific tropical forests. PMID:19262867

  10. Effect of changes in the nutritional status on the performances of growing Creole kids during an established nematode parasite infection.

    PubMed

    Ceï, W; Archimède, H; Arquet, R; Félicité, Y; Feuillet, D; Nepos, A; Mulciba, P; Etienne, T; Alexandre, G; Bambou, J C

    2017-04-01

    In this study, we evaluated the effect of changes in the nutritional status on the performances of growing Creole kids during an established experimental gastrointestinal nematode (GIN) infection. Eighteen 6-month-old Creole kids were distributed in two main groups infected (I) and non-infected (NI) and were placed for a period of 4 weeks on each of three diets differing in their nutritional values: (1) fresh grass (FG, 6.7 MJ/kg dry matter (DM) and 7.9% crude protein (CP)) non-supplemented, (2) FG supplemented with a commercial concentrate (CC, 12.2 MJ/kg DM and 20.6% of CP), and (3) FG supplemented with dried banana (Ban, 11.1 MJ/kg DM and 4.3% CP). The experiment was designed as a split-plot with experimental infection (I and NI) as the main plot and the diets (FG, CC, and Ban) as the subplots with three replicates. We showed a significant effect of the diet changes on the fecal egg counts. A higher dry matter intake, digestibility, and growth rate were observed with the CC diet but together with a slight but significant increase of the intensity of the GIN infection. These data suggest that the improvement of the protein nutritional status during an establish GIN infection would improve the animal performance at the expense of the mechanism involved in the control of the infection.

  11. Hidden consequences of living in a wormy world: nematode‐induced immune suppression facilitates tuberculosis invasion in African buffalo.

    PubMed

    Ezenwa, Vanessa O; Etienne, Rampal S; Luikart, Gordon; Beja-Pereira, Albano; Jolles, Anna E

    2010-11-01

    Most hosts are infected with multiple parasites, and responses of the immune system to co-occurring parasites may influence disease spread. Helminth infection can bias the host immune response toward a T-helper type 2 (Th2) over a type 1 (Th1) response, impairing the host’s ability to control concurrent intracellular microparasite infections and potentially modifying disease dynamics. In humans, immune-mediated interactions between helminths and microparasites can alter host susceptibility to diseases such as HIV, tuberculosis (TB), and malaria. However, the extent to which similar processes operate in natural animal populations and influence disease spread remains unknown. We used cross-sectional, experimental, and genetic studies to show that gastrointestinal nematode infection alters immunity to intracellular microparasites in free-ranging African buffalo (Syncerus caffer). Buffalo that were more resistant to nematode infection had weaker Th1 responses, there was significant genotypic variation in nematode resistance, and anthelminthic treatment enhanced Th1 immunity. Using a disease dynamic model parameterized with empirical data, we found that nematode-induced immune suppression can facilitate the invasion of bovine TB in buffalo. In the absence of nematodes, TB failed to invade the system, illustrating the critical role nematodes may play in disease establishment. Our results suggest that helminths, by influencing the likelihood of microparasite invasion, may influence patterns of disease emergence in the wild.

  12. Root-knot Nematode Problem of Some Winter Ornamental Plants and Its Biomanagement

    PubMed Central

    Khan, Mujeebur Rahman; Khan, Shahana M.; Mohide, Faya

    2005-01-01

    A microplot study under field conditions was carried out during 2 consecutive years to assess the effect of root-knot nematode infection (2,000 Meloidogyne incognita eggs/kg soil) on three winter ornamental plants: hollyhock (Althea rosea), petunia (Petunia hybrida), and poppy (Papaver rhoeas). Effects of root-dip treatment with the biocontrol agents Pochonia chlamydosporia, Bacillus subtilis, and Pseudomonas fluorescens and the nematicide fenamiphos were tested. The three ornamental species were highly susceptible to M. incognita, developing 397 and 285 (hollyhock), 191 and 149 (petunia), and 155 and 131 (poppy) galls and egg masses per root system, respectively, and exhibited 37% (petunia), 29% (poppy), and 23% (hollyhock) (P = 0.05) decrease in the flower production. Application of fenamiphos, P. chlamydosporia, P. fluorescens, and B. subtilis suppressed nematode pathogenesis (galls + egg masses) by 64%, 37%, 27%, and 24%, respectively, leading to 14% to 29%, 7% to 15%, 14% to 36%, and 7% to 33% increase in the flower production of the ornamental plants, respectively. Treatment with P. fluorescens also increased the flowering of uninfected plants by 11% to 19%. Soil population of M. incognita was decreased (P = 0.05) due to various treatments from 2 months onward, being greatest with fenamiphos, followed by P. chlamydosporia, B. subtilis, and P. fluorescens. Frequency of colonization of eggs, egg masses, and females by the bioagents was greatest by P. chlamydosporia, i.e., 25% to 29%, 47% to 60%, and 36% to 41%, respectively. Colonization of egg masses by B. subtilis and P. fluorescens was 28% to 31% and 11% to 13%, respectively, but the frequency was 0.3% to 1.3% in eggs. Rhizosphere population of the bioagents was increased (P = 0.05) over time, being usually greater in the presence of nematode. PMID:19262861

  13. Effect of Winter Cover Crops on Nematode Population Levels in North Florida

    PubMed Central

    Wang, K.-H.; McSorley, R.; Gallaher, R. N.

    2004-01-01

    Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P ≤ 0.05), but no treatment differences were observed in year 2. Wheat was a good host to Paratrichodorus minor, whereas vetch was a poor host, but numbers of P. minor were not lower in vetch-planted plots after corn was grown. The second experiment used a split-plot design in which rye or lupine was planted into field plots with histories of five tropical cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor × S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P ≤ 0.05) but not by the winter cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida. PMID:19262833

  14. A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation

    NASA Astrophysics Data System (ADS)

    Ding, Zhangwei; Ma, Yaoming; Wen, Zhiping; Ma, Weiqiang

    2016-04-01

    Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ~0.128 and 0.47m, and ~0.223 and 0.01m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47×10-2 and 7.13×10-3, and 2.91×10-3 and 1.96×10-3, for banana plantation and alpine meadow areas, respectively. This is the first time in Asia that long-term open field measurements have been taken with the specific aim of making comparisons between banana plantation and alpine meadow surfaces.

  15. Global Transcriptomic Analysis of Targeted Silencing of Two Paralogous ACC Oxidase Genes in Banana

    PubMed Central

    Xia, Yan; Kuan, Chi; Chiu, Chien-Hsiang; Chen, Xiao-Jing; Do, Yi-Yin; Huang, Pung-Ling

    2016-01-01

    Among 18 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase homologous genes existing in the banana genome there are two genes, Mh-ACO1 and Mh-ACO2, that participate in banana fruit ripening. To better understand the physiological functions of Mh-ACO1 and Mh-ACO2, two hairpin-type siRNA expression vectors targeting both the Mh-ACO1 and Mh-ACO2 were constructed and incorporated into the banana genome by Agrobacterium-mediated transformation. The generation of Mh-ACO1 and Mh-ACO2 RNAi transgenic banana plants was confirmed by Southern blot analysis. To gain insights into the functional diversity and complexity between Mh-ACO1 and Mh-ACO2, transcriptome sequencing of banana fruits using the Illumina next-generation sequencer was performed. A total of 32,093,976 reads, assembled into 88,031 unigenes for 123,617 transcripts were obtained. Significantly enriched Gene Oncology (GO) terms and the number of differentially expressed genes (DEGs) with GO annotation were ‘catalytic activity’ (1327, 56.4%), ‘heme binding’ (65, 2.76%), ‘tetrapyrrole binding’ (66, 2.81%), and ‘oxidoreductase activity’ (287, 12.21%). Real-time RT-PCR was further performed with mRNAs from both peel and pulp of banana fruits in Mh-ACO1 and Mh-ACO2 RNAi transgenic plants. The results showed that expression levels of genes related to ethylene signaling in ripening banana fruits were strongly influenced by the expression of genes associated with ethylene biosynthesis. PMID:27681726

  16. Global Transcriptomic Analysis of Targeted Silencing of Two Paralogous ACC Oxidase Genes in Banana.

    PubMed

    Xia, Yan; Kuan, Chi; Chiu, Chien-Hsiang; Chen, Xiao-Jing; Do, Yi-Yin; Huang, Pung-Ling

    2016-09-26

    Among 18 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase homologous genes existing in the banana genome there are two genes, Mh-ACO1 and Mh-ACO2, that participate in banana fruit ripening. To better understand the physiological functions of Mh-ACO1 and Mh-ACO2, two hairpin-type siRNA expression vectors targeting both the Mh-ACO1 and Mh-ACO2 were constructed and incorporated into the banana genome by Agrobacterium-mediated transformation. The generation of Mh-ACO1 and Mh-ACO2 RNAi transgenic banana plants was confirmed by Southern blot analysis. To gain insights into the functional diversity and complexity between Mh-ACO1 and Mh-ACO2, transcriptome sequencing of banana fruits using the Illumina next-generation sequencer was performed. A total of 32,093,976 reads, assembled into 88,031 unigenes for 123,617 transcripts were obtained. Significantly enriched Gene Oncology (GO) terms and the number of differentially expressed genes (DEGs) with GO annotation were 'catalytic activity' (1327, 56.4%), 'heme binding' (65, 2.76%), 'tetrapyrrole binding' (66, 2.81%), and 'oxidoreductase activity' (287, 12.21%). Real-time RT-PCR was further performed with mRNAs from both peel and pulp of banana fruits in Mh-ACO1 and Mh-ACO2 RNAi transgenic plants. The results showed that expression levels of genes related to ethylene signaling in ripening banana fruits were strongly influenced by the expression of genes associated with ethylene biosynthesis.

  17. Efficacy of Paecilomyces lilacinus in Suppressing Rotylenchulus reniformis on Tomato

    PubMed Central

    Walters, S. Alan; Barker, Kenneth R.

    1994-01-01

    Effects of rice-cultured Paecilomyces lilacinus on Rotylenchulus reniformis were studied in both greenhouse and field microplot tests with 'Rutgers' tomato. Numbers of R. reniformis were reduced (P ≤ 0.05) by P. lilacinus, with suppression in the initial greenhouse test ranging from 46 to 48% for two rice + P. lilacinus treatments; the rice-only treatment caused a nonsignificant reduction of 25%. In the second greenhouse test, total R. reniformis numbers were restricted (P ≤ 0.05) by 41% by the rice + P. lilacinus treatment, whereas the rice-only treatment had a slight negative effect (16% inhibition, NS). Total numbers of R. reniformis were suppressed 59 and 36% at midseason and harvest, respectively, in microplots infested with P. lilacinus. The fungus was recovered from egg masses via isolations in the second greenhouse test. Shoot and fruit growth of Rutgers tomato were restricted by R. reniformis in the initial greenhouse test irrespective of P. lilacinus treatment, but this nematode did not affect fresh shoot weights in the second greenhouse test, The nematode also limited shoot growth of Rutgers tomato in microplots, and P. lilacinus suppressed R. reniformis numbers sufficiently to prevent related impairment of shoot and fruit growth. This study indicated that P. lilacinus has detrimental effects on R. reniformis population development under both greenhouse and field microplot conditions. PMID:19279933

  18. Intestinal Enterobacteriaceae that Protect Nematodes from the Effects of Benzimidazoles

    PubMed Central

    Whittaker, John H; Robertson, Alan P; Kimber, Michael J; Day, Tim A; Carlson, Steve A

    2016-01-01

    The objective of this study was to investigate an interaction between nematodes and gut Enterobacteriaceae that use benzimidazoles as a carbon source. By addressing this objective, we identified an anthelmintic resistance-like mechanism for gastrointestinal nematodes. We isolated 30 gut bacteria (family Enterobacteriaceae) that subsist on and putatively catabolize benzimidazole-class anthelmintics. C. elegans was protected from the effects of benzimidazoles when co-incubated with these Enterobacteriaceae that also protect adult ascarids from the effects of albendazole. This bacterial phenotype represents a novel mechanism by which gastrointestinal nematodes are potentially spared from the effects of benzimidazoles, without any apparent fitness cost to the parasite. PMID:28066686

  19. Biocontrol: Bacillus penetrans and Related Parasites of Nematodes

    PubMed Central

    Sayre, R. M.

    1980-01-01

    Bacillus penetrans Mankau, 1975, previously described as Duboscqia penetrans Thorne 1940, is a candidate agent for biocontrol of nematodes. This review considers the life stages of this bacterium: vegetative growth phase, colony fragmentation, sporogenesis, soil phase, spore attachment, and penetration into larvae of root-knot nematodes. The morphology of the microthallus colonies and the unusual external features of the spore are discussed. Taxonomic affinities with the actinomycetes, particularly with the genus Pasteuria, are considered. Also discussed are other soil bacterial species that are potential biocontrol agents. Products of their bacterial fermentation in soil are toxic to nematodes, making them effective biocontrol agents. PMID:19300701

  20. de novo analysis and functional classification of the transcriptome of the root lesion nematode, Pratylenchus thornei, after 454 GS FLX sequencing.

    PubMed

    Nicol, Paul; Gill, Reetinder; Fosu-Nyarko, John; Jones, Michael G K

    2012-01-01

    The migratory endoparasitic root lesion nematode Pratylenchus thornei is a major pest of the cereals wheat and barley. In what we believe to be the first global transcriptome analysis for P. thornei, using Roche GS FLX sequencing, 787,275 reads were assembled into 34,312 contigs using two assembly programs, to yield 6,989 contigs common to both. These contigs were annotated, resulting in functional assignments for 3,048. Specific transcripts studied in more detail included carbohydrate active enzymes potentially involved in cell wall degradation, neuropeptides, putative plant nematode parasitism genes, and transcripts that could be secreted by the nematode. Transcripts for cell wall degrading enzymes were similar to bacterial genes, suggesting that they were acquired by horizontal gene transfer. Contigs matching 14 parasitism genes found in sedentary endoparasitic nematodes were identified. These genes are thought to function in suppression of host defenses and in feeding site development, but their function in P. thornei may differ. Comparison of the common contigs from P. thornei with other nematodes showed that 2,039 were common to sequences of the Heteroderidae, 1,947 to the Meloidogynidae, 1,218 to Radopholus similis, 1,209 matched expressed sequence tags (ESTs) of Pratylenchus penetrans and Pratylenchus vulnus, and 2,940 to contigs of Pratylenchus coffeae. There were 2,014 contigs common to Caenarhabditis elegans, with 15.9% being common to all three groups. Twelve percent of contigs with matches to the Heteroderidae and the Meloidogynidae had no homology to any C. elegans protein. Fifty-seven percent of the contigs did not match known sequences and some could be unique to P. thornei. These data provide substantial new information on the transcriptome of P. thornei, those genes common to migratory and sedentary endoparasitic nematodes, and provide additional understanding of genes required for different forms of parasitism. The data can also be used to

  1. Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi.

    PubMed

    Hwang, Chin-Feng; Williamson, Valerie M

    2003-06-01

    The root-knot nematode resistance gene Mi from tomato encodes a nucleotide-binding/leucine-rich repeat (NB/LRR) protein with a novel amino-terminal domain compared to related disease-resistance genes. The closely linked paralog Mi-1.1, which does not confer nematode resistance, encodes a protein 91% identical to the functional copy, Mi-1.2. The chimeric construct Mi-DS3, which encodes the 161 amino-terminal residues from Mi-1.1 fused to the remainder of Mi-1.2, induces localized necrosis when transiently expressed in Nicotiana benthamiana leaves. We produced mutant constructs that exchanged sequences encoding each of the 40 amino acid differences from the Mi-1.1 LRR region into Mi-DS3 and into Mi-1.2. For 23 of the substitutions, necrosis was lost upon transient expression of the mutated Mi-DS3 in N. benthamiana, and nematode resistance was lost when the altered Mi-1.2 was expressed in the tomato roots. One substitution, R961D, failed to give Mi-DS3-induced necrosis, but produced a dominant lethal phenotype when introduced into Mi-1.2. This gain-of-function phenotype was suppressed by co-expression with the amino-terminal region of Mi-1.1, suggesting that residue 961 is critical for negative regulation by the corresponding N-terminal region. Substitutions of Mi-1.1 residues 984-986 retained the ability to cause necrosis in Mi-DS3, but resulted in loss-of-nematode resistance in Mi-1.2, suggesting that these residues are essential for nematode recognition. None of the loss-of-function mutations in Mi-1.2 had a dominant negative phenotype. These results indicate that the Mi-1.2 LRR is involved in regulation of the transmission of the resistance response as well as in recognition of the nematode.

  2. The effects of root-knot nematode infection and mi-mediated nematode resistance in tomato on plant fitness.

    PubMed

    Corbett, Brandon P; Jia, Lingling; Sayler, Ronald J; Arevalo-Soliz, Lirio Milenka; Goggin, Fiona

    2011-06-01

    The Mi-1.2 resistance gene in tomato (Solanum lycopersicum) confers resistance against several species of root-knot nematodes (Meloidogyne spp.). This study examined the impact of M. javanica on the reproductive fitness of near-isogenic tomato cultivars with and without Mi-1.2 under field and greenhouse conditions. Surprisingly, neither nematode inoculation or host plant resistance impacted the yield of mature fruits in field microplots (inoculum=8,000 eggs/plant), or fruit or seed production in a follow-up greenhouse bioassay conducted with a higher inoculum level (20,000 eggs/plant). However, under heavy nematode pressure (200,000 eggs/plant), greenhouse-grown plants carrying Mi-1.2 had more than ten-fold greater fruit production than susceptible plants and nearly forty-fold greater estimated lifetime seed production, confirming prior reports of the benefits of Mi-1.2. In all cases Mi-mediated resistance significantly reduced nematode reproduction. These results indicated that tomato can utilize tolerance mechanisms to compensate for moderate levels of nematode infection, but that the Mi-1.2 resistance gene confers a dramatic fitness benefit under heavy nematode pressure. No significant cost of resistance was detected in the absence of nematode infection.

  3. Effects of catechin polyphenols and preparations from the plant-parasitic nematode Heterodera glycines on protease activity and behavior in three nematode species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protease activities in preparations from the plant-parasitic nematodes Heterodera glycines and Meloidogyne incognita and the free-living nematode Panagrellus redivivus were inhibited by exposure to a series of 8 catechin polyphenol analogs, (+)-catechin, (-)- epicatechin (EC), (-)-gallocatechin (GC)...

  4. Development of VNTR Markers to Assess Genetic Diversity of Mycosphaerella Fijiensis, the Causal Agent of Black Leaf Streak Disease in Bananas (Musa spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycosphaerella fijiensis is the causal agent of black leaf streak (BLS) disease in bananas. This pathogen threatens global banana production as the main export cultivars are highly susceptible. As a consequence, commercial banana plantations must be protected chemically with fungicides; up to 40 app...

  5. Development of a genetic linkage map of Mycosphaerella fijiensis, the causal agent of black leaf streak disease in bananas (Musa spp.) using SSR and DArT markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycosphaerella fijiensis is the causal agent of black leaf streak (BLS) disease in bananas. This pathogen threatens global banana production as the main export cultivars are highly susceptible. As a consequence, commercial banana plantations must be protected chemically with fungicides; up to 40 app...

  6. Nematode Root Herbivory in Tomato Increases Leaf Defenses and Reduces Leaf Miner Oviposition and Performance.

    PubMed

    Arce, Carla C M; Machado, Ricardo A R; Ribas, Natália S; Cristaldo, Paulo F; Ataíde, Lívia M S; Pallini, Ângelo; Carmo, Flávia M; Freitas, Leandro G; Lima, Eraldo

    2017-02-01

    The outcome of plant-mediated interactions among herbivores from several feeding guilds has been studied intensively. However, our understanding on the effects of nematode root herbivory on leaf miner oviposition behavior and performance remain limited. In this study, we evaluated whether Meloidogyne incognita root herbivory affects Tuta absoluta oviposition preference on Solanum lycopersicum plants and the development of the resulting offspring. To investigate the M. incognita-herbivory induced plant systemic responses that might explain the observed biological effects, we measured photosynthetic rates, leaf trypsin protease inhibitor activities, and analyzed the profile of volatiles emitted by the leaves of root-infested and non-infested plants. We found that T. absoluta females avoided laying eggs on the leaves of root-infested plants, and that root infestation negatively affected the pupation process of T. absoluta. These effects were accompanied by a strong suppression of leaf volatile emissions, a decrease in photosynthetic rates, and an increase in the activity of leaf trypsin protease inhibitors. Our study reveals that root attack by nematodes can shape leaf physiology, and thereby increases plant resistance.

  7. A Nematode Growth Factor from Baker's Yeast

    PubMed Central

    Buecher, E. J.; Hansen, E. L.; Gottfried, T.

    1970-01-01

    An extract prepared from commercially available yeast supported maturation of the free-living nematode Caenorhabditis briggsae. The extract can be used to supplement a chemically defined medium or, after a limited dialysis, as a complete medium. Several biologically active fractions were prepared; those containing larger amounts of ribonucleic acid (RNA) had greater biological activity, the most active being a pellet resuspended after centrifugation at 30,000 × g for 30 min. This fraction could be substituted for serum in a medium which supports the maturation of the animal parasites Trichinella spiralis and Hymenolepis nana. Addition of protamine sulfate decreased the RNA content, leaving inactive protein fractions which could be reactivated by specific treatments that caused protein precipitation. It is postulated that biological activity is associated with protein sedimented with ribosomes. PMID:19322277

  8. MSP Dynamics and Retraction in Nematode Sperm

    NASA Astrophysics Data System (ADS)

    Wolgemuth, Charles W.

    2005-03-01

    Most eukaryotic cells can crawl over surfaces. In general, this motility requires three distinct actions: polymerization at the leading edge, adhesion to the substrate, and retraction at the rear. Recent in vitro experiments with extracts from spermatozoa from the nematode Ascaris suum suggest that retraction forces are generated by depolymerization of the Major Sperm Protein (MSP) cytoskeleton. Combining polymer entropy with a simple kinetic model for disassembly I propose a model for disassembly-induced retraction that fit the in vitro experimental data. This model explains the mechanism by which deconstruction of the cytoskeleton produces the force necessary to pull the cell body forward and suggest further experiments that can test the validity of the model.

  9. MSP dynamics and retraction in nematode sperm

    NASA Astrophysics Data System (ADS)

    Wolgemuth, Charles; Miao, Long; Vanderlinde, Orion; Roberts, Tom; Oster, George

    2005-03-01

    Most eukaryotic cells can crawl over surfaces. In general, this motility requires three distinct actions: polymerization at the leading edge, adhesion to the substrate, and retraction at the rear. Recent in vitro experiments with extracts from spermatozoa from the nematode Ascaris suum suggest that retraction forces are generated by depolymerization of the Major Sperm Protein (MSP) cytoskeleton. Combining polymer entropy with a simple kinetic model for disassembly I propose a model for disassembly-induced retraction that fit the in vitro experimental data. This model explains the mechanism by which deconstruction of the cytoskeleton produces the force necessary to pull the cell body forward and suggest further experiments that can test the validity of the model.

  10. Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt.

    PubMed

    Studholme, David J; Kemen, Eric; MacLean, Daniel; Schornack, Sebastian; Aritua, Valente; Thwaites, Richard; Grant, Murray; Smith, Julian; Jones, Jonathan D G

    2010-09-01

    Banana Xanthomonas wilt is a newly emerging disease that is currently threatening the livelihoods of millions of farmers in East Africa. The causative agent is Xanthomonas campestris pathovar musacearum (Xcm), but previous work suggests that this pathogen is much more closely related to species Xanthomonas vasicola than to X. campestris. We have generated draft genome sequences for a banana-pathogenic strain of Xcm isolated in Uganda and for a very closely related strain of X. vasicola pathovar vasculorum, originally isolated from sugarcane, that is nonpathogenic on banana. The draft sequences revealed overlapping but distinct repertoires of candidate virulence effectors in the two strains. Both strains encode homologues of the Pseudomonas syringae effectors HopW, HopAF1 and RipT from Ralstonia solanacearum. The banana-pathogenic and non-banana-pathogenic strains also differed with respect to lipopolysaccharide synthesis and type-IV pili, and in at least several thousand single-nucleotide polymorphisms in the core conserved genome. We found evidence of horizontal transfer between X. vasicola and very distantly related bacteria, including members of other divisions of the Proteobacteria. The availability of these draft genomes will be an invaluable tool for further studies aimed at understanding and combating this important disease.

  11. Soil water requirements of tissue-cultured Dwarf Cavendish banana ( Musa spp. L)

    NASA Astrophysics Data System (ADS)

    Shongwe, V. D.; Tumber, R.; Masarirambi, M. T.; Mutukumira, A. N.

    The banana is one of the most important fruit crops in the world. In terms of consumption, the banana fruit is ranked high yet there has not been much research particularly in relation to water requirements for propagules produced by tissue culture. In recent years, tissue culture banana planting material has become increasingly important due to its vigorous growth and high yields. The objective of this study was to investigate optimum soil water requirements of tissue-cultured banana. Dwarf Cavendish tissue-cultured plantlets grown in pots in a greenhouse were subjected to four irrigation regimes at 100% ETm, 85% ETm, 65% ETm, and 40% ETm. Plant parameters measured were leaf number, plant height, pseudo-stem girth, leaf length, leaf width, leaf area, leaf area index, leaf index, leaf colour, and plant vigour. Soil water potential measurements were also made over a three-month period. Differences between irrigating at 100% ETm and 85% ETm were not significantly ( P < 0.05) different. Both irrigation regimes resulted in significant ( P < 0.05) increases in leaf number, leaf length, leaf area, leaf area index, green leaf colour intensity, plant height, and plant height, compared to 65% and 40% ETm treatments. Pseudo-stem girth was highest from the 100% ETm compared to the other treatments. Economic yields of banana may be obtained with irrigation regimes ranging between 100% ETm and 85% ETm.

  12. Spatial and temporal variations in percolation fluxes in a tropical Andosol influenced by banana cropping patterns

    NASA Astrophysics Data System (ADS)

    Cattan, P.; Voltz, M.; Cabidoche, Y.-M.; Lacas, J.-G.; Sansoulet, J.

    2007-03-01

    SummarySpatial variability in percolation fluxes was studied in field plots cropped with banana plants, which induce very heterogeneous rainfall partitioning at the soil surface, with high subsequent infiltration in Andosols. Percolation fluxes were measured for just over a year at 1-7 day intervals in eight wick (WL) and gravity lysimeters (GL) that had been buried in the soil at a depth of 60 cm. The results revealed that WL captured unsaturated fluxes while GL only functioned after ponding occurred. The percolation flux measurements were highly biased with both systems, i.e. overpercolation with WL and underpercolation with GL. Percolation fluxes seemed, however, to be mainly unsaturated in the soil types studied. High percolation flux variability was noted on a plot scale, which could be explained by the vegetation structure: total percolation flux (WL) was 2.1-fold higher under banana plants; saturated percolation flux (GL) was 7-fold higher under banana plants and almost absent between banana plants. Eighty-eight per cent of the total variance in percolation flux could be explained by the rainfall intensity under the banana canopy, calculated while taking the rainfall partitioning by the vegetation and the initial water status into account. The number of lysimeters required for assessing percolation flux in a field plot can be reduced by taking the spatial patterns of the flux boundary conditions into account.

  13. Phenotypic and molecular characterization of Colletotrichum species associated with anthracnose of banana (Musa spp) in Malaysia.

    PubMed

    Intan Sakinah, M A; Suzianti, I V; Latiffah, Z

    2014-05-09

    Anthracnose caused by Colletotrichum species is a common postharvest disease of banana fruit. We investigated and identified Colletotrichum species associated with anthracnose in several local banana cultivars based on morphological characteristics and sequencing of ITS regions and of the β-tubulin gene. Thirty-eight Colletotrichum isolates were encountered in anthracnose lesions of five local banana cultivars, 'berangan', 'mas', 'awak', 'rastali', and 'nangka'. Based on morphological characteristics, 32 isolates were identified as Colletotrichum gloeosporioides and 6 isolates as C. musae. C. gloeosporioides isolates were divided into two morphotypes, with differences in colony color, shape of the conidia and growth rate. Based on ITS regions and β-tubulin sequences, 35 of the isolates were identified as C. gloeosporioides and only 3 isolates as C. musae; the percentage of similarity from BLAST ranged from 95-100% for ITS regions and 97-100% for β-tubulin. C. gloeosporioides isolates were more prevalent compared to C. musae. This is the first record of C. gloeosporioides associated with banana anthracnose in Malaysia. In a phylogenetic analysis of the combined dataset of ITS regions and β-tubulin using a maximum likelihood method, C. gloeosporioides and C. musae isolates were clearly separated into two groups. We concluded that C. gloeosporioides and C. musae isolates are associated with anthracnose in the local banana cultivars and that C. gloeosporioides is more prevalent than C. musae.

  14. Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain.

    PubMed

    Vishnevetsky, Jane; White, Thomas L; Palmateer, Aaron J; Flaishman, Moshe; Cohen, Yuval; Elad, Yigal; Velcheva, Margarita; Hanania, Uri; Sahar, Nachman; Dgani, Oded; Perl, Avihai

    2011-02-01

    The most devastating disease currently threatening to destroy the banana industry worldwide is undoubtedly Sigatoka Leaf spot disease caused by Mycosphaerella fijiensis. In this study, we developed a transformation system for banana and expressed the endochitinase gene ThEn-42 from Trichoderma harzianum together with the grape stilbene synthase (StSy) gene in transgenic banana plants under the control of the 35S promoter and the inducible PR-10 promoter, respectively. The superoxide dismutase gene Cu,Zn-SOD from tomato, under control of the ubiquitin promoter, was added to this cassette to improve scavenging of free radicals generated during fungal attack. A 4-year field trial demonstrated several transgenic banana lines with improved tolerance to Sigatoka. As the genes conferring Sigatoka tolerance may have a wide range of anti-fungal activities we also inoculated the regenerated banana plants with Botrytis cinerea. The best transgenic lines exhibiting Sigatoka tolerance were also found to have tolerance to B. cinerea in laboratory assays.

  15. Effect of banana powder (Musa sapientum var. paradisiaca) on gastric mucosal shedding.

    PubMed

    Mukhopadhyaya, K; Bhattacharya, D; Chakraborty, A; Goel, R K; Sanyal, A K

    1987-01-01

    Banana pulp powder (Musa sapientum Linn. var. paradisiaca) was studied for its effects on gastric mucosal resistance. Banana-treated (0.5 g/kg orally, twice daily for 3 days) rats of either sex showed: (i) a significant increase in the [3H]thymidine incorporation into mucosal cell DNA; (ii) a significant increase in the total carbohydrate (sum of total hexoses, hexosamine, fucose and sialic acid) content of gastric mucosa; (iii) a significant decrease in gastric juice DNA and protein; (iv) a significant increase in the total carbohydrates and carbohydrate/protein ratio of gastric juice. Aspirin treatment to rats caused similar effects as banana on the [3H]thymidine incorporation into mucosal cell DNA but showed opposite effects on the other parameters. These results suggest that banana treatment increased and aspirin decreased the gastric mucosal resistance as evidenced by a respective decrease and increase in gastric juice DNA, the latter serving as an index of the rate of mucosal shedding. Increased cellular mucus may be the factor for increased mucosal resistance. The results of the present study tend to confirm that plantain banana powder strengthens mucosal resistance and promotes the healing of ulcers.

  16. Oral immunogenicity of porcine reproductive and respiratory syndrome virus antigen expressed in transgenic banana.

    PubMed

    Chan, Hui-Ting; Chia, Min-Yuan; Pang, Victor Fei; Jeng, Chian-Ren; Do, Yi-Yin; Huang, Pung-Ling

    2013-04-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a persistent threat of economically significant influence to the swine industry worldwide. Recombinant DNA technology coupled with tissue culture technology is a viable alternative for the inexpensive production of heterologous proteins in planta. Embryogenic cells of banana cv. 'Pei chiao' (AAA) have been transformed with the ORF5 gene of PRRSV envelope glycoprotein (GP5) using Agrobacterium-mediated transformation and have been confirmed. Recombinant GP5 protein levels in the transgenic banana leaves were detected and ranged from 0.021%-0.037% of total soluble protein. Pigs were immunized with recombinant GP5 protein by orally feeding transgenic banana leaves for three consecutive doses at a 2-week interval and challenged with PRRSV at 7 weeks postinitial immunization. A vaccination-dependent gradational increase in the elicitation of serum and saliva anti-PRRSV IgG and IgA was observed. Furthermore, significantly lower viraemia and tissue viral load were recorded when compared with the pigs fed with untransformed banana leaves. The results suggest that transgenic banana leaves expressing recombinant GP5 protein can be an effective strategy for oral delivery of recombinant subunit vaccines in pigs and can open new avenues for the production of vaccines against PRRSV.

  17. In vitro colonic fermentation and glycemic response of different kinds of unripe banana flour.

    PubMed

    Menezes, Elizabete Wenzel; Dan, Milana C T; Cardenette, Giselli H L; Goñi, Isabel; Bello-Pérez, Luis Arturo; Lajolo, Franco M

    2010-12-01

    This work aimed to study the in vitro colonic fermentation profile of unavailable carbohydrates of two different kinds of unripe banana flour and to evaluate their postprandial glycemic responses. The unripe banana mass (UBM), obtained from the cooked pulp of unripe bananas (Musa acuminata, Nanicão variety), and the unripe banana starch (UBS), obtained from isolated starch of unripe banana, plantain type (Musa paradisiaca) in natura, were studied. The fermentability of the flours was evaluated by different parameters, using rat inoculum, as well as the glycemic response produced after the ingestion by healthy volunteers. The flours presented high concentration of unavailable carbohydrates, which varied in the content of resistant starch, dietary fiber and indigestible fraction (IF). The in vitro colonic fermentation of the flours was high, 98% for the UBS and 75% for the UBM when expressed by the total amount of SCFA such as acetate, butyrate and propionate in relation to lactulose. The increase in the area under the glycemic curve after ingestion of the flours was 90% lower for the UBS and 40% lower for the UBM than the increase produced after bread intake. These characteristics highlight the potential of UBM and UBS as functional ingredients. However, in vivo studies are necessary in order to evaluate the possible benefit effects of the fermentation on intestinal health.

  18. Immunodiagnosis of episomal Banana streak MY virus using polyclonal antibodies to an expressed putative coat protein.

    PubMed

    Sharma, Susheel Kumar; Kumar, P Vignesh; Baranwal, Virendra Kumar

    2014-10-01

    A cryptic Badnavirus species complex, known as banana streak viruses (BSV) poses a serious threat to banana production and genetic improvement worldwide. Due to the presence of integrated BSV sequences in the banana genome, routine detection is largely based on serological and nucleo-serological diagnostic methods which require high titre specific polyclonal antiserum. Viral structural proteins like coat protein (CP) are the best target for in vitro expression, to be used as antigen for antiserum production. However, in badnaviruses precise CP sequences are not known. In this study, two putative CP coding regions (p48 and p37) of Banana streak MY virus (BSMYV) were identified in silico by comparison with caulimoviruses, retroviruses and Rice tungro bacilliform virus. The putative CP coding region (p37) was in vitro expressed in pMAL system and affinity purified. The purified fusion protein was used as antigen for raising polyclonal antiserum in rabbit. The specificity of antiserum was confirmed in Western blots, immunosorbent electron microscopy (ISEM) and antigen coated plate-enzyme linked immunosorbent assay (ACP-ELISA). The antiserum (1:2000) was successfully used in ACP-ELISA for specific detection of BSMYV infection in field and tissue culture raised banana plants. The antiserum was also utilized in immuno-capture PCR (IC-PCR) based indexing of episomal BSMYV infection. This is the first report of in silico identification of putative CP region of BSMYV, production of polyclonal antiserum against recombinant p37 and its successful use in immunodetection.

  19. Sensitization from chestnuts and bananas in patients with urticaria and anaphylaxis from contact with latex.

    PubMed

    Fernández de Corres, L; Moneo, I; Muñoz, D; Bernaola, G; Fernández, E; Audicana, M; Urrutia, I

    1993-01-01

    We present eight patients allergic to latex and fruit (chestnut and banana), seven of whom are women, and aged 17 to 42 years (mean 25 years). Four had family and five personal atopic histories. The total IgE varied from 41 to 520 Ku/L (mean 263). The symptoms followed ingestion of fruit (anaphylaxis) in four patients and contact with rubber (contact urticaria and anaphylaxis) in the other four. Skin prick test (SPT) with latex and radioallergosorbent test to latex were positive in all the patients. Histamine release (HR) to latex was carried out on six patients and was positive in three. In the six patients with symptoms after having eaten chestnuts the SPT was positive and specific IgE was detected in five of them. Histamine release to chestnuts was positive in three of the six patients tested and one of them (-SPT and + IgE) tolerated the fruit. Two out of five patients with symptomatic banana allergy had negative SPT with banana while the test was positive in one patient who tolerated this fruit, this being the only case with specific IgE to banana. Histamine release with banana was only positive in one case. The important correlation between SPT, RAST, and HR results to latex and chestnut together with the total inhibition of the chestnut RAST with a serum pool by preincubation with latex suggests cross-reactivity among these allergens.

  20. Carbon footprint of premium quality export bananas: case study in Ecuador, the world's largest exporter.

    PubMed

    Iriarte, Alfredo; Almeida, Maria Gabriela; Villalobos, Pablo

    2014-02-15

    Nowadays, the new international market demands challenge the food producing countries to include the measurement of the environmental impact generated along the production process for their products. In order to comply with the environmentally responsible market requests the measurement of the greenhouse gas emissions of Ecuadorian agricultural goods has been promoted employing the carbon footprint concept. Ecuador is the largest exporter of bananas in the world. Within this context, this study is a first assessment of the carbon footprint of the Ecuadorian premium export banana (Musa AAA) using a considerable amount of field data. The system boundaries considered from agricultural production to delivery in a European destination port. The data collected over three years permitted identifying the hot spot stages. For the calculation, the CCaLC V3.0 software developed by the University of Manchester is used. The carbon footprint of the Ecuadorian export banana ranged from 0.45 to 1.04 kg CO2-equivalent/kg banana depending on the international overseas transport employed. The principal contributors to the carbon footprint are the on farm production and overseas transport stages. Mitigation and reduction strategies were suggested for the main emission sources in order to achieve sustainable banana production.