Science.gov

Sample records for neon 22

  1. Mobilities of ground-state and metastable O/+/, O2/+/, O/2+/, and O2/2+/ ions in helium and neon

    NASA Astrophysics Data System (ADS)

    Johnsen, R.; Biondi, M. A.; Hayashi, M.

    1982-09-01

    The ionic mobilities of O(+), O2(+), O(2+), and O2(2+) in helium and neon have been measured using a selected-ion drift apparatus (SIDA). It is found that the mobilities of both O(+) and O2(+) ions in the metastable states (2D or 4Pi u) are measurably smaller than those of the same ions carried out by using known, state-selective ion-molecule reactions. A similar mobility differentiation of ground-state and metastable ions was not observed for the O(2+) and O2(2+) ions.

  2. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  3. Solar helium and neon in the Earth

    NASA Technical Reports Server (NTRS)

    Honda, M.; Mcdougall, I.; Patterson, D. B.

    1994-01-01

    Neon isotopic compositions in mantle-derived samples commonly are enriched in (20)Ne and (21)Ne relative to (22)Ne compared with atmospheric neon ((20)Ne/(22)Ne and (21)Ne/(22)Ne ratios in atmospheric neon are 9.8 and 0.029, respectively), together with significant primordial (3)He. Such results have been obtained on MORB's, intraplate plume-related oceanic island basalts, backarc basin basalts, mantle xenoliths, ancient diamonds and CO2 well gases (e.g., 1 - 8). The highest (20)Ne/(22)Ne ratio observed in MORB glasses (= 13.6 plus or minus 1.3 is close to the solar value (= 13.6, as observed in solar wind). In order to explain the enrichment of (20)Ne and (21)Ne relative to atmospheric neon for samples derived from the mantle, it is necessary to postulate the presence of at least two distinct non-atmospheric components. The two most likely candidates are solar and nucleogenic ((20)Ne/(22)Ne solar = 13.6 (21)Ne/(22)Ne solar = 0.032, (20)Ne/(22)Ne nucleogenic = 2.5 and (21)Ne/(22)Ne nucleogenic = 32). This is because solar neon is the only known component with a (20)Ne/(22)Ne ratio greater than both the atmospheric value and that observed in samples derived from the mantle. Nucleogenic neon is well known to elevate (21)Ne/(22)Ne ratios. Neon isotopic signatures observed in mantle-derived samples can be accounted for by mixing of the three neon end members: solar, nucleogenic and atmospheric.

  4. Infrared spectra and structures of the neutral and charged CrCO2 and Cr(CO2)2 isomers in solid neon.

    PubMed

    Zhang, Qingnan; Chen, Mohua; Zhou, Mingfei

    2014-08-07

    The reactions from codeposition of laser-ablated chromium atoms with carbon dioxide in excess neon are studied by infrared absorption spectroscopy. The species formed are identified by the effects of isotopic substitution on their infrared spectra. Density functional calculations are performed to support the spectral assignments and to interpret the geometric and electronic structures of the experimentally observed species. Besides the previously reported insertion products OCrCO and O2Cr(CO)2, the one-to-one Cr(CO2) complex and the one-to-two Cr(CO2)2 complex as well as the CrOCrCO and OCCrCO3 complexes are also formed. The Cr(CO2) complex is characterized to be side-on η(2)-C,O-coordinated. The Cr(CO2)2 complex is identified to involve a side-on η(2)-C,O-coordinated CO2 and an end-on η(1)-O-coordinated CO2. OCCrCO3 is a carbonate carbonyl complex predicted to have a planar structure with a η(2)-O,O-coordinated carbonate ligand. The CrOCrCO complex is predicted to be linear with a high-spin ground state. Besides the neutral molecules, charged species are also produced. The Cr(CO2)(+) and Cr(CO2)2(+) cation complexes are characterized to have linear end-on η(1)-O-coordinated structures with blue-shifted antisymmetric CO2 stretching vibrational frequencies. The OCrCO(-) anion is bent with the Cr-O and CO stretching frequencies red-shifted from those of OCrCO neutral molecule.

  5. Portable neon purification system

    SciTech Connect

    Richardson, R.A.; Schmitt, R.L.

    1995-08-01

    This paper describes the principle design features of a portable neon purification system and the results of the system performance testing. Neon gas replaces air in the Ring Imaging Cherenkov detector without using vacuum, in experiment E781(SELEX) at Fermilab. The portable neon purification system purifies neon gas by, first purging air with CO{sub 2}, freezing the CO{sub 2}, then cryoadsorbing the remaining contaminants. The freezer removes carbon dioxide from a neon gas mixture down to a maximum concentration of 500 parts-per-million (ppm). The charcoal bed adsorber removes nitrogen from neon gas down to a maximum concentration of 100 ppm. The original RICH vessel was designed to hold vacuum but its photomultiplier tube plates were not.

  6. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    PubMed

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  7. Relativistic distorted wave collision strengths for excitation to the 88 n = 3 and n = 4 levels in all 71 neon-like ions with 22 less than or equal to Z less than or equal to 92

    SciTech Connect

    Zhang, Hong Lin; Sampson, D. H.

    1989-02-01

    Relativistic distorted wave collision strengths are given for the 88 possible transitions between the ground level and the excited levels with n = 3 and n = 4 in the 71 neon-like ions with nuclear charge number Z in the range 22 less than or equal to Z less than or equal to 92. The calculations are made for the six final, or scattered, electron energies E' = 0.008, 0.04, 0.10, 0.21, 0.41 and 0.75, where E' is in units of Z/sub eff//sup 2/ Rydbergs with Z/sub eff/ = Z /minus/ 7.5. In addition, the transition energies and electric dipole oscillator strengths are given. 10 refs., 4 tabs.

  8. Positron excitation of neon

    NASA Technical Reports Server (NTRS)

    Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.

  9. Fractionation of terrestrial neon by hydrodynamic hydrogen escape from ancient steam atmospheres

    NASA Technical Reports Server (NTRS)

    Zahnle, K.

    1991-01-01

    Atmospheric neon is isotopically heavier than mantle neon. By contrast, nonradiogenic mantle Ar, Kr, and Xe are not known to differ from the atmosphere. These observations are most easily explained by selective neon loss to space; however, neon is much too massive to escape from the modern atmosphere. Steam atmospheres are a likely, if intermittent, feature of the accreting Earth. They occur because, on average, the energy liberated during accretion places Earth above the runaway greenhouse threshold, so that liquid water is not stable at the surface. It is found that steam atmospheres should have lasted some ten to fifty million years. Hydrogen escape would have been vigorous, but abundant heavy constituents would have been retained. There is no lack of plausible candidates; CO2, N2, or CO could all suffice. Neon can escape because it is less massive than any of the likely pollutants. Neon fractionation would have been a natural byproduct. Assuming that the initial Ne-20/Ne-22 ratio was solar, it was found that it would have taken some ten million years to effect the observed neon fractionation in a 30 bar steam atmosphere fouled with 10 bars of CO. Thicker atmospheres would have taken longer; less CO, shorter. This mechanism for fractionating neon has about the right level of efficiency. Because the lighter isotope escapes much more readily, total neon loss is pretty minimal; less than half of the initial neon endowment escapes.

  10. The (CH2)2O-H2O hydrogen bonded complex. Ab Initio calculations and Fourier transform infrared spectroscopy from neon matrix and a new supersonic jet experiment coupled to the infrared AILES beamline of synchrotron SOLEIL.

    PubMed

    Cirtog, M; Asselin, P; Soulard, P; Tremblay, B; Madebène, B; Alikhani, M E; Georges, R; Moudens, A; Goubet, M; Huet, T R; Pirali, O; Roy, P

    2011-03-31

    A series of hydrogen bonded complexes involving oxirane and water molecules have been studied. In this paper we report on the vibrational study of the oxirane-water complex (CH(2))(2)O-H(2)O. Neon matrix experiments and ab initio anharmonic vibrational calculations have been performed, providing a consistent set of vibrational frequencies and anharmonic coupling constants. The implementation of a new large flow supersonic jet coupled to the Bruker IFS 125 HR spectrometer at the infrared AILES beamline of the French synchrotron SOLEIL (Jet-AILES) enabled us to record first jet-cooled Fourier transform infrared spectra of oxirane-water complexes at different resolutions down to 0.2 cm(-1). Rovibrational parameters and a lower bound of the predissociation lifetime of 25 ps for the v(OH)(b) = 1 state have been derived from the rovibrational analysis of the ν(OH)(b) band contour recorded at respective rotational temperatures of 12 K (Jet-AILES) and 35 K (LADIR jet).

  11. Diffusion of neon in white dwarf stars.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2010-12-01

    Sedimentation of the neutron rich isotope 22Ne may be an important source of gravitational energy during the cooling of white dwarf stars. This depends on the diffusion constant for 22Ne in strongly coupled plasma mixtures. We calculate self-diffusion constants D(i) from molecular dynamics simulations of carbon, oxygen, and neon mixtures. We find that D(i) in a mixture does not differ greatly from earlier one component plasma results. For strong coupling (coulomb parameter Γ> few), D(i) has a modest dependence on the charge Z(i) of the ion species, D(i)∝Z(i)(-2/3). However, D(i) depends more strongly on Z(i) for weak coupling (smaller Γ). We conclude that the self-diffusion constant D(Ne) for 22Ne in carbon, oxygen, and neon plasma mixtures is accurately known so that uncertainties in D(Ne) should be unimportant for simulations of white dwarf cooling.

  12. Neon Isotope Fractionation in Ice Cores at Close-Off Depth

    NASA Astrophysics Data System (ADS)

    Liang, C.; Severinghaus, J. P.

    2015-12-01

    Analyzing trapped air bubbles in glacial ice is a well-established and useful method to reconstruct past atmospheric gas concentrations. However, trapped gas composition can be affected by fractionation during the closure of the air bubbles, complicating the reconstruction. Gases such as dioxygen (O2) and dihydrogen (H2) are known to leak out of the bubbles by permeation through the ice lattice at the close-off depth,where firn turns into ice. This process also can cause isotope fractionation, which obscures the past atmospheric isotope ratios in air bubbles in glacial ice. In order to establish the most accurate measurements of past atmospheric content, we need very detailed understanding of the permeation leakage mechanism in order to establish possible corrections. In this study, we propose the use of neon stable isotopes (neon-22 and neon-20) to place constraints on the mechanism of permeation leakage. Neon isotopes are an ideal system to explore because neon has a constant atmospheric isotope ratio, and thus only is affected by close-off fractionation. Neon permeation occurs via velocity-dependent hopping between sites within the ice lattice, because the neon atom is smaller than the critical size (3.6 Å) of the opening in the lattice. Theory predicts that neon isotope fractionation will occur due to the lower velocity of the heavier isotope, but this has never been experimentally verified and the theory is unable to quantitatively predict the magnitude of the fractionation. We will present the first results of high-precision neon isotope (22Ne/20Ne) measurements made in air pumped from the firm-to-ice transition in the Greenland Ice Sheet, where actively closing air bubbles drive permeation leakage. By measuring this natural neon isotope fractionation, we hope to learn about the mass dependence of the leakage mechanism and develop a more quantitative theory that is generalizable to biogeochemically- and climatically-active gases.

  13. Emission anomalous optical magnetic resonances in a mixture of even neon isotopes

    SciTech Connect

    Saprykin, E. G.; Sorokin, V. A. Shalagin, A. M.

    2013-04-15

    Unusual resonances have been detected in the dependence of the discharge glow in neon on the longitudinal magnetic field. The resonances appear in fairly high magnetic fields and are observed only at low gas pressures and exclusively in a mixture of {sup 20}Ne and {sup 22}Ne isotopes. This phenomenon is an evidence of collective resonant radiation processes involving atoms of different neon isotopes.

  14. A Closed Neon Liquefier System for Testing Superconducting Devices

    NASA Astrophysics Data System (ADS)

    Bianchetti, M.; Al-Mosawi, M. K.; Yang, Y.; Beduz, C.; Giunchi, G.

    2006-04-01

    A Neon liquefier system has been developed by Southampton University (UK) and EDISON (Italy) with the aim to provide a facility for testing HTS superconducting devices using Magnesium Diboride materials, in the range 25-30K. The system consists of a liquid Neon cryostat coupled to a two stages cryocooler and a recovery system. The first stage of the cryocooler is connected to the thermal shield of the cryostat and a copper station positioned at mid point along the access neck to the liquid Neon bath to reduce heat leak and to provide pre-cooling of samples. The second stage, capable of 20W cooling power at 22K, is used to provide the cooling power for liquefaction and to refrigerate the liquid Neon bath and the superconducting device/sample during the steady state operation. The recovery system has been designed to automatically compress excess boil-off generated by a quench or a transient heating into a storage gas container. Transport measurement up to 900A can be carried out in the Ne cryostat using purposely build hybrid current leads. These leads have a copper upper section cooled by liquid Nitrogen and a superconducting lower section of Ag/AuBi2223 tapes. In this paper we report on the performance of the system and the initial measurement of superconducting samples.

  15. Neon isotopes show that Earth was accreted from irradiated material

    NASA Astrophysics Data System (ADS)

    Moreira, M. A.

    2015-12-01

    Since the 1980s, the notion that the Earth's mantle has a "solar" isotopic signature for neon has been favoured. Indeed, the 20Ne/22Ne ratio is above 12.5 in the mantle sources of OIB and MORB, close to the solar composition (13.4 for the Sun or 13.8 for the solar wind) and different from both atmospheric and chondritic compositions (Phase Q, Neon A). The most well accepted process invoked to explain this observed solar composition in the mantle is dissolution into a magma ocean of solar gases captured by gravity around the proto-Earth. However, Earth was accreted after gas from the proto-planetary disk had evaporated, suggesting that Earth itself could not have captured such a solar primordial atmosphere. Only planetary embryos were formed when the gas was still present in the disk. However, these planetary embryos with the mass of Mars are not massive enough to capture a solar dense atmosphere able to incorporate enough neon into the mantle. New estimates of the neon isotopic compositions of both the Earth's mantle and of the implanted solar wind into grains suggest that the origin of the neon on Earth is related to solar wind irradiation on μm grains before planetary accretion started and not dissolution. Although incorporation of solar ions by this process is only significant for very volatiles (depleted) elements, the irradiation by x-rays has important consequences for the bulk chemistry of irradiated grains as it has been demonstrated that it produces depletion in Mg and Si, relatively to O (e.g Bradley et al., 1994), a pattern also observed for the Bulk silicate Earth. References Bradley, J. (1994). "Chemically Anomalous, Preaccretionally irradiated Grains in Interplanetary fust from Comets." Science 265: 925-929.

  16. Rogue mantle helium and neon.

    PubMed

    Albarède, Francis

    2008-02-15

    The canonical model of helium isotope geochemistry describes the lower mantle as undegassed, but this view conflicts with evidence of recycled material in the source of ocean island basalts. Because mantle helium is efficiently extracted by magmatic activity, it cannot remain in fertile mantle rocks for long periods of time. Here, I suggest that helium with high 3He/4He ratios, as well as neon rich in the solar component, diffused early in Earth's history from low-melting-point primordial material into residual refractory "reservoir" rocks, such as dunites. The difference in 3He/4He ratios of ocean-island and mid-ocean ridge basalts and the preservation of solar neon are ascribed to the reservoir rocks being stretched and tapped to different extents during melting.

  17. Demonstrating Fluorescence with Neon Paper and Plastic

    ERIC Educational Resources Information Center

    Birriel, Jennifer J.; Roe, Clarissa

    2015-01-01

    Several papers in this journal have dealt with the fluorescence in orange neon plastic, olive oil, and soda. In each case, the fluorescent emission was excited by either green or violet-blue laser light. In this paper, we examine the fluorescent emission spectra of so-called neon colored papers and plastic clipboards available in department and…

  18. 21 CFR 868.1670 - Neon gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Neon gas analyzer. 868.1670 Section 868.1670 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1670 Neon gas analyzer. (a) Identification. A neon gas analyzer is a device intended to measure the concentration of neon in a gas mixture exhaled by...

  19. 21 CFR 868.1670 - Neon gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Neon gas analyzer. 868.1670 Section 868.1670 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1670 Neon gas analyzer. (a) Identification. A neon gas analyzer is a device intended to measure the concentration of neon in a gas mixture exhaled by...

  20. 21 CFR 868.1670 - Neon gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Neon gas analyzer. 868.1670 Section 868.1670 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1670 Neon gas analyzer. (a) Identification. A neon gas analyzer is a device intended to measure the concentration of neon in a gas mixture exhaled by...

  1. 21 CFR 868.1670 - Neon gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Neon gas analyzer. 868.1670 Section 868.1670 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1670 Neon gas analyzer. (a) Identification. A neon gas analyzer is a device intended to measure the concentration of neon in a gas mixture exhaled by...

  2. Chromatic induction in neon colour spreading.

    PubMed

    da Pos, Osvaldo; Bressan, Paola

    2003-03-01

    Neon colour spreading occurs when sections of a lattice are replaced by segments of a different colour. This colour appears to diffuse out of the segments, and produce a slightly tinted transparent surface floating above the lattice. In two of the four experiments reported here, observers varied the colour of an area in a test display, until it matched the neon colour perceived in a corresponding (illusory) area in a comparison display. We found that the neon colour is an additive mixture of the colour of the segments and the colour complementary to the lattice, as suggested by Bressan (Vision Research 35 (1995) 375). In the other two experiments, we separately manipulated the presence and alignment of lattice and segments, to test whether the neon effect is fully predicted by a combination of colour diffusion and simultaneous colour contrast. We found that the colour induced in a neon figure is more saturated than the colour induced in a comparable non-neon figure. We discuss the implications of these results on our current understanding of the mechanisms of neon colour spreading.

  3. Small scale demand type neon liquefaction plant

    NASA Technical Reports Server (NTRS)

    Dube, W. P.; Slifka, A. J.; Bitsy, R. M.; Sparks, L. L.; Johnson, K. B.

    1990-01-01

    Low-temperature measurement of the thermal conductivity of insulating materials is generally made using a boil-off calorimetry technique involving liquid hydrogen (LH2). Liquid neon (LNe) has nearly the same normal boiling point as LH2, but has a much larger heat of vaporization, allowing extended run times. The main drawback of using LNe has been its excessive cost; $170.00 versus $1.50/l for LH2 (1989 prices). A neon liquefaction plant has been designed and constructed to capture, purify, and refrigerate the neon boil-off from calorimetry experiments. Recycling the neon reduces operating costs to approximately $20/l. The system consists of a purification section, a heat exchanger, LNe and LH2 storage dewars, and a fully automated control system. After purification, neon is liquified in the heat exchanger by LH2 flowing countercurrently through stainless steel cooling coils. Hydrogen flow is automatically adjusted to keep the neon at its normal saturation temperature, 27 K. The liquid neon is then stored in a dewar placed directly below the heat exchanger.

  4. Helium-neon laser therapy in the treatment of hydroxyapatite orbital implant exposure: A superior option.

    PubMed

    Xu, Qi-Hua; Zhao, Chen; Zhu, Jian-Gang; Chen, Mei-Juan; Liu, Qing-Huai

    2015-09-01

    The aim of the present study was to evaluate the efficacy of helium-neon laser therapy in the treatment of hydroxyapatite orbital implant exposure and compare the results with those of a combined drugs and surgery regimen. A total of 70 patients with hydroxyapatite orbital implant exposure in 70 eyes were randomly divided into two groups: Helium-neon laser therapy (group A) and drugs plus surgery (group B). Each group contained 35 patients. The healing rates and times of the conjunctival wound were recorded and compared following helium-neon laser treatment or the drugs plus surgery regimen. Changes in the hydroxyapatite orbital implant prior to and following helium-neon laser irradiation were analyzed. A similar animal study was conducted using 24 New Zealand white rabbits, which received orbital implants and were then received drug treatment or helium-neon therapy. In the human experiment, the rates for conjunctival wound healing were 97.14% in group A and 74.29% in group B, with a significant difference between the groups (χ(2)=5.71, P<0.05). Patients with mild exposure were healed after 7.22±2.11 days of helium-neon laser therapy and 14.33±3.20 days of drugs plus surgery. A statistically significant difference was found between the groups (t=8.97, P<0.05). Patients with moderate to severe exposure were healed after 18.19±2.12 days of helium-neon laser therapy and 31.25±4.21 days of drugs plus surgery. The difference between the groups was statistically significant (t=7.91, P<0.05). Enhanced magnetic resonance imaging showed that the helium-neon laser therapy significantly promoted vascularization of the hydroxyapatite orbital implant. These results, combined with pathological findings in animals, which showed that a helium-neon laser promoted vascularization and had anti-inflammatory effects, suggest that helium-neon laser irradiation is an effective method for treating hydroxyapatite orbital implant exposure, thereby avoiding secondary surgery.

  5. NEON Citizen Science: Planning and Prototyping

    NASA Astrophysics Data System (ADS)

    Newman, S. J.; Henderson, S.; Gardiner, L. S.; Ward, D.; Gram, W.

    2011-12-01

    The National Ecological Observatory Network (NEON) will be a national resource for ecological research and education. NEON citizen science projects are being designed to increase awareness and educate citizen scientists about the impacts of climate change, land-use change, and invasive species on continental-scale ecological processes as well as expand NEON data collection capacity by enabling laypersons to collect geographically distributed data. The citizen science area of the NEON web portal will enable citizen scientists to collect, contribute, interpret, and visualize scientific data, as well as access training modules, collection protocols and targeted learning experiences related to citizen science project topics. For NEON, citizen science projects are a means for interested people to interact with and contribute to NEON science. Investigations at vast spatial and temporal scales often require rapid acquisition of large amounts of data from a geographically distributed population of "human sensors." As a continental-scale ecological observatory, NEON is uniquely positioned to develop strategies to effectively integrate data collected by non-scientists into scientific databases. Ultimately, we plan to work collaboratively to transform the practice of science to include "citizens" or non-scientists in the process. Doing science is not limited to scientists, and breaking down the barriers between scientists and citizens will help people better understand the power of using science in their own decision making. In preparation for fully developing the NEON citizen science program, we are partnering with Project BudBurst (PBB), a citizen science project focused on monitoring plant phenology. The educational goals of PBB are to: (1) increase awareness of climate change, (2) educate citizen scientists about the impacts of climate change on plants and the environment, and (3) increase science literacy by engaging participants in the scientific process. Phenology was

  6. Demonstrating Fluorescence with Neon Paper and Plastic

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer J.; Roe, Clarissa

    2015-09-01

    Several papers in this journal have dealt with the fluorescence in orange neon plastic, olive oil, and soda. In each case, the fluorescent emission was excited by either green or violet-blue laser light. In this paper, we examine the fluorescent emission spectra of so-called neon colored papers and plastic clipboards available in department and office supply stores. We also employ violet-blue and green laser pointers as excitation sources. We conclude with a brief discussion of neon pigments in terms of the "day glow" or "daylight fluorescence" phenomenon.

  7. Multistage Zeeman deceleration of metastable neon

    SciTech Connect

    Wiederkehr, Alex W.; Motsch, Michael; Hogan, Stephen D.; Andrist, Markus; Schmutz, Hansjuerg; Lambillotte, Bruno; Agner, Josef A.; Merkt, Frederic

    2011-12-07

    A supersonic beam of metastable neon atoms has been decelerated by exploiting the interaction between the magnetic moment of the atoms and time-dependent inhomogeneous magnetic fields in a multistage Zeeman decelerator. Using 91 deceleration solenoids, the atoms were decelerated from an initial velocity of 580 m/s to final velocities as low as 105 m/s, corresponding to a removal of more than 95% of their initial kinetic energy. The phase-space distribution of the cold, decelerated atoms was characterized by time-of-flight and imaging measurements, from which a temperature of 10 mK was obtained in the moving frame of the decelerated sample. In combination with particle-trajectory simulations, these measurements allowed the phase-space acceptance of the decelerator to be quantified. The degree of isotope separation that can be achieved by multistage Zeeman deceleration was also studied by performing experiments with pulse sequences generated for {sup 20}Ne and {sup 22}Ne.

  8. Capturing neon - the first experimental structure of neon trapped within a metal-organic environment.

    PubMed

    Wood, Peter A; Sarjeant, Amy A; Yakovenko, Andrey A; Ward, Suzanna C; Groom, Colin R

    2016-08-21

    Despite being the fifth most abundant element in the atmosphere, neon has never been observed in an organic or metal-organic environment. This study shows the adsorption of this highly unreactive element within such an environment and reveals the first crystallographic observation of an interaction between neon and a transition metal.

  9. NEON Citizen Science: Planning and Prototyping (Invited)

    NASA Astrophysics Data System (ADS)

    Gram, W.

    2010-12-01

    The National Ecological Observatory Network (NEON) will be a national resource for ecological research and education. NEON citizen science projects are being designed to increase awareness and educate citizen scientists about the impacts of climate change, land-use change, and invasive species on continental-scale ecological processes as well as expand NEON data collection capacity by enabling laypersons to collect geographically distributed data. The citizen science area of the NEON web portal will enable citizen scientists to collect, contribute, interpret, and visualize scientific data, as well as access training modules, collection protocols and targeted learning experiences related to citizen science project topics. For NEON, citizen science projects are a means for interested people to interact with and contribute to NEON science. Investigations at vast spatial and temporal scales often require rapid acquisition of large amounts of data from a geographically distributed population of “human sensors.” As a continental-scale ecological observatory, NEON is uniquely positioned to develop strategies to effectively integrate data collected by non-scientists into scientific databases. Ultimately, we plan to work collaboratively to transform the practice of science to include “citizens” or non-scientists in the process. Doing science is not limited to scientists, and breaking down the barriers between scientists and citizens will help people better understand the power of using science in their own decision making. In preparation for fully developing the NEON citizen science program, we are partnering with Project BudBurst (PBB), a citizen science project focused on monitoring plant phenology. The educational goals of PBB are to: (1) increase awareness of climate change, (2) educate citizen scientists about the impacts of climate change on plants and the environment, and (3) increase science literacy by engaging participants in the scientific process

  10. Helium and Neon in Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1996-01-01

    Two comets were observed with EUVE in late 1994. Both comet Mueller and comet Borrelly are short-period comets having well established orbital elements and accurate ephemerides. Spectra of 40 ksec were taken of each. No evidence for emission lines from either Helium or Neon was detected. We calculated limits on the production rates of these atoms (relative to solar) assuming a standard isotropic outflow model, with a gas streaming speed of 1 km/s. The 3-sigma (99.7% confidence) limits (1/100,000 for He, 0.8 for Ne) are based on a conservative estimate of the noise in the EUVE spectra. They are also weakly dependent on the precise pointing and tracking of the EUVE field of view relative to the comet during the integrations. These limits are consistent with ice formation temperatures T greater than or equal to 30 K, as judged from the gas trapping experiments of Bar-Nun. For comparison, the solar abundances of these elements are He/O = 110, Ne/O = 1/16. Neither limit was as constraining as we had initially hoped, mainly because comets Mueller and Borrelly were intrinsically less active than anticipated.

  11. NEON Airborne Remote Sensing of Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Kampe, T. U.; Leisso, N.; Krause, K.; Karpowicz, B. M.

    2012-12-01

    The National Ecological Observatory Network (NEON) is the continental-scale research platform that will collect information on ecosystems across the United States to advance our understanding and ability to forecast environmental change at the continental scale. One of NEON's observing systems, the Airborne Observation Platform (AOP), will fly an instrument suite consisting of a high-fidelity visible-to-shortwave infrared imaging spectrometer, a full waveform small footprint LiDAR, and a high-resolution digital camera on a low-altitude aircraft platform. NEON AOP is focused on acquiring data on several terrestrial Essential Climate Variables including bioclimate, biodiversity, biogeochemistry, and land use products. These variables are collected throughout a network of 60 sites across the Continental United States, Alaska, Hawaii and Puerto Rico via ground-based and airborne measurements. Airborne remote sensing plays a critical role by providing measurements at the scale of individual shrubs and larger plants over hundreds of square kilometers. The NEON AOP plays the role of bridging the spatial scales from that of individual organisms and stands to the scale of satellite-based remote sensing. NEON is building 3 airborne systems to facilitate the routine coverage of NEON sites and provide the capacity to respond to investigator requests for specific projects. The first NEON imaging spectrometer, a next-generation VSWIR instrument, was recently delivered to NEON by JPL. This instrument has been integrated with a small-footprint waveform LiDAR on the first NEON airborne platform (AOP-1). A series of AOP-1 test flights were conducted during the first year of NEON's construction phase. The goal of these flights was to test out instrument functionality and performance, exercise remote sensing collection protocols, and provide provisional data for algorithm and data product validation. These test flights focused the following questions: What is the optimal remote

  12. The First NEON School in La Silla

    NASA Astrophysics Data System (ADS)

    Dennefeld, M.; Melo, C.; Selman, F.

    2016-06-01

    The NEON Observing Schools have long provided PhD students with practical experience in the preparation, execution and reduction of astronomical observations, primarily at northern observatories. The NEON School was held in Chile for the first time, with observations being conducted at La Silla. The school was attended by 20 students, all from South America, and observations were performed with two telescopes, including the New Technology Telescope. A brief description of the school is presented and the observing projects and their results are described.

  13. Measurement of the radiative lifetime of the 2s(2)2p(4) (1)S(0) metastable level of neon; a study of forbidden transitions of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Daw, Adrian Nigel

    The radiative lifetime of the 2s22 p4 1S0 metastable level of Ne2+ (Ne III) has been measured to be 223 +/- 11 ms at the 90% confidence level by observing the photons emitted at 1815 Å (181.5 nm) by a decaying population of 1 S0 Ne2+ ions stored in a radio frequency ion trap. This thesis describes the first use of a method to account for any ions lost from the trap and determine the radiative lifetime. Metastable ions were produced by electron bombardment of Ne gas, and rate coefficients for Ne2+ + Ne collisions were also determined. The lifetime measurement is in good agreement with recent calculated values, and has a lower uncertainty than the calculated values. This is the first lifetime measurement for an excited term of a ground configuration ion in the second row of the periodic table. The transition probabilities (A-values) for the forbidden transitions in the ground configurations of these ions are required for astrophysical spectral line intensity ratio diagnostics. Using calculated branching ratios, we estimate that, at the 90% confidence level, A(3P1 - 1S0) = 1.94 +/- 0.17 s-1 for the forbidden line of Ne III at 1815 Å, and A(1D2 - 1S0) = 2.55 +/- 0.19 s-1 for the forbidden line of Ne III at 3344 Å.

  14. Are oxygen and neon enriched in PNe and is the current solar Ne/O abundance ratio underestimated?

    NASA Astrophysics Data System (ADS)

    Wang, W.; Liu, X.-W.

    2008-09-01

    A thorough critical literature survey has been carried out for reliable measurements of oxygen and neon abundances of planetary nebulae (PNe) and HII regions. By contrasting the results of PNe and of HII regions, we aim to address the issues of the evolution of oxygen and neon in the interstellar medium (ISM) and in the late evolutionary phases of low- and intermediate-mass stars (LIMS), as well as the currently hotly disputed solar Ne/O abundance ratio. Through the comparisons, we find that neon abundance and Ne/O ratio increase with increasing oxygen abundance in both types of nebulae, with positive correlation coefficients larger than 0.75. The correlations suggest different enrichment mechanisms for oxygen and neon in the ISM, in the sense that the growth of neon is delayed compared to oxygen. The differences of abundances between PNe and HII regions are mainly attributed to the results of nucleosynthesis and dredge-up processes that occurred in the progenitor stars of PNe. We find that both these α-elements are significantly enriched at low metallicity (initial oxygen abundance <~8.0) but not at metallicity higher than the Small Magellanic Cloud (SMC). The fact that Ne/O ratios measured in PNe are almost the same as those in HII regions, regardless of the metallicity, suggest a very similar production mechanism of neon and oxygen in intermediate-mass stars (IMS) of low initial metallicities and in more massive stars, a conjecture that requires verification by further theoretical studies. This result also strongly suggests that both the solar neon abundance and the Ne/O ratio should be revised upwards by ~0.22dex from the Asplund, Grevesse & Sauval values or by ~0.14dex from the Grevesse & Sauval values.

  15. PRESOLAR GRAINS FROM NOVAE: EVIDENCE FROM NEON AND HELIUM ISOTOPES IN COMET DUST COLLECTIONS

    SciTech Connect

    Pepin, Robert O.; Palma, Russell L.; Gehrz, Robert D.; Starrfield, Sumner

    2011-12-01

    Presolar grains in meteorites and interplanetary dust particles carry non-solar isotopic signatures pointing to origins in supernovae, giant stars, and possibly other stellar sources. There have been suggestions that some of these grains condensed in the ejecta of classical nova outbursts, but the evidence is ambiguous. We report neon and helium compositions in particles captured on stratospheric collectors flown to sample materials from comets 26P/Grigg-Skjellerup and 55P/Tempel-Tuttle that point to condensation of their gas carriers in the ejecta of a neon (ONe) nova. The absence of detectable {sup 3}He in these particles indicates space exposure to solar wind irradiation of a few decades at most, consistent with origins in cometary dust streams. Measured {sup 4}He/{sup 20}Ne, {sup 20}Ne/{sup 22}Ne, {sup 21}Ne/{sup 22}Ne, and {sup 20}Ne/{sup 21}Ne isotope ratios, and a low upper limit on {sup 3}He/{sup 4}He, are in accord with calculations of nucleosynthesis in neon nova outbursts. Of these, the uniquely low {sup 4}He/{sup 20}Ne and high {sup 20}Ne/{sup 22}Ne ratios are the most diagnostic, reflecting the large predicted {sup 20}Ne abundances in the ejecta of such novae. The correspondence of measured Ne and He compositions in cometary matter with theoretical predictions is evidence for the presence of presolar grains from novae in the early solar system.

  16. ASA's Chandra Neon Discovery Solves Solar Paradox

    NASA Astrophysics Data System (ADS)

    2005-07-01

    NASA's Chandra X-ray Observatory survey of nearby sun-like stars suggests there is nearly three times more neon in the sun and local universe than previously believed. If true, this would solve a critical problem with understanding how the sun works. "We use the sun to test how well we understand stars and, to some extent, the rest of the universe," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "But in order to understand the sun, we need to know exactly what it is made of," he added. It is not well known how much neon the sun contains. This is critical information for creating theoretical models of the sun. Neon atoms, along with carbon, oxygen and nitrogen, play an important role in how quickly energy flows from nuclear reactions in the sun's core to its edge, where it then radiates into space. Chandra X-ray Spectrum of II Pegasi Chandra X-ray Spectrum of II Pegasi The rate of this energy flow determines the location and size of a crucial stellar region called the convection zone. The zone extends from near the sun's surface inward approximately 125,000 miles. The zone is where the gas undergoes a rolling, convective motion much like the unstable air in a thunderstorm. "This turbulent gas has an extremely important job, because nearly all of the energy emitted at the surface of the sun is transported there by convection," Drake said. The accepted amount of neon in the sun has led to a paradox. The predicted location and size of the solar convection zone disagree with those deduced from solar oscillations. Solar oscillations is a technique astronomers previously relied on to probe the sun's interior. Several scientists have noted the problem could be fixed if the abundance of neon is in fact about three times larger than currently accepted. Attempts to measure the precise amount of neon in the Sun have been frustrated by a quirk of nature; neon atoms in the Sun give off no signatures in visible light. However, in a gas

  17. The NEON Soil Archive - A community resource

    NASA Astrophysics Data System (ADS)

    Ayres, E.

    2013-12-01

    The National Ecological Observatory Network (NEON) is a 30-year National Science Foundation-funded facility for understanding and forecasting the impacts of climate change, land use change, and invasive species on aspects of continental-scale ecology such as biodiversity, biogeochemistry, infectious diseases, and ecohydrology. NEON will measure a wide range of properties at 60 terrestrial and 36 aquatic sites throughout the US using in situ sensors, sample collection/lab analysis, and remote sensing, and all data will be made freely available. The Observatory is currently under construction and will be fully operational by 2017, however, limited data collection and release will begin in 2013. In addition, NEON is archiving large numbers of samples, including surface soils (top ~30 cm) collected from locations across each site, and soils collected by horizon to 2 m deep from a single soil pit at each site. Here I present information about the latter, focusing on sampling and processing, metadata, and currently available samples. At each terrestrial site the soil pit is dug in the locally dominant soil type and soil is collected by horizon, mixed, and ~4-8 liters soil is sent for processing. Soil samples are air-dried and sieved (mineral soil) or air-dried (organic soil) and 1.2 kg is split between 4 glass jars for archiving (protocol available upon request). To date 15 soil pits have been sampled, representing 7 soil orders, and soils from 110 horizons have been archived or are being processed. Metadata associated with each archive sample include a soil profile description, photos, and soil properties (total C, N, S, Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Sr, Ti, Zr, bulk density, pH, and texture). The procedure for requesting samples from the archive is under development and I encourage scientists to use the archive in their future research. Collecting and processing samples for the NEON Soil Archive

  18. Neon Isotopic Composition of the Mantle Constrained by Single Vesicles Analyses

    NASA Astrophysics Data System (ADS)

    Péron, S.; Moreira, M. A.; Colin, A. P.; Arbaret, L.; Putlitz, B.

    2015-12-01

    The origin of volatiles on Earth is still matter of debates. Noble gases turn out to be an efficient tool due to their inertness in chemical reactions and can then allow us to constrain Earth's atmosphere formation processes. In that way several studies have focused on lower mantle neon isotopes because the 20Ne/22Ne ratio is thought to reflect that of Earth's primordial components. Two models for light noble gases origin on Earth have hence been proposed: either solar wind implantation of the Earth's precursors or dissolution into the mantle of a primordial atmosphere captured from the solar nebula gas. In order to support one of the two models, we analyzed the noble gas compositions (helium, neon and argon) of oceanic island basalts from Fernandina (Galápagos hotspot). The samples are studied both by step-crushing and by laser ablation analyses of single vesicles. Results of step-crushing are consistent with those of laser ablation analyses. But the latter results permit to get rid of atmospheric contamination and to identify which crushing steps are subject to such contamination. Helium isotopic ratios R/Ra (where R is the 3He/4He ratio and Ra the atmospheric ratio) are about 23 for the two Galápagos samples. We obtain 20Ne/22Ne and 40Ar/36Ar isotopic ratios as high as 12.85-12.87 and 7000-9400 respectively for the source of the Galápagos hotspot. Hence, we show that step-crushing and laser ablation analyses are two complementary methods that should be used together to derive the noble gas ratios in uncontaminated samples. The results of neon compositions are consistent with other studies on other hotspots and support the model of solar wind implantation associated with sputtering to explain helium and neon origins on Earth.

  19. Correlated helium, neon, and melt production on the super-fast spreading East Pacific Rise near 17°S

    NASA Astrophysics Data System (ADS)

    Kurz, Mark D.; Moreira, Manuel; Curtice, Joshua; Lott, Dempsey E.; Mahoney, John J.; Sinton, John M.

    2005-03-01

    We report new helium and neon isotopic compositions in dredged basalt glasses from the superfast spreading East Pacific Rise (EPR) between 13° and 23°S. The 3He/ 4He ratios vary from 8.0 to 11.0 times the atmospheric value (Ra) [ 4He/ 3He between 65,700 and 90,300], with the least radiogenic values in samples from near 16.75°S. Atmospheric contamination corrections on neon isotopes are made using step heating and extrapolated 21Ne/ 22Ne ratios (to a solar 20Ne/ 22Ne value of 13.8). The lowest corrected 21Ne/ 22Ne ratios are found near 16.75°S, and are consistent with the helium isotopes in suggesting a less degassed mantle source. The EPR at 17°S is unusual in displaying such isotopic anomalies in the absence of any known hotspot. The minima in 4He/ 3He and 21Ne/ 22Ne correspond to extremes in Sr, Nd and Pb isotope ratios, but the length scale of the helium and neon anomalies are shorter along-axis than the peaks for the other isotopic ratios. The minimum in 4He/ 3He is observed from 16° to 18°S (a distance of ˜220 km), whereas the elevated Sr and Pb values, and lower 143Nd/ 144Nd, are observed between 16° and 20.7°S (a distance of ˜500 km); neon isotope anomalies are observed on an intermediate length scale along-axis. Unradiogenic helium and neon values correlate with low mantle Bouguer anomalies, and maxima in the axial cross-sectional area, all of which are attributed to higher melt production near 17°S. A conceptual model that fits the observations includes melting of an entrained heterogeneity beneath the EPR at 17 °S. The relationship between helium and neon isotopes and along-axis geophysical characteristics (and by inference melt distribution) is probably related to the extreme incompatibility of helium and neon. High concentrations of 3He and 21Ne (extrap) are found in the glasses near 17°S, which is consistent with higher noble gas concentrations in the anomalous mantle.

  20. 21 CFR 868.1670 - Neon gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neon gas analyzer. 868.1670 Section 868.1670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1670 Neon gas analyzer. (a) Identification. A...

  1. Dietary protein source and level alters growth in neon tetras.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritional studies for aquarium fish like the neon tetra are sparse in comparison with those for food fish. To determine the optimum dietary protein level and source for growth of neon tetras, diets were formulated to contain 25, 35, 45 and 55% dietary protein from either marine animal protein or ...

  2. Neon reduction program on Cymer ArF light sources

    NASA Astrophysics Data System (ADS)

    Kanawade, Dinesh; Roman, Yzzer; Cacouris, Ted; Thornes, Josh; O'Brien, Kevin

    2016-03-01

    In response to significant neon supply constraints, Cymer has responded with a multi-part plan to support its customers. Cymer's primary objective is to ensure that reliable system performance is maintained while minimizing gas consumption. Gas algorithms were optimized to ensure stable performance across all operating conditions. The Cymer neon support plan contains four elements: 1. Gas reduction program to reduce neon by >50% while maintaining existing performance levels and availability; 2. short-term containment solutions for immediate relief. 3. qualification of additional gas suppliers; and 4. long-term recycling/reclaim opportunity. The Cymer neon reduction program has shown excellent results as demonstrated through the comparison on standard gas use versus the new >50% reduced neon performance for ArF immersion light sources. Testing included stressful conditions such as repetition rate, duty cycle and energy target changes. No performance degradation has been observed over typical gas lives.

  3. Neon photoionized plasma experiment at Z

    NASA Astrophysics Data System (ADS)

    Mayes, D. C.; Mancini, R. C.; Bailey, J. E.; Loisel, G. P.; Rochau, G. A.

    2016-10-01

    We discuss an experimental effort to study the atomic kinetics in neon photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at various distances from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma from about 3 to 80 erg*cm/s. An x-ray crystal spectrometer capable of collecting both time-integrated and time-gated spectra is used to collect absorption spectra. A suite of IDL programs has been developed to process the experimental data to produce transmission spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal-densities and charge state distributions, which can be compared with results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas. This work was sponsored in part by the DOE National Nuclear Security Administration Grant DE-FG52-09NA29551, DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  4. 40 K Liquid Neon Energy Storage Unit

    NASA Astrophysics Data System (ADS)

    Martins, D.; Sousa, P. Borges de; Catarino, I.; Bonfait, G.

    A thermal Energy Storage Unit (ESU) could be used to attenuate inherent temperature fluctuations of a cold finger, either from a cryocooler working or due to suddenly incoming heat bursts. An ESU directly coupled to the cold source acts as a thermal buffer temporarily increasing its cooling capacity and providing a better thermal stability of the cold finger ("Power Booster mode"). The energy storage units presented here use an enthalpy reservoir based on the high latent heat of the liquid-vapour transition of neon in the temperature range 38 - 44 K to store up to 900 J, and that uses a 6 liters expansion volume at room temperature in order to work as a closed system. Experimental results in the power booster mode are described: in this case, the liquid neon cell was directly coupled to the cold finger of the working cryocooler, its volume (≈12 cm3) allowing it to store 450 J at around 40 K. 10 W heat bursts were applied, leading to liquid evaporation, with quite reduced temperature changes. The liquid neon reservoir can also work as a temporary cold source to be used after stopping the cryocooler, allowing for a vibration-free environment. In this case the enthalpy reservoir implemented (≈24 cm3) was linked to the cryocooler cold finger through a gas-gap heat switch for thermal coupling/decoupling of the cold finger. We show that, by controlling the enthalpy reservoir's pressure, 900 Jcan be stored at a constant temperature of 40 K as in a triple-point ESU.

  5. Perceptual transparency in neon color spreading displays.

    PubMed

    Ekroll, Vebjørn; Faul, Franz

    2002-08-01

    In neon color spreading displays, both a color illusion and perceptual transparency can be seen. In this study, we investigated the color conditions for the perception of transparency in such displays. It was found that the data are very well accounted for by a generalization of Metelli's (1970) episcotister model of balanced perceptual transparency to tristimulus values. This additive model correctly predicted which combinations of colors would lead to optimal impressions of transparency. Color combinations deviating slightly from the additive model also looked transparent, but less convincingly so.

  6. On the stability of cationic complexes of neon with helium--solving an experimental discrepancy.

    PubMed

    Bartl, Peter; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2013-10-21

    Helium nanodroplets are doped with neon and ionized by electrons. The size-dependence of the ion abundance of HenNex(+), identified in high-resolution mass spectra, is deduced for complexes containing up to seven neon atoms and dozens of helium atoms. Particularly stable ions are inferred from anomalies in the abundance distributions. Two pronounced anomalies at n = 11 and 13 in the HenNe(+) series confirm drift-tube data reported by Kojima et al. [T. M. Kojima et al., Z. Phys. D, 1992, 22, 645]. The discrepancy with previously published spectra of neon-doped helium droplets, which did not reveal any abundance anomalies [T. Ruchti et al., J. Chem. Phys., 1998, 109, 10679-10687; C. A. Brindle et al., J. Chem. Phys., 2005, 123, 064312], is most likely due to limited mass resolution, which precluded unambiguous analysis of contributions from different ions with identical nominal mass. However, calculated dissociation energies of HenNe(+) reported so far do not correlate with the present data, possibly because of challenges in correctly treating the linear, asymmetric [He-Ne-He](+) ionic core in HenNe(+). Anomalies identified in the distributions of HenNex(+) for x > 1, including prominent ones at He12Ne2(+) and He14Ne2(+), may help to better understand solvation of Ne(+) and Nex(+) in helium.

  7. Damage accumulation in neon implanted silicon

    SciTech Connect

    Oliviero, E.; Peripolli, S.; Amaral, L.; Fichtner, P. F. P.; Beaufort, M. F.; Barbot, J. F.; Donnelly, S. E.

    2006-08-15

    Damage accumulation in neon-implanted silicon with fluences ranging from 5x10{sup 14} to 5x10{sup 16} Ne cm{sup -2} has been studied in detail. As-implanted and annealed samples were investigated by Rutherford backscattering spectrometry under channeling conditions and by transmission electron microscopy in order to quantify and characterize the lattice damage. Wavelength dispersive spectrometry was used to obtain the relative neon content stored in the matrix. Implantation at room temperature leads to the amorphization of the silicon while a high density of nanosized bubbles is observed all along the ion distribution, forming a uniform and continuous layer for implantation temperatures higher than 250 deg.C. Clusters of interstitial defects are also present in the deeper part of the layer corresponding to the end of range of ions. After annealing, the samples implanted at temperatures below 250 deg.C present a polycrystalline structure with blisters at the surface while in the other samples coarsening of bubbles occurs and nanocavities are formed together with extended defects identified as (311) defects. The results are discussed in comparison to the case of helium-implanted silicon and in the light of radiation-enhanced diffusion.

  8. Neon isotopic composition of the mantle constrained by single vesicle analyses

    NASA Astrophysics Data System (ADS)

    Péron, Sandrine; Moreira, Manuel; Colin, Aurélia; Arbaret, Laurent; Putlitz, Benita; Kurz, Mark D.

    2016-09-01

    The origin of volatiles on Earth is still a matter of debate. Noble gases are an efficient geochemical tool to constrain Earth formation processes due to their inertness. Several studies have focused on the neon isotopic composition of the lower mantle because the 20Ne/22Ne ratio is thought to reflect that of Earth's primordial components. Two models to explain the origin of light noble gases on Earth have been proposed: either solar wind implantation onto the Earth's solid precursors or dissolution into the mantle of a primordial atmosphere captured from solar nebula gas. In order to test these two models, we analyzed the noble gas compositions (helium, neon and argon) of two submarine oceanic island basalt glasses from Fernandina volcano (Galápagos archipelago), which have among the most primitive/unradiogenic terrestrial helium and neon isotopic compositions. Several sample pieces are studied both by step-crushing and by laser ablation analyses of single vesicles. Results of step-crushing are consistent with those of laser ablation analyses, but the latter results provide new insights into the origin of atmospheric contamination. The single-vesicle laser-ablation measurements overlap with the step crushing results, but have systematically higher 40Ar/36Ar, and 3He/36Ar, suggesting less atmospheric contamination using this method. The single vesicle data therefore suggest that atmospheric contamination is introduced by exposure to the modern atmosphere, after sample collection. 3He/4He values are about 23 times the atmospheric ratio (R/Ra) for the two Fernandina (Galápagos) samples, in agreement with previous studies. We obtain 20Ne/22Ne and 40Ar/36Ar isotopic ratios as high as 12.91 and 9400, respectively, for the mantle source of the Galápagos hotspot. The new data show that step-crushing and laser ablation analyses are complementary methods that should be used together to derive the noble gas ratios in uncontaminated samples. The results of neon

  9. SIGN, a WIMP detector based on high pressure gaseous neon

    NASA Astrophysics Data System (ADS)

    White, J. T.; Gao, J.; Maxin, J.; Miller, J.; Salinas, G.; Wang, H.

    A new WIMP detector concept based on the measurement of Scintillation and Ionization in Gaseous Neon (SIGN) is presented. The detector employs room temperature gaseous neon at a pressure of ≥100 bars as the WIMP target. The ionization is readout using either charge gain or electrofluorescence or both in a modified cylindrical proportional chamber geometry. The primary scintillation is detected by placing a CsI photocathode on the inside wall of the cylindrical chamber. The neon is doped with xenon (≤0.5%) for signal enhancement. Theoretical considerations suggest that the measurement of both scintillation and ionization will provide discrimination between nuclear and electron recoils in this gas mixture.

  10. Neon colour spreading with and without its figural prerequisites.

    PubMed

    Bressan, P

    1993-01-01

    Neon colour spreading has been shown to disappear if certain figural conditions are not met. Evidence is presented which suggests that these conditions are only incidentally related to the neon spreading effect; in particular, that they can be violated as long as the structure remains compatible with the interpretation of a transparent surface. It is proposed that neon spreading and classical colour assimilation share the same basic mechanism, and that the peculiar perceptual attributes of the former derive from the perceptual scissioning of ordinary assimilation colour. This process is identical to that occurring with nonillusory colours in phenomenal transparency.

  11. The prospects of a subnanometer focused neon ion beam.

    PubMed

    Rahman, F H M; McVey, Shawn; Farkas, Louis; Notte, John A; Tan, Shida; Livengood, Richard H

    2012-01-01

    The success of the helium ion microscope has encouraged extensions of this technology to produce beams of other ion species. A review of the various candidate ion beams and their technical prospects suggest that a neon beam might be the most readily achieved. Such a neon beam would provide a sputtering yield that exceeds helium by an order of magnitude while still offering a theoretical probe size less than 1-nm. This article outlines the motivation for a neon gas field ion source, the expected performance through simulations, and provides an update of our experimental progress.

  12. Comprehensive Testing of a Neon Cryogenic Capillary Pumped Loop

    NASA Technical Reports Server (NTRS)

    Kobel, Mark C.; Ku, Jentung; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This paper describes a comprehensive test program of a cryogenic capillary pumped loop (CCPL) using neon as the working fluid in the temperature range between 30 K and 40 K. The test article was originally designed to be used with nitrogen in the 70 K to 100 K temperature range, and was refurbished for testing with neon. Tests performed included start up from a supercritical state, power cycle, sink temperature cycle, heat transport limit, low power limit, reservoir set point change and long duration operation. The neon CCPL has demonstrated excellent performance under various conditions.

  13. Helium and neon in lunar ilmenites of different antiquities

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Schlutter, D. J.

    1994-01-01

    Helium and neon were extracted from individual lunar ilmenite grains, approximately 100 micrometers in diameter, using a pulsed step-heating technique. Grains from lunar samples 71501 and 79035, believed to have been exposed to solar corpuscular radiation at greatly different times, were studied. The results found were consistent with the hypothesis that in addition to solar-wind-implanted gas, a second more deeply implanted component was present in both species of grains. Average isotopic ratios were determined giving equal weight to each of the particles. As found in depth studies employing chemical etching, both the He-3/He-4 and Ne-20/Ne-22 ratios were lower in the more deeply implanted gas than in the solar wind component. The He-3/He-4 ratio in the solar wind component of the more ancient grains was lower than that in the more recently exposed ones, whereas no difference was found for the more deeply embedded He. In the deeply embedded component of the ancient grains, the He-4/Ne-20 ratio was approx. 2x that found in the more recently exposed grains. In the shallowly implanted component, the ratio varied greatly from grain to grain, preventing comparison with the solar wind elemental composition.

  14. 8. DETAIL OF NORTHEAST ELEVATION SHOWING NEON TWA SIGN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL OF NORTHEAST ELEVATION SHOWING NEON TWA SIGN AND ROOF MASTS. LOOKING SOUTHWEST. - TWA Maintenance Hangar, South side of Tinicum Island Road, Philadelphia International Airport, Philadelphia, Philadelphia County, PA

  15. NEON's Mobile Deployment Platform: Seeking Input on a Community Resource

    NASA Astrophysics Data System (ADS)

    SanClements, M.; Loescher, H. W.

    2012-12-01

    We seek input from the AGU community on the National Ecological Observatory Network's (NEON) PI and agency requestable Mobile Deployment Platform (MDP). The NEON MDPs will provide the means to observe stochastic or spatially important events, gradients, or quantities that cannot be reliably observed using fixed location sampling (e.g. fires and floods). Due to the transient temporal and spatial nature of such events, the MDPs will be designed to accommodate rapid deployment for time periods up to ~ 1 year. Broadly, the MDPs will be comprised of infrastructure and instrumentation capable of functioning individually or in conjunction with one another to support observations of ecological change, as well as education, training and outreach. We aim to glean input on selecting infrastructure and instrumentation relevant to meeting the needs of NEON and the broader scientific community. This poster will be formatted to allow for direct commentary on the MDP. Comments will be compiled and made available on the NEON website for further discussion.

  16. NEON AND OXYGEN ABUNDANCES AND ABUNDANCE RATIO IN THE SOLAR CORONA

    SciTech Connect

    Landi, E.; Testa, P.

    2015-02-20

    In this work we determine the Ne/O abundance ratio from Solar and Heliospheric Observatory (SOHO)/Solar Ultraviolet Measurement of Emitted Radiation (SUMER) off-disk observations of quiescent streamers over the 1996-2008 period. We find that the Ne/O ratio is approximately constant over solar cycle 23 from 1996 to 2005, at a value of 0.099 ± 0.017; this value is lower than the transition region determinations from the quiet Sun used to infer the neon photospheric abundance from the oxygen photospheric abundance. Also, the Ne/O ratio we determined from SUMER is in excellent agreement with in situ determinations from ACE/SWICS. In 2005-2008, the Ne/O abundance ratio increased with time and reached 0.25 ± 0.05, following the same trend found in the slowest wind analyzed by ACE/SWICS. Further, we measure the absolute abundance in the corona for both oxygen and neon from the data set of 1996 November 22, obtaining A {sub o} = 8.99 ± 0.04 and A {sub Ne} = 7.92 ± 0.03, and we find that both elements are affected by the first ionization potential (FIP) effect, with oxygen being enhanced by a factor of 1.4-2.1 over its photospheric abundance, and neon being changed by a factor of 0.75-1.20. We conclude that the Ne/O ratio is not constant in the solar atmosphere, both in time and at different heights, and that it cannot be reliably used to infer the neon abundance in the photosphere. Also, we argue that the FIP effect was less effective during the minimum of solar cycle 24, and that the Ne/O = 0.25 ± 0.05 value measured at that time is closer to the true photospheric value, leading to a neon photospheric abundance larger than assumed by ≈40%. We discuss the implications of these results for the solar abundance problem, for the FIP effect, and for the identification of the source regions of the solar wind.

  17. Developments of thick solid neon as an active target

    NASA Astrophysics Data System (ADS)

    Kamiguchi, Nagaaki; Moriguchi, Tetsurou; Ozawa, Akira; Isimoto, Sigeru

    2009-10-01

    One of research subjects in our group is to measure reaction cross sections (σR) of RI beams. By measuring σR, we can deduce root mean square radii of unstable nuclei. In the measurements of σR, we usually used a carbon as the reaction targets (a few cm thickness). If we use the reaction target as a detector (active target), there are some advantages in the measurements; (1)The events only colliding with the reaction target can be selected. (2)If position information is available, we may define the colliding point inside the target. (3)If energy information is available, we may measure the energy loss of the beams inside the target. As the active target in the σR measurements, we noticed the solid neon. Since the neon is a noble gas, it is predicted to emit scintillations and work as an ionization chamber for charged particles. Indeed, scintillations from liquid and solid neon have been already observed. We will present production of the thick solid neon (˜30mm thickness), and observations of scintillations and ionization signals from the solid neon. We will also discuss possibility to use the sold neon as the active target in the σR measurements.

  18. Laying the groundwork for NEON's continental-scale ecological research

    NASA Astrophysics Data System (ADS)

    Dethloff, G.; Denslow, M.

    2013-12-01

    The National Ecological Observatory Network (NEON) is designed to examine a suite of ecological issues. Field-collected data from 96 terrestrial and aquatic sites across the U.S. will be combined with remotely sensed data and existing continental-scale data sets. Field collections will include a range of physical and biological types, including soil, sediment, surface water, groundwater, precipitation, plants, animals, insects, and microbes as well as biological sub-samples such as leaf material, blood and tissue samples, and DNA extracts. Initial data analyses and identifications of approximately 175,000 samples per year will occur at numerous external laboratories when all sites are fully staffed in 2017. Additionally, NEON will archive biotic and abiotic specimens at collections facilities where they will be curated and available for additional analyses by the scientific community. The number of archived specimens is currently estimated to exceed 130,000 per year by 2017. We will detail how NEON is addressing the complexities and challenges around this set of analyses and specimens and how the resulting high-quality data can impact ecological understanding. The raw data returned from external laboratories that is quality checked and served by NEON will be the foundation for many NEON data products. For example, sequence-quality nucleic acids extracted from surface waters, benthic biofilms, and soil samples will be building blocks for data products on microbial diversity. The raw sequence data will also be available for uses such as evolutionary investigations, and the extracts will be archived so others can acquire them for additional research. Currently, NEON is establishing contracts for the analysis and archiving of field-collected samples through 2017. During this period, NEON will gather information on the progress and success of this large-scale effort in order to determine the most effective course to pursue with external facilities. Two areas that NEON

  19. Triple point temperature of neon isotopes: Dependence on nitrogen impurity and sealed-cell model

    SciTech Connect

    Pavese, F.; Steur, P. P. M.; Giraudi, D.

    2013-09-11

    This paper illustrates a study conducted at INRIM, to further check how some quantities influence the value of the triple point temperature of the neon high-purity isotopes {sup 20}Ne and {sup 22}Ne. The influence of nitrogen as a chemical impurity in neon is critical with regard to the present best total uncertainty achieved in the measurement of these triple points, but only one determination is available in the literature. Checks are reported, performed on two different samples of {sup 22}Ne known to contain a N{sub 2} amount of 157⋅10{sup −6}, using two different models of sealed cells. The model of the cell can, in principle, have some effects on the shape of the melting plateau or on the triple point temperature observed for the sample sealed in it. This can be due to cell thermal parameters, or because the INRIM cell element mod. c contains many copper wires closely packed, which can, in principle, constrain the interface and induce a premelting-like effect. The reported results on a cell mod. Bter show no evident effect from the cell model and provide a value for the effect of N{sub 2} in Ne liquidus point of 8.6(1.9) μK ppm N{sub 2}{sup −1}, only slightly different from the literature datum.

  20. Inclusive Neutron Production by 790 Mev/nucleon Neon Ions on Lead and Sodium Fluoride

    NASA Astrophysics Data System (ADS)

    Baldwin, Alan Richard

    The inclusive double-differential cross sections for neutron production were measured at angles of 0, 15, 30, 50, 70, 90, 120, and 160 degrees. The neutrons were produced by 790 MeV/nucleon Neon ions bombarding targets of Pb and NaF. A striking peak in the zero degree spectra at a neutron energy slightly below the beam energy per nucleon is suggested to be particle evaporation superimposed on the broader fragmentation process predicted by statistical models. The Lorentz-invariant cross section at 0 degrees in the rest frame of the projectile are interpreted to include three processes of neutron emission: (1) the excitation and evaporative decay of the projectile spectator provides an estimate for the temperature of 3.5 +/- 0.7 and 3.4 +/- 0.7 MeV/k for Ne-Pb and Ne-NaF collisions, (2) the fragmentation of a neutron from the projectile yielded a Fermi momentum of 295 +/- 22 and 259 +/- 22 MeV/c for the Neon ion in the Ne-Pb and Ne-NaF collisions respectively, and (3) the high-energy tail may be explained by backscattering of a neutron in the target from a cluster of nucleons in the projectile with an average cluster size of about 1.2 nucleons.

  1. Graphene engineering by neon ion beams

    DOE PAGES

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; ...

    2016-02-18

    Achieving the ultimate limits of materials and device performance necessitates the engineering of matter with atomic, molecular, and mesoscale fidelity. While common for organic and macromolecular chemistry, these capabilities are virtually absent for 2D materials. In contrast to the undesired effect of ion implantation from focused ion beam (FIB) lithography with gallium ions, and proximity effects in standard e-beam lithography techniques, the shorter mean free path and interaction volumes of helium and neon ions offer a new route for clean, resist free nanofabrication. Furthermore, with the advent of scanning helium ion microscopy, maskless He+ and Ne+ beam lithography of graphenemore » based nanoelectronics is coming to the forefront. Here, we will discuss the use of energetic Ne ions in engineering graphene devices and explore the mechanical, electromechanical and chemical properties of the ion-milled devices using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we demonstrate that the mechanical, electrical and optical properties of the exact same devices can be quantitatively extracted. Additionally, the effect of defects inherent in ion beam direct-write lithography, on the overall performance of the fabricated devices is elucidated.« less

  2. Graphene engineering by neon ion beams

    SciTech Connect

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V.; Joy, David C.; Rondinone, Adam J.; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-02-18

    Achieving the ultimate limits of materials and device performance necessitates the engineering of matter with atomic, molecular, and mesoscale fidelity. While common for organic and macromolecular chemistry, these capabilities are virtually absent for 2D materials. In contrast to the undesired effect of ion implantation from focused ion beam (FIB) lithography with gallium ions, and proximity effects in standard e-beam lithography techniques, the shorter mean free path and interaction volumes of helium and neon ions offer a new route for clean, resist free nanofabrication. Furthermore, with the advent of scanning helium ion microscopy, maskless He+ and Ne+ beam lithography of graphene based nanoelectronics is coming to the forefront. Here, we will discuss the use of energetic Ne ions in engineering graphene devices and explore the mechanical, electromechanical and chemical properties of the ion-milled devices using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we demonstrate that the mechanical, electrical and optical properties of the exact same devices can be quantitatively extracted. Additionally, the effect of defects inherent in ion beam direct-write lithography, on the overall performance of the fabricated devices is elucidated.

  3. Neon color spreading in dynamic displays: temporal factors.

    PubMed

    Cicchini, Marco; Spillmann, Lothar

    2013-10-04

    When a red star is placed in the middle of an Ehrenstein figure so as to be collinear with the surrounding black rays, a reddish veil is perceived to fill the white center. This is called neon color spreading. To better understand the processes that give rise to this phenomenon, we studied the temporal properties of the effect. Specifically, we presented a "sustained" black Ehrenstein figure (rays) for 600 ms and a "transient" red star for 48 ms, or the converse pattern, at various stimulus onset asynchronies (-100-700 ms) and asked subjects to compare the strength of the neon color in the test stimulus to that of a reference pattern in which the transient star had an onset asynchrony of 300 ms. Additional exposure durations of 24 and 96 ms were used for each transient stimulus in order to study the effect of temporal integration. Simultaneity of the on- and off-transients of the star and the Ehrenstein rays were found to optimize neon color spreading, especially when both stimuli terminated together. Longer exposure durations of the transient stimulus up to 96 ms further improved the effect. Neon color spreading was much reduced when the transient stimulus was presented soon after the beginning of the sustained stimulus, with a gradual build-up towards the end. These results emphasize the importance of stimulus onset asynchrony (SOA) and stimulus termination asynchrony (STA) for the perception of neon color spreading.

  4. X-ray absorption in neon modulated by a strong laser pulse

    NASA Astrophysics Data System (ADS)

    Hertlein, M. P.; Glover, T. E.; Allison, T. K.; van Tilborg, J.; Rude, B. S.; Belkacem, A.; Southworth, S. H.; Kanter, E. P.; Krässig, B.; Varma, H. R.; Santra, R.; Young, L.

    2009-11-01

    We have measured the absorption of x-rays in neon gas in the presence of a strong laser pulse. The femtosecond x-rays were tuned to energies near the neon 1s-3p resonance, and the laser intensity of 1013 W/cm2 was below the intensity required to alone ionize neon. We observed strong modification of the x-ray absorption when the neon was subjected to laser light that was temporally overlapped with the x-rays.

  5. Evidence of a systematic deviation of the isotopic composition of neon from commercial sources compared with its isotopic composition in air.

    PubMed

    Pavese, Franco; Fellmuth, Bernd; Head, David I; Hermier, Yves; Hill, Kenneth D; Valkiers, Staf

    2005-08-01

    Results are reported of a study concerning the variation in isotopic composition of a limited number of neon samples of commercial origin and the resulting influence on the temperature of the triple point of this element. All seven neon samples investigated were found to contain more 22Ne than neon in air, and the amount fraction of 22Ne varied by as much as 0.2% from sample to sample. This variation corresponds to a range of triple-point temperatures (Ttp) of more than 200 microK, much larger than the state-of-the-art uncertainty in the realization of this phase transition for metrological purposes. Deviations in the amount fractions of 21Ne were irrelevant, as far as their effect on T(tp) is concerned, though they may have relevance to other isotope studies. Ratios of amounts of neon isotopes at IRMM-Geel were obtained using the same measurement procedures, and instrumentation developed in the framework of the redetermination of the Avogadro constant and all significant sources of uncertainty were taken into account. The repeatability of the ion current ratio measurements on individual samples was 5 x 10(-5) relative. All uncertainty statements are made following the ISO/BIPM Guide to the Expression of Uncertainty in Measurements. Whereas these results proved unexpected, a more comprehensive study will follow incorporating a much wider range of samples of commercial origin.

  6. NEON INSIGHTS FROM OLD SOLAR X-RAYS: A PLASMA TEMPERATURE DEPENDENCE OF THE CORONAL NEON CONTENT

    SciTech Connect

    Drake, Jeremy J.

    2011-12-10

    An analysis using modern atomic data of fluxes culled from the literature for O VIII and Ne IX lines observed in solar active regions by the P78 and Solar Maximum Mission satellites confirms that the coronal Ne/O abundance ratio varies by a factor of two or more, and finds an increase in Ne/O with increasing active region plasma temperature. The latter is reminiscent of evidence for increasing Ne/O with stellar activity in low-activity coronae that reaches a 'neon saturation' in moderately active stars at approximately twice the historically accepted solar value of about 0.15 by number. We argue that neon saturation represents the underlying stellar photospheric compositions, and that low-activity coronae, including that of the Sun, are generally depleted in neon. The implication would be that the solar Ne/O abundance ratio should be revised upward by a factor of about two to n(Ne)/n(O) {approx} 0.3. Diverse observations of neon in the local cosmos provide some support for such a revision. Neon would still be of some relevance for reconciling helioseismology with solar models computed using recently advocated chemical mixtures with lower metal content.

  7. Helium and neon isotopes in deep Pacific Ocean sediments

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Schlutter, D. J.; Brownlee, D. E.

    1990-01-01

    Helium and neon concentration measurements, along with isotope ratio determinations, have been made for particles collected in the deep Pacific with a magnetic sled, and they are believed to be of extraterrestrial origin. Analyses were made for samples consisting of composites of many extremely fine particles and for several individual particles large enough to contain sufficient gas for analysis but small enough to escape melting in their passage through the atmosphere. Step-heating was employed to extract the gas. Cosmic-ray spallation products or solar-wind helium and neon, if present, were not abundant enough to account for the isotopic compositions measured. In the case of the samples of magnetic fines, the low temperature extractions provided elemental and isotopic ratios in the general range found for the primordial gas in carbonaceous chondrites and gas-rich meteorites. The isotopic ratios found in the high temperature extractions suggest the presence of solar-flare helium and neon.

  8. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    PubMed

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  9. Comparison of the incremental and hierarchical methods for crystalline neon.

    PubMed

    Nolan, S J; Bygrave, P J; Allan, N L; Manby, F R

    2010-02-24

    We present a critical comparison of the incremental and hierarchical methods for the evaluation of the static cohesive energy of crystalline neon. Both of these schemes make it possible to apply the methods of molecular electronic structure theory to crystalline solids, offering a systematically improvable alternative to density functional theory. Results from both methods are compared with previous theoretical and experimental studies of solid neon and potential sources of error are discussed. We explore the similarities of the two methods and demonstrate how they may be used in tandem to study crystalline solids.

  10. Fast Imaging of Intact and Shattered Cryogenic Neon Pellets

    SciTech Connect

    Wang, Zhehui; Combs, Stephen Kirk; Baylor, Larry R; Foust, Charles R; Lyttle, Mark S; Meitner, Steven J; Rasmussen, David A

    2014-01-01

    Compact condensed-matter injection technologies are increasingly used in magnetic fusion. One recent application is in disruption mitigation. An imaging system with less-than-100- m- and sub- s-resolution is described and used to characterize intact and shattered cryogenic neon pellets. Shattered pellets contain fine particles ranging from tens of m to about 7 mm. Time-of-flight analyses indicate that pellets could slow down if hitting the wall of the guide tube. Fast high-resolution imaging systems are thus useful to neon and other condensed-matter injector development.

  11. Fast imaging of intact and shattered cryogenic neon pellets

    SciTech Connect

    Wang, Zhehui; Combs, S. K.; Baylor, L. R.; Foust, C. R.; Lyttle, M. S.; Meitner, S. J.; Rasmussen, D. A.

    2014-11-15

    Compact condensed-matter injection technologies are increasingly used in magnetic fusion. One recent application is in disruption mitigation. An imaging system with less-than-100-µm- and sub-µs-resolution is described and used to characterize intact and shattered cryogenic neon pellets. Shattered pellets contain fine particles ranging from tens of µm to about 7 mm. Time-of-flight analyses indicate that pellets could slow down if hitting the wall of the guide tube. Fast high-resolution imaging systems are thus useful to neon and other condensed-matter injector development.

  12. Boiling incipience and convective boiling of neon and nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of + or - 15 percent.

  13. Fast imaging of intact and shattered cryogenic neon pellets.

    PubMed

    Wang, Zhehui; Combs, S K; Baylor, L R; Foust, C R; Lyttle, M S; Meitner, S J; Rasmussen, D A

    2014-11-01

    Compact condensed-matter injection technologies are increasingly used in magnetic fusion. One recent application is in disruption mitigation. An imaging system with less-than-100-µm- and sub-µs-resolution is described and used to characterize intact and shattered cryogenic neon pellets. Shattered pellets contain fine particles ranging from tens of µm to about 7 mm. Time-of-flight analyses indicate that pellets could slow down if hitting the wall of the guide tube. Fast high-resolution imaging systems are thus useful to neon and other condensed-matter injector development.

  14. Peaked density profiles due to neon injection on FTU

    NASA Astrophysics Data System (ADS)

    Mazzotta, C.; Bañón Navarro, A.; Gabellieri, L.; Marinucci, M.; Pucella, G.; Told, D.; Tudisco, O.; Apruzzese, G.; Artaserse, G.; Sozzi, C.; the FTU Team

    2015-07-01

    Neon injection in FTU can cause a spontaneous increase of the line-average density by a factor 2. The recent experiments were devoted to characterize the plasma response to the neon injection at different densities and plasma currents. A qualitative estimate from UV spectroscopy measurements indicates that the density behaviour cannot be attributed simply to the stripped electrons from the puffed impurity, but a modification of particle transport should be invoked in order to explain the spontaneous rise and the higher peaking. JETTO transport and GENE gyrokinetic codes analyses, as well as a calculation of the electron diffusion coefficients D and pinch velocity U, contribute to feature the peaking effect.

  15. Cascade units for neon isotope production by rectification

    NASA Astrophysics Data System (ADS)

    Bondarenko, V. L.; Simonenko, Yu. M.; Diachenko, O. V.; Matveyev, E. V.

    2013-05-01

    The basics of neon isotope separation by the distillation method at T = 28 K are discussed. The required numbers of transfer units at the top and bottom column sections are calculated for different loads. The experimental characteristics of packed rectification columns are presented and examples of the cascade are discussed. A configuration for a cryogenic circuit based on a high-pressure throttle neon cycle with intermediate nitrogen cooling is presented. The necessity for and the technical feasibility of creating a driver pressure difference between the columns for different stages are demonstrated.

  16. Direct measurement of neon production rates by (α,n) reactions in minerals

    NASA Astrophysics Data System (ADS)

    Cox, Stephen E.; Farley, Kenneth A.; Cherniak, Daniele J.

    2015-01-01

    The production of nucleogenic neon from alpha particle capture by 18O and 19F offers a potential chronometer sensitive to temperatures higher than the more widely used (U-Th)/He chronometer. The accuracy depends on the cross sections and the calculated stopping power for alpha particles in the mineral being studied. Published 18O(α,n)21Ne production rates are in poor agreement and were calculated from contradictory cross sections, and therefore demand experimental verification. Similarly, the stopping powers for alpha particles are calculated from SRIM (Stopping Range of Ions in Matter software) based on a limited experimental dataset. To address these issues we used a particle accelerator to implant alpha particles at precisely known energies into slabs of synthetic quartz (SiO2) and barium tungstate (BaWO4) to measure 21Ne production from capture by 18O. Within experimental uncertainties the observed 21Ne production rates compare favorably to our predictions using published cross sections and stopping powers, indicating that ages calculated using these quantities are accurate at the ∼3% level. In addition, we measured the 22Ne/21Ne ratio and (U-Th)/He and (U-Th)/Ne ages of Durango fluorapatite, which is an important model system for this work because it contains both oxygen and fluorine. Finally, we present 21Ne/4He production rate ratios for a variety of minerals of geochemical interest along with software for calculating neon production rates and (U-Th)/Ne ages.

  17. Self-assembled heterogeneous argon/neon core-shell clusters studied by photoelectron spectroscopy.

    PubMed

    Lundwall, M; Pokapanich, W; Bergersen, H; Lindblad, A; Rander, T; Ohrwall, G; Tchaplyguine, M; Barth, S; Hergenhahn, U; Svensson, S; Björneholm, O

    2007-06-07

    Clusters formed by a coexpansion process of argon and neon have been studied using synchrotron radiation. Electrons from interatomic Coulombic decay as well as ultraviolet and x-ray photoelectron spectroscopy were used to determine the heterogeneous nature of the clusters and the cluster structure. Binary clusters of argon and neon produced by coexpansion are shown to exhibit a core-shell structure placing argon in the core and neon in the outer shells. Furthermore, the authors show that 2 ML of neon on the argon core is sufficient for neon valence band formation resembling the neon solid. For 1 ML of neon the authors observe a bandwidth narrowing to about half of the bulk value.

  18. Elemental abundances of flaring solar plasma - Enhanced neon and sulfur

    NASA Technical Reports Server (NTRS)

    Schmelz, J. T.

    1993-01-01

    Elemental abundances of two flares observed with the SMM Flat Crystal Spectrometer are compared and contrasted. The first had a gradual rise and a slow decay, while the second was much more impulsive. Simultaneous spectra of seven bright soft X-ray resonance lines provide information over a broad temperature range and are available throughout both flares, making these events unique in the SMM data base. For the first flare, the plasma seemed to be characterized by coronal abundances but, for the second, the plasma composition could not be coronal, photospheric, or a linear combination of both. A good differential emission measure fit required enhanced neon such that Ne/O = 0.32 +/- 0.02, a value which is inconsistent with the current models of coronal abundances based on the elemental first-ionization potential. Similar values of enhanced neon are found for flaring plasma observed by the SMM gamma-ray spectrometer, in (He-3)-rich solar energetic particle events, and in the decay phase of several long duration soft X-ray events. Sulfur is also enhanced in the impulsive flare, but not as dramatically as neon. These events are compared with two models which attempt to explain the enhanced values of neon and sulfur.

  19. Neon and CO2 adsorption on open carbon nanohorns.

    PubMed

    Krungleviciute, Vaiva; Ziegler, Carl A; Banjara, Shree R; Yudasaka, Masako; Iijima, S; Migone, Aldo D

    2013-07-30

    We present the results of a thermodynamics and kinetics study of the adsorption of neon and carbon dioxide on aggregates of chemically opened carbon nanohorns. Both the equilibrium adsorption characteristics, as well as the dependence of the kinetic behavior on sorbent loading, are different for these two adsorbates. For neon the adsorption isotherms display two steps before reaching the saturated vapor pressure, corresponding to adsorption on strong and on weak binding sites; the isosteric heat of adsorption is a decreasing function of sorbent loading (this quantity varies by about a factor of 2 on the range of loadings studied), and the speed of the adsorption kinetics increases with increasing loading. By contrast, for carbon dioxide there are no substeps in the adsorption isotherms; the isosteric heat is a nonmonotonic function of loading, the value of the isosteric heat never differs from the bulk heat of sublimation by more than 15%, and the kinetic behavior is opposite to that of neon, with equilibration times increasing for higher sorbent loadings. We explain the difference in the equilibrium properties observed for neon and carbon dioxide in terms of differences in the relative strengths of adsorbate-adsorbate to adsorbate-sorbent interaction for these species.

  20. Molecular Iodine Fluorescence Using a Green Helium-Neon Laser

    ERIC Educational Resources Information Center

    Williamson, J. Charles

    2011-01-01

    Excitation of molecular iodine vapor with a green (543.4 nm) helium-neon laser produces a fluorescence spectrum that is well suited for the upper-level undergraduate physical chemistry laboratory. Application of standard evaluation techniques to the spectrum yields ground electronic-state molecular parameters in good agreement with literature…

  1. NEON Data Products: Enabling Continental-Scale Ecological Science

    NASA Astrophysics Data System (ADS)

    Berukoff, S. J.

    2011-12-01

    The National Ecological Observatory Network (NEON) is a NSF-funded major research and facilities initiative under development, designed to address how climate change, land use change, and invasive species affect ecological science on a continental scale. The standardization of measurement methodologies, engineering practice, and data organization across NEON's sixty sites fosters the creation of ecological data products. These data products are community-approved and Observatory-vetted, and cover the breadth of NEON collection activities, including measurements of physical variables such as air, water, and soil temperature and chemistry, observations and analyses of species and habitats, and airborne spectral and LiDAR remote sensing. Together, these low-level (fundamental measurement and observation data)and high-level (integrative, continental-scale assessments) will be useful for scientists, students, educators, policymakers, and the general public. Here, we discuss the development status of NEON's data product suites, describing how they are constructed and vetted, and provide an example of how one current effort will provide several foundational data products. Further, we discuss and solicit feedback for how stakeholder communities can contribute to their veracity and validation.

  2. The NEON Aquatic Network: Expanding the Availability of Biogeochemical Data

    NASA Astrophysics Data System (ADS)

    Vance, J. M.; Bohall, C.; Fitzgerald, M.; Utz, R.; Parker, S. M.; Roehm, C. L.; Goodman, K. J.; McLaughlin, B.

    2013-12-01

    Aquatic ecosystems are facing unprecedented pressure from climate change and land-use practices. Invasive species, whether plant, animal, insect or microbe present additional threat to aquatic ecosystem services. There are significant scientific challenges to understanding how these forces will interact to affect aquatic ecosystems, as the flow of energy and materials in the environment is driven by multivariate and non-linear biogeochemical cycles. The National Ecological Observatory Network (NEON) will collect and provide observational data across multiple scales. Sites were selected to maximize representation of major North American ecosystems using a multivariate geographic clustering method that partitioned the continental US, AK, HI, and Puerto Rico into 20 eco-climatic domains. The NEON data collection systems and methods are designed to yield standardized, near real-time data subjected to rigorous quality controls prior to public dissemination through an online data portal. NEON will collect data for 30 years to facilitate spatial-temporal analysis of environmental responses and drivers of ecosystem change, ranging from local through continental scales. Here we present the NEON Aquatic Network, a multi-parameter network consisting of a combination of in situ sensor and observational data. This network will provide data to examine biogeochemical, biological, hydrologic and geomorphic metrics at 36 sites, which are a combination of small 1st/2nd order wadeable streams, large rivers and lakes. A typical NEON Aquatic site will host up to two in-stream sensor sets designed to collect near-continuous water quality data (e.g. pH/ORP, temperature, conductivity, dissolved oxygen, CDOM) along with up to 8 shallow groundwater monitoring wells (level, temp., cond.), and a local meteorological station (e.g. 2D wind speed, PAR, barometric pressure, temperature, net radiation). These coupled sensor suites will be complemented by observational data (e.g. water

  3. Neon diffusion kinetics in olivine, pyroxene and feldspar: Retentivity of cosmogenic and nucleogenic neon

    NASA Astrophysics Data System (ADS)

    Gourbet, Loraine; Shuster, David L.; Balco, Greg; Cassata, William S.; Renne, Paul R.; Rood, Dylan

    2012-06-01

    We performed stepwise degassing experiments by heating single crystals of neutron- or proton-irradiated olivine, pyroxene and feldspar to study diffusion kinetics of neon. This is important in evaluating the utility of these minerals for cosmogenic 21Ne measurements and, potentially, for Ne thermochronometry. Degassing patterns are only partially explained by simple Arrhenius relationships; most samples do not exhibit a precisely-determined activation energy in an individual diffusion domain. Regardless, we find clear differences in diffusion kinetics among these minerals. Based on sub-selected data, our estimates for neon diffusion kinetics (activation energy Ea and pre-exponential factor Do, assuming the analyzed fragments approximate the diffusion domain) in each mineral are as follows: for the feldspars, Ea ranges from ∼65 to 115 kJ/mol and Do from 3.9 × 10-3 to 7.1 × 102 cm2s-1; for the pyroxenes, Ea ranges from ∼292 to 480 kJ/mol and Do from 1.6 × 102 to 2.9 × 1011 cm2s-1; for the olivines, Ea ranges from ∼360 to 370 kJ/mol and Do from 1.5 × 106 to 5.0 × 106 cm2s-1. Differences in these parameters are broadly consistent with the expected effect of structural differences between feldspar, and olivine and pyroxene. These results indicate that cosmogenic 21Ne will be quantitatively retained within olivine and pyroxene at Earth surface temperatures over geological timescales. The diffusion kinetics for feldspars, on the other hand, predicts that 21Ne retention at Earth surface temperatures will vary significantly with domain size, crystal microtexture, surface temperature, and exposure duration. Quantitative retention is expected only in favorable conditions. This conclusion is reinforced by additional measurements of cosmogenic 21Ne in coexisting quartz and feldspar from naturally irradiated surface samples; sanidine from a variety of rhyolitic ignimbrites exhibits quantitative retention, whereas alkali-feldspar from several granites does not.

  4. Adsorption of neon and tetrafluoromethane on carbon nanohorn aggregates: differences in specific surface area values

    NASA Astrophysics Data System (ADS)

    Krungleviciute, Vaiva; Yudasaka, Masako; Iijima, Sumio; Migone, Aldo

    2008-03-01

    We have measured adsorption isotherms for two different adsorbates, neon and tetrafluoromethane, on dahlia-like carbon nanohorn aggregates. The experiments were performed at similar relative temperatures for both gases. The measurements were conducted to explore the effect of adsorbate diameter on the behavior of the resulting adsorbed systems. We measured the effective specific surface area value of the nanohorn sample using both gases, and we found that this quantity was about 22% smaller when we determined this quantity using tetrafluoromethane, the larger molecule. Isosteric heat and binding energy values were also determined from our measurements. We will compare our experimental results with those from a computer simulation study performed by Prof. M. Calbi. The simulations help us understand the source of the observed differences in the measured specific surface values, as well as the coverage dependence of the isosteric heat of adsorption for both gases.

  5. Electron-Impact-Induced Emission Cross Sections of Neon in the Extreme Ultraviolet

    NASA Technical Reports Server (NTRS)

    Kanik, I.; Ajello, J. M.; James, G. K.

    1996-01-01

    We have measured the extreme ultraviolet (EUV) spectrum of neon produced by electron excitation. The measurements were obtained under optically thin conditions, and at a spectral resolution of 0.5 nm full width at half maximum (FWHM). The most prominent features of the EUV spectrum between 45-80 nm are the resonance lines of Ne I at 73.6 and 74.4 nm and a multiplet of Ne II at 46.14 nm (the average value for the line center of the two closely spaced ion lines at 46.07 and 46.22 nm). Absolute emission cross sections of these lines at 300 eV were measured and compared to other previous measurements.

  6. Above-threshold ionization in neon produced by combining optical and bichromatic XUV femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Douguet, Nicolas; Grum-Grzhimailo, Alexei N.; Bartschat, Klaus

    2017-01-01

    We consider the ionization of neon induced by a femtosecond laser pulse composed of overlapping, linearly polarized bichromatic extreme ultraviolet and infrared fields. In particular, we study the effects of infrared light on a two-pathway ionization scheme for which Ne 2 s22 p53 s 1P is used as the intermediate state. Using time-dependent calculations, supported by a theoretical approach based on the strong-field approximation, we analyze the ionization probability and the photoelectron angular distributions associated with the different sidebands of the ionization spectrum. Complex oscillations of the angular distribution anisotropy parameters as a function of the infrared light intensity are revealed. Finally, we demonstrate that coherent control of the asymmetry is achievable by tuning the infrared frequency to a nearby electronic transition.

  7. Perception of neon color spreading in 3-6-month-old infants.

    PubMed

    Yang, Jiale; Kanazawa, So; Yamaguchi, Masami K

    2009-12-01

    Although lots of studies about neon color spreading have been reported, few of these studies have focused on the perceptual development of it in human infants. Therefore, this study explores the perceptual development of neon color spreading in infants. In experiment 1, we examined 3-6-month-olds' perception of neon color spreading in static conditions. In experiment 2, we examined 3-6-month-olds' perception of neon color spreading in moving conditions. Our results suggest that while only 5-6-month-old infants show a preference for neon color spreading in the static condition, 3-4-month-old infants also prefer neon color spreading if motion information is available.

  8. A Cyberinfrastructure for the National Ecological Observatory Network (NEON).

    NASA Astrophysics Data System (ADS)

    Schimel, D.; Berukoff, S. J.

    2011-12-01

    The National Ecological Observatory Network (NEON) is an NSF-funded project designed to provide physical and information infrastructure to support the development of continental-scale, quantitative ecological sciences. The network consists of sixty sites located in the continental US, Alaska, Hawaii, and Puerto Rico, each site hosting terrestrial and aquatic sensors and observational apparati that acquire data across multiple ecoclimatic domains. As well, an airborne remote sensing platform provides spectral and LiDAR data, and acquisition of data sets from external agencies allows for land-use studies. Together, this data is ingested, vetted, processed, and curated by a standards-based, provenance-driven, metadata-rich cyberinfrastructure, which will provide not only access to but discovery and manipulation of NEON data, and the construction of integrative data products and inputs for ecological forecasting that address fundamental processual questions in climate change, land use change, and invasive species.

  9. Influence of dust void on neon DC discharge

    NASA Astrophysics Data System (ADS)

    Shumova, V. V.; Polyakov, D. N.; Vasilyak, L. M.

    2017-03-01

    The diffusion/drift model of the positive column of glow discharge in neon with fine dust particles was used to study the role of a dust cloud with a void in the interaction between plasma and dust particles in the range of neon pressure and discharge current where dust particles may form structures with cavities. The results represent the nonlocal effect of void size on plasma composition, configuration of electric field and on distributions of plasma components in discharge with voids in dust structures. Simulations show that the electric field strength and the metastable atom concentration inside the void are higher than in the discharge without dust particles, while electron concentration may be either higher or lower.

  10. Dynamics of Imploding Neon Gas Puff Plasmas. I.

    DTIC Science & Technology

    2014-09-26

    DISTRIBUTION /AVAILABILITY OF REPORT 2b OECLASSIFICATION IDOWNGRADING SCHEDULE Approved for public release; distribution unlimited. 4 PERFORMING...29 Accesz ion Por NTIS G-RA&I DTIL .: Dtj LAb l i - I _ q 4 .5Fenn a-.-. DYNAMICS OF IMPLODING NEON GAS...state was assumed, viz. 2 T1 2 P = (CT -- pu2 - Ci) , ( 4 ) where eI is the potential energy due to ionization and excitation. (A non-ideal equation of

  11. Charge radii of neon isotopes across the sd neutron shell

    SciTech Connect

    Marinova, K.; Geithner, W.; Kappertz, S.; Kloos, S.; Kotrotsios, G.; Neugart, R.; Wilbert, S.; Kowalska, M.; Keim, M.; Blaum, K.; Lievens, P.; Simon, H.

    2011-09-15

    We report on the changes in mean square charge radii of unstable neon nuclei relative to the stable {sup 20}Ne, based on the measurement of optical isotope shifts. The studies were carried out using collinear laser spectroscopy on a fast beam of neutral neon atoms. High sensitivity on short-lived isotopes was achieved thanks to nonoptical detection based on optical pumping and state-selective collisional ionization, which was complemented by an accurate determination of the beam kinetic energy. The new results provide information on the structural changes in the sequence of neon isotopes all across the neutron sd shell, ranging from the proton drip line nucleus and halo candidate {sup 17}Ne up to the neutron-rich {sup 28}Ne in the vicinity of the ''island of inversion.'' Within this range the charge radius is smallest for {sup 24}Ne with N=14 corresponding to the closure of the neutron d{sub 5/2} shell, while it increases toward both neutron shell closures, N=8 and N=20. The general trend of the charge radii correlates well with the deformation effects which are known to be large for several neon isotopes. In the neutron-deficient isotopes, structural changes arise from the onset of proton-halo formation for {sup 17}Ne, shell closure in {sup 18}Ne, and clustering effects in {sup 20,21}Ne. On the neutron-rich side the transition to the island of inversion plays an important role, with the radii in the upper part of the sd shell confirming the weakening of the N=20 magic number. The results add new information to the radii systematics of light nuclei where data are scarce because of the small contribution of nuclear-size effects to the isotope shifts which are dominated by the finite-mass effect.

  12. Illusory depth from moving subjective figures and neon colour spreading.

    PubMed

    Bressan, P; Vallortigara, G

    1991-01-01

    If a pattern of concentric circles, interrupted so as to produce the perception of a subjective bar extending from the centre to the periphery of the pattern, was slowly rotated in a plane perpendicular to the line of sight, observers reported seeing the bar slanted in depth and moving over complete and stationary concentric circles. When the interrupted concentric circles were completed by red segments--thereby giving rise to a neon colour-spreading effect--observers reported seeing a reddish bar, which sometimes appeared to be slanted in depth, moving behind the plane of the concentric circles. A combination of the two patterns was found to originate a compelling percept of a unitary bar slanted in depth: part of the bar (the subjective half) appeared to be located in front of its inducing elements, whereas the other part (the neon-like half) appeared to continue behind them. When translatory instead of rotary motion was used, the bars did not look slanted in depth: however, the neon bar appeared either behind or in front of the inducing lines, depending on the luminance contrast between the segments and the inducing lines themselves.

  13. Helium-neon laser improves skin repair in rabbits.

    PubMed

    Peccin, Maria Stella; Renno, Ana Claudia Muniz; de Oliveira, Flavia; Giusti, Paulo Ricardo; Ribeiro, Daniel Araki

    2012-12-01

    The purpose of this study was to evaluate the influence of helium-neon laser on skin injury in rabbits. For this purpose, 15 New Zealand rabbits underwent bilateral skin damage in leg. Helium-neon laser light, at a fluence of 6 J∕cm2 and wavelength of 632.8 nm, was applied on the left legs (laser group). The right leg lesions (control group) served as negative control. All sections were histopathologically analyzed using HE sections. The results showed little infiltration of inflammatory cells, with proliferation of fibroblasts forming a few fibrous connective tissue after 1 week post-injury. The lesion on the 3rd week was characterized by granulation tissue, which formed from proliferated fibrous connective tissue, congested blood vessels and mild mononuclear cell infiltration. On the 5th week, it was observed that debris material surrounded by a thick layer of connective tissue and dense collage, fibroblasts cells present in the dermis covered by a thick epidermal layer represented by keratinized epithelium. Taken together, our results suggest that helium-neon laser is able to improve skin repair in rabbits at early phases of recovery.

  14. Nova LMC 1990 no. 1: The first extragalactic neon nova

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Shore, Steven N.; Starrfield, Sumner G.

    1990-01-01

    International Ultraviolet Explorer (IUE) observations of nova LMC (Large Magellanic Cloud) 1990 No. 1, the first neon (or ONeMg) nova observed outside the Galaxy are presented. The observations were obtained from 17 Jan. to Mar. 1990, with especially dense coverage during the first 25 days of the outburst. (The neon nova categorization is based on the detection of forbidden Ne 3-4 lines in optical spectra; the ultraviolet neon lines were not detected.) During the first 30 days of the outburst, the radiative losses were dominated by the N 5 delta 1240 and C 4 delta 1550 lines. The maximum ejection velocity was approximately 8000 km/s, based on the blue absorption edge of the C 4 P-Cygni profile. Early in the outburst of Nova LMC 1990 No. 1 the UV luminosity alone was approximately 3 times 10 to the 38th power erg/sec, implying that the bolometric luminosity was well in excess of the Eddington luminosity for a one solar mass object.

  15. On the mechanism of populating 3p levels of neon under pumping by a hard ioniser

    SciTech Connect

    Khasenov, M U

    2011-03-31

    The effect of quenching additives on the luminescence properties of helium - neon mixtures under pumping by {alpha} particles emitted from {sup 210}Po atoms is considered. It is concluded that, under excitation by a heavy charged particle, the population of the 3p'[1/2]{sub 0} level of neon is not related to the dissociative recombination of molecular ions. It is suggested that the most likely channels for populating the 3p level are the excitation transfer from metastable helium atoms to neon atoms and direct excitation of neon by nuclear particles and secondary electrons. (lasers and active media)

  16. Transport and dissociation of neon dimer cations in neon gas: a joint dynamical and Monte Carlo modeling

    NASA Astrophysics Data System (ADS)

    Benhenni, Malika; Stachoň, Martin; Gadéa, Florent Xavier; Yousfi, Mohammed; Kalus, René

    2016-09-01

    A hybrid dynamical method based on the classical treatment of nuclei and the quantum treatment of electrons was used to calculate momentum transfer and dissociation cross-sections for collisions of neon dimer cations with neon atoms. For the inclusion of nuclear quantum effects, a semi-empirical factor was introduced to correct the hybrid momentum transfer cross-sections at low collision energies. Both uncorrected and quantum corrected hybrid cross-sections were used to calculate the {{Ne}}2+ mobility, and longitudinal and transverse characteristic diffusion energies over a wide range of the reduced electric field. Furthermore, the {{Ne}}2+ dissociation rate constant was calculated and compared to measured data. In addition, an approximate inverse method based on an effective isotropic interaction potential was also used to calculate the momentum transfer cross-sections and related transport data.

  17. Helium and neon isotopes in stratospheric particles

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Schlutter, D. J.

    1990-01-01

    He and Ne isotope ratios were determined for 16 interplanetary dust particles (IDPs) collected in the stratosphere. The observed He concentration varied greatly from particle to particle, with the highest values approaching those found for lunar surface fines and some gas-rich meteorites. The average Ne-20/Ne-22 ratio was 12.0 + or - 0.5. The data suggest that the observed IDPs could have entered the atmosphere at relatively low velocities, and hence may be primarily of asteroidal rather than cometary origin.

  18. Application of a pulse-discharge helium detector to the determination of neon in air and water.

    PubMed

    Lasa, J; Mochalski, P; Lokas, E; Kedzior, L

    2002-08-30

    A pulse-discharge helium detector (Valco, PD-D2-I) is used to measure neon concentrations in air and water. The detection level is 0.5 x 10(-8) g/cm3 (0.2 ppm). Discharge gas doped with neon results in a linear response to the neon mass up to 10(-6) g. For measuring the neon concentration in water, a simple enrichment system is used.

  19. DETERMINATION OF THE SOLUBILITY OF NEON IN WATER AND EXTRACTED HUMAN FAT.

    DTIC Science & Technology

    coefficient (alpha) for neon in water, olive oil , and extracted human fat. Essentially, the method consists of a double extraction of sample material that...observed Bunsen absorption coefficients supply new information on the solubility of neon in human fatty material, olive oil , and water. (Author)

  20. Atomistic simulations of tungsten surface evolution under low-energy neon implantation

    NASA Astrophysics Data System (ADS)

    Backman, Marie; Hammond, Karl D.; Sefta, Faiza; Wirth, Brian D.

    2016-04-01

    Tungsten is a candidate material for the divertor of fusion reactors, where it will be subject to a high flux of particles coming from the fusion plasma as well as a significant heat load. Under helium plasma exposure in fusion-reactor-like conditions, a nanostructured morphology is known to form on the tungsten surface in certain temperature and incident energy ranges, although the formation mechanism is not fully established. A recent experimental study (Yajima et al 2013 Plasma Sci. Technol. 15 282-6) using neon or argon exposure did not produce similar nanostructure. This article presents molecular dynamics simulations of neon implantation in tungsten aimed at investigating the surface evolution and elucidating the role of noble gas mass in fuzz formation. In contrast to helium, neon impacts can sputter both tungsten and previously implanted neon atoms. The shorter range of neon ions, along with sputtering, limit the formation of large bubbles and likely prevents nanostructure formation.

  1. The NEON Science Commissioning Plan: Strategies for Confirming System Operation

    NASA Astrophysics Data System (ADS)

    Wirth, G. D.; Thorpe, A.; Buur, H.

    2015-12-01

    A transformation is underway in the field of ecological monitoring as compelling science questions motivate us to build ever-larger networks aiming to acquire uniform datasets over wide geographical ranges and long timescales. The National Ecological Observatory Network (NEON), currently under construction across the U.S., represents the most ambitious such effort to characterize ecology at the continental scale. When completed in 2017, NEON will begin a 30-year program to monitor the state of North American ecosystems at scores of independent sites by employing a combination of terrestrial and aquatic sensors, organismal, biogeochemical, and hydrological sampling conducted by field staff, and airborne remote-sensing imaging and spectroscopy. Simply building and bringing such complex, long-term monitoring networks online is, however, insufficient to produce a useful result: the science team must also confirm that the system fulfills its essential mission to generate accurate and uniform data from all sites over time. This is the role of Science Commissioning, the process which completes the construction stage by confirming that the system operates as designed before entering full operations. Ideally, Science Commissioning involves simply testing the completed system against all applicable science requirements. In the real world of large, complex networks, planners of Science Commissioning must grapple with several key questions: How can we verify that the measurements from a given subsystem reflect "truth"? How can we ensure that similar subsystems at different sites return equivalent results? How can we confirm that data from the same site remain comparable over long periods of time? How can we conduct meaningful tests on a large system in a reasonable amount of time and effort? We describe the specific strategies NEON is developing to meet these challenges and the implications for other large ecological monitoring networks.

  2. Noble gases in diamonds - Occurrences of solarlike helium and neon

    NASA Technical Reports Server (NTRS)

    Honda, M.; Reynolds, J. H.; Roedder, E.; Epstein, S.

    1987-01-01

    Seventeen diamond samples from diverse locations were analyzed for the contents of He, Ar, Kr, and Xe, and of their isotopes, using a Reynolds (1956) type glass mass spectrometer. The results disclosed a large spread in the He-3/He-4 ratios, ranging from values below atmospheric to close to the solar ratio. In particular, solarlike He-3/He-4 ratios were seen for an Australian colorless diamond composite and an Arkansas diamond, which also displayed solarlike neon isotopic ratios. Wide variation was also observed in the He-4/Ar-40 ratios, suggesting a complex history for the source regions and the diamond crystallization processes.

  3. Cutaneous Ossifying Fibroma in a Neon Tetra (Paracheirodon innesi).

    PubMed

    Murphy, B; Imai, D M

    2016-01-01

    A cutaneous proliferative mass was identified arising from the caudal peduncle of a captive neon tetra fish (Paracheirodon innesi). The lesion was histologically consistent with an ossifying fibroma (OF), a fibro-osseous proliferative lesion typically identified in the jaws or tooth-associated supportive tissues of mammals. Although it has been previously reported, there is no recent report of this lesion occurring in a fish. This is the first report of a cutaneous ossifying fibroma in a characin fish. The authors speculate on the pathogenesis of this lesion, which may have arisen from the scale-associated mesenchymal tissues.

  4. Nonlinear dynamics modulation in a neon glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Miller, Paul M.

    In dynamics modulation, two modes in a driven neon glow discharge alternate as the dominant mode as their response to the driving force alternates between spatiotemporal and temporal periodic pulling. This phenomenon was first noted by Koepke, Weltmann, and Selcher (Bull. Am. Phys. Soc. 40, 1716 (1995)), who saw two limited but representative cases and proposed a mechanism (Phys. Rev. E 62, 2773 (2000)) by which it occurs. The intent of this dissertation is to document experimentally and test the dynamics modulation mechanism they proposed. Using a new extension of a previous mathematical treatment of periodic pulling, the resulting experimental data are used to verify the predicted mechanism. A numerical model is also presented that reproduces the signature of dynamics modulation and further supports the validity of the mechanism. For two pairs of mode frequencies, three complete data series as driving frequency is increased are presented. Each of these data series shows the progression of the system from pure spatiotemporal behavior, through dynamics modulation, and ending at entrainment in the upper mode. Ionization wave modes are examined using time series recorded using a photodiode with a narrow band filter that selectively passes the primary neon spectral line at 640 nm. The system was periodically driven using a narrow-band ring dye laser tuned to a wavelength near the metastable neon transition at 588.35 nm. The amplitude of the driving force was decreased (increased) by tuning the laser away from (nearer to) the center of the neon line, while the driving frequency was controlled by an acousto-optic modulator chopping the laser beam at the desired frequency. Arnol'd tongue boundaries identifying the edges of frequency entrainment regions in the driving amplitude-driving frequency plane were established for four different discharge currents. The (upward) dynamics modulation behavior seen by Koepke, Weltmann, and Selcher was reproduced and additional data

  5. Optimizing Sampling Efficiency for Biomass Estimation Across NEON Domains

    NASA Astrophysics Data System (ADS)

    Abercrombie, H. H.; Meier, C. L.; Spencer, J. J.

    2013-12-01

    Over the course of 30 years, the National Ecological Observatory Network (NEON) will measure plant biomass and productivity across the U.S. to enable an understanding of terrestrial carbon cycle responses to ecosystem change drivers. Over the next several years, prior to operational sampling at a site, NEON will complete construction and characterization phases during which a limited amount of sampling will be done at each site to inform sampling designs, and guide standardization of data collection across all sites. Sampling biomass in 60+ sites distributed among 20 different eco-climatic domains poses major logistical and budgetary challenges. Traditional biomass sampling methods such as clip harvesting and direct measurements of Leaf Area Index (LAI) involve collecting and processing plant samples, and are time and labor intensive. Possible alternatives include using indirect sampling methods for estimating LAI such as digital hemispherical photography (DHP) or using a LI-COR 2200 Plant Canopy Analyzer. These LAI estimations can then be used as a proxy for biomass. The biomass estimates calculated can then inform the clip harvest sampling design during NEON operations, optimizing both sample size and number so that standardized uncertainty limits can be achieved with a minimum amount of sampling effort. In 2011, LAI and clip harvest data were collected from co-located sampling points at the Central Plains Experimental Range located in northern Colorado, a short grass steppe ecosystem that is the NEON Domain 10 core site. LAI was measured with a LI-COR 2200 Plant Canopy Analyzer. The layout of the sampling design included four, 300 meter transects, with clip harvests plots spaced every 50m, and LAI sub-transects spaced every 10m. LAI was measured at four points along 6m sub-transects running perpendicular to the 300m transect. Clip harvest plots were co-located 4m from corresponding LAI transects, and had dimensions of 0.1m by 2m. We conducted regression analyses

  6. The Bright Fluorescent Protein mNeonGreen Facilitates Protein Expression Analysis In Vivo

    PubMed Central

    Hostettler, Lola; Grundy, Laura; Käser-Pébernard, Stéphanie; Wicky, Chantal; Schafer, William R.; Glauser, Dominique A.

    2017-01-01

    The Green Fluorescent Protein (GFP) has been tremendously useful in investigating cell architecture, protein localization, and protein function. Recent developments in transgenesis and genome editing methods now enable working with fewer transgene copies and, consequently, with physiological expression levels. However, lower signal intensity might become a limiting factor. The recently developed mNeonGreen protein is a brighter alternative to GFP in vitro. The goal of the present study was to determine how mNeonGreen performs in vivo in Caenorhabditis elegans—a model used extensively for fluorescence imaging in intact animals. We started with a side-by-side comparison between cytoplasmic forms of mNeonGreen and GFP expressed in the intestine, and in different neurons, of adult animals. While both proteins had similar photostability, mNeonGreen was systematically 3–5 times brighter than GFP. mNeonGreen was also used successfully to trace endogenous proteins, and label specific subcellular compartments such as the nucleus or the plasma membrane. To further demonstrate the utility of mNeonGreen, we tested transcriptional reporters for nine genes with unknown expression patterns. While mNeonGreen and GFP reporters gave overall similar expression patterns, low expression tissues were detected only with mNeonGreen. As a whole, our work establishes mNeonGreen as a brighter alternative to GFP for in vivo imaging in a multicellular organism. Furthermore, the present research illustrates the utility of mNeonGreen to tag proteins, mark subcellular regions, and describe new expression patterns, particularly in tissues with low expression. PMID:28108553

  7. Evaluation of a pulse-discharge helium ionisation detector for the determination of neon concentrations by gas chromatography.

    PubMed

    Lasa, J; Mochalski, P; Pusz, J

    2004-05-07

    A pulse-discharge helium ionisation detector, PDHID (Valco, PD-D2-I) with sample introduced to the discharge zone is shown to be applicable for reliable determinations of neon by gas chromatography. The detection level of 80 pg was obtained, but the dependence between detector response and neon mass was non-linear. However, for the discharge gas doped with 33 ppm of neon, a linear response to the neon mass up to 10(-5) g and the detection level of 0.5 ng were obtained. The method can be used for measuring neon concentrations in groundwater systems for hydrogeological purposes.

  8. Infrared spectra of small molecular ions trapped in solid neon

    SciTech Connect

    Jacox, Marilyn E.

    2015-01-22

    The infrared spectrum of a molecular ion provides a unique signature for that species, gives information on its structure, and is amenable to remote sensing. It also serves as a comparison standard for refining ab initio calculations. Experiments in this laboratory trap molecular ions in dilute solid solution in neon at 4.2 K in sufficient concentration for observation of their infrared spectra between 450 and 4000 cm{sup !1}. Discharge-excited neon atoms produce cations by photoionization and/or Penning ionization of the parent molecule. The resulting electrons are captured by other molecules, yielding anions which provide for overall charge neutrality of the deposit. Recent observations of ions produced from C{sub 2}H{sub 4} and BF{sub 3} will be discussed. Because of their relatively large possibility of having low-lying excited electronic states, small, symmetric molecular cations are especially vulnerable to breakdown of the Born-Oppenheimer approximation. Some phenomena which can result from this breakdown will be discussed. Ion-molecule reaction rates are sufficiently high that in some systems absorptions of dimer cations and anions are also observed. When H{sub 2} is introduced into the system, the initially-formed ion may react with it. Among the species resulting from such ion-molecule reactions that have recently been studied are O{sub 4}{sup +}, NH{sub 4}{sup +}, HOCO{sup +}, and HCO{sub 2}{sup !}.

  9. Reaction times to neon, LED, and fast incandescent brake lamps.

    PubMed

    Sivak, M; Flannagan, M J; Sato, T; Traube, E C; Aoki, M

    1994-06-01

    Standard incandescent brake lamps have a relatively slow rise time. It takes approximately a quarter of a second for them to reach 90% of asymptotic light output, causing potential delays in responses by following drivers. The present study evaluated reaction times to brake signals from standard incandescent brake lamps and from three alternative brake lamps with substantially faster rise times: neon, LED, and fast incandescent. The study, performed in a laboratory, simulated a daytime driving condition. The subject's task was to respond as quickly as possible to the onset of either of two brake lamps in the visual periphery, while engaged in a central tracking task. Brake signals were presented at two levels of luminous intensity. The results showed that reaction times to the alternative brake lamps were faster than to the standard incandescent lamp, with the advantage averaging 166 ms for the LED and neon lamps, and 135 ms for the fast incandescent lamp. A reduction of the signals' luminous intensity from 42 cd to 5 cd increased the reaction time by 84 ms.

  10. Helium-neon laser treatment transforms fibroblasts into myofibroblasts.

    PubMed Central

    Pourreau-Schneider, N.; Ahmed, A.; Soudry, M.; Jacquemier, J.; Kopp, F.; Franquin, J. C.; Martin, P. M.

    1990-01-01

    The differentiation of myofibroblastic cells from normal human gingival fibroblasts in vitro has been established by transmission electron microscopy and quantitated by immunohistochemistry, using antigelsolin monoclonal antibodies. Untreated control cultures were compared to cultures exposed to Helium-Neon (He-Ne) laser irradiation. A direct and massive transformation of the cultured fibroblasts into myofibroblasts was observed as early as 24 hours after laser treatment, whereas control cultures were comprised of only resting fibroblasts and active fibroblasts. This in vitro induction of myofibroblasts may be analogous to that which occurs in vivo. Therefore we undertook a similar study using biopsies from gingival tissues after wisdom tooth extraction. Myofibroblasts were present in the connective tissue of laser-treated gums 48 hours after irradiation, but not in untreated contralateral control tissues. These data provide evidence that the primary biologic effect of the Helium-Neon laser on connective tissue is the rapid generation of myofibroblasts from fibroblasts. The induction of a phenotype with contractile properties may have clinical significance in the acceleration of the wound-healing process. Images Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:2372040

  11. NEON, Establishing a Standardized Network for Groundwater Observations

    NASA Astrophysics Data System (ADS)

    Fitzgerald, M.; Schroeter, N.; Goodman, K. J.; Roehm, C. L.

    2013-12-01

    The National Ecological Observatory Network (NEON) is establishing a standardized set of data collection systems comprised of in-situ sensors and observational sampling to obtain data fundamental to the analysis of environmental change at a continental scale. NEON will be collecting aquatic, terrestrial, and atmospheric data using Observatory-wide standardized designs and methods via a systems engineering approach. This approach ensures a wealth of high quality data, data algorithms, and models that will be freely accessible to all communities such as academic researchers, policy makers, and the general public. The project is established to provide 30 years of data which will enable prediction and forecasting of drivers and responses of ecological change at scales ranging from localized responses through regional gradients and up to the continental scale. The Observatory is a distributed system of sites spread across the United States, including Alaska, Hawaii, and Puerto Rico, which is subdivided into 20 statistically unique domains, based on a set of 18 ecologically important parameters. Each domain contains at least one core aquatic and terrestrial site which are located in unmanaged lands, and up to 2 additional sites selected to study domain specific questions such as nitrogen deposition gradients and responses of land use change activities on the ecosystem. Here, we present the development of NEON's groundwater observation well network design and the timing strategy for sampling groundwater chemistry. Shallow well networks, up to 100 feet in depth, will be installed at NEON aquatic sites and will allow for observation of localized ecohydrologic site conditions, by providing basic spatio-temporal near-real time data on groundwater parameters (level, temperature, conductivity) collected from in situ high-resolution instrumentation positioned in each well; and biannual sampling of geochemical and nutrient (N and P) concentrations in a subset of wells for each

  12. NEON: Transforming Environmental Data into Free, Open Information

    NASA Astrophysics Data System (ADS)

    Wee, B.

    2010-12-01

    The National Ecological Observatory Network (NEON) will collect data across the United States on the impacts of climate change, land use change and invasive species on natural resources and biodiversity. NEON is a project of the U.S. National Science Foundation (NSF), with many other U.S. agencies and NGOs cooperating. The Observatory’s construction plans call for 60 sites distributed across 20 ecoclimatic Domains. Data will be collected from strategically selected sites within each Domain and synthesized into information products that can be used to describe changes in the nation’s ecosystem through space and time. Sites are arrayed across different land-use types in order to understand large-scale environmental drivers affect biodiversity, ecohydrology, biogeochemistry, and disease ecology across the US continent. NEON is an instrument that listens to the pulse of the US continental ecosystem: infrastructure deployed at these sites will collect an average of over 500 primary measurements at each site, including annual high-resolution airborne LiDAR and hyperspectral data. These primary measurements will be transformed by a state-of-the-art cyberinfrastruture into over 100 higher-order data products. All measurements, data products, algorithms used to compute the data products, and protocols used to collect the primary measurements will be freely available to the public and assessable over the internet. The information products, including selected socio-economic datasets from cooperating Federal agencies, will be served in standard formats, grid-sizes, and geographical projections. This type of information is anticipated to have a wide range of uses, including ecological forecasting, education, public engagement, socio-economic analyses, decision support for climate-change adaptation and mitigation, resource management, and environmental risk management. Open data, interoperability, an open and integrated observation infrastructure, public engagement, and a

  13. Revisitation of the luminance conditions for the occurrence of the achromatic neon color spreading illusion.

    PubMed

    Bressan, P

    1993-07-01

    This paper develops the idea (Bressan, 1993) that neon spreading derives from the perceptual scissioning of ordinary assimilation color, a process identical to that occurring with nonillusory colors in phenomenal transparency. It is commonly held that the critical elements in achromatic neon spreading patterns must be of luminance intermediate between that of the embedding lines and of the background. The interpretation of neon spreading on the basis of color scissioning, however, predicts that neon spreading should also be observed for different luminance hierarchies, provided that these are compatible with transparency. This prediction found experimental support in the present work. The results suggest that (1) the widespread notion that chromatic and achromatic neon spreading must be mediated by separate mechanisms is unwarranted; (2) the widespread notion that color spreading in ordinary assimilation patterns and color spreading in neon patterns must be mediated by separate mechanisms is unwarranted; and (3) other than pointing to the way in which the overall organization of a scene affects the mode of color appearance, the neon spreading effect may not convey any extra theoretical relevance.

  14. Predicting helium and neon adsorption and separation on carbon nanotubes by Monte Carlo simulation.

    PubMed

    Bolboli Nojini, Zabiollah; Abbas Rafati, Amir; Majid Hashemianzadeh, Seyed; Samiee, Sepideh

    2011-04-01

    The adsorption of helium and neon mixtures on single-walled carbon nanotubes (SWCNTs) was investigated at various temperatures (subcritical and supercritical) and pressures using canonical Monte Carlo (CMC) simulation. Adsorption isotherms were obtained at different temperatures (4, 40, 77 and 130 K) and pressures ranging from 1 to 16 MPa. Separation factors and isosteric enthalpies of adsorption were also calculated. Moreover, the adsorption isotherms were obtained at constant specific temperatures (4 and 40 K) and pressures (0.2 and 1.0 MPa) as a function of the amount adsorbed. All of the adsorption isotherms for an equimolar mixture of helium and neon have a Langmuir shape, indicating that no capillary condensation occurs. Both the helium and the neon adsorption isotherms exhibit similar behavior, and slightly more of the helium and neon mixture is adsorbed on the inner surfaces of the SWCNTs than on their outer surfaces. More neon is adsorbed than helium within the specified pressure range. The data obtained show that the isosteric enthalpies for the adsorption of neon are higher than those for helium under the same conditions, which means that adsorption of neon preferentially occurs by (15, 15) SWCNTs. Furthermore, the isosteric enthalpies of adsorption of both gases decrease with increasing temperature.

  15. Theoretical Modeling of Radiation-driven Atomic Kinetics of a Neon Photoionized Plasma

    NASA Astrophysics Data System (ADS)

    Durmaz, Tunay

    We report on a theoretical study on atomic kinetics modeling of a photoionized neon plasma at conditions relevant to laboratory experiments performed at the Z-machine in Sandia National Laboratories. We describe an atomic kinetics model and code, ATOKIN, that was developed and used to compute the atomic level population distribution. The study includes atomic level sensitivity with respect to energy level structure, radiation and transient effects, electron temperature and x-ray drive sensitivity and an idea for electron temperature extraction from a level population ratio. The neon atomic model considers several ionization stages of highly-charged neon ions as well as a detailed structure of non-autoionizing and autoionizing energy levels in each ion. In the energy level sensitivity study, the atomic model was changed by adding certain types of energy levels such as singly-excited, auto-ionizing doubly-excited states. Furthermore, these levels were added ion by ion for the most populated ions. Atomic processes populating and de-populating the energy levels consider photoexcitation and photoionization due to the external radiation flux, and spontaneous and collisional atomic processes including plasma radiation trapping. Relevant atomic cross sections and rates were computed with the atomic structure and scattering FAC code. The calculations were performed at constant particle number density and driven by the time-histories of temperature and external radiation flux. These conditions were selected in order to resemble those achieved in photoionized plasma experiments at the Z facility of Sandia National Laboratories. For the same set of time histories, calculations were done in a full time-dependent mode and also as a sequence of instantaneous, steady states. Differences between both calculations are useful to identify transient effects in the ionization and atomic kinetics of the photoionized plasma, and its dependence on the atomic model and plasma environmental

  16. Influence of dust particles on ionization and excitation in neon dc discharge

    NASA Astrophysics Data System (ADS)

    Shumova, V. V.; Polyakov, D. N.; Vasilyak, L. M.

    2015-11-01

    The influence of dust particles on the concentration of metastable neon atoms and ionization was investigated using the developed drift/diffusion model for plasma of positive column of glow discharge. The detailed de-excitation in neon was considered. In addition to usual plasma losses in dusty plasmas, the quenching of metastable atoms on dust particle surface was considered. The strong influence of dust particles on the ionization rate and concentration of metastable neon atoms in a positive column of glow discharge is shown to result from the change in the longitudinal electric field strength.

  17. [Radioprotective effect of helium-neon laser radiation for fibroblast cells].

    PubMed

    Voskanian, K Sh; Mitsyn, G V; Gaevskiĭ, V N

    2007-01-01

    Effects of combined exposure to 633-nm laser waves and gamma-radiation, and laser waves and protons with the energy of 150 MeV on survivablilty of mice fibroblast cells C3H10T1/2 were compared. Cell suspension (1 - 5 x 10(5) cells/ml) was distributed in 2-ml plastic vials with 1 cm in diameter time interval between two exposures in a combination was no more than 60 s. immediately after exposure a required quantity of cells was inoculated in special vials for survivability assessment. Based on results of the experiment, preliminary and repeated laser treatment was favorable to survivability of fibroblast cells subjected to gamma- or proton irradiation (dose variation factor was within 1.3 to 2.2). Simultaneous exposure of C3H10T1/2 cells to the laser and proton beams also increased their survivability. The radioprotective effect of the helium-neon laser on fibroblasts earlier exposed to ionizing radiation is of chief interest, as most of the present-day radioprotectors are effective only if introduced into organism prior to exposure.

  18. Short wavelength laser calculations for electron pumping in neon-like krypton (Kr XXVII)

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Bhatia, A. K.; Suckewer, S.

    1983-01-01

    Calculations of electron impact collision strengths and spontaneous radiative decay rates are made for neon-like krypton (Kr XXVII) for the 2s2 2p6, 2s2 2p5 3s, 2s2 2p5 3p, and 2s2 2p5 3d configurations. From these atomic data, the level populations as a function of the electron density are calculated at two temperatures, 1 x 10 to the 7th K and 3 x 10 to the 7th K. An analysis of level populations reveals that a volume of krypton in which a significant number of the ions are in the Kr XXVII degree of ionization can produce a significant gain in transition between the 2s2 2p5 3s and 2s2 2p5 3p configurations. At an electron density of 1 x 10 to the 19th/cu cm the plasma length has to be of the order of 1 m; at a density of 1 x 10 to the 21st/cu cm the length is reduced to approximately 0.5 cm; and at an electron density of 1 x 10 to the 22nd/cu cm the length of the plasma is further reduced to approximately 1 mm.

  19. Attainable superheat of argon-helium, argon-neon solutions.

    PubMed

    Baidakov, Vladimir G; Kaverin, Aleksey M; Andbaeva, Valentina N

    2008-10-16

    The method of lifetime measurement has been used to investigate the kinetics of spontaneous boiling-up of superheated argon-helium and argon-neon solutions. Experiments were made at a pressure of p = 1.5 MPa and concentrations up to 0.33 mol% in the range of nucleation rates from 10 (4) to 10 (8) s (-1) m (-3). The homogeneous nucleation regime has been distinguished. With good agreement between experimental data and homogeneous nucleation theory in temperature and concentration dependences of the nucleation rate, a systematic underestimation by 0.25-0.34 K has been revealed in superheat temperatures over the saturated line attained by experiment as compared with theoretical values calculated in a macroscopic approximation. The revealed disagreement between theory and experiment is connected with the dependence of the properties of new-phase nuclei on their size.

  20. Helium and neon abundances and compositions in cometary matter.

    PubMed

    Marty, Bernard; Palma, Russell L; Pepin, Robert O; Zimmermann, Laurent; Schlutter, Dennis J; Burnard, Peter G; Westphal, Andrew J; Snead, Christopher J; Bajt, Sasa; Becker, Richard H; Simones, Jacob E

    2008-01-04

    Materials trapped and preserved in comets date from the earliest history of the solar system. Particles captured by the Stardust spacecraft from comet 81P/Wild 2 are indisputable cometary matter available for laboratory study. Here we report measurements of noble gases in Stardust material. Neon isotope ratios are within the range observed in "phase Q," a ubiquitous, primitive organic carrier of noble gases in meteorites. Helium displays 3He/4He ratios twice those in phase Q and in Jupiter's atmosphere. Abundances per gram are surprisingly large, suggesting implantation by ion irradiation. The gases are probably carried in high-temperature igneous grains similar to particles found in other Stardust studies. Collectively, the evidence points to gas acquisition in a hot, high ion-flux nebular environment close to the young Sun.

  1. A Comparison of Detailed Level and Superconfiguration Models of Neon

    SciTech Connect

    Hansen, S B; Fournier, K B; Bauche-Arnoult, C; Bauche, J; Peyrusse, O

    2005-01-03

    The superconfiguration (SC) approach to collisional-radiative modeling can significantly decrease the computational demands of finding non-LTE level populations in complex systems. However, it has not yet been fully determined whether the statistical averaging of SC models leads to a significant loss of accuracy. The present work compares results from two independent models: a detailed-level accounting (DLA) model based on HULLAC data and the SC model MOST. The relatively simple level structures of the K- and L-shell ions of the neon test system ensure a tractable number of levels in the DLA model but challenge the statistical assumptions of the SC approach. Nonetheless, we find fair agreement between the two models for average ion charges, SC populations, and various effective temperatures.

  2. Helium and Neon Abundances and Compositions in Cometary Matter

    SciTech Connect

    Marty, B; Palma, R L; Pepin, R O; Zimmmermann, L; Schlutter, D J; Burnard, P G; Westphal, A J; Snead, C J; Bajt, S; Becker, R H; Simones, J E

    2007-10-15

    Materials trapped and preserved in comets date from the earliest history of the solar system. Particles captured by the Stardust spacecraft from comet Wild 2 are indisputable cometary matter available for laboratory study. Here they report measurements of noble gases in Stardust material. neon isotope ratios are within the range observed in 'phase Q', a ubiquitous, primitive organic carrier of noble gases in meteorites. Helium displays {sup 3}He/{sup 4}He ratios twice those in phase Q and in Jupiter's atmosphere. Abundances per gram are surprisingly large, suggesting implantation by ion irradiation. The gases are carried in high temperature igneous grains similar to particles found in other Stardust studies. Collectively the evidence points to gas acquisition in a hot, high ion flux nebular environment close to the young Sun.

  3. Absolute Differential Scattering Cross-Sections of Electrons from Neon, Nitrogen and Methyl Chloride

    NASA Astrophysics Data System (ADS)

    Shi, Xueying

    The relative flow technique is used to obtain absolute DCS in a crossed-beam experiment. A novel gas handling system was designed to facilitate these measurements. The absolute DCS of electrons scattered from neon have been measured from 7 eV down to 0.25 eV. At energies of 2 eV and lower, our results are in excellent agreement with MERT and recent ab initio calculation. At energies higher than 2 eV, our results are in excellent agreement with those of Williams. Thus we propose that neon can be used as a benchmark to test the overall performance of the electron spectrometer at low energies. The angular dependence of absolute vibrationally -elastic DCS of electrons scattered from N_2 have been measured at 0.55 eV, 1.50 eV, and ~2.22 eV, the second elastic peak of the ^2Pi_{rm g} resonance. Our results at these two lower energies are much larger than the previous experimental results, but in close agreement with theoretical calculations by Morrison. By extrapolating our curves to 0^ circ and 180^circ using Morrison's curves as a guide, integration gave the total vibrationally-elastic cross sections at these two energies. Our results are within 2-4% of the experimentally measured total cross sections. Methyl Chloride is the simplest saturated hydrocarbon with a single chlorine atom substitution. Two resonances have been assigned in CH_3Cl, the a_1(C-Cl,sigma^*) resonance at 3.45 eV and the e(C-H,sigma ^*) resonance at 5.5 eV. In the elastic channel, the measurements show that dipole scattering dominates at low energies and in the forward direction. In inelastic channels, the C-Cl stretch mode nu_3(a _1) is strongly excited by the sigma ^*(C-Cl) shape resonance, and the C-H stretch mode nu_4(e) is the strongest one excited by the e resonance. The angular dependences for excitation of these two modes are relatively flat. The shapes cannot be explained solely by a few leading terms in the angular momentum expansion arising from the resonance. This suggests that non

  4. Fragmentation dynamics of ionized neon trimer inside helium nanodroplets: a theoretical study.

    PubMed

    Bonhommeau, David; Viel, Alexandra; Halberstadt, Nadine

    2004-06-22

    We report a theoretical study of the fragmentation dynamics of Ne(3) (+) inside helium nanodroplets, following vertical ionization of the neutral neon trimer. The motion of the neon atoms is treated classically, while transitions between the electronic states of the ionic cluster are treated quantum mechanically. A diatomics-in-molecules description of the potential energy surfaces is used, in a minimal basis set consisting of three effective p orbitals on each neon atom for the missing electron. The helium environment is modeled by a friction force acting on the neon atoms when their speed exceeds the Landau velocity. A reasonable range of values for the corresponding friction coefficient is obtained by comparison with existing experimental measurements.

  5. Neon as a Buffer Gas for a Mercury-Ion Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John; Chung, Sang

    2008-01-01

    A developmental miniature mercury-ion clock has stability comparable to that of a hydrogen-maser clock. The ion-handling components are housed in a sealed vacuum tube, wherein a getter pump is used to maintain the partial vacuum, and the evacuated tube is backfilled with mercury vapor in a buffer gas. Neon was determined to be the best choice for the buffer gas: The pressure-induced frequency pulling by neon was found to be only about two-fifths of that of helium. Furthermore, because neon diffuses through solids much more slowly than does helium, the operational lifetime of a tube backfilled with neon could be considerably longer than that of a tube backfilled with helium.

  6. Equation of state of dense neon and krypton plasmas in the partial ionization regime

    SciTech Connect

    Chen, Q. F. Zheng, J.; Gu, Y. J.; Li, Z. G.

    2015-12-15

    The compression behaviors of dense neon and krypton plasmas over a wide pressure-temperature range are investigated by self-consistent fluid variational theory. The ionization degree and equation of state of dense neon and krypton are calculated in the density-temperature range of 0.01–10 g/cm{sup 3} and 4–50 kK. A region of thermodynamic instability is found which is related to the plasma phase transition. The calculated shock adiabat and principal Hugoniot of liquid krypton are in good agreement with available experimental data. The predicted results of shock-compressed liquid neon are presented, which provide a guide for dynamical experiments or numerical first-principle calculations aimed at studying the compression properties of liquid neon in the partial ionization regime.

  7. Quantum dynamical structure factor of liquid neon via a quasiclassical symmetrized method

    NASA Astrophysics Data System (ADS)

    Monteferrante, Michele; Bonella, Sara; Ciccotti, Giovanni

    2013-02-01

    We apply the phase integration method for quasiclassical quantum time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011), 10.1080/00268976.2011.619506] to compute the dynamic structure factor of liquid neon. So far the method had been tested only on model systems. By comparing our results for neon with experiments and previous calculations, we demonstrate that the scheme is accurate and efficient also for a realistic model of a condensed phase system showing quantum behavior.

  8. Method and apparatus for cooling high temperature superconductors with neon-nitrogen mixtures

    DOEpatents

    Laverman, Royce J.; Lai, Ban-Yen

    1993-01-01

    Apparatus and methods for cooling high temperature superconducting materials (HTSC) to superconductive temperatures within the range of 27.degree. K. to 77.degree. K. using a mixed refrigerant consisting of liquefied neon and nitrogen containing up to about ten mole percent neon by contacting and surrounding the HTSC material with the mixed refrigerant so that free convection or forced flow convection heat transfer can be effected.

  9. Laser optogalvanic wavelength calibration with a commercial hollow cathode iron - neon discharge lamp

    NASA Technical Reports Server (NTRS)

    Zhu, Xinming; Nur, Abdullahi H.; Misra, Prabhakar

    1994-01-01

    351 optogalvanic transitions have been observed in the 337 - 598 nm wavelength region using an iron - neon hollow cathode discharge lamp and a pulsed tunable dye laser. 223 of these have been identified as transitions associated with neon energy levels. These optogalvanic transitions have allowed, in conjunction with interference fringes recorded concomitantly with an etalon, the calibration of the dye laser wavelength with 0.3/cm accuracy.

  10. A comparison of neon versus helium ion beam induced deposition via Monte Carlo simulations.

    PubMed

    Timilsina, Rajendra; Smith, Daryl A; Rack, Philip D

    2013-03-22

    The ion beam induced nanoscale synthesis of PtCx (where x ∼ 5) using the trimethyl (methylcyclopentadienyl)platinum(IV) (MeCpPt(IV)Me3) precursor is investigated by performing Monte Carlo simulations of helium and neon ions. The helium beam leads to more lateral growth relative to the neon beam because of its larger interaction volume. The lateral growth of the nanopillars is dominated by molecules deposited via secondary electrons in both the simulations. Notably, the helium pillars are dominated by SE-I electrons whereas the neon pillars are dominated by SE-II electrons. Using a low precursor residence time of 70 μs, resulting in an equilibrium coverage of ∼4%, the neon simulation has a lower deposition efficiency (3.5%) compared to that of the helium simulation (6.5%). At larger residence time (10 ms) and consequently larger equilibrium coverage (85%) the deposition efficiencies of helium and neon increased to 49% and 21%, respectively; which is dominated by increased lateral growth rates leading to broader pillars. The nanoscale growth is further studied by varying the ion beam diameter at 10 ms precursor residence time. The study shows that total SE yield decreases with increasing beam diameters for both the ion types. However, helium has the larger SE yield as compared to that of neon in both the low and high precursor residence time, and thus pillars are wider in all the simulations studied.

  11. Electrical Properties for Capacitively Coupled Radio Frequency Discharges of Helium and Neon at Low Pressure

    NASA Astrophysics Data System (ADS)

    Tanisli, Murat; Sahin, Neslihan; Demir, Suleyman

    2016-10-01

    In this study, the symmetric radio frequency (RF) electrode discharge is formed between the two electrodes placing symmetric parallel. The electrical properties of symmetric capacitive RF discharge of pure neon and pure helium have been obtained from current and voltage waveforms. Calculations are done according to the homogeneous discharge model of capacitively coupled radio frequency (CCRF) using with the data in detail. Electrical properties of bulk plasma and sheath capacitance are also investigated at low pressure with this model. This study compares the electrical characteristics and sheath capacitance changes with RF power and pressure for helium and neon discharges. Also, the aim of the study is to see the differences between helium and neon discharges' current and voltage values. Their root-mean-square voltages and currents are obtained from Tektronix 3052C oscilloscope. Modified homogeneous discharge model of CCRF is used for low pressure discharges and the calculations are done using experimental results. It is seen that homogeneous discharge model of CCRF is usable with modification and then helium and neon discharge's electrical properties are investigated and presented with a comparison. Helium discharge's voltage and current characteristic have smaller values than neon's. It may be said that neon discharge is a better conductor than helium discharge. It is seen that the sheath capacitance is inversely correlation with sheath resistance.

  12. Characteristic of lipids and fatty acid compositions of the neon flying squid, Ommastrephes bartramii.

    PubMed

    Saito, Hiroaki; Ishikawa, Satoru

    2012-01-01

    The lipids and fatty acids of the neon flying squid (Ommastrephes bartramii) were an-alyzed to clarify its lipid physiology and health benefit as marine food. Triacylglycerols were the only major component in the digestive gland (liver). In all other organs (mantle, arm, integument, and ovary), sterols and phospholipids were the major components with noticeable levels of ceramide aminoethyl phosphonate and sphingomyelin. The significant levels of sphingolipids suggest the O. bartramii lipids is a useful source for cosmetics. Although the lipid content between the liver and all other tissues markedly differed from each other, the same nine dominant fatty acids in the triacylglycerols were found in all organs; 14:0, 16:0, 18:0, 18:1n-9, 20:1n-9, 20:1n-11, 22:1n-11, 20:5n-3 (icosapentaenoic acid, EPA), and 22:6n-3 (docosahexaenoic acid, DHA). Unusually high 20:1n-11 levels in the O. bartramii triacylglycerols were probably characteristic for western Pacific animal depot lipids, compared with non-detectable levels of 20:1n-11 reported in other marine animals. O. bartramii concurrently has high levels of DHA in their triacylglycerols. The major fatty acids in the phospholipids were 16:0, 18:0, 20:1n-9, EPA, and DHA without 20:1n-11. Markedly high levels of both EPA and DHA were observed in phosphatidylethanolamine, while only DHA was found as the major one in phosphatidylcholine. In particular, high levels of DHA were found both in its depot triacylglycerols and tissue phospholipids in all organs of O. bartramii, similar to that in highly migratory fishes. The high DHA levels in all its organs suggest that O. bartramii lipids is a healthy marine source for DHA supplements.

  13. Extreme-ultraviolet beam-foil spectroscopy of highly ionized neon and argon. Doctoral thesis

    SciTech Connect

    Demarest, J.A.

    1986-08-01

    A study of the extreme-ultraviolet radiation emitted by ion beams of highly ionized neon and argon after passage through thin foils was conducted. A grazing-incidence spectrometer was equipped with a position-sensitive microchannel plate (MCP) detector, which improved the detection efficiency by two orders of magnitude. The position information of the MCP was determined to be linear over 90% of the 50-mm-wide detector. Spectra spanning regions of over 100 A were accumulated at a resolution of less than 1 A. A wavelength calibration based on a second order equation of spectrometer position was found to result in an accuracy of - 0.1 A. Over 40 transitions of Ne VIII, Ne IX, and Ne X were observed in the wavelength region from 350 to 30 A from n=2-3,4,5; n=3-4,5,6,7,8; n=4-6,7; and n=5-9. An intensity calibration of the detection system allowed the determination of the relative populations of n=3 states of Ne VIII and Ne IX. An overpopulation of states with low orbital angular momenta support electron-capture predictions by the first-order Born approximation. The argon beam-foil data confirmed the wavelength predictions of 30 previously unobserved transitions in the wavlength region from 355 to 25 A from n=2-2; n=3-4; n=4-5,6,7; and n=6-8. Lifetime determinations were made by the simultaneous measurement of 26 argon lines in the spectral region from 295-180 A. Many of the n=2-2 transitions agreed well with theory.

  14. Effect of helium-neon laser on musculoskeletal trigger points

    SciTech Connect

    Snyder-Mackler, L.; Bork, C.; Bourbon, B.; Trumbore, D.

    1986-07-01

    Cold lasers have been proposed recently as a therapeutic tool for treating a wide variety of pathological conditions, including wounds, arthritis, orthopedic problems, and pain. These proposed therapeutic effects largely have been unsubstantiated by research. A randomized, double blind study was undertaken to ascertain the effect of a helium-neon (He-Ne) laser on the resistance of areas of skin overlying musculoskeletal trigger points. These areas usually demonstrate decreased skin resistance when compared with the surrounding tissue. Thirty patients with musculoskeletal trigger points were assigned randomly to either an experimental or a placebo group. In addition to standard physical therapy, each patient received three 15-second applications of a He-Ne laser or placebo stimulation from an identical unit that did not emit a laser. The results of a two-way analysis of covariance with one repeated measure showed a statistically significant increase (p less than .007) in skin resistance. This increase in an abnormal skin resistance pattern may accompany the resolution of pathological conditions.

  15. The thermal conductivity of neon, methane and tetrafluoromethane

    NASA Astrophysics Data System (ADS)

    Millat, J.; Ross, M.; Wakeham, W. A.; Zalaf, M.

    1988-02-01

    New, absolute measurements of the thermal conductivity of neon (Ne), methane (CH 4) and tetrafluoromethane (CF 4) are reported for the temperature range 308 to 428 K at pressures up to 10 MPa. The data have an estimated accuracy of ±0.3%. A statistical analysis of the density dependence of the thermal conductivity has been employed to deduce the thermal conductivity of the gases in the limit of zero density and the firt density coefficient. For methane the first density coefficient is well represented by a correlation based on data for monatomic gases whereas for tetrafluoromethane the same correlation greatly underestimates the same coefficient. The thermal conductivity in the limit of zero density has been used in conjuction with other transport property data to deduce a consistent set of effective cross-sections for the two gases over all the range of temperature studied, based entirely on experiment. Among other quantities the collision number for rotational relaxation has been deduced and is shown to be significantly different between the two gases. Although the Mason-Monchick approximation is inappropriate for the evaluation of some of the effective cross-sections for the gases, a recent, very simple formulation of the kinetic theory of polyatomic gases provides a satisfactory description of the thermal conductivity data.

  16. Interstellar oxygen, nitrogen and neon in the heliosphere

    NASA Technical Reports Server (NTRS)

    Geiss, J.; Gloeckler, G.; Mall, U.; Von Steiger, R.; Galvin, A. B.; Ogilvie, K. W.

    1994-01-01

    Oxygen, nitrogen and neon pick-up ions of interstellar origin were detected for the first time with the Solar Wind Ion Spectrometer (SWICS) on board Ulysses. The interstellar origin of these ions is established by the following criteria: (a) they are singly charged, (b) they have the broad velocity distributions characteristic of pick-up ions, with an upper limit of twice the solar wind speed, (c) their relative abundance as a function of distance from the sun corresponds to the theoretical expectation, and (d) there is no relation to a planetary or cometary source. The interstellar abundance ratios He(+)/O(+), N(+)/O(+), Ne(+)/O(+) were investigated. At approximately 5.25 AU in the outermost part of Ulysses' trajectory He(+)/O(+) = 175(sup +70 sub -50) N(+)/O(+) = 0.13(sup +0.05 sub -0.05) and Ne(+)/O(+) = 0.18(sup +0.10 sub -0.07) were determined. For the interstellar gas passing through the termination region and entering the heliosphere (He/O)(sub 0) = 290(sup +190 sub -100), (N/O)(sub 0) = 0.13(sup +0.06 sub -0.06) and (Ne/O)(sub 0) = 0.20(sup +0.12 sub -0.09) were obtained from the pick-up ion measurements. Upper limits for the relative abundances of C(+) and C were also determined.

  17. Neon turbo-Brayton cycle refrigerator for HTS power machines

    NASA Astrophysics Data System (ADS)

    Hirai, Hirokazu; Hirokawa, M.; Yoshida, Shigeru; Nara, N.; Ozaki, S.; Hayashi, H.; Okamoto, H.; Shiohara, Y.

    2012-06-01

    We developed a prototype turbo-Brayton refrigerator whose working fluid is neon gas. The refrigerator is designed for a HTS (High Temperature Superconducting) power transformer and its cooling power is more than 2 kW at 65 K. The refrigerator has a turboexpander and a turbo-compressor, which utilize magnetic bearings. These rotational machines have no rubbing parts and no oil-components. Those make a long maintenance interval of the refrigerator. The refrigerator is very compact because our newly developed turbo-compressor is volumetrically smaller than a displacement type compressor in same operating specification. Another feature of the refrigerator is a wide range operation capability for various heat-loads. Cooling power is controlled by the input-power of the turbo-compressor instead of the conventional method of using an electric heater. The rotational speed of the compressor motor is adjusted by an inverter. This system is expected to be more efficient. We show design details, specification and cooling test results of the new refrigerator in this paper.

  18. NEON Data Products: Supporting the Validation of GCOS Essential Climate Variables

    NASA Astrophysics Data System (ADS)

    Petroy, S. B.; Fox, A. M.; Metzger, S.; Thorpe, A.; Meier, C. L.

    2014-12-01

    The National Ecological Observatory Network (NEON) is a continental-scale ecological observation platform designed to collect and disseminate data that contributes to understanding and forecasting the impacts of climate change, land use change, and invasive species on ecology. NEON will collect in-situ and airborne data over 60 sites across the US, including Alaska, Hawaii, and Puerto Rico. The NEON Biomass, Productivity, and Biogeochemistry protocols currently direct the collection of samples from distributed, gradient, and tower plots at each site, with sampling occurring either multiple times during the growing season, annually, or on three- or five-year centers (e.g. for coarse woody debris). These data are processed into a series of field-derived data products (e.g. Biogeochemistry, LAI, above ground Biomass, etc.), and when combined with the NEON airborne hyperspectral and LiDAR imagery, are used support validation efforts of algorithms for deriving vegetation characteristics from the airborne data. Sites are further characterized using airborne data combined with in-situ tower measurements, to create additional data products of interest to the GCOS community, such as Albedo and fPAR. Presented here are a summary of tower/field/airborne sampling and observation protocols and examples of provisional datasets collected at NEON sites that may be used to support the ongoing validation of GCOS Essential Climate Variables.

  19. National Ecological Observatory Network's (NEON) future role in US carbon cycling and budgets

    NASA Astrophysics Data System (ADS)

    Loescher, H. W.

    2015-12-01

    The US National Ecological Observatory Network (NEON) is a National Science Foundation investment designed to observe the impacts of large-scale environment changes on the nation's ecosystems for 30 years with rigorous consistency. NEON does this through the construction (and operations) of new physical infrastructure and data infrastructure distributed across the North American Continent. This includes 47 terrestrial and 32 aquatic sites. Key to its design is its ability to provide ecosystem-scale carbon measurements of carbon stores, fluxes, processes—and the means to scale them from the local-to regional scales via remote sensed aircraft. NEON design NEON will be collecting these carbon data as a facility and providing openly providing them. NEON will not preform any high-level synthesis, rather the carbon data is an open resource for research, private and public communities, alike. Overall, these data are also harmonized with other international carbon-based infrastructures to facilitate cross-continental understanding and global carbon syntheses. Products, engagement and harmonization of data to facilitate syntheses will be discussed.

  20. Neon-Bearing Ammonium Metal Formates: Formation and Behaviour under Pressure.

    PubMed

    Collings, Ines E; Bykova, Elena; Bykov, Maxim; Petitgirard, Sylvain; Hanfland, Michael; Paliwoda, Damian; Dubrovinsky, Leonid; Dubrovinskaia, Natalia

    2016-11-04

    The incorporation of noble gas atoms, in particular neon, into the pores of network structures is very challenging due to the weak interactions they experience with the network solid. Using high-pressure single-crystal X-ray diffraction, we demonstrate that neon atoms enter into the extended network of ammonium metal formates, thus forming compounds Nex [NH4 ][M(HCOO)3 ]. This phenomenon modifies the compressional and structural behaviours of the ammonium metal formates under pressure. The neon atoms can be clearly localised within the centre of [M(HCOO)3 ]5 cages and the total saturation of this site is achieved after ∼1.5 GPa. We find that by using argon as the pressure-transmitting medium, the inclusion inside [NH4 ][M(HCOO)3 ] is inhibited due to the larger size of the argon. This study illustrates the size selectivity of [NH4 ][M(HCOO)3 ] compounds between neon and argon insertion under pressure, and the effect of inclusion on the high-pressure behaviour of neon-bearing ammonium metal formates.

  1. Isothermal compression behavior of (Mg,Fe)O using neon as a pressure medium

    SciTech Connect

    Zhuravlev, Kirill K.; Jackson, J.M.; Wolf, A.S.; Wicks, J.K.; Yan, J.; Clark, S.M.

    2012-04-30

    We present isothermal volume compression behavior of two polycrystalline (Mg,Fe)O samples with FeO = 39 and 78 mol% up to {approx}90 GPa at 300 K using synchrotron X-ray diffraction and neon as a pressure-transmitting medium. For the iron-rich (Mg{sub 0.22}Fe{sub 0.78})O sample, a structural transition from the B1 structure to a rhombohedral structure was observed at 41.6 GPa, with no further indication of changes in structural or compression behavior changes up to 93 GPa. In contrast, a change in the compression behavior of (Mg{sub 0.61}Fe{sub 0.39})O was observed during compression at P {ge} 71 GPa and is indicative of a spin crossover occurring in the Fe{sup 2+} component of (Mg{sub 0.61}Fe{sub 0.39})O. The low-spin state exhibited a volume collapse of {approx}3.5%, which is a larger value than what was observed for a similar composition in a laser-heated NaCl medium. Upon decompression, the volume of the high-spin state was recovered at approximately 65 GPa. We therefore bracket the spin crossover at 65 {le} P (GPa) {le} 77 at 300 K (Mg{sub 0.61}Fe{sub 0.39})O. We observed no deviation from the B1 structure in (Mg{sub 0.61}Fe{sub 0.39})O throughout the pressure range investigated.

  2. Energy, fine structure, hyperfine structure, and radiative transition rates of the high-lying multi-excited states for B-like neon

    NASA Astrophysics Data System (ADS)

    Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin

    2015-04-01

    The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.

  3. Demonstrating a directional detector based on neon for characterizing high energy neutrons

    NASA Astrophysics Data System (ADS)

    Hexley, Allie

    2016-03-01

    MITPC is a gas-based time projection chamber used for detecting fast, MeV-scale neutrons. The standard version of the detector relies on a mixture of 600 torr gas composed of 87.5% helium-4 and 12.5% tetrafluoromethane for precisely measuring the energy and direction of neutron-induced nuclear recoils. I describe studies performed with a prototype detector investigating the use of neon, as a replacement for helium-4, in the gas mixture. My discussion focuses on the advantages of neon as the fast neutron target for high energy neutron events (100 MeV) and a demonstration that the mixture will be effective for this event class. I show that the achievable gain and transverse diffusion of drifting electrons in the neon mixture are acceptable and that the detector uptime lost due to voltage breakdowns in the amplification plane is negligible, compared to 20% with the helium-4 mixture.

  4. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Subsonic radiation waves in neon

    NASA Astrophysics Data System (ADS)

    Loseva, T. V.; Nemchinov, I. V.

    1989-02-01

    Numerical methods are used to investigate the propagation of plane subsonic radiation waves in neon from an obstacle in the direction opposite to the incident radiation of Nd and CO2 lasers. An analysis is made of the influence of the power density of the incident radiation (in the range 10-100 MW/cm2) and of the initial density of neon (beginning from the normal valuep ρ0 up to 10ρ0) on the various characteristics of subsonic radiation waves. It is shown that waves traveling in neon can provide an effective source of radiation with a continuous spectrum and an efficiency of ~ 12-27% in the ultraviolet range (with a characteristic photon energy ~ 5-10 eV).

  5. Solar wind neon from Genesis: implications for the lunar noble gas record.

    PubMed

    Grimberg, Ansgar; Baur, Heinrich; Bochsler, Peter; Bühler, Fritz; Burnett, Donald S; Hays, Charles C; Heber, Veronika S; Jurewicz, Amy J G; Wieler, Rainer

    2006-11-17

    Lunar soils have been thought to contain two solar noble gas components with distinct isotopic composition. One has been identified as implanted solar wind, the other as higher-energy solar particles. The latter was puzzling because its relative amounts were much too large compared with present-day fluxes, suggesting periodic, very high solar activity in the past. Here we show that the depth-dependent isotopic composition of neon in a metallic glass exposed on NASA's Genesis mission agrees with the expected depth profile for solar wind neon with uniform isotopic composition. Our results strongly indicate that no extra high-energy component is required and that the solar neon isotope composition of lunar samples can be explained as implantation-fractionated solar wind.

  6. A stochastic, local mode study of neon-liquid surface collision dynamics.

    PubMed

    Packwood, Daniel M; Phillips, Leon F

    2011-01-14

    Equations of motion for a fast, light rare gas atom passing over a liquid surface are derived and used to infer the dynamics of neon collisions with squalane and perfluorinated polyether surfaces from experimental data. The equations incorporate the local mode model of a liquid surface via a stochastic process and explicitly account for impulsive collisional energy loss to the surface. The equations predict angular distributions for scattering of neon that are in good quantitative agreement with experimental data. Our key dynamical conclusions are that experimental angular distributions derive mainly from local mode surface topography rather than from structural features of individual surface molecules, and that the available data for these systems can be accounted for almost exclusively by single collisions between neon atoms and the liquid surface.

  7. Photochemistry of the ozone-water complex in cryogenic neon, argon, and krypton matrixes.

    PubMed

    Tsuge, Masashi; Tsuji, Kazuhide; Kawai, Akio; Shibuya, Kazuhiko

    2013-12-12

    The photochemistry of ozone-water complexes and the wavelength dependence of the reactions were studied by matrix isolation FTIR spectrometry in neon, argon, and krypton matrixes. Hydrogen peroxide was formed upon the irradiation of UV light below 355 nm. Quantitative analyses of the reactant and product were performed to evaluate the matrix cage effect of the photoreaction. In argon and krypton matrixes, a bimolecular O((1)D) + H2O → H2O2 reaction was found to occur to form hydrogen peroxide, where the O((1)D) atom generated by the photolysis of ozone diffused in the cryogenic solids to encounter water. In a neon matrix, hydrogen peroxide was generated through intracage photoreaction of the ozone-water complex, indicating that a neon matrix medium is most appropriate to study the photochemistry of the ozone-water complex.

  8. NEON: Developing a Platform for Regional to Continental Scale Biological Inquiry

    NASA Astrophysics Data System (ADS)

    Goldman, J.

    2004-05-01

    Climate variation, introductions of alien species, and patterns of land use are some of the important interacting drivers of biological change that are affecting our nation's ecosystems. Many of these drivers operate over large spatial and temporal scales, and our understanding of how these phenomena interact to drive biological change is limited by our inability to link traditionally local and short-term ecological approaches to larger and longer scales. Similarly, our ability to forecast such changes and respond to their consequences is constrained. The National Ecological Observatory Network (NEON) is a proposed shared-use research and education platform intended to improve our capacity to understand and predict biological phenomena operating from regional to continental scales. NEON is envisioned as a system of field and laboratory-based facilities distributed across the United States, which will provide the physical infrastructure and human capabilities necessary to coordinate and integrate research and education campaigns on the following types of issues: (1) biodiversity, species composition, and ecosystem functioning; (2) ecological aspects of biogeochemical cycles; (3) ecological implications of climate change; (4) ecology and evolution of infectious disease; (5) invasive species; and (6) land use and habitat alteration. Themes such as data sharing, multidisciplinary collaboration, and the development of technologies for sensing, forecasting, and visualizing biological information are central to the NEON concept. Development of the NEON science plan and the design of the network itself are proceeding through a variety of workshops and community planning meetings. A national project office is expected to form toward the end of 2004 to lead the development and creation of NEON. Ultimately, the project office will reside within an independent national organization devoted to the coordinated operation of NEON for the scientific community.

  9. Big Data and Ecological Forecasting: Integrating NEON Observational and Sensor Data from Reach to Continent

    NASA Astrophysics Data System (ADS)

    Vance, J. M.; Goodman, K. J.; Lunch, C. K.; Fitzgerald, M.

    2015-12-01

    The ability to forecast the response of varied ecosystems to changes in climate and land use will be crucial for the management of resources and ecosystem services. Ecological forecasting presents many significant challenges within each of the aspects of data capture, assimilation, and modeling. High space-time resolution sampling is required to address the challenges of scaling from the site level to the continent. Determining the uncertainty of data used for model input and parameterization is critical for constraining the model for accurate representation. The National Ecological Observatory Network (NEON) is poised to greatly expand the scale and availability of biogeochemical and aquatic ecological data. NEON is a continental-scale facility designed to collect and disseminate data that addresses the impacts of climate change, land-use, and invasive species on ecosystem structure and function. Using a combination of standardized observational sampling and sensor measurements, NEON will provide a rich source of biogeochemical and biophysical data from 34 aquatic and 47 terrestrial sites spatially distributed across the US, including Alaska, Hawaii and Puerto Rico for 30 years. Sites were selected to be representative of major ecosystems and maximize scalability. In addition to standardizing measurements, NEON is determining the quantitative uncertainty of each data product making them well suited to constrain models. NEON aquatic data will not only serve to baseline aquatic ecology in major ecosystems but also presents opportunities to bolster Hydrologic Models as well as incorporate aquatic biogeochemical cycling into Land Surface Models. Here we present examples of published and provisional data currently available from deployed aquatic sites, as well as an overview of the full scope and release schedule of the open source ecological data to be published on the NEON web portal. Several use cases, such as whole stream metabolism, groundwater exchange, high

  10. A cost-effective approach to microporate mammalian cells with the Neon Transfection System.

    PubMed

    Brees, Chantal; Fransen, Marc

    2014-12-01

    Electroporation is one of the most efficient nonviral methods for transferring exogenous DNA into mammalian cells. However, the relatively high costs of electroporation kits and reagents temper the routine use of this fast and easy to perform technique in many laboratories. Several years ago, a new flexible and easy to operate electroporation device was launched under the name Neon Transfection System. This device uses specialized pipette tips containing gold-plated electrodes as electroporation chamber. Here we report a protocol to regenerate these expensive tips as well as some other Neon kit accessories, thereby reducing the cost of electroporation at least 10-fold.

  11. Liquid neon heat transfer as applied to a 30 tesla cryomagnet

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1975-01-01

    A 30-tesla magnet design is studied which calls for forced convection liquid neon heat transfer in small coolant channels. The design also requires suppressing boiling by subjecting the fluid to high pressures through use of magnet coils enclosed in a pressure vessel which is maintained at the critical pressure of liquid neon. This high pressure reduces the possibility of the system flow instabilities which may occur at low pressures. The forced convection heat transfer data presented were obtained by using a blowdown technique to force the fluid to flow vertically through a resistance heated, instrumented tube.

  12. X-ray heating of a neon photoionized plasma experiment at Z

    NASA Astrophysics Data System (ADS)

    Mancini, R.; Lockard, T.; Mayes, D.; Loisel, G.; Bailey, J.; Rochau, G.; Abdallah, J.

    2016-10-01

    In experiments performed at the Z facility of Sandia National Laboratories a cm-scale cell filled with neon gas was driven by the burst of broadband x-rays emitted at the collapse of a wire-array z-pinch turning the gas into a photoionized plasma. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the plasma. The time-integrated data show a highly-ionized neon plasma with a rich line absorption spectrum that permits the extraction of the ionization distribution. Data analysis produced ground and low excited state areal densities and from the ratio of first-excited to ground state populations in Li-like neon a temperature of 19 +/- 4eV was extracted to characterize the x-ray heating of the plasma. To interpret this observation, we have performed modeling calculations of the spectral distribution of the x-ray drive, self-consistent modeling of electron and atomic kinetics, and radiation-hydrodynamic simulations. We found that to compute electron temperatures consistent with observation the details of the photon-energy distribution of the drive, x-ray attenuation through the cell window, and non-equilibrium collisional-radiative neon atomic kinetics need to be taken into account. This work was sponsored by DOE Office of Science Grant DE-SC0014451, and the Z Fundamental Science Program.

  13. Cellular and molecular effects for mutation induction in normal human cells irradiated with accelerated neon ions.

    PubMed

    Suzuki, Masao; Tsuruoka, Chizuru; Kanai, Tatsuaki; Kato, Takeshi; Yatagai, Fumio; Watanabe, Masami

    2006-02-22

    We investigated the linear energy transfer (LET) dependence of mutation induction on the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus in normal human fibroblast-like cells irradiated with accelerated neon-ion beams. The cells were irradiated with neon-ion beams at various LETs ranging from 63 to 335 keV/microm. Neon-ion beams were accelerated by the Riken Ring Cyclotron at the Institute of Physical and Chemical Research in Japan. Mutation induction at the HPRT locus was detected to measure 6-thioguanine-resistant clones. The mutation spectrum of the deletion pattern of exons of mutants was analyzed using the multiplex polymerase chain reaction (PCR). The dose-response curves increased steeply up to 0.5 Gy and leveled off or decreased between 0.5 and 1.0 Gy, compared to the response to (137)Cs gamma-rays. The mutation frequency increased up to 105 keV/microm and then there was a downward trend with increasing LET values. The deletion pattern of exons was non-specific. About 75-100% of the mutants produced using LETs ranging from 63 to 335 keV/mum showed all or partial deletions of exons, while among gamma-ray-induced mutants 30% showed no deletions, 30% partial deletions and 40% complete deletions. These results suggested that the dose-response curves of neon-ion-induced mutations were dependent upon LET values, but the deletion pattern of DNA was not.

  14. Continental-Scale Stable Isotope Measurements at NEON to Address Ecological Processes Across Systems

    NASA Astrophysics Data System (ADS)

    Luo, H.; Goodman, K. J.; Hinckley, E. S.; West, J. B.; Williams, D. G.; Bowen, G. J.

    2013-12-01

    The National Ecological Observatory Network (NEON) is a national-scale research platform. The overarching goal of NEON is to enable understanding and forecasting of the impacts of climate change, land use change, and invasive species on aspects of continental-scale ecology (such as biodiversity, biogeochemistry, infectious diseases, ecohydrology, etc.). NEON focuses explicitly on questions that relate to grand challenges in environmental science, are relevant to large regions, and would otherwise be very difficult to address with traditional ecological approaches. The use of stable isotope approaches in ecological research has grown steadily during the last two decades. Stable isotopes at natural abundances in the environment trace and integrate the interaction between abiotic and biotic components across temporal and spatial scales. In this poster, we will present the NEON data products that incorporate stable isotope measurements in atmospheric, terrestrial, and aquatic ecosystems in North America. We further outline current questions in the natural sciences community and how these data products can be used to address continental-scale ecological questions, such as the ecological impacts of climate change, terrestrial-aquatic system linkages, land-atmosphere exchange, landscape ecohydrological processes, and linking biogeochemical cycles across systems. Specifically, we focus on the use of stable isotopes to evaluate water availability and residence times in terrestrial systems, as well as nutrient sources to terrestrial systems, and cycling across ecosystem boundaries.

  15. Experimental verification of dynamics modulation in a periodically-driven neon glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Miller, P. M.; Koepke, M. E.; Gunell, H.

    2010-11-01

    Two ionization wave modes in a driven neon glow discharge alternate as the dominant mode as their response to the driving force alternates between spatiotemporal and temporal periodic pulling. This phenomenon, termed dynamics modulation, was first noted by Koepke, Weltmann, and Selcher [1], who saw two limited but representative cases and proposed a mechanism [2] by which it occurs. Dynamics modulation is reproduced experimentally in a neon glow discharge plasma. The system is periodically driven near a non-dominant mode using a narrow-band ring dye laser tuned to a wavelength near the metastable neon transition at 588.35 nm. A spatially-fixed photodiode with a narrow band filter that selectively passes the primary neon spectral line at 640 nm is used to acquire the time series of luminosity oscillations. These experimental data are used to verify the proposed mechanism and explore the resulting implications for spontaneous unidirectional mode transitions that occur with a change in discharge current.[4pt] [1] M. E. Koepke, K.-D. Weltmann, and C. A. Selcher, Bull. Am. Phys. Soc. 40, 1716 (1995).[0pt] [2] K. -D. Weltmann, M. E. Koepke, and C. A. Selcher, Phys. Rev. E 62, 2773, (2000).

  16. Neon Lights up a Controversy: The Solar Ne/O Abundance

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Nasraoui, K.; Roames, J. K.; Lippner, L. A.; Garst, J. W.

    2005-12-01

    The standard solar model was so reliable that it could predict the existence of the massive neutrino. Helioseismology measurements were so precise that they could determine the depth of the convection zone. This agreement between theory and observation was the envy of all astrophysics-until recently, when sophisticated three-dimensional hydrodynamic calculations of the solar atmosphere reduced the metal content by a factor of almost 2. Antia & Basu suggested that a higher value of the solar neon abundance, ANe/AO=0.52, would resolve this controversy. Drake & Testa presented evidence in favor of this idea from a sample of 21 Chandra stars with enhanced values of the neon abundance, ANe/AO=0.41. In this Letter, we have analyzed solar active region spectra from the archive of the Flat Crystal Spectrometer on the Solar Maximum Mission, a NASA mission from the 1980s, as well as full-Sun spectra from the pioneering days of X-ray astronomy in the 1960s. These data are consistent with the standard neon-to-oxygen abundance value, ANe/AO=0.15 (Grevesse & Sauval). We conclude, therefore, that the enhanced-neon hypothesis will not resolve the current controversy.

  17. Charge exchange fast neutral measurement with natural diamond detectors in neon plasma on LHD

    NASA Astrophysics Data System (ADS)

    Saida, T.; Sasao, M.; Isobe, M.; Krasilnikov, A. V.

    2003-03-01

    Charge exchange (CX) fast neutral spectra produced by ion cyclotron resonance frequency hydrogen minority heating in neon and helium majority plasmas sustained by neutral beam injection were measured with perpendicular Natural Diamond Detectors during the fifth campaign in 2002 on large helical devices (LHDs). It was observed that there were differences between fast neutral spectra shapes in neon plasma and those in helium of the same discharge condition with similar plasma parameters. Dominant CX processes in neon and helium plasmas were studied for ionization components from outside of the last closed flux surface. High-energy proton spectra were obtained by taking account of each charge state distribution and responsible charge exchange cross sections. The high-energy proton tail formations in both plasmas were similar for the same heating regime. The relaxation time tendencies of the effective temperatures of a high-energy proton have also shown no differences, indicating that the acceleration and confinement of energetic ions in LHDs are similar in neon and helium plasmas.

  18. Helium-neon laser irradiation stimulates migration and proliferation in melanocytes and induces repigmentation in segmental-type vitiligo.

    PubMed

    Yu, Hsin-Su; Wu, Chieh-Shan; Yu, Chia-Li; Kao, Ying-Hsien; Chiou, Min-Hsi

    2003-01-01

    Low-energy helium-neon lasers (632.8 nm) have been employed in a variety of clinical treatments including vitiligo management. Light-mediated reaction to low-energy laser irradiation is referred to as biostimulation rather than a thermal effect. This study sought to determine the theoretical basis and clinical evidence for the effectiveness of helium-neon lasers in treating vitiligo. Cultured keratinocytes and fibroblasts were irradiated with 0.5-1.5 J per cm2 helium-neon laser radiation. The effects of the helium-neon laser on melanocyte growth and proliferation were investigated. The results of this in vitro study revealed a significant increase in basic fibroblast growth factor release from both keratinocytes and fibroblasts and a significant increase in nerve growth factor release from keratinocytes. Medium from helium-neon laser irradiated keratinocytes stimulated [3H]thymidine uptake and proliferation of cultured melanocytes. Furthermore, melanocyte migration was enhanced either directly by helium-neon laser irradiation or indirectly by the medium derived from helium-neon laser treated keratinocytes. Thirty patients with segmental-type vitiligo on the head and/or neck were enrolled in this study. Helium-neon laser light was administered locally at 3.0 J per cm2 with point stimulation once or twice weekly. The percentage of repigmented area was used for clinical evaluation of effectiveness. After an average of 16 treatment sessions, initial repigmentation was noticed. Marked repigmentation (>50%) was observed in 60% of patients with successive treatments. Basic fibroblast growth factor is a putative melanocyte growth factor, whereas nerve growth factor is a paracrine factor for melanocyte survival in the skin. Both nerve growth factor and basic fibroblast growth factor stimulate melanocyte migration. It is reasonable to propose that helium-neon laser irradiation clearly stimulates melanocyte migration and proliferation and mitogen release for melanocyte growth

  19. NEON Collaborative Data Collection Campaign at Pacific South West Site in California

    NASA Astrophysics Data System (ADS)

    Kampe, T. U.; Leisso, N.; Krause, K.; Musinsky, J.; Petroy, S. B.; Wasser, L. A.; Cawse-Nicholson, K.; van Aardt, J. A.; Schaaf, C.; Strahler, A. H.; Serbin, S. P.

    2013-12-01

    The National Ecological Observatory Network (NEON) is a continental-scale observatory that will collect biological, chemical and geophysical data over the continental United States in order to study biodiversity, landcover change, climate change and invasive species. In June 2013, a large-scale data collection took place over NEON's Pacific South West (PSW) site 17 in CA, USA. Data were collected in the San Joaquin Experimental Range and the Sierra National Forest. NEON's AOP (Airborne Observation Platform) acquired high spatial resolution hyperspectral data (~1m pixels), waveform lidar, discrete lidar, and RGB imagery over all three sites. A field team simultaneously collected atmospheric and vegetation inventory data, including tree locations, height, diameter-at-breast-height (DBH), species, and spectral data. The NEON collect was centered within a collaboration of multiple research entities, including NASA, Rochester Institute of Technology (RIT), University of Massachusetts (Boston; UMB, and Lowell; UML), Boston University (BU), and the University of Wisconsin, Madison (UWM). NASA's AVIRIS and MASTER sensors were flown over a wider area encompassing the NEON sites, with AVIRIS acquiring hyperspectral data (224 bands) at approximately 30m spatial resolution, and MASTER acquiring multispectral thermal data (50 bands) at approximately 50m spatial resolution. These data will be downscaled to approximate theoretical HyspIRI data (60m spatial resolution) as part of a large collection of preparatory research. Concurrently, a variety of university teams were active in the field: RIT collected ground-based lidar, leaf area index (LAI), herbaceous biomass measurements, wide-angle photographs, and spectral measurements. Data were collected over 20 80x80m sites, centered on existing 20x20m NEON sites. This data set will be used to inform synthetic scene design and to study the impact of sub-pixel structural variation on pixel-level spectral response; The BU, UMB, and UML

  20. NEON: High Frequency Monitoring Network for Watershed-Scale Processes and Aquatic Ecology

    NASA Astrophysics Data System (ADS)

    Vance, J. M.; Fitzgerald, M.; Parker, S. M.; Roehm, C. L.; Goodman, K. J.; Bohall, C.; Utz, R.

    2014-12-01

    Networked high frequency hydrologic and water quality measurements needed to investigate physical and biogeochemical processes at the watershed scale and create robust models are limited and lacking standardization. Determining the drivers and mechanisms of ecological changes in aquatic systems in response to natural and anthropogenic pressures is challenging due to the large amounts of terrestrial, aquatic, atmospheric, biological, chemical, and physical data it requires at varied spatiotemporal scales. The National Ecological Observatory Network (NEON) is a continental-scale infrastructure project designed to provide data to address the impacts of climate change, land-use, and invasive species on ecosystem structure and function. Using a combination of standardized continuous in situ measurements and observational sampling, the NEON Aquatic array will produce over 200 data products across its spatially-distributed field sites for 30 years to facilitate spatiotemporal analysis of the drivers of ecosystem change. Three NEON sites in Alabama were chosen to address linkages between watershed-scale processes and ecosystem changes along an eco-hydrological gradient within the Tombigbee River Basin. The NEON Aquatic design, once deployed, will include continuous measurements of surface water physical, chemical, and biological parameters, groundwater level, temperature and conductivity and local meteorology. Observational sampling will include bathymetry, water chemistry and isotopes, and a suite of organismal sampling from microbes to macroinvertebrates to vertebrates. NEON deployed a buoy to measure the temperature profile of the Black Warrior River from July - November, 2013 to determine the spatiotemporal variability across the water column from a daily to seasonal scale. In July 2014 a series of water quality profiles were performed to assess the contribution of physical and biogeochemical drivers over a diurnal cycle. Additional river transects were performed

  1. Atlas of the Spectrum of a Platinum/Neon Hollow-Cathode Lamp in the Region 1130-4330 Å

    National Institute of Standards and Technology Data Gateway

    SRD 112 Atlas of the Spectrum of a Platinum/Neon Hollow-Cathode Lamp in the Region 1130-4330 Å (Web, free access)   Atlas of the Spectrum of a Platinum/Neon Hollow-Cathode Lamp in the Region 1130-4330 Å contains wavelengths and intensities for about 5600 lines in the region 4330 Å. An atlas plot of the spectrum is given, with the spectral lines marked and their intensities, wavelengths, and classifications listed.

  2. Opportunities and Challenges for Education and Outreach at NEON (National Ecological Observatory Network), a new NSF Large Facility

    NASA Astrophysics Data System (ADS)

    Gram, W.; Henderson, S.; Wasser, L. A.; Goehring, L.

    2015-12-01

    As a new NSF Large Facility, NEON (the National Ecological Observatory Network) collects continental-scale ecological and environmental data to support research and education on large-scale ecological processes. The Observatory provides data, infrastructure and educational resources to scientific, educational and general public audiences. We designed NEON's Education and Outreach (E & O) activities to meet several high-level goals, including (1) facilitating public understanding of ecological science, (2) providing tools to use NEON data, (3) educating the next generation of ecologists, and (4) enhancing diversity within the ecological community. The suite of activities we developed ranges from online resources for using NEON data to a Citizen Science project to traditional undergraduate internship programs and workshops for graduate students/early career scientists. The NEON Construction Project represents one of the first large facilities that included E & O activities as set of deliverables with defined requirements in parallel to other components of construction. This approach proved to be both an opportunity to build a multifaceted E & O program in collaboration with NEON science and engineering, and a challenge as competing priorities sometimes left E & O resource development teams without necessary technical expertise. The result, however, is a robust suite of online educational resources, citizen science opportunities, and in-person training programs. Early evaluation efforts have helped us fine tune our programming to meet the needs of target audiences, including diverse undergraduate students, graduate students, scientists, faculty, edcuators, and citizen scientists. Moving into Operations, we envision an evolving suite of resources and programs that further NEON's mission and engage audiences in "doing science," both by using NEON data in a diversity of contexts and participating in our citizen science opportunities.

  3. NEON: Contributing continental-scale long-term environmental data for the benefit of society

    NASA Astrophysics Data System (ADS)

    Wee, B.; Aulenbach, S.

    2011-12-01

    The National Ecological Observatory Network (NEON) is a NSF funded national investment in physical and information infrastructure. Large-scale environmental changes pose challenges that straddle environmental, economic, and social boundaries. As we develop climate adaptation strategies at the Federal, state, local, and tribal levels, accessible and usable data are essential for implementing actions that are informed by the best available information. NEON's goal is to enable understanding and forecasting of the impacts of climate change, land use change and invasive species on continental-scale ecology by providing physical and information infrastructure. The NEON framework will take standardized, long-term, coordinated measurements of related environmental variables at each of its 62 sites across the nation. These observations, collected by automated instruments, field crews, and airborne instruments, will be processed into more than 700 data products that are provided freely over the web to support research, education, and environmental management. NEON is envisioned to be an integral component of an interoperable ecosystem of credible data and information sources. Other members of this information ecosystem include Federal, commercial, and non-profit entities. NEON is actively involved with the interoperability community via forums like the Foundation for Earth Science Information Partners and the USGS Community for Data Integration in a collective effort to identify the technical standards, best practices, and organizational principles that enable the emergence of such an information ecosystem. These forums have proven to be effective innovation engines for the experimentation of new techniques that evolve into emergent standards. These standards are, for the most part, discipline agnostic. It is becoming increasingly evident that we need to include socio-economic and public health data sources in interoperability initiatives, because the dynamics of coupled

  4. Spitzer Finds Cosmic Neon and Sulfur's Sweet Spot

    NASA Astrophysics Data System (ADS)

    Rubin, Robert

    Elemental abundances are the fossil remnants of the life history of a galaxy. Abundance ratios indicate the effects of star formation and the release of nuclear processed heavy elements via planetary nebulae and supernovae, plus other mechanisms. By deriving the elemental abundances and judicious modeling, astronomers are able to determine the relative importance of these processes in the chemical evolution of a galaxy. Modeling requires the input of nucleosynthetic yields from stellar evolution and supernova calculations. Since most fusion reaction rates cannot be measured in any earthly laboratory, the observed elemental ratios provide good tests of fusion reaction rate calculations. This proposal addresses the means by which we determine elemental abundances. H II regions are the prime laboratory for the measurement of the most abundant elements- He, C, N, O, Ne, S, and Ar, (usually with respect to hydrogen)- because these elements have strong lines in the ionization states produced by the Lyman continuum photons from massive O-stars. With Spitzer's Infrared Spectrograph (IRS) Short-High (SH) module (wavelength range 9.9-19.6 microns), we have the unique opportunity to measure lines from the two ions of neon (Ne+ & Ne++) and the two most abundant ions of sulfur (S++ & S+3) that are seen in H II regions: [Ne II] 12.8, [Ne III] 15.6, [S III] 18.7, and [S IV] 10.5 microns. These co-spatial/coeval spectra enable unprecedented accuracy for the measurement of these four lines and the estimate of the Ne/S abundance ratio. In Spitzer Cycles 1, 2, and 4 we measured respectively the Ne/S ratios for the galaxies M83 (a barred spiral), M33 (a local group spiral), and NGC 6822 (a local group dwarf irregular). With other GO programs, in Cycle 1 we measured the abundances in two Milky Way H II regions & the Arched Filaments in the Galactic Center, and in Cycle 5, the Orion Nebula. We propose to estimate the Ne and S abundances in many more H II regions, both extragalactic and

  5. Crystal structure and encapsulation dynamics of ice II-structured neon hydrate.

    PubMed

    Yu, Xiaohui; Zhu, Jinlong; Du, Shiyu; Xu, Hongwu; Vogel, Sven C; Han, Jiantao; Germann, Timothy C; Zhang, Jianzhong; Jin, Changqing; Francisco, Joseph S; Zhao, Yusheng

    2014-07-22

    Neon hydrate was synthesized and studied by in situ neutron diffraction at 480 MPa and temperatures ranging from 260 to 70 K. For the first time to our knowledge, we demonstrate that neon atoms can be enclathrated in water molecules to form ice II-structured hydrates. The guest Ne atoms occupy the centers of D2O channels and have substantial freedom of movement owing to the lack of direct bonding between guest molecules and host lattices. Molecular dynamics simulation confirms that the resolved structure where Ne dissolved in ice II is thermodynamically stable at 480 MPa and 260 K. The density distributions indicate that the vibration of Ne atoms is mainly in planes perpendicular to D2O channels, whereas their distributions along the channels are further constrained by interactions between adjacent Ne atoms.

  6. Evidence of strong projectile-target-core interaction in single ionization of neon by electron impact

    SciTech Connect

    Yan, S.; Zhang, P.; Xu, S.; Ma, X.; Zhang, S. F.; Zhu, X. L.; Feng, W. T.; Liu, H. P.

    2010-11-15

    The momentum distributions of recoil ions were measured in the single ionization of neon by electron impact at incident energies between 80 and 2300 eV. It was found that there are a noticeable number of recoil ions carrying large momenta, and the relative contributions of these ions becomes more pronounced with the further decrease of incident electron energy. These observed behaviors indicate that there is a strong projectile-target-core interaction in the single-ionization reaction. By comparing our results with those of electron-neon elastic scattering, we concluded that the elastic scattering of the projectile electron on the target core plays an important role at low and intermediate collision energies.

  7. Prediction of thermal acoustic oscillations (TAOs) in the CLAES solid CO2/neon system

    NASA Technical Reports Server (NTRS)

    Spradley, I. E.; Yuan, S. W. K.

    1991-01-01

    Results are presented of a study initiated to investigate the possibility that the existence of thermal acoustic oscillations (TAOs) in the Cryogenic Limb Atmospheric Etalon Spectrometer (CLAES) neon plumbing system ground configuration could be the cause of higher-than-predicted heat rates measured during thermal ground testing. Tests were conducted between warm boundary temperatures ranging from 40 to 100 K, which simulated the actual test conditions of the CLAES CO2/neon system. TAOs were observed between 6 and 106 Torr, which agreed with the analytical predictions, and verified the possible existence of TAOs in the CLAES system during ground testing. The presence of TAOs was eventually confirmed in the CLAES system during a subsequent thermal test and were determined to have caused the higher heat rates measured during the prior thermal test.

  8. Electronic absorption spectra of protonated pyrene and coronene in neon matrixes.

    PubMed

    Garkusha, Iryna; Fulara, Jan; Sarre, Peter J; Maier, John P

    2011-10-13

    Protonated pyrene and coronene have been isolated in 6 K neon matrixes. The cations were produced in the reaction of the parent aromatics with protonated ethanol in a hot-cathode discharge source, mass selected, and co-deposited with neon. Three electronic transitions of the most stable isomer of protonated pyrene and four of protonated coronene were recorded. The strongest, S(1) ← S(0) transitions, are in the visible region, with onset at 487.5 nm for protonated pyrene and 695.6 nm for protonated coronene. The corresponding neutrals were also observed. The absorptions were assigned on the basis of ab initio coupled-cluster and time-dependent density functional theory calculations. The astrophysical relevance of protonated polycyclic aromatic hydrocarbons is discussed.

  9. Angle-resolved Auger electron spectra induced by neon ion impact on aluminum

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.; Aron, P. R.

    1986-01-01

    Auger electron emission from aluminum bombarded with 1 to 5 keV neon ions was studied by angle-resolved electron spectroscopy. The position and shape of the spectral features depended on the incident ion energy, angle of ion incidence, and electron take-off angle with respect to the aluminum surface. These spectral dependencies were interpreted in terms of the Doppler shift given to the Auger electron velocity by the excited atom ejected into the vacuum. For oblique ion incidence it is concluded that a flux of high energy atoms are ejected in a direction close to the projection of the ion beam on the target surface. In addition, a new spectral feature was found and identified as due to Auger emission from excited neon in the aluminum matrix.

  10. Effects of helio-neon laser radiation upon cellular cycle in a plant model

    SciTech Connect

    de Barioglio, S.R.; Fiol de Cuneo, M.; Lacuara, J.L.; Juri, H.

    1989-01-01

    The scope of this study was to investigate possible relationships between He-Neon laser radiation and mitotic and phase indices in meristematic cells of Allium cepa L. bulbs. Our results indicate that mitotic index increased after irradiation depending this modification on the time exposure and the potency of the He-Neon beam. Phase indices were also modified: frequency of prophase increased, while inter- meta- and anaphase decreased: telophases remain unchanged. These variations were significative only when the preparations were irradiated (a) with 5 mW for 10 min. or more, (b) with 10 mW or (c) when the preparations were processed 60 min. after irradiation. These findings could not be attributed to thermal changes. Modifications in RNA or protein synthesis could be responsible.

  11. The relative abundance of neon and magnesium in the solar corona

    NASA Technical Reports Server (NTRS)

    Rugge, H. R.; Walker, A. B. C., Jr.

    1976-01-01

    A technique is proposed for specifically determining the relative solar coronal abundance of neon and magnesium. The relative abundance is calculated directly from the relative intensity of the resonance lines of Ne X (12.134A) and Mg XI (9.169A) without the need for the development of a detailed model of the thermal structure of the corona. Moderate resolution Bragg crystal spectrometer results from the OVI-10 satellite were used to determine a coronal neon to magnesium relative abundance of 1.47 + or - 0.38. The application of this technique to a recent higher resolution rocket observation gave an abundance ratio of approximately 0.93 + or - 0.15.

  12. Design study of steady-state 30-tesla liquid-neon-cooled magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Brown, G. V.

    1976-01-01

    A design for a 30-tesla, liquid-neon-cooled magnet was reported which is capable of continuous operation. Cooled by nonboiling, forced-convection heat transfer to liquid neon flowing at 2.8 cu m/min in a closed, pressurized heat-transfer loop and structurally supported by a tapered structural ribbon, the tape-wound coils with a high-purity-aluminum conductor will produce over 30 teslas for 1 minute at 850 kilowatts. The magnet will have an inside diameter of 7.5 centimeters and an outside diameter of 54 centimeters. The minimum current density at design field will be 15.7 kA/sq cm.

  13. Translating the Science of Measuring Ecosystems at a National Scale: Developing NEON's Online Learning Portal

    NASA Astrophysics Data System (ADS)

    Wasser, L. A.; Gram, W.; Goehring, L.

    2014-12-01

    "Big Data" are becoming increasingly common in many fields. The National Ecological Observatory Network (NEON) will be collecting data over the 30 years, using consistent, standardized methods across the United States. These freely available new data provide an opportunity for increased understanding of continental- and global scale processes such as changes in vegetation structure and condition, biodiversity and landuse. However, while "big data" are becoming more accessible and available, integrating big data into the university courses is challenging. New and potentially unfamiliar data types and associated processing methods, required to work with a growing diversity of available data, may warrant time and resources that present a barrier to classroom integration. Analysis of these big datasets may further present a challenge given large file sizes, and uncertainty regarding best methods to properly statistically summarize and analyze results. Finally, teaching resources, in the form of demonstrative illustrations, and other supporting media that might help teach key data concepts, take time to find and more time to develop. Available resources are often spread widely across multi-online spaces. This presentation will overview the development of NEON's collaborative University-focused online education portal. Portal content will include 1) videos and supporting graphics that explain key concepts related to NEON data products including collection methods, key metadata to consider and consideration of potential error and uncertainty surrounding data analysis; and 2) packaged "lab" activities that include supporting data to be used in an ecology, biology or earth science classroom. To facilitate broad use in classrooms, lab activities will take advantage of freely and commonly available processing tools, techniques and scripts. All NEON materials are being developed in collaboration with existing labs and organizations.

  14. Helium-neon lasers for remote measurements of natural gas leaks

    NASA Astrophysics Data System (ADS)

    1983-09-01

    A Differential Absorption Lidar (DIAL) system that at a distance of 15 meters can remotely sense natura gas (methane) leaks was developed. The system uses two helium-neon lasers (each emitting a different wavelength), a receiver, and an indium antimonide (InSb) photodetector cooled to 77 K. It is demonstrated the system can defect methane leaks both from an underground gas distribution system, and from sanitary landfills.

  15. Translating the Science of Measuring Ecosystems at a National Scale: NEON's Online Learning Portal

    NASA Astrophysics Data System (ADS)

    Wasser, L. A.

    2015-12-01

    "Big Data" are becoming increasingly common in many fields. The National Ecological Observatory Network (NEON) will collect data over the 30 years, using consistent, standardized methods across the United States. These freely available new data provide an opportunity for increased understanding of continental- and global scale processes such as changes in vegetation structure and condition, biodiversity and landuse. However, while "big data" are becoming more accessible and available, working with big data is challenging. New and potentially unfamiliar data types and associated processing methods, required to work with a growing diversity of available data take time and resources to learn. Analysis of these big datasets may further present a challenge given large file sizes, and uncertainty regarding best methods to properly statistically summarize and analyze results. Finally, resources that support learning these concepts and approaches, are distributed widely across multiple online spaces and may take time to find. This presentation will overview the development of NEON's collaborative University-focused online education portal. It will also cover content testing, community feedback and results from workshops using online content. Portal content is hosted in github to facilitate community input, accessibility version control. Content includes 1) videos and supporting graphics that explain key concepts related to NEON and related big spatio-temporal and 2) data tutorials that include subsets of spatio-temporal data that can be used to learn key big data skills in a self-paced approach, or that can be used as a teaching tool in the classroom or in a workshop. All resources utilize free and open data processing, visualization and analysis tools, techniques and scripts. All NEON materials are being developed in collaboration with the scientific community and are being tested via in-person workshops. Visit the portal online: www.neondataskills.org.

  16. NEON's Citizen Science Academy: Exploring online professional development courses for educators to enhance participation

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Ward, D.; Wasser, L.; Meymaris, K.; Newman, S. J.

    2012-12-01

    The NEON Citizen Science Academy (CSA) (citizenscienceacademy.org) was created to explore the need for online professional development (PD) resources and opportunities that explicitly focused on citizen science in diverse educational settings. In the past decade, there has been more widespread acceptance of online PD courses as viable alternatives to face to face classes and workshops. This acceptance, along with the current proliferation of online based citizen science programs, spurred the development of the CSA dedicated to providing online courses and resources to facilitate effective implementation of citizen science programs. For the pilot, an online, self paced course for informal and formal educators was developed based on NEON' Project BudBurst (budburst.org). An intended outcome of this pilot project was the development of best practices based on lessons learned that could be used for the development of future NEON online courses and shared with the citizen science community, The pilot clearly demonstrated the interest in an online citizen science course. Initial registration far exceeded expectations and additional sessions had to be offered to meet demand. A second online course was developed and offered in the fall to similar interest. Additional courses will be offered in the winter of 2013. We will report on lessons learned and early best practices based, in large part, from field testing and feedback of over 400 educators who have taken participated in the CSA to date.

  17. The Bremen mass spectrometric facility for the measurement of helium isotopes, neon, and tritium in water.

    PubMed

    Sültenfuss, Jürgen; Roether, Wolfgang; Rhein, Monika

    2009-06-01

    We describe the mass spectrometric facility for measuring helium isotopes, neon, and tritium that has been operative at this institute since 1989, and also the sampling and sample preparation steps that precede the mass spectrometric analysis. For water samples in a near-equilibrium with atmospheric air, the facility achieves precision for (3)He/(4)He ratios of+/-0.4% or better, and+/-0.8 % or better for helium and neon concentrations. Tritium precision is typically+/-3 % and the detection limit 10 mTU ( approximately 1.2.10(-3) Bq/kg of pure water). Sample throughputs can reach some thousands per year. These achievements are enabled, among other features, by automation of the measurement procedure and by elaborate calibration, assisted by continual development in detail. To date, we have measured more than 15,000 samples for tritium and 23,000 for helium isotopes and neon, mostly in the context of oceanographic and hydrologic work. Some results of such work are outlined. Even when atmospheric tritium concentrations have become rather uniform, tritium provides water ages if (3)He data are taken concurrently. The technique can resolve tritium concentrations in waters of the pre-nuclear era.

  18. Helium-neon laser improves bone repair in rabbits: comparison at two anatomic sites.

    PubMed

    Peccin, Maria Stella; de Oliveira, Flavia; Muniz Renno, Ana Claudia; Pacheco de Jesus, Gustavo Protasio; Pozzi, Renan; Gomes de Moura, Carolina Foot; Giusti, Paulo Ricardo; Ribeiro, Daniel Araki

    2013-07-01

    The purpose of this study was to evaluate the influence of helium-neon laser on bone repair of femur and tibia in rabbits. For this purpose, 15 New Zealand rabbits underwent bilateral bone damage (tibia and femur) using a spherical bur. Helium-neon laser light, at a fluency of 6 J∕cm(2) and wavelength of 632.8 nm was applied on the left legs (laser group). The right tibia or femur lesions (control group) served as negative control. All sections were histopathologically analyzed using HE sections and the morphometric data from bone tissue and hyaline cartilage were achieved. Histopathological analysis showed regular bone trabeculae covered by osteoblastic cells after 1 week in the group exposed to laser therapy from femur and tibia indistinctly. After 3 weeks, the laser group showed new bone formation coming from the bony walls in the femur and tibia as well. On the 5th week, well-defined trabecula undergoing remodeling process was detected for the most intense pattern in tibia only. Morphometric analysis revealed significant statistical differences (p < 0.05) in the bone tissue for the laser-exposed group on 1st and 3rd weeks. After 5th week, bone formation was increased to tibia only. Taken together, such findings suggest that helium-neon laser is able to improve bone repair in rabbits being the most pronounced effect in tibia.

  19. Data Collection, Access and Presentation Technologies in the National Ecological Observatory (NEON) Design (Invited)

    NASA Astrophysics Data System (ADS)

    Aulenbach, S. M.; Berukoff, S. J.

    2010-12-01

    The National Ecological Observatory Network (NEON) will collect data across the United States on the impacts of climate change, land use change and invasive species on ecosystem functions and biodiversity. In-situ sampling and distributed sensor networks, linked by an advanced cyberinfrastructure, will collect site-based data on a variety of organisms, soils, aquatic systems, atmosphere and climate. Targeted airborne remote sensing observations made by NEON as well as geographical data sets and satellite resources produced by Federal agencies will provide data at regional and national scales. The resulting data streams, collected over a 30-year period, will be synthesized into fully traceable information products that are freely and openly accessible to all users. We provide an overview of several collection, access and presentation technologies evaluated for use by observatory systems throughout the data product life cycle. Specifically, we discuss smart phone applications for citizen scientists as well as the use of handheld devices for sample collection and reporting from the field. Protocols for storing, queuing, and retrieving data from observatory sites located throughout the nation are highlighted as are the application of standards throughout the pipelined production of data products. We discuss the automated incorporation of provenance information and digital object identifiers for published data products. The use of widgets and personalized user portals for the discovery and dissemination of NEON data products are also presented.

  20. Investigation of compression of puffing neon by deuterium current and plasma sheath in plasma focus discharge

    SciTech Connect

    Kubes, P.; Cikhardt, J.; Cikhardtova, B.; Rezac, K.; Klir, D.; Kravarik, J.; Kortanek, J.; Paduch, M.; Zielinska, E.

    2015-06-15

    This paper presents the results of the research of the influence of compressed neon, injected by the gas-puff nozzle in front of the anode axis by the deuterium current and plasma sheath on the evolution of the pinch, and neutron production at the current of 2 MA. The intense soft X-ray emission shows the presence of neon in the central region of the pinch. During the implosion and stopping of the plasma sheath, the deuterium plasma penetrates into the internal neon layer. The total neutron yield of 10{sup 10}–10{sup 11} has a similar level as in the pure deuterium shots. The neutron and hard X-ray pulses from fusion D-D reaction are as well emitted both in the phase of the stopping implosion and during the evolution of instabilities at the transformation of plasmoidal structures and constrictions composed in this configuration from both gases. The fast deuterons can be accelerated at the decay of magnetic field of the current filaments in these structures.

  1. Laser-induced optogalvanic signal oscillations in miniature neon glow discharge plasma.

    PubMed

    Saini, V K

    2013-06-20

    Laser-induced optogalvanic (OG) signal oscillations detected in miniature neon glow discharge plasma are investigated using a discharge equivalent-circuit model. The damped oscillations in OG signal are generated when a pulsed dye laser is tuned to a specific neon transition (1s5→2p2) at 588.2 nm under the discharge conditions where dynamic resistance changes its sign. Penning ionization via quasi-resonant energy transfer collisions between neon gas atoms in metastable state and sputtered electrode atoms in ground state is discussed to explain the negative differential resistance properties of discharge plasma that are attributed to oscillations in the OG signal. The experimentally observed results are simulated by analyzing the behavior of an equivalent discharge-OG circuit. Good agreement between theoretically calculated and experimental results is observed. It is found that discharge plasma is more sensitive and less stable in close vicinity to dynamic resistance sign inversion, which can be useful for weak-optical-transition OG detection.

  2. Low energy (e,2e) measurements of CH4 and neon in the perpendicular plane.

    PubMed

    Nixon, Kate L; Murray, Andrew James; Chaluvadi, Hari; Amami, Sadek; Madison, Don H; Ning, Chuangang

    2012-03-07

    Low energy experimental and theoretical triple differential cross sections for the highest occupied molecular orbital of methane (1t(2)) and for the 2p atomic orbital of neon are presented and compared. These targets are iso-electronic, each containing 10 electrons and the chosen orbital within each target has p-electron character. Observation of the differences and similarities of the cross sections for these two species hence gives insight into the different scattering mechanisms occurring for atomic and molecular targets. The experiments used perpendicular, symmetric kinematics with outgoing electron energies between 1.5 eV and 30 eV for CH(4) and 2.5 eV and 25 eV for neon. The experimental data from these targets are compared with theoretical predictions using a distorted-wave Born approximation. Reasonably good agreement is seen between the experiment and theory for neon while mixed results are observed for CH(4). This is most likely due to approximations of the target orientation made within the model.

  3. Infrared spectrum of the NH4-d(n)+ cation trapped in solid neon.

    PubMed

    Jacox, Marilyn E; Thompson, Warren E

    2005-03-07

    The NH4+ cation has been stabilized in solid neon in sufficient concentration for the identification of both of its infrared-active vibrational fundamentals, which appear within a few wavenumbers of the gas-phase band centers. Systematic alteration of the concentrations and positions of introduction of NH3 and H2 in the discharge sampling experiments demonstrated that the highest yield of NH4+ resulted when both the NH3 and the H2 were introduced downstream from a discharge through pure neon. In this configuration, each of these molecules can be ionized by excited neon atoms and their resonance radiation (16.6 eV to 16.85 eV), but fragmentation is minimized. Both infrared-active vibrational fundamentals of ND4+ and several fundamentals of each of the partially deuterium-substituted isotopomers of NH4+ were also identified. Evidence is presented for complexation of NH4+ with an H atom or with one or more H2 molecules.

  4. Testing of a Neon Loop Heat Pipe for Large Area Cryocooling

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin Lee

    2014-01-01

    Cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks is required for future NASA missions. A cryogenic loop heat pipe (CLHP) can provide a closed-loop cooling system for this purpose and has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A neon CLHP was tested extensively in a thermal vacuum chamber using a cryopump as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components. Tests conducted included loop cool-down from the ambient temperature, startup, power cycle, heat removal capability, loop capillary limit and recovery from a dry-out, low power operation, and long duration steady state operation. The neon CLHP demonstrated robust operation. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully by applying power to both the pump and evaporator without any pre-conditioning. It could adapt to changes in the pump power andor evaporator power, and reach a new steady state very quickly. The evaporator could remove heat loads between 0.25W and 4W. When the pump capillary limit was exceeded, the loop could resume its normal function by reducing the pump power. Steady state operations were demonstrated for up to 6 hours. The ability of the neon loop to cool large areas was therefore successfully verified.

  5. Helium-neon laser preirradiation induces protection against UVC radiation in wild-type E. coli strain K12AB1157.

    PubMed

    Kohli, R; Gupta, P K; Dube, A

    2000-02-01

    We have observed that preirradiation with a helium-neon laser (632.8 nm) induces protection against UVC radiation in wild-type E. coli strain K12AB1157. The magnitude of protection was found to depend on the helium-neon laser irradiance, exposure time, and period of incubation between helium-neon laser exposure and subsequent UVC irradiation. The optimum values for dose, irradiance and interval between the two exposures were found to be 7 kJ/m(2), 100 W/m(2) and 1 h, respectively. The possible involvement of singlet oxygen in the helium-neon laser-induced protection is also discussed.

  6. Developing a Scalable Remote Sampling Design for the NEON Airborne Observation Platform (AOP)

    NASA Astrophysics Data System (ADS)

    Musinsky, J.; Wasser, L. A.; Kampe, T. U.; Leisso, N.; Krause, K.; Petroy, S. B.; Cawse-Nicholson, K.; van Aardt, J. A.; Serbin, S.

    2013-12-01

    The National Ecological Observatory Network (NEON) airborne observation platform (AOP) will collect co-registered high-resolution hyperspectral imagery, discrete and waveform LiDAR, and high-resolution digital photography for more than 60 terrestrial and 23 aquatic sites spread across the continental United States, Puerto Rico, Alaska and Hawaii on an annual basis over the next 30 years. These data, to be made freely available to the public, will facilitate the scaling of field-based biological, physical and chemical measurements to regional and continental scales, enabling a better understanding of the relationships between climate variability and change, land use change and invasive species, and their ecological consequences in areas not directly sampled by the NEON facilities. However, successful up-scaling of in situ measurements requires a flight sampling design that captures environmental heterogeneity and diversity (i.e., ecological and topographic gradients), is sensitive to temporal system variation (e.g., phenology), and can respond to major disturbance events. Alignment of airborne campaigns - composed of two payloads for nominal science acquisitions and one payload for PI-driven rapid-response campaigns -- with other ground, airborne (e.g., AVIRIS) and satellite (e.g., Landsat, MODIS) collections will further facilitate scaling between sensors and data sources of varying spatial and spectral resolution and extent. This presentation will discuss the approach, challenges and future goals associated with the development of NEON AOP's sampling design, using examples from the 2013 nominal flight campaigns in the Central Plains (NEON Domain 10) and the Pacific Southwest (Domain 17), and the rapid response flight campaign of the High Park Fire site outside of Fort Collins, CO. Determination of the specific flight coverage areas for each campaign involved analysis of the landscape scale ecological, geophysical and bioclimatic attributes and trends most closely

  7. Improving the accuracy of helium and neon measurements in ocean waters

    NASA Astrophysics Data System (ADS)

    Vogt, M.; Roether, W.; Vogel, S.; Sueltenfuss, J.

    2012-04-01

    The helium and neon solubility disequilibria across the ocean-atmosphere interface serve to study the physics of air-sea gas exchange, but the effect is small so that only high-accuracy data give useful results. Weak points are measurement calibration and uncertain solubility equilibrium values in seawater, especially so for the helium isotopes. Calibration: The classical calibration of mass spectrometric helium and neon measurements uses aliquots of atmospheric air, which is convenient but limited in accuracy and long-term stability. Our alternative is to use water samples equilibrated with undisturbed air, so that their mass can be converted into equivalent volumes of air using a solubility function. In this way, the samples allow a precise recalibration of the air aliquots. A bias relative to regular samples is excluded because the equilibrated water is subjected to exactly the same treatment. The equilibration unit has a water capacity of 4.5 liters. The water is circulated over exchange mats, yielding full air-water equilibrium within two hours, and temperature, pressure, and humidity are precisely controlled. In consequence, we achieve solubility equilibrium within ± 0.03%, so that high accuracy and long-term stability of the calibration are guaranteed. The solubility equilibrium values are more uncertain, but a biased value will only introduce a common shift to the data, i.e., it will not affect the internal consistency of the calibration. The new calibration mode will also enable efficient intercalibration between laboratories. Solubility determination and sampling procedures: We shall use the equilibration unit to obtain solubility functions of helium and neon in distilled water and seawater with a projected accuracy of ± 0.2%. One measure to achieve this is to compare the mass spectrometric signals of the water and the air phase directly. In this context, we developed a procedure to sample water into glass ampoules to be flame-sealed. They are filled

  8. Rapid healing of gingival incisions by the helium-neon diode laser.

    PubMed

    Neiburger, E J

    1999-01-01

    Fifty-eight extraction patients had one of two gingival flap incisions lased with a 1.4 mw helium-neon (670 nm) diode laser for 30 seconds (fluence = 0.34 J/cm2). Healing rates were evaluated clinically and photographically. Sixty-nine percent of the irradiated incisions healed faster than the control incisions. No significant difference in healing was noted when patients were compared by age, gender, race, and anatomic location of the incision. This study concludes that helium-neon diode lasers, at the previously mentioned energy level, increase the rate of gingival wound healing in 69 percent of patients, without any side effects. For the last 30 years, low-power lasers in dentistry have appeared to stimulate healing rates and increase the rate of repair of injured tissue. Helium-neon and similar lasers emit light in the red (600-700 nm) spectrums and produce energy densities (fluences) below 20 Joules/cm2. They have been studied in a variety of animal tissue culture and human evaluations to determine their ability to increase the rates of wound healing by biostimulation. Over the last three decades, researchers have found that ruby and gas helium-neon (low-power laser radiation) have a biostimulatory effect on living tissue. Studies show that under specific conditions, red spectrum laser light speeds the healing of wounds. Photons from the red light lasers, which include ruby lasers (694 nm), helium-neon gas lasers (632 nm), and helium-neon diode lasers (650-670 nm), appear to stimulate rapid epithelialization and fibroblast (collagen) proliferation in animal and human tissue cultures. Low-power lasers have been reported to reduce post-extraction pain and swelling and to increase rates of wound healing (including scar formation, phagocytosis) in cell culture, animal, and human clinical studies. The new, compact, and inexpensive (under $50) helium-neon diode lasers have produced similar effects. These FDA Class IIIa lasers have no hazards associated with them

  9. Constraints on neon and argon isotopic fractionation in solar wind.

    PubMed

    Meshik, Alex; Mabry, Jennifer; Hohenberg, Charles; Marrocchi, Yves; Pravdivtseva, Olga; Burnett, Donald; Olinger, Chad; Wiens, Roger; Reisenfeld, Dan; Allton, Judith; McNamara, Karen; Stansbery, Eileen; Jurewicz, Amy J G

    2007-10-19

    To evaluate the isotopic composition of the solar nebula from which the planets formed, the relation between isotopes measured in the solar wind and on the Sun's surface needs to be known. The Genesis Discovery mission returned independent samples of three types of solar wind produced by different solar processes that provide a check on possible isotopic variations, or fractionation, between the solar-wind and solar-surface material. At a high level of precision, we observed no significant inter-regime differences in 20Ne/22Ne or 36Ar/38Ar values. For 20Ne/22Ne, the difference between low- and high-speed wind components is 0.24 +/- 0.37%; for 36Ar/38Ar, it is 0.11 +/- 0.26%. Our measured 36Ar/38Ar ratio in the solar wind of 5.501 +/- 0.005 is 3.42 +/- 0.09% higher than that of the terrestrial atmosphere, which may reflect atmospheric losses early in Earth's history.

  10. Uv/vis Absorption Experiments on Mass Selected Cations by Counter-Ion Introduction Into AN Inert Neon Matrix

    NASA Astrophysics Data System (ADS)

    Roehr, N. P.; Szczepanski, J.; Polfer, N. C.

    2012-06-01

    Obtaining UV/Vis absorption spectra of cations is a challenging endeavor due to the low densities that can be achieved in the gas phase. In matrix isolation, ions of interest are accumulated in a cold inert matrix of a rare gas (e.g. Argon, Neon) until sufficient concentrations are attained for direct spectroscopic characterization. Nonetheless, in order to ensure neutralization of the matrix, experimentalists often rely on non-ideal, energetic processes, such as electron emission from metal surfaces upon cation bombardment. A better method for matrix neutralization would involve co-depositing a molecular counter-ion. In this talk, a two-ion source instrument is presented, where cations and anions are deposited into a cold inert matrix. Mass-selected cation beams are generated in an electron ionization source and filtered in a quadrupole mass filter (5-10 nA mass-selected naphthalene radical cations recorded). Anion beams are generated in a chemical ionization source (20 nA SF6- recorded). Both ion beams are introduced into an octopole ion guide via a quadrupole deflector. Cations and anions can be deposited simultaneously or separately; in the latter case, alternating layers of each species can be formed. Target cations of interest include open-shell naphthalene and tetracene, for which UV/Vis absorption spectra are recorded after deposition. The counter-ion of choice is SF6-, due to the high electronegativity of SF6. J. P. Maier, et al., J. Chem. Phys. 90, 600(1989). Godbout, et al., J. Phys. Chem. 100 2892-2899(1996). P. Brechignac, et al., J. Chem. Phys. 22 7337-7347(1999). M. Vala, et al., Chem. Phys. Lett. 245 539-548(1995).

  11. Canopy Biomass Lidar (CBL) Acquisitions at NEON and TERN Forest Sites

    NASA Astrophysics Data System (ADS)

    Schaaf, C.; Paynter, I.; Saenz, E.; Peri, F.; Wang, Z.; Erb, A.; Yang, X.; Strahler, A. H.; Li, Z.; van Aardt, J. A.; Kelbe, D.; Romanczyk, P.; Cawse-Nicholson, K.; Krause, K.; Leisso, N.; Kampe, T. U.; Meier, C. L.; Ritz, C.; Chakrabarti, S.; Cook, T.; Howe, G.; Martel, J.; Hewawasam, K.; Douglas, E. S.; Newnham, G.; Schaefer, M.; Armston, J.; Muir, J.; Tindall, D.; Phinn, S. R.

    2013-12-01

    Terrestrial Laser Scanning (TLS) offers the ability to capture complex forest structure through 3D reconstruction of multiple laser return point clouds. These reconstructions provide detailed information on understory, mid-story and canopy structure and allow quantification of important ecosystem factors such as biomass, vegetation productivity, forest health and response to disturbance. Used in conjunction with airborne lidar and satellite imaging, TLS is a powerful calibration/validation tool for improved regional scale ecological surveying and modeling. Repeated deployments facilitate the estimation of growth rates, nutrient fluxes, and other essential parameters in global scale climate and biogeochemic modeling. Routine TLS acquisitions at long-term research sites provide an opportunity to capture temporal variations due to natural and anthropogenic effects. While discrete return and full waveform TLS instruments (such as the Dual Wavelength Echidna Lidar (DWEL)) are increasingly being deployed, there is also a need for high speed, low-cost, highly portable TLS instruments to augment these more powerful, high resolution lidars. The Canopy Biomass Lidar (CBL) is a light, fast-scanning, time-of-flight, 905nm, TLS instrument, conceived by the Katholieke Universiteit Leuven (KUL) and refined by the Rochester Institute of Technology (RIT). Two CBLs, constructed by the University of Massachusetts Boston, were deployed alongside the full waveform DWEL (developed by Boston University, University of Massachusetts Lowell, University of Massachusetts Boston, and the Commonwealth Scientific and Industrial Research Organisation (CSIRO)) during the June 2013 NEON Airborne Observation Platform (AOP) campaign in the Sierra National Forest, CA. Three sites were characterized by both the CBLs and the DWEL in the Soaproot and Teakettle regions (where relocatable NEON towers will be situated). Up to 5 multiple scans were acquired by the DWEL, with an additional 8-12 scans obtained

  12. Mitigated blistering and deuterium retention in tungsten exposed to high-flux deuterium–neon mixed plasmas

    NASA Astrophysics Data System (ADS)

    Cheng, L.; De Temmerman, G.; Morgan, T. W.; Schwarz-Selinger, T.; Yuan, Y.; Zhou, H. B.; Wang, B.; Zhang, Y.; Lu, G. H.

    2017-04-01

    Surface morphology and deuterium retention in tungsten exposed at surface temperature of ~550 K to mixed deuterium–neon plasmas of different neon concentrations are investigated. It is found that the addition of neon up to 20% mitigates blistering on the surface. Cross-section view of the surface shows the formation of pores near the surface in the depth less than 100 nm. Deuterium depth profile is featured by an enhanced deuterium concentration within a depth of 16 nm but a mitigated penetration in depth larger than 1 µm. Deuterium retention is reduced by up to a factor of four. It is suggested the open pores formed in the surface serves as an escaping channel, mitigates deuterium penetration towards bulk and retention in the bulk.

  13. Aquatic Biogeochemical Prototype Activities at the National Ecological Observatory Network (NEON)

    NASA Astrophysics Data System (ADS)

    Goodman, K. J.; Powell, H.; Cilke, T.; Price, A.

    2010-12-01

    NEON is currently prototyping select data collections in order to develop robust protocols and procedures to be used across a gradient of stream systems, evaluating morphological mapping tools, and designing lightweight equipment and secure, stable, non-intrusive sensor installations. Here we present the status of the Aquatic prototype efforts that are occurring at the D15 Candidate Core Aquatic site: Red Butte Creek, Utah. Prototype activities include discharge and reaeration measurements, development of a stream reaeration rating curve, and water chemistry sampling. We are measuring reaeration, a measure of gas exchange across the air-water interface, using a continuous injection of SF6, an inert gas. In addition, Cl-, a conservative tracer, is added to the stream to account for dilution by groundwater inputs. As part of the NEON Prototype effort, we re-designed a lightweight, easy-to- use pump system for the addition of this conservative tracer during reaeration measurements. This pump, which costs a fraction of commercially available pumps, has performed well during field-testing and meets NEON’s needs and requirements for the injection of the conservative tracer. The NEON prototype efforts will help ensure that the data collected across the Observatory, including the 36 aquatic sites across 19 ecoclimatic domains, will enable researchers to investigate and model ecosystems response to climate change and landuse change at multiple spatial and temporal scales. The Observatory will collect data from both in-situ sensors and field data collections to produce measurements using consistent and standardized procedures and protocols across the United States. During Observatory Operations, these data will be available to the public on the web in near-real time.

  14. RADIATION CHEMISTRY OF HIGH ENERGY CARBON, NEON AND ARGON IONS: INTEGRAL YIELDS FROM FERROUS SULFATE SOLUTIONS

    SciTech Connect

    Christman, E.A.; Appleby, A.; Jayko, M.

    1980-07-01

    Chemical yields of Fe{sup 3+} have been measured from FeSO{sub 4} solutions irradiated in the presence and absence of oxygen with carbon, neon, and argon ions from the Berkeley Bevalac facility. G(Fe{sup 3+}) decreases with increasing beam penetration and with increasing atomic number of the incident ion. The results are compared with current theoretical expectations of the behavior of these particles in an aqueous absorber. The chemical yields are consistently higher than theoretically predicted, by amounts varying from <6.2% (carbon ions) to <13.2% (argon ions). The additional yields are possibly attributable to fragmentation of the primary particle beams.

  15. Double ionization of neon by electron impact: use of correlated wave functions*

    NASA Astrophysics Data System (ADS)

    Kada, Imene; Cappello, Claude Dal; Mansouri, Abdelaziz

    2017-02-01

    A model including correlation both in the initial state and in the final state is applied to the case of the double ionization of neon. The results of our model are compared to the available experimental data performed at high incident energy. Fully (fivefold) differential cross sections (FDCS) have been studied by applying the first Born approximation. Four ion states of Ne++, which are not resolved in the experiments, have been included in our calculation. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu V. Popov, and A.V. Solov'yov.

  16. Generation of electron beams from a laser wakefield acceleration in pure neon gas

    SciTech Connect

    Li, Song; Hafz, Nasr A. M. Mirzaie, Mohammad; Elsied, Ahmed M. M.; Ge, Xulei; Liu, Feng; Sokollik, Thomas; Chen, Min; Sheng, Zhengming; Zhang, Jie; Tao, Mengze; Chen, Liming

    2014-08-15

    We report on the generation of quasimonoenergetic electron beams by the laser wakefield acceleration of 17–50 TW, 30 fs laser pulses in pure neon gas jet. The generated beams have energies in the range 40–120 MeV and up to ∼430 pC of charge. At a relatively high density, we observed multiple electron beamlets which has been interpreted by simulations to be the result of breakup of the laser pulse into multiple filaments in the plasma. Each filament drives its own wakefield and generates its own electron beamlet.

  17. Delocalization of a Vacancy across Two Neon Atoms Bound by the van der Waals Force.

    PubMed

    Sann, H; Schober, C; Mhamdi, A; Trinter, F; Müller, C; Semenov, S K; Stener, M; Waitz, M; Bauer, T; Wallauer, R; Goihl, C; Titze, J; Afaneh, F; Schmidt, L Ph H; Kunitski, M; Schmidt-Böcking, H; Demekhin, Ph V; Cherepkov, N A; Schöffler, M S; Jahnke, T; Dörner, R

    2016-12-23

    We experimentally study 2p photoionization of neon dimers (Ne_{2}) at a photon energy of hν=36.56  eV. By postselection of ionization events which lead to a dissociation into Ne^{+}+Ne we obtain the photoelectron angular emission distribution in the molecular frame. This distribution is symmetric with respect to the direction of the charged vs neutral fragment. It shows an inverted Cohen-Fano double slit interference pattern of two spherical waves emitted coherently but with opposite phases from the two atoms of the dimer.

  18. Correlation energy and dispersion interaction in the ab initio potential energy curve of the neon dimer.

    PubMed

    Bytautas, Laimutis; Ruedenberg, Klaus

    2008-06-07

    A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion.

  19. Unusual under-threshold ionization of neon clusters studied by ion spectroscopy

    NASA Astrophysics Data System (ADS)

    Nagaya, K.; Sugishima, A.; Iwayama, H.; Murakami, H.; Yao, M.; Fukuzawa, H.; Liu, X.-J.; Motomura, K.; Ueda, K.; Saito, N.; Foucar, L.; Rudenko, A.; Kurka, M.; Kühnel, K.-U.; Ullrich, J.; Czasch, A.; Dörner, R.; Feifel, R.; Nagasono, M.; Higashiya, A.; Yabashi, M.; Ishikawa, T.; Togashi, T.; Kimura, H.; Ohashi, H.

    2013-08-01

    We carried out time-of-flight mass spectrometry for neon clusters that were exposed to intense free electron laser pulses with the wavelength of 62 nm, which induce optical transition from the ground state (2s2 2p6) to an excited state (2s2 2p5 nl ) in the Ne atoms. In contrast to Ne+ ions produced by two-photon absorption from isolated Ne atoms, the Ne+ ion yield from Ne clusters shows a linear dependence on the laser intensity (I). We discuss the ionization mechanisms which give the linear behaviour with respect to I and expected features in the electron emission spectrum.

  20. Structural transformations and melting in neon clusters: quantum versus classical mechanics.

    PubMed

    Frantsuzov, Pavel A; Meluzzi, Dario; Mandelshtam, Vladimir A

    2006-03-24

    The extraordinary complexity of Lennard-Jones (LJ) clusters, which exhibit numerous structures and "phases" when their size or temperature is varied, presents a great challenge for accurate numerical simulations, even without accounting for quantum effects. To study the latter, we utilize the variational Gaussian wave packet method in conjunction with the exchange Monte Carlo sampling technique. We show that the quantum nature of neon clusters has a substantial effect on their size-temperature "phase diagrams," particularly the critical parameters of certain structural transformations. We also give a numerical confirmation that none of the nonicosahedral structures observed for some classical LJ clusters are favorable in the quantum case.

  1. Formation of the structures from dusty clusters in neon dc discharge under cooling

    NASA Astrophysics Data System (ADS)

    Polyakov, D. N.; Shumova, V. V.; Vasilyak, L. M.

    2016-11-01

    The formation of structures consisted of dusty clusters in plasma at the discharge tube cooling to a temperature of liquid nitrogen was discovered. The dependence of the reduced electric field in the positive column of a discharge on gas temperature was experimentally measured. Depending on the pressure of neon were observed the different structural transitions in the regions of growing current-voltage characteristics at low discharge currents ≤ 1 mA. It was found that the regions of existence of structured clusters and the regions of structural transitions were characterized by the higher values of the reduced electric field than the regions of destruction of ordered structures.

  2. Another neon nova - Early infrared photometry and spectroscopy of Nova Cygni 1992

    NASA Technical Reports Server (NTRS)

    Hayward, T. L.; Gehrz, R. D.; Miles, J. W.; Houck, J. R.

    1992-01-01

    Infrared photometry and spectrophotometry of Nova Cygni 1992 taken within 54 days of its eruption show a strong 12.8-micron Ne II forbidden emission line as well as hydrogen recombination lines. Spectra with lambda/Delta lambda of about 2000 resolve the Ne II forbidden and 12.37-micron Hu-alpha lines with about 2200 km/s (FWHM). The Ne II forbidden line shows multiple velocity components. The amount of forbidden Ne II required to produce the observed emission feature exceeds the solar abundance of neon by at least a factor of 4.

  3. Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings.

    PubMed

    Shi, Liping; Li, Wenxue; Zhou, Hui; Ding, Liang'en; Zeng, Heping

    2013-02-15

    We demonstrate impact ionization and dissociative recombination of neon (Ne) atoms by means of seeded-electron heating and subsequent electron-atom collisions in an ultraviolet plasma grating, allowing for a substantial fraction of the neutral Ne atomic population to reside in high-lying excited states. A buffer gas with relatively low ionization potential (nitrogen or argon) was used to provide high-density seed electrons. A three-step excitation model is verified by the fluorescence emission from the impact excitation of Ne atoms.

  4. Coverage-dependent quantum versus classical scattering of thermal neon atoms from Li/Cu(100).

    PubMed

    Maclaren, D A; Huang, C; Levi, A C; Allison, W

    2008-09-07

    We show that subtle variations in surface structure can enhance quantum scattering and quench atom-surface energy transfer. The scattering of thermal energy neon atoms from a lithium overlayer on a copper substrate switches between a classical regime, dominated by multiphonon interactions, and a quantum regime, dominated by elastic diffraction. The transition is achieved by simple tailoring of the lithium coverage and quantum scattering dominates only in the narrow coverage range of theta=0.3-0.6 ML. The results are described qualitatively using a modified Debye-Waller model that incorporates an approximate quantum treatment of the adsorbate-substrate vibration.

  5. Normal Auger processes with ultrashort x-ray pulses in neon

    NASA Astrophysics Data System (ADS)

    Sullivan, Raymond; Jia, Junteng; Vázquez-Mayagoitia, Álvaro; Picón, Antonio

    2016-10-01

    Modern x-ray sources enable the production of coherent x-ray pulses with a pulse duration in the same order as the characteristic lifetimes of core-hole states of atoms and molecules. These pulses enable the manipulation of the core-hole population during Auger-decay processes, modifying the line shape of the electron spectra. In this work, we present a theoretical model to study those effects in neon. We identify effects in the Auger-electron-photoelectron coincidence spectrum due to the duration and intensity of the pulses. The normal Auger line shape is recovered in Auger-electron spectra integrated over all photoelectron energies.

  6. Optical excitation and decay dynamics of ytterbium atoms embedded in a solid neon matrix.

    SciTech Connect

    Xu, C.-Y.; Hu, S.-M.; Singh, J.; Bailey, K.; Lu, Z.-T.; Mueller, P.; O'Connor, T. P.; Welp, U.

    2011-09-01

    Neutral ytterbium atoms embedded in solid neon qualitatively retain the structure of free atoms. Despite the atom-solid interaction, the 6s6p {sup 3}P{sub 0} level is found to remain metastable with its lifetimes determined to be in the range of ten to hundreds of seconds. The atomic population can be almost completely transferred between the ground level and the metastable level via optical excitation and spontaneous decay. The dynamics of this process is examined and is used to explicitly demonstrate that the transition broadening mechanism is homogeneous.

  7. Optical Excitation and Decay Dynamics of Ytterbium Atoms Embedded in a Solid Neon Matrix

    SciTech Connect

    Xu, C.-Y.; Lu, Z.-T.; Hu, S.-M.; Singh, J.; Bailey, K.; Mueller, P.; O'Connor, T. P.; Welp, U.

    2011-08-26

    Neutral ytterbium atoms embedded in solid neon qualitatively retain the structure of free atoms. Despite the atom-solid interaction, the 6s6p {sup 3}P{sub 0} level is found to remain metastable with its lifetimes determined to be in the range of ten to hundreds of seconds. The atomic population can be almost completely transferred between the ground level and the metastable level via optical excitation and spontaneous decay. The dynamics of this process is examined and is used to explicitly demonstrate that the transition broadening mechanism is homogeneous.

  8. Vacuum-ultraviolet photolysis of H 3CF in solid neon: Infrared spectra of HCF and CF +

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Jong; Chen, Hui-Fen; Chou, Sheng-Lung; Lin, Meng-Yeh; Cheng, Bing-Ming

    2010-09-01

    Irradiation of a sample containing fluoromethane dispersed in solid neon near 3.0 K with light from a synchrotron at wavelength 124 nm generated products that were detected with infrared absorption spectra. The identified products include CF, CF+, CF2, HCF, H2CF, C2F2, C2F2H2, CH3, CH, C2H2 and HF. Isotopic labeling with 13C and deuterium and quantum-chemical calculations confirmed the identification of these species; the vibrational spectra of CF+ and HCF (CH stretching mode) are recorded for the first time in solid neon.

  9. Ultraviolet and Infrared Spectra of Diboron in Solid Neon at 4 K.

    PubMed

    Lo, Jen-Iu; Chou, Sheng-Lung; Lu, Hsiao-Chi; Peng, Yu-Chain; Lin, Meng-Yeh; Cheng, Bing-Ming; Ogilvie, J F

    2017-01-04

    Apart from products H, B, BH, BH2 and BH3 identified from their emission spectra in the UV/Vis region, photolysis of diborane(6) dispersed in solid neon at 4 K with far-ultraviolet light from a synchrotron led to observation of absorption line (0,0) of the electronic transition A (3) Σu(-) ←X (3) Σg(-) of B2 at 326.39 nm. Absorption lines (1,0) of (11) B2 , (11) B(10) B and (10) B2 were recorded at 316.63, 316.40 and 316.15 nm, respectively. ΔG1/2 of state A (3) Σu(-) for (11) B2 , (11) B(10) B and (10) B2 in solid neon are accordingly derived to be 945, 968 and 993 cm(-1) , respectively. Weak lines (0,1) of (11) B2 at 29586 cm(-1) and of (11) B(10) B at 29560 cm(-1) , corresponding to 1042±30 and 1068±30 cm(-1) for vibrational modes in the electronic ground state, were recorded in emission. An absorption line recorded at 1066.5±0.5 cm(-1) in infrared spectra after photolysis of either B2 H6 in Ne or B2 D6 with D2 in Ne is thus attributed to (11) B(10) B.

  10. Experimental evidence of chemical components in the bonding of helium and neon with neutral molecules.

    PubMed

    Cappelletti, David; Bartocci, Alessio; Grandinetti, Felice; Falcinelli, Stefano; Belpassi, Leonardo; Tarantelli, Francesco; Pirani, Fernando

    2015-04-13

    The complexes of helium and neon with gaseous neutral molecules are generally perceived to be van der Waals adducts held together by physical (non-covalent) forces, owing to the combination of size (exchange) repulsion with dispersion/induction attraction. Molecular beam experiments confirm that this is the case for He-CF4 , Ne-CF4 adducts, but revealed that the interaction of He and Ne with CCl4 features an appreciable contribution of chemical components that arise from the anisotropy of the electron density of CCl4 that enhances a charge transfer from Ng (Ng=He, Ne). These findings furnish a novel assay of the bonding capabilities of helium and neon, and invite to revisit the neutral complexes of these elements as systems of chemical relevance. The CCl4 -Ng are also peculiar examples of halogen bonds, a group of interactions of major current concern. Finally, this investigation is a prelude to the development of semi-empirical models for force fields aimed to the unified description of static and dynamical properties of systems of comparable or higher complexity.

  11. Analysis of trace impurities in neon by a customized gas chromatography.

    PubMed

    Yin, Min Kyo; Lim, Jeong Sik; Moon, Dong Min; Lee, Gae Ho; Lee, Jeongsoon

    2016-09-09

    Excimer lasers, widely used in the semiconductor industry, are crucial for analyzing the purity of premix laser gases for the purpose of controlling stable laser output power. In this study, we designed a system for analyzing impurities in pure neon (Ne) base gas by customized GC. Impurities in pure neon (H2 and He), which cannot be analyzed at the sub-μmol/mol level using commercial GC detectors, were analyzed by a customized pulsed-discharge Ne ionization detector (PDNeD) and a pressurized injection thermal conductivity detector using Ne as the carrier gas (Pres. Inj. Ne-TCD). From the results, trace species in Ne were identified with the following detection limits: H2, 0.378μmol/mol; O2, 0.119μmol/mol; CH4, 0.880μmol/mol; CO, 0.263μmol/mol; CO2, 0.162μmol/mol (PDNeD); and He, 0.190μmol/mol (Pres. Inj. Ne-TCD). This PDNeD and pressurized injection Ne-TCD technique thus developed permit the quantification of trace impurities present in high-purity Ne.

  12. Joule-Thomson cryocooler with neon and nitrogen mixture using commercial air-conditioning compressors

    NASA Astrophysics Data System (ADS)

    Lee, Jisung; Oh, Haejin; Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon

    2014-01-01

    A 2-stage mixed refrigerant (MR) Joule-Thomson (JT) cryocooler was designed for cooling high temperature superconducting cable below 70 K. The low temperature cycle was to operate with neon-nitrogen mixture, and the required compression ratio was approximately 24 when the suction pressure was 100 kPa. The high compression ratio of 24, the low pressure of 100 kPa at compressor suction, and the working fluid with high heat of compression were challenging issues to existing typical compression systems. We developed an innovative compression system with commercial oil-lubricated air-conditioning compressors. They were 2-stage rotary compressors originally designed for R410Aand connected in series. The compressors were modified to accommodate effective intercooling at every stage to alleviate compressor overheating problem. Additionally, fine-grade three-stage oil filters, an adsorber, and driers were installed at the discharge line to avoid a potential clogging problem from oil mist and moisture at low temperature sections. The present compression system was specifically demonstrated with a neon-nitrogen MR JT cryocooler. The operating pressure ratio was able to meet the designed specifications, and the recorded no-load mini mum temperature was 63.5 K . Commercial air-conditioning compressors were successfully applied to the high-c ompression ratio MR JT cryocooler with adequate modification using off-the-shelf components.

  13. The solar wind neon abundance observed with ACE/SWICS and ULYSSES/SWICS

    SciTech Connect

    Shearer, Paul; Raines, Jim M.; Lepri, Susan T.; Thomas, Jonathan W.; Gilbert, Jason A.; Landi, Enrico; Zurbuchen, Thomas H.; Von Steiger, Rudolf

    2014-07-01

    Using in situ ion spectrometry data from ACE/SWICS, we determine the solar wind Ne/O elemental abundance ratio and examine its dependence on wind speed and evolution with the solar cycle. We find that Ne/O is inversely correlated with wind speed, is nearly constant in the fast wind, and correlates strongly with solar activity in the slow wind. In fast wind streams with speeds above 600 km s{sup –1}, we find Ne/O = 0.10 ± 0.02, in good agreement with the extensive polar observations by Ulysses/SWICS. In slow wind streams with speeds below 400 km s{sup –1}, Ne/O ranges from a low of 0.12 ± 0.02 at solar maximum to a high of 0.17 ± 0.03 at solar minimum. These measurements place new and significant empirical constraints on the fractionation mechanisms governing solar wind composition and have implications for the coronal and photospheric abundances of neon and oxygen. The results are made possible by a new data analysis method that robustly identifies rare elements in the measured ion spectra. The method is also applied to Ulysses/SWICS data, which confirms the ACE observations and extends our view of solar wind neon into the three-dimensional heliosphere.

  14. Control of coherent excitation of neon in the extreme ultraviolet regime.

    PubMed

    Plenge, Jürgen; Wirsing, Andreas; Raschpichler, Christopher; Wassermann, Bernhard; Rühl, Eckart

    2011-01-01

    Coherent excitation of a superposition of Rydberg states in neon by the 13th harmonic of an intense 804 nm pulse and the formation of a wave packet is reported. Pump-probe experiments are performed, where the 3d-manifold of the 2p6-->2p5 (2P3/2) 3d [1/2]1- and 2p6-->2p5 (2P3/2) 3d [3/2]1-transitions are excited by an extreme ultraviolet (XUV) radiation pulse, which is centered at 20.05 eV photon energy. The temporal evolution of the excited state population is probed by ionization with a time-delayed 804 nm pulse. Control of coherent transient excitation and wave packet dynamics in the XUV-regime is demonstrated, where the spectral phase of the 13th harmonic is used as a control parameter. Modulation of the phase is achieved by propagation of the XUV-pulse through neon of variable gas density. The experimental results indicate that phase-shaped high-order harmonics can be used to control fundamental coherent excitation processes in the XUV-regime.

  15. Time delay between photoemission from the 2p and 2s subshells of neon

    SciTech Connect

    Moore, L. R.; Lysaght, M. A.; Parker, J. S.; Hart, H. W. van der; Taylor, K. T.

    2011-12-15

    The R-matrix incorporating time (RMT) method is a method developed recently for solving the time-dependent Schroedinger equation for multielectron atomic systems exposed to intense short-pulse laser light. We have employed the RMT method to investigate the time delay in the photoemission of an electron liberated from a 2p orbital in a neon atom with respect to one released from a 2s orbital following absorption of an attosecond xuv pulse. Time delays due to xuv pulses in the range 76-105 eV are presented. For an xuv pulse at the experimentally relevant energy of 105.2 eV, we calculate the time delay to be 10.2{+-}1.3 attoseconds (as), somewhat larger than estimated by other theoretical calculations, but still a factor of 2 smaller than experiment. We repeated the calculation for a photon energy of 89.8 eV with a larger basis set capable of modeling correlated-electron dynamics within the neon atom and the residual Ne{sup +} ion. A time delay of 14.5{+-}1.5 as was observed, compared to a 16.7{+-}1.5 as result using a single-configuration representation of the residual Ne{sup +} ion.

  16. Optical absorption of small copper clusters in neon: Cu(n), (n = 1-9).

    PubMed

    Lecoultre, S; Rydlo, A; Félix, C; Buttet, J; Gilb, S; Harbich, W

    2011-02-21

    We present optical absorption spectra in the UV-visible range (1.6 eV < ℏω < 5.5 eV) of mass selected neutral copper clusters Cu(n)(n = 1-9) embedded in a solid neon matrix at 7 K. The atom and the dimer have already been measured in neon matrices, while the absorption spectra for sizes between Cu(3) and Cu(9) are entirely (n = 6-9) or in great part new. They show a higher complexity and a larger number of transitions distributed over the whole energy range compared to similar sizes of silver clusters. The experimental spectra are compared to the time dependent density functional theory (TD-DFT) implemented in the TURBOMOLE package. The analysis indicates that for energies larger than 3 eV the transitions are mainly issued from d-type states; however, the TD-DFT scheme does not reproduce well the detailed structure of the absorption spectra. Below 3 eV the agreement for transitions issued from s-type states is better.

  17. Double deuterated acetylacetone in neon matrices: infrared spectroscopy, photoreactivity and the tunneling process.

    PubMed

    Gutiérrez-Quintanilla, Alejandro; Chevalier, Michèle; Crépin, Claudine

    2016-07-27

    The effect of deuteration of acetylacetone (C5O2H8) is explored by means of IR spectroscopy of its single and double deuterated isotopologues trapped in neon matrices. The whole vibrational spectra of chelated enols are very sensitive to the H-D exchange of the hydrogen atom involved in the internal hydrogen bond. UV excitation of double deuterated acetylacetone isolated in neon matrices induces the formation of four open enol isomers which can be divided into two groups of two conformers, depending on their formation kinetics. Within each group, one conformer is more stable than the other: slow conformer interconversion due to a tunneling process is observed in the dark at low temperature. Moreover, IR laser irradiation at the OD stretching overtone frequency is used to induce interconversion either from the most stable to the less stable conformer or the opposite, depending on the excitation wavelength. The interconversion process is of great help to assign conformers which are definitively identified by comparison between experimental and calculated IR spectra. Kinetic constants of the tunneling process at play are theoretically estimated and agree perfectly with experiments, including previous experiments with the totally hydrogenated acetylacetone [Lozada García et al., Phys. Chem. Chem. Phys., 2012, 14, 3450].

  18. Charge state of anomalous cosmic-ray nitrogen, oxygen, and neon: SAMPEX observations

    NASA Technical Reports Server (NTRS)

    Klecker, B.; Mcnab, M. C.; Blake, J. B.; Hamilton, D. C.; Hovestadt, D.; Kaestle, H.; Looper, M. D.; Mason, G. M.; Mazur, J. E.; Scholer, M.

    1995-01-01

    We report observations of the ionization state of anomalous cosmic-ray (ACR) nitrogen, oxygen, and neon during the period 1992 October to 1993 May, carried out with instrumentation on the Solar, Anomalous & Magnetospheric Particle Explorer (SAMPEX) spacecraft. The low-altitude (510 x 675 km) and high-inclination (82 deg) orbit enables SAMPEX to sample the interplanetary ACR fluxes on each polar pass and then to observe the cutoff of these fluxes by the geomagnetic field at lower latitudes. The arrival time and direction of each ion is recorded by the instruments, allowing detailed calculations of the particle's trajectory through the Earth's magnetic field and thereby placing upper limits on the ionization state of the particles. We find (a) that ACR nitrogen, oxygen, and neon each contain singly ionized particles and (b) that ACR oxygen is predominantly singly ionized with an upper limit of 10% for higher ionization states. These ionization states confirm theories of ACR origin as neutral interstellar material that is singly ionized near the Sun by UV or charge exchange with the solar wind, and is subsequently accelerated in the outer heliosphere.

  19. Hydrodynamic models for novae with ejecta rich in oxygen, neon and magnesium

    NASA Technical Reports Server (NTRS)

    Starrfield, S.; Sparks, W. M.; Truran, J. W.

    1985-01-01

    The characteristics of a new class of novae are identified and explained. This class consists of those objects that have been observed to eject material rich in oxygen, neon, magnesium, and aluminum at high velocities. We propose that for this class of novae the outburst is occurring not on a carbon-oxygen white dwarf but on an oxygen-neon-magnesium white dwarf which has evolved from a star which had a main sequence mass of approx. 8 solar masses to approx. 12 solar masses. An outburst was simulated by evolving 1.25 solar mass white dwarfs accreting hydrogen rich material at various rates. The effective enrichment of the envelope by ONeMg material from the core is simulated by enhancing oxygen in the accreted layers. The resulting evolutionary sequences can eject the entire accreted envelope plus core material at high velocities. They can also become super-Eddington at maximum bolometric luminosity. The expected frequency of such events (approx. 1/4) is in good agreement with the observed numbers of these novae.

  20. Abundance ratios of oxygen, neon, and magnesium in solar active regions and flares: The FIP effect

    NASA Technical Reports Server (NTRS)

    Widing, K. G.; Feldman, U.

    1995-01-01

    Relative abundances of oxygen, neon, and magnesium have been derived for a sample of nine solar active regions, flares, and an erupting prominance by combining plots of the ion differential emission measures. The observations were photographed in the 300-600 A range by the Naval Research Laboratory (NRL) spectroheliograph on Skylab. Methods for deriving the Mg/Ne abundance ratio-which measures the separation between the low- first ionization potential (FIP) and high-FIP abundnace plateaus-have been described in previous papers. In this paper we describe the spectroscopic methods for deriving the O/Ne abundance ratio, which gives the ratio between two high-FIP elements. The plot of the O/Ne ratio versus the Mg/Ne ratio in the sample of nine Skylab events is shown. The variation in the Mg/Ne ratio by a factor of 6 is associated with a much smaller range in the O/Ne ratio. This is broadly consistent with the presence of the standard FIP pattern of abundances in the outer atmosphere of the Sun. However, a real change in the relative abundances of oxygen and neon by a factor of 1.5 cannot be excluded.

  1. Mechanism of variable structural colour in the neon tetra: quantitative evaluation of the Venetian blind model

    PubMed Central

    Yoshioka, S.; Matsuhana, B.; Tanaka, S.; Inouye, Y.; Oshima, N.; Kinoshita, S.

    2011-01-01

    The structural colour of the neon tetra is distinguishable from those of, e.g., butterfly wings and bird feathers, because it can change in response to the light intensity of the surrounding environment. This fact clearly indicates the variability of the colour-producing microstructures. It has been known that an iridophore of the neon tetra contains a few stacks of periodically arranged light-reflecting platelets, which can cause multilayer optical interference phenomena. As a mechanism of the colour variability, the Venetian blind model has been proposed, in which the light-reflecting platelets are assumed to be tilted during colour change, resulting in a variation in the spacing between the platelets. In order to quantitatively evaluate the validity of this model, we have performed a detailed optical study of a single stack of platelets inside an iridophore. In particular, we have prepared a new optical system that can simultaneously measure both the spectrum and direction of the reflected light, which are expected to be closely related to each other in the Venetian blind model. The experimental results and detailed analysis are found to quantitatively verify the model. PMID:20554565

  2. First principles study of inert-gas (helium, neon, and argon) interactions with hydrogen in tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; Hou, Jie; Li, Xiang-Yan; Wu, Xuebang; Liu, C. S.; Chen, Jun-Ling; Luo, G.-N.

    2017-04-01

    We have systematically evaluated binding energies of hydrogen with inert-gas (helium, neon, and argon) defects, including interstitial clusters and vacancy-inert-gas complexes, and their stable configurations using first-principles calculations. Our calculations show that these inert-gas defects have large positive binding energies with hydrogen, 0.4-1.1 eV, 0.7-1.0 eV, and 0.6-0.8 eV for helium, neon, and argon, respectively. This indicates that these inert-gas defects can act as traps for hydrogen in tungsten, and impede or interrupt the diffusion of hydrogen in tungsten, which supports the discussion on the influence of inert-gas on hydrogen retention in recent experimental literature. The interaction between these inert-gas defects and hydrogen can be understood by the attractive interaction due to the distortion of the lattice structure induced by inert-gas defects, the intrinsic repulsive interaction between inert-gas atoms and hydrogen, and the hydrogen-hydrogen repelling in tungsten lattice.

  3. Mechanism of variable structural colour in the neon tetra: quantitative evaluation of the Venetian blind model.

    PubMed

    Yoshioka, S; Matsuhana, B; Tanaka, S; Inouye, Y; Oshima, N; Kinoshita, S

    2011-01-06

    The structural colour of the neon tetra is distinguishable from those of, e.g., butterfly wings and bird feathers, because it can change in response to the light intensity of the surrounding environment. This fact clearly indicates the variability of the colour-producing microstructures. It has been known that an iridophore of the neon tetra contains a few stacks of periodically arranged light-reflecting platelets, which can cause multilayer optical interference phenomena. As a mechanism of the colour variability, the Venetian blind model has been proposed, in which the light-reflecting platelets are assumed to be tilted during colour change, resulting in a variation in the spacing between the platelets. In order to quantitatively evaluate the validity of this model, we have performed a detailed optical study of a single stack of platelets inside an iridophore. In particular, we have prepared a new optical system that can simultaneously measure both the spectrum and direction of the reflected light, which are expected to be closely related to each other in the Venetian blind model. The experimental results and detailed analysis are found to quantitatively verify the model.

  4. Utilizing Neon Ion Microscope for GaSb nanopatterning studies: Nanostructure formation and comparison with low energy nanopatterning

    NASA Astrophysics Data System (ADS)

    El-Atwani, Osman; Huynh, Chuong; Norris, Scott

    2016-05-01

    Low energy irradiation of GaSb surfaces has been shown to lead to nanopillar formation. Being performed ex-situ, controlling the parameters of the ion beam for controlled nanopattern formation is challenging. While mainly utilized for imaging and cutting purposes, the development of multibeam (helium/neon) ion microscopes has opened the path towards the use of these microscopes for in-situ ion irradiation and nanopatterning studies. In this study, in-situ irradiation (neon ions)/imaging (helium ions) of GaSb surfaces is performed using Carl Zeiss-neon ion microscope at low energies (5 and 10 keV). Imaging with helium ions, nanodots were shown to form at particular fluences after which are smoothed. Ex-situ imaging with SEM showed nanopore formation of size controlled by the ion energy and fluence. Compared to lower energy ex-situ neon ion irradiation at similar fluxes, where nanopillars are formed, the results demonstrated a transition in the nanostructure type and formation mechanism as the energy is changed from 2 to 5 keV. Simulations show an increase in the ballistic diffusion and a decrease in the strength of phase separation as a function of ion energy in agreement with the suppression of nanopillar formation at higher energies. Collision cascade simulations suggest a transition toward bulk-driven mechanisms.

  5. Observations and simulations of nova Vul 1984 no. 2: A nova with ejecta rich in oxygen, neon, and magnesium

    NASA Technical Reports Server (NTRS)

    Starrfield, S.; Sonneborn, G.; Stryker, L. L.; Sparks, Warren M.; Truran, James W.; Ferland, Gary; Wagner, R. M.; Gallagher, J. S.; Wade, R.; Williams, R. E.

    1988-01-01

    Nova Vul 1984 no. 2 was observed with IUE from Dec. 1984 through Nov. 1987. The spectra are characterized by strong lines from Mg, Ne, C, Si, O, N, and other elements. Data obtained in the ultraviolet, infrared, and optical show that this nova is ejecting material rich in oxygen, neon, and magnesium.

  6. Electron spin resonance investigation of H2(+), HD(+), and D2(+) isolated in neon matrices at 2 K.

    PubMed

    Correnti, Matthew D; Dickert, Kyle P; Pittman, Mark A; Felmly, John W; Banisaukas, John J; Knight, Lon B

    2012-11-28

    Various isotopologues of nature's simplest molecule, namely H(2)(+), HD(+), and D(2)(+), have been isolated in neon matrices at 2 K for the first time and studied by electron spin resonance (ESR). Over many years, hundreds of matrix isolation experiments employing a variety of deposition conditions and ion generation methods have been tried to trap the H(2)(+) cation radical in our laboratory. The molecule has been well characterized in the gas phase and by theoretical methods. The observed magnetic parameters for H(2)(+) in neon at 2 K are: g(∥) ≈ g(⊥) = 2.0022(1); A(iso)(H) = 881(7) MHz; and A(dip)(H) = 33(3) MHz. Reasonable agreement with gas phase values of the isotropic hyperfine interaction (A(iso)) is observed; however, the neon matrix dipolar hyperfine interaction (A(dip)) is noticeably below the gas phase value. The smaller matrix value of A(dip) is attributable to motional averaging of the H(2)(+) radical in the neon matrix trapping site--an occurrence that would prevent the full extent of the hyperfine anisotropy from being measured for a powder pattern type ESR sample.

  7. Qualitative and quantitative difference in mutation induction between carbon- and neon-ion beams in normal human cells.

    PubMed

    Suzuki, Masao; Tsuruoka, Chizuru; Kanai, Tatsuaki; Kato, Takeshi; Yatagai, Fumio; Watanabe, Masami

    2003-12-01

    We investigated the difference in cell-killing effect and mutation induction between carbon- and neon-ion beams in normal human cells. Carbon- and neon-ion beams were accelerated by the Riken Ring Cyclotron (RRC) at the Institute of Physical and Chemical Research in Japan. Cell-killing effect was measured as the reproductive cell death using the colony formation assay. Mutation induction at the HPRT locus was detected to measure 6-thioguanine-resistant clones. The mutation spectrum of the deletion pattern of exons of induced mutants was analyzed using the multiplex polymerase chain reaction (PCR). Cell-killing effect was almost the same between carbon- and neon-ion beams with similar linear energy transfer (LET) values, while there observed a large difference in mutation frequency. Furthermore, in the case of neon-ion beams 60% of mutants showed total deletions and 35-40% showed partial deletions, while 95-100% of carbon-ion induced mutants showed total deletions. The results suggest that different ion species may cause qualitative and quantitative difference in mutation induction even if the LET values are similar.

  8. Auger and radiative deexcitation of the 1s2l3l prime configurations of lithium-like neon

    NASA Technical Reports Server (NTRS)

    Chen, M. H.

    1976-01-01

    The three-electron configurations of 1s2lambda3lambda of neon are observed in ion-atom collisions and beam foil excitation. Multiplet Auger and x ray transition rates obtained in intermediate coupling are calculated. Fluorescence yields are also computed.

  9. Infrared transmission at the 3.39 micron helium-neon laser wavelength in liquid-core quartz fibers

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Hinkley, E. D.; Menzies, R. T.

    1979-01-01

    Infrared transmission at the 3.39 micron helium-neon laser wavelength has been measured in a tetrachloroethylene-filled fused-quartz fiber. The loss measurements were taken for three different settings of laser light intensity using a series of neutral density filters. The average value of transmission loss at this wavelength was found to be 56 dB/km.

  10. Surface-subsurface flow modeling: an example of large-scale research at the new NEON user facility

    NASA Astrophysics Data System (ADS)

    Powell, H.; McKnight, D. M.

    2009-12-01

    Climate change is predicted to alter surface-subsurface interactions in freshwater ecosystems. These interactions are hypothesized to control nutrient release at diel and seasonal time scales, which may then exert control over epilithic algal growth rates. The mechanisms underlying shifts in complex physical-chemical-biological patterns can be elucidated by long-term observations at sites that span hydrologic and climate gradients across the continent. Development of the National Ecological Observatory Network (NEON) will provide researchers the opportunity to investigate continental-scale patterns by combining investigator-driven measurements with Observatory data. NEON is a national-scale research platform for analyzing and understanding the impacts of climate change, land-use change, and invasive species on ecology. NEON features sensor networks and experiments, linked by advanced cyberinfrastructure to record and archive ecological data for at least 30 years. NEON partitions the United States into 20 ecoclimatic domains. Each domain hosts one fully instrumented Core Aquatic site in a wildland area and one Relocatable site, which aims to capture ecologically significant gradients (e.g. landuse, nitrogen deposition, urbanization). In the current definition of NEON there are 36 Aquatic sites: 30 streams/rivers and 6 ponds/lakes. Each site includes automated, in-situ sensors for groundwater elevation and temperature; stream flow (discharge and stage); pond water elevation; atmospheric chemistry (Tair, barometric pressure, PAR, radiation); and surface water chemistry (DO, Twater, conductivity, pH, turbidity, cDOM, nutrients). Groundwater and surface water sites shall be regularly sampled for selected chemical and isotopic parameters. The hydrologic and geochemical monitoring design provides basic information on water and chemical fluxes in streams and ponds and between groundwater and surface water, which is intended to support investigator-driven modeling studies

  11. Prediction of production of 22Na in a gas-cell target irradiated by protons using Monte Carlo tracking

    NASA Astrophysics Data System (ADS)

    Eslami, M.; Kakavand, T.; Mirzaii, M.; Rajabifar, S.

    2015-01-01

    The 22Ne(p,n)22Na is an optimal reaction for the cyclotron production of 22Na. This work tends to monitor the proton induced production of 22Na in a gas-cell target, containing natural and enriched neon gas, using Monte Carlo method. The excitation functions of reactions are calculated by both TALYS-1.6 and ALICE/ASH codes and then the optimum energy range of projectile for the high yield production is selected. A free gaseous environment of neon at a particular pressure and temperature is prearranged and the proton beam is transported within it using Monte Carlo codes MCNPX and SRIM. The beam monitoring performed by each of these codes indicates that the gas-cell has to be designed as conical frustum to reach desired interactions. The MCNPX is also employed to calculate the energy distribution of proton in the designed target and estimation of the residual nuclei during irradiation. The production yield of 22Na in 22Ne(p,n)22Na and natNe(p,x)22Na reactions are estimated and it shows a good agreement with the experimental results. The results demonstrate that Monte Carlo makes available a beneficial manner to design and optimize the gas targets as well as calibration of detectors, which can be used for the radionuclide production purposes.

  12. Calibration and Data Efforts of the National Ecological Observatory Network (NEON) Airborne Observation Platform during its Engineering Development Phase

    NASA Astrophysics Data System (ADS)

    Adler, J.; Goulden, T.; Kampe, T. U.; Leisso, N.; Musinsky, J.

    2014-12-01

    The National Ecological Observatory Network (NEON) has collected airborne photographic, lidar, and imaging spectrometer data in 5 of 20 unique ecological climate regions (domains) within the United States. As part of its mission to detect and forecast ecological change at continental scales over multiple decades, NEON Airborne Observation Platform (AOP) will aerially survey the entire network of 60 core and re-locatable terrestrial sites annually, each of which are a minimum of 10km-by-10km in extent. The current effort encompasses three years of AOP engineering test flights; in 2017 NEON will transition to full operational status in all 20 domains. To date the total airborne data collected spans 34 Terabytes, and three of the five sampled domain's L1 data are publically available upon request. The large volume of current data, and the expected data collection over the remaining 15 domains, is challenging NEON's data distribution plans, backup capability, and data discovery processes. To provide the public with the highest quality data, calibration and validation efforts of the camera, lidar, and spectrometer L0 data are implemented to produce L1 datasets. Where available, the collected airborne measurements are validated against ground reference points and surfaces and adjusted for instrumentation and atmospheric effects. The imaging spectrometer data is spectrally and radiometrically corrected using NIST-traceable procedures. This presentation highlights three years of flight operation experiences including:1) Lessons learned on payload re-configuration, data extraction, data distribution, permitting requirements, flight planning, and operational procedures2) Lidar validation through control data comparisons collected at the Boulder Municipal Airport (KBDU), the site of NEON's new hangar facility3) Spectrometer calibration efforts, to include both the laboratory and ground observations

  13. First demonstration of rapid shutdown using neon shattered pellet injection for thermal quench mitigation on DIII-D

    NASA Astrophysics Data System (ADS)

    Commaux, N.; Shiraki, D.; Baylor, L. R.; Hollmann, E. M.; Eidietis, N. W.; Lasnier, C. J.; Moyer, R. A.; Jernigan, T. C.; Meitner, S. J.; Combs, S. K.; Foust, C. R.

    2016-04-01

    Shattered pellet injection (SPI) is one of the prime candidates for the ITER disruption mitigation system because of its deeper penetration and larger particle flux than massive gas injection (MGI) (Taylor et al 1999 Phys. Plasmas 6 1872) using deuterium (Commaux et al 2010 Nucl. Fusion 50 112001, Combs et al 2010 IEEE Trans. Plasma Sci. 38 400, Baylor et al 2009 Nucl. Fusion 49 085013). The ITER disruption mitigation system will likely use mostly high Z species such as neon because of more effective thermal mitigation and pumping constraints on the maximum amount of deuterium or helium that could be injected. An upgrade of the SPI on DIII-D enables ITER relevant injection characteristics in terms of quantities and gas species. This upgraded SPI system was used on DIII-D for the first time in 2014 for a direct comparison with MGI using identical quantities of neon. This comparison enabled the measurements of density perturbations during the thermal quench (TQ) and radiated power and heat loads to the divertor. It showed that SPI using similar quantities of neon provided a faster and stronger density perturbation and neon assimilation, which resulted in a lower conducted energy to the divertor and a faster TQ onset. Radiated power data analysis shows that this was probably due to the much deeper penetration of the neon in the plasma inducing a higher core radiation than in the MGI case. This experiment shows also that the MHD activity during an SPI shutdown (especially during the TQ) is quite different compared to MGI. This favorable TQ energy dissipation was obtained while keeping the current quench (CQ) duration within acceptable limits when scaled to ITER.

  14. First demonstration of rapid shutdown using neon shattered pellet injection for thermal quench mitigation on DIII-D

    DOE PAGES

    Commaux, Nicolas J. C.; Shiraki, Daisuke; Baylor, Larry R.; ...

    2016-03-02

    Shattered pellet injection (SPI) is one of the prime candidates for the ITER disruption mitigation system because of its deeper penetration and larger particle flux than massive gas injection (MGI) (Taylor et al 1999 Phys. Plasmas 6 1872) using deuterium (Commaux et al 2010 Nucl. Fusion 50 112001, Combs et al 2010 IEEE Trans. Plasma Sci. 38 400, Baylor et al 2009 Nucl. Fusion 49 085013). The ITER disruption mitigation system will likely use mostly high Z species such as neon because of more effective thermal mitigation and pumping constraints on the maximum amount of deuterium or helium that couldmore » be injected. An upgrade of the SPI on DIII-D enables ITER relevant injection characteristics in terms of quantities and gas species. This upgraded SPI system was used on DIII-D for the first time in 2014 for a direct comparison with MGI using identical quantities of neon. This comparison enabled the measurements of density perturbations during the thermal quench (TQ) and radiated power and heat loads to the divertor. It showed that SPI using similar quantities of neon provided a faster and stronger density perturbation and neon assimilation, which resulted in a lower conducted energy to the divertor and a faster TQ onset. Radiated power data analysis shows that this was probably due to the much deeper penetration of the neon in the plasma inducing a higher core radiation than in the MGI case. This experiment shows also that the MHD activity during an SPI shutdown (especially during the TQ) is quite different compared to MGI. Furthermore, this favorable TQ energy dissipation was obtained while keeping the current quench (CQ) duration within acceptable limits when scaled to ITER.« less

  15. Cross sections for bare and dressed carbon ions in water and neon.

    PubMed

    Liamsuwan, Thiansin; Nikjoo, Hooshang

    2013-02-07

    The paper presents calculated cross sections for bare and dressed carbon projectiles of charge states q (0 to 6) with energies 1-10(4) keV u(-1) impacting on molecular water and atomic neon targets. The cross sections of water are of interest for radiobiological studies, but there are very few experimental data for water in any phase, while those for liquid water are non-existent. The more extensive experimental database for the neon target made it possible to test the reliability of the model calculations for the many-electron collision system. The current calculations cover major single and double electronic interactions of low and intermediate energy carbon projectiles. The three-body classical trajectory Monte Carlo (CTMC) method was used for the calculation of one-electron transition probabilities for target ionization, electron capture and projectile electron loss. The many-electron problem was taken into account using statistical methods: a modified independent event model was used for pure (direct) and simultaneous target and projectile ionizations, and the independent particle model for pure electron capture and electron capture accompanied by target ionization. Results are presented for double differential cross sections (DDCS) for total electron emission by carbon projectile impact on neon. For the water target, we present the following: single differential cross sections (SDCS) and DDCS for single target ionization; total cross sections (TCS) for electron emission; TCS for the pure single electronic interactions; equilibrium charge state fractions; and stopping cross sections. The results were found to be in satisfactory agreement with the experimental data in many cases, including DDCS and SDCS for the single target ionization, TCS for the total electron emission and TCS for the pure single electron capture. The stopping cross sections of this work are consistent with the other model calculations for projectile energies ≥800 keV u(-1), but smaller

  16. 40 CFR 22.22 - Evidence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Evidence. 22.22 Section 22.22... PERMITS Hearing Procedures § 22.22 Evidence. (a) General. (1) The Presiding Officer shall admit all evidence which is not irrelevant, immaterial, unduly repetitious, unreliable, or of little probative...

  17. 40 CFR 22.22 - Evidence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Evidence. 22.22 Section 22.22... PERMITS Hearing Procedures § 22.22 Evidence. (a) General. (1) The Presiding Officer shall admit all evidence which is not irrelevant, immaterial, unduly repetitious, unreliable, or of little probative...

  18. 40 CFR 22.22 - Evidence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Evidence. 22.22 Section 22.22... PERMITS Hearing Procedures § 22.22 Evidence. (a) General. (1) The Presiding Officer shall admit all evidence which is not irrelevant, immaterial, unduly repetitious, unreliable, or of little probative...

  19. 40 CFR 22.22 - Evidence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Evidence. 22.22 Section 22.22... PERMITS Hearing Procedures § 22.22 Evidence. (a) General. (1) The Presiding Officer shall admit all evidence which is not irrelevant, immaterial, unduly repetitious, unreliable, or of little probative...

  20. Angular Correlation between Photoelectrons and Auger Electrons from K-Shell Ionization of Neon

    NASA Astrophysics Data System (ADS)

    Landers, A. L.; Robicheaux, F.; Jahnke, T.; Schöffler, M.; Osipov, T.; Titze, J.; Lee, S. Y.; Adaniya, H.; Hertlein, M.; Ranitovic, P.; Bocharova, I.; Akoury, D.; Bhandary, A.; Weber, Th.; Prior, M. H.; Cocke, C. L.; Dörner, R.; Belkacem, A.

    2009-06-01

    We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process.

  1. Angular Correlation between Photoelectrons and Auger Electrons from K-Shell Ionization of Neon

    SciTech Connect

    Landers, A. L.; Robicheaux, F.; Bhandary, A.; Jahnke, T.; Schoeffler, M.; Titze, J.; Akoury, D.; Doerner, R.; Osipov, T.; Lee, S. Y.; Adaniya, H.; Hertlein, M.; Weber, Th.; Prior, M. H.; Belkacem, A.; Ranitovic, P.; Bocharova, I.; Cocke, C. L.

    2009-06-05

    We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process.

  2. Angular correlation between photoelectrons and auger electrons from K-shell ionization of neon.

    PubMed

    Landers, A L; Robicheaux, F; Jahnke, T; Schöffler, M; Osipov, T; Titze, J; Lee, S Y; Adaniya, H; Hertlein, M; Ranitovic, P; Bocharova, I; Akoury, D; Bhandary, A; Weber, Th; Prior, M H; Cocke, C L; Dörner, R; Belkacem, A

    2009-06-05

    We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process.

  3. Molecular iodine fluorescence spectra generated with helium-neon lasers for spectrometer calibration.

    PubMed

    Williamson, J Charles

    2010-12-01

    Gas-phase molecular iodine laser-induced fluorescence (LIF) spectra were recorded out to 815 nm at 1 cm(-1) resolution using green, yellow, and red helium-neon (HeNe) lasers as excitation sources. Nine previously unreported I(2) B←X absorption transitions accessed by these lasers were identified, and specific rovibronic transition assignments were made for two hundred LIF peaks--more than sixty per laser. These I(2) LIF peaks can be used to calibrate the vacuum wavenumber coordinate of spectrometers to better than 0.1 cm(-1) accuracy. In particular, green HeNe excitation of the I(2) R(106) 28-0 transition leads to strong fluorescence well suited for calibration, with a rotational doublet spacing of 15 cm(-1) and a doublet-to-doublet spacing of 190 cm(-1). Calibration by HeNe I(2) LIF may be an especially valuable technique for Raman spectroscopy applications.

  4. Characterization of a metastable neon beam extracted from a commercial RF ion source

    NASA Astrophysics Data System (ADS)

    Ohayon, B.; Wåhlin, E.; Ron, G.

    2015-03-01

    We have used a commercial RF ion-source to extract a beam of metastable neon atoms. The source was easily incorporated into our existing system and was operative within a day of installation. The metastable velocity distribution, flux, flow, and efficiency were investigated for different RF powers and pressures, and an optimum was found at a flux density of 2 × 1012 atoms/s/sr. To obtain an accurate measurement of the amount of metastable atoms leaving the source, we insert a Faraday cup in the beam line and quench some of them using a weak 633 nm laser beam. In order to determine how much of the beam was quenched before reaching our detector, we devised a simple model for the quenching transition and investigated it for different laser powers. This detection method can be easily adapted to other noble gas atoms.

  5. Solar flare neon and solar cosmic ray fluxes in the past using gas-rich meteorites

    NASA Technical Reports Server (NTRS)

    Nautiyal, C. M.; Rao, M. N.

    1986-01-01

    Methods were developed earlier to deduce the composition of solar flare neon and to determine the solar cosmic ray proton fluxes in the past using etched lunar samples and at present, these techniques are extended to gas rich meteorites. By considering high temperature Ne data points for Pantar, Fayetteville and other gas rich meteorites and by applying the three component Ne-decomposition methods, the solar cosmic ray and galactic cosmic ray produced spallation Ne components from the trapped SF-Ne was resolved. Using appropiate SCR and GCR production rates, in the case of Pantar, for example, a GCR exposure age of 2 m.y. was estimated for Pantar-Dark while Pantar-Light yielded a GCR age of approx. 3 m.y. However the SCR exposure age of Pantar-Dark is two orders of magnitude higher than the average surface exposure ages of lunar soils. The possibility of higher proton fluxes in the past is discussed.

  6. Effect of helium-neon laser irradiation on peripheral sensory nerve latency

    SciTech Connect

    Snyder-Mackler, L.; Bork, C.E.

    1988-02-01

    The purpose of this randomized, double-blind study was to determine the effect of a helium-neon (He-Ne) laser on latency of peripheral sensory nerve. Forty healthy subjects with no history of right upper extremity pathological conditions were assigned to either a Laser or a Placebo Group. Six 1-cm2 blocks along a 12-cm segment of the subjects' right superficial radial nerve received 20-second applications of either the He-Ne laser or a placebo. We assessed differences between pretest and posttest latencies with t tests for correlated and independent samples. The Laser Group showed a statistically significant increase in latency that corresponded to a decrease in sensory nerve conduction velocity. Short-duration He-Ne laser application significantly increased the distal latency of the superficial radial nerve. This finding provides information about the mechanism of the reported pain-relieving effect of the He-Ne laser.

  7. Electronic transitions of C5H(+) and C5H: neon matrix and CASPT2 studies.

    PubMed

    Fulara, Jan; Nagy, Adam; Chakraborty, Arghya; Maier, John P

    2016-06-28

    Two electronic transitions at 512.3 and 250 nm of linear-C5H(+) are detected following mass-selective deposition of m/z = 61 cations into a 6 K neon matrix and assigned to the 1 (1)Π←X (1)Σ(+) and 1 (1)Σ(+)←X (1)Σ(+) systems. Five absorption systems of l-C5H with origin bands at 528,7, 482.6, 429.0, 368.5, and 326.8 nm are observed after neutralization of the cations in the matrix and identified as transitions from the X (2)Π to 1 (2)Δ, 1 (2)Σ (-), 1 (2)Σ(+), 2 (2)Π, and 3 (2)Π electronic states. The assignment to specific structures is based on calculated excitation energies, vibrational frequencies in the electronic states, along with simulated Franck-Condon profiles.

  8. Connected triple excitations in coupled-cluster calculations of hyperpolarizabilities: Neon

    NASA Technical Reports Server (NTRS)

    Rice, Julia E.; Scuseria, Gustavo E.; Lee, Timothy J.; Taylor, Peter R.; Almloef, Jan

    1992-01-01

    We have calculated the second hyperpolarizability gamma of neon using the CCSD(T) method. The accuracy of the CCSD(T) approach has been established by explicit comparison with the single, double and triple excitation coupled-cluster (CCSDT) method using extended basis sets that are known to be adequate for the description of gamma. Our best estimate for gamma(sub 0) of 110 +/- 3 a.u. is in good agreement with other recent theoretical values and with Shelton's recent experimental estimate of 108 +/- 2 a.u. Comparison of the MP2 and CCSD(T) hyperpolarizability values indicates that MP2 gives a very good description of the electron correlation contribution to gamma(sub 0). We have combined MP2 frequency-dependent corrections with the CCSD(T) gamma(sub 0) to yield values of gamma(-2 omega;omega,omega,0) and gamma(exp K)(-omega;omega,0,0).

  9. Measurements of ion mobility in argon and neon based gas mixtures

    NASA Astrophysics Data System (ADS)

    Deisting, Alexander; Garabatos, Chilo; Szabo, Alexander; Vranic, Danilo

    2017-02-01

    As gaseous detectors are operated at high rates of primary ionisation, ions created in the detector have a considerable impact on the performance of the detector. The upgraded ALICE Time Projection Chamber (TPC) will operate during LHC Run 3 with a substantial space charge density of positive ions in the drift volume. In order to properly simulate such space charges, knowledge of the ion mobility K is necessary. To this end, a small gaseous detector was constructed and the ion mobility of various gas mixtures was measured. To validate the corresponding signal analysis, simulations were performed. Results are shown for several argon and neon based mixtures with different CO2 fractions. A decrease of K was measured for increasing water content.

  10. Integrating continental-scale ecological data into university courses: Developing NEON's Online Learning Portal

    NASA Astrophysics Data System (ADS)

    Wasser, L. A.; Gram, W.; Lunch, C. K.; Petroy, S. B.; Elmendorf, S.

    2013-12-01

    'Big Data' are becoming increasingly common in many fields. The National Ecological Observatory Network (NEON) will be collecting data over the 30 years, using consistent, standardized methods across the United States. Similar efforts are underway in other parts of the globe (e.g. Australia's Terrestrial Ecosystem Research Network, TERN). These freely available new data provide an opportunity for increased understanding of continental- and global scale processes such as changes in vegetation structure and condition, biodiversity and landuse. However, while 'big data' are becoming more accessible and available, integrating big data into the university courses is challenging. New and potentially unfamiliar data types and associated processing methods, required to work with a growing diversity of available data, may warrant time and resources that present a barrier to classroom integration. Analysis of these big datasets may further present a challenge given large file sizes, and uncertainty regarding best methods to properly statistically summarize and analyze results. Finally, teaching resources, in the form of demonstrative illustrations, and other supporting media that might help teach key data concepts, take time to find and more time to develop. Available resources are often spread widely across multi-online spaces. This presentation will overview the development of NEON's collaborative University-focused online education portal. Portal content will include 1) interactive, online multi-media content that explains key concepts related to NEON's data products including collection methods, key metadata to consider and consideration of potential error and uncertainty surrounding data analysis; and 2) packaged 'lab' activities that include supporting data to be used in an ecology, biology or earth science classroom. To facilitate broad use in classrooms, lab activities will take advantage of freely and commonly available processing tools, techniques and scripts. All

  11. Time delay between photoemission from the 2p and 2s subshells of Neon atoms

    NASA Astrophysics Data System (ADS)

    Moore, L. R.; Lysaght, M. A.; Nikolopoulos, L. A. A.; Parker, J. S.; van der Hart, H. W.; Taylor, K. T.

    2012-11-01

    The R-Matrix incorporating Time (RMT) method is a new ab initio method for solving the time-dependent Schrödinger equation for multi-electron atomic systems exposed to intense short-pulse laser light. We have employed the RMT method to investigate the delay in the photoemission of an electron liberated from a 2p orbital in a neon atom with respect to one released from a 2s orbital. Using attosecond streaking methods, an experimental group measured this time delay to be twenty one attoseconds. We report RMT calculations of this time delay and demonstrate that such precise phase-sensitive information can be calculated using the new multi-electron RMT method.

  12. Electronic transitions of C5H+ and C5H: neon matrix and CASPT2 studies

    NASA Astrophysics Data System (ADS)

    Fulara, Jan; Nagy, Adam; Chakraborty, Arghya; Maier, John P.

    2016-06-01

    Two electronic transitions at 512.3 and 250 nm of linear-C5H+ are detected following mass-selective deposition of m/z = 61 cations into a 6 K neon matrix and assigned to the 1 1Π←X 1Σ+ and 1 1Σ+←X 1Σ+ systems. Five absorption systems of l-C5H with origin bands at 528,7, 482.6, 429.0, 368.5, and 326.8 nm are observed after neutralization of the cations in the matrix and identified as transitions from the X 2Π to 1 2Δ, 1 2Σ -, 1 2Σ+, 2 2Π, and 3 2Π electronic states. The assignment to specific structures is based on calculated excitation energies, vibrational frequencies in the electronic states, along with simulated Franck-Condon profiles.

  13. Liquid neon heat transfer as applied to a 30 tesla cryomagnet

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1975-01-01

    Since superconducting magnets cooled by liquid helium are limited to magnetic fields of about 18 teslas, the design of a 30 tesla cryomagnet necessitates forced convection liquid neon heat transfer in small coolant channels. As these channels are too small to handle the vapor flow if the coolant were to boil, the design philosophy calls for suppressing boiling by subjecting the fluid to high pressures. Forced convection heat transfer data are obtained by using a blowdown technique to force the fluid vertically through a resistance-heated instrumented tube. The data are obtained at inlet temperatures between 28 and 34 K and system pressures between 28 to 29 bars. Data correlation is limited to a very narrow range of test conditions, since the tests were designed to simulate the heat transfer characteristics in the coolant channels of the 30 tesla cryomagnet concerned. The results can therefore be applied directly to the design of the magnet system.-

  14. The watercolor illusion and neon color spreading: a unified analysis of new cases and neural mechanisms

    NASA Astrophysics Data System (ADS)

    Pinna, Baingio; Grossberg, Stephen

    2005-10-01

    Coloration and figural properties of neon color spreading and the watercolor illusion are studied using phenomenal and psychophysical observations. Coloration properties of both effects can be reduced to a common limiting condition, a nearby color transition called the two-dot limiting case, which clarifies their perceptual similarities and dissimilarities. The results are explained by the FACADE neural model of biological vision. The model proposes how local properties of color transitions activate spatial competition among nearby perceptual boundaries, with boundaries of lower-contrast edges weakened by competition more than boundaries of higher-contrast edges. This asymmetry induces spreading of more color across these boundaries than conversely. The model also predicts how depth and figure-ground effects are generated in these illusions.

  15. Kinetics of positive ions and electrically neutral active particles in afterglow in neon at low pressure

    SciTech Connect

    Pejović, Milić M. Nešić, Nikola T.; Pejović, Momčilo M.

    2014-04-15

    Kinetics of positive ions and electrically neutral active particles formed during breakdown and successive discharge in neon-filled tube at 6.6 millibars pressure had been analyzed. This analysis was performed on the basis of mean value of electrical breakdown time delay t{sup ¯}{sub d} dependence on afterglow period τ (memory curve). It was shown that positive ions are present in the 1μs < τ < 30 ms interval, which is manifested through t{sup ¯}{sub d} slow increase with the increase of τ. A rapid t{sup ¯}{sub d} increase in the 30 ms < τ < 3 s interval is a consequence of significant decrease of positive ions concentration and dominant role in breakdown initiation have ground state nitrogen atoms, which further release secondary electrons from the cathode by catalytic recombination process. These atoms are formed during discharge by dissociation of ground state nitrogen molecules that are present as impurities in neon. For τ > 3 s, breakdown is initiated by cosmic rays and natural radioactivity. The increase of discharge current leads to decrease of t{sup ¯}{sub d} due to the increase of positive ions concentration in inter electrode gap. The increase of applied voltage also decreases t{sup ¯}{sub d} for τ > 30 ms due to the increase of the probability for initial electron to initiate breakdown. The presence of UV radiation leads to the decrease of t{sup ¯}{sub d} due to the increased electron yield caused by photoelectrons. The influence of photoelectrons on breakdown initiation can be noticed for τ > 0.1 ms, while they dominantly determine t{sup ¯}{sub d} for τ > 30 ms.

  16. A HIGH-RESOLUTION ATLAS OF URANIUM-NEON IN THE H BAND

    SciTech Connect

    Redman, Stephen L.; Terrien, Ryan; Mahadevan, Suvrath; Ramsey, Lawrence W.; Bender, Chad F.; Ycas, Gabriel G.; Osterman, Steven N.; Diddams, Scott A.; Quinlan, Franklyn; Lawler, James E.; Nave, Gillian

    2012-03-01

    We present a high-resolution (R Almost-Equal-To 50,000) atlas of a uranium-neon (U/Ne) hollow-cathode spectrum in the H band (1454-1638 nm) for the calibration of near-infrared spectrographs. We obtained this U/Ne spectrum simultaneously with a laser-frequency comb spectrum, which we used to provide a first-order calibration to the U/Ne spectrum. We then calibrated the U/Ne spectrum using the recently published uranium line list of Redman et al., which is derived from high-resolution Fourier transform spectrometer measurements. These two independent calibrations allowed us to easily identify emission lines in the hollow-cathode lamp that do not correspond to known (classified) lines of either uranium or neon, and to compare the achievable precision of each source. Our frequency comb precision was limited by modal noise and detector effects, while the U/Ne precision was limited primarily by the signal-to-noise ratio (S/N) of the observed emission lines and our ability to model blended lines. The standard deviation in the dispersion solution residuals from the S/N-limited U/Ne hollow-cathode lamp was 50% larger than the standard deviation of the dispersion solution residuals from the modal-noise-limited laser-frequency comb. We advocate the use of U/Ne lamps for precision calibration of near-infrared spectrographs, and this H-band atlas makes these lamps significantly easier to use for wavelength calibration.

  17. The stereodynamics of the Penning ionization of water by metastable neon atoms

    NASA Astrophysics Data System (ADS)

    Brunetti, Brunetto Giovanni; Candori, Pietro; Falcinelli, Stefano; Pirani, Fernando; Vecchiocattivi, Franco

    2013-10-01

    The stereodynamics of the Penning ionization of water molecules by collision with metastable neon atoms, occurring in the thermal energy range, is of great relevance for the understanding of fundamental aspects of the physical chemistry of water. This process has been studied by analyzing the energy spectrum of the emitted electrons previously obtained in our laboratory in a crossed beam experiment [B. G. Brunetti, P. Candori, D. Cappelletti, S. Falcinelli, F. Pirani, D. Stranges, and F. Vecchiocattivi, Chem. Phys. Lett. 539-540, 19 (2012)]. For the spectrum analysis, a novel semiclassical method is proposed, that assumes ionization events as mostly occurring in the vicinities of the collision turning points. The potential energy driving the system in the relevant configurations of the entrance and exit channels, used in the spectrum simulation, has been formulated by the use of a semiempirical method. The analysis puts clearly in evidence how different approaches of the metastable atom to the water molecule lead to ions in different electronic states. In particular, it provides the angular acceptance cones where the selectivity of the process leading to the specific formation of each one of the two energetically possible ionic product states of H2O+ emerges. It is shown how the ground state ion is formed when neon metastable atoms approach water mainly perpendicularly to the molecular plane, while the first excited electronic state is formed when the approach occurs preferentially along the C2v axis, on the oxygen side. An explanation is proposed for the observed vibrational excitation of the product ions.

  18. Acute toxicity of mixture of acetaminophen and ibuprofen to Green Neon Shrimp, Neocaridina denticulate.

    PubMed

    Sung, Hung-Hung; Chiu, Yuh-Wen; Wang, Shu-Yin; Chen, Chien-Min; Huang, Da-Ji

    2014-07-01

    In recent years, numerous studies have indicated that various long-term use drugs, such as antibiotics or analgesics, not only cannot be completely decomposed via sewage treatment but also exhibit biological toxicity if they enter the environment; thus, the release of these drugs into the environment can damage ecological systems. This study sought to investigate the acute toxicity of two commonly utilized analgesics, ibuprofen (IBU) and acetaminophen (APAP), to aquatic organisms after these drugs have entered the water. To address this objective, the acute toxicity (median lethal concentration, LC₅₀, for a 96-h exposure) of IBU alone, APAP alone, and mixtures containing different ratios of IBU and APAP in green neon shrimp (Neocaridina denticulata) were measured. The results of four tests revealed that the 96-h LC₅₀ values for IBU and APAP alone were 6.07 mg/L and 6.60 mg/L, respectively. The 96-h LC₅₀ for a 1:1 mixture of IBU and APAP was 6.23 mg/L, and the toxicity of this mixture did not significantly differ from the toxicity of either drug alone (p<0.05). The experimental results for mixtures containing unequal ratios of IBU and APAP indicated that mixtures with high APAP concentrations and low IBU concentrations exhibited markedly greater toxicity in N. denticulata (LC₅₀=4.78 mg/L) than APAP or IBU alone. However, mixtures with high IBU concentrations and low APAP concentrations exhibited lower toxicity in N. denticulata (LC₅₀=6.78 mg/L) than IBU or APAP alone. This study demonstrated that different mixtures of IBU and APAP were associated with different toxic effects in green neon shrimp.

  19. Sensing earth's rotation with a helium-neon ring laser operating at 1.15  μm.

    PubMed

    Ulrich Schreiber, K; Thirkettle, Robert J; Hurst, Robert B; Follman, David; Cole, Garrett D; Aspelmeyer, Markus; Wells, Jon-Paul R

    2015-04-15

    We report on the operation of a 2.56  m2 helium-neon based ring laser interferometer at a wavelength of 1.152276 μm using crystalline coated intracavity supermirrors. This work represents the first implementation of crystalline coatings in an active laser system and expands the core application area of these low-thermal-noise cavity end mirrors to inertial sensing systems. Stable gyroscopic behavior can only be obtained with the addition of helium to the gain medium as this quenches the 1.152502 μm (2s4→2p7) transition of the neon doublet which otherwise gives rise to mode competition. For the first time at this wavelength, the ring laser is observed to readily unlock on the bias provided by the earth's rotation alone, yielding a Sagnac frequency of approximately 59 Hz.

  20. Effect of low-power helium-neon laser irradiation on 13-week immobilized articular cartilage of rabbits.

    PubMed

    Bayat, Mohammad; Ansari, Anayatallah; Hekmat, Hossien

    2004-09-01

    Influence of low-power (632.8 nm, Helium-Neon, 13 J/cm2, three times a week) laser on 13-week immobilized articular cartilage was examined with rabbits knee model. Number of chondrocytes and depth of articular cartilage of experimental group were significantly higher than those of sham irradiated group. Surface morphology of sham-irradiated group had rough prominences, fibrillation and lacunae but surface morphology of experimental group had more similarities to control group than to sham irradiated group. There were marked differences between ultrastructure features of control group and experimental group in comparison with sham irradiated group. Low-power Helium-Neon laser irradiation on 13-week immobilized knee joints of rabbits neutrilized adverse effects of immobilization on articular cartilage.

  1. Solid-state ring laser gyro behaving like its helium-neon counterpart at low rotation rates.

    PubMed

    Schwartz, Sylvain; Gutty, François; Feugnet, Gilles; Loil, Eric; Pocholle, Jean-Paul

    2009-12-15

    Nonlinear couplings induced by crystal diffusion and spatial inhomogeneities of the gain have been suppressed over a broad range of angular velocities in a solid-state ring laser gyro by vibrating the gain crystal at 168 kHz and 0.4 microm along the laser cavity axis. This device behaves in the same way as a typical helium-neon ring laser gyro, with a zone of frequency lock-in (or dead band) resulting from the backscattering of light on the cavity mirrors. Furthermore, it is shown that the level of angular random-walk noise in the presence of mechanical dithering depends only on the quality of the cavity mirrors, as is the case with typical helium-neon ring laser gyros.

  2. Absorptions between 3000 and 5500 cm(-1) of cyclic O4+ and O4- trapped in solid neon.

    PubMed

    Jacox, Marilyn E; Thompson, Warren E

    2013-12-19

    Recently, gas-phase absorptions in the 3000-4300 cm(-1) spectral region have been assigned to combination bands built on (ν1 + ν5) of ground-state cyc-O4(+). Other gas-phase experiments identified an electronic transition of cyc-O4(-) complexed with an argon atom between 4000 and 5300 cm(-1). Absorptions that correspond closely to these two groups of bands have been observed in neon-matrix experiments in which both cyc-O4(+) and cyc-O4(-) are trapped at 4.3 K in solid neon. The results are compared with the gas-phase data, and the proposed assignments are considered by taking into account the results of isotopic substitution.

  3. [The application of helium-neon laser radiation for the combined treatment of the patients with atrophic rhinitis].

    PubMed

    Sharipov, R A; Sharipova, E R

    2012-01-01

    The objective of the present study was to improve the efficacy of the treatment of the patients presenting with atrophic rhinitis (ozena) of the upper respiratory tract by the application of helium-neon laser radiation. A total of 120 patients aged from 15 to 53 years were treated based at the Department of Otorhinolaryngology, G.G. Kuvatov Republican Clinical Hospital, Ufa. All these patients underwent routine clinical, roentgenological, microbiological, and rheographic examination. The method for the treatment of atrophic rhinitis is described; it includes the application of helium-neon laser radiation in combination with the administration of the purified preparation of liquid polyvalent Klebsiella bacteriophage. The positive results of the treatment by the proposed method were documented in 90% of the patients.

  4. Computation of the properties of liquid neon, methane, and gas helium at low temperature by the Feynman-Hibbs approach.

    PubMed

    Tchouar, N; Ould-Kaddour, F; Levesque, D

    2004-10-15

    The properties of liquid methane, liquid neon, and gas helium are calculated at low temperatures over a large range of pressure from the classical molecular-dynamics simulations. The molecular interactions are represented by the Lennard-Jones pair potentials supplemented by quantum corrections following the Feynman-Hibbs approach. The equations of state, diffusion, and shear viscosity coefficients are determined for neon at 45 K, helium at 80 K, and methane at 110 K. A comparison is made with the existing experimental data and for thermodynamical quantities, with results computed from quantum numerical simulations when they are available. The theoretical variation of the viscosity coefficient with pressure is in good agreement with the experimental data when the quantum corrections are taken into account, thus reducing considerably the 60% discrepancy between the simulations and experiments in the absence of these corrections.

  5. Electron-helium and electron-neon scattering cross sections at low electron energies using a photoelectron source

    NASA Technical Reports Server (NTRS)

    Kumar, Vijay; Subramanian, K. P.; Krishnakumar, E.

    1987-01-01

    Absolute electron-helium and electron-neon scattering cross sections have been measured at low electron energies using the powerful technique of photoelectron spectroscopy. The measurements have been carried out at 17 electron energies varying from 0.7 to 10 eV with an accuracy of + or - 2.7 percent. The results obtained in the present work have been compared with other recent measurement and calculations.

  6. Observations and simulations of Nova Vul 1984 No. 2: A nova with ejecta rich in oxygen, neon, and magnesium

    SciTech Connect

    Starrfield, S.; Sonneborn, G.; Stryker, L.L.; Sparks, W.M.; Truran, J.W.; Ferland, G.; Wagner, R.M.; Gallagher, J.S.; Wade, R.; Williams, R.E.; Kenyon, S.; Shaviv, G.; Wu, C.C.; Gehrz, R.D.; Ney, E.P.

    1988-01-01

    Nova Vul 1984 /number sign/2 has been observed with the IUE Satellite from December 1984 through November 1987 and we expect to be able to observe it with the IUE Satellite for at least another two years. These spectra are characterized by strong lines from Mg, Ne, C, Si, O, N, and other elements. Data obtained in the ultraviolet, infrared, and optical show that this nova is ejecting material rich in oxygen, neon, and magnesium. 16 refs., 5 figs., 1 tab.

  7. The neon content of nearby B-type stars and its implications for the solar model problem

    NASA Astrophysics Data System (ADS)

    Morel, T.; Butler, K.

    2008-08-01

    The recent downward revision of the solar photospheric abundances now leads to severe inconsistencies between the theoretical predictions for the internal structure of the Sun and the results of helioseismology. There have been claims that the solar neon abundance may be underestimated and that an increase in this poorly-known quantity could alleviate (or even completely solve) this problem. Early-type stars in the solar neighbourhood are well-suited to testing this hypothesis because they are the only stellar objects whose absolute neon abundance can be derived from the direct analysis of photospheric lines. Here we present a fully homogeneous NLTE abundance study of the optical Ne I and Ne II lines in a sample of 18 nearby, early B-type stars, which suggests log ɛ(Ne) = 7.97 ± 0.07 dex (on the scale in which log ɛ[H] = 12) for the present-day neon abundance of the local interstellar medium (ISM). Chemical evolution models of the Galaxy only predict a very small enrichment of the nearby interstellar gas in neon over the past 4.6 Gyr, implying that our estimate should be representative of the Sun at birth. Although higher by about 35% than the new recommended solar abundance, such a value appears insufficient by itself to restore the past agreement between the solar models and the helioseismological constraints. Appendices A and B are only available in electronic form at http://www.aanda.org Table [see full text] is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/487/307

  8. Investigation of the stability of the emission wavelength of a laser with an external neon absorption cell

    SciTech Connect

    Kapralov, V.P.; Privalov, V.E.; Chulyaeva, E.G.

    1980-08-01

    The optical heterodyne method was used to determine the absolute wavelength of a commercial LG-149-1 helium--neon laser. Measurements were carried out using apparatus containing a laser stabilized by the saturated absorption in /sup 127/I, which acted as the reference source. The iodine laser wavelength was determined interferrometrically by comparison with the wavelength of the orange line of /sup 86/Kr.

  9. Effect of helium-neon laser on fast excitatory postsynaptic potential of neurons in the isolated rat superior cervical ganglia

    NASA Astrophysics Data System (ADS)

    Mo, Hua; He, Ping; Mo, Ning

    2004-08-01

    The aim of this study is to further measure the effect of 632.8-nm helium-neon laser on fast excitatory postsynaptic potential (f-EPSP) of postganglionic neurons in isolated rat superior cervical ganglia by means of intracellular recording techniques. The neurons with f-EPSP were irradiated by different power densities (1-5 mW/cm2) laser. Irradiated by the 2-mW/cm2 laser, the amplitude of the f-EPSP could augment (P<0.05, paired t test) and even cause action potential at the end of the first 1-2 minutes, the f-EPSP could descend and last for 3-8 minutes. But the amplitude of the f-EPSP of neurons irradiated by the 5-mW/cm2 laser could depress for the irradiating periods. The results show that: 1) the variation of the amplitude of f-EPSP caused by laser is power density-dependent and time-dependent; 2) there exist the second-order phases in the interaction of the helium-neon laser with neurons. These findings may provide certain evidence in explanation of the mechanisms of clinical helium-neon laser therapy.

  10. Effect of low-level helium-neon laser therapy on histological and ultrastructural features of immobilized rabbit articular cartilage.

    PubMed

    Bayat, Mohammad; Ansari, Enayatallah; Gholami, Narges; Bayat, Aghdas

    2007-05-25

    The present study investigates whether low-level helium-neon laser therapy can increase histological parameters of immobilized articular cartilage in rabbits or not. Twenty five rabbits were divided into three groups: the experiment group, which received low-level helium-neon laser therapy with 13J/cm(2) three times a week after immobilization of their right knees; the control group which did not receive laser therapy after immobilization of their knees; and the normal group which received neither immobilization nor laser therapy. Histological and electron microscopic examinations were performed at 4 and 7 weeks after immobilization. Depth of the chondrocyte filopodia in four-week immobilized experiment group, and depth of articular cartilage in seven-week immobilized experiment group were significantly higher than those of relevant control groups (exact Fisher test, p=0.001; student's t-test, p=0.031, respectively). The surfaces of articular cartilages of the experiment group were relatively smooth, while those of the control group were unsmooth. It is therefore concluded that low-level helium-neon laser therapy had significantly increased the depth of the chondrocyte filopodia in four-week immobilized femoral articular cartilage and the depth of articular cartilage in seven-week immobilized knee in comparison with control immobilized articular cartilage.

  11. Structural analysis of the bright monomeric yellow-green fluorescent protein mNeonGreen obtained by directed evolution.

    PubMed

    Clavel, Damien; Gotthard, Guillaume; von Stetten, David; De Sanctis, Daniele; Pasquier, Hélène; Lambert, Gerard G; Shaner, Nathan C; Royant, Antoine

    2016-12-01

    Until recently, genes coding for homologues of the autofluorescent protein GFP had only been identified in marine organisms from the phyla Cnidaria and Arthropoda. New fluorescent-protein genes have now been found in the phylum Chordata, coding for particularly bright oligomeric fluorescent proteins such as the tetrameric yellow fluorescent protein lanYFP from Branchiostoma lanceolatum. A successful monomerization attempt led to the development of the bright yellow-green fluorescent protein mNeonGreen. The structures of lanYFP and mNeonGreen have been determined and compared in order to rationalize the directed evolution process leading from a bright, tetrameric to a still bright, monomeric fluorescent protein. An unusual discolouration of crystals of mNeonGreen was observed after X-ray data collection, which was investigated using a combination of X-ray crystallography and UV-visible absorption and Raman spectroscopies, revealing the effects of specific radiation damage in the chromophore cavity. It is shown that X-rays rapidly lead to the protonation of the phenolate O atom of the chromophore and to the loss of its planarity at the methylene bridge.

  12. The Biological Effectiveness of Four Energies of Neon Ions for the Induction of Chromosome Damage in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    George, Kerry; Hada, Megumi; Cucinotta, F. A.

    2011-01-01

    Chromosomal aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to neon ions at energies of 64, 89, 142, or 267. The corresponding LET values for these energies of neon ranged from 38-103 keV/micrometers and doses delivered were in the 10 to 80 cGy range. Chromosome exchanges were assessed in metaphase and G2 phase cells at first division after exposure using fluorescence in situ hybridization (FISH) with whole chromosome probes and dose response curves were generated for different types of chromosomal exchanges. The yields of total chromosome exchanges were similar for the 64, 89, and 142 MeV exposures, whereas the 267 MeV/u neon with LET of 38 keV/micrometers produced about half as many exchanges per unit dose. The induction of complex type chromosome exchanges (exchanges involving three or more breaks and two or more chromosomes) showed a clear LET dependence for all energies. The ratio of simple to complex type exchanges increased with LET from 18 to 51%. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose response curve for chromosome damage with respect to gamma-rays. The RBE(sub max) values for total chromosome exchanges for the 64 MeV/u was around 30.

  13. Infrared spectra and electronic structure calculations for NN complexes with U, UN, and NUN in solid argon, neon, and nitrogen.

    PubMed

    Andrews, Lester; Wang, Xuefeng; Gong, Yu; Kushto, Gary P; Vlaisavljevich, Bess; Gagliardi, Laura

    2014-07-17

    Reactions of laser-ablated U atoms with N2 molecules upon codeposition in excess argon or neon at 4 K gave intense NUN and weak UN absorptions. Annealing produced progressions of new absorptions for the UN2(N2)1,2,3,4,5 and UN(N2)1,2,3,4,5,6 complexes. The neon-to-argon matrix shift decreases with increasing NN ligation and therefore the number of noble gas atoms left in the primary coordination sphere around the NUN molecule. Small matrix shifts are observed when the secondary coordination layers around the primary UN2(N2)1,2,3,4,5 and UN(N2)1,2,3,4,5,6 complexes are changed from neon-to-argon to nitrogen. Electronic structure, energy, and frequency calculations provide support for the identification of these complexes and the characterization of the N≡U≡N and U≡N core molecules as terminal uranium nitrides. Codeposition of U with pure nitrogen produced the saturated U(NN)7 complex, which UV irradiation converted to the NUN(NN)5 complex with slightly lower frequencies than found in solid argon.

  14. Mapping the phase diagram for neon to a quantum Lennard-Jones fluid using Gibbs ensemble simulations.

    PubMed

    Georgescu, Ionuţ; Brown, Sandra E; Mandelshtam, Vladimir A

    2013-04-07

    In order to address the issue of whether neon liquid in coexistence with its gas phase can be mapped to a quantum Lennard-Jones (LJ) fluid, we perform a series of simulations using Gibbs ensemble Monte Carlo for a range of de Boer quantum parameters Λ=ℏ/(σ√(mε)). The quantum effects are incorporated by implementing the variational gaussian wavepacket method, which provides an efficient numerical framework for estimating the quantum density at thermal equilibrium. The computed data for the LJ liquid is used to produce its phase diagram as a function of the quantum parameter, 0.065 ≤ Λ ≤ 0.11. These data are then used to fit the experimental phase diagram for neon liquid. The resulting parameters, ε = 35.68 ± 0.03 K and σ = 2.7616 ± 0.0005 Å (Λ = 0.0940), of the LJ pair potential are optimized to best represent liquid neon in coexistence with its gas phase for a range of physically relevant temperatures. This multi-temperature approach towards fitting and assessing a pair-potential is much more consistent than merely fitting a single data point, such as a melting temperature or a second virial coefficient.

  15. Spatial fractionation of the dose using neon and heavier ions: A Monte Carlo study

    SciTech Connect

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y.

    2015-10-15

    Purpose: This work explores a new radiation therapy approach which might trigger a renewed use of neon and heavier ions to treat cancers. These ions were shown to be extremely efficient in radioresistant tumor killing. Unfortunately, the efficient region also extends into the normal tissue in front of the tumor. The strategy the authors propose is to profit from the well-established sparing effect of thin spatially fractionated beams, so that the impact on normal tissues might be minimized while a high tumor control is achieved. The main goal of this work is to provide a proof of concept of this new approach. With that aim, a dosimetric study was carried out as a first step to evaluate the interest of further explorations of this avenue. Methods: The GATE/GEANT4 v.6.1 Monte Carlo simulation platform was employed to simulate arrays of rectangular minibeams (700 μm × 2 cm) of four ions (Ne, Si, Ar, and Fe). The irradiations were performed with a 2 cm-long spread-out Bragg peak centered at 7 cm-depth. Dose distributions in a water phantom were scored considering two minibeams center-to-center distances: 1400 and 3500 μm. Peak and valley doses, peak-to-valley dose ratios (PVDRs), beam penumbras, and relative contribution of nuclear fragments and electromagnetic processes were assessed as figures of merit. In addition, the type and proportion of the secondary nuclear fragments were evaluated in both peak and valley regions. Results: Extremely high PVDR values (>100) and low valley doses were obtained. The higher the atomic number (Z) of the primary ion is, the lower the valleys and the narrower the penumbras. Although the yield of secondary nuclear products increases with Z, the actual dose being deposited by the secondary nuclear fragments in the valleys starts to be the dominant contribution at deeper points, helping in the sparing of proximal normal tissues. Additionally, a wider center-to-center distance leads to a minimized contribution of heavier secondary

  16. Challenges and Opportunities to Developing Synergies Among Diverse Environmental Observatories: FSML, NEON, and GLEON

    NASA Astrophysics Data System (ADS)

    Williamson, C. E.; Weathers, K. C.; Knoll, L. B.; Brentrup, J.

    2012-12-01

    Recent rapid advances in sensor technology and cyberinfrastructure have enabled the development of numerous environmental observatories ranging from local networks at field stations and marine laboratories (FSML) to continental scale observatories such as the National Ecological Observatory Network (NEON) to global scale observatories such as the Global Lake Ecological Observatory Network (GLEON). While divergent goals underlie the initial development of these observatories, and they are often designed to serve different communities, many opportunities for synergies exist. In addition, the use of existing infrastructure may enhance the cost-effectiveness of building and maintaining large scale observatories. For example, FSMLs are established facilities with the staff and infrastructure to host sensor nodes of larger networks. Many field stations have existing staff and long-term databases as well as smaller sensor networks that are the product of a single or small group of investigators with a unique data management system embedded in a local or regional community. These field station based facilities and data are a potentially untapped gold mine for larger continental and global scale observatories; common ecological and environmental challenges centered on understanding the impacts of changing climate, land use, and invasive species often underlie these efforts. The purpose of this talk is to stimulate a dialog on the challenges of merging efforts across these different spatial and temporal scales, as well as addressing how to develop synergies among observatory networks with divergent roots and philosophical approaches. For example, FSMLs have existing long-term databases and facilities, while NEON has sparse past data but a well-developed template and closely coordinated team working in a coherent format across a continental scale. GLEON on the other hand is a grass-roots network of experts in science, information technology, and engineering with a common goal

  17. 22 CFR 2.2 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Purpose. 2.2 Section 2.2 Foreign Relations DEPARTMENT OF STATE GENERAL PROTECTION OF FOREIGN DIGNITARIES AND OTHER OFFICIAL PERSONNEL § 2.2 Purpose. Section 1116(b)(2) of title 18 of the United States Code, as added by Pub. L. 92-539, An Act for...

  18. 22 CFR 2.2 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Purpose. 2.2 Section 2.2 Foreign Relations DEPARTMENT OF STATE GENERAL PROTECTION OF FOREIGN DIGNITARIES AND OTHER OFFICIAL PERSONNEL § 2.2 Purpose. Section 1116(b)(2) of title 18 of the United States Code, as added by Pub. L. 92-539, An Act for...

  19. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Air transportation. 228.22 Section 228.22... for USAID Financing § 228.22 Air transportation. (a) The eligibility of air transportation is determined by the flag registry of the aircraft. The term “U.S. flag air carrier” means one of a class of...

  20. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Air transportation. 228.22 Section 228.22... for USAID Financing § 228.22 Air transportation. (a) The eligibility of air transportation is determined by the flag registry of the aircraft. The term “U.S. flag air carrier” means one of a class of...

  1. 22 CFR 102.22 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false 102.22 Section 102.22 Foreign Relations DEPARTMENT OF STATE ECONOMIC AND OTHER FUNCTIONS CIVIL AVIATION Recommendations to the President Under Section 801 of the Federal Aviation Act of 1958 § 102.22...

  2. 22 CFR 226.22 - Payment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Payment. 226.22 Section 226.22 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS Post-award Requirements Financial and Program Management § 226.22 Payment. (a) Payment...

  3. 22 CFR 226.22 - Payment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Payment. 226.22 Section 226.22 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS Post-award Requirements Financial and Program Management § 226.22 Payment. (a) Payment...

  4. 22 CFR 226.22 - Payment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Payment. 226.22 Section 226.22 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS Post-award Requirements Financial and Program Management § 226.22 Payment. (a) Payment...

  5. 22 CFR 1422.22 - Inconclusive elections.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Inconclusive elections. 1422.22 Section 1422.22... PROCEEDINGS § 1422.22 Inconclusive elections. (a) An inconclusive election is one in which none of the choices... results of the election, the Regional Director may declare the election a nullity and may order...

  6. The Infrared Spectra of BF_3 Cation and BF_2OH Cation Trapped in Solid Neon

    NASA Astrophysics Data System (ADS)

    Jacox, Marilyn E.; Thompson, Warren E.

    2010-06-01

    New, more detailed studies of the photoionization and Penning ionization of BF_3 trapped in solid neon have confirmed the earlier infrared spectroscopic identification of BF_2 and BF_2 cation and have yielded a revised assignment for the infrared absorptions of BF3 cation. The position of the absorption attributed to ν_3 of that molecule is consistent with the distortion of the ground-state cation from D3h symmetry because of strong vibronic interaction between levels of the Btilde ^2E^' state and E^' levels of the ~X ^2A_2^' ground state, as predicted by Haller and co-workers. The facile reaction of BF_3 with traces of H_2O desorbed from the walls of the vacuum system leads to the stabilization of sufficient BF_2OH for the identification of two vibrational fundamentals of BF_2OH cation. M. E. Jacox and W. E. Thompson, J. Chem. Phys. 102, 4747 (1995). E. Haller, H. Koppel, L. S. Cederbaum, W. von Niessen, and G. Bieri, J. Chem. Phys. 78, 1359 (1983).

  7. Phase Space Theory of Evaporation in Neon Clusters: The Role of Quantum Effects

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Parneix, P.

    2009-07-01

    Unimolecular evaporation of neon clusters containing between 14 and 148 atoms is theoretically investigated in the framework of phase space theory. Quantum effects are incorporated in the vibrational densities of states, which include both zero-point and anharmonic contributions, and in the possible tunneling through the centrifugal barrier. The evaporation rates, kinetic energy released, and product angular momentum are calculated as a function of excess energy or temperature in the parent cluster and compared to the classical results. Quantum fluctuations are found to generally increase both the kinetic energy released and the angular momentum of the product, but the effects on the rate constants depend nontrivially on the excess energy. These results are interpreted as due to the very few vibrational states available in the product cluster when described quantum mechanically. Because delocalization also leads to much narrower thermal energy distributions, the variations of evaporation observables as a function of canonical temperature appear much less marked than in the microcanonical ensemble. While quantum effects tend to smooth the caloric curve in the product cluster, the melting phase change clearly keeps a signature on these observables. The microcanonical temperature extracted from fitting the kinetic energy released distribution using an improved Arrhenius form further suggests a backbending in the quantum Ne13 cluster that is absent in the classical system. Finally, in contrast to delocalization effects, quantum tunneling through the centrifugal barrier does not play any appreciable role on the evaporation kinetics of these rather heavy clusters.

  8. What is the shape of the helium trimer? A comparison with the neon and argon trimers.

    PubMed

    Bressanini, Dario; Morosi, Gabriele

    2011-10-13

    Despite its apparent simplicity and extensive theoretical investigations, the issue of what is the shape of the helium trimer is still debated in the literature. After reviewing previous conflicting interpretations of computational studies, we introduce the angle-angle distribution function as a tool to discuss in a simple way the shape of any trimer. We compute this function along with many different geometrical distributions using variational and diffusion Monte Carlo methods. We compare them with the corresponding ones for the neon and argon trimers. Our analysis shows that while Ne(3) and Ar(3) fluctuate around an equilibrium structure that is an equilateral triangle, (4)He(3) shows an extremely broad angle-angle distribution function, and all kinds of three-atom configurations must be taken into account in its description. Classifying (4)He(3) as either equilateral or linear or any other particular shape, as was done in the past, is not sensible, because in this case the intuitive notion of equilibrium structure is ill defined. Our results could help the interpretation of future experiments aimed at measuring the geometrical properties of the helium trimer.

  9. Penning ionization electron spectroscopy of hydrogen sulfide by metastable helium and neon atoms.

    PubMed

    Falcinelli, Stefano; Candori, Pietro; Bettoni, Marta; Pirani, Fernando; Vecchiocattivi, Franco

    2014-08-21

    The dynamics of the Penning ionization of hydrogen sulfide molecules by collision with helium and metastable neon atoms, occurring in the thermal energy range, has been studied by analyzing the energy spectra of the emitted electrons obtained in our laboratory in a crossed beam experiment. These spectra are compared with the photoelectron spectra measured by using He(I) and Ne(I) photons under the same experimental conditions. In this way we obtained the negative energy shifts for the formation of H2S(+) ions in the first three accessible electronic states by He*(2(3,1)S1,0) and Ne*((3)P2,0) Penning ionization collisions: the 2b1 (X̃(2)B1) fundamental one, the first 5a1 (Ã(2)A1), and the second 2b2 (B̃(2)B2) excited states, respectively. The recorded energy shifts indicate that in the case of He* and Ne*-H2S the autoionization dynamics depends on the features of the collision complex and is mainly driven by an effective global attraction that comes from a balance among several non covalent intermolecular interaction components. This suggests that the Penning ionization should take place, in a specific range of intermolecular distances, as we have already observed in the case of Penning ionization of water molecules [Brunetti, B. G.; Candori, P.; Falcinelli, S.; Pirani, F.; Vecchiocattivi, F. J. Chem. Phys. 2013, 139, 164305-1-164305-8].

  10. Characteristics of capacitively coupled RF helium/neon discharges in a hollow fiber

    NASA Astrophysics Data System (ADS)

    Duan, Lian; Wang, Xinbing; Zuo, Duluo

    2016-11-01

    Capacitively coupled radio-frequency microplasmas are produced in hollow fibers with an inner diameter of hundreds of micrometers powered by an 80-MHz power supply. Considering the narrow space of the hollow core, optical emission spectrometry is used to obtain the spatially resolved characteristics of the microplasmas. The rotational temperature, excitation temperature, and electron density of microplasmas are determined based on the second positive band of nitrogen, the atomic spectra of bulk neutral particles of plasmas, and the Hβ line of the hydrogen Balmer series, respectively. In our experiments, the rotational temperature, excitation temperature, and electron density of typical inert gases helium and neon are in the ranges of 300-500 K, 7000-9500 K, and 1013 cm-3, respectively. The results obtained with different external parameters of power and pressure show that the light emission intensity increases with power and pressure. The distributions of the rotational temperature, excitation temperature, and electron density of the microplasmas are almost constant over the gap between the electrodes. These distributions are mostly insensitive to the change of power and pressure in single-component plasmas. The characteristics of mixed plasmas are also investigated. The plasma with a larger helium content possesses higher excitation temperature and lower rotational temperature and electron density than those of the plasma with a lower helium content.

  11. Effect of helium-neon laser irradiation on hair follicle growth cycle of Swiss albino mice.

    PubMed

    Shukla, S; Sahu, K; Verma, Y; Rao, K D; Dube, A; Gupta, P K

    2010-01-01

    We report the results of a study carried out to investigate the effect of helium-neon (He-Ne) laser (632.8 nm) irradiation on the hair follicle growth cycle of testosterone-treated and untreated mice. Both histology and optical coherence tomography (OCT) were used for the measurement of hair follicle length and the relative percentage of hair follicles in different growth phases. A positive correlation (R = 0.96) was observed for the lengths of hair follicles measured by both methods. Further, the ratios of the lengths of hair follicles in the anagen and catagen phases obtained by both methods were nearly the same. However, the length of the hair follicles measured by both methods differed by a factor of 1.6, with histology showing smaller lengths. He-Ne laser irradiation (at approximately 1 J/cm(2)) of the skin of both the control and the testosterone-treated mice was observed to lead to a significant increase (p < 0.05) in % anagen, indicating stimulation of hair growth. The study also demonstrates that OCT can be used to monitor the hair follicle growth cycle, and thus hair follicle disorders or treatment efficacy during alopecia.

  12. CO2-helium and CO2-neon mixtures at high pressures.

    PubMed

    Mallick, B; Ninet, S; Le Marchand, G; Munsch, P; Datchi, F

    2013-01-28

    The properties of mixtures of carbon dioxide with helium or neon have been investigated as a function of CO(2) concentration and pressure up to 30 GPa at room temperature. The binary phase diagrams of these mixtures are determined over the full range of CO(2) concentrations using visual observations and Raman scattering measurements. Both diagrams are of eutectic type, with a fluid-fluid miscibility gap for CO(2) concentrations in the range [5, 75] mol. % for He and [8, 55] mol. % for Ne, and a complete separation between the two components in the solid phase. The absence of alloys or stoichiometric compounds for these two binary systems is consistent with the Hume-Rothery rules of hard sphere mixtures. The Raman spectra and x-ray diffraction patterns of solid CO(2) embedded in He or Ne for various initial concentrations have been measured up to 30 GPa and 12 GPa, respectively. The frequencies of the Raman modes and the volume of solid phase I are identical, within error bars, to those reported for 100% CO(2) samples, thus confirming the total immiscibility of CO(2) with He and Ne in the solid phase. These results demonstrate the possibility to perform high-pressure experiments on solid CO(2) under (quasi-)hydrostatic conditions using He or Ne as pressure transmitting medium.

  13. Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria.

    PubMed

    Hu, Wan-Ping; Wang, Jeh-Jeng; Yu, Chia-Li; Lan, Cheng-Che E; Chen, Gow-Shing; Yu, Hsin-Su

    2007-08-01

    Previous reports have shown that cellular functions could be influenced by visual light (400-700 nm). Recent evidence indicates that cellular proliferation could be triggered by the interaction of a helium-neon laser (He-Ne laser, 632.8 nm) with the mitochondrial photoacceptor-cytochrome c oxidase. Our previous studies demonstrated that He-Ne irradiation induced an increase in cell proliferation, but not migration, in the melanoma cell line A2058 cell. The aim of this study was to investigate the underlying mechanisms involved in photostimulatory effects induced by an He-Ne laser. Using the A2058 cell as a model for cell proliferation, the photobiologic effects induced by an He-Ne laser were studied. He-Ne irradiation immediately induced an increase in mitochondrial membrane potential (delta psi(mt)), ATP, and cAMP via enhanced cytochrome c oxidase activity and promoted phosphorylation of Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) expressions. He-Ne irradiation-induced A2058 cell proliferation was significantly abrogated by the addition of delta psi(mt) and JNK inhibitors. Moreover, treatment with an He-Ne laser resulted in delayed effects on IL-8 and transforming growth factor-beta1 release from A2058 cells. These results suggest that He-Ne irradiation elicits photostimulatory effects in mitochondria processes, which involve JNK/AP-1 activation and enhanced growth factor release, and ultimately lead to A2058 cell proliferation.

  14. [Low-intensity helium-neon laser in the treatment of patients after endonasal dacryocystorhinostomy].

    PubMed

    Beloglazov, V G; At'kova, E L; Nurieva, S M; Khvedelidze, E P

    2004-01-01

    Described in the paper is an efficiency study of using, postoperatively, the low-intensity helium-neon laser (LIHNL) in patients with obstruction of the lacrimal tracts. Eighty patients were examined after endonasal dacryocystorhinostomy. They were shared between 2 groups with respect to a postoperative course: group 1--experimental, 40 patients, and group 2--control, 40 patients. The experimental patients received, apart from the traditional postoperative therapy, a course of LIHNL therapy. The controls received only the traditional postoperative treatment. The efficiency of postoperative treatment was evaluated by clinical, instrumental and laboratory examination methods. The study denoted that the use of LIHNL in the early postoperative period after endonasal dacryocystorhinostomy had a pronounced anti-inflammatory effect, speeded up the wound healing, prevented the growth of granulation tissues and the merging of the shaped lacrimal-sac fistula with the nasal cavity. LIHNL contributed to a complete recovery of the functional activity of the nasal mucous tunic. Thus, the LIHNL therapy essentially facilitates the postoperative management of patients, cuts the rehabilitation period and enhances the treatment results.

  15. Helium-neon laser radiation effect on fish embryos and larvae

    NASA Astrophysics Data System (ADS)

    Uzdensky, Anatoly B.

    1994-09-01

    Helium-neon laser irradiation (HNLI) is an effective biostimulating agent but its influence on embryonal processes is almost unknown. We have studied fish embryos and larvae development, viability, and growth after HNLI of fish eggs at different stages. With this aim carp, grass carp, sturgeon, and stellared sturgeon eggs were incubated in Petri plates or in fish-breeding apparatuses and were irradiated in situ with different exposures. Then we studied hutchling percentage, larvae survival and growth dynamics, and morphological anomalies percentage. HNLI effect depended on irradiation exposures and intensity, embryonal stages, and fish species. Laser eggs irradiation essentially affected larvae viability and growth in the postembryonal phase. For example, HNLI of sturgeon spawn at cleavage stage or grass carp at organogenesis decreased larvae survival rate. On the contrary HNLI at gastrulation or embryonal motorics stages markedly increased larvae survival rate and decreased the morphological anomalies percentage. We determined most effective irradiation regimes depending of fish species which may be used in practical fish-breeding.

  16. Measurements of n-p correlations in the reaction of relativistic neon with uranium

    NASA Technical Reports Server (NTRS)

    Frankel, K.; Schimmerling, W.; Rasmussen, J. O.; Crowe, K. M.; Bistirlich, J.; Bowman, H.; Hashimoto, O.; Murphy, D. L.; Ridout, J.; Sullivan, J. P.; Yoo, E.; McDonald, W. J.; Salomon, M.; Xu, J. S.

    1986-01-01

    We report a preliminary measurement of coincident neutron-proton pairs emitted at 45 degrees in the interaction of 400, 530, and 650 MeV/A neon beams incident on uranium. Charged particles were identified by time of flight and momentum, as determined in a magnetic spectrometer. Neutral particles were detected using a thick plastic scintillator, and their time of flight was measured between an entrance scintillator, triggered by a charged particle, and the neutron detector. The scatter plots and contour plots of neutron momentum vs. proton momentum appear to show a slight correlation ridge above an uncorrelated background. The projections of this plane on the n-p momentum difference axis are essentially flat, showing a one standard deviation enhancement for each of the three beams energies. At each beam energy, the calculated momentum correlation function for the neutron-proton pairs is enhanced near zero neutron-proton momentum difference by approximately one standard deviation over the expected value for no correlation. This enhancement is expected to occur as a consequence of the attractive final state interaction between the neutron and proton (i.e., virtual or "singlet" deuterons). The implications of these measurements are discussed.

  17. Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon.

    PubMed

    Vlasiuk, Maryna; Frascoli, Federico; Sadus, Richard J

    2016-09-14

    The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using ab initio, empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one ab initio potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig's thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.

  18. Evaluation of neon focused ion beam milling for TEM sample preparation.

    PubMed

    Pekin, T C; Allen, F I; Minor, A M

    2016-10-01

    Gallium-based focused ion beams generated from liquid-metal sources are widely used in micromachining and sample preparation for transmission electron microscopy, with well-known drawbacks such as sample damage and contamination. In this work, an alternative (neon) focused ion beam generated by a gas field-ionization source is evaluated for the preparation of electron-transparent specimens. To do so, electron-transparent sections of Si and an Al alloy are prepared with both Ga and Ne ion beams for direct comparison. Diffraction-contrast imaging and energy dispersive x-ray spectroscopy are used to evaluate the relative damage induced by the two beams, and cross-sections of milled trenches are examined to compare the implantation depth with theoretical predictions from Monte Carlo simulations. Our results show that for the beam voltages and materials systems investigated, Ne ion beam milling does not significantly reduce the focused ion beam induced artefacts. However, the Ne ion beam does enable more precise milling and may be of interest in cases where Ga contamination cannot be tolerated.

  19. Electronic Spectra of Protonated Fluoranthene in a Neon Matrix and Gas Phase at 10 K.

    PubMed

    Chakraborty, A; Rice, C A; Hardy, F-X; Fulara, J; Maier, J P

    2016-07-14

    Four electronic systems with origin bands at 759.5, 559.3, 476.3, and 385.5 nm are detected in a 6 K neon matrix following deposition of mass-selected protonated fluoranthene C16H11(+) produced from a reaction of neutral vapor and ethanol in a hot-cathode ion source. Two cationic isomers are identified as the carriers of these band systems. The 559.3, 476.3, and 385.5 nm absorptions are assigned to 4,3,2 (1)A' ← X (1)A' transitions of isomer E(+) (γ-) and the 2 (1)A' ← X (1)A' system at 759.5 nm is of isomer C(+) (α-) of protonated fluoranthene on the basis of theoretical predictions. The electronic spectrum of E(+) was also recorded in the gas phase using a resonant 1 + 1 two-photon excitation-dissociation technique in an ion trap at vibrational and rotational temperatures of 10 K. The 3,2 (1)A' ← X (1)A' transitions have origin band maxima at 558.28 ± 0.01 and 474.92 ± 0.01 nm. Both the 2 (1)A' and 3 (1)A' excited states have a distinct vibrational pattern with lifetimes on the order of 1 ps.

  20. Double-Core-Hole States in Neon: Lifetime, Post-Collision Interaction, and Spectral Assignment.

    PubMed

    Goldsztejn, G; Marchenko, T; Püttner, R; Journel, L; Guillemin, R; Carniato, S; Selles, P; Travnikova, O; Céolin, D; Lago, A F; Feifel, R; Lablanquie, P; Piancastelli, M N; Penent, F; Simon, M

    2016-09-23

    Using synchrotron radiation and high-resolution electron spectroscopy, we have directly observed and identified specific photoelectrons from K^{-2}V states in neon corresponding to simultaneous 1s ionization and 1s→valence excitation. The natural lifetime broadening of the K^{-2}V states and the relative intensities of different types of shakeup channels have been determined experimentally and compared to ab initio calculations. Moreover, the high-energy Auger spectrum resulting from the decay of Ne^{2+}K^{-2} and Ne^{+}K^{-2}V states as well as from participator Auger decay from Ne^{+}K^{-1}L^{-1}V states, has been measured and assigned in detail utilizing the characteristic differences in lifetime broadenings of these core hole states. Furthermore, post collision interaction broadening of Auger peaks is clearly observed only in the hypersatellite spectrum from K^{-2} states, due to the energy sharing between the two 1s photoelectrons which favors the emission of one slow and one fast electron.

  1. Using Gamma-Ray Line Observations to Determine the Chromospheric Neon/Oxygen Abundance Ratio

    NASA Astrophysics Data System (ADS)

    Share, Gerald H.; Murphy, R.

    2009-05-01

    There has been a lively debate concerning the solar neon abundance since Asplund et al. (2005) reported a significant downward revision of C, N, and O abundances from those compiled by Grevesse and Sauval (1998). This lower metallicity has affected solar opacity to the extent that solar interior models are no longer consistent with helioseismology data. As Ne is not measured directly in the photosphere, Bahcall et al. (2005) have suggested that a solar Ne abundance a factor of 3 higher than the adopted value (Ne/O 0.15) could resolve this discrepancy. A factor of this magnitude appears to be inconsistent with quiet-Sun transition-region measurements (Young 2005) and flaring-coronal observations (Schmeltz et al. 2005; Landi et al. 2007). However, there are concerns whether these abundances measured in the upper solar atmosphere reflect the situation in the photosphere. We have fit solar flare gamma-ray line spectra using newly developed theoretical models of nuclear emission from proton and alpha-particle interactions deep in the chromosphere to determine the Ne/O abundance. We report on our measurements of this ratio in flares observed by the Solar Maximum Mission spectrometer.

  2. Light noble gas chemistry: Structures, stabilities, and bonding of helium, neon and argon compounds

    SciTech Connect

    Frenking, G. ); Koch, W. ); Reichel, F. ); Cremer, D. )

    1990-05-23

    Theoretically determined geometries are reported for the light noble gas ions Ng{sub 2}C{sup 2+}, Ng{sub 2}N{sup 2+}, Ng{sub 2}O{sup 2+}, NgCCNg{sup 2+}, NgCCH{sup +}, NgCN{sup +}, and NgNC{sup +} (Ng = He, Ne, Ar) at the MP2/6-31G(d,p) level of theory. In a few cases, optimizations were carried out at CASSCF/6-31G(d,p). The thermodynamic stability of the Ng compounds is investigated at MP4(SDTQ)/6-311G(2df,2pd) for Ng = He, Ne and at MP4(SDTQ)/6-311G(d,p) for Ng = Ar. The structures and stabilities of the molecules are discussed in terms of donor-acceptor interactions between Ng and the respective fragment cation, by using molecular orbital arguments and utilizing the analysis of the electron density distribution and its associated Laplace field. Generally, there is an increase in Ng,X binding interactions of a noble gas molecule NgX with increasing atomic size of Ng. In some cases the Ne,X stabilization energies are slightly smaller than the corresponding He,X values because of repulsive p-{pi} interactions in the neon compounds. The argon molecules are in all cases significantly stronger bound.

  3. Effect of helium-neon and infrared laser irradiation on wound healing in rabbits

    SciTech Connect

    Braverman, B.; McCarthy, R.J.; Ivankovich, A.D.; Forde, D.E.; Overfield, M.; Bapna, M.S.

    1989-01-01

    We examined the biostimulating effects of helium-neon laser radiation (HeNe; 632.8 nm), pulsed infrared laser radiation (IR; 904 nm), and the two combined on skin wound healing in New Zealand white rabbits. Seventy-two rabbits received either (1) no exposure, (2) 1.65 J/cm2 HeNe, (3) 8.25 J/cm2 pulsed IR, or (4) both HeNe and IR together to one of two dorsal full-thickness skin wounds, daily, for 21 days. Wound areas were measured photographically at periodic intervals. Tissue samples were analyzed for tensile strength, and histology was done to measure epidermal thickness and cross-sectional collagen area. Significant differences were found in the tensile strength of all laser-treated groups (both the irradiated and nonirradiated lesion) compared to group 1. No differences were found in the rate of wound healing or collagen area. Epidermal growth was greater in the HeNe-lased area compared to unexposed tissue, but the difference was not significant. Thus, laser irradiation at 632.8 nm and 904 nm alone or in combination increased tensile strength during wound healing and may have released tissue factors into the systemic circulation that increased tensile strength on the opposite side as well.

  4. CO2-helium and CO2-neon mixtures at high pressures

    NASA Astrophysics Data System (ADS)

    Mallick, B.; Ninet, S.; Le Marchand, G.; Munsch, P.; Datchi, F.

    2013-01-01

    The properties of mixtures of carbon dioxide with helium or neon have been investigated as a function of CO2 concentration and pressure up to 30 GPa at room temperature. The binary phase diagrams of these mixtures are determined over the full range of CO2 concentrations using visual observations and Raman scattering measurements. Both diagrams are of eutectic type, with a fluid-fluid miscibility gap for CO2 concentrations in the range [5, 75] mol. % for He and [8, 55] mol. % for Ne, and a complete separation between the two components in the solid phase. The absence of alloys or stoichiometric compounds for these two binary systems is consistent with the Hume-Rothery rules of hard sphere mixtures. The Raman spectra and x-ray diffraction patterns of solid CO2 embedded in He or Ne for various initial concentrations have been measured up to 30 GPa and 12 GPa, respectively. The frequencies of the Raman modes and the volume of solid phase I are identical, within error bars, to those reported for 100% CO2 samples, thus confirming the total immiscibility of CO2 with He and Ne in the solid phase. These results demonstrate the possibility to perform high-pressure experiments on solid CO2 under (quasi-)hydrostatic conditions using He or Ne as pressure transmitting medium.

  5. A remarkable case of rhabdomyolysis associated with ingestion of energy drink ‘neon volt’

    PubMed Central

    Iyer, Praneet S.; Yelisetti, Rishitha; Miriyala, Varun; Siddiqui, Waqas; Kaji, Anand

    2016-01-01

    Rhabdomyolysis is defined as a syndrome characterized by muscle necrosis and the release of intracellular muscle constituents into the circulation. We present a case of a 35-year-old male who exercised for 2 h after ingesting energy drink and subsequently presented with rhabdomyolysis. After excluding common and uncommon causes of rhabdomyolysis, we reached the conclusion that the likely cause was the ingestion of energy drink ‘NEON VOLT’ in a setting of mild dehydration. Increasing physical activity and intense exercise is becoming a trend in many countries, due to its many health-related benefits such as prevention of obesity. This renewed focus toward optimal fitness has spawned many supplements that aid in improvement of the performance, muscle growth, and recovery. Energy drinks predominantly contain caffeine that is often combined with other supplements to form what manufacturers have termed an ‘energy blend’. Studies have shown that excessive caffeine intake from energy drinks can cause arrhythmias, hypertension, dehydration, sleeplessness, nervousness, and in rare instances, rhabdomyolysis. As per Drug Abuse Warning Network report, there is a sharp increase in the number of emergency department visits involving energy drinks from 1,128 visits in 2005 to 16,053 and 13,114 visits in 2008 and 2009, respectively. Due to emergence of energy drink abuse as a national health problem, Food and Drug Administration has launched a dietary supplement adverse event reporting system for surveillance of any adverse events linked to these agents. PMID:27802855

  6. Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Frascoli, Federico; Sadus, Richard J.

    2016-09-01

    The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using ab initio, empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one ab initio potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig's thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.

  7. Design and experimental investigation of a neon cryogenic loop heat pipe

    NASA Astrophysics Data System (ADS)

    He, Jiang; Guo, Yuandong; Zhang, Hongxing; Miao, Jianyin; Wang, Lu; Lin, Guiping

    2017-03-01

    Next generation space infrared sensor and detector have pressing requirement for cryogenic heat transport technology in the temperature range of 30-40 K. Cryogenic loop heat pipe (CLHP) has excellent thermal performance and particular characteristics such as high flexibility transport lines and no moving parts, thus it is regarded as an ideal thermal control solution. A neon CLHP referring to infrared point-to-point heat transfer element in future space application has been designed and experimented. And it could realize supercritical startup successfully. Experimental results show that the supercritical startup were realized successfully at cases of 1.5 W secondary evaporator power, but the startup was failed when 0.5 and 1 W heat load applied to secondary evaporator. The maximum heat transport capability of primary evaporator is between 4.5 and 5 W with proper auxiliary heat load. Before startup, even the heat sink temperature decreased to 35 K, the primary evaporator can still maintain at almost 290 K; and the primary evaporator temperature increased at once when the powers were cut off, which indicated the CLHP has a perfect function of thermal switch. The CLHP could adapt to sudden changes of the primary evaporator power, and reach a new steady-state quickly. Besides, some failure phenomena were observed during the test, which indicated that proper secondary evaporator power and heat sink temperature play important roles on the normal operation.

  8. NEON AND CNO ABUNDANCES FOR EXTREME HELIUM STARS-A NON-LTE ANALYSIS

    SciTech Connect

    Pandey, Gajendra; Lambert, David L. E-mail: dll@astro.as.utexas.edu

    2011-02-01

    A non-LTE (NLTE) abundance analysis was carried out for three extreme helium stars (EHes): BD+10{sup 0} 2179, BD-9{sup 0} 4395, and LS IV+6{sup 0} 002, from their optical spectra with NLTE model atmospheres. NLTE TLUSTY model atmospheres were computed with H, He, C, N, O, and Ne treated in NLTE. Model atmosphere parameters were chosen from consideration of fits to observed He I line profiles and ionization equilibria of C and N ions. The program SYNSPEC was then used to determine the NLTE abundances for Ne as well as H, He, C, N, and O. LTE neon abundances from Ne I lines in the EHes: LSE 78, V1920 Cyg, HD 124448, and PV Tel, are derived from published models and an estimate of the NLTE correction applied to obtain the NLTE Ne abundance. We show that the derived abundances of these key elements, including Ne, are well matched with semi-quantitative predictions for the EHe resulting from a cold merger (i.e., no nucleosynthesis during the merger) of an He white dwarf with a C-O white dwarf.

  9. /sup 20/neon ion- and x-ray-induced mammary carcinogenesis in female rats

    SciTech Connect

    Shellabarger, C.J.; Baum, J.W.; Holtzman, S.; Stone, J.P.

    1983-01-01

    One of the proposed uses of heavy ion irradiation is to image lesions of the human female breast. The rat model system was chosen to assess the carcinogenic potential of heavy ion irradiation in the belief that data obtained from rat studies would have a qualitatively predictive value for the human female. Accordingly, female rats were exposed to /sup 20/Ne ions at the BEVALAC and studied for the development of mammary neoplasia for 312 +- 2 days at Brookhaven along with rats exposed concurrently to x-irradiation or to no irradiation. As the dose of either type of radiation was increased the percent of rats with mammary adenocarcinomas, and the percent of rats with mammary fibroadenomas, tended to increase. At a prevalence of 20%, the RBE for /sup 20/Neon ions for mammary adenocarcinomas was estimated to be larger than 5 and for mammary fibroadenomas the RBE was estimated to be less than 2. No conclusion was reached concerning whether or not the RBE might vary with dose. We suggest that /sup 20/Ne ions do have a carcinogenic potential for rat mammary tissue and that this carcinogenic potential is likely to be greater than for x-irradiation. (DT)

  10. A remarkable case of rhabdomyolysis associated with ingestion of energy drink 'neon volt'.

    PubMed

    Iyer, Praneet S; Yelisetti, Rishitha; Miriyala, Varun; Siddiqui, Waqas; Kaji, Anand

    2016-01-01

    Rhabdomyolysis is defined as a syndrome characterized by muscle necrosis and the release of intracellular muscle constituents into the circulation. We present a case of a 35-year-old male who exercised for 2 h after ingesting energy drink and subsequently presented with rhabdomyolysis. After excluding common and uncommon causes of rhabdomyolysis, we reached the conclusion that the likely cause was the ingestion of energy drink 'NEON VOLT' in a setting of mild dehydration. Increasing physical activity and intense exercise is becoming a trend in many countries, due to its many health-related benefits such as prevention of obesity. This renewed focus toward optimal fitness has spawned many supplements that aid in improvement of the performance, muscle growth, and recovery. Energy drinks predominantly contain caffeine that is often combined with other supplements to form what manufacturers have termed an 'energy blend'. Studies have shown that excessive caffeine intake from energy drinks can cause arrhythmias, hypertension, dehydration, sleeplessness, nervousness, and in rare instances, rhabdomyolysis. As per Drug Abuse Warning Network report, there is a sharp increase in the number of emergency department visits involving energy drinks from 1,128 visits in 2005 to 16,053 and 13,114 visits in 2008 and 2009, respectively. Due to emergence of energy drink abuse as a national health problem, Food and Drug Administration has launched a dietary supplement adverse event reporting system for surveillance of any adverse events linked to these agents.

  11. A neon-matrix isolation study of the reaction of non-energetic H-atoms with CO molecules at 3 K.

    PubMed

    Pirim, C; Krim, L

    2011-11-21

    The efficiency of HCO formation stemming from non-energetic H-atoms and CO molecules is highlighted both in the condensed phase and within a neon matrix environment, which is half-way between the condensed-phase and gas-phase. Our experiments demonstrated that HCO production within the neon-matrix needed very little or no activation energy. The efficiency of HCO formation depended only on the capability of H-atoms to diffuse in the solid and to subsequently encounter CO molecules. The novelty of the presented matrix experiment sheds light on the debated question of whether activation energy is required in order to produce HCO, because of the use of non-energetic ground state H-atoms within the neon-matrix.

  12. On the origins of trapped helium, neon and argon isotopic variations in meteorites. I - Gas-rich meteorites, lunar soil and breccia. II - Carbonaceous meteorites.

    NASA Technical Reports Server (NTRS)

    Black, D. C.

    1972-01-01

    Data are presented from stepwise heating experiments and total extractions on five meteorites: Kapoeta, Fayetteville, Holman Island, Cee Vee, and Pultusk. These data reveal the presence of four isotopically distinct trapped neon components. A comparison of trapped neon with trapped helium and argon in bulk analyses indicates the existence of correlated helium, neon and argon isotopic structures. Component B is attributed primarily to direct implantation of rare gas ions by the present day solar wind. Component C is identified with directly implanted low energy (1-10 Mev/n) solar flare rare gases. Component D is associated with rare gas ions implanted in meteoritic material by the primitive, pre-main sequence, solar wind. A fourth component, observed only in Kapoeta and the lunar fines and breccia, is tentatively attributed to parent body 'atmospheric' ions implanted in surface material by a solar wind induced electric field.

  13. A Synergistic Approach to Atmospheric Compensation of Neon's Airborne Hyperspectral Imagery Utilizing an Airborne Solar Spectral Irradiance Radiometer

    NASA Astrophysics Data System (ADS)

    Wright, L.; Karpowicz, B. M.; Kindel, B. C.; Schmidt, S.; Leisso, N.; Kampe, T. U.; Pilewskie, P.

    2014-12-01

    A wide variety of critical information regarding bioclimate, biodiversity, and biogeochemistry is embedded in airborne hyperspectral imagery. Most, if not all of the primary signal relies upon first deriving the surface reflectance of land cover and vegetation from measured hyperspectral radiance. This places stringent requirements on terrain, and atmospheric compensation algorithms to accurately derive surface reflectance properties. An observatory designed to measure bioclimate, biodiversity, and biogeochemistry variables from surface reflectance must take great care in developing an approach which chooses algorithms with the highest accuracy, along with providing those algorithms with data necessary to describe the physical mechanisms that affect the measured at sensor radiance. The Airborne Observation Platform (AOP) part of the National Ecological Observatory Network (NEON) is developing such an approach. NEON is a continental-scale ecological observation platform designed to collect and disseminate data to enable the understanding and forecasting of the impacts of climate change, land use change, and invasive species on ecology. The instrumentation package used by the AOP includes a visible and shortwave infrared hyperspectral imager, waveform LiDAR, and high resolution (RGB) digital camera. In addition to airborne measurements, ground-based CIMEL sun photometers will be used to help characterize atmospheric aerosol loading, and ground validation measurements with field spectrometers will be made at select NEON sites. While the core instrumentation package provides critical information to derive surface reflectance of land surfaces and vegetation, the addition of a Solar Spectral Irradiance Radiometer (SSIR) is being investigated as an additional source of data to help identify and characterize atmospheric aerosol, and cloud contributions contributions to the radiance measured by the hyperspectral imager. The addition of the SSIR provides the opportunity to

  14. Fragmentation dynamics of ionized neon clusters (Ne(n), n=3-14) embedded in helium nanodroplets.

    PubMed

    Bonhommeau, David; Halberstadt, Nadine; Viel, Alexandra

    2006-01-14

    We report a theoretical study of the nonadiabatic fragmentation dynamics of ionized neon clusters embedded in helium nanodroplets for cluster sizes up to n=14 atoms. The dynamics of the neon atoms is modeled using the molecular dynamics with quantum transitions method of Tully [J. Chem. Phys. 93, 1061 (1990)] with the nuclei treated classically and transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model to which induced dipole-induced dipole interactions are added. The effect of the spin-orbit interaction is also discussed. The helium environment is modeled by a friction force acting on charged atoms whose speed exceeds the critical Landau velocity. The dependence of the fragment size distribution on the friction strength and on the initial nanodroplet size is investigated. By comparing with the available experimental data obtained for Ne3+ and Ne4+, a reasonable value for the friction coefficient, the only parameter of the model, is deduced. This value is then used to predict the effect of the helium environment on the dissociation dynamics of larger neon clusters, n=5-14. The results show stabilization of larger fragments than in the gas phase, but fragmentation is not completely caged. In addition, two types of dynamics are characterized for Ne4+: fast and explosive, therefore leaving no time for friction to cool down the process when dynamics starts on one of the highest electronic states, and slower, therefore leading to some stabilization by helium when it starts on one of the lowest electronic states.

  15. Expanding the Catalog: Considering the Importance of Carbon, Magnesium, and Neon in the Evolution of Stars and Habitable Zones

    NASA Astrophysics Data System (ADS)

    Truitt, Amanda; Young, Patrick A.

    2017-01-01

    Building on previous work, we have expanded our catalog of evolutionary models for stars with variable composition; here we present models for stars of mass 0.5–1.2 M⊙, at scaled metallicities of 0.1–1.5 Z⊙, and specific C/Fe, Mg/Fe, and Ne/Fe values of 0.58–1.72 C/Fe⊙, 0.54–1.84 Mg/Fe⊙, and 0.5–2.0 Ne/Fe⊙, respectively. We include a spread in abundance values for carbon and magnesium based on observations of their variability in nearby stars; we choose an arbitrary spread in neon abundance values commensurate with the range seen in other low Z elements due to the difficult nature of obtaining precise measurements of neon abundances in stars. As indicated by the results of Truitt et al., it is essential that we understand how differences in individual elemental abundances, and not just the total scaled metallicity, can measurably impact a star’s evolutionary lifetime and other physical characteristics. In that work, we found that oxygen abundances significantly impacted the stellar evolution; carbon, magnesium, and neon are potentially important elements to individually consider due to their relatively high (but also variable) abundances in stars. We present 528 new stellar main-sequence models, and we calculate the time-dependent evolution of the associated habitable zone boundaries for each based on mass, temperature, and luminosity. We also reintroduce the 2 Gyr “Continuously Habitable Zone” (CHZ2) as a useful tool to help gauge the habitability potential for a given planetary system.

  16. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

    PubMed Central

    Rzeznik, Lukasz; Wirtz, Tom

    2016-01-01

    The analysis of polymers by secondary ion mass spectrometry (SIMS) has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM), which uses finely focussed He+ or Ne+ beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation) code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 1018 ions/cm2. Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance. PMID:28144525

  17. Helium and neon diffusion in pure hematite (α-Fe2O3) crystal lattice

    NASA Astrophysics Data System (ADS)

    Balout, Hilal; Roques, Jérôme; Gautheron, Cécile; Tassan-Got, Laurent

    2016-04-01

    Hematite (α-Fe2O3) has the corundum-type structure and is relatively present on Earth and Mars surface associated to ore mineral precipitation or as a weathering phase. He and Ne retention in such mineral has been intensively investigated experimentally because of the potential use of (U-Th-Sm)/(He-Ne) chronometer and thermochronometer. Therefore, the He/Ne diffusion in hematite crystal is an important issue for the interpretation of (U-Th)/(He-Ne) thermochronometric ages. For this purpose an accurate investigation of helium and neon diffusion in hematite crystal lattice has been achieved by computational multi-scale approach. Different insertion sites and diffusion pathways are first characterized where the spin polarized density functional theory (sp-DFT) approach coupled to the nudged elastic band (NEB) method is used to determine the migration energies between the insertion sites. Then, a statistical method, based on transition state theory (TST), is used to compute the jump probability between sites. The previous results are used as input data in a 3D random walk simulation, which permits to determine the effective activation energy and diffusion coefficient. Using the He/Ne diffusion coefficients, the closure temperature Tc has been calculated. For typical grain size of 100 microns, Tc will be of 116° C and 297° C for He and Ne atoms, respectively. These results Show that He and Ne atoms are highly retained in the crystal lattice at surface temperature. The obtained diffusion coefficients confirm that He/Ne retentively power in hematite lattice is very important, allowing a large range of different geological applications such the measurement of hematite crystallization ages on Earth and Mars.

  18. The distribution of glacial meltwater in the Amundsen Sea, Antarctica, revealed by dissolved helium and neon

    NASA Astrophysics Data System (ADS)

    Kim, Intae; Hahm, Doshik; Rhee, Tae Siek; Kim, Tae Wan; Kim, Chang-Sin; Lee, SangHoon

    2016-03-01

    The light noble gases, helium (He) and neon (Ne), dissolved in seawater, can be useful tracers of freshwater input from glacial melting because the dissolution of air bubbles trapped in glacial ice results in an approximately tenfold supersaturation. Using He and Ne measurements, we determined, for the first time, the distribution of glacial meltwater (GMW) within the water columns of the Dotson Trough (DT) and in front of the Dotson and Getz Ice Shelves (DIS and GIS, respectively) in the western Amundsen Sea, Antarctica, in the austral summers of 2011 and 2012. The measured saturation anomalies of He and Ne (ΔHe and ΔNe) were in the range of 3-35% and 2-12%, respectively, indicating a significant presence of GMW. Throughout the DT, the highest values of ΔHe (21%) were observed at depths of 400-500 m, corresponding to the layer between the incoming warm Circumpolar Deep Water and the overlying Winter Water. The high ΔHe (and ΔNe) area extended outside of the shelf break, suggesting that GMW is transported more than 300 km offshore. The ΔHe was substantially higher in front of the DIS than the GIS, and the highest ΔHe (31%) was observed in the western part of the DIS, where concentrated outflow from the shelf to the offshore was observed. In 2012, the calculated GMW fraction in seawater based on excess He and Ne decreased by 30-40% compared with that in 2011 in both ice shelves, indicating strong temporal variability in glacial melting.

  19. Spatial and Excitation Variations for Different Applied Voltages in an Atmospheric Neon Plasma Jet

    NASA Astrophysics Data System (ADS)

    Yang, Lanlan; Tu, Yan; Yu, Yongbo; Hu, Dinglan; Zhang, Xiong

    2016-09-01

    A neon plasma jet was generated in air, driven by a 9 kHz sinusoidal power supply. The characteristics of the plasma plume and the optical spectra with plasma propagation for different applied voltages were investigated. By increasing the applied voltage, the plasma plume first increases and then retracts to become short and bulky. The shortened effect of Ne plasma plume (about 10 mm) for the further voltage increasing is more apparent than that of He (about 3 mm) and Ar (about 1 mm). Emission intensity of the N2 (337 nm) increases with the applied voltage, gradually substituting the emission intensity of Ne (702 nm and 585 nm) as the noticeable radiation. At the nozzle opening, the Ne (702 nm) emission dominates, while the Ne (585 nm) emission is most noticeable around the tip of the plasma plume. The spatial distribution of the three spectral lines indicates that Ne (702 nm) emission decreases dramatically with plasma propagation while Ne (585 nm) and N2 (337 nm) emissions reach their maxima at the middle of the plasma plume. The results indicate that the Ne (702 nm) emission is much more sensitive to the average electron temperature and the density of the high-energy electrons, so it changes greatly at the tube nozzle and little at the tip region as the voltage increases. The population of high-energy electrons, the average electron temperature, the collision with air molecules and the Penning effect between Ne metastables and air molecules may explain their different variations with plasma propagating and voltage increasing. supported by National Natural Science Fundation of China (No. 61271053), the Natural Science Foundation of Jiangsu Province of China (No. BK2012737), the Foundation for Excellent Youth Scholars of Southeast University, China

  20. Microscopic Self-consistent Study of Neon Halos with Resonant Contributions

    SciTech Connect

    Zhang, Shisheng; Smith, Michael Scott; Kang, Zhong-Shu; Zhao, Jie

    2014-01-01

    Recent reaction measurements have been interpreted as evidence of a halo structure in the exotic neutron-rich isotopes 29,31Ne. While theoretical studies of 31Ne generally agree on its halo nature, they differ significantly in their predictions of its properties and underlying cause (e.g., that 31Ne lies in an "island of inversion'"). We have made a systematic theoretical analysis of possible Neon halo signatures -- the first using a fully microscopic, relativistic mean field approach that properly treats positive energy orbitals (such as the valence neutron in 31Ne) self-consistently with bound levels, and that includes the pairing effect that keeps the nucleus loosely bound with negative Fermi energy. Our model is the analytical continuation of the coupling constant (ACCC) method based on a relativistic mean field (RMF) theory with Bardeen-Cooper-Schrieffer (BCS) pairing approximation. We calculate neutron- and matter-radii, one-neutron separation energies, p- and f-orbital energies and occupation probabilities, and neutron densities for single-particle resonant orbitals in 27-31Ne. We analyze these results for evidence of neutron halo formation in 29,31Ne. Our model predicts a p-orbit 1n halo structure for 31Ne, based on a radius increase from 30Ne that is 7 - 8 times larger than the increase from 29Ne to 30Ne, as well as a decrease in the neutron separation energy by a factor of ~ 10 compared to that of 27-30Ne. In contrast to other studies, our inclusion of resonances yields an inverted ordering of p and f orbitals for small deformations. Furthermore, we find no evidence of an s-orbit 1n halo in 29Ne as recently claimed in the literature.

  1. Quantitative Determination of Bandpasses for Producing Vegetation Indices from Recombined NEON Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Hulslander, D.

    2015-12-01

    Hyperspectral imaging systems can be used to produce spectral reflectance curves giving rich information about composition, relative abundances of materials, mixes and combinations. However, as each spectral return from these systems is a vector with several hundred elements, they can be very difficult to process and analyze, and problemeatic to compare within, across, and between datasets over time and space. Vegetation indices (e.g. NDVI, ARVI, EVI, et al) attempt to combine spectral features in to single-value scores. When derived from calibrated and atmospherically compensated reflectance data, these indices can be quantitatively compared. Historically, these indices have been calculated from multispectral sensor data. These sensors have a handful (4 to 16 or so) of bandbasses ranging from 20 nm to 200 nm FWHM covering specific spectral regions for a variety of reasons, including both intended applications and system limitations. Hyperspectral sensors, however, cover the spectrum with many, many narrow (5 to 10 nm) bandpasses. This allows for analyses using the full, detailed spectral curve, or combination of the bands in to regions by averaging or in to composites using transforms or other techniques. This raises the question of exactly which bands should be used and combined in what manner for ideally deriving well-known vegetation indices typically made from multispectral data. In this study we use derivatives and other curve and signal analysis techniques to analyze vegetation reflectance spectra to quantitatively define optimal bandpasses for several vegetation indices and combine the 5 nm hypserspectral bandpasses of the NEON Imaging Spectrometer to synthesize them.

  2. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy.

    PubMed

    Philipp, Patrick; Rzeznik, Lukasz; Wirtz, Tom

    2016-01-01

    The analysis of polymers by secondary ion mass spectrometry (SIMS) has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM), which uses finely focussed He(+) or Ne(+) beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation) code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 10(18) ions/cm(2). Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance.

  3. NEON non-specialist use case; science data reuse in a classroom

    NASA Astrophysics Data System (ADS)

    Fox, P. A.; Wee, B.; West, P.; Wilson, J.; Wang, H.; Zednik, S.

    2012-12-01

    We present our experience in bringing science data into the undergraduate classroom. In particular we have worked with scientists associated with the NSF-funded NEON (neoninc.org) project. We have developed a non-specialist use case aimed at undergraduate education. This exercise was developed to give the teacher/professor/facilitator the means to create a lesson plan that will allow students the opportunity to work with large, spatially diverse data sets on water quality and other ecological parameters of streams in the United States. The stream parameters investigated here are total nitrogen, total phosphorus and a macro invertebrate index for the 10 EPA regions in the contiguous US. Instructors would use this lesson as an opportunity to discuss the concept of "ecosystem health," a controversial topic in science but with intuitive resonance among the general public. However, current research data is highly specialized, lacking understandable, or all together lacking, metadata. This metadata is highly specialized, understandable by only the science specialist, or domain expert. Also, the data and metadata is difficult to locate by a non-specialist. The scientist knows where to find the data, how to collect the data, and can understand the structure of the data and what the data means. The meaning, the knowledge, the understanding is in the minds of the scientist. Thus, specific accommodation of the semantics for non-specialists is required. We include a current description of the activity and its outcomes and discuss the effectiveness of our semantic web development methodology in developing this non-specialist use case.

  4. The effect of low-level helium-neon laser on oral wound healing

    PubMed Central

    Sardari, Farimah; Ahrari, Farzaneh

    2016-01-01

    Background: The effectiveness of low power lasers on incisional wound healing, because of conflicting results of previous studies, is uncertain. Therefore, the aim of this study was to evaluate the effects of low-level helium-neon (He-Ne) laser irradiation on wound healing in rat's oral mucosa. Materials and Methods: Sixty-four standardized incisions were carried out on the buccal mucosa of 32 male Wistar divided into four groups of eight animals each. Each rat received two incisions on the opposite sides of the buccal mucosa by a steel scalpel. On the right side (test side), a He-Ne laser (632 nm) was employed on the incision for 40 s. Laser radiation was used just in 1st day, 1st and 2nd day, 1st and 3rd day, and continuous 3 days in groups of A, B, C, and D of rats, respectively. The left side (control side) did not receive any laser. Histological processing and hematoxylin and eosin staining were done on tissue samples after 5 days. Wilcoxon and Kruskal-Wallis tests were used for statistical analysis. Results: Histological analysis showed that the tissue healing after continuous 3 days on the laser irradiated side was better than the control side, but there was no difference between the two sides in each groups (P > 0.05). Conclusion: This study showed that He-Ne laser had no beneficial effects on incisional oral wound healing particularly in 5 days after laser therapy. Future research in the field of laser effects on oral wound healing in human is recommended. PMID:26962312

  5. Determination of 2p Excitation Transfer Rate Coefficient in Neon Gas Discharges

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Stewart, R. S.

    2001-10-01

    We will discuss our theoretical modelling and application of an array of four complementary optical diagnostic techniques for low-temperature plasmas. These are cw laser collisionally-induced fluorescence (LCIF), cw optogalvanic effect (OGE), optical emission spectroscopy (OES) and optical absorption spectroscopy (OAS). We will briefly present an overview of our investigation of neon positive column plasmas for reduced axial electric fields ranging from 3x10-17 Vcm2 to 2x10-16 Vcm2 (3-20 Td), detailing our determination of five sets of important collisional rate coefficients involving the fifteen lowest levels, the 1S0 ground state and the 1s and 2p excited states (in Paschen notation), hence information on several energy regions of the electron distribution function (EDF). The discussion will be extended to show the new results obtained from analysis of the argon positive column over similar reduced fields. Future work includes application of our multi-diagnostic technique to more complex systems, including the addition of molecules for EDF determination. array of four complementary optical diagnostic techniques OGE LCIF determination of five sets of important collisional rate coefficients

  6. Feasibility of line-ratio spectroscopy on helium and neon as edge diagnostic tool for Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Barbui, T.; Krychowiak, M.; König, R.; Schmitz, O.; Muñoz Burgos, J. M.; Schweer, B.; Terra, A.

    2016-11-01

    A beam emission spectroscopy system on thermal helium (He) and neon (Ne) has been set up at Wendelstein 7-X to measure edge electron temperature and density profiles utilizing the line-ratio technique or its extension by the analysis of absolutely calibrated line emissions. The setup for a first systematic test of these techniques of quantitative atomic spectroscopy in the limiter startup phase (OP1.1) is reported together with first measured profiles. This setup and the first results are an important test for developing the technique for the upcoming high density, low temperature island divertor regime.

  7. Feasibility of line-ratio spectroscopy on helium and neon as edge diagnostic tool for Wendelstein 7-X.

    PubMed

    Barbui, T; Krychowiak, M; König, R; Schmitz, O; Muñoz Burgos, J M; Schweer, B; Terra, A

    2016-11-01

    A beam emission spectroscopy system on thermal helium (He) and neon (Ne) has been set up at Wendelstein 7-X to measure edge electron temperature and density profiles utilizing the line-ratio technique or its extension by the analysis of absolutely calibrated line emissions. The setup for a first systematic test of these techniques of quantitative atomic spectroscopy in the limiter startup phase (OP1.1) is reported together with first measured profiles. This setup and the first results are an important test for developing the technique for the upcoming high density, low temperature island divertor regime.

  8. Wavelengths and intensities of a platinum/neon hollow cathode lamp in the region 1100-4000 A

    NASA Technical Reports Server (NTRS)

    Reader, Joseph; Acquista, Nicolo; Sansonetti, Craig J.; Sansonetti, Jean E.

    1990-01-01

    The spectrum of a platinum hollow cathode lamp containing neon carrier gas was recorded photographically and photoelectrically with a 10.7 m normal-incidence vacuum spectrograph. Wavelengths and intensities were determined for about 3000 lines in the region 1100-4000 A. The uncertainty of the measured wavelengths is estimated to be + or - 0.0020 A. Ritz-type wavelengths are given for about 550 classified lines of Pt II with uncertainites varying from + or - 0.0004 A to + or - 0.0025 A. The uncertainty of the relative intensities is estimated to be about 20 percent.

  9. Dependence of the triple point temperature of neon on isotopic composition and its implications for the ITS-90

    SciTech Connect

    Pavese, F.; Steur, P. P. M.; Hermier, Y.; Hill, K. D.; Sparasci, F.; Kim, J. S.; Lipiński, L.; Szmyrka-Grzebyk, A.; Nagao, K.; Nakano, T.; Tamura, O.; Peruzzi, A.; Geel, J. van; Tew, W. L.; Valkiers, S.

    2013-09-11

    The paper summarizes the results of an International Project started in 2003 aimed at formulating a correction for the variability of isotopic composition found in 'natural' neon, and presently not taken into account by the ITS-90 definition, whose consequent ambiguity leads to a combined uncertainty u{sub c}= 160 μK, whereas u{sub c}= 30-50 μK for the rest of the budget. After a very short summary of the Project results (a detailed Final Report will be published later) recommendations for the correction function are presented, in agreement with both the experimental data and the theoretical calculations.

  10. A Quantitative Approach for Collocating NEON's Sensor-Based Ecological Measurements and in-situ Field Sampling and Observations

    NASA Astrophysics Data System (ADS)

    Zulueta, R. C.; Metzger, S.; Ayres, E.; Luo, H.; Meier, C. L.; Barnett, D.; Sanclements, M.; Elmendorf, S.

    2013-12-01

    The National Ecological Observatory Network (NEON) is a continental-scale research platform currently in development to assess the causes of ecological change and biological responses to change across a projected 30-year timeframe. A suite of standardized sensor-based measurements (i.e., Terrestrial Instrument System (TIS) measurements) and in-situ field sampling and observations (i.e., Terrestrial Observation System (TOS) activities) will be conducted across 20 ecoclimatic domains in the U.S. where NEON is establishing 60 terrestrial research sites. NEON's TIS measurements and TOS activities are designed to observe the temporal and spatial dynamics of key drivers and ecological processes and responses to change within each of the 60 terrestrial research sites. The TIS measurements are non-destructive and designed to provide in-situ, continuous, and areally integrated observations of the surrounding ecosystem and environment, while TOS sampling and observation activities are designed to encompass a hierarchy of measurable biological states and processes including diversity, abundance, phenology, demography, infectious disease prevalence, ecohydrology, and biogeochemistry. To establish valid relationships between these drivers and site-specific responses, two contradicting requirements must be fulfilled: (i) both types of observations shall be representative of the same ecosystem, and (ii) they shall not significantly influence one another. Here we outline the theoretical background and algorithmic process for determining areas of mutual representativeness and exclusion around NEON's TIS measurements and develop a procedure which quantitatively optimizes this trade-off through: (i) quantifying the source area distributions of TIS measurements, (ii) determining the ratio of user-defined impact threshold to effective impact area for different TOS activities, and (iii) determining the range of feasible distances between TIS locations and TOS activities. This approach

  11. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon

    DOEpatents

    Park, Jaeyoung; Henins, Ivars

    2005-06-21

    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  12. Monte Carlo simulations of nanoscale focused neon ion beam sputtering of copper: elucidating resolution limits and sub-surface damage.

    PubMed

    Timilsina, R; Tan, S; Livengood, R; Rack, P D

    2014-12-05

    A three dimensional Monte Carlo simulation program was developed to model physical sputtering and to emulate vias nanomachined by the gas field ion microscope. Experimental and simulation results of focused neon ion beam induced sputtering of copper are presented and compared to previously published experiments. The simulation elucidates the nanostructure evolution during the physical sputtering of high aspect ratio nanoscale features. Quantitative information such as the energy-dependent sputtering yields, dose dependent aspect ratios, and resolution-limiting effects are discussed. Furthermore, the nuclear energy loss and implant concentration beneath the etch front is correlated with the sub-surface damage revealed by transmission electron microscopy at different beam energies.

  13. NEON: the first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure

    NASA Astrophysics Data System (ADS)

    Johnson, Brian R.; Kampe, Thomas U.; Kuester, Michele A.; Keller, Michael

    2009-08-01

    The National Ecological Observatory Network (NEON), being funded by the National Science Foundation, is a continental-scale research platform for discovering, understanding and forecasting the impacts of climate change, land-use change, and invasive species on ecology. Local site-based flux tower and field measurements will be coordinated with high resolution, regional airborne remote sensing observations. The NEON Airborne Observation Platform (AOP) consists of an aircraft platform carrying remote sensing instrumentation designed to achieve sub-meter to meter scale ground resolution to bridge scales from organism and stand scales to the scale of satellite based remote sensing. Data from the AOP will be openly available to the science community and will provide quantitative information on land use change, and changes in ecological structure and chemistry including the presence and effects of invasive species. Remote sensing instrumentation consists of an imaging spectrometer measuring surface reflectance over the continuous wavelength range from 400 to 2500 nm with 10 nm resolution, a scanning, small footprint waveform LiDAR for 3-D canopy structure measurements and a high resolution airborne digital camera. The AOP science objectives, key mission requirements, the conceptual design and development status are presented.

  14. NEON: the first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure

    NASA Astrophysics Data System (ADS)

    Kampe, Thomas U.; Johnson, Brian R.; Kuester, Michele; Keller, Michael

    2010-03-01

    The National Ecological Observatory Network (NEON) is an ecological observation platform for discovering, understanding and forecasting the impacts of climate change, land use change, and invasive species on continental-scale ecology. NEON will operate for 30 years and gather long-term data on ecological response changes and on feedbacks with the geosphere, hydrosphere, and atmosphere. Local ecological measurements at sites distributed within 20 ecoclimatic domains across the contiguous United States, Alaska, Hawaii, and Puerto Rico will be coordinated with high resolution, regional airborne remote sensing observations. The Airborne Observation Platform (AOP) is an aircraft platform carrying remote sensing instrumentation designed to achieve sub-meter to meter scale ground resolution, bridging scales from organisms and individual stands to satellite-based remote sensing. AOP instrumentation consists of a VIS/SWIR imaging spectrometer, a scanning small-footprint waveform LiDAR for 3-D canopy structure measurements and a high resolution airborne digital camera. AOP data will be openly available to scientists and will provide quantitative information on land use change and changes in ecological structure and chemistry including the presence and effects of invasive species. AOP science objectives, key mission requirements, and development status are presented including an overview of near-term risk-reduction and prototyping activities.

  15. Synthesis of nanowires via helium and neon focused ion beam induced deposition with the gas field ion microscope.

    PubMed

    Wu, H M; Stern, L A; Chen, J H; Huth, M; Schwalb, C H; Winhold, M; Porrati, F; Gonzalez, C M; Timilsina, R; Rack, P D

    2013-05-03

    The ion beam induced nanoscale synthesis of platinum nanowires using the trimethyl (methylcyclopentadienyl)platinum(IV) (MeCpPt(IV)Me3) precursor is investigated using helium and neon ion beams in the gas field ion microscope. The He(+) beam induced deposition resembles material deposited by electron beam induced deposition with very small platinum nanocrystallites suspended in a carbonaceous matrix. The He(+) deposited material composition was estimated to be 16% Pt in a matrix of amorphous carbon with a large room-temperature resistivity (∼3.5 × 10(4)-2.2 × 10(5) μΩ cm) and temperature-dependent transport behavior consistent with a granular material in the weak intergrain tunnel coupling regime. The Ne(+) deposited material has comparable composition (17%), however a much lower room-temperature resistivity (∼600-3.0 × 10(3) μΩ cm) and temperature-dependent electrical behavior representative of strong intergrain coupling. The Ne(+) deposited nanostructure has larger platinum nanoparticles and is rationalized via Monte Carlo ion-solid simulations which show that the neon energy density deposited during growth is much larger due to the smaller ion range and is dominated by nuclear stopping relative to helium which has a larger range and is dominated by electronic stopping.

  16. Effect of helium/neon laser irradiation on nerve growth factor synthesis and secretion in skeletal muscle cultures.

    PubMed

    Schwartz, Fidi; Brodie, Chaya; Appel, Elana; Kazimirsky, Gila; Shainberg, Asher

    2002-04-01

    Low energy laser irradiation therapy in medicine is widespread but the mechanisms are not fully understood. The aim of the present study was to elucidate the mechanism by which the light might induce therapeutic effects. Skeletal muscle cultures were chosen as a target for light irradiation and nerve growth factor (NGF) was the biochemical marker for analysis. It was found that there is a transient elevation of intracellular calcium in the myotubes immediately after irradiation (P<0.001). Preincubation of the myotubes with either the photosensitizers 5-amino-levulinic acid (5-ALA), or with hematoporphyrin (Hp) enhanced the elevation of cytosolic calcium (P<0.001) after helium/neon irradiation (633 nm) with an energy of 3 J/cm(2). In addition, helium/neon irradiation augmented the level of NGF mRNA fivefold and increased NGF release to the medium of the myotubes. Thus, it is speculated that transient changes in calcium caused by light can modulate NGF release from the myotubes and also affect the nerves innervating the muscle. The NGF is probably responsible for the beneficial effects of low-level light.

  17. Investigation of neon-nitrogen mixed refrigerant Joule-Thomson cryocooler operating below 70 K with precooling at 100 K

    NASA Astrophysics Data System (ADS)

    Lee, Jisung; Oh, Haejin; Jeong, Sangkwon

    2014-05-01

    There has been two-stage mixed refrigerant (MR) Joule-Thomson (JT) refrigeration cycle suggested for cooling high temperature superconductor (HTS) electric power cable below 70 K. As the continuation effort of realizing the actual system, we fabricated and tested a small scale neon and nitrogen MR JT cryocooler to investigate the refrigeration characteristics and performance. The compression system of the refrigeration circuit was accomplished by modifying commercially available air-conditioning rotary compressors. Compressors stably operated at the maximum compression ratio of 31 when the suction pressure was 77 kPa. The achieved lowest temperature was 63.6 K when the heating load was 35.9 W. The measured Carnot efficiency of the present system was 6.5% which was lower than that of the designed goal of 17.4%. The low efficiency of compressor (34.5%), and the pressure drop at the compressor suction were the main reasons for this efficiency degradation. The feasibility and usefulness of neon and nitrogen MR JT refrigeration cycle was validated that the achieved minimum temperature was 63.6 K even though the pressure after the expansion was maintained by 130 kPa. The comparison between the measurement and calculation showed that each stream temperature of refrigeration cycle were predictable within 3% error by Peng-Robinson equation of state (EOS).

  18. Inner-shell capture and ionization in collisions of H+, He2+, and Li3+ projectiles with neon and carbon

    NASA Astrophysics Data System (ADS)

    Ford, A. L.; Reading, J. F.; Becker, R. L.

    1981-02-01

    Theoretical methods used previously for H+, He2+, and C6+ collisions with neutral argon atoms have been applied to collisions of H+, He2+, and Li3+ projectiles with neon, and to collisions of H+ with carbon targets. The energy range covered by the calculations is 0.4 to 4.0 MeV/amu for the neon target, and 0.2 to 2.0 MeV/amu for carbon. We calculate single-electron amplitudes for target K-shell ionization and target K- and L-shell, to projectile K-shell, charge transfer. These single-electron amplitudes are used, in an independent-particle model that allows for multielectron processes, to compute K-shell vacancy production cross sections σIPMVK, and cross sections σIPMC,VK for producing a charge-transfer state of the projectile in the coincidence with a K-shell vacancy in the target. These cross sections are in reasonable agreement with the recent experiments of Rødbro et al. at Aarhus. In particular, the calculated, as well as the experimental, σC,VK scale with projectile nuclear charge Zp less strongly than the Z5p of the Oppenheimer-Brinkman-Kramers (OBK) approximation. For He2+ and Li3+ projectiles at collision energies below where experimental data are available, our calculated multielectron corrections to the single-electron approximation for σC,VK are large.

  19. Linking CZO, LTER, and NEON- Putting Biology into the Critical Zone

    NASA Astrophysics Data System (ADS)

    McDowell, W. H.

    2014-12-01

    critical zone processes is enhanced by the broad ecological context provided by LTER research. With the anticipated inauguration of NEON observatories in the next several years, a whole new set of opportunities will arise to establish links between the critical zone and ecological processes across North America.

  20. Modeling the heating and atomic kinetics of a photoionized neon plasma experiment

    NASA Astrophysics Data System (ADS)

    Lockard, Tom E.

    that the computed plasma heating compares well with experimental observation when the effects of the windows, hydrodynamics, and non-equilbirium neon emissivity and opacity are employed. The atomic kinetics shows significant time-dependent effects because the timescale of the x-ray drive is too short compared to that of the photoionization process. These modeling and simulation results are important to test theory and modeling assumptions and approximations, and also to provide guidance on data interpretation and analysis.

  1. Characterization of a radical S-adenosyl-L-methionine epimerase, NeoN, in the last step of neomycin B biosynthesis.

    PubMed

    Kudo, Fumitaka; Hoshi, Shota; Kawashima, Taiki; Kamachi, Toshiaki; Eguchi, Tadashi

    2014-10-01

    The last step of neomycin biosynthesis is the epimerization at C-5‴ of neomycin C to give neomycin B. A candidate enzyme responsible for the epimerization was a putative radical S-adenosyl-L-methionine (SAM) enzyme, NeoN, which is uniquely encoded in the neomycin biosynthetic gene cluster and remained an unassigned protein in the neomycin biosynthesis. The reconstituted and reduced NeoN showed the expected epimerization activity in the presence of SAM. In the epimerization, 1 equiv of SAM was consumed to convert neomycin C into neomycin B. The site of neomycin C reactive toward epimerization was clearly confirmed to be C-5‴ by detecting the incorporation of a deuterium atom from the deuterium oxide-based buffer solution. Further, alanine scanning of the NeoN cysteine residues revealed that C249 is a critical amino acid residue that provides a hydrogen atom to complete the epimerization. Furthermore, electron paramagnetic resonance analysis of the C249A variant in the presence of SAM and neomycin C revealed that a radical intermediate is generated at the C-5‴ of neomycin C. Therefore, the present study clearly illustrates that the epimerization of neomycin C to neomycin B is catalyzed by a unique radical SAM epimerase NeoN with a radical reaction mechanism.

  2. The Final Fate of Stars that Ignite Neon and Oxygen Off-center: Electron Capture or Iron Core-collapse Supernova?

    NASA Astrophysics Data System (ADS)

    Jones, Samuel; Hirschi, Raphael; Nomoto, Ken'ichi

    2014-12-01

    In the ONeMg cores of 8.8-9.5 M ⊙ stars, neon and oxygen burning is ignited off-center. Whether or not the neon-oxygen flame propagates to the center is critical for determining whether these stars undergo Fe core collapse or electron-capture-induced ONeMg core collapse. We present more details of stars that ignite neon and oxygen burning off-center. The neon flame is established in a manner similar to the carbon flame of super-AGB stars, albeit with a narrower flame width. The criteria for establishing a flame can be met if the strict Schwarzschild criterion for convective instability is adopted. Mixing across the interface of the convective shell disrupts the conditions for the propagation of the burning front, and instead the shell burns as a series of inward-moving flashes. While this may not directly affect whether or not the burning will reach the center (as in super-AGB stars), the core is allowed to contract between each shell flash. Reduction of the electron fraction in the shell reduces the Chandrasekhar mass and the center reaches the threshold density for the URCA process to activate and steer the remaining evolution of the core. This highlights the importance of a more accurate treatment of mixing in the stellar interior for yet another important question in stellar astrophysics—determining the properties of stellar evolution and supernova progenitors at the boundary between electron capture supernova and iron core-collapse supernova.

  3. Pediatric diabetes consortium type 1 diabetes new onset (NeOn) study: Factors associated with HbA1c levels one year after diagnosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To identify determinants of hemoglobin A1c (HbA1c) levels 1 yr after the diagnosis of type 1 diabetes (T1D) in participants in the Pediatric Diabetes Consortium (PDC) T1D New Onset (NeOn) Study. Diabetes-specific as well as socioeconomic factors during the first year following diagnosis were analyze...

  4. Understanding species composition from NEON high resolution hyperspectral-LIDAR data across a heterogeneous landscape: Effects of land use, fire regime and topography

    NASA Astrophysics Data System (ADS)

    Bohlman, S.; Graves, S.; Shahriari Nia, M.; Paul, G.; Leila, K.; Wang, D. Z.

    2015-12-01

    The 2014 NEON hyperspectral LIDAR data allows landscape scale analysis of how abiotic factors and management history affect ecosystem composition and function. At the Ordway Swisher Biological Station (OSBS) in Florida, the core terrestrial NEON site in the Southeast U.S., we are developing a framework applicable to all NEON sites for mapping and analyzing species composition. In this region, small changes in topography (elevation varies by only 20 m at OSBS) along with fire history are the dominant controls on tree species composition. To discriminate species, we use compare support vector machines (SVMs) with possibilistic classifiers (POCs), which may classify species as unknown and represent ambiguity among spectrally similar species better than common classifiers than (SVM). Species classification was most accurate (90%) using POC in the dominant upland longleaf pine forest type (where most trees belonged to just two species: Pinus palustris and Quercus laevis). It was lower (<60%) using SVM and in the hardwood hammocks (where > 10 hardwood species commonly co-occur, including multiple Quercus). For co-occurring hardwood species that were difficult to separate spectrally, we combined the NEON hyperspectral data with additional data sets (global and regional plant trait databases, state-level maps of ecosystem type, and U.S. Forest Service inventory data) in a possibilistic framework to increase the separability of species identity. We then generate a landscape-scale map of species composition at OSBS. Combining this species map with a LIDAR-derived topography, we show that species associations vary with topography. For example, some Quercus species tend to co-occur with each other in uplands, but not in mesic hammocks. We examine potential factors causing changes in community composition, including topography, water table depth, soil type, current fire management regime, and historical land use. By combining the NEON hyperspectral and LIDAR data with detailed

  5. 22 CFR 706.22 - Fees charged.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FREEDOM OF INFORMATION ACT Fees for Requests § 706.22 Fees charged. (a) In responding to FOIA requests... service will be charged. Examples of such services include certifying that records are true...

  6. Space and Time Resolved Continuum Correlation in the Post-Collision Interaction of Core-Photoionized Neon

    NASA Astrophysics Data System (ADS)

    Bhandary, A.; Landers, A. L.; Robicheaux, F.; Osipov, T.; Hertlein, M.; Prior, M. H.; Belkacem, A.; Ranitovic, P.; Bocharova, I.; Cocke, C. L.; Jahnke, T.; Schoffler, M.; Titze, J.; Dorner, R.

    2007-06-01

    We have used the COLTRIMS^* technique to measure the momentum distribution of the photoelectron and the recoil ion produced by the core-photoionization of neon. Conservation of momentum allows us to determine the subsequent auger electron's momentum that is emitted when the Ne^+ relaxes to the Ne^2+ state. Momentum space plots of the electrons and the recoil ion are then used to resolve the three-body correlated post-collision interactions in space and time. Finally, classical calculations have been performed which corroborate our interpretation of the experimental results. ^*R. Dorner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ull- rich, R. Moshammer, and H. Schmidt-B"aocking. Physics Reports, 330:96-192, 2000.

  7. The mechanism of color change in the neon tetra fish: a light-induced tunable photonic crystal array.

    PubMed

    Gur, Dvir; Palmer, Benjamin A; Leshem, Ben; Oron, Dan; Fratzl, Peter; Weiner, Steve; Addadi, Lia

    2015-10-12

    The fresh water fish neon tetra has the ability to change the structural color of its lateral stripe in response to a change in the light conditions, from blue-green in the light-adapted state to indigo in the dark-adapted state. The colors are produced by constructive interference of light reflected from stacks of intracellular guanine crystals, forming tunable photonic crystal arrays. We have used micro X-ray diffraction to track in time distinct diffraction spots corresponding to individual crystal arrays within a single cell during the color change. We demonstrate that reversible variations in crystal tilt within individual arrays are responsible for the light-induced color variations. These results settle a long-standing debate between the two proposed models, the "Venetian blinds" model and the "accordion" model. The insight gained from this biogenic light-induced photonic tunable system may provide inspiration for the design of artificial optical tunable systems.

  8. Observation of Spontaneous C=C Bond Breaking in the Reaction between Atomic Boron and Ethylene in Solid Neon.

    PubMed

    Jian, Jiwen; Lin, Hailu; Luo, Mingbiao; Chen, Mohua; Zhou, Mingfei

    2016-07-11

    A ground-state boron atom inserts into the C=C bond of ethylene to spontaneously form the allene-like compound H2 CBCH2 on annealing in solid neon. This compound can further isomerize to the propyne-like HCBCH3 isomer under UV light excitation. The observation of this unique spontaneous C=C bond insertion reaction is consistent with theoretical predictions that the reaction is thermodynamically exothermic and kinetically facile. This work demonstrates that the stronger C=C bond, rather than the less inert C-H bond, can be broken to form organoboron species from the reaction of a boron atom with ethylene even at cryogenic temperatures.

  9. Chicago sky blue and a helium neon laser abolish endothelium dependent relaxation in vivo in the microcirculation

    SciTech Connect

    Nishimura, H.; Nelson, G.H.; Rosenblum, W.I. )

    1989-12-01

    Chicago sky blue, also known as Niagara sky blue, is a vital dye that can successfully be used as an intravascular energy absorbing target for the light from a helium-neon (HeNe) laser. The result of this light/dye interaction is endothelium damage which can be controlled by adjusting the duration of the laser exposure and the amount of dye injected intravenously. The endothelial damage probably is the result of the heat generated by the dyes absorption of energy at the interface between plasma and endothelium. The most minimal damage resulted in selective loss of the dilation normally produced by acetylcholine and bradykinin, two endothelium dependent dilators. The dilation produced by sodium nitroprusside, a dilator acting directly on vascular smooth muscle, was preserved. More severe injury (i.e. more prolonged exposure to light and/or more dye), resulted in local platelet aggregation at the site of laser impact.

  10. [Efficiency of a combination of haloaerosols and helium-neon laser in the multimodality treatment of patients with bronchial asthma].

    PubMed

    Faradzheva, N A

    2007-01-01

    A hundred and thirty-eight patients with infection-dependent bronchial asthma, including 73 with moderate persistent asthma and 65 with severe persistent one, were examined. Four modes of a combination of traditional (drug) therapy (DT) and untraditional (halotherapy (HT) and endobronchial helium-neon laser irradiation (ELI) one were used. The efficiency of the treatment performed was evaluated, by determining the time course of clinical symptoms of the disease on the basis of scores of their magnitude and the patients' condition. The findings indicated that in moderate persistent asthma, both HT and ELI in combination with DT exerted an equal therapeutic effect, which provided a good and excellent condition in 83.3% of cases. In severe persistent asthma, such a condition was achieved in 93.75% of cases only when multimodality treatment involving DT, HT, and ELI had been performed.

  11. Determination of transition probabilities for the 3p → 3s transition array in neon using laser induced breakdown spectroscopy

    SciTech Connect

    Asghar, Haroon; Ali, Raheel; Baig, M. Aslam

    2013-12-15

    We present here a study of the optical emission spectra of the laser produced neon plasma generated by a Nd:YAG laser at 1064 nm. The spectra were recorded using the laser induced breakdown spectroscopy 2000 detection system comprising of five spectrometers covering the entire visible region. The observed spectra yield all the optically allowed transitions between the 2p{sup 5}3p upper and 2p{sup 5}3s lower configurations based levels. The relative line strengths of all the dipole allowed transitions have been determined using the intensity ratios and compared with the J-file sum rule. The absolute transition probabilities have been calculated by using the lifetimes of the upper levels and the intensities of the observed spectral lines and show good agreement with the literature values.

  12. Monolayer sorption of neon in mesoporous silica glass as monitored by wide-angle x-ray scattering.

    PubMed

    Kilburn, Duncan; Sokol, Paul E

    2008-02-01

    We report measurements of the x-ray scattering intensity as mesoporous silica glasses are filled with neon. The intensity of the first peak in the liquidlike diffraction pattern increases nonlinearly with mass adsorbed. We outline a simple model assuming that the major coherent contribution to the first peak in the scattering function S(Q) is due to interference from nearest-neighbor scatterers. This allows us to demonstrate an approach for surface area determination which does not rely on thermodynamic models -- and is therefore complementary to existing methods. We also suggest that the overestimation of surface area by the traditional Brunauer-Emmett-Teller method may be resolved by using the capillary, and not the bulk, condensation pressure as the reference pressure p(0). Furthermore, the alternative analysis offers an insight into the atomic structure of monatomic sorption, which may be of use for further studies on materials with different surface properties.

  13. Temporal evolution of two-photon time-resolved optogalvanic signals of neon in the 600-630 nm region

    NASA Astrophysics Data System (ADS)

    Farrokhpour, H.; Abyar, F.; Fathi, F.; Tabrizchi, M.

    2012-01-01

    Time-resolved optogalvanic (OG) signals of six two-photon transitions of neon were studied in the 600-630 nm region to 2p 54d[5/2] 2, 2p 54d[3/2] 2, 2p 54d[3/2] 1, 2p 54d[1/2] 1 and 2p 55s'[1/2] 1 states from the allowed states of the 2p 53s configuration (2p 53s[3/2] 1 and 2p 53s'[1/2] 0 states). The OG signals were recorded over a range of discharge currents from 2 to 10 mA. The decay rates of the upper and lower states were obtained by fitting the waveforms with the Han et al.'s mathematical rate equation model considering the three states contributing to the signal. Based on the values of decay rates of the upper states, it was proposed that, after excitation to 5s and 4d states, neon atoms radiatively decay to the lumped relevant electronic states of the 2p 53p and 2p 54p configurations which have the main contribution in producing the OG signals. It was found that, the decay rates of the upper states (the lumped relevant electronic states of 2p 53p and 2p 54p configurations) increase linearly and slowly with the discharge current for all the transitions considered in this work. The effective decay rates of the upper states and their electron collisional ionization rate parameters were also obtained. This study showed that the dominant relaxation process in the de-population of the upper states is the lengthened radiative decay in plasma medium after laser excitation.

  14. Convergence of the Møller-Plesset perturbation series for the fcc lattices of neon and argon

    NASA Astrophysics Data System (ADS)

    Schwerdtfeger, Peter; Assadollahzadeh, Behnam; Hermann, Andreas

    2010-11-01

    Complete basis set limit calculations are carried out for the fcc lattices of solid neon and argon, using second- to fourth-order Møller-Plesset theory, MP2-MP4, and coupled-cluster calculations, CCSD(T), to describe electron correlation within a many-body expansion of the interaction potential up to third order. A correct description of the three-body Axilrod-Teller-Muto term for the solid state is only obtained from third order on in the many-body expansion of the correlation energy, correcting the severe underestimation of long-range three-body effects at the MP2 level of theory. MP4 shows good agreement with the CCSD(T) results, and the latter are in good agreement with experimental lattice constants, cohesive energies, and bulk moduli. However, with increasing pressures the convergence of the Møller-Plesset series deteriorates as the electronic band gap decreases, resulting in rather large deviations for the equation of state (pressure-volume dependence). For neon, however, the errors in the MP2 two- and three-body terms almost cancel, i.e., at a volume of V=3cm3/mol the MP2 pressure is underestimated by only 1 GPa compared to the pressure of P=251GPa calculated at the CCSD(T) level of theory. In contrast, for argon this is not the case, and at V=5.5cm3/mol the calculated MP2 pressure of 228 GPa deviates substantially from the CCSD(T) result of 252 GPa.

  15. 20 Ne(p, γ)22Na and 22Ne(p, γ)23Na Reaction Study with 5U-4 St. Ana Accelerator

    NASA Astrophysics Data System (ADS)

    Lyons, Stephanie; Goerres, Joachim; Jung, Hyo Soon; Robertson, Dan; Setoodehnia, Kiana; Stech, Ed; Wiescher, Michael; Kontos, Antonios

    2014-09-01

    Hydrogen burning can proceed via the NeNa cycle in stars whose stellar temperature is greater than 0.05GK. The NeNa cycle is important for the nucleosynthesis of Ne, Na, and Mg isotopes. Direct capture and the high energy tail of a subthreshold resonance dominate the stellar reaction rate for 20Ne(p, γ)21Na. The strength of the non-resonant contributions were measured relative to the resonance at 1.17 MeV. Due to conflicting results, we have remeasured the strength of this resonance relative to the 1.28 MeV resonance in 22Ne(p, γ)23Na using implanted neon targets. Study of this reaction has continued using the newly commissioned 5U-4 St. Ana Accelerator and re-furbished Rhinoceros Gas Target.

  16. Chandra Finds Oxygen and Neon Ring in Ashes of Exploded Star

    NASA Astrophysics Data System (ADS)

    2000-01-01

    NASA's Chandra X-ray Observatory has revealed an expanding ring-like structure of oxygen and neon that was hurled into space by the explosion of a massive star. The image of E0102-72 provides unprecedented details about the creation and dispersal of heavy elements necessary to form planets like Earth. The results were reported by Professor Claude Canizares of the Massachusetts Institute of Technology (MIT), Cambridge, at the 195th national meeting of the American Astronomical Society in Atlanta, Ga. Drs. Kathryn Flanagan, David Davis, and John Houck of MIT collaborated with Canizares in this investigation. E0102-72 is the remnant of a supernova explosion located in our neighbor galaxy, the Small Magellanic Cloud, nearly 200,000 light years away. It was created by the explosion of a star that was more than ten times as massive as our Sun. We are seeing the aftermath of the explosion a thousand or more years after the outburst. Shock waves are heating gas to temperatures of nearly 10 million degrees, so it glows with X-rays that are detected by Chandra's instruments. By using the High Energy Transmission Grating Spectrometer (HETG), astronomers were able to pinpoint the distribution of each chemical element individually and measure the velocities of different parts of the expanding ring. They also show the shock wave in a kind of "freeze-frame," revealing the progressive heating of the stellar matter as it plows into the surrounding gas. This is the first time such detailed X-ray information has ever been obtained for a supernova remnant, and should provide critical clues to the nature of supernovas. The grating spectrometer, which was built by an MIT team led by Canizares, spreads the X-rays according to their wavelength, giving distinct images of the object at specific wavelengths characteristic of each chemical element. Small wavelength shifts caused by the Doppler effect are used to measure the expansion velocities of each element independently. "We've been

  17. 22 CFR 518.22 - Payment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 518.22 Payment. (a) Payment methods shall minimize the time elapsing between... accounts shall be remitted annually to Department of Health and Human Services, Payment Management...

  18. THE FINAL FATE OF STARS THAT IGNITE NEON AND OXYGEN OFF-CENTER: ELECTRON CAPTURE OR IRON CORE-COLLAPSE SUPERNOVA?

    SciTech Connect

    Jones, Samuel; Hirschi, Raphael; Nomoto, Ken'ichi

    2014-12-20

    In the ONeMg cores of 8.8-9.5 M {sub ☉} stars, neon and oxygen burning is ignited off-center. Whether or not the neon-oxygen flame propagates to the center is critical for determining whether these stars undergo Fe core collapse or electron-capture-induced ONeMg core collapse. We present more details of stars that ignite neon and oxygen burning off-center. The neon flame is established in a manner similar to the carbon flame of super-AGB stars, albeit with a narrower flame width. The criteria for establishing a flame can be met if the strict Schwarzschild criterion for convective instability is adopted. Mixing across the interface of the convective shell disrupts the conditions for the propagation of the burning front, and instead the shell burns as a series of inward-moving flashes. While this may not directly affect whether or not the burning will reach the center (as in super-AGB stars), the core is allowed to contract between each shell flash. Reduction of the electron fraction in the shell reduces the Chandrasekhar mass and the center reaches the threshold density for the URCA process to activate and steer the remaining evolution of the core. This highlights the importance of a more accurate treatment of mixing in the stellar interior for yet another important question in stellar astrophysics—determining the properties of stellar evolution and supernova progenitors at the boundary between electron capture supernova and iron core-collapse supernova.

  19. Proton-proton correlations at small relative momentum in neon-nucleus collisions at E/A=400 and 800 MeV

    NASA Technical Reports Server (NTRS)

    Dupieux, P.; Alard, J. P.; Augerat, J.; Babinet, R.; Bastid, N.; Brochard, F.; Charmensat, P.; De Marco, N.; Fanet, H.; Fodor, Z.; Fraysse, L.; Girard, J.; Gorodetzky, P.; Gosset, J.; Laspalles, C.; Lemaire, M. C.; L'Hote, D.; Lucas, B.; Marroncle, J.; Montarou, G.; Parizet, M. J.; Poitou, J.; Qassoud, D.; Racca, C.; Schimmerling, W.

    1988-01-01

    Proton-proton small angle correlations have been measured in neon-nucleus collisions, using the 4 pi detector Diogene, at 400 and 800 MeV per nucleon incident energies. Values of the size of the emitting region are obtained by comparison with the Koonin formula, taking into account the biases of the apparatus. The dependence of the density on target mass and incident energy is also analysed.

  20. Proton-proton correlations at small relative momentum in neon-nucleus collisions at E/A=400 and 800 MeV.

    PubMed

    Dupieux, P; Alard, J P; Augerat, J; Babinet, R; Bastid, N; Brochard, F; Charmensat, P; De Marco, N; Fanet, H; Fodor, Z; Fraysse, L; Girard, J; Gorodetzky, P; Gosset, J; Laspalles, C; Lemaire, M C; L'Hôte, D; Lucas, B; Marroncle, J; Montarou, G; Parizet, M J; Poitou, J; Qassoud, D; Racca, C; Schimmerling, W

    1988-01-07

    Proton-proton small angle correlations have been measured in neon-nucleus collisions, using the 4 pi detector Diogene, at 400 and 800 MeV per nucleon incident energies. Values of the size of the emitting region are obtained by comparison with the Koonin formula, taking into account the biases of the apparatus. The dependence of the density on target mass and incident energy is also analysed.

  1. Investigation of the ionization of neon by an attosecond XUV pulse with the time-dependent Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Carette, T.; Argenti, L.; Lindroth, E.

    2012-11-01

    We investigate theoretically the single ionization of neon by an attosecond XUV pulse, aiming at a better understanding of the outgoing electron wave-packet in the early stages of its detachment. To do so, we integrate the one-electron time-dependent Schrödinger equation numerically. The non-local interaction with the spectator electrons in the time-dependent hamiltonian is accounted for with a configuration-averaged effective Hartree-Fock potential.

  2. F-22A Raptor

    DTIC Science & Technology

    2009-03-05

    22 GAO- 04 -39, pp. 7 -8. F-22A Raptor Congressional Research Service 9 that the GAO and others are confusing the F-22A with the conceptual FB-22.23...Aviation March 5, 2009 Congressional Research Service 7 -5700 www.crs.gov RL31673 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...NUMBER 5f. WORK UNIT NUMBER 7 . PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Congressional Research Service ,Library of Congress,101 Independence

  3. Synthesis and characterization of a Noble metal Enhanced Optical Nanohybrid (NEON): a high brightness detection platform based on a dye-doped silica nanoparticle.

    PubMed

    Roy, Shibsekhar; Dixit, Chandra K; Woolley, Robert; O'Kennedy, Richard; McDonagh, Colette

    2012-05-29

    A highly bright and photostable, fluorescent nanohybrid particle is presented which consists of gold nanoparticles (GNPs) embedded in dye-doped silica in a core-shell configuration. The dye used is the near-infrared emitting 4,5-benzo-5'-(iodoacetaminomethyl)-1',3,3,3',3'-pentamethyl-1-(4-sulfobutyl) indodicarbo cyanine. The nanohybrid architecture comprises a GNP core which is separated from a layer of dye molecules by a 15 nm buffer layer and has an outer protective, undoped silica shell. Using this architecture, a brightness factor of 550 has been achieved compared to the free dye. This hybrid system, referred to as Noble metal Enhanced Optical Nanohybrid (NEON) in this paper, is the first nanohybrid construct to our knowledge which demonstrates such tunable fluorescence property. NEON has enhanced photostability compared to the free dye and compared to a control particle without GNPs. Furthermore, the NEON particle, when used as a fluorescent label in a model bioassay, shows improved performance over assays using a conventional single dye molecule label.

  4. ESTIMATION OF THE NEON/OXYGEN ABUNDANCE RATIO AT THE HELIOSPHERIC TERMINATION SHOCK AND IN THE LOCAL INTERSTELLAR MEDIUM FROM IBEX OBSERVATIONS

    SciTech Connect

    Bochsler, P.; Petersen, L.; Moebius, E.; Schwadron, N. A.; Wurz, P.; Scheer, J. A.; Fuselier, S. A.; McComas, D. J.; Bzowski, M.; Frisch, P. C.

    2012-02-01

    We report the first direct measurement of the Ne/O abundance ratio of the interstellar neutral gas flowing into the inner heliosphere. From the first year of Interstellar Boundary Explorer IBEX data collected in spring 2009, we derive the fluxes of interstellar neutral oxygen and neon. Using the flux ratio at the location of IBEX at 1 AU at the time of the observations, and using the ionization rates of neon and oxygen prevailing in the heliosphere during the period of solar minimum, we estimate the neon/oxygen ratios at the heliospheric termination shock and in the gas phase of the inflowing local interstellar medium. Our estimate is (Ne/O){sub gas,ISM} = 0.27 {+-} 0.10, which is-within the large given uncertainties-consistent with earlier measurements from pickup ions. Our value is larger than the solar abundance ratio, possibly indicating that a significant fraction of oxygen in the local interstellar medium is hidden in grains and/or ices.

  5. 47 CFR 22.961-22.967 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false 22.961-22.967 Section 22.961-22.967 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service §§...

  6. 47 CFR 22.961-22.967 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false 22.961-22.967 Section 22.961-22.967 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service §§...

  7. 47 CFR 22.961-22.967 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false 22.961-22.967 Section 22.961-22.967 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service §§...

  8. 47 CFR 22.961-22.967 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false 22.961-22.967 Section 22.961-22.967 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service §§...

  9. Detection of Nitrogen and Neon in the X-ray Spectrum of GP Com with XMM/Newton

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.

    2004-01-01

    We report on X-ray spectroscopic observations with XMM/Newton of the ultra-compact, double white dwarf binary, GP Com. With the Reflection Grating Spectrometers (RGS) we detect the L(alpha) and L(beta) lines of hydrogen-like nitrogen (N VII) and neon (Ne X), as well as the helium-like triplets (N VI and Ne IX) of these same elements. All the emission lines are unresolved. These are the first detections of X-ray emission lines from a double-degenerate, AM CVn system. We detect the resonance (r) and intercombination (i) lines of the N VI triplet, but not the forbidden (f) line. The implied line ratios for N VI, R = f/i less than 0.3, and G = (f + i ) / r approx. = 1, combined with the strong resonance line are consistent with a dense, collision-dominated plasma. Both the RGS and EPIC/MOS spectra are well fit by emission horn an optically thin thermal plasma with an emission measure (EM) is a member of (kT/6.5 keV)(sup 0.8) (model cevmkl in XSPEC). Helium, nitrogen, oxygen and neon are required to adequately model the spectrum, however, the inclusion of sulphur and iron further improves the fit, suggesting these elements may also be present at low abundance. We confirm in the X-rays the under- abundance of both carbon and oxygen relative to nitrogen, first deduced from optical spectroscopy by Marsh et al. The average X-ray luminosity of approx. = 3 x 10(exp 30) ergs/s implies a mass accretion rate dot-m approx. = 9 x 10(exp -13) solar mass/yr. The implied temperature and density of the emitting plasma, combined with the presence of narrow emission lines and the low dot-m value, are consistent with production of the X-ray emission in an optically thin boundary layer just above the surface of the white dwarf.

  10. Observation of narrow isotopic optical magnetic resonances in individual emission spectral lines of neon

    SciTech Connect

    Saprykin, E G; Sorokin, V A; Shalagin, A M

    2015-07-31

    Narrow resonances are observed in the course of recording the individual emission lines of the glow discharge in the mixture of isotopes {sup 20}Ne and {sup 22}Ne, depending on the strength of the longitudinal magnetic field. The position of resonances in the magnetic scale corresponds to the compensation of the isotopic shift for certain spectral lines due to the Zeeman effect. It is found that the contrast of the resonances is higher for the transitions between the highly excited energy levels, and the resonances themselves are formed in the zone of longitudinal spatial nonuniformity of the magnetic field. (laser applications and other topics in quantum electronics)

  11. Reduction of ion transport and turbulence via dilution with nitrogen and neon injection in C-Mod deuterium plasmas

    NASA Astrophysics Data System (ADS)

    Porkolab, M.; Ennever, P.; Baek, S. G.; Creely, A. J.; Edlund, E. M.; Hughes, J.; Rice, J. E.; Rost, J. C.; White, A. E.; Reinke, M. L.; Staebler, G.; Candy, J.; Alcator C-Mod Team

    2016-10-01

    Recent experiments on C-Mod ohmic plasmas and gyrokinetic studies indicated that dilution of deuterium plasmas by injection of nitrogen decreased the ion diffusivity and may also alter the direction of intrinsic toroidal rotation. Simulations with TGLF and GYRO showed that dilution of deuterium ions in low density (LOC) plasmas increased the critical ion temperature gradient, while in high density (SOC) plasmas it decreased the stiffness. The density fluctuation spectrum measured in low q95 plasmas with Phase Contrast Imaging (PCI), and corroborated with spatially localized reflectometer measurements show a reduction of turbulence near r/a = 0.8 with kρs <= 1, in agreement with modeling predictions in this region where the ion turbulence is well above marginal stability. Measurements also indicate that reversal of the toroidal rotation direction near the SOC-LOC transition may depend on ion collisionality rather than that of electrons. New experiments with neon seeding, which may be more relevant to ITER than with nitrogen seeding, show similar results. The impact of dilution on Te turbulence as measured with CECE diagnostic will also be presented. Supported by US DOE Awards DE-FG02-94-ER54235 and DE-FC02-99-ER54512.

  12. Formation of Exotic Networks of Water Clusters in Helium Droplets Facilitated by the Presence of Neon Atoms.

    PubMed

    Douberly, Gary E; Miller, Roger E; Xantheas, Sotiris S

    2017-03-22

    Water clusters are formed in helium droplets via the sequential capture of monomers. One or two neon atoms are added to each droplet prior to the addition of water. The infrared spectrum of the droplet ensemble reveals several signatures of polar, water tetramer clusters having dipole moments between 2D and 3D. Comparison with ab initio computations supports the assignment of the cluster networks to noncyclic "3 + 1" clusters, which are ∼5.3 kcal/mol less stable than the global minimum nonpolar cyclic tetramer. The (H2O)3Ne + H2O ring insertion barrier is sufficiently large, such that evaporative helium cooling is capable of kinetically quenching the nonequilibrium tetramer system prior to its rearrangement to the lower energy cyclic species. To this end, the reported process results in the formation of exotic water cluster networks that are either higher in energy than the most stable gas-phase analogs or not even stable in the gas phase.

  13. Coherent production of pions and rho mesons in neutrino charged current interactions on neon nuclei at the Fermilab Tevatron

    SciTech Connect

    Willocq, S.

    1992-05-01

    The coherent production of single pions and and {rho} mesons in charged current interactions of neutrinos and antineutrinos on neon nuclei has been studied. The data were obtained using the Fermilab 15-foot Bubble Chamber, filled with a heavy Ne-H{sub 2} mixture and exposed to the Quadrupole Triplet neutrino beam produced by 800 GeV protons from the Tevatron. The average beam energy was 86 GeV. In a sample of 330000 frames, 1032 two-prong {nu}{sub {mu}} + {bar {nu}}{sub {mu}} charged current interactions were selected. The goal of this study was to investigate the low Q{sup 2} high {nu} region where the hadron dominance model can be tested. In this model, the vector and axial-vector parts of the weak hadronic current are dominated by the {rho} and a{sub 1} mesons respectively. Moreover, the Partially Conserved Axial Current (PCAC) hypothesis can be tested by studying the coherent production of single pions.

  14. A brief review of the intensity of lines 3C and 3D in neon-like Fe XVII

    SciTech Connect

    Brown, G V

    2007-06-13

    X-ray emission from neon-like Fe XVII has been measured with high-resolution spectrometers from laboratory or celestial sources for nearly seven decades. Two of the strongest lines regularly identified in these spectra are the {sup 1}P{sub 1} {yields} {sup 1}S{sub 0} resonance, and {sup 3}D{sub 1} {yields} {sup 1}S{sub 0} intercombination line, known as 3C and 3D, respectively. This paper gives a brief overview of measurements of the intensities of the lines 3C and 3D from laboratory and celestial sources, and their comparison to model calculations, with an emphasis on measurements completed using an electron beam ion trap. It includes a discussion of the measured absolute cross sections compared to results from modern atomic theory calculations, as well as the diagnostic utility of the relative intensity, R = I{sub 3C}/I{sub 3D}, as it applies to the interpretation of spectra measured from the Sun and extra-Solar sources.

  15. The fragmentation of 670A MeV neon-20 as a function of depth in water. I. Experiment

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Miller, J.; Wong, M.; Rapkin, M.; Howard, J.; Spieler, H. G.; Jarret, B. V.

    1989-01-01

    We present the final analysis of an experiment to study the interaction of a beam of 670A MeV neon ions incident on a water column set to different thicknesses. The atomic number Z (and, in some cases, the isotopic mass A) of primary beam particles and of the products of nuclear interactions emerging from the water column close to the central axis of the beam was obtained for nuclei between Be (Z = 4) and Ne (Z = 10) using a time-of-flight telescope to measure the velocity and a set of silicon detectors to measure the energy loss of each particle. The fluence of particles of a given charge was obtained and normalized to the incident beam intensity. Corrections were made for accidental coincidences between multiple particles triggering the TOF telescope and for interactions in the detector. The background due to beam particles interacting in beam line elements upstream of the detector was calculated. Sources of experimental artifacts and background in particle identification experiments designed to characterize heavy ion beams for radiobiological research are summarized, and some of the difficulties inherent in this work are discussed. Complete tables of absolutely normalized fluence spectra as a function of LET are included for reference purposes.

  16. Effect of natural convection on the current-voltage characteristic of a DC discharge in neon at intermediate pressures

    SciTech Connect

    Uvarov, A. V.; Sakharova, N. A.; Vinnichenko, N. A.

    2011-12-15

    The parameters of the positive column of a glow discharge in neon are calculated with allowance for the induced hydrodynamic motion. It is shown that natural convection in the pressure range of {approx}0.1 atm significantly affects the profiles of the parameters of the positive column and its current-voltage characteristic. The convection arising at large deposited energies improves heat removal, due to which the temperature in the central region of the discharge becomes lower than that calculated from the heat conduction equation. As a result, the current-voltage characteristic is shifted. With allowance for convection, the current-voltage characteristic changes at currents much lower than the critical current at which a transition into the constricted state is observed. This change is uniquely related to the Rayleigh number in the discharge. Thus, a simplified analysis of thermal conduction and diffusion, even with detailed account of kinetic processes occurring in the positive column, does not allow one to accurately calculate the current-voltage characteristic and other discharge parameters at intermediate gas pressures.

  17. In vitro synthesis of prostaglandin E2 by synovial tissue after helium-neon laser radiation in rheumatoid arthritis.

    PubMed

    Barberis, G; Gamron, S; Acevedo, G; Cadile, I; Juri, H; Campana, V; Castel, A; Onetti, C M; Palma, J A

    1996-08-01

    This paper reports the effect of helium-neon laser radiation (power of 5 mW and 632.8 nm wave length) on the synthesis of PGE2 in vitro in synovial tissue of biopsy samples of knee joints in patients with chronic rheumatoid arthritis stages II or III. Twelve patients were studied. Each patient received 15 applications of He-Ne laser. Eleven points for He-Ne laser applications were selected in one of the affected knees. The energy density used was 8 J/cm2 per application point. The He-Ne laser therapy reduced the synthesis of PGE2. The analysis of the data revealed a statistically significant difference between the levels of the synthesis of PGE2 before treatment (17.69 +/- 2.65 ng mg-1 of dry tissue h-1) and after treatment (13.85 +/- 2.73 ng mg-1 of dry tissue h-1), with p < 0.01 comparing mean values. This was also accompanied by relief of pain (91.6%), and a favorable subjective report from the patient. We conclude that PGE2 is a quantifiable parameter that could explain what causes pain relief in patients with rheumatoid arthritis that are treated with He-Ne laser.

  18. TRACING HIGH-ENERGY RADIATION FROM T TAURI STARS USING MID-INFRARED NEON EMISSION FROM DISKS

    SciTech Connect

    Espaillat, C.; Ingleby, L.; McClure, M.; Nieusma, J.; Calvet, N.; Bergin, E.; Hartmann, L.; Miller, J. M. E-mail: lingleby@umich.edu E-mail: jdnieusma@gmail.com E-mail: ebergin@umich.edu; and others

    2013-01-01

    High-energy radiation from T Tauri stars (TTS) influences the amount and longevity of gas in disks, thereby playing a crucial role in the creation of gas giant planets. Here we probe the high-energy ionizing radiation from TTS using high-resolution mid-infrared (MIR) Spitzer Infrared Spectrograph neon forbidden line detections in a sample of disks from IC 348, NGC 2068, and Chamaeleon. We report three new detections of [Ne III] from CS Cha, SZ Cha, and T 54, doubling the known number of [Ne III] detections from TTS. Using [Ne III]-to-[Ne II] ratios in conjunction with X-ray emission measurements, we probe high-energy radiation from TTS. The majority of previously inferred [Ne III]/[Ne II] ratios based on [Ne III] line upper limits are significantly less than 1, pointing to the dominance of either X-ray radiation or soft extreme-ultraviolet (EUV) radiation in producing these lines. Here we report the first observational evidence for hard EUV-dominated Ne forbidden line production in a T Tauri disk: [Ne III]/[Ne II] {approx} 1 in SZ Cha. Our results provide a unique insight into the EUV emission from TTS, by suggesting that EUV radiation may dominate the creation of Ne forbidden lines, albeit in a minority of cases.

  19. Laser optogalvanic spectroscopy of neon in a discharge plasma and modeling and analysis of rocket plume RF-line emissions

    NASA Astrophysics Data System (ADS)

    Ogungbemi, Kayode I.

    The Optogalvanic Effect (OGE) of neon in a hollow cathode discharge lamp has been investigated both experimentally and theoretically. A tunable dye laser was tuned to several 1si -- 2pj neon transitions and the associated time--resolved optogalvanic (OG) spectral waveforms recorded corresponding to the DeltaJ = DeltaK = 0, +/-1 selection rules and modeled using a semi-empirical model. Decay rate constants, amplitudes and the instrumentation time constants were recorded following a good least-squares fit (between the experimental and the theoretical OG data) using the Monte Carlo technique and utilizing both the search and random walk methods. Dominant physical processes responsible for the optogalvanic effect have been analyzed, and the corresponding populations of the laser-excited level and collisional excited levels determined. The behavior of the optogalvanic signal waveform as a function of time, together with the decay rate constants as a function of the discharge current and the instrumentation time constant as a function of current have been studied in detail. The decay times of the OG signals and the population redistributions were also determined. Fairly linear relationships between the decay rate constant and the discharge current, as well as between the instrumental time constant and the discharge current, have been observed. The decay times and the electron collisional rate parameters of the 1s levels involved in the OG transitions have been obtained with accuracy. The excitation temperature of the discharge for neon transitions grouped with the same 1s level have been determined and found to be fairly constant for the neon transitions studied. The experimental optogalvanic effort in the visible region of the electromagnetic spectrum has been complemented by a computation-intensive modeling investigation of rocket plumes in the microwave region. Radio frequency lines of each of the plume species identified were archived utilizing the HITRAN and other

  20. Collision-induced Raman scattering and the peculiar case of neon: Anisotropic spectrum, anisotropy, and the inverse scattering problem

    SciTech Connect

    Dixneuf, Sophie; Rachet, Florent; Chrysos, Michael

    2015-02-28

    Owing in part to the p orbitals of its filled L shell, neon has repeatedly come on stage for its peculiar properties. In the context of collision-induced Raman spectroscopy, in particular, we have shown, in a brief report published a few years ago [M. Chrysos et al., Phys. Rev. A 80, 054701 (2009)], that the room-temperature anisotropic Raman lineshape of Ne–Ne exhibits, in the far wing of the spectrum, a peculiar structure with an aspect other than a smooth wing (on a logarithmic plot) which contrasts with any of the existing studies, and whose explanation lies in the distinct way in which overlap and exchange interactions interfere with the classical electrostatic ones in making the polarizability anisotropy, α{sub ∥} − α{sub ⊥}. Here, we delve deeper into that study by reporting data for that spectrum up to 450 cm{sup −1} and for even- and odd-order spectral moments up to M{sub 6}, as well as quantum lineshapes, generated from SCF, CCSD, and CCSD(T) models for α{sub ∥} − α{sub ⊥}, which are critically compared with the experiment. On account of the knowledge of the spectrum over the augmented frequency domain, we show how the inverse scattering problem can be tackled both effectively and economically, and we report an analytic function for the anisotropy whose quantum lineshape faithfully reproduces our observations.

  1. Calculations of the Raman photoionization cross section for bound-free transitions in Neon-like Iron

    NASA Astrophysics Data System (ADS)

    Kruse, Michael; Gaffney, James; Iglesias, Carlos; Wilson, Brian

    2016-10-01

    The recent higher-than-expected solar opacity measurements of Bailey et al. on the Sandia Z-machine have raised questions over the accuracy of theoretical opacity models near the solar convection-radiation boundary. Of concern in particular are the Iron opacities for which discrepancies of 30%-400% were found between theory and experiment. Naturally the question has been raised whether theoretical models have neglected to include all the relevant atomic physics processes. In this talk we discuss the effects of the hitherto neglected two-photon ionization cross section for bound-free transitions in Neon-like Iron (a prominent charge state in the solar convection-radiation region). The calculations proceed by solving the Schroedinger equation for an electron moving in a parameterized mean-field potential that has been fitted to experimental data. The required dipole transition strength is calculated by the Dalgarno and Lewis method which exactly recovers the summation over the infinite set of intermediate states between the initial and final state. Conclusions are given with respect to opacity models.

  2. GASP - THERMODYNAMIC AND TRANSPORT PROPERTIES OF HELIUM, METHANE, NEON, NITROGEN, CARBON MONOXIDE, CARBON DIOXIDE, OXYGEN, AND ARGON

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    1994-01-01

    A computer program, GASP, has been written to calculate the thermodynamic and transport properties of argon, carbon dioxide, carbon monoxide, fluorine, methane, neon, nitrogen, and oxygen. GASP accepts any two of pressure, temperature, or density as input. In addition, entropy and enthalpy are possible inputs. Outputs are temperature, density, pressure, entropy, enthalpy, specific heats, expansion coefficient, sonic velocity, viscosity, thermal conductivity, and surface tension. A special technique is provided to estimate the thermal conductivity near the thermodynamic critical point. GASP is a group of FORTRAN subroutines. The user typically would write a main program that invoked GASP to provide only the described outputs. Subroutines are structured so that the user may call only those subroutines needed for his particular calculations. Allowable pressures range from 0.l atmosphere to 100 to l,000 atmospheres, depending on the fluid. Similarly, allowable pressures range from the triple point of each substance to 300 degrees K to 2000 degrees K, depending on the substance. The GASP package was developed to be used with heat transfer and fluid flow applications. It is particularly useful in applications of cryogenic fluids. Some problems associated with the liquefication, storage, and gasification of liquefied natural gas and liquefied petroleum gas can also be studied using GASP. This program is written in FORTRAN IV for batch execution and is available for implementation on IBM 7000 series computers. GASP was developed in 1971.

  3. Multiple ionization of neon atoms in collisions with bare and dressed ions: A mean-field description considering target response

    NASA Astrophysics Data System (ADS)

    Schenk, Gerald; Kirchner, Tom

    2015-05-01

    We investigate projectile-charge-state-differential electron removal from neon atoms by impact of He2+, Li3+, B2+, and C3+ ions at intermediate projectile energies (25 keV/u to 1 MeV/u ). The many-electron problem is described with an independent electron model in which active electrons at both collision centers are propagated in a common mean-field potential. Response to electron removal is taken into account in terms of a time-dependent screening potential, and a Slater-determinant-based method is used for the final-state analysis. Total cross sections for net recoil ion production, multiple ionization, and capture channels are mostly in good agreement with published experimental data. Results from equicharged bare and dressed ions are compared and the net recoil ion production cross section is broken down into contributions associated with different final projectile charge states in order to shed light on the role of the projectile electrons.

  4. Neon helium mixtures as a refrigerant for the FCC beam screen cooling: comparison of cycle design options

    NASA Astrophysics Data System (ADS)

    Kloeppel, S.; Quack, H.; Haberstroh, C.; Holdener, F.

    2015-12-01

    In the course of the studies for the next generation particle accelerators, in this case the Future Circular Collider for hadron-hadron interaction (FCC-hh), different aspects are being investigated. One of these is the heat load on the beam screen, which results mainly from the synchrotron radiation. In case of the FCC-hh, a heat load of 6 MW is expected. The heat has to be absorbed at 40 to 60 K due to vacuum restrictions. In this range, refrigeration is possible with both helium and neon. Our investigations are focused on a mixed refrigerant of these two components, which combines the advantages of both. Especially promising is the possible substitution of the oil flooded screw compressors by more efficient turbo compressors. This paper investigates different flow schemes and mixture compositions with respect to complexity and efficiency. Furthermore, thermodynamic aspects, e.g. whether to use cold or warm secondary cycle compressors are discussed. Additionally, parameters of the main compressor are established.

  5. Interactions in hydrogen of relativistic neon to nickel projectiles: Total charge-changing cross sections

    NASA Astrophysics Data System (ADS)

    Chen, C.-X.; Albergo, S.; Caccia, Z.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Ferrando, P.; Fonte, R.; Greiner, L.; Guzik, T. G.; Insolia, A.; Jones, F. C.; Knott, C. N.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Romanski, J.; Russo, G. V.; Soutoul, A.; Testard, O.; Tull, C. E.; Tuvé, C.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.; Zhang, X.

    1994-06-01

    A liquid hydrogen target was used to study the nuclear fragmentation of beams of relativistic heavy ions, 22Ne to 58Ni, over an energy range 400 to 900 MeV/nucleon. The experiments were carried out at the Lawrence Berkeley Laboratory Bevalac HISS facility, using the charge-velocity-rigidity method to identify the charged fragments. Here we describe the general concept of the experiment and present total charge-changing cross sections obtained from 17 separate runs. These new measured cross sections display an energy dependence which follows semiempirical model predictions. The mass dependence of the cross sections behaves as predicted by optical models, but within the experimental energy range, the optical model parameters display a clear energy dependence. The isospin of the projectile nuclei also appears to be an important factor in the interaction process.

  6. Interactions of relativistic neon to nickel projectiles in hydrogen, elemental production cross sections

    NASA Astrophysics Data System (ADS)

    Knott, C. N.; Albergo, S.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Ferrando, P.; Fonte, R.; Greiner, L.; Guzik, T. G.; Insolia, A.; Jones, F. C.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Romanski, J.; Russo, G. V.; Soutoul, A.; Testard, O.; Tull, C. E.; Tuvé, C.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.

    1996-01-01

    This paper reports the elemental production cross sections for 17 projectile-energy combinations with energies between 338 and 894 MeV/nucleon interacting in a liquid hydrogen target. These results were obtained from two runs at the LBL Bevalac using projectiles ranging from 22Ne to 58Ni. Cross sections were measured for all fragment elements with charges greater than or equal to half the charge of the projectile. The results show that, over the energy and ion range investigated, the general decrease in cross section with decreasing fragment charge is strongly modified by the isospin of the projectile ion. Significant additional modifications of the cross sections due to the internal structure of the nucleus have also been seen. These include both pairing and shell effects. Differences in the cross sections due to the differing energies of the projectile are also considerable.

  7. Interactions in hydrogen of relativistic neon to nickel projectiles: Total charge-changing cross sections

    SciTech Connect

    Chen, C.; Albergo, S.; Caccia, Z.; Costa, S.; Crawford, H.J.; Cronqvist, M.; Engelage, J.; Ferrando, P.; Fonte, R.; Greiner, L.; Guzik, T.G.; Insolia, A.; Jones, F.C.; Knott, C.N.; Lindstrom, P.J.; Mitchell, J.W.; Potenza, R.; Romanski, J.; Russo, G.V.; Soutoul, A.; Testard, O.; Tull, C.E.; Tuve, C.; Waddington, C.J.; Webber, W.R.; Wefel, J.P.; Zhang, X. Space Science Laboratory, University of California, Berkeley, California 94720 Service d'Astrophysique, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette, Cedex Dipartimento di Fisica, Universita di Catania, Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso Italia 57, I 95129-Catania NASA

    1994-06-01

    A liquid hydrogen target was used to study the nuclear fragmentation of beams of relativistic heavy ions, [sup 22]Ne to [sup 58]Ni, over an energy range 400 to 900 MeV/nucleon. The experiments were carried out at the Lawrence Berkeley Laboratory Bevalac HISS facility, using the charge-velocity-rigidity method to identify the charged fragments. Here we describe the general concept of the experiment and present total charge-changing cross sections obtained from 17 separate runs. These new measured cross sections display an energy dependence which follows semiempirical model predictions. The mass dependence of the cross sections behaves as predicted by optical models, but within the experimental energy range, the optical model parameters display a clear energy dependence. The isospin of the projectile nuclei also appears to be an important factor in the interaction process.

  8. Neon and Helium in the Surface of Stardust Cell C2028

    NASA Technical Reports Server (NTRS)

    Palma, R. L.; Pepin, R. O.; Schlutter, D. J.; Frank, D. R.; Bastien, R.; Rodriguez, M.

    2015-01-01

    Previous studies of light noble gases in Stardust aerogel samples detected a variety of isotopically non-terrestrial He and Ne compositions. However, with one exception, in none of these samples was there visible evidence for the presence of particles that could have hosted the gases. The exception is materials keystoned from track 41, cell C2044, which contained observable fragments of the impacting Wild 2 comet coma grain. Here we report noble gas data from a second aerogel sample in which grains are observed, cut from the surface of a cell (C2028) riddled with tiny tracks and particles that are thought to be secondary in origin, ejected toward the cell when a parent grain collided with the spacecraft structure and fragmented. Interestingly, measured 20Ne/22Ne ratios in the track 41 and C2028 samples are similar, and within error of the meteoritic "Q-phase" Ne composition.

  9. 2s -> np Autoionizing Resonances of the Neon Isoelectronic Sequence using RRPA and RMQDT

    NASA Astrophysics Data System (ADS)

    Madugula, Nrisimha Murty; Rundhe, Milind V.; Aravind, Gopalan; Deshmukh, Pranawa C.; Manson, Steven T.

    2012-06-01

    Extensive theoretical and experimental studies of the photoionization of various atoms and ions have been carried out over long period of time [1, 2] owing both to the fundamental importance of the process and to the many applications, e.g., astrophysical and atmospheric modeling, plasma dynamics, etc. In the present work, we report our studies of the 2s -> np autoionizing resonances in the Ne isoelectronic sequence, of significance due to the cosmic abundance of these systems [2-4]. In particular, Ne, Na^+, Mg^2+, Al^3+ and Sc^11+ have been studied. The study has been performed within the framework of the relativistic random-phase approximation (RRPA) [5] and relativistic multichannel quantum defect theory (RMQDT) [6]. The resonances have been characterized in terms of position, width and shape, i.e., Fano profiles [7, 8], and the evolution of the parameters of the resonances along the sequence has been investigated.[4pt] [1] A. Neogi et al, Phys. Rev. A 67, 042707 (2003). [2] H. S. Chakraborty et al, Phys. Rev. Lett. 83, 2151 (1999). [3] H. S. Chakraborty et al, Ap. J. 595, 1307 (2003). [4] G. Nasreen Haque, Ph.D. thesis (unpublished), Georgia State University, Atlanta, USA (1991). [5] W.R. Johnson et al, Phys. Scr. 21, 409 (1980). [6] C. M. Lee and W.R. Johnson, Phys. Rev. A 22, 979 (1980). [7] U. Fano and J. W. Cooper, Phys. Rev. A 40, 441 (1968). [8] W.R. Johnson, et al, Phys. Rev. A 22, 989 (1980).

  10. F-22A Raptor

    DTIC Science & Technology

    2008-12-19

    6, 2008. 21 GAO- 04 -39, pp. 7 -8. 22 David Fulghum, “Escalation Clause,” Aviation Week & Space Technology, March 22, 2004. Gail Kaufman, “Putting the...TASK NUMBER 5f. WORK UNIT NUMBER 7 . PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Congressional Research Service,Library of Congress,101...forces. 7 Air Force leaders have also 4 FY2006 and FY2007 Budget Estimates. Aircraft

  11. A Spatial Gradient in Helium, Neon, and Argon Isotopes Along the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Parai, R.; Mukhopadhyay, S.; Standish, J. J.

    2011-12-01

    The heavy noble gases (Ne, Ar and Xe) shed light on aspects of mantle heterogeneity that are not evident in helium or lithophile isotope systematics alone (e.g., [1-4]). Precise determination of heavy noble gas isotopic compositions and elemental ratios may therefore provide new and unique constraints on heterogeneities in compositionally complex study areas. The ultra-slow spreading Southwest Indian Ridge (SWIR) offers a remarkable window into the nature and spatial distribution of heterogeneities in the upper mantle. Basalts erupted along the SWIR exhibit 4He/3He from 51,000 to 120,000 (3He/4He of 14 to 6.0 RA; [5,6]), spanning half the range observed in mantle-derived basalts. Basalts with 4He/3He values both higher and lower than the canonical mid-ocean ridge basalt range (4He/3He of 80,000-100,000; 3He/4He of 9-7 RA) are erupted in close proximity. Low 4He/3He ratios reflect a relatively undegassed mantle source, while high 4He/3He ratios reflect high time-integrated (U+Th)/ 3He, commonly attributed to the presence of recycled crust in the mantle source. The observed variability indicates that reservoirs both more and less degassed than the canonical mid-ocean ridge basalt source are sampled at the SWIR. Furthermore, 4He/3He increases steadily from east to west along the orthogonal supersegment (16-25 °E) [6]. The spatial gradient is attributed to differential sampling of recycled pyroxenite veins in the SWIR source [6], consistent with the association between radiogenic He, Sr and Pb isotopes. We have measured Ne, Ar and Xe isotopic compositions and abundances, along with He and CO2 abundances, in a suite of basalt glasses from the SWIR. We find strong coupling between mantle He, Ne and Ar isotopic character: radiogenic He is associated with nucleogenic mantle source 21Ne/22Ne and radiogenic mantle source 40Ar/36Ar (both extrapolated to 20Ne/22Ne = 12.5) relative to the canonical MORB source [1]. This agreement stands in contrast to decoupled He and Ne

  12. HUBBLE SPACE TELESCOPE EMISSION-LINE GALAXIES AT z ∼ 2: THE MYSTERY OF NEON

    SciTech Connect

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry; Gronwall, Caryl; Hagen, Alex; Trump, Jonathan R.; Bridge, Joanna S.; Luo, Bin; Schneider, Donald P.

    2015-01-01

    We use near-infrared grism spectroscopy from the Hubble Space Telescope to examine the strength of [Ne III] λ3869 relative to Hβ, [O II] λ3727, and [O III] λ5007 in 236 low-mass (7.5 ≲ log (M {sub *}/M {sub ☉}) ≲ 10.5) star-forming galaxies in the redshift range 1.90 < z < 2.35. By stacking the data by stellar mass, we show that the [Ne III]/[O II] ratios of the z ∼ 2 universe are marginally higher than those seen in a comparable set of local Sloan Digital Sky Survey galaxies, and that [Ne III]/[O III] is enhanced by ∼0.2 dex. We consider the possible explanations for this ∼4σ result, including higher oxygen depletion out of the gas phase, denser H II regions, higher production of {sup 22}Ne via Wolf-Rayet stars, and the existence of a larger population of X-ray obscured active galactic nuclei at z ∼ 2 compared to z ∼ 0. None of these simple scenarios, alone, are favored to explain the observed line ratios. We conclude by suggesting several avenues of future observations to further explore the mystery of enhanced [Ne III] emission.

  13. H3(+) as a trap for noble gases-3: multiple trapping of neon, argon, and krypton in X(n)H3(+) (n = 1-3).

    PubMed

    Pauzat, F; Ellinger, Y; Pilmé, J; Mousis, O

    2009-05-07

    Recent studies on the formation of XH(3)(+) noble gas complexes have shown strategic implications for the composition of the atmospheres of the giant planets as well as for the composition of comets. One crucial factor in the astrophysical process is the relative abundances of the noble gases versus H(3)(+). It is the context in which the possibility for clustering with more than one noble gas (X(n)H(3)(+) up to n = 3) has been investigated for noble gases X ranging from neon to krypton. In order to assert our results, a variety of methods have been used including ab initio coupled cluster CCSD and CCSD(T), MP2, and density functional BH&HLYP levels of theory. All complexes with one, two, and three noble gases are found to be stable in the Ne, Ar, and Kr families. These stable structures are planar with the noble gases attached to the apices of the H(3)(+) triangle. The binding energy of the nth atom, defined as the X(n)H(3)(+) --> X(n-1)H(3)(+) + X reaction energy, increases slightly with n varying from 1 to 3 in the neon series, while it decreases in the argon series and shows a minimum for n = 2 in the krypton series. The origin of this phenomenon is to be found in the variations in the respective vibrational energies. A topological analysis of the electron localization function shows the importance of the charge transfer from the noble gases toward H(3)(+) as a driving force in the bonding along the series. It is also consistent with the increase in the atomic polarizabilities from neon to krypton. Rotational constants and harmonic frequencies are reported in order to provide a body of data to be used for the detection in laboratory prior to space observations. This study strongly suggests that the noble gases could be sequestered even in an environment where the H(3)(+) abundance is small.

  14. Enhancing continental-scale understanding of agriculture: Integrating the National Ecological Observatory Network (NEON) with existing research networks to address global change.

    NASA Astrophysics Data System (ADS)

    Kelly, G.

    2015-12-01

    Over the past decade, there has been a resurgence of interest in the sustainability of the world's food system and its contributions to feeding the world's population as well as to ensuring environmental sustainability of the planet. The elements of this grand challenge are by now well known. Analysis of agricultural sustainability is made more challenging by the fact that the local responses to these global drivers of change are extremely variable in space and time due to the biophysical and geopolitical heterogeneity across the United States, and the world. Utilizing research networks allows the scientific community to leverage existing knowledge, models and data to develop a framework for understanding the interplay between global change drivers, regional, and continental sustainability of US agriculture. For example, well-established instrumented and calibrated research networks will allow for the examination of the potential tradeoffs between: 1) crop production, 2) land use and carbon emissions and sequestration, 3) groundwater depletion, and 4) nitrogen dynamics. NEON represents a major investment in scientific infrastructure in support of ecological research at a continental scale and is intended to address multiple ecological grand challenges. NEON will collect data from automated sensors and sample organisms and ecological variables in 20 eco-climatic domains. We will provide examples of how NEON's full potential can be realized when these data are combined with long term experimental results and other sensor networks [e.g., Ameriflux, Fluxnet, the Long-term Ecological Research Program (LTER), the Long-term Agroecosystem Research Network (LTAR)], Critical Zone Observatory (CZO).

  15. Identifying Pelagic Habitat Hotspots of Neon Flying Squid in the Temperate Waters of the Central North Pacific

    PubMed Central

    Alabia, Irene D.; Saitoh, Sei-Ichi; Mugo, Robinson; Igarashi, Hiromichi; Ishikawa, Yoichi; Usui, Norihisa; Kamachi, Masafumi; Awaji, Toshiyuki; Seito, Masaki

    2015-01-01

    We identified the pelagic habitat hotspots of the neon flying squid (Ommastrephes bartramii) in the central North Pacific from May to July and characterized the spatial patterns of squid aggregations in relation to oceanographic features such as mesoscale oceanic eddies and the Transition Zone Chlorophyll-a Front (TZCF). The data used for the habitat model construction and analyses were squid fishery information, remotely-sensed and numerical model-derived environmental data from May to July 1999–2010. Squid habitat hotspots were deduced from the monthly Maximum Entropy (MaxEnt) models and were identified as regions of persistent high suitable habitat across the 12-year period. The distribution of predicted squid habitat hotspots in central North Pacific revealed interesting spatial and temporal patterns likely linked with the presence and dynamics of oceanographic features in squid’s putative foraging grounds from late spring to summer. From May to June, the inferred patches of squid habitat hotspots developed within the Kuroshio-Oyashio transition zone (KOTZ; 37–40°N) and further expanded north towards the subarctic frontal zone (SAFZ; 40–44°N) in July. The squid habitat hotspots within the KOTZ and areas west of the dateline (160°W-180°) were likely influenced and associated with the highly dynamic and transient oceanic eddies and could possibly account for lower squid suitable habitat persistence obtained from these regions. However, predicted squid habitat hotspots located in regions east of the dateline (180°-160°W) from June to July, showed predominantly higher squid habitat persistence presumably due to their proximity to the mean position of the seasonally-shifting TZCF and consequent utilization of the highly productive waters of the SAFZ. PMID:26571118

  16. Helium-neon laser irradiation of cryopreserved ram sperm enhances cytochrome c oxidase activity and ATP levels improving semen quality.

    PubMed

    Iaffaldano, N; Paventi, G; Pizzuto, R; Di Iorio, M; Bailey, J L; Manchisi, A; Passarella, S

    2016-08-01

    This study examines whether and how helium-neon laser irradiation (at fluences of 3.96-9 J/cm(2)) of cryopreserved ram sperm helps improve semen quality. Pools (n = 7) of cryopreserved ram sperm were divided into four aliquots and subjected to the treatments: no irradiation (control) or irradiation with three different energy doses. After treatment, the thawed sperm samples were compared in terms of viability, mass and progressive sperm motility, osmotic resistance, as well as DNA and acrosome integrity. In response to irradiation at 6.12 J/cm(2), mass sperm motility, progressive motility and viability increased (P < 0.05), with no significant changes observed in the other investigated properties. In parallel, an increase (P < 0.05) in ATP content was detected in the 6.12 J/cm(2)-irradiated semen samples. Because mitochondria are the main cell photoreceptors with a major role played by cytochrome c oxidase (COX), the COX reaction was monitored using cytochrome c as a substrate in both control and irradiated samples. Laser treatment resulted in a general increase in COX affinity for its substrate as well as an increase in COX activity (Vmax values), the highest activity obtained for sperm samples irradiated at 6.12 J/cm(2) (P < 0.05). Interestingly, in these irradiated sperm samples, COX activity and ATP contents were positively correlated, and, more importantly, they also showed positive correlation with motility, suggesting that the improved sperm quality observed was related to mitochondria-laser light interactions.

  17. The effects of topical tripeptide copper complex and helium-neon laser on wound healing in rabbits.

    PubMed

    Gul, Nihal Y; Topal, Ayse; Cangul, I Taci; Yanik, Kemal

    2008-02-01

    The aim of this study was to compare the clinical and histopathological effects of tripeptide copper complex (TCC) and two different doses of laser application (helium-neon laser, 1 and 3 J cm(-2)) on wound healing with untreated control wounds. Experimental wounds were created on a total of 24 New Zealand white rabbits and topical TCC or laser was applied for 28 days. The wounds were observed daily, and planimetry was performed on days 7, 14, 21 and 28 to measure the unhealed wound area and percentage of total wound healing. Biopsies were taken weekly to evaluate the inflammatory response and the level of neovascularization. The median time for the first observable granulation tissue was shorter (P < 0.05) in the low and high dose laser groups than in the control group (3 and 2.66 vs. 4.5 days), but was not different between the TCC and control groups (4.16 vs. 4.5 days). Filling of the open wound to skin level with granulation tissue was faster (P < 0.05) in the TCC and high dose laser groups than in the control group (14 and 16 vs. 25 days), but was not different between the low dose laser and control groups (23 vs. 25 days). The average time for healing was shorter (P < 0.05) in the TCC and high dose laser groups (29.8 and 30.2 vs. 34.6 days), but was not different between the low dose laser and control groups (33.8 vs. 34.6 days). Histopathologically, wound healing was characterized by a decrease in the neutrophil counts and an increase in neovascularization. The TCC and high dose laser groups had greater neutrophil and vessel counts than in the control group, suggesting a more beneficial effect for wound healing.

  18. High-power helium-neon laser irradiation inhibits the growth of traumatic scars in vitro and in vivo.

    PubMed

    Shu, Bin; Ni, Guo-Xin; Zhang, Lian-Yang; Li, Xiang-Ping; Jiang, Wan-Ling; Zhang, Li-Qun

    2013-05-01

    This study explored the inhibitory effect of the high-power helium-neon (He-Ne) laser on the growth of scars post trauma. For the in vitro study, human wound fibroblasts were exposed to the high-power He-Ne laser for 30 min, once per day with different power densities (10, 50, 100, and 150 mW/cm(2)). After 3 days of repeated irradiation with the He-Ne laser, fibroblast proliferation and collagen synthesis were evaluated. For in vivo evaluation, a wounded animal model of hypertrophic scar formation was established. At postoperative day 21, the high-power He-Ne laser irradiation (output power 120 mW, 6 mm in diameter, 30 min each session, every other day) was performed on 20 scars. At postoperative day 35, the hydroxyproline content, apoptosis rate, PCNA protein expression and FADD mRNA level were assessed. The in vitro study showed that the irradiation group that received the power densities of 100 and 150 mW/cm(2) showed decreases in the cell proliferation index, increases in the percentage of cells in the G0/G1 phase, and decreases in collagen synthesis and type I procollagen gene expression. In the in vivo animal studies, regions exposed to He-Ne irradiation showed a significant decrease in scar thickness as well as decreases in hydroxyproline levels and PCNA protein expression. Results from the in vitro and in vivo studies suggest that repeated irradiation with a He-Ne laser at certain power densities inhibits fibroblast proliferation and collagen synthesis, thereby inhibits the growth of hypertrophic scars.

  19. Identifying Pelagic Habitat Hotspots of Neon Flying Squid in the Temperate Waters of the Central North Pacific.

    PubMed

    Alabia, Irene D; Saitoh, Sei-Ichi; Mugo, Robinson; Igarashi, Hiromichi; Ishikawa, Yoichi; Usui, Norihisa; Kamachi, Masafumi; Awaji, Toshiyuki; Seito, Masaki

    2015-01-01

    We identified the pelagic habitat hotspots of the neon flying squid (Ommastrephes bartramii) in the central North Pacific from May to July and characterized the spatial patterns of squid aggregations in relation to oceanographic features such as mesoscale oceanic eddies and the Transition Zone Chlorophyll-a Front (TZCF). The data used for the habitat model construction and analyses were squid fishery information, remotely-sensed and numerical model-derived environmental data from May to July 1999-2010. Squid habitat hotspots were deduced from the monthly Maximum Entropy (MaxEnt) models and were identified as regions of persistent high suitable habitat across the 12-year period. The distribution of predicted squid habitat hotspots in central North Pacific revealed interesting spatial and temporal patterns likely linked with the presence and dynamics of oceanographic features in squid's putative foraging grounds from late spring to summer. From May to June, the inferred patches of squid habitat hotspots developed within the Kuroshio-Oyashio transition zone (KOTZ; 37-40°N) and further expanded north towards the subarctic frontal zone (SAFZ; 40-44°N) in July. The squid habitat hotspots within the KOTZ and areas west of the dateline (160°W-180°) were likely influenced and associated with the highly dynamic and transient oceanic eddies and could possibly account for lower squid suitable habitat persistence obtained from these regions. However, predicted squid habitat hotspots located in regions east of the dateline (180°-160°W) from June to July, showed predominantly higher squid habitat persistence presumably due to their proximity to the mean position of the seasonally-shifting TZCF and consequent utilization of the highly productive waters of the SAFZ.

  20. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon.

    PubMed

    Mukhopadhyay, Sujoy

    2012-06-06

    The isotopes (129)Xe, produced from the radioactive decay of extinct (129)I, and (136)Xe, produced from extinct (244)Pu and extant (238)U, have provided important constraints on early mantle outgassing and volatile loss from Earth. The low ratios of radiogenic to non-radiogenic xenon ((129)Xe/(130)Xe) in ocean island basalts (OIBs) compared with mid-ocean-ridge basalts (MORBs) have been used as evidence for the existence of a relatively undegassed primitive deep-mantle reservoir. However, the low (129)Xe/(130)Xe ratios in OIBs have also been attributed to mixing between subducted atmospheric Xe and MORB Xe, which obviates the need for a less degassed deep-mantle reservoir. Here I present new noble gas (He, Ne, Ar, Xe) measurements from an Icelandic OIB that reveal differences in elemental abundances and (20)Ne/(22)Ne ratios between the Iceland mantle plume and the MORB source. These observations show that the lower (129)Xe/(130)Xe ratios in OIBs are due to a lower I/Xe ratio in the OIB mantle source and cannot be explained solely by mixing atmospheric Xe with MORB-type Xe. Because (129)I became extinct about 100 million years after the formation of the Solar System, OIB and MORB mantle sources must have differentiated by 4.45 billion years ago and subsequent mixing must have been limited. The Iceland plume source also has a higher proportion of Pu- to U-derived fission Xe, requiring the plume source to be less degassed than MORBs, a conclusion that is independent of noble gas concentrations and the partitioning behaviour of the noble gases with respect to their radiogenic parents. Overall, these results show that Earth's mantle accreted volatiles from at least two separate sources and that neither the Moon-forming impact nor 4.45 billion years of mantle convection has erased the signature of Earth's heterogeneous accretion and early differentiation.

  1. Structure and internal rotation dynamics of the acetone-neon complex studied by microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Gao, Jiao; Seifert, Nathan A.; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang

    2016-12-01

    The microwave spectra of the van der Waals complexes acetone-20Ne and acetone-22Ne were measured using a cavity-based supersonic jet Fourier-transform microwave spectrometer in the region from 5 to 18 GHz. For these two isotopologues, both c- and weaker a-type transitions were observed. The transitions are split into multiplets due to the internal rotation of the two methyl groups in acetone. Initial electronic structure calculations were performed at the MP2/6-311++g (2d, p) level of theory and the internal rotation barrier height of the methyl groups was calculated to be ∼2.8 kJ/mol. The ab initio rotational constants were the basis for the spectroscopic searches, but the multiplet structures and floppiness of the complex made the quantum number assignment very difficult. The assignment was finally achieved with the aid of constructing closed frequency loops and predicting internal rotation splittings using the XIAM internal rotation program. The acetone methyl group tunneling barrier height was determined experimentally to be 3.10(6) kJ mol-1 [259(5) cm-1] in the acetone-Ne complex, which is lower than in the acetone monomer but comparable to the acetone-Ar complex (Kang et al., 2002). Experimental data and high-level CCSD(T)/aug-cc-pVTZ calculations suggest that the Ne atom lies directly above the plane formed by the carbonyl group and the two carbon-carbon bonds, which is different than the slightly offset position found previously in the acetone-Ar complex. Additionally, ab initio calculations and Quantum Theory of Atoms in Molecules analyses were used to analyze the methyl internal rotation motions in acetone and acetone-Ne.

  2. F-22A Raptor

    DTIC Science & Technology

    2008-08-13

    GAO- 04 -39, pp. 7 -8 vendors. Therefore, keeping the F-22 line open will help protect the F-35s industrial base, supporters argue. F-35 proponents...5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7 . PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...4, 2002. 7 Ron Laurenzo, “Roche Envisions Close Air Support F-22,” Defense Week. July 1, 2002. 8 Bill Sweetman. “Smarter Bomber,” Popular Science

  3. Possible link between interannual variation of neon flying squid (Ommastrephes bartramii) abundance in the North Pacific and the climate phase shift in 1998/1999

    NASA Astrophysics Data System (ADS)

    Igarashi, Hiromichi; Ichii, Taro; Sakai, Mitsuo; Ishikawa, Yoichi; Toyoda, Takahiro; Masuda, Shuhei; Sugiura, Nozomi; Mahapatra, Kedarnath; Awaji, Toshiyuki

    2017-01-01

    The relationship between interannual variation in abundance of the autumn cohort of the neon flying squid (Ommastrephes bartramii) and ocean environmental changes in the central North Pacific was examined. We focused on the change in subsurface ocean state during the 1998/1999 climate shift. Changes in catch per unit effort (CPUE) of the neon flying squid derived from long-term driftnet survey was compared to that in ocean environments related to the feeding conditions of the squid. A four-dimensional variational (4D-VAR) ocean data assimilation product was used as an accurate estimate of the dynamic state in the North Pacific. Correlation analysis indicated that the squid CPUE was highly related with the Pacific Decadal Oscillation (PDO) in winter. In January, the correlation field with the entrainment rate (ENT), the proxy for the nutrient-rich water supply entering the mixed layer, showed a good agreement with the main spawning and nursery ground of the autumn cohort (MSNGAC). The nutrient-rich water supply in the MSNGAC in early winter was mainly induced by the deepening of the mixed layer forced by surface latent heat cooling and turbulent mixing, while the basin-scale wind stress curl and the horizontal advection were less affected. These results suggest that the amount of newly supplied nutrient-rich water mass in early winter could affect the primary productivity throughout the winter and the resultant feeding conditions of the juvenile squid. We assumed that this process would determine the stock levels of the neon flying squid in the following summer. We further attempted to reconstruct the changes in neon flying squid CPUE during 1994-2006 by applying regression analysis to several parameters. The result showed that ENT, surface and subsurface temperatures, and the PDO index in February were good predictors for estimating the squid CPUE time series. In addition, the subsurface temperature in the MSNGAC in the preceding autumn was also a good predictor

  4. Facing the Challenges of Accessing, Managing, and Integrating Large Observational Datasets in Ecology: Enabling and Enriching the Use of NEON's Observational Data

    NASA Astrophysics Data System (ADS)

    Thibault, K. M.

    2013-12-01

    As the construction of NEON and its transition to operations progresses, more and more data will become available to the scientific community, both from NEON directly and from the concomitant growth of existing data repositories. Many of these datasets include ecological observations of a diversity of taxa in both aquatic and terrestrial environments. Although observational data have been collected and used throughout the history of organismal biology, the field has not yet fully developed a culture of data management, documentation, standardization, sharing and discoverability to facilitate the integration and synthesis of datasets. Moreover, the tools required to accomplish these goals, namely database design, implementation, and management, and automation and parallelization of analytical tasks through computational techniques, have not historically been included in biology curricula, at either the undergraduate or graduate levels. To ensure the success of data-generating projects like NEON in advancing organismal ecology and to increase transparency and reproducibility of scientific analyses, an acceleration of the cultural shift to open science practices, the development and adoption of data standards, such as the DarwinCore standard for taxonomic data, and increased training in computational approaches for biologists need to be realized. Here I highlight several initiatives that are intended to increase access to and discoverability of publicly available datasets and equip biologists and other scientists with the skills that are need to manage, integrate, and analyze data from multiple large-scale projects. The EcoData Retriever (ecodataretriever.org) is a tool that downloads publicly available datasets, re-formats the data into an efficient relational database structure, and then automatically imports the data tables onto a user's local drive into the database tool of the user's choice. The automation of these tasks results in nearly instantaneous execution

  5. Human chromosome 22.

    PubMed Central

    Kaplan, J C; Aurias, A; Julier, C; Prieur, M; Szajnert, M F

    1987-01-01

    The acrocentric chromosome 22, one of the shortest human chromosomes, carries about 52 000 kb of DNA. The short arm is made up essentially of heterochromatin and, as in other acrocentric chromosomes, it contains ribosomal RNA genes. Ten identified genes have been assigned to the long arm, of which four have already been cloned and documented (the cluster of lambda immunoglobulin genes, myoglobin, the proto-oncogene c-sis, bcr). In addition, about 10 anonymous DNA segments have been cloned from chromosome 22 specific DNA libraries. About a dozen diseases, including at least four different malignancies, are related to an inherited or acquired pathology of chromosome 22. They have been characterised at the phenotypic or chromosome level or both. In chronic myelogenous leukaemia, with the Ph1 chromosome, and Burkitt's lymphoma, with the t(8;22) variant translocation, the molecular pathology is being studied at the DNA level, bridging for the first time the gap between cytogenetics and molecular genetics. PMID:3550088

  6. 22 CFR 120.22 - Technical assistance agreement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Technical assistance agreement. 120.22 Section 120.22 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.22 Technical assistance agreement. An agreement (e.g., contract) for the performance of...

  7. 22 CFR 120.22 - Technical assistance agreement.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Technical assistance agreement. 120.22 Section 120.22 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.22 Technical assistance agreement. An agreement (e.g., contract) for the performance of...

  8. 22 CFR 120.22 - Technical assistance agreement.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Technical assistance agreement. 120.22 Section 120.22 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.22 Technical assistance agreement. An agreement (e.g., contract) for the performance of...

  9. 22 CFR 120.22 - Technical assistance agreement.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Technical assistance agreement. 120.22 Section 120.22 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.22 Technical assistance agreement. An agreement (e.g., contract) for the performance of...

  10. 22 CFR 120.22 - Technical assistance agreement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Technical assistance agreement. 120.22 Section 120.22 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.22 Technical assistance agreement. An agreement (e.g., contract) for the performance of...

  11. 22 CFR 309.22 - Termination of collection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Termination of collection. 309.22 Section 309.22 Foreign Relations PEACE CORPS DEBT COLLECTION Salary Offset § 309.22 Termination of collection. Termination of collection action shall be made in accordance with the standards set forth in the FCCS (31...

  12. 22 CFR 309.22 - Termination of collection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Termination of collection. 309.22 Section 309.22 Foreign Relations PEACE CORPS DEBT COLLECTION Salary Offset § 309.22 Termination of collection. Termination of collection action shall be made in accordance with the standards set forth in the FCCS (31...

  13. 22 CFR 309.22 - Termination of collection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 2 2013-04-01 2009-04-01 true Termination of collection. 309.22 Section 309.22 Foreign Relations PEACE CORPS DEBT COLLECTION Salary Offset § 309.22 Termination of collection. Termination of collection action shall be made in accordance with the standards set forth in the FCCS (31...

  14. 22 CFR 309.22 - Termination of collection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Termination of collection. 309.22 Section 309.22 Foreign Relations PEACE CORPS DEBT COLLECTION Salary Offset § 309.22 Termination of collection. Termination of collection action shall be made in accordance with the standards set forth in the FCCS (31...

  15. 22 CFR 309.22 - Termination of collection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 2 2012-04-01 2009-04-01 true Termination of collection. 309.22 Section 309.22 Foreign Relations PEACE CORPS DEBT COLLECTION Salary Offset § 309.22 Termination of collection. Termination of collection action shall be made in accordance with the standards set forth in the FCCS (31...

  16. 47 CFR 22.203-22.211 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false 22.203-22.211 Section 22.203-22.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Licensing Requirements and Procedures Competitive Bidding Procedures §§...

  17. 47 CFR 22.203-22.211 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false 22.203-22.211 Section 22.203-22.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Licensing Requirements and Procedures Competitive Bidding Procedures §§...

  18. 47 CFR 22.203-22.211 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false 22.203-22.211 Section 22.203-22.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Licensing Requirements and Procedures Competitive Bidding Procedures §§...

  19. 47 CFR 22.203-22.211 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false 22.203-22.211 Section 22.203-22.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Licensing Requirements and Procedures Competitive Bidding Procedures §§...

  20. 22 CFR 192.22 - Description of benefits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Description of benefits. 192.22 Section 192.22 Foreign Relations DEPARTMENT OF STATE HOSTAGE RELIEF VICTIMS OF TERRORISM COMPENSATION Application of Soldiers' and Sailors' Civil Relief Act to Captive Situations § 192.22 Description of benefits....

  1. 22 CFR 221.22 - No acceleration of Eligible Notes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false No acceleration of Eligible Notes. 221.22 Section 221.22 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEE STANDARD TERMS AND CONDITIONS Procedure for Obtaining Compensation § 221.22 No acceleration of Eligible...

  2. 22 CFR 221.22 - No acceleration of Eligible Notes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false No acceleration of Eligible Notes. 221.22 Section 221.22 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEE STANDARD TERMS AND CONDITIONS Procedure for Obtaining Compensation § 221.22 No acceleration of Eligible...

  3. 22 CFR 221.22 - No acceleration of Eligible Notes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false No acceleration of Eligible Notes. 221.22 Section 221.22 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEE STANDARD TERMS AND CONDITIONS Procedure for Obtaining Compensation § 221.22 No acceleration of Eligible...

  4. 22 CFR 221.22 - No acceleration of Eligible Notes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false No acceleration of Eligible Notes. 221.22 Section 221.22 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEE STANDARD TERMS AND CONDITIONS Procedure for Obtaining Compensation § 221.22 No acceleration of Eligible...

  5. 22 CFR 221.22 - No acceleration of Eligible Notes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false No acceleration of Eligible Notes. 221.22 Section 221.22 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEE STANDARD TERMS AND CONDITIONS Procedure for Obtaining Compensation § 221.22 No acceleration of Eligible...

  6. Nuclear Data Sheets for A = 22

    SciTech Connect

    Basunia, M. Shamsuzzoha

    2015-07-15

    Evaluated spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented for {sup 22}C, {sup 22}N, {sup 22}O, {sup 22}F, {sup 22}Ne, {sup 22}Na, {sup 22}Mg, {sup 22}Al, and {sup 22}Si. This evaluation for A = 22 supersedes the earlier one by R. B. Firestone (2005Fi16)

  7. Theoretical studies of massive stars. I - Evolution of a 15-solar-mass star from the zero-age main sequence to neon ignition

    NASA Technical Reports Server (NTRS)

    Endal, A. S.

    1975-01-01

    The evolution of a star with mass 15 times that of the sun from the zero-age main sequence to neon ignition has been computed by the Henyey method. The hydrogen-rich envelope and all shell sources were explicitly included in the models. An algorithm has been developed for approximating the results of carbon burning, including the branching ratio for the C-12 + C-12 reaction and taking some secondary reactions into account. Penetration of the convective envelope into the core is found to be unimportant during the stages covered by the models. Energy transfer from the carbon-burning shell to the core by degenerate electron conduction becomes important after the core carbon-burning stage. Neon ignition will occur in a semidegenerate core and will lead to a mild 'flash.' Detailed numerical results are given in an appendix. Continuation of the calculations into later stages and variations with the total mass of the star will be discussed in later papers.

  8. Effect of helium-neon laser on fast excitatory postsynaptic potential (f-EPSP) of neurons in the isolated rat superior cervical ganglia

    NASA Astrophysics Data System (ADS)

    Hua, Mo; Ping, He; Ning, Mo

    2002-06-01

    Single electrical stimulation of the cervical sympathetic trunk elicits in the ganglion cells an excitatory postsynaptic potential (EPSP) or multiple EPSPs of varying latencies, among which a fast excitatory postsynaptic potential (f-EPSP) is the main type of ganglionic transmission in the sympathetic neurons. In previous work, we studied the effects of Helium-Neon laser with wavelength 632.8 nm on membrane conductance of neurons with stable f- EPSP in isolated rat superior cervical ganglia. The aim of this study is to further measure the effect of Helium-Neon Laser with wavelength 632.8 nm on fast excitatory postsynaptic potential of postganglionic neurons in the isolated rate superior cervical ganglia by means of intracellular recording techniques. The neurons with fast excitatory postsynaptic potential were irradiated by different power densities (1 and 5 mW/cm2), pulse frequency of 1 Hz laser. Irradiated by the 2 mW/cm2 laser, the amplitude of the f-EPSP could augment (P<0.05) and even caused action potential (AP) at the end of the first 1-2 minute, the F-EPSP could descend and lasted for 3- 8 minutes later.

  9. Intermolecular dispersion interactions of normal alkanes with rare gas atoms: van der Waals complexes of n-pentane with helium, neon, and argon

    NASA Astrophysics Data System (ADS)

    Balabin, Roman M.

    2008-09-01

    Interaction energies of normal pentane with three rare gas atoms (helium, neon, and argon) were calculated using ab initio methods: the second-order Møller-Plesset (MP2), the fourth-order Møller-Plesset (MP4), and coupled cluster with single and double substitutions with noniterative triple excitation (CCSD(T)) levels of theory. Dunning's correlation consistent basis sets up to aug-cc-pVQZ were applied. Eight profiles (246 points for each rare gas atom) of potential energy surface (PES) of all-trans (anti-anti) conformation of n-pentane were scanned. Optimal distances for complex formation were found. MP2 interaction energies at the basis set limit were evaluated by three different methods (Feller's, Helgaker's, and Martin's). The MP2 interaction energy at the basis set limit for a global minimum of n-pentane complex with argon was more than 400 cm -1, so formation of a stable complex (at least at low temperature) can be expected. A comparison with previously published data on propane complexes with rare gas atoms (both computational and experimental) was done. The MP4 level of theory was found to be sufficient for a description of C 5H 12 complexes with helium, neon, and argon.

  10. Detecting trends in regional ecosystem functioning: the importance of field data for calibrating and validating NEON airborne remote sensing instruments and science data products

    NASA Astrophysics Data System (ADS)

    McCorkel, J.; Kuester, M. A.; Johnson, B. R.; Krause, K.; Kampe, T. U.; Moore, D. J.

    2011-12-01

    The National Ecological Observatory Network (NEON) is a research facility under development by the National Science Foundation to improve our understanding of and ability to forecast the impacts of climate change, land-use change, and invasive species on ecology. The infrastructure, designed to operate over 30 years or more, includes site-based flux tower and field measurements, coordinated with airborne remote sensing observations to observe key ecological processes over a broad range of temporal and spatial scales. NEON airborne data on vegetation biochemical, biophysical, and structural properties and on land use and land cover will be captured at 1 to 2 meter resolution by an imaging spectrometer, a small-footprint waveform-LiDAR and a high-resolution digital camera. Annual coverage of the 60 NEON sites and capacity to support directed research flights or respond to unexpected events will require three airborne observation platforms (AOP). The integration of field and airborne data with satellite observations and other national geospatial data for analysis, monitoring and input to ecosystem models will extend NEON observations to regions across the United States not directly sampled by the observatory. The different spatial scales and measurement methods make quantitative comparisons between remote sensing and field data, typically collected over small sample plots (e.g. < 0.2 ha), difficult. New approaches to developing temporal and spatial scaling relationships between these data are necessary to enable validation of airborne and satellite remote sensing data and for incorporation of these data into continental or global scale ecological models. In addition to consideration of the methods used to collect ground-based measurements, careful calibration of the remote sensing instrumentation and an assessment of the accuracy of algorithms used to derive higher-level science data products are needed. Furthermore, long-term consistency of the data collected by all

  11. Targeting interleukin-22 in psoriasis.

    PubMed

    Hao, Ji-Qing

    2014-02-01

    Interleukin-22 (IL-22) is an IL-10 family cytokine that was recently discovered to be released by T helper 17 (Th17) cells, Th22 cells, etc. Recently, there is emerging evidence that IL-22 is involved in the development and pathogenesis of psoriasis. For instance, IL-22 can inhibit keratinocyte terminal differentiation and can induce psoriasis-like epidermis alterations; serum IL-22 levels were correlated with the disease severity of psoriasis patients, and IL-22 mRNA was positively expressed in the psoriatic skin lesions, but negatively expressed in the normal controls. All these findings suggest that IL-22 may be implicated in psoriasis; therapeutics targeting IL-22 may have promise as a potential therapeutic target for treating psoriasis. In the present review, we summarize recent advances on the role of IL-22 in the pathogenesis and treatment of psoriasis.

  12. Detection of spatial hot spots and variation for the neon flying squid Ommastrephes bartramii resources in the northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Feng, Yongjiu; Chen, Xinjun; Liu, Yan

    2016-08-01

    With the increasing effects of global climate change and fishing activities, the spatial distribution of the neon flying squid (Ommastrephes bartramii) is changing in the traditional fishing ground of 150°-160°E and 38°-45°N in the northwest Pacific Ocean. This research aims to identify the spatial hot and cold spots (i.e. spatial clusters) of O. bartramii to reveal its spatial structure using commercial fishery data from 2007 to 2010 collected by Chinese mainland squid-jigging fleets. A relatively strongly-clustered distribution for O. bartramii was observed using an exploratory spatial data analysis (ESDA) method. The results show two hot spots and one cold spot in 2007 while only one hot and one cold spots were identified each year from 2008 to 2010. The hot and cold spots in 2007 occupied 8.2% and 5.6% of the study area, respectively; these percentages for hot and cold spot areas were 5.8% and 3.1% in 2008, 10.2% and 2.9% in 2009, and 16.4% and 11.9% in 2010, respectively. Nearly half (>45%) of the squid from 2007 to 2009 reported by Chinese fleets were caught in hot spot areas while this percentage reached its peak at 68.8% in 2010, indicating that the hot spot areas are central fishing grounds. A further change analysis shows the area centered at 156°E/43.5°N was persistent as a hot spot over the whole period from 2007 to 2010. Furthermore, the hot spots were mainly identified in areas with sea surface temperature (SST) in the range of 15-20°C around warm Kuroshio Currents as well as with the chlorophyll-a (chl-a) concentration above 0.3 mg/m3. The outcome of this research improves our understanding of spatiotemporal hotspots and its variation for O. bartramii and is useful for sustainable exploitation, assessment, and management of this squid.

  13. Laser Optogalvanic Spectroscopy pf Neon and Argon in a Discharge Plasma and its Significance for Microgravity Combustion

    NASA Technical Reports Server (NTRS)

    Misra, Prabhakar; Haridass, C.; Major, H.

    1999-01-01

    information, such as the electron collisional ionization rate, can be extracted from the complex processes occurring within the discharge. In the optogalvanic effect (OGE), there is no problem of overlap from background emissions, and hence even weak signals can be detected with a high signal-to-noise ratio, which makes the optogalvanic effect sensitive enough to resolve vibrational changes in molecular bonds and differences in energy levels brought about by different electron spins. For calibration purposes, neon and argon gaseous discharges have been employed most extensively, because these gases are commonly used as buffer gases within hollow-cathode lamps and provide an acceptable density of calibration lines. In the present work, our main aim has been to understand the dominant physical processes responsible for the production of the OGE signal, based on the extensive time resolved optogalvanic waveforms recorded, and also to extract quantitative information on the rates of excited state collisional processes.

  14. Solar 22 years cycle

    NASA Astrophysics Data System (ADS)

    Kotov, Valery A.; Sanchez, Francis M.

    2017-01-01

    Seven observatories performed in 1968-2015 numerous daily measurements of general magnetic field of the Sun seen as a star (of a mean line-of-sight field component of the visible solar hemisphere). The new data 2013-2015 confirmed the recent prediction about saw-edged profile of the mean curve of the Hale's 22 years magnetic cycle and, thus, a hypothesis about its cosmological (partial) origin. This is supported by a special analysis of epochs of extrema of Wolf's sunspot number, demonstrating a remarkable stability, since Galileo's time, of the initial phase of the cycle, which can hardly be explained by dynamo theory exclusively.

  15. F-22A Raptor

    DTIC Science & Technology

    2007-06-12

    Raptor’s attack capabilities raises two broad issues: are these capabilities needed? And are these capabilities worth the cost? CRS-10 26 GAO- 04 -39, pp. 7 -8...5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7 . PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...Program,” Defense Daily, March 4, 2002. 6 Ron Laurenzo, “Roche Envisions Close Air Support F-22,” Defense Week. July 1, 2002. 7 Bill Sweetman. “Smarter

  16. Three New Low-Energy Resonances in the 22Ne(p, γ )23Na Reaction

    NASA Astrophysics Data System (ADS)

    Cavanna, Francesca; Depalo, Rosanna

    The neon-sodium (NeNa) cycle drives the synthesis of the elements between 20Ne and 27Al, through a series of proton capture reactions that start from 20Ne, to end with sodium synthesis. This cycle is active in red giant stars (RGB), asymptotic giant branch stars (AGB), in novae as well as in type Ia supernovae. In order to reproduce the observed elemental abundances, the cross sections of the reactions involved in the nucleosynthesis process should be accurately known. The 22Ne(p, γ )23Na reaction rate was very uncertain because of a large number of unobserved resonances lying in the Gamow window. For proton energies below 400 keV, in the literature there were only upper limits for the resonance strengths. A new direct study of the 22Ne(p, γ )23Na reaction has been performed at the Laboratory for Underground Nuclear Astrophysics (LUNA) in Gran Sasso using a windowless gas target and two high-purity germanium detectors. Several resonances have been observed for the first time in a direct experiment.

  17. 22 CFR 40.22 - Multiple criminal convictions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Criminal and Related Grounds-Conviction of Certain Crimes § 40.22 Multiple criminal convictions. (a) Conviction(s) for crime(s) committed under age... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Multiple criminal convictions. 40.22 Section...

  18. 22 CFR 40.22 - Multiple criminal convictions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Criminal and Related Grounds-Conviction of Certain Crimes § 40.22 Multiple criminal convictions. (a) Conviction(s) for crime(s) committed under age... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Multiple criminal convictions. 40.22 Section...

  19. 22 CFR 40.22 - Multiple criminal convictions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Criminal and Related Grounds-Conviction of Certain Crimes § 40.22 Multiple criminal convictions. (a) Conviction(s) for crime(s) committed under age... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Multiple criminal convictions. 40.22 Section...

  20. 33 CFR 83.22 - Visibility of lights (Rule 22).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Visibility of lights (Rule 22... INLAND NAVIGATION RULES RULES Lights and Shapes § 83.22 Visibility of lights (Rule 22). The lights prescribed in these Rules shall have an intensity as specified in Annex I to these Rules, so as to be...

  1. 33 CFR 83.22 - Visibility of lights (Rule 22).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Visibility of lights (Rule 22... INLAND NAVIGATION RULES RULES Lights and Shapes § 83.22 Visibility of lights (Rule 22). The lights prescribed in these Rules shall have an intensity as specified in Annex I to these Rules, so as to be...

  2. 33 CFR 83.22 - Visibility of lights (Rule 22).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Visibility of lights (Rule 22... INLAND NAVIGATION RULES RULES Lights and Shapes § 83.22 Visibility of lights (Rule 22). The lights prescribed in these Rules shall have an intensity as specified in Annex I to these Rules, so as to be...

  3. 33 CFR 83.22 - Visibility of lights (Rule 22).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Visibility of lights (Rule 22... INLAND NAVIGATION RULES RULES Lights and Shapes § 83.22 Visibility of lights (Rule 22). The lights prescribed in these Rules shall have an intensity as specified in Annex I to these Rules, so as to be...

  4. 22 CFR 41.22 - Officials of foreign governments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Officials of foreign governments. 41.22 Section... IMMIGRATION AND NATIONALITY ACT, AS AMENDED Foreign Government Officials § 41.22 Officials of foreign governments. (a) Criteria for classification of foreign government officials. (1) An alien is classifiable...

  5. 22 CFR 41.22 - Officials of foreign governments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Officials of foreign governments. 41.22 Section... IMMIGRATION AND NATIONALITY ACT, AS AMENDED Foreign Government Officials § 41.22 Officials of foreign governments. (a) Criteria for classification of foreign government officials. (1) An alien is classifiable...

  6. 22 CFR 41.22 - Officials of foreign governments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Officials of foreign governments. 41.22 Section... IMMIGRATION AND NATIONALITY ACT, AS AMENDED Foreign Government Officials § 41.22 Officials of foreign governments. (a) Criteria for classification of foreign government officials. (1) An alien is classifiable...

  7. 22 CFR 212.22 - Protection of personal privacy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Protection of personal privacy. 212.22 Section... Information for Public Inspection and Copying § 212.22 Protection of personal privacy. To the extent required to prevent a clearly unwarranted invasion of personal privacy, USAID may delete identifying...

  8. 22 CFR 212.22 - Protection of personal privacy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Protection of personal privacy. 212.22 Section... Information for Public Inspection and Copying § 212.22 Protection of personal privacy. To the extent required to prevent a clearly unwarranted invasion of personal privacy, USAID may delete identifying...

  9. 22 CFR 212.22 - Protection of personal privacy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Protection of personal privacy. 212.22 Section... Information for Public Inspection and Copying § 212.22 Protection of personal privacy. To the extent required to prevent a clearly unwarranted invasion of personal privacy, USAID may delete identifying...

  10. 22 CFR 212.22 - Protection of personal privacy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Protection of personal privacy. 212.22 Section... Information for Public Inspection and Copying § 212.22 Protection of personal privacy. To the extent required to prevent a clearly unwarranted invasion of personal privacy, USAID may delete identifying...

  11. 22 CFR 212.22 - Protection of personal privacy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Protection of personal privacy. 212.22 Section... Information for Public Inspection and Copying § 212.22 Protection of personal privacy. To the extent required to prevent a clearly unwarranted invasion of personal privacy, USAID may delete identifying...

  12. 22 CFR 22.3 - Remittances in the United States.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Remittances in the United States. 22.3 Section...-DEPARTMENT OF STATE AND FOREIGN SERVICE § 22.3 Remittances in the United States. (a) Type of remittance. Remittances shall be in the form of: (1) Check or bank draft drawn on a bank in the United States; (2)...

  13. 22 CFR 22.3 - Remittances in the United States.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Remittances in the United States. 22.3 Section...-DEPARTMENT OF STATE AND FOREIGN SERVICE § 22.3 Remittances in the United States. (a) Type of remittance. Remittances shall be in the form of: (1) Check or bank draft drawn on a bank in the United States; (2)...

  14. 22 CFR 22.3 - Remittances in the United States.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Remittances in the United States. 22.3 Section...-DEPARTMENT OF STATE AND FOREIGN SERVICE § 22.3 Remittances in the United States. (a) Type of remittance. Remittances shall be in the form of: (1) Check or bank draft drawn on a bank in the United States; (2)...

  15. 22 CFR 22.3 - Remittances in the United States.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Remittances in the United States. 22.3 Section...-DEPARTMENT OF STATE AND FOREIGN SERVICE § 22.3 Remittances in the United States. (a) Type of remittance. Remittances shall be in the form of: (1) Check or bank draft drawn on a bank in the United States; (2)...

  16. 22 CFR 42.22 - Returning resident aliens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Returning resident aliens. 42.22 Section 42.22... Returning resident aliens. (a) Requirements for returning resident status. An alien shall be classifiable as... presented that: (1) The alien had the status of an alien lawfully admitted for permanent residence at...

  17. 22 CFR 42.22 - Returning resident aliens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Returning resident aliens. 42.22 Section 42.22... Returning resident aliens. (a) Requirements for returning resident status. An alien shall be classifiable as... presented that: (1) The alien had the status of an alien lawfully admitted for permanent residence at...

  18. 22 CFR 42.22 - Returning resident aliens.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Returning resident aliens. 42.22 Section 42.22... Returning resident aliens. (a) Requirements for returning resident status. An alien shall be classifiable as... presented that: (1) The alien had the status of an alien lawfully admitted for permanent residence at...

  19. 22 CFR 42.22 - Returning resident aliens.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Returning resident aliens. 42.22 Section 42.22... Returning resident aliens. (a) Requirements for returning resident status. An alien shall be classifiable as... presented that: (1) The alien had the status of an alien lawfully admitted for permanent residence at...

  20. 22 CFR 42.22 - Returning resident aliens.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Returning resident aliens. 42.22 Section 42.22... Returning resident aliens. (a) Requirements for returning resident status. An alien shall be classifiable as... presented that: (1) The alien had the status of an alien lawfully admitted for permanent residence at...

  1. 75 FR 41104 - Airworthiness Directives; Robinson Helicopter Company (Robinson) Model R22, R22 Alpha, R22 Beta...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... Company (Robinson) Model R22, R22 Alpha, R22 Beta, and R22 Mariner Helicopters, and Model R44, and R44 II...). SUMMARY: This document proposes adopting a new airworthiness directive (AD) for Robinson Model R22, R22 Alpha, R22 Beta, and R22 Mariner helicopters, and Model R44 and R44 II helicopters. The AD would...

  2. The polarizabilities of neon

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Lee, Timothy J.; Rice, Julia E.; Almlof, Jan

    1989-01-01

    The static dipole polarizability, second hyperpolarizability, quadrupole polarizability and dipole-dipole-quadrupole hyperpolarizability for the Ne atom are computed, using large Gaussian basis sets and coupled cluster wavefunctions. Correlation effects are substantial, ranging from 15 percent for the dipole polarizability to 40 percent for the second hyperpolarizability. It is confirmed by explicit calculation earlier hypotheses that g-type and higher angular momentum functions and core correlation effects make almost no contribution to these properties in Ne. Triple excitations, on the other hand, are very important, accounting for as much as 25 percent of the correlation contribution to the second hyperpolarizability. The best estimate of the second hyperpolarizability is 119 + or - 4 au, in good agreement with the recent calculations of Maroulis and Thakkar (1989) and the latest experimental result of Shelton (1989).

  3. Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130-4330 A

    NASA Technical Reports Server (NTRS)

    Sansonetti, Jean E.; Reader, Joseph; Sansonetti, Craig J.; Acquista, Nicolo

    1992-01-01

    The spectrum of a platinum hollow-cathode lamp containing neon carrier gas was recorded photographically and photoelectrically with a 10.7 m normal-incidence vacuum spectrograph. Wavelengths and intensities were determined for about 5600 lines in the region 1130-4330 A. An atlas of the spectrum is given, with the spectral lines marked and their intensities, wavelengths, and classifications listed. Lines of impurity species are also identified. The uncertainty of the photographically measured wavelengths is estimated to be +/- 0.0020 A. The uncertainty of lines measured in the photoelectric scans is 0.01 A for wavelengths shorter than 2030 A and 0.02 A for longer wavelengths. Ritz-type wavelengths are given for many of the classified lines of Pt II with uncertainties varying from +/- 0.0004 to +/- 0.0025 A. The uncertainty of the relative intensities is estimated to be about 20 percent.

  4. A new observational approach to investigate the heliospheric interstellar wind interface - The study of extreme and far ultraviolet resonantly scattered solar radiation from neon, oxygen, carbon and nitrogen

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart; Fahr, Hans J.

    1990-01-01

    One of the outstanding uncertainties in the understanding of the heliosphere concerns the character of the interaction between the outflowing solar wind and the interstellar medium. A new possibility for obtaining information on this topic is suggested. The cosmically abundant elements neon, oxygen, carbon, and nitrogen will be affected differently at their interface passage depending upon the character of this region. Consequently, the distribution of these atoms and their ions will vary within the inner heliosphere. The study of resonantly scattered solar radiation from these species will then provide information on the nature of the interface. A preliminary evaluation of this approach has been carried out, and the results are encouraging. The relevant lines to be studied are in the extreme and far ulraviolet. The existing data in these bands are reviewed; unfortunately, past instrumentation has had insufficient resolution and sensitivity to provide useful information. The capabilities of future approved missions with capabilities in this area are evaluated.

  5. Electron-impact-excitation cross sections for electronic levels in neon for incident energies between 25 and 100 eV

    NASA Technical Reports Server (NTRS)

    Register, D. F.; Trajmar, S.; Steffensen, G.; Cartwright, D. C.

    1984-01-01

    Absolute differential cross sections (DCS's) for electron-impact excitation of the lowest forty electronic levels in atomic neon have been determined for incident electron energies of 30 and 50 eV, for the four lowest levels at 25 eV, and two levels at 100 eV. The cross sections for these forty electronic levels are grouped into fifteen features, six of which represent excitation to resolved single electronic levels and the remaining nine which contain the unresolved contributions from two or more electronic levels. These DCS's were extrapolated to 0 deg and 180 deg and integrated to yield absolute integral cross sections as a function of incident electron energy. The results are compared to other experimental and theoretical results.

  6. Inner-shell resonant absorption effects on evolution dynamics of the charge state distribution in a neon atom interacting with ultraintense x-ray pulses

    NASA Astrophysics Data System (ADS)

    Xiang, Wenjun; Gao, Cheng; Fu, Yongsheng; Zeng, Jiaolong; Yuan, Jianmin

    2012-12-01

    Inner-shell resonant absorption (IRA) effects were investigated on evolution dynamics of charge state distribution (CSD) in the interaction of ultraintense x-ray pulses with a neon atom. IRA is the physical origin of the large discrepancies found between theory and experiment at a photon energy of 1050 eV [L. Young , Nature (London)NATUAS0028-083610.1038/nature09177 466, 56 (2010)], where the rates of K-shell resonant absorption 1s→4p of Ne6+ and 1s→3p of Ne7+ are larger than the direct single-photon ionization rates by more than one order of magnitude, and hence IRA becomes the dominant absorption mechanism. Only when the IRA effects are properly taken into account can we correctly explain the observed CSD.

  7. Effect of resistivity profile on current decay time of initial phase of current quench in neon-gas-puff inducing disruptions of JT-60U

    SciTech Connect

    Kawakami, S.; Ohno, N.; Shibata, Y.; Isayama, A.; Kawano, Y.; Watanabe, K. Y.; Takizuka, T.; Okamoto, M.

    2013-11-15

    According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, we find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.

  8. Relationship between cardiovascular system response and adrenocortical glucocorticoid function on exposure to diffuse, low-intensity helium-neon laser emission

    NASA Astrophysics Data System (ADS)

    Ushkova, I. N.; Pokrovskaya, L. A.; Stepanov, G. S.; Suvorov, I. M.; Kogan, M. Y.; Grishina, Y. F.

    1984-06-01

    The effect of light from a low intensity helium neon laser on the formation of a series of adaptive processes in the body is investigated. The study is carried out on 32 chinchilla rabbits, weighing from two to two point five kilograms. The right eyes of the creatures were subjected to diffuse laser radiation, for 30 days, 14 minutes per day, under conditions of low illumination. Controls are rabbits under the same conditions, but not exposed to laser radiation. In order to isolate the early glucocorticoid response to the treatment, the hydrocortisone content of the blood is determined which permitted judgment on presence of a functional cumulation effect. The body developed an adaptive/compensatory reaction to the laser radiation so that hydrocortisone levels and the system's hemodynamics and nervous system returned to normal.

  9. The vibrational spectrum of the water trimer: Comparison between anharmonic ab initio calculations and neon matrix infrared data between 11,000 and 90 cm -1

    NASA Astrophysics Data System (ADS)

    Tremblay, B.; Madebène, B.; Alikhani, M. E.; Perchard, J. P.

    2010-12-01

    The infrared spectrum of the water trimer trapped in solid neon has been identified. Eighteen groups of absorptions between 1600 and 11,000 cm -1 were assigned to one-, two- and three-quanta transitions of the intramolecular modes. Because of the near equivalence of the three molecules and their weak interactions most of these modes correspond to quasi degenerate vibrations involving the bending δ, free OH stretching (OH f) and bonded OH stretching (OH b) of the three subunits at 1608, 3725 and 3525-3473 cm -1, respectively. In the last case the 52 cm -1 splitting is due to the coupling between the OH b oscillators. Calculated anharmonic frequencies correctly agree with these observations and allow to propose a new assignment of the intermolecular modes. Finally combinations of intra + intermolecular transitions were identified and assigned on the basis of calculated anharmonicity coefficients.

  10. Design of oil-free simple turbo type 65 K/6 KW helium and neon mixture gas refrigerator for high temperature superconducting power cable cooling

    NASA Astrophysics Data System (ADS)

    Saji, N.; Asakura, H.; Yoshinaga, S.; Ishizawa, T.; Miyake, A.; Obata, M.; Nagaya, S.

    2002-05-01

    For the requirement of HTS facility cooling, we propose oil-free simple turbo-type refrigerator. The working gas is a helium and neon mixture. Two single-stage turbo compressors and two expansion turbines are applied to the cycle. The rotor consists of the compressor impeller, turbine impeller and driving motor, and is supported by foil type gas bearing. The refrigerator requires two rotating machines with excellent reliability and compactness, and the motor power required is 72.5 kW for a refrigeration load of 6 kW. For the cooling of power cable, sub-cooled pressurized liquid nitrogen and a circulation pump must be provided. If the estimated distance between inter-cooling stations is quite long, for example 5 km, plural refrigerators may be set up on one cooling station.

  11. Properties of ThF(x) from infrared spectra in solid argon and neon with supporting electronic structure and thermochemical calculations.

    PubMed

    Thanthiriwatte, K Sahan; Wang, Xuefeng; Andrews, Lester; Dixon, David A; Metzger, Jens; Vent-Schmidt, Thomas; Riedel, Sebastian

    2014-03-20

    Laser-ablated Th atoms react with F2 in condensing noble gases to give ThF4 as the major product. Weaker higher frequency infrared absorptions at 567.2, 564.8 (576.1, 573.8) cm(-1), 575.1 (582.7) cm(-1) and 531.0, (537.4) cm(-1) in solid argon (neon) are assigned to the ThF, ThF2 and ThF3 molecules based on annealing and photolysis behavior and agreement with CCSD(T)/aug-cc-pVTZ vibrational frequency calculations. Bands at 528.4 cm(-1) and 460 cm(-1) with higher fluorine concentrations are assigned to the penta-coordinated species (ThF3)(F2) and ThF5(-). These bands shift to 544.2 and 464 cm(-1) in solid neon. The ThF5 molecule has the (ThF3)(F2) Cs structure and is essentially the unique [ThF3(+)][F2(-)] ion pair based on charge and spin density calculations. Electron capture by (ThF3)(F2) forms the trigonal bipyramidal ThF5(-) anion in a highly exothermic process. Extensive structure and frequency calculations were also done for thorium oxyfluorides and Th2F4,6,8 dimer species. The calculations provide the ionization potentials, electron affinities, fluoride affinities, Th-F bond dissociation energies, and the energies to bind F2 and F2(-) to a cluster as well as dimerization energies.

  12. Measurement of intracellular DNA double-strand break induction and rejoining along the track of carbon and neon particle beams in water

    SciTech Connect

    Heilmann, J.; Taucher-Scholz, G.; Haberer, T.

    1996-02-01

    The study was aimed at the measurement of effect-depth distributions of intracellularly induced DNA damage in water as tissue equivalent after heavy ion irradiation with therapy particle beams. An assay involving embedding of Chinese hamster ovary (CHO-K1) cells in large agarose plugs and electrophoretic elution of radiation induced DNA fragments by constant field gel electrophoresis was developed. Double-strand break production was quantified by densitometric analysis of DNA-fluorescence after staining with ethidium-bromide and determination of the fraction of DNA eluted out of the agarose plugs. Intracellular double-strand break induction and the effect of a 3 h rejoining incubation were investigated following irradiation with 250 kV x-rays and 190 MeV/u carbon- and 295 MeV/u neon-ions. While the DNA damage induced by x-irradiation decreased continuously with penetration depth, a steady increase in the yield of double-strand breaks was observed for particle radiation, reaching distinct maxima at the position of the physical Bragg peaks. Beyond this, the extent of radiation damage dropped drastically. From comparison of DNA damage and calculated dose profiles, relative biological efficiencies (RBEs) for both double-strand break induction and unrejoined strand breaks after 3 h were determined. While RBE for the induction of DNA double-strand breaks decreased continuously with penetration depth, RBE maxima greater than unity were found with carbon- and neon-ions for double-strand break rejoining near the maximum range of the particles. The method presented here allows for a fast and accurate determination of depth profiles of relevant radiobiological effects for mixed particle fields in tissue equivalent. DNA DSB-induction, Strand break rejoining, CHO-K1 cells, Heavy ion therapy beams, Effect-depth distribution. 35 refs., 8 figs.

  13. Interleukin-22: immunobiology and pathology

    PubMed Central

    Dudakov, Jarrod A.; Hanash, Alan M.; van den Brink, Marcel R.M.

    2015-01-01

    Interleukin-22 (IL-22) is a recently described IL-10 family cytokine that is produced by T-helper (Th)-17 cells, γδ T cells, NKT cells and newly described innate lymphoid cells (ILCs). Knowledge of IL-22 biology has rapidly evolved since its discovery in 2000, and a role for IL-22 has been identified in numerous tissues including the intestines, lung, liver, kidney, thymus, pancreas and skin. IL-22 primarily targets non-hematopoietic epithelial and stromal cells where it can promote proliferation and play a role in tissue regeneration. In addition, IL-22 regulates host defense at barrier surfaces. However, IL-22 has also been linked to several conditions involving inflammatory tissue pathology. In this review, we will assess the current understanding of this cytokine, including its physiologic and pathologic effects on epithelial cell function. PMID:25706098

  14. OPTO-22 DRIVER. OPTO-22 Driver for LabView

    SciTech Connect

    Johnson, G.W.

    1991-01-28

    OPTO-22 DRIVER consists of a set of LabVIEW (National Instruments, Austin, TX) virtual instruments (VIs) that handle low-level communications with signal conditioning equipment by Opto-22 (Huntington Beach, CA). The OPTOMUX protocol is support, which requires the use of a serial port and supports multidrop communications. With this package, users can connect hundreds of Opto-22 modules to their LabVIEW system and access all features of the hardware, including analog and digital input and outputs.

  15. 22. Photocopy of photograph. Horgan, November 22, 1920. Negative #D ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph. Horgan, November 22, 1920. Negative #D & H 20969 Original negative can be found in D & H collection of the Anthracite Heritage Museum, Scranton, Pennsylvania. DETAILED INTERIOR VIEW SHOWING TOP OF JIGS AT TIME OF BREAKER CONSTRUCTION - Marvine Colliery, Breaker No. 2, West side Boulevard Avenue, between East Parker Street & Route 380, Scranton, Lackawanna County, PA

  16. 28 CFR 22.22 - Revelation of identifiable data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STATISTICAL INFORMATION § 22.22 Revelation of identifiable data. (a) Except as noted in paragraph (b) of this section, research and statistical information relating to a private person may be revealed in identifiable... Act. (3) Persons or organizations for research or statistical purposes. Information may only...

  17. 28 CFR 22.22 - Revelation of identifiable data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... STATISTICAL INFORMATION § 22.22 Revelation of identifiable data. (a) Except as noted in paragraph (b) of this section, research and statistical information relating to a private person may be revealed in identifiable... Act. (3) Persons or organizations for research or statistical purposes. Information may only...

  18. 28 CFR 22.22 - Revelation of identifiable data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STATISTICAL INFORMATION § 22.22 Revelation of identifiable data. (a) Except as noted in paragraph (b) of this section, research and statistical information relating to a private person may be revealed in identifiable... Act. (3) Persons or organizations for research or statistical purposes. Information may only...

  19. 28 CFR 22.22 - Revelation of identifiable data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... STATISTICAL INFORMATION § 22.22 Revelation of identifiable data. (a) Except as noted in paragraph (b) of this section, research and statistical information relating to a private person may be revealed in identifiable... Act. (3) Persons or organizations for research or statistical purposes. Information may only...

  20. 28 CFR 22.22 - Revelation of identifiable data.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... STATISTICAL INFORMATION § 22.22 Revelation of identifiable data. (a) Except as noted in paragraph (b) of this section, research and statistical information relating to a private person may be revealed in identifiable... Act. (3) Persons or organizations for research or statistical purposes. Information may only...

  1. A First Look at Graphite Grains from Orgueil: Morphology, Carbon, Nitrogen and Neon Isotopic Compositions of Individual, Chemically Separated Grains

    NASA Technical Reports Server (NTRS)

    Pravdivtseva, O.; Zinner, E.; Meshik, A. P.; Hohenberg, C. M.; Walker, R. W.

    2004-01-01

    Presolar graphite in Murchison has been extensively studied. It is characterized by a unique Ne isotopic composition, known as the Ne-E(L) component. According to studies by Huss and Lewis, the concentration of Ne-E(L) in Orgueil is about one order of magnitude higher than in Murchison, when normalized to the matrix. This could be due to a higher presolar graphite abundance in Orgueil, or due to a higher Ne-E concentrations per grain. The Ne isotopic compositions in individual presolar graphite grains from Murchison have been measured before. It was shown, that a third of the grains have detectable excesses in 22Ne, characteristic of the Ne-E(L) component. One grain in a hundred had a Ne-22 concentration two orders of magnitude higher than blank.

  2. Comparative effects of 60Co gamma-rays and neon and helium ions on cycle duration and division probability of EMT 6 cells. A time-lapse cinematography study.

    PubMed

    Collyn-d'Hooghe, M; Hemon, D; Gilet, R; Curtis, S B; Valleron, A J; Malaise, E P

    1981-03-01

    Exponentially growing cultures of EMT 6 cells were irradiated in vitro with neon ions, helium ions or 60Co gamma-rays. Time-lapse cinematography allowed the determination, for individual cells, of cycle duration, success of the mitotic division and the age of the cell at the moment of irradiation. Irradiation induced a significant mitotic delay increasing proportionally with the delivered dose. Using mitotic delay as an endpoint, the r.b.e. for neon ions with respect to 60Co gamma-rays was 3.3 +/- 0.2 while for helium ions it was 1.2 +/- 0.1. Mitotic delay was greatest in those cells that had progressed furthest in their cycle at the time of irradiation. No significant mitotic delay was observed in the post-irradiation generation. Division probability was significantly reduced by irradiation both in the irradiated and in the post-irradiated generation. The reduction in division probability obtained with 3 Gy of neon ions was similar to that obtained after irradiation with 6 Gy of helium ions or 60Co gamma-rays.

  3. Monte Carlo Mathematical Modeling and Analysis of Optogalvanic Waveforms FOR 1s5-2pj (j = 7,8,9) transitions of Neon in a Hollow Cathode Discharge

    NASA Astrophysics Data System (ADS)

    Ogungbemi, Kayode; Han, Xianming; Misra, Prabhakar

    2010-02-01

    The laser optogalvanic (OG) waveforms associated with the 1s5 -- 2pj (j=7,8,9) transitions of neon in a hollow discharge lamp have been investigated as a function of discharge current (2.0 -- 19.0 mA). We have refined a mathematical model in determining the amplitudes, decay constants, and time constants associated with these transitions. Monte Carlo least-squares fitting of these waveforms has helped to specifically determine the decay rate constant (ai), exponential rates (bi) and time constant (τ) parameters associated with the evolution of the OG signals. In our investigation of the 1s5 -- 2pj (j=7,8,9)optogalvanic transitions of neon, we have measured the intensity of each transition (3.65*10-28 , 1.43*10-27 and 5.82*10-27 cm-1/mole-cm-2, respectively), which in turn has provided insight into the excitation temperature of the plasma (estimated to be 2847±285 K). The population distribution of the excited neon atoms in the pertinent energy levels has also been estimated using the Heisenberg Uncertainty Principle. )

  4. Isotopic Fractionation of 20Ne, 21Ne, and 22Ne in a Simulated Thermal Gradient

    NASA Astrophysics Data System (ADS)

    Jester, B.; Dominguez, G.

    2014-12-01

    Computer simulations allow for the analysis of the thermodynamic properties of systems which are difficult or impossible to do experimentally. Isotopic fractionation in thermal gradients is an example of a system which is not fully understood but could provide background for understanding variations in fractionations like those observed for noble gases in terrestrial and extraterrestrial material. Using a recently developed molecular dynamics simulation focused on the accuracy of the simulated physics, the isotopic fractionation of Neon in a thermal gradient was analyzed in order to provide a correlation between the fractionation and the experimental system's properties. Various ratios of isotopes 20Ne, 21Ne, and 22Ne were simulated in a thermal gradient ranging from 218 K to 233 K for a variety of time scales. Data was collected for various configurations including box sizes on the order of 1 nm to 100 μm. The simulated thermal conductivity was determined and compared with known values. The analysis indicates that the dimensions of the box heavily influence the magnitude of the isotopic fractionation in the thermal gradient.

  5. Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials

    NASA Astrophysics Data System (ADS)

    Pepin, Robert O.; Schlutter, Dennis J.; Becker, Richard H.; Reisenfeld, Daniel B.

    2012-07-01

    We report compositions and fluxes of light noble gases in the solar wind (SW), extracted by stepped pyrolysis and amalgamation from gold collector materials carried on the Genesis Solar Wind Sample Return Mission. Results are compared with data from other laboratories on SW-He, Ne and Ar distributions implanted in Genesis aluminum, carbon, and silicon collectors and extracted by laser ablation. Corrections for mass-dependent losses (“backscatter”) of impinging SW ions due to scattering from the collector material are substantially larger for gold than for these lower atomic weight targets. We assess such losses by SRIM simulation calculations of SW backscatter from gold which are applied to the measurements to recover the composition of the incident SW. Averaged results of integrated stepped pyrolysis and single-step amalgamation measurements, with 1σ errors, are as follows: for SW-Ne and Ar isotope ratios (3He/4He was not measured), 20Ne/22Ne = 14.001 ± 0.042, 21Ne/22Ne = 0.03361 ± 0.00018, 36Ar/38Ar = 5.501 ± 0.014; for SW element ratios, 4He/20Ne = 641 ± 15, 20Ne/36Ar = 51.6 ± 0.5; and for SW fluxes in atoms cm-2 s-1 at the Genesis L1 station, 4He = 1.14 ± 0.04 × 107, 20Ne = 1.80 ± 0.06 × 104, 36Ar = 3.58 ± 0.11 × 102. Except for the 21Ne/22Ne and 20Ne/36Ar ratios, these values are in reasonable accord (within ∼1-3σ) with measurements on different collector materials reported by one or both of two other Genesis noble gas research groups. We further find, in three stepped pyrolysis experiments on gold foil, that He, Ne and Ar are released at increasing temperatures without elemental fractionation, in contrast to a pyrolytic extraction of a single non-gold collector (Al) where the release patterns point to mass-dependent thermal diffusion. The pyrolyzed gold foils exhibit enhancements, relative to sample totals, in 20Ne/22Ne and 21Ne/22Ne ratios evolved at low temperatures. The absence of elemental fractionation in pyrolytic release from gold

  6. Observing single FoF1-ATP synthase at work using an improved fluorescent protein mNeonGreen as FRET donor

    NASA Astrophysics Data System (ADS)

    Heitkamp, Thomas; Deckers-Hebestreit, Gabriele; Börsch, Michael

    2016-02-01

    Adenosine triphosphate (ATP) is the universal chemical energy currency for cellular activities provided mainly by the membrane enzyme FoF1-ATP synthase in bacteria, chloroplasts and mitochondria. Synthesis of ATP is accompanied by subunit rotation within the enzyme. Over the past 15 years we have developed a variety of single-molecule FRET (smFRET) experiments to monitor catalytic action of individual bacterial enzymes in vitro. By specifically labeling rotating and static subunits within a single enzyme we were able to observe three-stepped rotation in the F1 motor, ten-stepped rotation in the Fo motor and transient elastic deformation of the connected rotor subunits. However, the spatial and temporal resolution of motor activities measured by smFRET were limited by the photophysics of the FRET fluorophores. Here we evaluate the novel FRET donor mNeonGreen as a fusion to FoF1-ATP synthase and compare it to the previously used fluorophore EGFP. Topics of this manuscript are the biochemical purification procedures and the activity measurements of the fully functional mutant enzyme.

  7. Low-energy dipole excitations in neon isotopes and N=16 isotones within the quasiparticle random-phase approximation and the Gogny force

    SciTech Connect

    Martini, M.; Peru, S.; Dupuis, M.

    2011-03-15

    Low-energy dipole excitations in neon isotopes and N=16 isotones are calculated with a fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) approach based on Hartree-Fock-Bogolyubov (HFB) states. The same Gogny D1S effective force has been used both in HFB and QRPA calculations. The microscopical structure of these low-lying resonances, as well as the behavior of proton and neutron transition densities, are investigated in order to determine the isoscalar or isovector nature of the excitations. It is found that the N=16 isotones {sup 24}O, {sup 26}Ne, {sup 28}Mg, and {sup 30}Si are characterized by a similar behavior. The occupation of the 2s{sub 1/2} neutron orbit turns out to be crucial, leading to nontrivial transition densities and to small but finite collectivity. Some low-lying dipole excitations of {sup 28}Ne and {sup 30}Ne, characterized by transitions involving the {nu}1d{sub 3/2} state, present a more collective behavior and isoscalar transition densities. A collective proton low-lying excitation is identified in the {sup 18}Ne nucleus.

  8. A Loschmidt cell combined with holographic interferometry for binary diffusion experiments in gas mixtures including first measurements on the argon-neon system

    NASA Astrophysics Data System (ADS)

    Buttig, D.; Vogel, E.; Bich, E.; Hassel, E.

    2011-10-01

    A new variant of the Loschmidt technique has been developed for measuring binary diffusion coefficients in gas mixtures in a temperature range from 10 to 80 °C and for pressures between 0.1 and 1 MPa. The two half cells of the thermostatted diffusion cell have a rectangular cross section and are fixed one upon the other. They can be connected and separated by means of a sliding plate provided with a pneumatically operated seal. The concentration in both half cells is determined simultaneously during the diffusion process using an optical system for holographic interferometry for each. The change in the refractive index results in an interference pattern which is recorded as a function of time. The concentrations of the diffusing components are derived by means of the Lorentz-Lorenz equation. The binary diffusion coefficients are calculated via the integrated ideal diffusion equation for the complete mole fraction range performing only a unique diffusion experiment. The performance of the apparatus is demonstrated on first measurements on the argon-neon system at 293.15 K. Separate refractive index measurements are carried out leading to values for the first refractivity virial coefficient of the pure gases with an estimated uncertainty of ±0.1%. This low uncertainty is required for the aimed uncertainty of ±0.5...1% for the diffusion measurements to determine the concentration and density dependences of the binary diffusion coefficient.

  9. Low-energy helium-neon laser induces locomotion of the immature melanoblasts and promotes melanogenesis of the more differentiated melanoblasts: recapitulation of vitiligo repigmentation in vitro.

    PubMed

    Lan, Cheng-Che E; Wu, Ching-Shuang; Chiou, Min-Hsi; Hsieh, Pei-Chen; Yu, Hsin-Su

    2006-09-01

    Helium-neon laser (He-Ne Laser, 632.8 nm) is a low-energy laser that has therapeutic efficacy on various clinical conditions. Our previous study has demonstrated efficacy of He-Ne laser on vitiligo, a disease characterized by skin depigmentation. To regain skin tone on vitiligo lesions, the process began by the migration of the immature melanoblasts (MBs) to the epidermis, which was followed by their functional development to produce melanin. In this study, we investigated the physiologic effects of He-Ne laser irradiation on two MB cell lines: the immature NCCmelb4 and the more differentiated NCCmelan5. The intricate interactions between MBs with their innate extracelluar matrix, fibronectin, were also addressed. Our results showed that He-Ne laser irradiation enhanced NCCmelb4 mobility via enhanced phosphorylated focal adhesion kinase expression and promoted melanogenesis in NCCmelan5. In addition, He-Ne laser decreased the affinity between NCCmelb4 and fibronectin, whereas the attachment of NCCmelan5 to fibronectin increased. The alpha5beta1 integrin expression on NCCmelb4 cells was enhanced by He-Ne laser. In conclusion, we have demonstrated that He-Ne laser induced different physiologic changes on MBs at different maturation stages and recapitulated the early events during vitiligo repigmentation process brought upon by He-Ne laser in vitro.

  10. Development and evaluation of fiber optic probe-based helium-neon low-level laser therapy system for tissue regeneration--an in vivo experimental study.

    PubMed

    Prabhu, Vijendra; Rao, Satish B S; Rao, Nageshwara B; Aithal, Kiran B; Kumar, Pramod; Mahato, Krishna K

    2010-01-01

    We report the design and development of an optical fiber probe-based Helium-Neon (He-Ne) low-level laser therapy system for tissue regeneration. Full thickness excision wounds on Swiss albino mice of diameter 15 mm were exposed to various laser doses of 1, 2, 3, 4, 6, 8 and 10 J cm(-2) of the system with appropriate controls, and 2 J cm(-2) showing optimum healing was selected. The treatment schedule for applying the selected laser dose was also standardized by irradiating the wounds at different postwounding times (0, 24 and 48 h). The tissue regeneration potential was evaluated by monitoring the progression of wound contraction and mean wound healing time along with the hydroxyproline and glucosamine estimation on wound ground tissues. The wounds exposed to 2 J cm(-2) immediately after wounding showed considerable contraction on days 5, 9, 12, 14, 16 and 19 of postirradiation compared with the controls and other treatment schedules, showing significant (P < 0.001) decrease in the healing time. A significant increase in hydroxyproline and glucosamine levels was observed for the 2 J cm(-2) irradiation group compared with the controls and other treatment groups. In conclusion, the wounds treated with 2 J cm(-2) immediately after the wounding show better healing compared with the controls.

  11. Induction of primitive pigment cell differentiation by visible light (helium-neon laser): a photoacceptor-specific response not replicable by UVB irradiation.

    PubMed

    Lan, Cheng-Che E; Wu, Shi-Bei; Wu, Ching-Shuang; Shen, Yi-Chun; Chiang, Tzu-Ying; Wei, Yau-Huei; Yu, Hsin-Su

    2012-03-01

    Solar lights encompass ultraviolet (UV), visible, and infrared spectrum. Most previous studies focused on the harmful UV effects, and the biologic effects of lights at other spectrums remained unclear. Recently, lights at visible region have been used for regenerative purposes. Using the process of vitiligo repigmentation as a research model, we focused on elucidating the pro-differentiation effects induced by visible light. We first showed that helium-neon (He-Ne) laser (632.8 nm) irradiation stimulated differentiation of primitive pigment cells, an effect not replicable by UVB treatment even at high and damaging doses. In addition, significant increases of mitochondrial DNA copy number and the regulatory genes for mitochondrial biogenesis were induced by He-Ne laser irradiation. Mechanistically, we demonstrated that He-Ne laser initiated mitochondrial retrograde signaling via a Ca(2+)-dependent cascade. The impact on cytochrome c oxidase within the mitochondria is responsible for the efficacy of He-Ne laser in promoting melanoblast differentiation. Taken together, we propose that visible lights from the sun provide important environmental cues for the relatively quiescent stem or primitive cells to differentiate. In addition, our results also indicate that visible light may be used for regenerative medical purposes involving stem cells.

  12. What A Long Strange Trip It's Been: Lessons Learned From NASA EOS, LTER, NEON, CZO And On To The Future With Sustainable Research Networks

    NASA Astrophysics Data System (ADS)

    Williams, M. W.

    2014-12-01

    The traditional, small-scale, incremental approach to environmental science is changing as researchers embrace a more integrated and multi-disciplinary approach to understanding how our natural systems work today and how they may respond in the future to forcings such as climate change. In situ networks are evolving in response to these challenges so as to provide the appropriate measurements to develop high-resolution spatial and temporal data sets across a wide range of platforms from microbial measurements to remote sensing. These large programs provide a unique set of challenges when compared to more traditional programs. Here I provide insights learned from my participation in a number of large programs, including NASA EOS, LTER, CZO, NEON, and WSC and how those experiences in environmental science can help us move forward towards more applied applications of environmental science, including sustainability initiatives. I'll chat about the importance of managerial and management skills, which most of us scientists prefer to avoid. I'll also chat about making decisions about what long-term measurements to make and when to stop. Data management is still the weakest part of environmental networks; what needs to be done. We have learned that these networks provide an important knowledge base that can lead to informed decisions leading to environmental, energy, social and cultural sustainability.

  13. Low-level laser therapy with helium-neon laser improved viability of osteoporotic bone marrow-derived mesenchymal stem cells from ovariectomy-induced osteoporotic rats

    NASA Astrophysics Data System (ADS)

    Fallahnezhad, Somaye; Piryaei, Abbas; Tabeie, Faraj; Nazarian, Hamid; Darbandi, Hasan; Amini, Abdoldllah; Mostafavinia, Ataroalsadat; Ghorishi, Seyed Kamran; Jalalifirouzkouhi, Ali; Bayat, Mohammad

    2016-09-01

    The purpose of this study was to evaluate the influences of helium-neon (He-Ne) and infrared (IR) lasers on the viability and proliferation rate of healthy and ovariectomy-induced osteoporotic (OVX) bone marrow mesenchymal stem cells (BMMSCs) in vitro. MSCs harvested from the BM of healthy and OVX rats were culture expanded. He-Ne and IR lasers were applied three times at energy densities of 0.6, 1.2, and 2.4 J/cm2 for BMMSCs. BMMSCs viability and proliferation rate were evaluated by MTT assay on days 2, 4, 6, 14, and 21. The results showed that healthy BMMSCs responded optimally to 0.6 J/cm2 using an IR laser after three times of laser radiation. Moreover, it was found that OVX-BMMSCs responded optimally to 0.6 J/cm2 with He-Ne laser and one-time laser radiation. It is concluded that the low-level laser therapy (LLLT) effect depends on the physiological state of the BMMSCs, type of the laser, wavelength, and number of laser sessions. The biostimulation efficiency of LLLT also depends on the delivered energy density. LLLT can enhance the viability and proliferation rate of healthy and especially osteoporotic autologous BMMSCs, which could be very useful in regenerative medicine.

  14. High-accuracy calculations of sixteen collision integrals for Lennard-Jones (12-6) gases and their interpolation to parameterize neon, argon, and krypton

    NASA Astrophysics Data System (ADS)

    Kim, Sun Ung; Monroe, Charles W.

    2014-09-01

    The inverse problem of parameterizing intermolecular potentials given macroscopic transport and thermodynamic data is addressed. Procedures are developed to create arbitrary-precision algorithms for transport collision integrals, using the Lennard-Jones (12-6) potential as an example. Interpolation formulas are produced that compute these collision integrals to four-digit accuracy over the reduced-temperature range 0.3≤T*≤400, allowing very fast computation. Lennard-Jones parameters for neon, argon, and krypton are determined by simultaneously fitting the observed temperature dependences of their viscosities and second virial coefficients-one of the first times that a thermodynamic and a dynamic property have been used simultaneously for Lennard-Jones parameterization. In addition to matching viscosities and second virial coefficients within the bounds of experimental error, the determined Lennard-Jones parameters are also found to predict the thermal conductivity and self-diffusion coefficient accurately, supporting the value of the Lennard-Jones (12-6) potential for noble-gas transport-property correlation.

  15. Structure and Electronic Transitions of C7H4O2(+) and C7H5O2(+) Ions: Neon Matrix and Theoretical Studies.

    PubMed

    Fulara, Jan; Erattupuzha, Sonia; Garkusha, Iryna; Maier, John P

    2016-12-29

    C7H4O2(+) and C7H5O2(+) ions and the respective neutrals have been investigated by absorption spectroscopy in neon matrixes following mass selection of ions produced from salicylic acid. Three electronic transitions starting at 649.6, 431.0, and 372.0 nm are detected for C7H4O2(+) and assigned on the basis of CASPT2 energies and Franck-Condon simulations as the excitations from the X (2)A″ to the 1 (2)A″, 2 (2)A″, and 3 (2)A″ electronic states of 6-(oxomethylene)-2,4-cyclohexadien-1-one ion (A(+)). Absorptions commencing at 366.4 nm are observed for C7H5O2(+) and assigned to the 1 (2)A' ← X (2)A' electronic transition of (2-hydroxyphenyl)methanone ion (J(+)). Neutralization of J(+) leads to the appearance of four absorption systems attributed to the 4 (2)A″, 3 (2)A″, 2 (2)A″, and 1 (2)A″ ← X (2)A″ transitions of J with origin bands 291.3, 361.2, 393.8, and 461.2 nm.

  16. [Effect of accelerated heavy ions of carbon 12C, neon 20Ne and iron 56Fe on the chromosomal apparatus of human blood lymphocytes in vitro].

    PubMed

    Repina, L A

    2011-01-01

    Cytogenetic assay of the chromosomal apparatus of human blood lymphocytes was carried out after in vitro irradiation by heavy charged particles with high LET values. Blood plasm samples enriched with lymphocytes were irradiated by accelerated ions of carbon 12C (290 MeV/nucleon and LET = 70 keV/microm), neon 20Ne (400 MeV/nucleon and LET = 70 keV/microm), and iron 56Fe (500 MeV/nucleon and LET = 200 keV/microm) in the dose range from 0.25 to 1 Gy. Rate of chromosome aberrations showed a linear dependence on doses from the densely ionizing radiations with high LET values. Frequency of dicentrics and centric rings in human lymphocytes irradiated by 12C with the energy of 290 MeV/nucleon was maximal at 1 Gy (p < 0.05) relative to the other heavy particles. It was found that relative biological effectiveness of heavy nuclei is several times higher than of 60Co gamma-radiation throughout the range of doses in this investigation.

  17. High-accuracy calculations of sixteen collision integrals for Lennard-Jones (12–6) gases and their interpolation to parameterize neon, argon, and krypton

    SciTech Connect

    Kim, Sun Ung; Monroe, Charles W.

    2014-09-15

    The inverse problem of parameterizing intermolecular potentials given macroscopic transport and thermodynamic data is addressed. Procedures are developed to create arbitrary-precision algorithms for transport collision integrals, using the Lennard-Jones (12–6) potential as an example. Interpolation formulas are produced that compute these collision integrals to four-digit accuracy over the reduced-temperature range 0.3≤T{sup ⁎}≤400, allowing very fast computation. Lennard-Jones parameters for neon, argon, and krypton are determined by simultaneously fitting the observed temperature dependences of their viscosities and second virial coefficients—one of the first times that a thermodynamic and a dynamic property have been used simultaneously for Lennard-Jones parameterization. In addition to matching viscosities and second virial coefficients within the bounds of experimental error, the determined Lennard-Jones parameters are also found to predict the thermal conductivity and self-diffusion coefficient accurately, supporting the value of the Lennard-Jones (12–6) potential for noble-gas transport-property correlation.

  18. 22 CFR 191.22 - Administration of benefits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 191.22 Administration of benefits. (a) An eligible person, who desires medical or health care under... shall include a determination as to the necessity and reasonableness of medical or health care. (c) The... authorized care from any licensed facility or health care provider of their choice approved by the Office....

  19. Ultrasound findings in trisomy 22.

    PubMed

    Schwendemann, Wade D; Contag, Stephen A; Koty, Patrick P; Miller, Richard C; Devers, Patricia; Watson, William J

    2009-02-01

    We sought to identify the characteristic sonographic findings of fetal trisomy 22 by performing a retrospective review of nine cases of fetal trisomy 22. All cases of chromosomal mosaicism were excluded, as were first-trimester losses. Indications for sonography, gestational age, and sonographically detected fetal anomalies were analyzed. The majority of patients were referred for advanced maternal age or abnormal ultrasound findings on screening exam. Oligohydramnios was the most common sonographic finding, present in 55% of affected fetuses. Intrauterine growth restriction and increased nuchal thickness were slightly less frequent.

  20. 29 CFR 22.21 - Discovery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Written interrogatories; and (4) Depositions. (b) For the purpose of this section and §§ 22.22 and 22.23... creation of a document. (c) Unless mutually agreed to by the parties, discovery is available only...