Sample records for nendo chodendo denryoku

  1. Site-Directed Mutagenesis of the Nidovirus Replicative Endoribonuclease NendoU Exerts Pleiotropic Effects on the Arterivirus Life Cycle

    PubMed Central

    Posthuma, Clara C.; Nedialkova, Danny D.; Zevenhoven-Dobbe, Jessika C.; Blokhuis, Jeroen H.; Gorbalenya, Alexander E.; Snijder, Eric J.


    The highly conserved NendoU replicative domain of nidoviruses (arteriviruses, coronaviruses, and roniviruses) belongs to a small protein family whose cellular branch is prototyped by XendoU, a Xenopus laevis endoribonuclease involved in nucleolar RNA processing. Recently, sequence-specific in vitro endoribonuclease activity was demonstrated for the NendoU-containing nonstructural protein (nsp) 15 of several coronaviruses. To investigate the biological role of this novel enzymatic activity, we have characterized a comprehensive set of arterivirus NendoU mutants. Deleting parts of the NendoU domain from nsp11 of equine arteritis virus was lethal. Site-directed mutagenesis of conserved residues exerted pleiotropic effects. In a first-cycle analysis, replacement of two conserved Asp residues in the C-terminal part of NendoU rendered viral RNA synthesis and virus production undetectable. In contrast, mutagenesis of other conserved residues, including two putative catalytic His residues that are absolutely conserved in NendoU and cellular homologs, produced viable mutants displaying reduced plaque sizes (20 to 80% reduction) and reduced yields of infectious progeny of up to 5 log units. A more detailed analysis of these mutants revealed a moderate reduction in RNA synthesis, with subgenomic RNA synthesis consistently being more strongly affected than genome replication. Our data suggest that the arterivirus nsp11 is a multifunctional protein with a key role in viral RNA synthesis and additional functions in the viral life cycle that are as yet poorly defined. PMID:16439522

  2. Structural Biology of the Arterivirus nsp11 Endoribonucleases.


    Zhang, Manfeng; Li, Xiaorong; Deng, Zengqin; Chen, Zhenhang; Liu, Yang; Gao, Yina; Wu, Wei; Chen, Zhongzhou


    Endoribonuclease (NendoU) is unique and conserved as a major genetic marker in nidoviruses that infect vertebrate hosts. Arterivirus nonstructural protein 11 (nsp11) was shown to have NendoU activity and play essential roles in the viral life cycle. Here, we report three crystal structures of porcine reproductive and respiratory syndrome virus (PRRSV) and equine arteritis virus (EAV) nsp11 mutants. The structures of arterivirus nsp11 contain two conserved compact domains: the N-terminal domain (NTD) and C-terminal domain (CTD). The structures of PRRSV and EAV endoribonucleases are similar and conserved in the arterivirus, but they are greatly different from that of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses (CoV), representing important human pathogens in the Nidovirales order. The catalytic center of NendoU activity is located in the CTD, where a positively charged groove is next to the key catalytic residues conserved in nidoviruses. Although the NTD is nearly identical, the catalytic region of the arterivirus nsp11 family proteins is remarkably flexible, and the oligomerization may be concentration dependent. In summary, our structures provide new insight into this key multifunctional NendoU family of proteins and lay a foundation for better understanding of the molecular mechanism and antiviral drug development.

  3. Crystal Structure of a Monomeric Form of Severe Acute Respiratory Syndrome Coronavirus Endonuclease Nsp15 Suggests a Role for Hexamerization As An Allosteric Switch

    SciTech Connect

    Joseph, J.S.; Saikatendu, K.S.; Subramanian, V.; Neuman, B.W.; Buchmeier, M.J.; Stevens, R.C.; Kuhn, P.; /Scripps Res. Inst.


    Mature nonstructural protein-15 (nsp15) from the severe acute respiratory syndrome coronavirus (SARS-CoV) contains a novel uridylate-specific Mn{sup 2+}-dependent endoribonuclease (NendoU). Structure studies of the full-length form of the obligate hexameric enzyme from two CoVs, SARS-CoV and murine hepatitis virus, and its monomeric homologue, XendoU from Xenopus laevis, combined with mutagenesis studies have implicated several residues in enzymatic activity and the N-terminal domain as the major determinant of hexamerization. However, the tight link between hexamerization and enzyme activity in NendoUs has remained an enigma. Here, we report the structure of a trimmed, monomeric form of SARS-CoV nsp15 (residues 28 to 335) determined to a resolution of 2.9 Angstroms. The catalytic loop (residues 234 to 249) with its two reactive histidines (His 234 and His 249) is dramatically flipped by {approx}120 degrees into the active site cleft. Furthermore, the catalytic nucleophile Lys 289 points in a diametrically opposite direction, a consequence of an outward displacement of the supporting loop (residues 276 to 295). In the full-length hexameric forms, these two loops are packed against each other and are stabilized by intimate intersubunit interactions. Our results support the hypothesis that absence of an adjacent monomer due to deletion of the hexamerization domain is the most likely cause for disruption of the active site, offering a structural basis for why only the hexameric form of this enzyme is active.

  4. Discovery of a novel nidovirus in cattle with respiratory disease

    PubMed Central

    Sameroff, Stephen; Hesse, Richard A.; Hause, Ben M.; Desai, Aaloki; Jain, Komal; Ian Lipkin, W.


    The family Coronaviridae represents a diverse group of vertebrate RNA viruses, all with genomes greater than 26 000 nt. Here, we report the discovery and genetic characterization of a novel virus present in cattle with respiratory disease. Phylogenetic characterization of this virus revealed that it clusters within the subfamily Torovirinae, in the family Coronaviridae. The complete genome consists of only 20 261 nt and represents the smallest reported coronavirus genome. We identified seven ORFs, including the canonical nidovirus ORF1a and ORF1b. Analysis of polyprotein 1ab revealed that this virus, tentatively named bovine nidovirus (BoNV), shares the highest homology with the recently described python-borne nidoviruses and contains several conserved nidovirus motifs, but does not encode the NendoU or O-MT domains that are present in other viruses within the family Coronaviridae. In concert with its reduced genome, the atypical domain architecture indicates that this virus represents a unique lineage within the order Nidovirales. PMID:25918239

  5. Source of the 6 February 2013 Mw 8.0 Santa Cruz Islands Tsunami.

    NASA Astrophysics Data System (ADS)

    Romano, F.; Molinari, I.; Lorito, S.; Piatanesi, A.


    On February 6, 2013 a Mw8.0 interplate earthquake occurred in the Santa Cruz Islands region. The epicenter is located near a complex section of the Australia-Pacific plate boundary, where a short segment of dominantly strike-slip plate motion links the Solomon Trench to the New Hebrides Trench. In this region, the Australia plate subducts beneath the Pacific plate with a convergence rate of ~9cm/yr. This earthquake generated a tsunami that struck the city of Lata and several villages located on the Nendo island with tsunami height exceeding 11m (Fritz et al.,2014). The tsunami has been distinctly recorded by 5 DART buoys in the Pacific Ocean and by some tide-gauges at Solomon Islands, Fiji Islands, and New Caledonia. In this work we retrieve the source of the tsunami by inverting the signals recorded by both DART buoys and tide-gauges, and using an earthquake fault model that accounts for the variability of the subduction plate geometry. We compare and discuss our tsunamigenic slip model with previous coseismic slip models obtained by teleseismic data (Hayes et al.,2013) and telesismic data constrained by tsunami records (Lay et al.,2013). Our preferred tsunami source (maximum slip value of ~10m) is located southeast from the hypocenter and the slip direction is in agreement with the convergence direction that becomes progressively more oblique in the NW segment. We find a tsunami source roughly consistent to a possible source of low frequency radiation ( and/or to the region of aseismic slip argued by Hayes et al. (2013). However, we do not find significantly tsunamigenic slip in the region of seismic high frequency radiation around the hypocenter.

  6. A Dimerization-Dependent Mechanism Drives the Endoribonuclease Function of Porcine Reproductive and Respiratory Syndrome Virus nsp11

    PubMed Central

    Shi, Yuejun; Li, Youwen; Lei, Yingying; Ye, Gang; Shen, Zhou; Sun, Limeng; Luo, Rui; Wang, Dang; Fu, Zhen F.; Xiao, Shaobo


    structural analysis revealed NendoU active site residues, which are conserved throughout the order Nidovirales (families Arteriviridae and Coronaviridae) and the major determinants of dimerization (Ser74 and Phe76) in Arteriviridae. Importantly, these findings may provide a new structural basis for antiviral drug development. PMID:26912626

  7. Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits.


    Lau, Susanna K P; Woo, Patrick C Y; Yip, Cyril C Y; Fan, Rachel Y Y; Huang, Yi; Wang, Ming; Guo, Rongtong; Lam, Carol S F; Tsang, Alan K L; Lai, Kenneth K Y; Chan, Kwok-Hung; Che, Xiao-Yan; Zheng, Bo-Jian; Yuen, Kwok-Yung


    We describe the isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14 (RbCoV HKU14), from domestic rabbits. The virus was detected in 11 (8.1%) of 136 rabbit fecal samples by reverse transcriptase PCR (RT-PCR), with a viral load of up to 10(8) copies/ml. RbCoV HKU14 was able to replicate in HRT-18G and RK13 cells with cytopathic effects. Northern blotting confirmed the production of subgenomic mRNAs coding for the HE, S, NS5a, E, M, and N proteins. Subgenomic mRNA analysis revealed a transcription regulatory sequence, 5'-UCUAAAC-3'. Phylogenetic analysis showed that RbCoV HKU14 formed a distinct branch among Betacoronavirus subgroup A coronaviruses, being most closely related to but separate from the species Betacoronavirus 1. A comparison of the conserved replicase domains showed that RbCoV HKU14 possessed <90% amino acid identities to most members of Betacoronavirus 1 in ADP-ribose 1″-phosphatase (ADRP) and nidoviral uridylate-specific endoribonuclease (NendoU), indicating that RbCoV HKU14 should represent a separate species. RbCoV HKU14 also possessed genomic features distinct from those of other Betacoronavirus subgroup A coronaviruses, including a unique NS2a region with a variable number of small open reading frames (ORFs). Recombination analysis revealed possible recombination events during the evolution of RbCoV HKU14 and members of Betacoronavirus 1, which may have occurred during cross-species transmission. Molecular clock analysis using RNA-dependent RNA polymerase (RdRp) genes dated the most recent common ancestor of RbCoV HKU14 to around 2002, suggesting that this virus has emerged relatively recently. Antibody against RbCoV was detected in 20 (67%) of 30 rabbit sera tested by an N-protein-based Western blot assay, whereas neutralizing antibody was detected in 1 of these 20 rabbits.