Sample records for neonatal lung function

  1. Exposure to neonatal cigarette smoke causes durable lung changes but does not potentiate cigarette smoke–induced chronic obstructive pulmonary disease in adult mice

    PubMed Central

    McGrath-Morrow, Sharon; Malhotra, Deepti; Lauer, Thomas; Collaco, J. Michael; Mitzner, Wayne; Neptune, Enid; Wise, Robert; Biswal, Shyam

    2016-01-01

    The impact of early childhood cigarette smoke (CS) exposure on CS-induced chronic obstructive pulmonary disease (COPD) is unknown. This study was performed to evaluate the individual and combined effects of neonatal and adult CS exposure on lung structure, function, and gene expression in adult mice. To model a childhood CS exposure, neonatal C57/B6 mice were exposed to 14 days of CS (Neo CS). At 10 weeks of age, Neo CS and control mice were exposed to 4 months of CS. Pulmonary function tests, bronchoalveolar lavage, and lung morphometry were measured and gene expression profiling was performed on lung tissue. Mean chord lengths and lung volumes were increased in neonatal and/or adult CS-exposed mice. Differences in immune, cornified envelope protein, muscle, and erythrocyte genes were found in CS-exposed lung. Neonatal CS exposure caused durable structural and functional changes in the adult lung but did not potentiate CS-induced COPD changes. Cornified envelope protein gene expression was decreased in all CS-exposed mice, whereas myosin and erythrocyte gene expression was increased in mice exposed to both neonatal and adult CS, suggesting an adaptive response. Additional studies may be warranted to determine the utility of these genes as biomarkers of respiratory outcomes. PMID:21649527

  2. The effect of CSF-1 administration on lung maturation in a mouse model of neonatal hyperoxia exposure.

    PubMed

    Jones, Christina V; Alikhan, Maliha A; O'Reilly, Megan; Sozo, Foula; Williams, Timothy M; Harding, Richard; Jenkin, Graham; Ricardo, Sharon D

    2014-09-06

    Lung immaturity due to preterm birth is a significant complication affecting neonatal health. Despite the detrimental effects of supplemental oxygen on alveolar formation, it remains an important treatment for infants with respiratory distress. Macrophages are traditionally associated with the propagation of inflammatory insults, however increased appreciation of their diversity has revealed essential functions in development and regeneration. Macrophage regulatory cytokine Colony-Stimulating Factor-1 (CSF-1) was investigated in a model of neonatal hyperoxia exposure, with the aim of promoting macrophages associated with alveologenesis to protect/rescue lung development and function. Neonatal mice were exposed to normoxia (21% oxygen) or hyperoxia (Hyp; 65% oxygen); and administered CSF-1 (0.5 μg/g, daily × 5) or vehicle (PBS) in two treatment regimes; 1) after hyperoxia from postnatal day (P)7-11, or 2) concurrently with five days of hyperoxia from P1-5. Lung structure, function and macrophages were assessed using alveolar morphometry, barometric whole-body plethysmography and flow cytometry. Seven days of hyperoxia resulted in an 18% decrease in body weight and perturbation of lung structure and function. In regime 1, growth restriction persisted in the Hyp + PBS and Hyp + CSF-1 groups, although perturbations in respiratory function were resolved by P35. CSF-1 increased CSF-1R+/F4/80+ macrophage number by 34% at P11 compared to Hyp + PBS, but was not associated with growth or lung structural rescue. In regime 2, five days of hyperoxia did not cause initial growth restriction in the Hyp + PBS and Hyp + CSF-1 groups, although body weight was decreased at P35 with CSF-1. CSF-1 was not associated with increased macrophages, or with functional perturbation in the adult. Overall, CSF-1 did not rescue the growth and lung defects associated with hyperoxia in this model; however, an increase in CSF-1R+ macrophages was not associated with an exacerbation of lung injury. The trophic functions of macrophages in lung development requires further elucidation in order to explore macrophage modulation as a strategy for promoting lung maturation.

  3. How best to capture the respiratory consequences of prematurity?

    PubMed

    Ciuffini, Francesca; Robertson, Colin F; Tingay, David G

    2018-03-31

    Chronic respiratory morbidity is a common complication of premature birth, generally defined by the presence of bronchopulmonary dysplasia, both clinically and in trials of respiratory therapies. However, recent data have highlighted that bronchopulmonary dysplasia does not correlate with chronic respiratory morbidity in older children born preterm. Longitudinally evaluating pulmonary morbidity from early life through to childhood provides a more rational method of defining the continuum of chronic respiratory morbidity of prematurity, and offers new insights into the efficacy of neonatal respiratory interventions. The changing nature of preterm lung disease suggests that a multimodal approach using dynamic lung function assessment will be needed to assess the efficacy of a neonatal respiratory therapy and predict the long-term respiratory consequences of premature birth. Our aim is to review the literature regarding the long-term respiratory outcomes of neonatal respiratory strategies, the difficulties of assessing dynamic lung function in infants, and potential new solutions. Copyright ©ERS 2018.

  4. Increased Risk of Interstitial Lung Disease in Children with a Single R288K Variant of ABCA3

    PubMed Central

    Wittmann, Thomas; Frixel, Sabrina; Höppner, Stefanie; Schindlbeck, Ulrike; Schams, Andrea; Kappler, Matthias; Hegermann, Jan; Wrede, Christoph; Liebisch, Gerhard; Vierzig, Anne; Zacharasiewicz, Angela; Kopp, Matthias Volkmar; Poets, Christian F; Baden, Winfried; Hartl, Dominik; van Kaam, Anton H; Lohse, Peter; Aslanidis, Charalampos; Zarbock, Ralf; Griese, Matthias

    2016-01-01

    The ABCA3 gene encodes a lipid transporter in type II pneumocytes critical for survival and normal respiratory function. The frequent ABCA3 variant R288K increases the risk for neonatal respiratory distress syndrome among term and late preterm neonates, but its role in children’s interstitial lung disease has not been studied in detail. In a retrospective cohort study of 228 children with interstitial lung disease related to the alveolar surfactant system, the frequency of R288K was assessed and the phenotype of patients carrying a single R288K variant further characterized by clinical course, lung histology, computed tomography and bronchoalveolar lavage phosphatidylcholine PC 32:0. Cell lines stably transfected with ABCA3-R288K were analyzed for intracellular transcription, processing and targeting of the protein. ABCA3 function was assessed by detoxification assay of doxorubicin, and the induction and volume of lamellar bodies. We found nine children with interstitial lung disease carrying a heterozygous R288K variant, a frequency significantly higher than in the general Caucasian population. All identified patients had neonatal respiratory insufficiency, recovered and developed chronic interstitial lung disease with intermittent exacerbations during early childhood. In vitro analysis showed normal transcription, processing, and targeting of ABCA3-R288K, but impaired detoxification function and smaller lamellar bodies. We propose that the R288K variant can underlie interstitial lung disease in childhood due to reduced function of ABCA3, demonstrated by decelerated detoxification of doxorubicin, reduced PC 32:0 content and decreased lamellar body volume. PMID:26928390

  5. Respiratory Dialysis: Reduction in Dependence on Mechanical Ventilation by Venovenous Extracorporeal CO2 Removal

    DTIC Science & Technology

    2011-06-01

    deaths in the United States (1). Acute lung injury and ARDS are also sig- nificant combat casualty care problems stemming from trauma and resuscitation ...the respiratory function of the natural lung. ECMO was introduced for treatment of neonatal respiratory failure (39). ECMO is currently used in adults...Toomasian J, et al: Extracorporeal membrane oxygenation (ECMO) in neonatal respiratory failure. 100 cases. Ann Surg 1986; 204:236–245 40. Peek GJ

  6. Prospective longitudinal evaluation of lung function during the first year of life after extracorporeal membrane oxygenation.

    PubMed

    Hofhuis, Ward; Hanekamp, Manon N; Ijsselstijn, Hanneke; Nieuwhof, Eveline M; Hop, Wim C J; Tibboel, Dick; de Jongste, Johan C; Merkus, Peter J F M

    2011-03-01

    To collect longitudinal data on lung function in the first year of life after extracorporeal membrane oxygenation and to evaluate relationships between lung function and perinatal factors. Longitudinal data on lung function in the first year of life after extracorporeal membrane oxygenation are lacking. Prospective longitudinal cohort study. Outpatient clinic of a tertiary level pediatric hospital. The cohort consisted of 64 infants; 33 received extracorporeal membrane oxygenation for meconium aspiration syndrome, 14 for congenital diaphragmatic hernia, four for sepsis, six for persistent pulmonary hypertension of the neonate, and seven for respiratory distress syndrome of infancy. Evaluation was at 6 mos and 12 mos; 39 infants were evaluated at both time points . None. Functional residual capacity and forced expiratory flow at functional residual capacity were measured and expressed as z score. Mean (sem) functional residual capacities in z score were 0.0 (0.2) and 0.2 (0.2) at 6 mos and 12 mos, respectively. Mean (sem) forced expiratory flow was significantly below average (z score = 0) (p < .001) at 6 mos and 12 mos: -1.1 (0.1) and -1.2 (0.1), respectively. At 12 mos, infants with diaphragmatic hernia had a functional residual capacity significantly above normal: mean (sem) z score = 1.2 (0.5). Infants treated with extracorporeal membrane oxygenation have normal lung volumes and stable forced expiratory flows within normal range, although below average, within the first year of life. There is reason to believe, therefore, that extracorporeal membrane oxygenation either ameliorates the harmful effects of mechanical ventilation or somehow preserves lung function in the very ill neonate.

  7. Exposure to hyperoxia in the neonatal period alters bone marrow function

    USDA-ARS?s Scientific Manuscript database

    Oxygen is often life saving in preterm infants, however, excessive exposure may lead to blood vessel and tissue injury in the lung and retina. Oxygen-treated neonates often exhibit bone marrow (BM) suppression requiring blood product transfusions. However, we do not know whether oxygen is directly t...

  8. [TREATMENT OF EXTREMELY PREMATURE NEWBORN INFANT WITH INO. CLINICAL CASE].

    PubMed

    Radulova, P; Slancheva, B; Marinov, R

    2015-01-01

    Prolonged inhaled nitric oxide (iNO) from birth in preterm neonates with BPD improves endogenous surfactant function as well as lung growth, angiogenesis, and alveologenesis. As a result there is a reduction in the frequency of the "new" form of BPD in neonates under 28 weeks of gestation and birth weight under 1000 gr. Delivery of inhaled nitric oxide is a new method of prevention of chronic lung disease. According to a large number of randomized trials iNO in premature neonates reduces pulmonary morbidity and leads to a reduction of the mortality in this population of patients. This new therapy does not have serious side effects. We represent a clinical case of extremely premature newborn infant with BPD treated with iNO.

  9. Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth.

    PubMed

    Alphonse, Rajesh S; Vadivel, Arul; Fung, Moses; Shelley, William Chris; Critser, Paul John; Ionescu, Lavinia; O'Reilly, Megan; Ohls, Robin K; McConaghy, Suzanne; Eaton, Farah; Zhong, Shumei; Yoder, Merv; Thébaud, Bernard

    2014-05-27

    Bronchopulmonary dysplasia and emphysema are life-threatening diseases resulting from impaired alveolar development or alveolar destruction. Both conditions lack effective therapies. Angiogenic growth factors promote alveolar growth and contribute to alveolar maintenance. Endothelial colony-forming cells (ECFCs) represent a subset of circulating and resident endothelial cells capable of self-renewal and de novo vessel formation. We hypothesized that resident ECFCs exist in the developing lung, that they are impaired during arrested alveolar growth in experimental bronchopulmonary dysplasia, and that exogenous ECFCs restore disrupted alveolar growth. Human fetal and neonatal rat lungs contain ECFCs with robust proliferative potential, secondary colony formation on replating, and de novo blood vessel formation in vivo when transplanted into immunodeficient mice. In contrast, human fetal lung ECFCs exposed to hyperoxia in vitro and neonatal rat ECFCs isolated from hyperoxic alveolar growth-arrested rat lungs mimicking bronchopulmonary dysplasia proliferated less, showed decreased clonogenic capacity, and formed fewer capillary-like networks. Intrajugular administration of human cord blood-derived ECFCs after established arrested alveolar growth restored lung function, alveolar and lung vascular growth, and attenuated pulmonary hypertension. Lung ECFC colony- and capillary-like network-forming capabilities were also restored. Low ECFC engraftment and the protective effect of cell-free ECFC-derived conditioned media suggest a paracrine effect. Long-term (10 months) assessment of ECFC therapy showed no adverse effects with persistent improvement in lung structure, exercise capacity, and pulmonary hypertension. Impaired ECFC function may contribute to arrested alveolar growth. Cord blood-derived ECFC therapy may offer new therapeutic options for lung diseases characterized by alveolar damage. © 2014 American Heart Association, Inc.

  10. HOXA5 plays tissue-specific roles in the developing respiratory system.

    PubMed

    Landry-Truchon, Kim; Houde, Nicolas; Boucherat, Olivier; Joncas, France-Hélène; Dasen, Jeremy S; Philippidou, Polyxeni; Mansfield, Jennifer H; Jeannotte, Lucie

    2017-10-01

    Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract. © 2017. Published by The Company of Biologists Ltd.

  11. [Surfactant surface activity and ultrastructural changes in the type-II alveolocytes of fetal and neonatal lungs in experimental inflammation of the maternal lungs].

    PubMed

    Zagorul'ko, A K; Fat, L F; Safronova, L G; Kobozev, G V; Gorelik, N I

    1989-06-01

    The lungs of 19 guinea pigs, born from 8 females in which acute and chronic pneumonia had been modelled by transtracheal introduction of sterile fishing-line were investigated. It was established, that in guinea pigs, born in females with acute and chronic pneumonia, the functional immaturity of pneumocytes of the 2-nd type took place. The functional immaturity of pneumocytes of the 2-nd type results in suppression of the surface active characteristics of surfactant.

  12. Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs

    PubMed Central

    2011-01-01

    Background Increased asthma risk/exacerbation in children and infants is associated with exposure to elevated levels of ultrafine particulate matter (PM). The presence of a newly realized class of pollutants, environmentally persistent free radicals (EPFRs), in PM from combustion sources suggests a potentially unrecognized risk factor for the development and/or exacerbation of asthma. Methods Neonatal rats (7-days of age) were exposed to EPFR-containing combustion generated ultrafine particles (CGUFP), non-EPFR containing CGUFP, or air for 20 minutes per day for one week. Pulmonary function was assessed in exposed rats and age matched controls. Lavage fluid was isolated and assayed for cellularity and cytokines and in vivo indicators of oxidative stress. Pulmonary histopathology and characterization of differential protein expression in lung homogenates was also performed. Results Neonates exposed to EPFR-containing CGUFP developed significant pulmonary inflammation, and airway hyperreactivity. This correlated with increased levels of oxidative stress in the lungs. Using differential two-dimensional electrophoresis, we identified 16 differentially expressed proteins between control and CGUFP exposed groups. In the rats exposed to EPFR-containing CGUFP; peroxiredoxin-6, cofilin1, and annexin A8 were upregulated. Conclusions Exposure of neonates to EPFR-containing CGUFP induced pulmonary oxidative stress and lung dysfunction. This correlated with alterations in the expression of various proteins associated with the response to oxidative stress and the regulation of glucocorticoid receptor translocation in T lymphocytes. PMID:21388553

  13. Lung matrix and vascular remodeling in mechanically ventilated elastin haploinsufficient newborn mice

    PubMed Central

    Hilgendorff, Anne; Parai, Kakoli; Ertsey, Robert; Navarro, Edwin; Jain, Noopur; Carandang, Francis; Peterson, Joanna; Mokres, Lucia; Milla, Carlos; Preuss, Stefanie; Alcazar, Miguel Alejandre; Khan, Suleman; Masumi, Juliet; Ferreira-Tojais, Nancy; Mujahid, Sana; Starcher, Barry; Rabinovitch, Marlene

    2014-01-01

    Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln+/−) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice. We studied 5-day-old wild-type (Eln+/+) and Eln+/− littermates at baseline and after MV with air for 8–24 h. Lungs of unventilated Eln+/− mice contained ∼50% less elastin and ∼100% more collagen-1 and lysyl oxidase compared with Eln+/+ pups. Eln+/− lungs contained fewer capillaries than Eln+/+ lungs, without discernible differences in alveolar structure. In response to MV, lung tropoelastin and elastase activity increased in Eln+/+ neonates, whereas tropoelastin decreased and elastase activity was unchanged in Eln+/− mice. Fibrillin-1 protein increased in lungs of both groups during MV, more in Eln+/− than in Eln+/+ pups. In both groups, MV caused capillary loss, with larger and fewer alveoli compared with unventilated controls. Respiratory system elastance, which was less in unventilated Eln+/− compared with Eln+/+ mice, was similar in both groups after MV. These results suggest that elastin haploinsufficiency adversely impacts pulmonary angiogenesis and that MV dysregulates elastic fiber integrity, with further loss of lung capillaries, lung growth arrest, and impaired respiratory function in both Eln+/+ and Eln+/− mice. Paucity of lung capillaries in Eln+/− newborns might help explain subsequent development of pulmonary hypertension previously reported in adult Eln+/− mice. PMID:25539853

  14. Brain-Derived Neurotrophic Factor in the Airways

    PubMed Central

    Prakash, Y.S.; Martin, Richard J.

    2014-01-01

    In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target. PMID:24560686

  15. Abnormal findings in brainstem auditory evoked response at 36-37weeks of postconceptional age in babies with neonatal chronic lung disease.

    PubMed

    Jiang, Ze D; Wang, Cui

    2016-12-01

    To examine brainstem auditory function at 36-37weeks of postconceptional age in preterm infants who are diagnosed to have neonatal chronic lung disease (CLD). Preterm infants, born at 31 and less weeks of gestation, were studied at 36-37weeks of postconceptional age when they were diagnosed to have neonatal CLD. Brainstem auditory evoked response (BAER) was recorded and analyzed at different click rates. Compared with healthy controls at the same postconceptional age, the CLD infants showed a slightly increase in BAER wave V latency. However, the I-V, and III-V interpeak intervals in the CLD infants were significantly increased. The III-V/I-III interval ratio was also significantly increased. The amplitudes of BAER waves III and V in the CLD infants tended to be reduced. These BAER findings were similar at all 21, 51 and 91/s clicks, although the abnormalities tended to be more significant at higher than at low click rates. At 36-37weeks of postconceptional age, BAER was abnormal in preterm infants who were diagnosed to have neonatal CLD. This suggests that at time when the diagnosis of CLD is made there is functional impairment, reflecting poor myelination, in the brainstem auditory pathway in preterm infants with neonatal CLD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. The diagnosis of neonatal pulmonary atelectasis using lung ultrasonography.

    PubMed

    Liu, Jing; Chen, Shui-Wen; Liu, Fang; Li, Qiu-Ping; Kong, Xiang-Yong; Feng, Zhi-Chun

    2015-04-01

    Ultrasonography has been used for the diagnosis of many kinds of lung conditions, but few studies have investigated ultrasound for the diagnosis of neonatal pulmonary atelectasis (NAP). In this study, we evaluated the usefulness of lung ultrasonography for the diagnosis of NPA. From May 2012 to December 2013, 80 neonates with NPA and 50 neonates without lung disease were enrolled in this study. Each lung of every infant was divided into the anterior, lateral, and posterior regions by the anterior and posterior axillary lines. Each region was scanned carefully with the probe perpendicular or parallel to the ribs. The ultrasound findings were confirmed by chest radiograph (CXR) or CT scan. Sixty of the 80 patients with signs of NPA on lung ultrasound also had signs of NPA on CXR (termed focal-type atelectasis), and the other 20 patients had signs of NPA on chest CT scan while there were no abnormal findings on CXR (termed occult lung atelectasis). In patients with NPA, the main ultrasound findings were large areas of lung consolidation with clearly demarcated borders, air bronchograms, pleural line abnormalities, and absence of A-lines, as well as the presence of lung pulse and absence of lung sliding on real-time ultrasound. The sensitivity of lung ultrasonography for the diagnosis of NPA was 100%, whereas the sensitivity of CXR was 75%. Large areas of lung consolidation with clearly demarcated borders were only observed in patients with NPA. Lung ultrasonography is an accurate and reliable method for diagnosing NPA; most importantly, it can find those occult lung atelectasis that could not be detected on CXR. Routine lung ultrasonography is a useful method of diagnosing or excluding NPA in neonates.

  17. Elevated airway liquid volumes at birth: a potential cause of transient tachypnea of the newborn.

    PubMed

    McGillick, Erin V; Lee, Katie; Yamaoka, Shigeo; Te Pas, Arjan B; Crossley, Kelly J; Wallace, Megan J; Kitchen, Marcus J; Lewis, Robert A; Kerr, Lauren T; DeKoninck, Philip; Dekker, Janneke; Thio, Marta; McDougall, Annie R A; Hooper, Stuart B

    2017-11-01

    Excessive liquid in airways and/or distal lung tissue may underpin the respiratory morbidity associated with transient tachypnea of the newborn (TTN). However, its effects on lung aeration and respiratory function following birth are unknown. We investigated the effect of elevated airway liquid volumes on newborn respiratory function. Near-term rabbit kittens (30 days gestation; term ~32 days) were delivered, had their lung liquid-drained, and either had no liquid replaced (control; n = 7) or 30 ml/kg of liquid re-added to the airways [liquid added (LA); n = 7]. Kittens were mechanically ventilated in a plethysmograph. Measures of chest and lung parameters, uniformity of lung aeration, and airway size were analyzed using phase contrast X-ray imaging. The maximum peak inflation pressure required to recruit a tidal volume of 8 ml/kg was significantly greater in LA compared with control kittens (35.0 ± 0.7 vs. 26.8 ± 0.4 cmH 2 O, P < 0.001). LA kittens required greater time to achieve lung aeration (106 ± 14 vs. 60 ± 6 inflations, P = 0.03) and had expanded chest walls, as evidenced by an increased total chest area (32 ± 9%, P < 0.0001), lung height (17 ± 6%, P = 0.02), and curvature of the diaphragm (19 ± 8%, P = 0.04). LA kittens had lower functional residual capacity during stepwise changes in positive end-expiratory pressures (5, 3, 0, and 5 cmH 2 0). Elevated lung liquid volumes had marked adverse effects on lung structure and function in the immediate neonatal period and reduced the ability of the lung to aerate efficiently. We speculate that elevated airway liquid volumes may underlie the initial morbidity in near-term babies with TTN after birth. NEW & NOTEWORTHY Transient tachypnea of the newborn reduces respiratory function in newborns and is thought to result due to elevated airway liquid volumes following birth. However, the effect of elevated airway liquid volumes on neonatal respiratory function is unknown. Using phase contrast X-ray imaging, we show that elevated airway liquid volumes have adverse effects on lung structure and function in the immediate newborn period, which may underlie the pathology of TTN in near-term babies after birth. Copyright © 2017 the American Physiological Society.

  18. Nonintrusive gas monitoring in neonatal lungs using diode laser spectroscopy: feasibility study.

    PubMed

    Lewander, Märta; Bruzelius, Anders; Svanberg, Sune; Svanberg, Katarina; Fellman, Vineta

    2011-12-01

    A feasibility study on noninvasive, real-time monitoring of gases in lungs of preterm infants is reported, where a laser-spectroscopic technique using diode lasers tuned to oxygen and water vapor absorption lines was employed on realistic tissue phantoms. Our work suggests that the technique could provide a new possibility for surveillance of the lung function of preterm infants, in particular the oxygenation, which is of prime importance in this patient group.

  19. Neonatal lungs--can absolute lung resistivity be determined non-invasively?

    PubMed

    Brown, B H; Primhak, R A; Smallwood, R H; Milnes, P; Narracott, A J; Jackson, M J

    2002-07-01

    The electrical resistivity of lung tissue can be related to the structure and composition of the tissue and also to the air content. Conditions such as pulmonary oedema and emphysema have been shown to change lung resistivity. However, direct access to the lungs to enable resistivity to be measured is very difficult. We have developed a new method of using electrical impedance tomographic (EIT) measurements on a group of 142 normal neonates to determine the absolute resistivity of lung tissue. The methodology involves comparing the measured EIT data with that from a finite difference model of the thorax in which lung tissue resistivity can be changed. A mean value of 5.7 +/- 1.7 omega(m) was found over the frequency range 4 kHz to 813 kHz. This value is lower than that usually given for adult lung tissue but consistent with the literature on the composition of the neonatal lung and with structural modelling.

  20. Developmental expression of the receptor for advanced glycation end-products (RAGE) and its response to hyperoxia in the neonatal rat lung

    PubMed Central

    Lizotte, Pierre-Paul; Hanford, Lana E; Enghild, Jan J; Nozik-Grayck, Eva; Giles, Brenda-Louise; Oury, Tim D

    2007-01-01

    Background The receptor for advanced glycation end products (mRAGE) is associated with pathology in most tissues, while its soluble form (sRAGE) acts as a decoy receptor. The adult lung is unique in that it expresses high amounts of RAGE under normal conditions while other tissues express low amounts normally and up-regulate RAGE during pathologic processes. We sought to determine the regulation of the soluble and membrane isoforms of RAGE in the developing lung, and its expression under hyperoxic conditions in the neonatal lung. Results Fetal (E19), term, 4 day, 8 day and adult rat lung protein and mRNA were analyzed, as well as lungs from neonatal (0–24 hrs) 2 day and 8 day hyperoxic (95% O2) exposed animals. mRAGE transcripts in the adult rat lung were 23% greater than in neonatal (0–24 hrs) lungs. On the protein level, rat adult mRAGE expression was 2.2-fold higher relative to neonatal mRAGE expression, and adult sRAGE protein expression was 2-fold higher compared to neonatal sRAGE. Fetal, term, 4 day and 8 day old rats had a steady increase in both membrane and sRAGE protein expression evaluated by Western Blot and immunohistochemistry. Newborn rats exposed to chronic hyperoxia showed significantly decreased total RAGE expression compared to room air controls. Conclusion Taken together, these data show that rat pulmonary RAGE expression increases with age beginning from birth, and interestingly, this increase is counteracted under hyperoxic conditions. These results support the emerging concept that RAGE plays a novel and homeostatic role in lung physiology. PMID:17343756

  1. ORACLE--antibiotics for preterm prelabour rupture of the membranes: short-term and long-term outcomes.

    PubMed

    Kenyon, S; Taylor, D J; Tarnow-Mordi, W O

    2002-01-01

    Preterm prelabour rupture of the foetal membranes (pPROM) is the most common antecedent of preterm birth and can lead to death, neonatal disease and long-term disability. Previous small trials of antibiotics for pPROM suggested some health benefits for the neonate, but the results were inconclusive. A large, randomized, multicentre trial was undertaken to try to resolve this issue. In total, 4826 women with pPROM were randomized to one of four treatments: 325 mg co-amoxiclav plus 250 mg erythromycin, co-amoxiclav plus erythromycin placebo, erythromycin plus co-amoxiclav placebo, or co-amoxiclav placebo plus erythromycin placebo, four times daily for 10 d or until delivery. The primary outcome measure was a composite of neonatal death, chronic lung disease or major cerebral abnormality on ultrasonography before discharge from hospital. The analysis was undertaken by intention to treat. Indications of short-term respiratory function, chronic lung disease and major neonatal cerebral abnormality were reduced with the prescription of erythromycin. In contrast, the use of co-amoxiclav was associated with a significant increase in the occurrence of neonatal necrotizing enterocolitis. Prophylactic antibiotics can play a role in preterm prelabour rupture of the membranes in reducing infant morbidity.

  2. Inhaled Vitamin D: A Novel Strategy to Enhance Neonatal Lung Maturation.

    PubMed

    Taylor, Sneha K; Sakurai, Reiko; Sakurai, Tokusho; Rehan, Virender K

    2016-12-01

    The physiologic vitamin D (VD), 1α,25(OH) 2 D 3 (1,25D) is a local paracrine/autocrine effecter of fetal lung maturation. By stimulating alveolar type II cell and lipofibroblast proliferation and differentiation, parenterally administered 1,25D has been shown to enhance neonatal lung maturation; but due to the potential systemic side effects of the parenteral route, the translational value of these findings might be limited. To minimize the possibility of systemic toxicity, we examined the effects of VD on neonatal lung maturation, when delivered directly to lungs via nebulization. One-day-old rat pups were administered three different doses of 1,25D and its physiologic precursor 25(OH)D (25D), or the diluent, via nebulization daily for 14 days. Pups were sacrificed for lung, kidneys, and blood collection to determine markers of lung maturation, and serum 25D and calcium levels. Compared to controls, nebulized 25D and 1,25D enhanced lung maturation as evidenced by the increased expression of markers of alveolar epithelial (SP-B, leptin receptor), mesenchymal (PPARγ, C/EBPα), and endothelial (VEGF, FLK-1) differentiation, surfactant phospholipid synthesis, and lung morphology without any significant increases in serum 25D and calcium levels. Inhaled VD is a potentially safe and effective novel strategy to enhance neonatal lung maturation.

  3. The effects of electronic cigarette emissions on systemic cotinine levels, weight and postnatal lung growth in neonatal mice.

    PubMed

    McGrath-Morrow, Sharon A; Hayashi, Madoka; Aherrera, Angela; Lopez, Armando; Malinina, Alla; Collaco, Joseph M; Neptune, Enid; Klein, Jonathan D; Winickoff, Jonathan P; Breysse, Patrick; Lazarus, Philip; Chen, Gang

    2015-01-01

    Electronic cigarette (E-cigarettes) emissions present a potentially new hazard to neonates through inhalation, dermal and oral contact. Exposure to nicotine containing E-cigarettes may cause significant systemic absorption in neonates due to the potential for multi-route exposure. Systemic absorption of nicotine and constituents of E-cigarette emissions may adversely impact weight and lung development in the neonate. To address these questions we exposed neonatal mice to E-cigarette emissions and measured systemic cotinine levels and alveolar lung growth. Neonatal mice were exposed to E-cigarettes for the first 10 days of life. E-cigarette cartridges contained either 1.8% nicotine in propylene glycol (PG) or PG vehicle alone. Daily weights, plasma and urine cotinine levels and lung growth using the alveolar mean linear intercept (MLI) method were measured at 10 days of life and compared to room air controls. Mice exposed to 1.8% nicotine/PG had a 13.3% decrease in total body weight compared to room air controls. Plasma cotinine levels were found to be elevated in neonatal mice exposed to 1.8% nicotine/PG E-cigarettes (mean 62.34± 3.3 ng/ml). After adjusting for sex and weight, the nicotine exposed mice were found to have modestly impaired lung growth by MLI compared to room air control mice (p<.054 trial 1; p<.006 trial 2). These studies indicate that exposure to E-cigarette emissions during the neonatal period can adversely impact weight gain. In addition exposure to nicotine containing E-cigarettes can cause detectable levels of systemic cotinine, diminished alveolar cell proliferation and a modest impairment in postnatal lung growth.

  4. Lung development and the host response to influenza A virus are altered by different doses of neonatal oxygen in mice

    PubMed Central

    Buczynski, Bradley W.; Yee, Min; Paige Lawrence, B.

    2012-01-01

    Oxygen exposure in preterm infants has been associated with altered lung development and increased risk for respiratory viral infections later in life. Although the dose of oxygen sufficient to exert these changes in humans remains unknown, adult mice exposed to 100% oxygen between postnatal days 1–4 exhibit alveolar simplification and increased sensitivity to influenza virus infection. Additionally, two nonlinear thresholds of neonatal oxygen exposures were previously identified that promote modest (between 40% and 60% oxygen) and severe (between 80% and 100% oxygen) changes in lung development. Here, we investigate whether these two thresholds correlate with the severity of lung disease following respiratory viral infection. Adult mice exposed to 100% oxygen at birth, and to a lesser extent 80% oxygen, demonstrated enhanced body weight loss, persistent inflammation, and fibrosis following infection compared with infected siblings exposed to room air at birth. In contrast, the host response to infection was indistinguishable between mice exposed to room air and 40% or 60% oxygen. Interestingly, levels of monocyte chemoattractant protein (MCP)-1 were equivalently elevated in infected mice that had been exposed to 80% or 100% oxygen as neonates. However, reducing levels of MCP-1 using heterozygous Mcp-1 mice did not affect oxygen-dependent changes in the response to infection. Thus lung development and the host response to respiratory viral infection are disrupted by different doses of oxygen. Our findings suggest that measuring lung function alone may not be sufficient to identify individuals born prematurely who have increased risk for respiratory viral infection. PMID:22408042

  5. An Official American Thoracic Society Clinical Practice Guideline: Classification, Evaluation, and Management of Childhood Interstitial Lung Disease in Infancy

    PubMed Central

    Kurland, Geoffrey; Deterding, Robin R.; Hagood, James S.; Young, Lisa R.; Brody, Alan S.; Castile, Robert G.; Dell, Sharon; Fan, Leland L.; Hamvas, Aaron; Hilman, Bettina C.; Langston, Claire; Nogee, Lawrence M.; Redding, Gregory J.

    2013-01-01

    Background: There is growing recognition and understanding of the entities that cause interstitial lung disease (ILD) in infants. These entities are distinct from those that cause ILD in older children and adults. Methods: A multidisciplinary panel was convened to develop evidence-based guidelines on the classification, diagnosis, and management of ILD in children, focusing on neonates and infants under 2 years of age. Recommendations were formulated using a systematic approach. Outcomes considered important included the accuracy of the diagnostic evaluation, complications of delayed or incorrect diagnosis, psychosocial complications affecting the patient’s or family’s quality of life, and death. Results: No controlled clinical trials were identified. Therefore, observational evidence and clinical experience informed judgments. These guidelines: (1) describe the clinical characteristics of neonates and infants (<2 yr of age) with diffuse lung disease (DLD); (2) list the common causes of DLD that should be eliminated during the evaluation of neonates and infants with DLD; (3) recommend methods for further clinical investigation of the remaining infants, who are regarded as having “childhood ILD syndrome”; (4) describe a new pathologic classification scheme of DLD in infants; (5) outline supportive and continuing care; and (6) suggest areas for future research. Conclusions: After common causes of DLD are excluded, neonates and infants with childhood ILD syndrome should be evaluated by a knowledgeable subspecialist. The evaluation may include echocardiography, controlled ventilation high-resolution computed tomography, infant pulmonary function testing, bronchoscopy with bronchoalveolar lavage, genetic testing, and/or lung biopsy. Preventive care, family education, and support are essential. PMID:23905526

  6. Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung.

    PubMed

    Das, Gautom K; Anderson, Donald S; Wallis, Chris D; Carratt, Sarah A; Kennedy, Ian M; Van Winkle, Laura S

    2016-06-02

    Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m(-3) of ∼30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu(3+)) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution.

  7. Endothelin-1–Rho kinase interactions impair lung structure and cause pulmonary hypertension after bleomycin exposure in neonatal rat pups

    PubMed Central

    Tseng, Nancy; Seedorf, Gregory; Kuhn, Katherine; Abman, Steven H.

    2016-01-01

    Bronchopulmonary dysplasia (BPD) is the chronic lung disease associated with premature birth, characterized by impaired vascular and alveolar growth. In neonatal rats bleomycin decreases lung growth and causes pulmonary hypertension (PH), which is poorly responsive to nitric oxide. In the developing lung, through Rho kinase (ROCK) activation, ET-1 impairs endothelial cell function; however, whether ET-1–ROCK interactions contribute to impaired vascular and alveolar growth in experimental BPD is unknown. Neonatal rats were treated daily with intraperitoneal bleomycin with and without selective ETA (BQ123/BQ610) and ETB (BQ788) receptor blockers, nonselective ET receptor blocker (ETRB) (bosentan), or fasudil (ROCK inhibitor). At day 14, lungs were harvested for morphometrics, and measurements of Fulton's index (RV/LV+S), medial wall thickness (MWT), and vessel density. Lung ET-1 protein and ROCK activity (phospho-MYPT-1:total MYPT-1 ratio) were also measured by Western blot analysis. Bleomycin increased lung ET-1 protein expression by 65%, RV/LV+S by 60%, mean linear intercept (MLI) by 212%, and MWT by 140% and decreased radial alveolar count (RAC) and vessel density by 40 and 44%, respectively (P < 0.01 for each comparison). After bleomycin treatment, fasudil and bosentan partially restored RAC and vessel density and decreased MLI, RV/LV+S, and MWT to normal values. Bleomycin increased ROCK activity by 120%, which was restored to normal values by bosentan but not selective ETRB. We conclude that ET-1–ROCK interactions contribute to decreased alveolar and vascular growth and PH in experimental BPD. We speculate that nonselective ETRB and ROCK inhibitors may be effective in the treatment of infants with BPD and PH. PMID:27760762

  8. Endothelin-1-Rho kinase interactions impair lung structure and cause pulmonary hypertension after bleomycin exposure in neonatal rat pups.

    PubMed

    Gien, Jason; Tseng, Nancy; Seedorf, Gregory; Kuhn, Katherine; Abman, Steven H

    2016-12-01

    Bronchopulmonary dysplasia (BPD) is the chronic lung disease associated with premature birth, characterized by impaired vascular and alveolar growth. In neonatal rats bleomycin decreases lung growth and causes pulmonary hypertension (PH), which is poorly responsive to nitric oxide. In the developing lung, through Rho kinase (ROCK) activation, ET-1 impairs endothelial cell function; however, whether ET-1-ROCK interactions contribute to impaired vascular and alveolar growth in experimental BPD is unknown. Neonatal rats were treated daily with intraperitoneal bleomycin with and without selective ET A (BQ123/BQ610) and ET B (BQ788) receptor blockers, nonselective ET receptor blocker (ETRB) (bosentan), or fasudil (ROCK inhibitor). At day 14, lungs were harvested for morphometrics, and measurements of Fulton's index (RV/LV+S), medial wall thickness (MWT), and vessel density. Lung ET-1 protein and ROCK activity (phospho-MYPT-1:total MYPT-1 ratio) were also measured by Western blot analysis. Bleomycin increased lung ET-1 protein expression by 65%, RV/LV+S by 60%, mean linear intercept (MLI) by 212%, and MWT by 140% and decreased radial alveolar count (RAC) and vessel density by 40 and 44%, respectively (P < 0.01 for each comparison). After bleomycin treatment, fasudil and bosentan partially restored RAC and vessel density and decreased MLI, RV/LV+S, and MWT to normal values. Bleomycin increased ROCK activity by 120%, which was restored to normal values by bosentan but not selective ETRB. We conclude that ET-1-ROCK interactions contribute to decreased alveolar and vascular growth and PH in experimental BPD. We speculate that nonselective ETRB and ROCK inhibitors may be effective in the treatment of infants with BPD and PH. Copyright © 2016 the American Physiological Society.

  9. Routine application of lung ultrasonography in the neonatal intensive care unit

    PubMed Central

    Chen, Shui-Wen; Fu, Wei; Liu, Jing; Wang, Yan

    2017-01-01

    Abstract The aim of this study was to study the features of lung ultrasonography (LUS) in lung disease and to evaluate the usefulness of LUS in the neonatal intensive care unit (NICU). All of 3405 neonates included in this study underwent an LUS examination. Diagnoses were based on medical history, clinical manifestation, laboratory examination, and signs on chest radiography (CR) and/or computed tomography (CT). A single expert physician performed all LUS examinations. There were 2658 cases (78.9%) with lung disease and 747 cases (21.9%) without lung disease. The main signs of neonates with lung disease on LUS were as follows: absence of A-lines, pleural-line abnormalities, interstitial syndrome, lung consolidation, air bronchograms, pulmonary edema, and lung pulse. These abnormal signs were reduced or eliminated on LUS as patient conditions improved. There were 81 cases that could not be diagnosed as lung disease by CR but were discovered as pneumonia, respiratory distress syndrome (RDS), or transient tachypnea of newborn (TTN) on LUS. Likewise, 23 cases misdiagnosed as RDS by CR were diagnosed as TTN on LUS. Among 212 cases of long-term oxygen dependence (LTOD) that failed to yield signs of pulmonary edema and lung consolidation on CR, 103 cases showed abnormal signs on LUS. Among 747 cases without lung disease, B-lines of 713 neonates (95.4%) could be found within 3 days after birth, and 256 neonates (34.3%) could be observed from 3 days to 1 week after birth. B-lines of 19 cases could be detected from 1 to 2 weeks after birth. The longest time at which B-lines could still be observed was 19 days after birth. LUS has clinical value for the diagnosis of lung disease and the discrimination of causes of LTOP in premature infants, particularly for the diagnosis and identification of RDS and TTN. Moreover, LUS has additional advantages, including its lack of radiation exposure and its ability to noninvasively monitor treatment progress. Therefore, LUS should be routinely used in the NICU. PMID:28079811

  10. Pulmonary surfactant for neonatal respiratory disorders.

    PubMed

    Merrill, Jeffrey D; Ballard, Roberta A

    2003-04-01

    Surfactant therapy has revolutionized neonatal care and is used routinely for preterm infants with respiratory distress syndrome. Recent investigation has further elucidated the function of surfactant-associated proteins and their contribution toward surfactant and lung immune defense functions. As the field of neonatology moves away from intubation and mechanical ventilation of preterm infants at birth toward more aggressive use of nasal continuous positive airway pressure, the optimal timing of exogenous surfactant therapy remains unclear. Evidence suggests that preterm neonates with bronchopulmonary dysplasia and prolonged mechanical ventilation also experience surfactant dysfunction; however, exogenous surfactant therapy beyond the first week of life has not been well studied. Surfactant replacement therapy has been studied for use in other respiratory disorders, including meconium aspiration syndrome and pneumonia. Commercial surfactant preparations currently available are not optimal, given the variability of surfactant protein content and their susceptibility to inhibition. Further progress in the treatment of neonatal respiratory disorders may include the development of "designer" surfactant preparations.

  11. Lung function and exhaled nitric oxide in healthy unsedated African infants

    PubMed Central

    Gray, Diane; Willemse, Lauren; Visagie, Ane; Smith, Emilee; Czövek, Dorottya; Sly, Peter D; Hantos, Zoltán; Hall, Graham L; Zar, Heather J

    2015-01-01

    Background and objective Population-appropriate lung function reference data are essential to accurately identify respiratory disease and measure response to interventions. There are currently no reference data in African infants. The aim was to describe normal lung function in healthy African infants. Methods Lung function was performed on healthy South African infants enrolled in a birth cohort study, the Drakenstein child health study. Infants were excluded if they were born preterm or had a history of neonatal respiratory distress or prior respiratory tract infection. Measurements, made during natural sleep, included the forced oscillation technique, tidal breathing, exhaled nitric oxide and multiple breath washout measures. Results Three hundred sixty-three infants were tested. Acceptable and repeatable measurements were obtained in 356 (98%) and 352 (97%) infants for tidal breathing analysis and exhaled nitric oxide outcomes, 345 (95%) infants for multiple breath washout and 293 of the 333 (88%) infants for the forced oscillation technique. Age, sex and weight-for-age z score were significantly associated with lung function measures. Conclusions This study provides reference data for unsedated infant lung function in African infants and highlights the importance of using population-specific data. PMID:26134556

  12. Role of catalytic iron and oxidative stress in nitrofen-induced congenital diaphragmatic hernia and its amelioration by Saireito (TJ-114).

    PubMed

    Hirako, Shima; Tsuda, Hiroyuki; Ito, Fumiya; Okazaki, Yasumasa; Hirayama, Tasuku; Nagasawa, Hideko; Nakano, Tomoko; Imai, Kenji; Kotani, Tomomi; Kikkawa, Fumitaka; Toyokuni, Shinya

    2017-11-01

    Congenital diaphragmatic hernia (CDH) is a life-threatening neonatal disease that leads to lung hypoplasia and pulmonary hypertension. We recently found that maternal prenatal administration of Saireito (TJ-114) ameliorates fetal CDH in a nitrofen-induced rat model. Here, we studied the role of iron and oxidative stress in neonates of this model and in lung fibroblasts IMR90-SV in association with nitrofen and Saireito. We observed increased immunostaining of 8-hydroxy-2'-deoxyguanosine in the lungs of neonates with CDH, which was ameliorated by maternal Saireito intake. Pulmonary transferrin receptor expression was significantly decreased in both CDH and CDH after Saireito in comparison to normal controls, indicating functional lung immaturity, whereas catalytic Fe(II) and pulmonary DMT1/ferroportin expression remained constant among the three groups. Saireito revealed a dose-dependent scavenging capacity with electron spin resonance spin trapping in vitro against hydroxyl radicals but not against superoxide. Finally, nitrofen revealed dose-dependent cytotoxicity to IMR90-SV cells, accompanied by an increase in oxidative stress, as seen by 5(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and catalytic Fe(II). Saireito ameliorated all of these in IMR90-SV cells. In conclusion, catalytic Fe(II)-dependent oxidative stress by nitrofen may be the pathogenic cause of CDH, and the antioxidative activity of Saireito is at least partially responsible for improving nitrofen-induced CDH.

  13. Role of catalytic iron and oxidative stress in nitrofen-induced congenital diaphragmatic hernia and its amelioration by Saireito (TJ-114)

    PubMed Central

    Hirako, Shima; Tsuda, Hiroyuki; Ito, Fumiya; Okazaki, Yasumasa; Hirayama, Tasuku; Nagasawa, Hideko; Nakano, Tomoko; Imai, Kenji; Kotani, Tomomi; Kikkawa, Fumitaka; Toyokuni, Shinya

    2017-01-01

    Congenital diaphragmatic hernia (CDH) is a life-threatening neonatal disease that leads to lung hypoplasia and pulmonary hypertension. We recently found that maternal prenatal administration of Saireito (TJ-114) ameliorates fetal CDH in a nitrofen-induced rat model. Here, we studied the role of iron and oxidative stress in neonates of this model and in lung fibroblasts IMR90-SV in association with nitrofen and Saireito. We observed increased immunostaining of 8-hydroxy-2'-deoxyguanosine in the lungs of neonates with CDH, which was ameliorated by maternal Saireito intake. Pulmonary transferrin receptor expression was significantly decreased in both CDH and CDH after Saireito in comparison to normal controls, indicating functional lung immaturity, whereas catalytic Fe(II) and pulmonary DMT1/ferroportin expression remained constant among the three groups. Saireito revealed a dose-dependent scavenging capacity with electron spin resonance spin trapping in vitro against hydroxyl radicals but not against superoxide. Finally, nitrofen revealed dose-dependent cytotoxicity to IMR90-SV cells, accompanied by an increase in oxidative stress, as seen by 5(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and catalytic Fe(II). Saireito ameliorated all of these in IMR90-SV cells. In conclusion, catalytic Fe(II)-dependent oxidative stress by nitrofen may be the pathogenic cause of CDH, and the antioxidative activity of Saireito is at least partially responsible for improving nitrofen-induced CDH. PMID:29203958

  14. Respiratory mechanics and breathing pattern in the neonatal foal.

    PubMed

    Koterba, A M; Kosch, P C

    1987-01-01

    Breathing pattern, respiratory muscle activation pattern, lung volumes and volume-pressure characteristics of the respiratory system of normal, term, neonatal foals on Days 2 and 7 of age were determined to test the hypothesis that the foal actively maintains end-expiratory lung volume (EEV) greater than the relaxation volume of the respiratory system (Vrx) because of a highly compliant chest wall. Breathing pattern was measured in the awake, unsedated foal during quiet breathing in lateral and standing positions. The typical neonatal foal breathing pattern was characterized by a monophasic inspiratory and expiratory flow pattern. Both inspiration and expiration were active, with onset of Edi activity preceding onset of inspiratory flow, and phasic abdominal muscle activity detectable throughout most of expiration. No evidence was found to support the hypothesis that the normal, term neonatal foal actively maintains EEV greater than Vrx. In the neonatal foal, normalized lung volume and lung compliance values were similar to those reported for neonates of other species, while normalized chest wall compliance was considerably lower. We conclude that the chest wall of the term neonatal foal is sufficiently rigid to prevent a low Vrx. This characteristic probably prevents the foal from having to use a breathing strategy which maintains an EEV greater than Vrx.

  15. Pressure oscillation delivery to the lung: Computer simulation of neonatal breathing parameters.

    PubMed

    Al-Jumaily, Ahmed M; Reddy, Prasika I; Bold, Geoff T; Pillow, J Jane

    2011-10-13

    Preterm newborn infants may develop respiratory distress syndrome (RDS) due to functional and structural immaturity. A lack of surfactant promotes collapse of alveolar regions and airways such that newborns with RDS are subject to increased inspiratory effort and non-homogeneous ventilation. Pressure oscillation has been incorporated into one form of RDS treatment; however, how far it reaches various parts of the lung is still questionable. Since in-vivo measurement is very difficult if not impossible, mathematical modeling may be used as one way of assessment. Whereas many models of the respiratory system have been developed for adults, the neonatal lung remains essentially ill-described in mathematical models. A mathematical model is developed, which represents the first few generations of the tracheo-bronchial tree and the 5 lobes that make up the premature ovine lung. The elements of the model are derived using the lumped parameter approach and formulated in Simulink™ within the Matlab™ environment. The respiratory parameters at the airway opening compare well with those measured from experiments. The model demonstrates the ability to predict pressures, flows and volumes in the alveolar regions of a premature ovine lung. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Qualitative and quantitative interpretation of computed tomography of the lungs in healthy neonatal foals.

    PubMed

    Lascola, Kara M; O'Brien, Robert T; Wilkins, Pamela A; Clark-Price, Stuart C; Hartman, Susan K; Mitchell, Mark A

    2013-09-01

    To qualitatively describe lung CT images obtained from sedated healthy equine neonates (≤ 14 days of age), use quantitative analysis of CT images to characterize attenuation and distribution of gas and tissue volumes within the lungs, and identify differences between lung characteristics of foals ≤ 7 days of age and foals > 7 days of age. 10 Standardbred foals between 2.5 and 13 days of age. Foals were sedated with butorphanol, midazolam, and propofol and positioned in sternal recumbency for thoracic CT. Image analysis software was used to exclude lung from nonlung structures. Lung attenuation was measured in Hounsfield units (HU) for analysis of whole lung and regional changes in attenuation and lung gas and tissue components. Degree of lung attenuation was classified as follows: hyperinflated or emphysema, -1,000 to -901 HU; well aerated, -900 to -501 HU; poorly aerated, -500 to -101 HU; and nonaerated, > -100 HU. Qualitative evidence of an increase in lung attenuation and patchy alveolar patterns in the ventral lung region were more pronounced in foals ≤ 7 days of age than in older foals. Quantitative analysis revealed that mean ± SD lung attenuation was greater in foals ≤ 7 days of age (-442 ± 28 HU) than in foals > 7 days of age (-521 ± 24 HU). Lung aeration and gas volumes were lower than in other regions ventrally and in the mid lung region caudal to the heart. CONCLUSIONS AND CLINICAL RELEVANCE-Identified radiographic patterns and changes in attenuation were most consistent with atelectasis and appeared more severe in foals ≤ 7 days of age than in older neonatal foals. Recognition of these changes may have implications for accurate CT interpretation in sedated neonatal foals with pulmonary disease.

  17. Memory CD8+ T cells are sufficient to alleviate impaired host resistance to influenza A virus infection caused by neonatal oxygen supplementation.

    PubMed

    Giannandrea, Matthew; Yee, Min; O'Reilly, Michael A; Lawrence, B Paige

    2012-09-01

    Supplemental oxygen administered to preterm infants is an important clinical intervention, but it is associated with life-long changes in lung development and increased sensitivity to respiratory viral infections. The precise immunological changes caused by neonatal oxygen treatment remain poorly understood. We previously reported that adult mice exposed to supplemental oxygen as neonates display persistent pulmonary inflammation and enhanced mortality after a sublethal influenza A virus infection. These changes suggest that neonatal hyperoxia impairs the cytotoxic CD8(+) T cell response required to clear the virus. In this study, we show that although host resistance to several different strains of influenza A virus is reduced by neonatal hyperoxia, this treatment does not impair viral clearance, nor does it alter the magnitude of the virus-specific CD8(+) T cell response to primary infection. Moreover, memory T cells are sufficient to ameliorate the increased morbidity and mortality and alleviate the excessive lung damage observed in mice exposed to high oxygen levels as neonates, and we attribute this sufficiency principally to virus-specific memory CD8(+) T cells. Thus, we show that neonatal hyperoxia reduces host resistance to influenza virus infection without diminishing the function of cytotoxic T lymphocytes or the generation of virus-specific memory T cells and that CD8(+) memory T cells are sufficient to provide protection from negative consequences of this important life-saving intervention. Our findings suggest that vaccines that generate robust T cell memory may be efficacious at reducing the increased sensitivity to respiratory viral infections in people born prematurely.

  18. The expression of HoxB5 and SPC in neonatal rat lung after exposure to fluoxetine.

    PubMed

    Taghizadeh, Razieh; Taghipour, Zahra; Karimi, Akbar; Shamsizadeh, Ali; Taghavi, Mohammad Mohsen; Shariati, Mahdi; Shabanizadeh, Ahmad; Jafari Naveh, Hamid Reza; Bidaki, Reza; Aminzadeh, Fariba

    2016-01-01

    Approximately 10% of pregnant women suffer from pregnancy-associated depression. Fluoxetine, as a selective serotonin reuptake inhibitor, is being employed as a therapy for depressive disorders. The present study aimed to determine the effects of fluoxetine on neonatal lung development. Thirty pregnant Wistar rats (weighing 200-250 g) were treated daily with 7 mg/kg fluoxetine from gestation day 0 to gestation day 21, via gavage. The control group received a similar volume of distilled water only. Following delivery, the newborns and their lungs were immediately weighed in both of the groups. The right lung was fixed for histological assessments while the left lung was used for evaluation of the expression of SPC and HoxB5 by the real-time polymerase chain reaction method. Results have indicated that even though the body weight and the number of neonatal rats in both groups were the same, the lung weight of neonates exposed to fluoxetine was significantly different compared to the control group ( P <0.05). Expression of both genes was increased, nonetheless, only elevation of HoxB5 was significant ( P <0.05). Histological studies demonstrated that lung tissue in the fluoxetine treatment group morphologically appears to be similar to the pseudoglandular phase, whereas the control group lungs experienced more development. According to the upregulated expression of HoxB5 concerning histological findings, results of the present study showed that fluoxetine can influence lung growth and may in turn lead to delay in lung development. So establishment of studies to identify the effects of antidepressant drugs during pregnancy is deserved.

  19. Neonatal respiratory distress syndrome: Chest X-ray or lung ultrasound? A systematic review

    PubMed Central

    Culpan, Anne-Marie; Watts, Catriona; Munyombwe, Theresa; Wolstenhulme, Stephen

    2017-01-01

    Background and aim Neonatal respiratory distress syndrome is a leading cause of morbidity in preterm new-born babies (<37 weeks gestation age). The current diagnostic reference standard includes clinical testing and chest radiography with associated exposure to ionising radiation. The aim of this review was to compare the diagnostic accuracy of lung ultrasound against the reference standard in symptomatic neonates of ≤42 weeks gestation age. Methods A systematic search of literature published between 1990 and 2016 identified 803 potentially relevant studies. Six studies met the review inclusion criteria and were retrieved for analysis. Quality assessment was performed before data extraction and meta-analysis. Results Four prospective cohort studies and two case control studies included 480 neonates. All studies were of moderate methodological quality although heterogeneity was evident across the studies. The pooled sensitivity and specificity of lung ultrasound were 97% (95% confidence interval [CI] 94–99%) and 91% (CI: 86–95%) respectively. False positive diagnoses were made in 16 cases due to pneumonia (n = 8), transient tachypnoea (n = 3), pneumothorax (n = 1) and meconium aspiration syndrome (n = 1); the diagnoses of the remaining three false positive results were not specified. False negatives diagnoses occurred in nine cases, only two were specified as air-leak syndromes. Conclusions Lung ultrasound was highly sensitive for the detection of neonatal respiratory distress syndrome although there is potential to miss co-morbid air-leak syndromes. Further research into lung ultrasound diagnostic accuracy for neonatal air-leak syndrome and economic modelling for service integration is required before lung ultrasound can replace chest radiography as the imaging component of the reference standard. PMID:28567102

  20. Effects and molecular mechanisms of intrauterine infection/inflammation on lung development.

    PubMed

    Pan, Jiarong; Zhan, Canyang; Yuan, Tianming; Wang, Weiyan; Shen, Ying; Sun, Yi; Wu, Tai; Gu, Weizhong; Chen, Lihua; Yu, Huimin

    2018-05-10

    Intrauterine infection/inflammation plays an important role in the development of lung injury and bronchopulmonary dysplasia (BPD) in preterm infants, While a multifactorial genesis is likely, mechanisms involved in BPD after intrauterine infection/inflammation are largely unknown. Recent studies have suggested microRNAs (miRNAs) are likely to play a role. Therefore, this study aimed to study the effects and mechanisms of intrauterine infection/inflammation on lung development, and to identify miRNAs related to lung injury and BPD. An animal model of intrauterine infection/inflammation was established with pregnant SD rats endocervically inoculated with E.coli. The fetal and neonatal rats were observed at embryonic day (E) 17, 19, 21 and postnatal day (P) 1, 3, 7, 14, respectively. Body weight, lung weight, the expression levels of NLRP3, TNF-α, IL-lβ, IL-6, VEGF, Collagen I, SP-A, SP-B and SP-C in the lung tissues of fetal and neonatal rats were measured. Expression profiles of 1218 kinds of miRNAs in the lungs of neonatal rats were detected by miRNA microarray technique. Target genes of the identified miRNAs were predicted through online software. Intrauterine infection/inflammation compromised not only weight development but also lung development of the fetal and neonatal rats. The results showed significantly increased expression of NLRP3, TNF-α, IL-1β, IL-6, Collagen I, and significantly decreased expression of VEGF, SP-A, SP-B and SP-C in the fetal and neonatal rat lung tissues in intrauterine infection group compared to the control group at different observation time point (P < 0.05). Forty-three miRNAs with significant differential expression were identified. Possible target genes regulated by the identified miRNAs are very rich. Intrauterine infection/inflammation results in lung histological changes which are very similar to those observed in BPD. Possible mechanisms may include NLRP3 inflammasome activation followed by inflammatory cytokines expression up-regulated, inhibiting the expression of pulmonary surfactant proteins, interfering with lung interstitial development. There are many identified miRNAs which target a wide range of genes and may play an important role in the processes of lung injury and BPD.

  1. IgA modulates respiratory dysfunction as a sequela to pulmonary chlamydial infection as neonates

    PubMed Central

    Lanka, Gopala Krishna Koundinya; Yu, Jieh-Juen; Gong, Siqi; Gupta, Rishein; Mustafa, Shamimunisa B.; Murthy, Ashlesh K.; Zhong, Guangming; Chambers, James P.; Guentzel, M. Neal; Arulanandam, Bernard P.

    2016-01-01

    Neonatal Chlamydia lung infections are associated with serious sequelae such as asthma and airway hyper-reactivity in children and adults. Our previous studies demonstrated the importance of Th-1 type cytokines, IL-12 and IFN-γ in protection against neonatal pulmonary chlamydial challenge; however, the role of the humoral arm of defense has not been elucidated. We hypothesized that B-cells and IgA, the major mucosal antibody, play a protective role in newborns against development of later life respiratory sequelae to Chlamydia infection. Our studies using neonatal mice revealed that all WT and IgA-deficient (IgA−/−) animals survived a sublethal pulmonary Chlamydia muridarum challenge at one day after birth with similar reduction in bacterial burdens over time. In contrast, all B-cell-deficient (μMT) mice succumbed to infection at the same challenge dose correlating to failure to control bacterial burdens in the lungs. Although IgA may not be important for bacterial clearance, we observed IgA−/− mice displayed greater respiratory dysfunction 5 weeks post challenge. Specifically, comparative respiratory functional analyses revealed a significant shift upward in P–V loops, and higher dynamic resistance in IgA−/− animals. This study provides insight(s) into the protective role of IgA in neonates against pulmonary chlamydial infection induced respiratory pathological sequelae observed later in life. PMID:26755533

  2. Progressive Vascular Functional and Structural Damage in a Bronchopulmonary Dysplasia Model in Preterm Rabbits Exposed to Hyperoxia.

    PubMed

    Jiménez, Julio; Richter, Jute; Nagatomo, Taro; Salaets, Thomas; Quarck, Rozenn; Wagennar, Allard; Wang, Hongmei; Vanoirbeek, Jeroen; Deprest, Jan; Toelen, Jaan

    2016-10-24

    Bronchopulmonary dysplasia (BPD) is caused by preterm neonatal lung injury and results in oxygen dependency and pulmonary hypertension. Current clinical management fails to reduce the incidence of BPD, which calls for novel therapies. Fetal rabbits have a lung development that mimics humans and can be used as a translational model to test novel treatment options. In preterm rabbits, exposure to hyperoxia leads to parenchymal changes, yet vascular damage has not been studied in this model. In this study we document the early functional and structural changes of the lung vasculature in preterm rabbits that are induced by hyperoxia after birth. Pulmonary artery Doppler measurements, micro-CT barium angiograms and media thickness of peripheral pulmonary arteries were affected after seven days of hyperoxia when compared to controls. The parenchyma was also affected both at the functional and structural level. Lung function testing showed higher tissue resistance and elastance, with a decreased lung compliance and lung capacity. Histologically hyperoxia leads to fewer and larger alveoli with thicker walls, less developed distal airways and more inflammation than normoxia. In conclusion, we show that the rabbit model develops pulmonary hypertension and developmental lung arrest after preterm lung injury, which parallel the early changes in human BPD. Thus it enables the testing of pharmaceutical agents that target the cardiovascular compartment of the lung for further translation towards the clinic.

  3. Progressive Vascular Functional and Structural Damage in a Bronchopulmonary Dysplasia Model in Preterm Rabbits Exposed to Hyperoxia

    PubMed Central

    Jiménez, Julio; Richter, Jute; Nagatomo, Taro; Salaets, Thomas; Quarck, Rozenn; Wagennar, Allard; Wang, Hongmei; Vanoirbeek, Jeroen; Deprest, Jan; Toelen, Jaan

    2016-01-01

    Bronchopulmonary dysplasia (BPD) is caused by preterm neonatal lung injury and results in oxygen dependency and pulmonary hypertension. Current clinical management fails to reduce the incidence of BPD, which calls for novel therapies. Fetal rabbits have a lung development that mimics humans and can be used as a translational model to test novel treatment options. In preterm rabbits, exposure to hyperoxia leads to parenchymal changes, yet vascular damage has not been studied in this model. In this study we document the early functional and structural changes of the lung vasculature in preterm rabbits that are induced by hyperoxia after birth. Pulmonary artery Doppler measurements, micro-CT barium angiograms and media thickness of peripheral pulmonary arteries were affected after seven days of hyperoxia when compared to controls. The parenchyma was also affected both at the functional and structural level. Lung function testing showed higher tissue resistance and elastance, with a decreased lung compliance and lung capacity. Histologically hyperoxia leads to fewer and larger alveoli with thicker walls, less developed distal airways and more inflammation than normoxia. In conclusion, we show that the rabbit model develops pulmonary hypertension and developmental lung arrest after preterm lung injury, which parallel the early changes in human BPD. Thus it enables the testing of pharmaceutical agents that target the cardiovascular compartment of the lung for further translation towards the clinic. PMID:27783043

  4. Effects of indoor air pollution on lung function of primary school children in Kuala Lumpur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azizi, B.H.; Henry, R.L.

    1990-01-01

    In a cross-sectional study of 7-12 year-old primary school children in Kuala Lumpur city, lung function was assessed by spirometric and peak expiratory flow measurements. Spirometric and peak expiratory flow measurements were successfully performed in 1,214 and 1,414 children, respectively. As expected, the main predictors of forced vital capacity (FVC), forced expiratory volume in one second (FEV1), forced expiratory flow between 25% and 75% of vital capacity (FEF25-75), and peak expiratory flow rate (PEFR) were standing height, weight, age, and sex. In addition, lung function values of Chinese and Malays were generally higher than those of Indians. In multiple regressionmore » models which included host and environmental factors, asthma was associated with significant decreases in FEV1, FEF25-75, and PEFR. However, family history of chest illness, history of allergies, low paternal education, and hospitalization during the neonatal period were not independent predictors of lung function. Children sharing rooms with adult smokers had significantly lower levels of FEF25-75. Exposures to wood or kerosene stoves were, but to mosquito repellents were not, associated with decreased lung function.« less

  5. Curcumin protects the developing lung against long-term hyperoxic injury

    PubMed Central

    Sakurai, R.; Villarreal, P.; Husain, S.; Liu, Jie; Sakurai, T.; Tou, E.; Torday, J. S.

    2013-01-01

    Curcumin, a potent anti-inflammatory and antioxidant agent, modulates peroxisome proliferator-activated receptor-γ signaling, a key molecule in the etiology of bronchopulmonary dysplasia (BPD). We have previously shown curcumin's acute protection against neonatal hyperoxia-induced lung injury. However, its longer-term protection against BPD is not known. Hypothesizing that concurrent treatment with curcumin protects the developing lung against hyperoxia-induced lung injury long-term, we determined if curcumin protects against hyperoxic neonatal rat lung injury for the first 5 days of life, as determined at postnatal day (PND) 21. One-day-old rat pups were exposed to either 21 or 95% O2 for 5 days with or without curcumin treatment (5 mg/kg) administered intraperitoneally one time daily, following which the pups grew up to PND21 in room air. At PND21 lung development was determined, including gross and cellular structural and functional effects, and molecular mediators of inflammatory injury. To gain mechanistic insights, embryonic day 19 fetal rat lung fibroblasts were examined for markers of apoptosis and MAP kinase activation following in vitro exposure to hyperoxia for 24 h in the presence or absence of curcumin (5 μM). Curcumin effectively blocked hyperoxia-induced lung injury based on systematic analysis of markers for lung injury (apoptosis, Bcl-2/Bax, collagen III, fibronectin, vimentin, calponin, and elastin-related genes) and lung morphology (radial alveolar count and alveolar septal thickness). Mechanistically, curcumin prevented the hyperoxia-induced increases in cleaved caspase-3 and the phosphorylation of Erk1/2. Molecular effects of curcumin, both structural and cytoprotective, suggest that its actions against hyperoxia-induced lung injury are mediated via Erk1/2 activation and that it is a potential intervention against BPD. PMID:23812632

  6. Unique spatial and cellular expression patterns of Hoxa5, Hoxb4 and Hoxb6 proteins in normal developing murine lung are modified in pulmonary hypoplasia

    PubMed Central

    Volpe, MaryAnn Vitoria; Wang, Karen Ting Wai; Nielsen, Heber Carl; Chinoy, Mala Romeshchandra

    2009-01-01

    Background Hox transcription factors modulate signaling pathways controlling organ morphogenesis and maintain cell fate and differentiation in adults. Retinoid signaling, key in regulating Hox expression, is altered in pulmonary hypoplasia. Information on pattern-specific expression of Hox proteins in normal lung development and in pulmonary hypoplasia is minimal. Our objective was to determine how pulmonary hypoplasia alters temporal, spatial and cellular expression of Hoxa5, Hoxb4 and Hoxb6 proteins compared to normal lung development. Methods Temporal, spatial and cellular Hoxa5, Hoxb4 and Hoxb6 expression was studied in normal (untreated) and nitrofen-induced hypoplastic (NT-PH) lungs from gestational day 13.5, 16, 19 fetuses and neonates using western blot and immunohistochemistry. Results Modification of protein levels and spatial and cellular Hox expression patterns in NT-PH lungs was consistent with delayed lung development. Distinct protein isoforms were detected for each Hox protein. Expression levels of the Hoxa5 and Hoxb6 isoforms changed with development and further in NT-PH lungs. Compared to normal lungs, Gd19 and neonatal NT-PH lungs had decreased Hoxb6 and increased Hoxa5 and Hoxb4. Hoxa5 cellular localization changed from mesenchyme to epithelia earlier in normal lungs. Hoxb4 was expressed in mesenchyme and epithelial cells throughout development. Hoxb6 remained mainly in mesenchymal cells around distal airways. Conclusions Unique spatial and cellular expression of Hoxa5, Hoxb4 and Hoxb6 participates in branching morphogenesis and terminal sac formation. Altered Hox protein temporal and cellular balance of expression either contributes to pulmonary hypoplasia or functions as a compensatory mechanism attempting to correct abnormal lung development and maturation in this condition. PMID:18553509

  7. Sustained hyperoxia-induced NF-κB activation improves survival and preserves lung development in neonatal mice

    PubMed Central

    McKenna, Sarah; Michaelis, Katherine A.; Agboke, Fadeke; Liu, Thanh; Han, Kristie; Yang, Guang; Dennery, Phyllis A.

    2014-01-01

    Oxygen toxicity contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). Neonatal mice exposed to hyperoxia develop a simplified lung structure that resembles BPD. Sustained activation of the transcription factor NF-κB and increased expression of protective target genes attenuate hyperoxia-induced mortality in adults. However, the effect of enhancing hyperoxia-induced NF-κB activity on lung injury and development in neonatal animals is unknown. We performed this study to determine whether sustained NF-κB activation, mediated through IκBβ overexpression, preserves lung development in neonatal animals exposed to hyperoxia. Newborn wild-type (WT) and IκBβ-overexpressing (AKBI) mice were exposed to hyperoxia (>95%) or room air from day of life (DOL) 0–14, after which all animals were kept in room air. Survival curves were generated through DOL 14. Lung development was assessed using radial alveolar count (RAC) and mean linear intercept (MLI) at DOL 3 and 28 and pulmonary vessel density at DOL 28. Lung tissue was collected, and NF-κB activity was assessed using Western blot for IκB degradation and NF-κB nuclear translocation. WT mice demonstrated 80% mortality through 14 days of exposure. In contrast, AKBI mice demonstrated 60% survival. Decreased RAC, increased MLI, and pulmonary vessel density caused by hyperoxia in WT mice were significantly attenuated in AKBI mice. These findings were associated with early and sustained NF-κB activation and expression of cytoprotective target genes, including vascular endothelial growth factor receptor 2. We conclude that sustained hyperoxia-induced NF-κB activation improves neonatal survival and preserves lung development. Potentiating early NF-κB activity after hyperoxic exposure may represent a therapeutic intervention to prevent BPD. PMID:24748603

  8. Surfactant Therapy of ALI and ARDS

    PubMed Central

    Raghavendran, K; Willson, D; Notter, RH

    2011-01-01

    This article examines exogenous lung surfactant replacement therapy and its utility in mitigating clinical acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS). Biophysical research has documented that lung surfactant dysfunction can be reversed or mitigated by increasing surfactant concentration, and multiple studies in animals with ALI/ARDS have shown that respiratory function and pulmonary mechanics in vivo can be improved by exogenous surfactant administration. Exogenous surfactant therapy is a routine intervention in neonatal intensive care, and is life-saving in preventing or treating the neonatal respiratory distress syndrome (NRDS) in premature infants. In applications relevant for lung injury-related respiratory failure and ALI/ARDS, surfactant therapy has been shown to be beneficial in term infants with pneumonia and meconium aspiration lung injury, and in children up to age 21 with direct pulmonary forms of ALI/ARDS. However, extension of exogenous surfactant therapy to adults with respiratory failure and clinical ALI/ARDS remains a challenge. Coverage here reviews clinical studies of surfactant therapy in pediatric and adult patients with ALI/ARDS, particularly focusing on its potential advantages in patients with direct pulmonary forms of these syndromes. Also discussed is the rationale for mechanism-based therapies utilizing exogenous surfactant in combination with agents targeting other aspects of the multifaceted pathophysiology of inflammatory lung injury. Additional factors affecting the efficacy of exogenous surfactant therapy in ALI/ARDS are also described, including the difficulty of effectively delivering surfactants to injured lungs and the existence of activity differences between clinical surfactant drugs. PMID:21742216

  9. The innate immune response to lower respiratory tract E. Coli infection and the role of the CCL2-CCR2 axis in neonatal mice.

    PubMed

    McGrath-Morrow, Sharon A; Ndeh, Roland; Collaco, Joseph M; Poupore, Amy K; Dikeman, Dustin; Zhong, Qiong; Singer, Benjamin D; D'Alessio, Franco; Scott, Alan

    2017-09-01

    Neonates have greater morbidity/mortality from lower respiratory tract infections (LRTI) compared to older children. Lack of conditioning of the pulmonary immune system due to limited environmental exposures and/or infectious challenges likely contributes to the increase susceptibility in the neonate. In this study, we sought to gain insights into the nature and dynamics of the neonatal pulmonary immune response to LRTI using a murine model. Wildtype (WT) and Ccr2 -/- C57BL/6 neonatal and juvenile mice received E. coli or PBS by direct pharyngeal aspiration. Flow cytometry was used to measure immune cell dynamics and identify cytokine-producing cells. Real-time PCR and ELISA were used to measure cytokine/chemokine expression. Innate immune cell recruitment in response to E. coli-induced LRTI was delayed in the neonatal lung compared to juvenile lung. Lung clearance of bacteria was also significantly delayed in the neonate. Ccr2 -/- neonates, which lack an intact CCL2-CCR2 axis, had higher mortality after E. coli challenged than Ccr2 +/+ neonates. A greater percentage of CD8 + T cells and monocytes from WT neonates challenged with E. coli produced TNF compared to controls. The pulmonary immune response to E. coli-induced LRTI differed significantly between neonatal and juvenile mice. Neonates were more susceptible to increasing doses of E. coli and exhibited greater mortality than juveniles. In the absence of an intact CCL2-CCR2 axis, susceptibility to LRTI-induced mortality was further increased in neonatal mice. Taken together these findings underscore the importance of age-related differences in the innate immune response to LRTI during early stages of postnatal life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung

    NASA Astrophysics Data System (ADS)

    Das, Gautom K.; Anderson, Donald S.; Wallis, Chris D.; Carratt, Sarah A.; Kennedy, Ian M.; van Winkle, Laura S.

    2016-06-01

    Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m-3 of ~30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu3+) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution.Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m-3 of ~30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu3+) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00897f

  11. Maternal Dietary Docosahexaenoic Acid Supplementation Attenuates Fetal Growth Restriction and Enhances Pulmonary Function in a Newborn Mouse Model of Perinatal Inflammation123

    PubMed Central

    Velten, Markus; Britt, Rodney D.; Heyob, Kathryn M.; Tipple, Trent E.; Rogers, Lynette K.

    2014-01-01

    The preterm infant is often exposed to maternal and neonatal inflammatory stimuli and is born with immature lungs, resulting in a need for oxygen therapy. Nutritional intervention with docosahexaenoic acid (DHA; 6.3 g/kg of diet) has been shown to attenuate inflammation in various human diseases. Previous studies demonstrated that maternal DHA supplementation during late gestation and lactation attenuated hyperoxic lung injury in newborn mouse pups. In the present studies, we tested the hypothesis that DHA supplementation to the dam would reduce hyperoxic lung injury and growth deficits in a more severe model of systemic maternal inflammation, including lipopolysaccharide (LPS) and neonatal hyperoxia exposure. On embryonic day 16, dams were placed on DHA (6.3 g DHA/kg diet) or control diets and injected with saline or LPS. Diets were maintained through weaning. At birth, pups were placed in room air or hyperoxia for 14 d. Improvements in birth weight (P < 0.01), alveolarization (P ≤ 0.01), and pulmonary function (P ≤ 0.03) at 2 and 8 wk of age were observed in pups exposed to perinatal inflammation and born to DHA-supplemented dams compared with control diet–exposed pups. These improvements were associated with decreases in tissue macrophage numbers (P < 0.01), monocyte chemoattractant protein-1 expression (P ≤ 0.05), and decreases in soluble receptor for advanced glycation end products concentrations (P < 0.01) at 2 and 8 wk. Furthermore, DHA supplementation attenuated pulmonary fibrosis, which was associated with the reduction of matrix metalloproteinases 2, 3, and 8 (P ≤ 0.03) and collagen mRNA (P ≤ 0.05), and decreased collagen (P < 0.01) and vimentin (P ≤ 0.03) protein concentrations. In a model of severe inflammation, maternal DHA supplementation lessened inflammation and improved lung growth in the offspring. Maternal supplementation with DHA may be a therapeutic strategy to reduce neonatal inflammation. PMID:24453131

  12. Effect of CPAP in a Mouse Model of Hyperoxic Neonatal Lung Injury

    PubMed Central

    Reyburn, Brent; Fiore, Juliann M. Di; Raffay, Thomas; Martin, Richard J.; Y.S., Prakash; Jafri, Anjum; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure [CPAP] and supplemental oxygen have become the mainstay of neonatal respiratory support in preterm infants. Although oxygen therapy is associated with respiratory morbidities including bronchopulmonary dysplasia [BPD], the long-term effects of CPAP on lung function are largely unknown. We used a hyperoxia-induced mouse model of BPD to explore the effects of daily CPAP during the first week of life on later respiratory system mechanics. Objective To test the hypothesis that daily CPAP in a newborn mouse model of BPD improves longer term respiratory mechanics. Methods Mouse pups from C57BL/6 pregnant dams were exposed to room air [RA] or hyperoxia [50% O2, 24hrs/day] for the first postnatal week with or without exposure to daily CPAP [6cmH2O, 3hrs/day]. Respiratory system resistance [Rrs] and compliance [Crs] were measured following a subsequent 2 week period of room RA recovery. Additional measurements included radial alveolar counts and macrophage counts. Results Mice exposed to hyperoxia had significantly elevated Rrs, decreased Crs, reduced alveolarization, and increased macrophage counts at three weeks compared to RA treated mice. Daily CPAP treatment significantly improved Rrs, Crs and alveolarization, and decreased lung macrophage infiltration in hyperoxia-exposed pups. Conclusions We have demonstrated that daily CPAP had a longer term benefit on baseline respiratory system mechanics in a neonatal mouse model of BPD. We speculate that this beneficial effect of CPAP was the consequence of a decrease in the inflammatory response and resultant alveolar injury associated with hyperoxic newborn lung injury. PMID:26394387

  13. Precision-cut vibratome slices allow functional live cell imaging of the pulmonary neuroepithelial body microenvironment in fetal mice.

    PubMed

    Schnorbusch, Kathy; Lembrechts, Robrecht; Brouns, Inge; Pintelon, Isabel; Timmermans, Jean-Pierre; Adriaensen, Dirk

    2012-01-01

    We recently developed an ex vivo lung slice model that allows for confocal live cell imaging (LCI) of neuroepithelial bodies (NEBs) in postnatal mouse lungs (postnatal days 1-21 and adult). NEBs are morphologically well-characterized, extensively innervated groups of neuroendocrine cells in the airway epithelium, which are shielded from the airway lumen by 'Clara-like' cells. The prominent presence of differentiated NEBs from early embryonic development onwards, strongly suggests that NEBs may exert important functions during late fetal and neonatal life. The main goal of the present study was to adapt the current postnatal LCI lung slice model to enable functional studies of fetal mouse lungs (gestational days 17-20).In vibratome lung slices of prenatal mice, NEBs could be unequivocally identified with the fluorescent stryryl pyridinium dye 4-Di-2-ASP. Changes in the intracellular free calcium concentration and in mitochondrial membrane potential could be monitored using appropriate functional fluorescent indicators (e.g. Fluo-4).It is clear that the described fetal mouse lung slice model is suited for LCI studies of Clara cells, ciliated cells, and the NEB microenvironment, and offers excellent possibilities to further unravel the significance of NEBs during the prenatal and perinatal period.

  14. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms

    PubMed Central

    Antony, N.; McDougall, A. R.; Mantamadiotis, T.; Cole, T. J.; Bird, A. D.

    2016-01-01

    During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1−/− mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1−/− mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1−/− mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. PMID:27150575

  15. Respiratory outcomes study (RESPOS) for preterm infants at primary school age.

    PubMed

    Astle, Valerie; Broom, Margaret; Todd, David A; Charles, Blessy; Ringland, Cathy; Ciszek, Karen; Shadbolt, Bruce

    2015-02-01

    Pulmonary function abnormalities and hospital re-admissions in survivors of neonatal lung disease remain highly prevalent. The respiratory outcomes study (RESPOS) aimed to investigate the respiratory and associated atopy outcomes in preterm infants <30 weeks gestational age (GA) and/or birth-weight (BWt) <1000 g at primary school age, and to compare these outcomes between infants with and without chronic lung disease (CLD). In the RESPOS 92 parents of preterm infants admitted to the Neonatal unit in Canberra Hospital between 1/1/2001 and 31/12/2003 were sent a questionnaire regarding their respiratory, atopy management and follow-up. Fifty-three parents responded, including 28 preterm infants who had CLD and 25 who had no CLD. The gestational age was significantly lower in the CLD group compared to the non-CLD group [26.9 (26.3-27.5) CLD and 28.6 (28.3-29.0) non-CLD] [weeks [95% confidence interval (CI)

  16. Lung Ultrasound Findings in Congenital Pulmonary Airway Malformation.

    PubMed

    Yousef, Nadya; Mokhtari, Mostafa; Durand, Philippe; Raimondi, Francesco; Migliaro, Fiorella; Letourneau, Alexandra; Tissières, Pierre; De Luca, Daniele

    2018-05-01

     Congenital pulmonary airway malformation (CPAM) is a group of rare congenital malformations of the lung and airways. Lung ultrasound (LU) is increasingly used to diagnose neonatal respiratory diseases since it is quick, easy to learn, and radiation-free, but no formal data exist for congenital lung malformations. We aimed to describe LU findings in CPAM neonates needing neonatal intensive care unit (NICU) admission and to compare them with a control population.  A retrospective review of CPAM cases from three tertiary academic NICUs over 3 years (2014-2016) identified five patients with CPAM who had undergone LU examination. LU was compared with chest radiograms and computed tomography (CT) scans that were used as references.  CPAM lesions were easily identified and corresponded well with CT scans; they varied from a single large cystic lesion, multiple hypoechoic lesions, and/or consolidation. The first two LU findings have not been described in other respiratory conditions and were not found in controls.  We provide the first description of LU findings in neonates with CPAM. LU may be used to confirm antenatally diagnosed CPAM and to suspect CPAM in infants with respiratory distress if cystic lung lesions are revealed. Further studies are necessary to define the place of LU in the management of CPAM. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Maternal inflammation modulates infant immune response patterns to viral lung challenge in a murine model.

    PubMed

    Gleditsch, Dorothy D; Shornick, Laurie P; Van Steenwinckel, Juliette; Gressens, Pierre; Weisert, Ryan P; Koenig, Joyce M

    2014-07-01

    Chorioamnionitis, an inflammatory gestational disorder, commonly precedes preterm delivery. Preterm infants may be at particular risk for inflammation-related morbidity related to infection, although the pathogenic mechanisms are unclear. We hypothesized that maternal inflammation modulates immune programming to drive postnatal inflammatory processes. We used a novel combined murine model to treat late gestation dams with low-dose lipopolysaccharide (LPS) and to secondarily challenge exposed neonates or weanlings with Sendai virus (SeV) lung infection. Multiple organs were analyzed to characterize age-specific postnatal immune and inflammatory responses. Maternal LPS treatment enhanced innate immune populations in the lungs, livers, and/or spleens of exposed neonates or weanlings. Secondary lung SeV infection variably affected neutrophil, macrophage, and dendritic cell proportions in multiple organs of exposed pups. Neonatal lung infection induced brain interleukin (IL)-4 expression, although this response was muted in LPS-exposed pups. Adaptive immune cells, including lung, lymph node, and thymic lymphocytes and lung CD4 cells expressing FoxP3, interferon (IFN)-γ, or IL-17, were variably prominent in LPS-exposed pups. Maternal inflammation modifies postnatal immunity and augments systemic inflammatory responses to viral lung infection in an age-specific manner. We speculate that inflammatory modulation of the developing immune system contributes to chronic morbidity and mortality in preterm infants.

  18. Leptin Promotes Fetal Lung Maturity and Upregulates SP-A Expression in Pulmonary Alveoli Type-II Epithelial Cells Involving TTF-1 Activation

    PubMed Central

    Huang, Hui; Wang, Zhen-Hua; Cheng, Rui; Cai, Wei-Bin

    2013-01-01

    The placental hormone leptin has important functions in fetal and neonatal growth, and prevents depressed respiration in leptin-deficient mice. The effect of leptin on respiratory distress suffered by low birth weight and premature infants has been studied. However, it is unclear how leptin enhances lung maturity in the fetus and ameliorates neonatal respiratory distress. In the present study, we found that antenatal treatment with leptin for 2 d significantly enhanced the relative alveolus area and improved the maturity of fetal lungs in a rat model of fetal growth restriction (FGR). Mean birth weight and lung wet weight were higher in the leptin-treated group than in the PBS-treated group, indicating promotion of fetal growth. Leptin upregulated the intracellular expression and extracellular secretion of surfactant protein (SP) A in type-II alveolar epithelial cells (AECs) in vivo and in vitro. Dual positive effects of leptin were found on protein expression and transcriptional activity of thyroid transcription factor-1 (TTF-1), a nuclear transcription essential for branching morphogenesis of the lung and expression of SP-A in type-II AECs. Knockdown of TTF-1 by RNA interference indicated that TTF-1 may play a vital role in leptin-induced SP-A expression. These results suggest that leptin may have great therapeutic potential for the treatment of FGR, and leptin-mediated SP-A induction and lung maturity of the fetus are TTF-1 dependent. PMID:23894445

  19. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity.

    PubMed

    De Luca, Daniele; van Kaam, Anton H; Tingay, David G; Courtney, Sherry E; Danhaive, Olivier; Carnielli, Virgilio P; Zimmermann, Luc J; Kneyber, Martin C J; Tissieres, Pierre; Brierley, Joe; Conti, Giorgio; Pillow, Jane J; Rimensberger, Peter C

    2017-08-01

    Acute respiratory distress syndrome (ARDS) is undefined in neonates, despite the long-standing existing formal recognition of ARDS syndrome in later life. We describe the Neonatal ARDS Project: an international, collaborative, multicentre, and multidisciplinary project which aimed to produce an ARDS consensus definition for neonates that is applicable from the perinatal period. The definition was created through discussions between five expert members of the European Society for Paediatric and Neonatal Intensive Care; four experts of the European Society for Paediatric Research; two independent experts from the USA and two from Australia. This Position Paper provides the first consensus definition for neonatal ARDS (called the Montreux definition). We also provide expert consensus that mechanisms causing ARDS in adults and older children-namely complex surfactant dysfunction, lung tissue inflammation, loss of lung volume, increased shunt, and diffuse alveolar damage-are also present in several critical neonatal respiratory disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Impact of endotracheal tube shortening on work of breathing in neonatal and pediatric in vitro lung models.

    PubMed

    Mohr, Rebecca; Thomas, Jörg; Cannizzaro, Vincenzo; Weiss, Markus; Schmidt, Alexander R

    2017-09-01

    Work of breathing accounts for a significant proportion of total oxygen consumption in neonates and infants. Endotracheal tube inner diameter and length significantly affect airflow resistance and thus work of breathing. While endotracheal tube shortening reduces endotracheal tube resistance, the impact on work of breathing in mechanically ventilated neonates and infants remains unknown. The objective of this in vitro study was to quantify the effect of endotracheal tube shortening on work of breathing in simulated pediatric lung settings. We hypothesized that endotracheal tube shortening significantly reduces work of breathing. We used the Active-Servo-Lung 5000 to simulate different clinical scenarios in mechanically ventilated infants and neonates under spontaneous breathing with and without pressure support. Endotracheal tube size, lung resistance, and compliance, as well as respiratory settings such as respiratory rate and tidal volume were weight and age adapted for each lung model. Work of breathing was measured before and after maximal endotracheal tube shortening and the reduction of the daily energy demand calculated. Tube shortening with and without pressure support decreased work of breathing to a maximum of 10.1% and 8.1%, respectively. As a result, the calculated reduction of total daily energy demand by endotracheal tube shortening was between 0.002% and 0.02%. In this in vitro lung model, endotracheal tube shortening had minimal effects on work of breathing. Moreover, the calculated percentage reduction of the total daily energy demand after endotracheal tube shortening was minimal. © 2017 John Wiley & Sons Ltd.

  1. Oxygen delivery using neonatal self-inflating bags without reservoirs.

    PubMed

    Sugiura, Takahiro; Urushibata, Rei; Komatsu, Kenji; Shioda, Tsutomu; Ota, Tatsuki; Sato, Megumi; Okubo, Yumiko; Fukuoka, Tetsuya; Hosono, Shigeharu; Tamura, Masanori

    2017-02-01

    Guidelines recommend avoiding excessive oxygen during neonatal resuscitation. Recent studies have suggested that oxygen titration can be achieved using a self-inflating bag, but data on the effectiveness of resuscitators used in neonatal ventilation are scarce, The aim of this study was therefore to determine the amount of oxygen delivered using several brands of neonatal self-inflating resuscitation bags without reservoirs under different conditions with regard to oxygen flow rate, ventilation rate (VR), peak inspiratory pressure (PIP) range, and test lung compliance. Oxygen concentration was measured under a variety of conditions. Combinations of oxygen flow rate (10, 5.0, 3.0 and 1.0 L/min), VR (40, 60 inflations/min), PIP range (20-25 cmH 2 O, 35-40 cmH 2 O), and test lung compliance (0.6, 1.0, 3.0, and 5.0 mL/cmH 2 O) were examined using six kinds of self-inflating bag. Delivered oxygen concentration varied widely (30.1-96.7%) and had a significant positive correlation with gas flow rate in all of the bags. Delivered oxygen concentration was also negatively correlated with PIP in all of the bags and with VR in some of them. Test lung compliance did not affect delivered oxygen concentration. The use of neonatal resuscitation self-inflating bags without reservoirs resulted in different delivered oxygen concentrations depending on gas flow rate, VR, PIP, and manufacturer, but not on lung compliance. This suggests that targeted oxygen concentrations could be delivered, even in lungs with decreased compliance, during resuscitation. © 2016 Japan Pediatric Society.

  2. Lung Ultrasound in the Critically Ill Neonate

    PubMed Central

    Lichtenstein, Daniel A; Mauriat, Philippe

    2012-01-01

    Critical ultrasound is a new tool for first-line physicians, including neonate intensivists. The consideration of the lung as one major target allows to redefine the priorities. Simple machines work better than up-to-date ones. We use a microconvex probe. Ten standardized signs allow a majority of uses: the bat sign (pleural line), lung sliding and the A-line (normal lung surface), the quad sign and sinusoid sign indicating pleural effusion regardless its echogenicity, the tissue-like sign and fractal sign indicating lung consolidation, the B-line artifact and lung rockets (indicating interstitial syndrome), abolished lung sliding with the stratosphere sign, suggesting pneumothorax, and the lung point, indicating pneumothorax. Other signs are used for more sophisticated applications (distinguishing atelectasis from pneumonia for instance...). All these disorders were assessed in the adult using CT as gold standard with sensitivity and specificity ranging from 90 to 100%, allowing to consider ultrasound as a reasonable bedside gold standard in the critically ill. The same signs are found, with no difference in the critically ill neonate. Fast protocols such as the BLUE-protocol are available, allowing immediate diagnosis of acute respiratory failure using seven standardized profiles. Pulmonary edema e.g. yields anterior lung rockets associated with lung sliding, making the B-profile. The FALLS-protocol, inserted in a Limited Investigation including a simple model of heart and vessels, assesses acute circulatory failure using lung artifacts. Interventional ultrasound (mainly, thoracocenthesis) provides maximal safety. Referrals to CT can be postponed. CEURF proposes personnalized bedside trainings since 1990. Lung ultrasound opens physicians to a visual medicine. PMID:23255876

  3. Lung Ultrasound in the Critically Ill Neonate.

    PubMed

    Lichtenstein, Daniel A; Mauriat, Philippe

    2012-08-01

    Critical ultrasound is a new tool for first-line physicians, including neonate intensivists. The consideration of the lung as one major target allows to redefine the priorities. Simple machines work better than up-to-date ones. We use a microconvex probe. Ten standardized signs allow a majority of uses: the bat sign (pleural line), lung sliding and the A-line (normal lung surface), the quad sign and sinusoid sign indicating pleural effusion regardless its echogenicity, the tissue-like sign and fractal sign indicating lung consolidation, the B-line artifact and lung rockets (indicating interstitial syndrome), abolished lung sliding with the stratosphere sign, suggesting pneumothorax, and the lung point, indicating pneumothorax. Other signs are used for more sophisticated applications (distinguishing atelectasis from pneumonia for instance...). All these disorders were assessed in the adult using CT as gold standard with sensitivity and specificity ranging from 90 to 100%, allowing to consider ultrasound as a reasonable bedside gold standard in the critically ill. The same signs are found, with no difference in the critically ill neonate. Fast protocols such as the BLUE-protocol are available, allowing immediate diagnosis of acute respiratory failure using seven standardized profiles. Pulmonary edema e.g. yields anterior lung rockets associated with lung sliding, making the B-profile. The FALLS-protocol, inserted in a Limited Investigation including a simple model of heart and vessels, assesses acute circulatory failure using lung artifacts. Interventional ultrasound (mainly, thoracocenthesis) provides maximal safety. Referrals to CT can be postponed. CEURF proposes personnalized bedside trainings since 1990. Lung ultrasound opens physicians to a visual medicine.

  4. Late outcomes of a randomized trial of high-frequency oscillation in neonates.

    PubMed

    Zivanovic, Sanja; Peacock, Janet; Alcazar-Paris, Mireia; Lo, Jessica W; Lunt, Alan; Marlow, Neil; Calvert, Sandy; Greenough, Anne

    2014-03-20

    Results from an observational study involving neonates suggested that high-frequency oscillatory ventilation (HFOV), as compared with conventional ventilation, was associated with superior small-airway function at follow-up. Data from randomized trials are needed to confirm this finding. We studied 319 adolescents who had been born before 29 weeks of gestation and had been enrolled in a multicenter, randomized trial that compared HFOV with conventional ventilation immediately after birth. The trial involved 797 neonates, of whom 592 survived to hospital discharge. We compared follow-up data from adolescents who had been randomly assigned to HFOV with follow-up data from those who had been randomly assigned to conventional ventilation, with respect to lung function and respiratory health, health-related quality of life, and functional status, as assessed with the use of questionnaires completed when the participants were 11 to 14 years of age. The primary outcome was forced expiratory flow at 75% of the expired vital capacity (FEF75). The HFOV group had superior results on a test of small-airway function (z score for FEF75, -0.97 with HFOV vs. -1.19 with conventional therapy; adjusted difference, 0.23 [95% confidence interval, 0.02 to 0.45]). There were significant differences in favor of HFOV in several other measures of respiratory function, including forced expiratory volume in 1 second, forced vital capacity, peak expiratory flow, diffusing capacity, and impulse-oscillometric findings. As compared with the conventional-therapy group, the HFOV group had significantly higher ratings from teachers in three of eight school subjects assessed, but there were no other significant differences in functional outcomes. In a randomized trial involving children who had been born extremely prematurely, those who had undergone HFOV, as compared with those who had received conventional ventilation, had superior lung function at 11 to 14 years of age, with no evidence of poorer functional outcomes. (Funded by the National Institute for Health Research Health Technology Assessment Programme and others.).

  5. Neonatal Respiratory Diseases in the Newborn Infant: Novel Insights from Stable Isotope Tracer Studies.

    PubMed

    Carnielli, Virgilio P; Giorgetti, Chiara; Simonato, Manuela; Vedovelli, Luca; Cogo, Paola

    2016-01-01

    Respiratory distress syndrome is a common problem in preterm infants and the etiology is multifactorial. Lung underdevelopment, lung hypoplasia, abnormal lung water metabolism, inflammation, and pulmonary surfactant deficiency or disfunction play a variable role in the pathogenesis of respiratory distress syndrome. High-quality exogenous surfactant replacement studies and studies on surfactant metabolism are available; however, the contribution of surfactant deficiency, alteration or dysfunction in selected neonatal lung conditions is not fully understood. In this article, we describe a series of studies made by applying stable isotope tracers to the study of surfactant metabolism and lung water. In a first set of studies, which we call 'endogenous studies', using stable isotope-labelled intravenous surfactant precursors, we showed the feasibility of measuring surfactant synthesis and kinetics in infants using several metabolic precursors including plasma glucose, plasma fatty acids and body water. In a second set of studies, named 'exogenous studies', using stable isotope-labelled phosphatidylcholine tracer given endotracheally, we could estimate surfactant disaturated phosphatidylcholine pool size and half-life. Very recent studies are focusing on lung water and on the endogenous biosynthesis of the surfactant-specific proteins. Information obtained from these studies in infants will help to better tailor exogenous surfactant treatment in neonatal lung diseases. © 2016 S. Karger AG, Basel.

  6. Prediction of neonatal respiratory morbidity by quantitative ultrasound lung texture analysis: a multicenter study.

    PubMed

    Palacio, Montse; Bonet-Carne, Elisenda; Cobo, Teresa; Perez-Moreno, Alvaro; Sabrià, Joan; Richter, Jute; Kacerovsky, Marian; Jacobsson, Bo; García-Posada, Raúl A; Bugatto, Fernando; Santisteve, Ramon; Vives, Àngels; Parra-Cordero, Mauro; Hernandez-Andrade, Edgar; Bartha, José Luis; Carretero-Lucena, Pilar; Tan, Kai Lit; Cruz-Martínez, Rogelio; Burke, Minke; Vavilala, Suseela; Iruretagoyena, Igor; Delgado, Juan Luis; Schenone, Mauro; Vilanova, Josep; Botet, Francesc; Yeo, George S H; Hyett, Jon; Deprest, Jan; Romero, Roberto; Gratacos, Eduard

    2017-08-01

    Prediction of neonatal respiratory morbidity may be useful to plan delivery in complicated pregnancies. The limited predictive performance of the current diagnostic tests together with the risks of an invasive procedure restricts the use of fetal lung maturity assessment. The objective of the study was to evaluate the performance of quantitative ultrasound texture analysis of the fetal lung (quantusFLM) to predict neonatal respiratory morbidity in preterm and early-term (<39.0 weeks) deliveries. This was a prospective multicenter study conducted in 20 centers worldwide. Fetal lung ultrasound images were obtained at 25.0-38.6 weeks of gestation within 48 hours of delivery, stored in Digital Imaging and Communication in Medicine format, and analyzed with quantusFLM. Physicians were blinded to the analysis. At delivery, perinatal outcomes and the occurrence of neonatal respiratory morbidity, defined as either respiratory distress syndrome or transient tachypnea of the newborn, were registered. The performance of the ultrasound texture analysis test to predict neonatal respiratory morbidity was evaluated. A total of 883 images were collected, but 17.3% were discarded because of poor image quality or exclusion criteria, leaving 730 observations for the final analysis. The prevalence of neonatal respiratory morbidity was 13.8% (101 of 730). The quantusFLM predicted neonatal respiratory morbidity with a sensitivity, specificity, positive and negative predictive values of 74.3% (75 of 101), 88.6% (557 of 629), 51.0% (75 of 147), and 95.5% (557 of 583), respectively. Accuracy was 86.5% (632 of 730) and positive and negative likelihood ratios were 6.5 and 0.3, respectively. The quantusFLM predicted neonatal respiratory morbidity with an accuracy similar to that previously reported for other tests with the advantage of being a noninvasive technique. Copyright © 2017. Published by Elsevier Inc.

  7. Electrical Impedance Tomography: a new study method for neonatal Respiratory Distress Syndrome?

    PubMed Central

    Chatziioannidis, I; Samaras, T; Nikolaidis, N

    2011-01-01

    Treatment of cardiorespiratory system diseases is a procedure that usually demands data collection on terms of the anatomy and the operation of the organs that are under study. Electrical Impedance Tomography (EIT) is an alternative approach, in comparison to existing techniques. With EIT electrodes are placed in the perimeter of the human body and images of the estimated organ are reconstructed, using the measurement of its impendence (or resistance) distribution and determining its alteration through time, while at the same time the patient is not exposed to ionizing radiation. Its clinical use presupposes the correct placement of the electrodes over the perimeter of the human body, the rapid data collection and electrical safety. It is a low cost technique and it is implemented near the patient. It is able to determine the distribution of ventilation, blood supply, diffused or localized lung defects, but it can also estimate therapeutic interventions or alteration to assisted ventilation of the neonate. EIT was developed at the beginning of the 1980s, but it has only recently begun to be implemented on neonates, and especially in the study of their respiratory system function. The low rate of image analysis is considered to be a drawback, but it is offset by the potential offered for the estimation of lungs' function (both under normal and pathological conditions), since ventilation and resistance are two quite similar concepts. In this review the most important studies about EIT are mentioned as a method of estimating respiratory distress syndrome in neonates. In terms of the above mentioned development, it is supposed that this technique will offer a great amount of help to the doctor in his / her estimations of the cardiorespiratory system and to his / her selection of the best intervening strategies. PMID:22435017

  8. Lung ultrasonography to diagnose pneumothorax of the newborn.

    PubMed

    Liu, Jing; Chi, Jing-Han; Ren, Xiao-Ling; Li, Jie; Chen, Ya-Juan; Lu, Zu-Lin; Liu, Ying; Fu, Wei; Xia, Rong-Ming

    2017-09-01

    To explore the reliability and accuracy of lung ultrasound for diagnosing neonatal pneumothorax. This study was divided into two phases. (1) In the first phase, from January 2013 to June 2015, 40 patients with confirmed pneumothorax had lung ultrasound examinations performed to identify the sonographic characteristics of neonatal pneumothorax. (2) In the second phase, from July 2015 to August 2016, lung ultrasound was undertaken on 50 newborn infants with severe lung disease who were suspected of having pneumothorax, to evaluate the sonographic accuracy and reliability to diagnose pneumothorax. (1) The main ultrasonic manifestations of pneumothorax are as follows: ① lung sliding disappearance, which was observed in all patients (100%); ② the existence of the pleural line and the A-line, which was also observed in all patients (100%); ③ the lung point, which was found in 75% of the infants with mild-moderate pneumothorax but not found to exist in 25% of the severe pneumothorax patients; ④ the absence of B-lines in the area of the pneumothorax (100% of the pneumothorax patients); and ⑤ no lung consolidation existed in the area of the pneumothorax (100% of the pneumothorax patients). (2) The accuracy and reliability of the lung sonographic signs of lung sliding disappearance as well as the existence of the pleural line and the A-line in diagnosing pneumothorax were as follows: 100% sensitivity, 100% specificity, 100% positive predictive value, and 100% negative predictive value. When the lung point exists, the diagnosis is mild-moderate pneumothorax, whereas if no lung point exists, the diagnosis is severe pneumothorax. Lung ultrasound is accurate and reliable in diagnosing and ruling out neonatal pneumothorax and, in our study, was found to be as accurate as chest X-ray. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Lung abscess due to non-tuberculous, non-Mycobacterium fortuitum in a neonate.

    PubMed

    Glatstein, Miguel; Scolnik, Dennis; Bensira, Liat; Domany, Keren Armoni; Shah, Mansi; Vala, Snehal

    2012-10-01

    Although Mycobacterium fortuitum (MF) is a non-tuberculous mycobacterium that rarely causes disease, there are reported cases of pneumonia, lung abscess, and empyema in subjects with predisposing lung disease. We report a neonate, without predisposing disease or risk factors, who manifested pneumonia and lung abscess. The patient was initially treated with amoxicillin-clavulanic acid and gentamycin, and subsequently with piperazilin, tazobactam, and vancomycin when there was no improvement. Pleural nodules were detected on computed tomography, and microbiology revealed MF in the absence of other pathogens and a week later the organism was identified in culture as MF, confirmed on four separate samples. The MF was sensitive to amikacin and clarithromycin and the patient was continued on oral clarithromycin for two more weeks until full recovery. To our knowledge, this is the first reported case of MF abscess in a neonate. MF should be sought in similar patients, especially when microbiology fails to detect the usual pathogens, and when the clinical picture is unclear. Copyright © 2012 Wiley Periodicals, Inc.

  10. Surfactant protein B deficiency and gene mutations for neonatal respiratory distress syndrome in China Han ethnic population

    PubMed Central

    Yin, Xiaojuan; Meng, Fanping; wang, Yan; Xie, Lu; Kong, Xiangyong; Feng, Zhichun

    2013-01-01

    Objective: To determine whether the SP-B deficiency and gene mutations in exon 4 is associated with neonatal RDS in China Han ethnic population. Methods: The study population consisted of 40 neonates with RDS and 40 neonates with other diseases as control in China Han ethnic population. We Compared SP-B expression in lung tissue and bronchoalveolar lavage fluid with immunoblotting, and analyzed mutations in the SP-B gene with polymerase chain reaction (PCR) and gene sequencing. Results: In RDS group, low mature Surfactant protein B was found in both lung tissue and bronchoalveolar lavage fluid in 8 neonates. In control group, only 4 neonates with low mature Surfactant protein B in both lung tissue and bronchoalveolar lavage fluid. In RDS group, 20 neonates were found to have mutations in exon 4, 12 homozygous mutations with C/C genotype and 8 heterozygous mutations with C/T genotype in surfactant protein B gene+1580 polymorphism. There were 8 cases mutations in control group, 1 in C/C and 7 in C/T genotype. The frequency of homozygotes with C/C genotype was 0.3 and frequency of heterozygotes with C/T genotype was 0.02 in RDS group. In control group, frequency of homozygotes with C/C genotype was 0.025 and frequency of heterozygote with C/T genotype was 0.175. Conclusion: Low mature Surfactant protein B is associated with the pathogenesis of neonatal respiratory distress syndrome (RDS) in China Han ethnic population. Mutations in exon 4 of the surfactant protein B gene demonstrate an association between homozygous mutations with C/C genotype in SP-B gene and neonatal RDS. PMID:23330012

  11. Altered surfactant homeostasis and recurrent respiratory failure secondary to TTF-1 nuclear targeting defect.

    PubMed

    Peca, Donatella; Petrini, Stefania; Tzialla, Chryssoula; Boldrini, Renata; Morini, Francesco; Stronati, Mauro; Carnielli, Virgilio P; Cogo, Paola E; Danhaive, Olivier

    2011-08-25

    Mutations of genes affecting surfactant homeostasis, such as SFTPB, SFTPC and ABCA3, lead to diffuse lung disease in neonates and children. Haploinsufficiency of NKX2.1, the gene encoding the thyroid transcription factor-1 (TTF-1)--critical for lung, thyroid and central nervous system morphogenesis and function--causes a rare form of progressive respiratory failure designated brain-lung-thyroid syndrome. Molecular mechanisms involved in this syndrome are heterogeneous and poorly explored. We report a novel TTF-1 molecular defect causing recurrent respiratory failure episodes in an infant. The subject was an infant with severe neonatal respiratory distress syndrome followed by recurrent respiratory failure episodes, hypopituitarism and neurological abnormalities. Lung histology and ultrastructure were assessed by surgical biopsy. Surfactant-related genes were studied by direct genomic DNA sequencing and array chromatine genomic hybridization (aCGH). Surfactant protein expression in lung tissue was analyzed by confocal immunofluorescence microscopy. For kinetics studies, surfactant protein B and disaturated phosphatidylcholine (DSPC) were isolated from serial tracheal aspirates after intravenous administration of stable isotope-labeled (2)H(2)O and (13)C-leucine; fractional synthetic rate was derived from gas chromatography/mass spectrometry (2)H and (13)C enrichment curves. Six intubated infants with no primary lung disease were used as controls. Lung biopsy showed desquamative interstitial pneumonitis and lamellar body abnormalities suggestive of genetic surfactant deficiency. Genetic studies identified a heterozygous ABCA3 mutation, L941P, previously unreported. No SFTPB, SFTPC or NKX2.1 mutations or deletions were found. However, immunofluorescence studies showed TTF-1 prevalently expressed in type II cell cytoplasm instead of nucleus, indicating defective nuclear targeting. This pattern has not been reported in human and was not found in two healthy controls and in five ABCA3 mutation carriers. Kinetic studies demonstrated a marked reduction of SP-B synthesis (43.2 vs. 76.5 ± 24.8%/day); conversely, DSPC synthesis was higher (12.4 vs. 6.3 ± 0.5%/day) compared to controls, although there was a marked reduction of DSPC content in tracheal aspirates (29.8 vs. 56.1 ± 12.4% of total phospholipid content). Defective TTF-1 signaling may result in profound surfactant homeostasis disruption and neonatal/pediatric diffuse lung disease. Heterozygous ABCA3 missense mutations may act as disease modifiers in other genetic surfactant defects.

  12. Altered surfactant homeostasis and recurrent respiratory failure secondary to TTF-1 nuclear targeting defect

    PubMed Central

    2011-01-01

    Background Mutations of genes affecting surfactant homeostasis, such as SFTPB, SFTPC and ABCA3, lead to diffuse lung disease in neonates and children. Haploinsufficiency of NKX2.1, the gene encoding the thyroid transcription factor-1 (TTF-1) - critical for lung, thyroid and central nervous system morphogenesis and function - causes a rare form of progressive respiratory failure designated brain-lung-thyroid syndrome. Molecular mechanisms involved in this syndrome are heterogeneous and poorly explored. We report a novel TTF-1 molecular defect causing recurrent respiratory failure episodes in an infant. Methods The subject was an infant with severe neonatal respiratory distress syndrome followed by recurrent respiratory failure episodes, hypopituitarism and neurological abnormalities. Lung histology and ultrastructure were assessed by surgical biopsy. Surfactant-related genes were studied by direct genomic DNA sequencing and array chromatine genomic hybridization (aCGH). Surfactant protein expression in lung tissue was analyzed by confocal immunofluorescence microscopy. For kinetics studies, surfactant protein B and disaturated phosphatidylcholine (DSPC) were isolated from serial tracheal aspirates after intravenous administration of stable isotope-labeled 2H2O and 13C-leucine; fractional synthetic rate was derived from gas chromatography/mass spectrometry 2H and 13C enrichment curves. Six intubated infants with no primary lung disease were used as controls. Results Lung biopsy showed desquamative interstitial pneumonitis and lamellar body abnormalities suggestive of genetic surfactant deficiency. Genetic studies identified a heterozygous ABCA3 mutation, L941P, previously unreported. No SFTPB, SFTPC or NKX2.1 mutations or deletions were found. However, immunofluorescence studies showed TTF-1 prevalently expressed in type II cell cytoplasm instead of nucleus, indicating defective nuclear targeting. This pattern has not been reported in human and was not found in two healthy controls and in five ABCA3 mutation carriers. Kinetic studies demonstrated a marked reduction of SP-B synthesis (43.2 vs. 76.5 ± 24.8%/day); conversely, DSPC synthesis was higher (12.4 vs. 6.3 ± 0.5%/day) compared to controls, although there was a marked reduction of DSPC content in tracheal aspirates (29.8 vs. 56.1 ± 12.4% of total phospholipid content). Conclusion Defective TTF-1 signaling may result in profound surfactant homeostasis disruption and neonatal/pediatric diffuse lung disease. Heterozygous ABCA3 missense mutations may act as disease modifiers in other genetic surfactant defects. PMID:21867529

  13. Combustion derived ultrafine particles induce cytochrome P-450 expression in specific lung compartments in the developing neonatal and adult rat

    PubMed Central

    Chan, Jackie K. W.; Vogel, Christoph F.; Baek, Jaeeun; Kodani, Sean D.; Uppal, Ravi S.; Bein, Keith J.; Anderson, Donald S.

    2013-01-01

    Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAH) and can be a dominant contributor to ultrafine urban particulate matter (PM). Exposure to ultrafine PM is correlated with respiratory infections and asthmatic symptoms in young children. The lung undergoes substantial growth, alveolarization, and cellular maturation within the first years of life, which may be impacted by environmental pollutants such as PM. PAHs in PM can serve as ligands for the aryl hydrocarbon receptor (AhR) that induces expression of certain isozymes in the cytochrome P-450 superfamily, such as CYP1A1 and CYP1B1, localized in specific lung cell types. Although AhR activation and induction has been widely studied, its context within PM exposure and impact on the developing lung is poorly understood. In response, we have developed a replicable ultrafine premixed flame particle (PFP) generating system and used in vitro and in vivo models to define PM effects on AhR activation in the developing lung. We exposed 7-day neonatal and adult rats to a single 6-h PFP exposure and determined that PFPs cause significant parenchymal toxicity in neonates. PFPs contain weak AhR agonists that upregulate AhR-xenobiotic response element activity and expression and are capable inducers of CYP1A1 and CYP1B1 expression in both ages with different spatial and temporal patterns. Neonatal CYP1A1 expression was muted and delayed compared with adults, possibly because of differences in the enzyme maturation. We conclude that the inability of neonates to sufficiently adapt in response to PFP exposure may, in part, explain their susceptibility to PFP and urban ultrafine PM. PMID:23502512

  14. MEchatronic REspiratory System SImulator for Neonatal Applications (MERESSINA) project: a novel bioengineering goal

    PubMed Central

    Scaramuzzo, Rosa T; Ciantelli, Massimiliano; Baldoli, Ilaria; Bellanti, Lisa; Gentile, Marzia; Cecchi, Francesca; Sigali, Emilio; Tognarelli, Selene; Ghirri, Paolo; Mazzoleni, Stefano; Menciassi, Arianna; Cuttano, Armando; Boldrini, Antonio; Laschi, Cecilia; Dario, Paolo

    2013-01-01

    Respiratory function is mandatory for extrauterine life, but is sometimes impaired in newborns due to prematurity, congenital malformations, or acquired pathologies. Mechanical ventilation is standard care, but long-term complications, such as bronchopulmonary dysplasia, are still largely reported. Therefore, continuous medical education is mandatory to correctly manage devices for assistance. Commercially available breathing function simulators are rarely suitable for the anatomical and physiological realities. The aim of this study is to develop a high-fidelity mechatronic simulator of neonatal airways and lungs for staff training and mechanical ventilator testing. The project is divided into three different phases: (1) a review study on respiratory physiology and pathophysiology and on already available single and multi-compartment models; (2) the prototyping phase; and (3) the on-field system validation. PMID:23966804

  15. Bronchoalveolar lavage for the treatment of neonatal pulmonary atelectasis under lung ultrasound monitoring.

    PubMed

    Liu, Jing; Ren, Xiao-Ling; Fu, Wei; Liu, Ying; Xia, Rong-Ming

    2017-10-01

    Pulmonary atelectasis (PA) is a common clinical complication among newborns, and it is one of the most common causes of neonatal dyspnea, a condition with no specific effective treatment. This study examined the effectiveness and security of bronchoalveolar lavage (BL) regarding the treatment of neonatal PA under ultrasound monitoring. A total of 57 patients diagnosed with PA via lung ultrasound (LUS) were included in this study. All patients received BL via a tracheal intubation injection of lavage fluid. The LUS was conducted immediately after each lavage to understand the conditions of lung re-expansion. Irrigation was repeated two to three times as one course of treatment. BL was provided as one to two courses of treatment daily for several days according to atelectasis and lung recruitment status. Of the 57 patients, BL was very effective in 44 cases (77.2%), marginally effective in nine cases (15.8%) and ineffective in four cases (7.0%), showing a total effective rate of 93.0%. The four ineffective cases showed a long disease duration and severe pulmonary consolidation. BL showed significant effectiveness for the treatment of neonatal PA under ultrasound monitoring. This treatment is easy to operate, and no adverse side effects were observed. Thus, BL should be considered for clinical application.

  16. Standardization of Sonographic Lung-to-Head Ratio Measurements in Isolated Congenital Diaphragmatic Hernia: Impact on the Reproducibility and Efficacy to Predict Outcomes.

    PubMed

    Britto, Ingrid Schwach Werneck; Sananes, Nicolas; Olutoye, Oluyinka O; Cass, Darrell L; Sangi-Haghpeykar, Haleh; Lee, Timothy C; Cassady, Christopher I; Mehollin-Ray, Amy; Welty, Stephen; Fernandes, Caraciolo; Belfort, Michael A; Lee, Wesley; Ruano, Rodrigo

    2015-10-01

    The purpose of this study was to evaluate the impact of standardization of the lung-to-head ratio measurements in isolated congenital diaphragmatic hernia on prediction of neonatal outcomes and reproducibility. We conducted a retrospective cohort study of 77 cases of isolated congenital diaphragmatic hernia managed in a single center between 2004 and 2012. We compared lung-to-head ratio measurements that were performed prospectively in our institution without standardization to standardized measurements performed according to a defined protocol. The standardized lung-to-head ratio measurements were statistically more accurate than the nonstandardized measurements for predicting neonatal mortality (area under the receiver operating characteristic curve, 0.85 versus 0.732; P = .003). After standardization, there were no statistical differences in accuracy between measurements regardless of whether we considered observed-to-expected values (P > .05). Standardization of the lung-to-head ratio did not improve prediction of the need for extracorporeal membrane oxygenation (P> .05). Both intraoperator and interoperator reproducibility were good for the standardized lung-to-head ratio (intraclass correlation coefficient, 0.98 [95% confidence interval, 0.97-0.99]; bias, 0.02 [limits of agreement, -0.11 to +0.15], respectively). Standardization of lung-to-head ratio measurements improves prediction of neonatal outcomes. Further studies are needed to confirm these results and to assess the utility of standardization of other prognostic parameters.

  17. Hyperoxia exacerbates postnatal inflammation-induced lung injury in neonatal BRP-39 null mutant mice promoting the M1 macrophage phenotype.

    PubMed

    Syed, Mansoor A; Bhandari, Vineet

    2013-01-01

    Hyperoxia exposure to developing lungs-critical in the pathogenesis of bronchopulmonary dysplasia-may augment lung inflammation by inhibiting anti-inflammatory mediators in alveolar macrophages. We sought to determine the O2-induced effects on the polarization of macrophages and the role of anti-inflammatory BRP-39 in macrophage phenotype and neonatal lung injury. We used RAW264.7, peritoneal, and bone marrow derived macrophages for polarization (M1/M2) studies. For in vivo studies, wild-type (WT) and BRP-39(-/-) mice received continuous exposure to 21% O2 (control mice) or 100% O2 from postnatal (PN) 1 to PN7 days, along with intranasal lipopolysaccharide (LPS) administered on alternate days (PN2, -4, and -6). Lung histology, bronchoalveolar lavage (BAL) cell counts, BAL protein, and cytokines measurements were performed. Hyperoxia differentially contributed to macrophage polarization by enhancing LPS induced M1 and inhibiting interleukin-4 induced M2 phenotype. BRP-39 absence led to further enhancement of the hyperoxia and LPS induced M1 phenotype. In addition, BRP-39(-/-) mice were significantly more sensitive to LPS plus hyperoxia induced lung injury and mortality compared to WT mice. These findings collectively indicate that BRP-39 is involved in repressing the M1 proinflammatory phenotype in hyperoxia, thereby deactivating inflammatory responses in macrophages and preventing neonatal lung injury.

  18. Neonatal lungs: maturational changes in lung resistivity spectra.

    PubMed

    Brown, B H; Primhak, R A; Smallwood, R H; Milnes, P; Narracott, A J; Jackson, M J

    2002-09-01

    The electrical resistivity of lung tissue can be related to the structure and composition of the tissue and also to the air content. Electrical impedance tomographic measurements have been used on 155 normal children over the first three years of life and 25 pre-term infants, to determine the absolute resistivity of lung tissue as a function of frequency. The results show consistent changes with increasing age in both lung tissue resistivity (5.8 ohm m at birth to 20.9 ohm m at 3 years of age) and in the changes of resistivity with frequency (Cole parameter ratio R/S=0.41 at birth and 0.84 at 3 years of age). Comparison with a lung model showed that the measurements are consistent with maturational changes in the number and size of alveoli, the extracapillary blood volume and the size of the extracapillary vessels. However, the results show that the process of maturation is not complete at the age of three years.

  19. Inhibition of necroptosis attenuates lung injury and improves survival in neonatal sepsis.

    PubMed

    Bolognese, Alexandra C; Yang, Weng-Lang; Hansen, Laura W; Denning, Naomi-Liza; Nicastro, Jeffrey M; Coppa, Gene F; Wang, Ping

    2018-04-27

    Neonatal sepsis represents a unique therapeutic challenge owing to an immature immune system. Necroptosis is a form of programmed cell death that has been identified as an important mechanism of inflammation-induced cell death. Receptor-interacting protein kinase 1 plays a key role in mediating this process. We hypothesized that pharmacologic blockade of receptor-interacting protein kinase 1 activity would be protective in neonatal sepsis. Sepsis was induced in C57BL/6 mouse pups (5-7 days old) by intraperitoneal injection of adult cecal slurry. At 1 hour after cecal slurry injection, the receptor-interacting protein kinase 1 inhibitor necrostatin-1 (10 µg/g body weight) or vehicle (5% dimethyl sulfoxide in phosphate buffered saline) was administered via retro-orbital injection. At 20 hours after cecal slurry injection, blood and lung tissues were collected for various analyses. At 20 hours after sepsis induction, vehicle-treated pups showed a marked increase in serum levels of interleukin 6, interleukin 1-beta, and interleukin 18 compared to sham. With necrostatin-1 treatment, serum levels of interleukin 6, interleukin 1-beta, and interleukin 18 were decreased by 77%, 81%, and 63%, respectively, compared to vehicle. In the lungs, sepsis induction resulted in a 232-, 10-, and 2.8-fold increase in interleukin 6, interleukin 1-beta, and interleukin 18 mRNA levels compared to sham, while necrostatin-1 treatment decreased these levels to 40-, 4-, and 0.8-fold, respectively. Expressions of the neutrophil chemokines keratinocyte chemoattractant and macrophage-inflammatory-protein-2 were also increased in the lungs in sepsis, while necrostatin-1 treatment decreased these levels by 81% and 61%, respectively, compared to vehicle. In addition, necrostatin-1 treatment significantly improved the lung histologic injury score and decreased lung apoptosis in septic pups. Finally, treatment with necrostatin-1 increased the 7-day survival rate from 0% in the vehicle-treated septic pups to 29% (P = .11). Inhibition of receptor-interacting protein kinase 1 by necrostatin-1 decreases systemic and pulmonary inflammation, decreases lung injury, and increases survival in neonatal mice with sepsis. Targeting the necroptosis pathway might represent a new therapeutic strategy for neonatal sepsis. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Fetal MRI lung volumes are predictive of perinatal outcomes in fetuses with congenital lung masses.

    PubMed

    Zamora, Irving J; Sheikh, Fariha; Cassady, Christopher I; Olutoye, Oluyinka O; Mehollin-Ray, Amy R; Ruano, Rodrigo; Lee, Timothy C; Welty, Stephen E; Belfort, Michael A; Ethun, Cecilia G; Kim, Michael E; Cass, Darrell L

    2014-06-01

    The purpose of this study was to evaluate fetal magnetic resonance imaging (MRI) as a modality for predicting perinatal outcomes and lung-related morbidity in fetuses with congenital lung masses (CLM). The records of all patients treated for CLM from 2002 to 2012 were reviewed retrospectively. Fetal MRI-derived lung mass volume ratio (LMVR), observed/expected normal fetal lung volume (O/E-NFLV), and lesion-to-lung volume ratio (LLV) were calculated. Multivariate regression and receiver operating characteristic analyses were applied to determine the predictive accuracy of prenatal imaging. Of 128 fetuses with CLM, 93% (n=118) survived. MRI data were available for 113 fetuses. In early gestation (<26weeks), MRI measurements of LMVR and LLV correlated with risk of fetal hydrops, mortality, and/or need for fetal intervention. In later gestation (>26weeks), LMVR, LLV, and O/E-NFLV correlated with neonatal respiratory distress, intubation, NICU admission and need for neonatal surgery. On multivariate regression, LMVR was the strongest predictor for development of fetal hydrops (OR: 6.97, 1.58-30.84; p=0.01) and neonatal respiratory distress (OR: 12.38, 3.52-43.61; p≤0.001). An LMVR >2.0 predicted worse perinatal outcome with 83% sensitivity and 99% specificity (AUC=0.94; p<0.001). Fetal MRI volumetric measurements of lung masses and residual normal lung are predictive of perinatal outcomes in fetuses with CLM. These data may assist in perinatal risk stratification, counseling, and resource utilization. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Structure and epitope distribution of heparan sulfate is disrupted in experimental lung hypoplasia: a glycobiological epigenetic cause for malformation?

    PubMed

    Thompson, Sophie M; Connell, Marilyn G; van Kuppevelt, Toin H; Xu, Ruoyan; Turnbull, Jeremy E; Losty, Paul D; Fernig, David G; Jesudason, Edwin C

    2011-06-14

    Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures. The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme.We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2. The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality.

  2. Structure and epitope distribution of heparan sulfate is disrupted in experimental lung hypoplasia: a glycobiological epigenetic cause for malformation?

    PubMed Central

    2011-01-01

    Background Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures. Results The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme. We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2. Conclusions The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality. PMID:21672206

  3. Selective reconstitution of liver cholesterol biosynthesis promotes lung maturation but does not prevent neonatal lethality in Dhcr7 null mice.

    PubMed

    Yu, Hongwei; Li, Man; Tint, G Stephen; Chen, Jianliang; Xu, Guorong; Patel, Shailendra B

    2007-04-04

    Targeted disruption of the murine 3beta-hydroxysterol-Delta7-reductase gene (Dhcr7), an animal model of Smith-Lemli-Opitz syndrome, leads to loss of cholesterol synthesis and neonatal death that can be partially rescued by transgenic replacement of DHCR7 expression in brain during embryogenesis. To gain further insight into the role of non-brain tissue cholesterol deficiency in the pathophysiology, we tested whether the lethal phenotype could be abrogated by selective transgenic complementation with DHCR7 expression in the liver. We generated mice that carried a liver-specific human DHCR7 transgene whose expression was driven by the human apolipoprotein E (ApoE) promoter and its associated liver-specific enhancer. These mice were then crossed with Dhcr7+/- mutants to generate Dhcr7-/- mice bearing a human DHCR7 transgene. Robust hepatic transgene expression resulted in significant improvement of cholesterol homeostasis with cholesterol concentrations increasing to 80~90 % of normal levels in liver and lung. Significantly, cholesterol deficiency in brain was not altered. Although late gestational lung sacculation defect reported previously was significantly improved, there was no parallel increase in postnatal survival in the transgenic mutant mice. The reconstitution of DHCR7 function selectively in liver induced a significant improvement of cholesterol homeostasis in non-brain tissues, but failed to rescue the neonatal lethality of Dhcr7 null mice. These results provided further evidence that CNS defects caused by Dhcr7 null likely play a major role in the lethal pathogenesis of Dhcr7-/- mice, with the peripheral organs contributing the morbidity.

  4. Affect of Early Life Oxygen Exposure on Proper Lung Development and Response to Respiratory Viral Infections

    PubMed Central

    Domm, William; Misra, Ravi S.; O’Reilly, Michael A.

    2015-01-01

    Children born preterm often exhibit reduced lung function and increased severity of response to respiratory viruses, suggesting that premature birth has compromised proper development of the respiratory epithelium and innate immune defenses. Increasing evidence suggests that premature birth promotes aberrant lung development likely due to the neonatal oxygen transition occurring before pulmonary development has matured. Given that preterm infants are born at a point of time where their immune system is also still developing, early life oxygen exposure may also be disrupting proper development of innate immunity. Here, we review current literature in hopes of stimulating research that enhances understanding of how the oxygen environment at birth influences lung development and host defense. This knowledge may help identify those children at risk for disease and ideally culminate in the development of novel therapies that improve their health. PMID:26322310

  5. An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human ECO syndrome

    PubMed Central

    Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J.; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng

    2017-01-01

    Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the ICK (intestinal cell kinase) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation, but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. PMID:28380258

  6. An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human ECO syndrome.

    PubMed

    Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng

    2017-05-01

    Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the intestinal cell kinase (ICK) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. © 2017 Federation of European Biochemical Societies.

  7. Respiratory syncytial virus increases lung cellular bioenergetics in neonatal C57BL/6 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsuwaidi, Ahmed R., E-mail: alsuwaidia@uaeu.ac.ae; Albawardi, Alia, E-mail: alia.albawardi@uaeu.ac.ae; Almarzooqi, Saeeda, E-mail: saeeda.almarzooqi@uaeu.ac.ae

    2014-04-15

    We have previously reported that lung cellular bioenergetics (cellular respiration and ATP) increased in 4–10 week-old BALB/c mice infected with respiratory syncytial virus (RSV). This study examined the kinetics and changes in cellular bioenergetics in ≤2-week-old C57BL/6 mice following RSV infection. Mice (5–14 days old) were inoculated intranasally with RSV and the lungs were examined on days 1–10 post-infection. Histopathology and electron microscopy revealed preserved pneumocyte architectures and organelles. Increased lung cellular bioenergetics was noted from days 1–10 post-infection. Cellular GSH remained unchanged. These results indicate that the increased lung cellular respiration (measured by mitochondrial O{sub 2} consumption) and ATPmore » following RSV infection is independent of either age or genetic background of the host. - Highlights: • RSV infection increases lung cellular respiration and ATP in neonatal C57BL/6 mice. • Increased lung cellular bioenergetics is a biomarker of RSV infection. • Lung cellular glutathione remains unchanged in RSV infection.« less

  8. Brain development of the preterm neonate after neonatal hydrocortisone treatment for chronic lung disease

    PubMed Central

    Benders, Manon J. N. L.; Groenendaal, Floris; van Bel, Frank; Vinh, Russia Ha; Dubois, Jessica; Lazeyras, François; Warfield, Simon K.; Hüppi, Petra S.; de Vries, Linda S.

    2015-01-01

    Previous studies reported impaired cerebral cortical gray matter development and neurodevelopmental impairment following neonatal dexamethasone treatment for chronic lung disease in preterm newborns. No long-term effects on neurocognitive outcome have yet been shown for hydrocortisone treatment. A prospective study was performed to evaluate brain growth at term in preterm infants who did receive neonatal hydrocortisone for chronic lung disease. Thirty-eight preterm infants (n=19 hydrocortisone, n=19 controls) were matched for gestational age at birth. Gestational age and birth weight were 27.0±1.4 vs. 27.6±1.1 weeks (p=ns), and 826±173 vs. 1017±202 gram respectively (p<0.05). Infants were studied at term equivalent age. Hydrocortisone was started with a dose of 5 mg/kg/day for 1 week, followed by a tapering course over 3 weeks. A 3D-MRI technique was used to quantify cerebral tissue volumes: cortical grey matter, basal ganglia/thalami, unmyelinated white matter, myelinated white matter, cerebellum, and cerebrospinal fluid. Infants who were treated with hydrocortisone had more severe respiratory distress. There were no differences in cerebral tissue volumes between the 2 groups at term equivalent age. In conclusion, no effect on brain growth, measured at term equivalent age, was shown following treatment with hydrocortisone for chronic lung disease. PMID:19851225

  9. The fate of mesenchymal stem cells transplanted into immunocompetent neonatal mice: implications for skeletal gene therapy via stem cells.

    PubMed

    Niyibizi, Christopher; Wang, Sujing; Mi, Zhibao; Robbins, Paul D

    2004-06-01

    To explore the feasibility of skeletal gene and cell therapies, we transduced murine bone marrow-derived mesenchymal stem cells (MSCs) with a retrovirus carrying the enhanced green fluorescent protein and zeocin-resistance genes prior to transplantation into 2-day-old immunocompetent neonatal mice. Whole-body imaging of the recipient mice at 7 days post-systemic cell injection demonstrated a wide distribution of the cells in vivo. Twenty-five days posttransplantation, most of the infused cells were present in the lung as assessed by examination of the cells cultured from the lungs of the recipient mice. The cells persisted in lung and maintained a high level of gene expression and could be recovered from the recipient mice at 150 days after cell transplantation. A significant number of GFP-positive cells were also present in the bones of the recipient mice at 35 days post-cell transplantation. Recycling of the cells recovered from femurs of the recipient mice at 25 days posttransplantation by repeated injections into different neonatal mice resulted in the isolation of a clone of cells that was detected in bone and cartilage, but not in lung and liver after systemic injection. These data demonstrate that MSCs persist in immunocompetent neonatal mice, maintain a high level of gene expression, and may participate in skeletal growth and development of the recipient animals.

  10. Three-dimensional model of surfactant replacement therapy

    PubMed Central

    Filoche, Marcel; Tai, Cheng-Feng; Grotberg, James B.

    2015-01-01

    Surfactant replacement therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. It is widely successful for treating surfactant deficiency in premature neonates who develop neonatal respiratory distress syndrome (NRDS). However, when applied to adults with acute respiratory distress syndrome (ARDS), early successes were followed by failures. This unexpected and puzzling situation is a vexing issue in the pulmonary community. A pressing question is whether the instilled surfactant mixture actually reaches the adult alveoli/acinus in therapeutic amounts. In this study, to our knowledge, we present the first mathematical model of SRT in a 3D lung structure to provide insight into answering this and other questions. The delivery is computed from fluid mechanical principals for 3D models of the lung airway tree for neonates and adults. A liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug deposits a coating film on the airway wall and then splits unevenly at the bifurcation due to gravity. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published procedural methods, we show the neonatal lung is a well-mixed compartment, whereas the adult lung is not. The earlier, successful adult SRT studies show comparatively good index values implying adequate delivery. The later, failed studies used different protocols resulting in very low values of both indexes, consistent with inadequate acinar delivery. Reasons for these differences and the evolution of failure from success are outlined and potential remedies discussed. PMID:26170310

  11. Using Quality Improvement Tools to Reduce Chronic Lung Disease.

    PubMed

    Picarillo, Alan Peter; Carlo, Waldemar

    2017-09-01

    Rates of chronic lung disease (CLD) in very low birthweight infants have not decreased at the same pace as other neonatal morbidities over the past 20 years. Multifactorial causes of CLD make this common morbidity difficult to reduce, although there have been several successful quality improvement (QI) projects in individual neonatal intensive care units. QI projects have become a mainstay of neonatal care over the past decade, with an increasing number of publications devoted to this topic. A specific QI project for CLD must be based on best available evidence in the medical literature, expert recommendations, or based on work by previous QI initiatives. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Evolution and development of gas exchange structures in Mammalia: the placenta and the lung.

    PubMed

    Mess, Andrea M; Ferner, Kirsten J

    2010-08-31

    Appropriate oxygen supply is crucial for organisms. Here we examine the evolution of structures associated with the delivery of oxygen in the pre- and postnatal phases in mammals. There is an enormous structural and functional variability in the placenta that has facilitated the evolution of specialized reproductive strategies, such as precociality. In particular the cell layers separating fetal and maternal blood differ markedly: a non-invasive epitheliochorial placenta, which increases the diffusion distance, represents a derived state in ungulates. Rodents and their relatives have an invasive haemochorial placental type as optimum for the diffusion distance. In contrast, lung development is highly conserved and differences in the lungs of neonates can be explained by different developmental rates. Monotremes and marsupials have altricial stages with lungs at the early saccular phase, whereas newborn eutherians have lungs at the late saccular or alveolar phase. In conclusion, the evolution of exchange structures in the pre- and postnatal periods does not follow similar principles. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. In Vitro Surfactant and Perfluorocarbon Aerosol Deposition in a Neonatal Physical Model of the Upper Conducting Airways

    PubMed Central

    Goikoetxea, Estibalitz; Murgia, Xabier; Serna-Grande, Pablo; Valls-i-Soler, Adolf; Rey-Santano, Carmen; Rivas, Alejandro; Antón, Raúl; Basterretxea, Francisco J.; Miñambres, Lorena; Méndez, Estíbaliz; Lopez-Arraiza, Alberto; Larrabe-Barrena, Juan Luis; Gomez-Solaetxe, Miguel Angel

    2014-01-01

    Objective Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC) to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways. Methods The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD), were measured at different driving pressures (4–7 bar). Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted. Results The nebulization system produced relatively large amounts of aerosol ranging between 0.3±0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0±0.1 ml/min for distilled water (H2Od) at 6 bar, with MMADs between 2.61±0.1 µm for PFD at 7 bar and 10.18±0.4 µm for FC-75 at 6 bar. The deposition study showed that for surfactant and H2Od aerosols, the highest percentage of the aerosolized mass (∼65%) was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH2O only increased total airway pressure by 1.59 cmH2O at the highest driving pressure (7 bar). Conclusion This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support. PMID:25211475

  14. The Effect of Maternal Nutrition on the Development of the Offspring: An International Symposium. Nutrition Reports International, Special Issue.

    ERIC Educational Resources Information Center

    Roeder, Lois M., Ed.

    1973-01-01

    Contents of this symposium include the following papers: "Effect of Maternal Protein Malnutrition on Neonatal Lung Development and Mitochondrial Function," E. J. Hawrylewicz, J. Q. Kissane, W. H. Blair and C. A. Heppner; "Effect of the Level of Nutrition on Rates of Cell Proliferation and of RNA and Protein Syntheses in the Rat," L. M. Roeder;…

  15. Geranylgeranyl Diphosphate Synthase Modulates Fetal Lung Branching Morphogenesis Possibly through Controlling K-Ras Prenylation.

    PubMed

    Jia, Wen-Jun; Jiang, Shan; Tang, Qiao-Li; Shen, Di; Xue, Bin; Ning, Wen; Li, Chao-Jun

    2016-06-01

    G proteins play essential roles in regulating fetal lung development, and any defects in their expression or function (eg, activation or posttranslational modification) can lead to lung developmental malformation. Geranylgeranyl diphosphate synthase (GGPPS) can modulate protein prenylation that is required for protein membrane-anchoring and activation. Here, we report that GGPPS regulates fetal lung branching morphogenesis possibly through controlling K-Ras prenylation during fetal lung development. GGPPS was continuously expressed in lung epithelium throughout whole fetal lung development. Specific deletion of geranylgeranyl diphosphate synthase 1 (Ggps1) in lung epithelium during fetal lung development resulted in neonatal respiratory distress syndrome-like disease. The knockout mice died at postnatal day 1 of respiratory failure, and the lungs showed compensatory pneumonectasis, pulmonary atelectasis, and hyaline membranes. Subsequently, we proved that lung malformations in Ggps1-deficient mice resulted from the failure of fetal lung branching morphogenesis. Further investigation revealed Ggps1 deletion blocked K-Ras geranylgeranylation and extracellular signal-related kinase 1 or 2/mitogen-activated protein kinase signaling, which in turn disturbed fibroblast growth factor 10 regulation on fetal lung branching morphogenesis. Collectively, our data suggest that GGPPS is essential for maintaining fetal lung branching morphogenesis, which is possibly through regulating K-Ras prenylation. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Long-term (postnatal day 70) outcome and safety of intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells in neonatal hyperoxic lung injury.

    PubMed

    Ahn, So Yoon; Chang, Yun Sil; Kim, Soo Yoon; Sung, Dong Kyung; Kim, Eun Sun; Rime, So Yub; Yu, Wook Joon; Choi, Soo Jin; Oh, Won Il; Park, Won Soon

    2013-03-01

    This study was performed to evaluate the long-term effects and safety of intratracheal (IT) transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in neonatal hyperoxic lung injury at postnatal day (P)70 in a rat model. Newborn Sprague Dawley rat pups were subjected to 14 days of hyperoxia (90% oxygen) within 10 hours after birth and allowed to recover at room air until sacrificed at P70. In the transplantation groups, hUCB-MSCs (5×10⁵) were administered intratracheally at P5. At P70, various organs including the heart, lung, liver, and spleen were histologically examined, and the harvested lungs were assessed for morphometric analyses of alveolarization. ED-1, von Willebrand factor, and human-specific nuclear mitotic apparatus protein (NuMA) staining in the lungs and the hematologic profile of blood were evaluated. Impaired alveolar and vascular growth, which evidenced by an increased mean linear intercept and decreased amount of von Willebrand factor, respectively, and the hyperoxia-induced inflammatory responses, as evidenced by inflammatory foci and ED-1 positive alveolar macrophages, were attenuated in the P70 rat lungs by IT transplantation of hUCB-MSCs. Although rare, donor cells with human specific NuMA staining were persistently present in the P70 rat lungs. There were no gross or microscopic abnormal findings in the heart, liver, or spleen, related to the MSCs transplantation. The protective and beneficial effects of IT transplantation of hUCB-MSCs in neonatal hyperoxic lung injuries were sustained for a prolonged recovery period without any long-term adverse effects up to P70.

  17. Extracorporeal membrane oxygenation

    MedlinePlus

    ECMO; Heart-lung bypass - infants; Bypass - infants; Neonatal hypoxia - ECMO; PPHN - ECMO; Meconium aspiration - ECMO; MAS - ECMO ... back into the bloodstream of a very ill baby. This system provides heart-lung bypass support outside of the baby's body. ...

  18. Depletion of pulmonary glutathione using diethylmaleic acid accelerates the development of oxygen-induced lung injury in term and preterm guinea-pig neonates.

    PubMed

    Langley, S C; Kelly, F J

    1994-02-01

    Dietary or chemical depletion of pulmonary glutathione in adult rats and mice, has been demonstrated to exacerbate the toxic effects of high oxygen concentrations. The present paper has examined this phenomenon in a guinea-pig model of prematurity, using the electrophilic agent diethylmaleic acid (DEM) to provide a transient (up to 12 h) pulmonary glutathione depletion. Full-term and 3-days preterm guinea-pig pups were studied to assess the possible role for glutathione deficiency as a mechanism mediating the increased susceptibility of the immature lung to oxygen free-radical damage. The administration of DEM to guinea-pig neonates depleted lung glutathione by 90% (term) or 68% (preterm) over 2 h. On exposure of pups to 95% oxygen for 48 h, DEM increased the incidence of oxygen-related death to 31% in term pups and 100% in preterm pups. Term pups exposed to hyperoxia and treated with DEM showed evidence of pulmonary injury, indicated by an influx of neutrophils into the lung airspaces, and elevated microvascular permeability. Control pups exposed to 95% oxygen were found to have uninjured lungs after 48 h. We conclude that glutathione is an essential component of the pulmonary antioxidant array in neonates. Glutathione may be of particular importance in the early phase of oxygen exposure. The deficiency of lung glutathione observed in preterm animals may account for their increased susceptibility to oxygen-induced pulmonary injury.

  19. Hyperoxia Exacerbates Postnatal Inflammation-Induced Lung Injury in Neonatal BRP-39 Null Mutant Mice Promoting the M1 Macrophage Phenotype

    PubMed Central

    Syed, Mansoor A.

    2013-01-01

    Rationale. Hyperoxia exposure to developing lungs—critical in the pathogenesis of bronchopulmonary dysplasia—may augment lung inflammation by inhibiting anti-inflammatory mediators in alveolar macrophages. Objective. We sought to determine the O2-induced effects on the polarization of macrophages and the role of anti-inflammatory BRP-39 in macrophage phenotype and neonatal lung injury. Methods. We used RAW264.7, peritoneal, and bone marrow derived macrophages for polarization (M1/M2) studies. For in vivo studies, wild-type (WT) and BRP-39−/− mice received continuous exposure to 21% O2 (control mice) or 100% O2 from postnatal (PN) 1 to PN7 days, along with intranasal lipopolysaccharide (LPS) administered on alternate days (PN2, -4, and -6). Lung histology, bronchoalveolar lavage (BAL) cell counts, BAL protein, and cytokines measurements were performed. Measurements and Main Results. Hyperoxia differentially contributed to macrophage polarization by enhancing LPS induced M1 and inhibiting interleukin-4 induced M2 phenotype. BRP-39 absence led to further enhancement of the hyperoxia and LPS induced M1 phenotype. In addition, BRP-39−/− mice were significantly more sensitive to LPS plus hyperoxia induced lung injury and mortality compared to WT mice. Conclusions. These findings collectively indicate that BRP-39 is involved in repressing the M1 proinflammatory phenotype in hyperoxia, thereby deactivating inflammatory responses in macrophages and preventing neonatal lung injury. PMID:24347826

  20. A model of neonatal tidal liquid ventilation mechanics.

    PubMed

    Costantino, M L; Fiore, G B

    2001-09-01

    Tidal liquid ventilation (TLV) with perfluorocarbons (PFC) has been proposed to treat surfactant-deficient lungs of preterm neonates, since it may prevent pulmonary instability by abating saccular surface tension. With a previous model describing gas exchange, we showed that ventilator settings are crucial for CO(2) scavenging during neonatal TLV. The present work is focused on some mechanical aspects of neonatal TLV that were hardly studied, i.e. the distribution of mechanical loads in the lungs, which is expected to differ substantially from gas ventilation. A new computational model is presented, describing pulmonary PFC hydrodynamics, where viscous losses, kinetic energy changes and lung compliance are accounted for. The model was implemented in a software package (LVMech) aimed at calculating pressures (and approximately estimate shear stresses) within the bronchial tree at different ventilator regimes. Simulations were run taking the previous model's outcomes into account. Results show that the pressure decrease due to high saccular compliance may compensate for the increased pressure drops due to PFC viscosity, and keep airway pressure low. Saccules are exposed to pressures remarkably different from those at the airway opening; during expiration negative pressures, which may cause airway collapse, are moderate and appear in the upper airways only. Delivering the fluid with a slightly smoothed square flow wave is convenient with respect to a sine wave. The use of LVMech allows to familiarize with LV treatment management taking the lungs' mechanical load into account, consistently with a proper respiratory support.

  1. STAT6 inhibitory peptide given during RSV infection of neonatal mice reduces exacerbated airway responses upon adult reinfection.

    PubMed

    Srinivasa, Bharat T; Restori, Katherine H; Shan, Jichuan; Cyr, Louis; Xing, Li; Lee, Soojin; Ward, Brian J; Fixman, Elizabeth D

    2017-02-01

    Respiratory syncytial virus (RSV)-related hospitalization during infancy is strongly associated with the subsequent development of asthma. Early life RSV infection results in a Th2-biased immune response, which is also typical of asthma. Murine models of neonatal RSV infection have been developed to examine the possible contribution of RSV-driven Th2 responses to the development of airway hyper-responsiveness later in childhood. We have investigated the ability of a cell-penetrating STAT6 inhibitory peptide (STAT6-IP), when delivered selectively during neonatal RSV infection, to modify pathogenesis induced upon secondary RSV reinfection of adults 6 wk later. Neonatal STAT6-IP treatment inhibited the development of airway hyper-responsiveness (AHR) and significantly reduced lung eosinophilia and collagen deposition in adult mice following RSV reinfection. STAT6-IP-treated, RSV-infected neonates had reduced levels of both IL-4 and alternatively activated macrophages (AAMs) in the lungs. Our findings suggest that targeting STAT6 activity at the time of early-life RSV infection may effectively reduce the risk of subsequent asthma development. © Society for Leukocyte Biology.

  2. Comparative analyses of lung transcriptomes in patients with alveolar capillary dysplasia with misalignment of pulmonary veins and in foxf1 heterozygous knockout mice.

    PubMed

    Sen, Partha; Dharmadhikari, Avinash V; Majewski, Tadeusz; Mohammad, Mahmoud A; Kalin, Tanya V; Zabielska, Joanna; Ren, Xiaomeng; Bray, Molly; Brown, Hannah M; Welty, Stephen; Thevananther, Sundararajah; Langston, Claire; Szafranski, Przemyslaw; Justice, Monica J; Kalinichenko, Vladimir V; Gambin, Anna; Belmont, John; Stankiewicz, Pawel

    2014-01-01

    Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV) is a developmental disorder of the lungs, primarily affecting their vasculature. FOXF1 haploinsufficiency due to heterozygous genomic deletions and point mutations have been reported in most patients with ACDMPV. The majority of mice with heterozygous loss-of-function of Foxf1 exhibit neonatal lethality with evidence of pulmonary hemorrhage in some of them. By comparing transcriptomes of human ACDMPV lungs with control lungs using expression arrays, we found that several genes and pathways involved in lung development, angiogenesis, and in pulmonary hypertension development, were deregulated. Similar transcriptional changes were found in lungs of the postnatal day 0.5 Foxf1+/- mice when compared to their wildtype littermate controls; 14 genes, COL15A1, COL18A1, COL6A2, ESM1, FSCN1, GRINA, IGFBP3, IL1B, MALL, NOS3, RASL11B, MATN2, PRKCDBP, and SIRPA, were found common to both ACDMPV and Foxf1 heterozygous lungs. Our results advance knowledge toward understanding of the molecular mechanism of ACDMPV, lung development, and its vasculature pathology. These data may also be useful for understanding etiologies of other lung disorders, e.g. pulmonary hypertension, bronchopulmonary dysplasia, or cancer.

  3. An Official American Thoracic Society/European Respiratory Society Workshop Report: Evaluation of Respiratory Mechanics and Function in the Pediatric and Neonatal Intensive Care Units

    PubMed Central

    Peterson-Carmichael, Stacey; Seddon, Paul C.; Cheifetz, Ira M.; Frerichs, Inéz; Hall, Graham L.; Hammer, Jürg; Hantos, Zoltán; van Kaam, Anton H.; McEvoy, Cindy T.; Newth, Christopher J. L.; Pillow, J. Jane; Rafferty, Gerrard F.; Rosenfeld, Margaret; Stocks, Janet; Ranganathan, Sarath C.

    2016-01-01

    Ready access to physiologic measures, including respiratory mechanics, lung volumes, and ventilation/perfusion inhomogeneity, could optimize the clinical management of the critically ill pediatric or neonatal patient and minimize lung injury. There are many techniques for measuring respiratory function in infants and children but very limited information on the technical ease and applicability of these tests in the pediatric and neonatal intensive care unit (PICU, NICU) environments. This report summarizes the proceedings of a 2011 American Thoracic Society Workshop critically reviewing techniques available for ventilated and spontaneously breathing infants and children in the ICU. It outlines for each test how readily it is performed at the bedside and how it may impact patient management as well as indicating future areas of potential research collaboration. From expert panel discussions and literature reviews, we conclude that many of the techniques can aid in optimizing respiratory support in the PICU and NICU, quantifying the effect of therapeutic interventions, and guiding ventilator weaning and extubation. Most techniques now have commercially available equipment for the PICU and NICU, and many can generate continuous data points to help with ventilator weaning and other interventions. Technical and validation studies in the PICU and NICU are published for the majority of techniques; some have been used as outcome measures in clinical trials, but few have been assessed specifically for their ability to improve clinical outcomes. Although they show considerable promise, these techniques still require further study in the PICU and NICU together with increased availability of commercial equipment before wider incorporation into daily clinical practice. PMID:26848609

  4. [Selective left mainstem bronchial intubation in the neonatal intensive care unit].

    PubMed

    Ho, Anthony M H; Flavin, Michael P; Fleming, Melinda L; Mizubuti, Glenio Bitencourt

    Selective neonatal left mainstem bronchial intubation to treat right lung disease is typically achieved with elaborate maneuvers, instrumentation and devices. This is often attributed to bronchial geometry which favors right mainstem entry of an endotracheal tube deliberately advanced beyond the carina. A neonate with severe bullous emphysema affecting the right lung required urgent non-ventilation of that lung. We achieved left mainstem bronchial intubation by turning the endotracheal tube 180° such that the Murphy's eye faced the left instead of the right, and simulated a left-handed intubation by slightly orientating the endotracheal tube such that its concavity faced the left instead of the right as in a conventional right-handed intubation. Urgent intubation of the left mainstem bronchus with an endotracheal tube can be easily achieved by recognizing that it is the position of the endotracheal tube tip and the direction of its concavity that are the chief determinants of which bronchus an endotracheal tube goes when advanced. This is important in critically ill neonates as the margin of safety and time window are small, and the absence of double-lumen tubes. Use of fiberoptic bronchoscope and blockers should be reserved as backup plans. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  5. Lung herniation: an uncommon presentation of Poland's syndrome in a neonate at birth

    PubMed Central

    Chandran, Suresh; Revanna, Krishna Gopagondanahalli; Ari, Dinesh; Rana, Aftab Ahmed

    2013-01-01

    A term male infant was admitted to the neonatal intensive care unit with an asymmetric chest wall and a herniating mass through the left fourth intercostal space. While crying, the left fourth intercostal space revealed a mass which herniated on expiration and receded on inspiration. On auscultation, the heart sounds were audible on the right side of the chest. Systemic examination was otherwise unremarkable. A roentgenogram of the chest revealed dextrocardia and hyperlucent left lung fields. Echocardiogram showed dextrocardia with a structurally normal heart. A clinical diagnosis of Poland's syndrome was made based on the hypoplasia of the left pectoral muscles, ribs and nipple, dextrocardia and lung herniation. He was thriving well when reviewed at 2 years of age. PMID:23921692

  6. Sex-Related Differences in the Sensitivity to Carcinogenic Effect of Urethane on the Lungs in Mice Are Reversed after Neonatal Androgenization.

    PubMed

    Morozkova, T S; Kaledin, V I

    2015-10-01

    Experiments on male and female CC57BR/Mv mice differing by the sensitivity to carcinogenic effect of urethane on the lungs showed that castration 1 week before carcinogen challenge reduced the number of lung adenomas caused by it in males and somewhat increased the number of tumors in females. Exogenous testosterone after urethane injection caused virtually no changes in urethane effect in males and females. By contrast, elevation of testosterone concentrations in newborn male and female mice by injections or its decrease in feminized males receiving sodium glutamate during the neonatal period reduced the sensitivity to the carcinogenic effect of urethane in adult males and to its increase in females.

  7. The development of lower respiratory tract microbiome in mice.

    PubMed

    Singh, Nisha; Vats, Asheema; Sharma, Aditi; Arora, Amit; Kumar, Ashwani

    2017-06-21

    Although culture-independent methods have paved the way for characterization of the lung microbiome, the dynamic changes in the lung microbiome from neonatal stage to adult age have not been investigated. In this study, we tracked changes in composition and diversity of the lung microbiome in C57BL/6N mice, starting from 1-week-old neonates to 8-week-old mice. Towards this, the lungs were sterilely excised from mice of different ages from 1 to 8 weeks. High-throughput DNA sequencing of the 16S rRNA gene followed by composition and diversity analysis was utilized to decipher the microbiome in these samples. Microbiome analysis suggests that the changes in the lung microbiome correlated with age. The lung microbiome was primarily dominated by phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria in all the stages from week 1 to week 8 after birth. Although Defluvibacter was the predominant genus in 1-week-old neonatal mice, Streptococcus became the dominant genus at the age of 2 weeks. Lactobacillus, Defluvibacter, Streptococcus, and Achromobacter were the dominant genera in 3-week-old mice, while Lactobacillus and Achromobacter were the most abundant genera in 4-week-old mice. Interestingly, relatively greater diversity (at the genus level) during the age of 5 to 6 weeks was observed as compared to the earlier weeks. The diversity of the lung microbiome remained stable between 6 and 8 weeks of age. In summary, we have tracked the development of the lung microbiome in mice from an early age of 1 week to adulthood. The lung microbiome is dominated by the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. However, dynamic changes were observed at the genus level. Relatively higher richness in the microbial diversity was achieved by age of 6 weeks and then maintained at later ages. We believe that this study improves our understanding of the development of the mice lung microbiome and will facilitate further analyses of the role of the lung microbiome in chronic lung diseases.

  8. The Probability of Neonatal Respiratory Distress Syndrome as a Function of Gestational Age and Lecithin/Sphingomyelin Ratio

    PubMed Central

    St. Clair, Caryn; Norwitz, Errol R.; Woensdregt, Karlijn; Cackovic, Michael; Shaw, Julia A.; Malkus, Herbert; Ehrenkranz, Richard A.; Illuzzi, Jessica L.

    2011-01-01

    We sought to define the risk of neonatal respiratory distress syndrome (RDS) as a function of both lecithin/sphingomyelin (L/S) ratio and gestational age. Amniotic fluid L/S ratio data were collected from consecutive women undergoing amniocentesis for fetal lung maturity at Yale-New Haven Hospital from January 1998 to December 2004. Women were included in the study if they delivered a live-born, singleton, nonanomalous infant within 72 hours of amniocentesis. The probability of RDS was modeled using multivariate logistic regression with L/S ratio and gestational age as predictors. A total of 210 mother-neonate pairs (8 RDS, 202 non-RDS) met criteria for analysis. Both gestational age and L/S ratio were independent predictors of RDS. A probability of RDS of 3% or less was noted at an L/S ratio cutoff of ≥3.4 at 34 weeks, ≥2.6 at 36 weeks, ≥1.6 at 38 weeks, and ≥1.2 at term. Under 34 weeks of gestation, the prevalence of RDS was so high that a probability of 3% or less was not observed by this model. These data describe a means of stratifying the probability of neonatal RDS using both gestational age and the L/S ratio and may aid in clinical decision making concerning the timing of delivery. PMID:18773379

  9. Oxidative injury of the pulmonary circulation in the perinatal period: Short- and long-term consequences for the human cardiopulmonary system

    PubMed Central

    de Wijs-Meijler, Daphne P.; Duncker, Dirk J.; Tibboel, Dick; Schermuly, Ralph T.; Weissmann, Norbert; Merkus, Daphne; Reiss, Irwin K.M.

    2017-01-01

    Development of the pulmonary circulation is a complex process with a spatial pattern that is tightly controlled. This process is vulnerable for disruption by various events in the prenatal and early postnatal periods. Disruption of normal pulmonary vascular development leads to abnormal structure and function of the lung vasculature, causing neonatal pulmonary vascular diseases. Premature babies are especially at risk of the development of these diseases, including persistent pulmonary hypertension and bronchopulmonary dysplasia. Reactive oxygen species play a key role in the pathogenesis of neonatal pulmonary vascular diseases and can be caused by hyperoxia, mechanical ventilation, hypoxia, and inflammation. Besides the well-established short-term consequences, exposure of the developing lung to injurious stimuli in the perinatal period, including oxidative stress, may also contribute to the development of pulmonary vascular diseases later in life, through so-called “fetal or perinatal programming.” Because of these long-term consequences, it is important to develop a follow-up program tailored to adolescent survivors of neonatal pulmonary vascular diseases, aimed at early detection of adult pulmonary vascular diseases, and thereby opening the possibility of early intervention and interfering with disease progression. This review focuses on pathophysiologic events in the perinatal period that have been shown to disrupt human normal pulmonary vascular development, leading to neonatal pulmonary vascular diseases that can extend even into adulthood. This knowledge may be particularly important for ex-premature adults who are at risk of the long-term consequences of pulmonary vascular diseases, thereby contributing disproportionately to the burden of adult cardiovascular disease in the future. PMID:28680565

  10. Quantification of neonatal lung parenchymal density via ultrashort echo time MRI with comparison to CT.

    PubMed

    Higano, Nara S; Fleck, Robert J; Spielberg, David R; Walkup, Laura L; Hahn, Andrew D; Thomen, Robert P; Merhar, Stephanie L; Kingma, Paul S; Tkach, Jean A; Fain, Sean B; Woods, Jason C

    2017-10-01

    To demonstrate that ultrashort echo time (UTE) magnetic resonance imaging (MRI) can achieve computed tomography (CT)-like quantification of lung parenchyma in free-breathing, non-sedated neonates. Because infant CTs are used sparingly, parenchymal disease evaluation via UTE MRI has potential for translational impact. Two neonatal control cohorts without suspected pulmonary morbidities underwent either a research UTE MRI (n = 5; 1.5T) or a clinically-ordered CT (n = 9). Whole-lung means and anterior-posterior gradients of UTE-measured image intensity (arbitrary units, au, normalized to muscle) and CT-measured density (g/cm 3 ) were compared (Mann-Whitney U-test). Separately, a diseased neonatal cohort (n = 5) with various pulmonary morbidities underwent both UTE MRI and CT. UTE intensity and CT density were compared with Spearman correlations within ∼33 anatomically matched regions of interest (ROIs) in each diseased subject, spanning low- to high-density tissues. Radiological classifications were evaluated in all ROIs, with mean UTE intensities and CT densities compared in each classification. In control subjects, whole-lung UTE intensities (0.51 ± 0.04 au) were similar to CT densities (0.44 ± 0.09 g/cm 3 ) (P = 0.062), as were UTE (0.021 ± 0.020 au/cm) and CT (0.034 ± 0.024 [g/cm 3 ]/cm) anterior-posterior gradients (P = 0.351). In diseased subjects' ROIs, significant correlations were observed between UTE and CT (P ≤0.007 in each case). Relative differences between UTE and CT were small in all classifications (4-25%). These results demonstrate a strong association between UTE image intensity and CT density, both between whole-lung tissue in control patients and regional radiological pathologies in diseased patients. This indicates the potential for UTE MRI to longitudinally evaluate neonatal pulmonary disease and to provide visualization of pathologies similar to CT, without sedation/anesthesia or ionizing radiation. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:992-1000. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Persistent and progressive long-term lung disease in survivors of preterm birth.

    PubMed

    Urs, Rhea; Kotecha, Sailesh; Hall, Graham L; Simpson, Shannon J

    2018-04-13

    Preterm birth accounts for approximately 11% of births globally, with rates increasing across many countries. Concurrent advances in neonatal care have led to increased survival of infants of lower gestational age (GA). However, infants born <32 weeks of GA experience adverse respiratory outcomes, manifesting with increased respiratory symptoms, hospitalisation and health care utilisation into early childhood. The development of bronchopulmonary dysplasia (BPD) - the chronic lung disease of prematurity - further increases the risk of poor respiratory outcomes throughout childhood, into adolescence and adulthood. Indeed, survivors of preterm birth have shown increased respiratory symptoms, altered lung structure, persistent and even declining lung function throughout childhood. The mechanisms behind this persistent and sometimes progressive lung disease are unclear, and the implications place those born preterm at increased risk of respiratory morbidity into adulthood. This review aims to summarise what is known about the long-term pulmonary outcomes of contemporary preterm birth, examine the possible mechanisms of long-term respiratory morbidity in those born preterm and discuss addressing the unknowns and potentials for targeted treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A Case of Congenital Folliculitis Caused by Pseudomonas aeruginosa in a Preterm Neonate.

    PubMed

    Matsui, Koichiro; Okazaki, Kaoru; Horikoshi, Yuho; Kakinuma, Ryota; Kondo, Masatoshi

    2017-07-24

    Intrauterine infections are associated with life-threatening neonatal conditions such as sepsis, intracranial hemorrhage, and chronic lung disease. Herein we present a case of generalized congenital folliculitis caused by Pseudomonas aeruginosa in a preterm neonate of 27 weeks gestational age successfully treated with antibiotics. Folliculitis is an important manifestation of intrauterine P. aeruginosa infection, and prompt, effective treatment is crucial to ensuring a good prognosis.

  13. Evaluation of Neonatal Lung Volume Growth by Pulmonary Magnetic Resonance Imaging in Patients with Congenital Diaphragmatic Hernia.

    PubMed

    Schopper, Melissa A; Walkup, Laura L; Tkach, Jean A; Higano, Nara S; Lim, Foong Yen; Haberman, Beth; Woods, Jason C; Kingma, Paul S

    2017-09-01

    To evaluate postnatal lung volume in infants with congenital diaphragmatic hernia (CDH) and determine if a compensatory increase in lung volume occurs during the postnatal period. Using a novel pulmonary magnetic resonance imaging method for imaging neonatal lungs, the postnatal lung volumes in infants with CDH were determined and compared with prenatal lung volumes obtained via late gestation magnetic resonance imaging. Infants with left-sided CDH (2 mild, 9 moderate, and 1 severe) were evaluated. The total lung volume increased in all infants, with the contralateral lung increasing faster than the ipsilateral lung (mean ± SD: 4.9 ± 3.0 mL/week vs 3.4 ± 2.1 mL/week, P = .005). In contrast to prenatal studies, the volume of lungs of infants with more severe CDH grew faster than the lungs of infants with more mild CDH (Spearman's ρ=-0.086, P = .01). Although the contralateral lung volume grew faster in both mild and moderate groups, the majority of total lung volume growth in moderate CDH came from increased volume of the ipsilateral lung (42% of total lung volume increase in the moderate group vs 32% of total lung volume increase in the mild group, P = .09). Analysis of multiple clinical variables suggests that increased weight gain was associated with increased compensatory ipsilateral lung volume growth (ρ = 0.57, P = .05). These results suggest a potential for postnatal catch-up growth in infants with pulmonary hypoplasia and suggest that weight gain may increase the volume growth of the more severely affected lung. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Diseases of Pulmonary Surfactant Homeostasis

    PubMed Central

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  15. Pulmonary α-1,3-Glucan-Specific IgA-Secreting B Cells Suppress the Development of Cockroach Allergy1

    PubMed Central

    Patel, Preeyam S.; King, R. Glenn; Kearney, John F.

    2016-01-01

    There is a higher incidence of allergic conditions among children living in industrialized countries than those in developing regions. One explanation for this is reduced neonatal exposure to microbes and the consequent lack of immune stimulation. Sensitivity to cockroach allergen is highly correlated with the development of severe asthma. In this study, we determined that an antibody to microbial α-1,3-glucan binds an Enterobacter species and cockroach allergen. Neonatal, but not adult, mice immunized with this α-1,3-glucan-bearing Enterobacter (MK7) are protected against cockroach allergy. Following exposure to cockroach allergen, α-1,3-glucan-specific IgA-secreting cells are present in the lungs of mice immunized with MK7 as neonates, but not in the lungs of those immunized as adults. Mice that are unable to generate anti-α-1,3-glucan IgA antibodies were immunized with MK7 as neonates and were no longer protected against cockroach allergy. Thus, neonatal, but not adult, exposure to α-1,3-glucan results in suppressed development of cockroach allergy via pulmonary α-1,3-glucan-specific IgA-secreting cells. PMID:27581173

  16. [Factors associated with atelectasis following extubation in very low weight premature newborns].

    PubMed

    Castilla-Castilla, Cristina María Del Carmen; Vidales-Roque, Lydia Beatriz; Pérez-Durán, Juana; Tena-Reyes, Daniel; Tapia-Rombo, Carlos Antonio

    2014-01-01

    Atelectasis is a decrease of lung volume caused by airway obstruction or pressure on the external part of the lung. It is common after surgery and extubation. The purpose of this investigation was to determine factors related with alectasis following extubation in preterm neonates with a weight under 1250 g who were referred to a neonatal intensive care unit. The study was conducted in neonates admitted to a neonatal intensive care unit requiring mechanically assisted ventilation. Preterm neonates born at 28 to 36 weeks' gestation and with 0 to 28 days' extrauterine life, with mechanically assisted ventilation for at least 24 hours, and that when undergoing planned extubation had a weight under 1250 g were included. Two comparative groups were formed: group A, with alectasis after extubation; group B, without alectasis after extubation. As factors associated with alectasis after extubation, reintubation in two or more occasions and cycling higher than 20 per minute, which were statistically relevant, were identified. In addition to previous general measures to prevent alectasis, extubation with ventilation not higher tan 20 cycles per minute should be programmed and reintubation should be avoided as much as possible.

  17. Effects of Hyperoxia on the Developing Airway and Pulmonary Vasculature.

    PubMed

    Pabelick, Christina M; Thompson, Michael A; Britt, Rodney D

    2017-01-01

    Although it is necessary and part of standard practice, supplemental oxygen (40-90% O 2 ) or hyperoxia is a significant contributing factor to development of bronchopulmonary dysplasia, persistent pulmonary hypertension, recurrent wheezing, and asthma in preterm infants. This chapter discusses hyperoxia and the role of redox signaling in the context of neonatal lung growth and disease. Here, we discuss how hyperoxia promotes dysfunction in the airway and the known redox-mediated mechanisms that are important for postnatal vascular and alveolar development. Whether in the airway or alveoli, redox pathways are important and greatly influence the neonatal lung.

  18. Mechanical cause for acute left lung atelectasis after neonatal aortic arch repair with arterial switch operation: Conservative management.

    PubMed

    Maddali, Madan Mohan; Kandachar, Pranav Subbaraya; Al-Hanshi, Said; Al Ghafri, Mohammed; Valliattu, John

    2017-01-01

    Respiratory complications due to mechanical obstruction of the airways can occur following pediatric cardiac surgery. Clinically significant intrathoracic vascular compression of the airway can occur when extensive dissection and mobilization of arch and neck vessels is involved as in repair of interrupted aortic arch. This case report describes a neonate who underwent interrupted aortic arch repair along with an arterial switch operation and developed a left lung collapse immediately after tracheal extubation. Fiber-optic bronchoscopy revealed vascular compression as the real culprit. The child was successfully managed conservatively.

  19. Susceptibility to Inhaled Flame-Generated Ultrafine Soot in Neonatal and Adult Rat Lungs

    PubMed Central

    Chan, Jackie K. W.; Fanucchi, Michelle V.; Anderson, Donald S.; Abid, Aamir D.; Wallis, Christopher D.; Dickinson, Dale A.; Kumfer, Benjamin M.; Kennedy, Ian M.; Wexler, Anthony S.; Van Winkle, Laura S.

    2011-01-01

    Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth. PMID:21914721

  20. Susceptibility to inhaled flame-generated ultrafine soot in neonatal and adult rat lungs.

    PubMed

    Chan, Jackie K W; Fanucchi, Michelle V; Anderson, Donald S; Abid, Aamir D; Wallis, Christopher D; Dickinson, Dale A; Kumfer, Benjamin M; Kennedy, Ian M; Wexler, Anthony S; Van Winkle, Laura S

    2011-12-01

    Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth.

  1. A model study of periodic breathing, stability of the neonatal respiratory system, and causes of sudden infant death syndrome.

    PubMed

    Tehrani, F T

    1997-09-01

    A mathematical model of the neonatal respiratory system has been modified and used to examine the system under various physiological conditions at different stages of maturity. The respiratory responses in hypoxia, periodic breathing and following a sign have been analyzed. The effects of different respiratory parameters on the stability of the system for normal and premature infants have been investigated. The causes of periodic breathing, apnea spells and sudden infant death syndrome for full-term and premature infants have been studied, and the results compared with the available experimental findings. The response of the infant respiratory system has been found to be highly sensitive to several parameters of the system, as indicated by the results of this study. These significant parameters are sensitivity factor of central receptors to carbon dioxide, sensitivity factor of arterial receptors to carbon dioxide, sensitivity factor of arterial receptors to oxygen, functional residual capacity of the lungs, the alveolar-arterial oxygen difference and the lungs shunt ratio. It has been shown that different parts of the respiratory controller have antagonistic effects on hypoxic periodic breathing and apnea of infancy.

  2. Early cystic fibrosis lung disease: Role of airway surface dehydration and lessons from preventive rehydration therapies in mice.

    PubMed

    Mall, Marcus A; Graeber, Simon Y; Stahl, Mirjam; Zhou-Suckow, Zhe

    2014-07-01

    Cystic fibrosis (CF) lung disease starts in the first months of life and remains one of the most common fatal hereditary diseases. Early therapeutic interventions may provide an opportunity to prevent irreversible lung damage and improve outcome. Airway surface dehydration is a key disease mechanism in CF, however, its role in the in vivo pathogenesis and as therapeutic target in early lung disease remains poorly understood. Mice with airway-specific overexpression of the epithelial Na(+) channel (βENaC-Tg) recapitulate airway surface dehydration and phenocopy CF lung disease. Recent studies in neonatal βENaC-Tg mice demonstrated that airway surface dehydration produces early mucus plugging in the absence of mucus hypersecretion, which triggers airway inflammation, promotes bacterial infection and causes early mortality. Preventive rehydration therapy with hypertonic saline or amiloride effectively reduced mucus plugging and mortality in neonatal βENaC-Tg mice. These results support clinical testing of preventive/early rehydration strategies in infants and young children with CF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Mast cells and exosomes in hyperoxia-induced neonatal lung disease.

    PubMed

    Veerappan, A; Thompson, M; Savage, A R; Silverman, M L; Chan, W S; Sung, B; Summers, B; Montelione, K C; Benedict, P; Groh, B; Vicencio, A G; Peinado, H; Worgall, S; Silver, R B

    2016-06-01

    Chronic lung disease of prematurity (CLD) is a frequent sequela of premature birth and oxygen toxicity is a major associated risk factor. Impaired alveolarization, scarring, and inflammation are hallmarks of CLD. Mast cell hyperplasia is a feature of CLD but the role of mast cells in its pathogenesis is unknown. We hypothesized that mast cell hyperplasia is a consequence of neonatal hyperoxia and contributes to CLD. Additionally, mast cell products may have diagnostic and prognostic value in preterm infants predisposed to CLD. To model CLD, neonatal wild-type and mast cell-deficient mice were placed in an O2 chamber delivering hyperoxic gas mixture [inspired O2 fraction (FiO2 ) of 0.8] (HO) for 2 wk and then returned to room air (RA) for an additional 3 wk. Age-matched controls were kept in RA (FiO2 of 0.21). Lungs from HO mice had increased numbers of mast cells, alveolar simplification and enlargement, and increased lung compliance. Mast cell deficiency proved protective by preserving air space integrity and lung compliance. The mast cell mediators β-hexosaminidase (β-hex), histamine, and elastase increased in the bronchoalveolar lavage fluid of HO wild-type mice. Tracheal aspirate fluids (TAs) from oxygenated and mechanically ventilated preterm infants were analyzed for mast cell products. In TAs from infants with confirmed cases of CLD, β-hex was elevated over time and correlated with FiO2 Mast cell exosomes were also present in the TAs. Collectively, these data show that mast cells play a significant role in hyperoxia-induced lung injury and their products could serve as potential biomarkers in evolving CLD. Copyright © 2016 the American Physiological Society.

  4. Topical negative pressure for the treatment of neonatal post-sternotomy wound dehiscence.

    PubMed

    Hardwicke, J; Richards, H; Jagadeesan, J; Jones, T; Lester, R

    2012-01-01

    The use of topical negative pressure (TNP) dressings for sternal wound dehiscence or mediastinitis in the neonatal population is rare. The majority of case reports have focused on wound healing as an endpoint and have not discussed the physiological advantage that TNP dressings may impart with regard to sternal stabilisation, improved respiratory function and early weaning from mechanical ventilation. We present a case of the use of TNP in neonatal post-sternotomy wound dehiscence and mediastinitis, from a UK perspective, with an emphasis on wound healing and physiological optimisation. As well as an improvement in sternal wound healing due to the local effects of the TNP system, serial arterial blood gas analysis revealed a significant improvement in systemic physiological parameters, including a reduction in pCO(2) in the period (days 20-31) after application of TNP (p<0.0001) compared to the period before where simple occlusive dressings were applied. Hydrogen ion concentration also significantly reduced in this period (p=0.0058). The use of the TNP system in association with systemic antibiotics successfully treated the mediastinitis. A sealed, controlled wound environment also allowed ease of nursing and an expedited return to care by the parents. We would recommend the consideration of TNP dressings in similar cases of neonatal and paediatric sternal wound dehiscence. Not only do we observe the local effects of improved wound healing, the systemic effects of improved lung function are also valuable in the early management of such complex cases.

  5. Evaluation of three automatic oxygen therapy control algorithms on ventilated low birth weight neonates.

    PubMed

    Morozoff, Edmund P; Smyth, John A

    2009-01-01

    Neonates with under developed lungs often require oxygen therapy. During the course of oxygen therapy, elevated levels of blood oxygenation, hyperoxemia, must be avoided or the risk of chronic lung disease or retinal damage is increased. Low levels of blood oxygen, hypoxemia, may lead to permanent brain tissue damage and, in some cases, mortality. A closed loop controller that automatically administers oxygen therapy using 3 algorithms - state machine, adaptive model, and proportional integral derivative (PID) - is applied to 7 ventilated low birth weight neonates and compared to manual oxygen therapy. All 3 automatic control algorithms demonstrated their ability to improve manual oxygen therapy by increasing periods of normoxemia and reducing the need for manual FiO(2) adjustments. Of the three control algorithms, the adaptive model showed the best performance with 0.25 manual adjustments per hour and 73% time spent within target +/- 3% SpO(2).

  6. Understanding the use of continuous oscillating positive airway pressure (bubble CPAP) to treat neonatal respiratory disease: an engineering approach.

    PubMed

    Manilal-Reddy, P I; Al-Jumaily, A M

    2009-01-01

    A continuous oscillatory positive airway pressure with pressure oscillations incidental to the mean airway pressure (bubble CPAP) is defined as a modified form of traditional continuous positive airway pressure (CPAP) delivery where pressure oscillations in addition to CPAP are administered to neonates with lung diseases. The mechanical effect of the pressure oscillations on lung performance is investigated by formulating mathematical models of a typical bubble CPAP device and a simple representation of a neonatal respiratory system. Preliminary results of the respiratory system's mechanical response suggest that bubble CPAP may improve lung performance by minimizing the respiratory system impedance and that the resonant frequency of the respiratory system may be a controlling factor. Additional steps in terms of clinical trials and a more complex respiratory system model are required to gain a deeper insight into the mechanical receptiveness of the respiratory system to pressure oscillations. However, the current results are promising in that they offer a deeper insight into the trends of variations that can be expected in future extended models as well as the model philosophies that need to be adopted to produce results that are compatible with experimental verification.

  7. Sperm-Associated Antigen–17 Gene Is Essential for Motile Cilia Function and Neonatal Survival

    PubMed Central

    Teves, Maria Eugenia; Zhang, Zhibing; Costanzo, Richard M.; Henderson, Scott C.; Corwin, Frank D.; Zweit, Jamal; Sundaresan, Gobalakrishnan; Subler, Mark; Salloum, Fadi N.; Rubin, Bruce K.

    2013-01-01

    Primary ciliary dyskinesia (PCD), resulting from defects in cilia assembly or motility, is caused by mutations in a number of genes encoding axonemal proteins. PCD phenotypes are variable, and include recurrent respiratory tract infections, bronchiectasis, hydrocephaly, situs inversus, and male infertility. We generated knockout mice for the sperm-associated antigen–17 (Spag17) gene, which encodes a central pair (CP) protein present in the axonemes of cells with “9 + 2” motile cilia or flagella. The targeting of Spag17 resulted in a severe phenotype characterized by immotile nasal and tracheal cilia, reduced clearance of nasal mucus, profound respiratory distress associated with lung fluid accumulation and disruption of the alveolar epithelium, cerebral ventricular expansion consistent with emerging hydrocephalus, failure to suckle, and neonatal demise within 12 hours of birth. Ultrastructural analysis revealed the loss of one CP microtubule in approximately one quarter of tracheal cilia axonemes, an absence of a C1 microtubule projection, and other less frequent CP structural abnormalities. SPAG6 and SPAG16 (CP proteins that interact with SPAG17) were increased in tracheal tissue from SPAG17-deficient mice. We conclude that Spag17 plays a critical role in the function and structure of motile cilia, and that neonatal lethality is likely explained by impaired airway mucociliary clearance. PMID:23418344

  8. Randomised comparison of two neonatal resuscitation bags in manikin ventilation.

    PubMed

    Thallinger, Monica; Ersdal, Hege Langli; Ombay, Crescent; Eilevstjønn, Joar; Størdal, Ketil

    2016-07-01

    To compare ventilation properties and user preference of a new upright neonatal resuscitator developed for easier cleaning, reduced complexity, and possibly improved ventilation properties, with the standard Laerdal neonatal resuscitator. Eighty-seven Tanzanian and Norwegian nursing and medical students without prior knowledge of newborn resuscitation were briefly trained in bag-mask ventilation. The two resuscitators were used in random order on a manikin connected to a test lung with normal or low lung compliance. Data were collected with the Laerdal Newborn Resuscitation Monitor. The students graded mask seal and ease of air entry on a four-point scale ranging from 1 ('difficult') to 4 ('easy') and stated which device they preferred. (Equipment from Laerdal Global Health and Laerdal Medical). For upright versus standard resuscitator and normal lung compliance, mean expiratory lung volume was 15.5 mL vs 13.9 mL (p=0.001), mean mask leakage 48% vs 58% (p<0.001), and mean airway pressure 20 cm H2O vs 19 cm H2O (p=0.003), respectively. For low lung compliance, mean expiratory lung volume was 8.6 mL vs 8.1 mL (p=0.045), mean mask leakage 53% vs 62% (p<0.001), and mean airway pressure 21 cm H2O vs 20 cm H2O (p=0.004) for upright versus standard. The upright resuscitator was preferred by 82% and 68% of students during ventilation with normal and low lung compliance, respectively (p=0.001). Expiratory volumes were higher, mask leakage lower, and mean airway pressure slightly higher with upright versus standard resuscitator when ventilating a manikin. The majority of students preferred the upright resuscitator. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Antioxidant treatment improves neonatal survival and prevents impaired cardiac function at adulthood following neonatal glucocorticoid therapy

    PubMed Central

    Niu, Youguo; Herrera, Emilio A; Evans, Rhys D; Giussani, Dino A

    2013-01-01

    Glucocorticoids are widely used to treat chronic lung disease in premature infants but their longer-term adverse effects on the cardiovascular system raise concerns. We reported that neonatal dexamethasone treatment in rats induced in the short term molecular indices of cardiac oxidative stress and cardiovascular tissue remodelling at weaning, and that neonatal combined antioxidant and dexamethasone treatment was protective at this time. In this study, we investigated whether such effects of neonatal dexamethasone have adverse consequences for NO bioavailability and cardiovascular function at adulthood, and whether neonatal combined antioxidant and dexamethasone treatment is protective in the adult. Newborn rat pups received daily i.p. injections of a human-relevant tapering dose of dexamethasone (D; n= 8; 0.5, 0.3, 0.1 μg g−1) or D with vitamins C and E (DCE; n= 8; 200 and 100 mg kg−1, respectively) on postnatal days 1–3 (P1–3); vitamins were continued from P4 to P6. Controls received equal volumes of vehicle from P1 to P6 (C; n= 8). A fourth group received vitamins alone (CCE; n= 8). At P100, plasma NO metabolites (NOx) was measured and isolated hearts were assessed under both Working and Langendorff preparations. Relative to controls, neonatal dexamethasone therapy increased mortality by 18% (P < 0.05). Surviving D pups at adulthood had lower plasma NOx concentrations (10.6 ± 0.8 vs. 28.0 ± 1.5 μm), an increased relative left ventricular (LV) mass (70 ± 2 vs. 63 ± 1%), enhanced LV end-diastolic pressure (14 ± 2 vs. 8 ± 1 mmHg) and these hearts failed to adapt output with increased preload (Δcardiac output: 2.9 ± 2.0 vs. 10.6 ± 1.2 ml min−1) or afterload (Δcardiac output: −5.3 ± 2.0 vs.1.4 ± 1.2 ml min−1); all P < 0.05. Combined neonatal dexamethasone with antioxidant vitamins improved postnatal survival, restored plasma NOx and protected against cardiac dysfunction at adulthood. In conclusion, neonatal dexamethasone therapy promotes cardiac dysfunction at adulthood. Combined neonatal treatment with antioxidant vitamins is an effective intervention. PMID:23940378

  10. Growth, lung function, and physical activity in schoolchildren who were very-low-birth-weight preterm infants.

    PubMed

    Winck, Aline Dill; Heinzmann-Filho, João Paulo; Schumann, Deise; Zatti, Helen; Mattiello, Rita; Jones, Marcus Herbert; Stein, Renato Tetelbom

    2016-01-01

    To compare somatic growth, lung function, and level of physical activity in schoolchildren who had been very-low-birth-weight preterm infants (VLBWPIs) or normal-birth-weight full-term infants. We recruited two groups of schoolchildren between 8 and 11 years of age residing in the study catchment area: those who had been VLBWPIs (birth weight < 1,500 g); and those who had been normal-birth-weight full-term infants (controls, birth weight ≥ 2,500 g). Anthropometric and spirometric data were collected from the schoolchildren, who also completed a questionnaire regarding their physical activity. In addition, data regarding the perinatal and neonatal period were collected from the medical records of the VLBWPIs. Of the 93 schoolchildren screened, 48 and 45 were in the VLBWPI and control groups, respectively. No significant differences were found between the groups regarding anthropometric characteristics, nutritional status, or pulmonary function. No associations were found between perinatal/neonatal variables and lung function parameters in the VLBWPI group. Although the difference was not significant, the level of physical activity was slightly higher in the VLBWPI group than in the control group. Among the schoolchildren evaluated here, neither growth nor lung function appear to have been affected by prematurity birth weight, or level of physical activity. Comparar o crescimento somático, a função pulmonar e o nível de atividade física entre escolares nascidos prematuros com muito baixo peso e escolares nascidos a termo e com peso adequado. Foram recrutados escolares com idade de 8 a 11 anos residentes na mesma área de abrangência do estudo: prematuros e com peso < 1.500 g e controles (nascidos a termo e com peso ≥ 2.500 g). Foram obtidas medidas antropométricas e espirométricas e aplicado um questionário sobre a atividade física. Além disso, foram coletadas informações do período perinatal/neonatal dos recém-nascidos com muito baixo peso (RNMBP) de seus prontuários médicos. Dos 93 escolares avaliados, 48 crianças no grupo RNMBP e 45 no grupo controle. Não houve diferenças significativas entre os grupos em relação às características antropométricas e nutricionais ou aos parâmetros de função pulmonar. Não foram encontradas associações entre as variáveis perinatais/neonatais e parâmetros da função pulmonar dos escolares no grupo RNMBP. Embora sem diferença significativa em relação aos níveis de atividade física, o grupo RNMBP apresentou uma tendência de ser mais ativo que o grupo controle. Nos escolares aqui estudados o crescimento e a função pulmonar parecem não ser afetados por prematuridade, peso ao nascimento ou nível de atividade física.

  11. Postmortem Findings for 7 Neonates with Congenital Zika Virus Infection.

    PubMed

    Sousa, Anastácio Q; Cavalcante, Diane I M; Franco, Luciano M; Araújo, Fernanda M C; Sousa, Emília T; Valença-Junior, José Telmo; Rolim, Dionne B; Melo, Maria E L; Sindeaux, Pedro D T; Araújo, Marialva T F; Pearson, Richard D; Wilson, Mary E; Pompeu, Margarida M L

    2017-07-01

    Postmortem examination of 7 neonates with congenital Zika virus infection in Brazil revealed microcephaly, ventriculomegaly, dystrophic calcifications, and severe cortical neuronal depletion in all and arthrogryposis in 6. Other findings were leptomeningeal and brain parenchymal inflammation and pulmonary hypoplasia and lymphocytic infiltration in liver and lungs. Findings confirmed virus neurotropism and multiple organ infection.

  12. Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants.

    PubMed

    Svanberg, Emilie Krite; Lundin, Patrik; Larsson, Marcus; Åkeson, Jonas; Svanberg, Katarina; Svanberg, Sune; Andersson-Engels, Stefan; Fellman, Vineta

    2016-04-01

    Newborn infants may have pulmonary disorders with abnormal gas distribution, e.g., respiratory distress syndrome. Pulmonary radiography is the clinical routine for diagnosis. Our aim was to investigate a novel noninvasive optical technique for rapid nonradiographic bedside detection of oxygen gas in the lungs of full-term newborn infants. Laser spectroscopy was used to measure contents of oxygen gas (at 760 nm) and of water vapor (at 937 nm) in the lungs of 29 healthy newborn full-term infants (birth weight 2,900-3,900 g). The skin above the lungs was illuminated using two low-power diode lasers and diffusely emerging light was detected with a photodiode. Of the total 390 lung measurements performed, clear detection of oxygen gas was recorded in 60%, defined by a signal-to-noise ratio of >3. In all the 29 infants, oxygen was detected. Probe and detector positions for optimal pulmonary gas detection were determined. There were no differences in signal quality with respect to gender, body side or body weight. The ability to measure pulmonary oxygen content in healthy full-term neonates with this technique suggests that with further development, the method might be implemented in clinical practice for lung monitoring in neonatal intensive care.

  13. Endotoxin Inhalation Alters Lung Development in Neonatal Mice

    PubMed Central

    Kulhankova, Katarina; George, Caroline L.S.; Kline, Joel N.; Darling, Melissa; Thorne, Peter S.

    2012-01-01

    Background Childhood asthma is a significant public health problem. Epidemiologic evidence suggests an association between childhood asthma exacerbations and early life exposure to environmental endotoxin. Although the pathogenesis of endotoxin-induced adult asthma is well studied, questions remain about the impact of environmental endotoxin on pulmonary responsiveness in early life. Methods We developed a murine model of neonatal/juvenile endotoxin exposures approximating those in young children and evaluated the lungs inflammatory and remodeling responses. Results Persistent lung inflammation induced by the inhalation of endotoxin in early life was demonstrated by the influx of inflammatory cells and pro-inflammatory mediators to the airways and resulted in abnormal alveolarization. Conclusions Results of this study advance the understanding of the impact early life endotoxin inhalation has on the lower airways, and demonstrates the importance of an experimental design that approximates environmental exposures as they occur in young children. PMID:22576659

  14. Demonstration of Mycoplasma bovis by immunohistochemistry and in situ hybridization in an aborted bovine fetus and neonatal calf.

    PubMed

    Hermeyer, Kathrin; Peters, Martin; Brügmann, Michael; Jacobsen, Björn; Hewicker-Trautwein, Marion

    2012-03-01

    Mycoplasmas are host-specific commensals on mucous membranes of the genital tract, but infection and clinical disease by Mycoplasma bovis in the genital tract of cattle is not well described. In the current study, 1 aborted bovine fetus and 1 neonatal calf were examined macroscopically and histologically. For the detection of M. bovis, bacterial isolation, immunohistochemistry (IHC), and in situ hybridization (ISH) were performed. For further characterization of the inflammatory infiltrates, IHC was performed using antibodies to cluster of differentiation (CD)3, CD79a, lysozyme, L1, S-100A8, S-100A9, and von Willebrand factor VIII. Gross examination revealed a lobular consolidation of the lung. Histologically, the lungs of both animals showed an interstitial pneumonia associated with suppurative bronchopneumonia, intraalveolar multinucleated giant cells, and lymphocytic aggregates. The expression of L1, S-100A8, and S-100A9 in multinucleated giant cells supports a histiocytic origin. Mycoplasma bovis antigen was detected by IHC in brain, lung, liver, and placenta of the fetus, and M. bovis DNA was detected by ISH in various organs of the fetus, including lung and placenta and within the lung of the calf.

  15. Clinical review: Exogenous surfactant therapy for acute lung injury/acute respiratory distress syndrome - where do we go from here?

    PubMed Central

    2012-01-01

    Acute lung injury and acute respiratory distress syndrome (ARDS) are characterised by severe hypoxemic respiratory failure and poor lung compliance. Despite advances in clinical management, morbidity and mortality remains high. Supportive measures including protective lung ventilation confer a survival advantage in patients with ARDS, but management is otherwise limited by the lack of effective pharmacological therapies. Surfactant dysfunction with quantitative and qualitative abnormalities of both phospholipids and proteins are characteristic of patients with ARDS. Exogenous surfactant replacement in animal models of ARDS and neonatal respiratory distress syndrome shows consistent improvements in gas exchange and survival. However, whilst some adult studies have shown improved oxygenation, no survival benefit has been demonstrated to date. This lack of clinical efficacy may be related to disease heterogeneity (where treatment responders may be obscured by nonresponders), limited understanding of surfactant biology in patients or an absence of therapeutic effect in this population. Crucially, the mechanism of lung injury in neonates is different from that in ARDS: surfactant inhibition by plasma constituents is a typical feature of ARDS, whereas the primary pathology in neonates is the deficiency of surfactant material due to reduced synthesis. Absence of phenotypic characterisation of patients, the lack of an ideal natural surfactant material with adequate surfactant proteins, coupled with uncertainty about optimal timing, dosing and delivery method are some of the limitations of published surfactant replacement clinical trials. Recent advances in stable isotope labelling of surfactant phospholipids coupled with analytical methods using electrospray ionisation mass spectrometry enable highly specific molecular assessment of phospholipid subclasses and synthetic rates that can be utilised for phenotypic characterisation and individualisation of exogenous surfactant replacement therapy. Exploring the clinical benefit of such an approach should be a priority for future ARDS research. PMID:23171712

  16. Basic principles of respiratory function monitoring in ventilated newborns: A review.

    PubMed

    Schmalisch, Gerd

    2016-09-01

    Respiratory monitoring during mechanical ventilation provides a real-time picture of patient-ventilator interaction and is a prerequisite for lung-protective ventilation. Nowadays, measurements of airflow, tidal volume and applied pressures are standard in neonatal ventilators. The measurement of lung volume during mechanical ventilation by tracer gas washout techniques is still under development. The clinical use of capnography, although well established in adults, has not been embraced by neonatologists because of technical and methodological problems in very small infants. While the ventilatory parameters are well defined, the calculation of other physiological parameters are based upon specific assumptions which are difficult to verify. Incomplete knowledge of the theoretical background of these calculations and their limitations can lead to incorrect interpretations with clinical consequences. Therefore, the aim of this review was to describe the basic principles and the underlying assumptions of currently used methods for respiratory function monitoring in ventilated newborns and to highlight methodological limitations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Developmental Regulation of NO-Mediated VEGF-Induced Effects in the Lung

    PubMed Central

    Bhandari, Vineet; Choo-Wing, Rayman; Lee, Chun G.; Yusuf, Kamran; Nedrelow, Jonathan H.; Ambalavanan, Namasivayam; Malkus, Herbert; Homer, Robert J.; Elias, Jack A.

    2008-01-01

    Vascular endothelial growth factor (VEGF) is known to have a pivotal role in lung development and in a variety of pathologic conditions in the adult lung. Our earlier studies have shown that NO is a critical mediator of VEGF-induced vascular and extravascular effects in the adult murine lung. As significant differences have been reported in the cytokine responses in the adult versus the neonatal lung, we hypothesized that there may be significant differences in VEGF-induced alterations in the developing as opposed to the mature lung. Furthermore, nitric oxide (NO) mediation of these VEGF-induced effects may be developmentally regulated. Using a novel externally regulatable lung-targeted transgenic murine model, we found that VEGF-induced pulmonary hemorrhage was mediated by NO-dependent mechanisms in adults and newborns. VEGF enhanced surfactant production in adults as well as increased surfactant and lung development in newborns, via an NO-independent mechanism. While the enhanced survival in hyperoxia in the adult was partly NO-dependent, there was enhanced hyperoxia-induced lung injury in the newborn. In addition, human amniotic fluid VEGF levels correlated positively with surfactant phospholipids. Tracheal aspirate VEGF levels had an initial spike, followed by a decline, and then a subsequent rise, in human neonates with an outcome of bronchopulmonary dysplasia or death. Our data show that VEGF can have injurious as well as potentially beneficial developmental effects, of which some are NO dependent, others NO independent. This opens up the possibility of selective manipulation of any VEGF-based intervention using NO inhibitors for maximal potential clinical benefit. PMID:18441284

  18. Developmental regulation of NO-mediated VEGF-induced effects in the lung.

    PubMed

    Bhandari, Vineet; Choo-Wing, Rayman; Lee, Chun G; Yusuf, Kamran; Nedrelow, Jonathan H; Ambalavanan, Namasivayam; Malkus, Herbert; Homer, Robert J; Elias, Jack A

    2008-10-01

    Vascular endothelial growth factor (VEGF) is known to have a pivotal role in lung development and in a variety of pathologic conditions in the adult lung. Our earlier studies have shown that NO is a critical mediator of VEGF-induced vascular and extravascular effects in the adult murine lung. As significant differences have been reported in the cytokine responses in the adult versus the neonatal lung, we hypothesized that there may be significant differences in VEGF-induced alterations in the developing as opposed to the mature lung. Furthermore, nitric oxide (NO) mediation of these VEGF-induced effects may be developmentally regulated. Using a novel externally regulatable lung-targeted transgenic murine model, we found that VEGF-induced pulmonary hemorrhage was mediated by NO-dependent mechanisms in adults and newborns. VEGF enhanced surfactant production in adults as well as increased surfactant and lung development in newborns, via an NO-independent mechanism. While the enhanced survival in hyperoxia in the adult was partly NO-dependent, there was enhanced hyperoxia-induced lung injury in the newborn. In addition, human amniotic fluid VEGF levels correlated positively with surfactant phospholipids. Tracheal aspirate VEGF levels had an initial spike, followed by a decline, and then a subsequent rise, in human neonates with an outcome of bronchopulmonary dysplasia or death. Our data show that VEGF can have injurious as well as potentially beneficial developmental effects, of which some are NO dependent, others NO independent. This opens up the possibility of selective manipulation of any VEGF-based intervention using NO inhibitors for maximal potential clinical benefit.

  19. Use of manual alveolar recruitment maneuvers to eliminate atelectasis artifacts identified during thoracic computed tomography of healthy neonatal foals.

    PubMed

    Lascola, Kara M; Clark-Price, Stuart C; Joslyn, Stephen K; Mitchell, Mark A; O'Brien, Robert T; Hartman, Susan K; Kline, Kevin H

    2016-11-01

    OBJECTIVE To evaluate use of single manual alveolar recruitment maneuvers (ARMs) to eliminate atelectasis during CT of anesthetized foals. ANIMALS 6 neonatal Standardbred foals. PROCEDURES Thoracic CT was performed on spontaneously breathing anesthetized foals positioned in sternal (n = 3) or dorsal (3) recumbency when foals were 24 to 36 hours old (time 1), 4 days old (time 2), 7 days old (time 3), and 10 days old (time 4). The CT images were collected without ARMs (all times) and during ARMs with an internal airway pressure of 10, 20, and 30 cm H 2 O (times 2 and 3). Quantitative analysis of CT images measured whole lung and regional changes in attenuation or volume with ARMs. RESULTS Increased attenuation and an alveolar pattern were most prominent in the dependent portion of the lungs. Subjectively, ARMs did not eliminate atelectasis; however, they did incrementally reduce attenuation, particularly in the nondependent portion of the lungs. Quantitative differences in lung attenuation attributable to position of foal were not identified. Lung attenuation decreased significantly (times 2 and 3) and lung volume increased significantly (times 2 and 3) after ARMs. Changes in attenuation and volume were most pronounced in the nondependent portion of the lungs and at ARMs of 20 and 30 cm H 2 O. CONCLUSIONS AND CLINICAL RELEVANCE Manual ARMs did not eliminate atelectasis but reduced attenuation in nondependent portions of the lungs. Positioning of foals in dorsal recumbency for CT may be appropriate when pathological changes in the ventral portion of the lungs are suspected.

  20. Long-Term Correction of Sandhoff Disease Following Intravenous Delivery of rAAV9 to Mouse Neonates

    PubMed Central

    Walia, Jagdeep S; Altaleb, Naderah; Bello, Alexander; Kruck, Christa; LaFave, Matthew C; Varshney, Gaurav K; Burgess, Shawn M; Chowdhury, Biswajit; Hurlbut, David; Hemming, Richard; Kobinger, Gary P; Triggs-Raine, Barbara

    2015-01-01

    GM2 gangliosidoses are severe neurodegenerative disorders resulting from a deficiency in β-hexosaminidase A activity and lacking effective therapies. Using a Sandhoff disease (SD) mouse model (Hexb−/−) of the GM2 gangliosidoses, we tested the potential of systemically delivered adeno-associated virus 9 (AAV9) expressing Hexb cDNA to correct the neurological phenotype. Neonatal or adult SD and normal mice were intravenously injected with AAV9-HexB or –LacZ and monitored for serum β-hexosaminidase activity, motor function, and survival. Brain GM2 ganglioside, β-hexosaminidase activity, and inflammation were assessed at experimental week 43, or an earlier humane end point. SD mice injected with AAV9-LacZ died by 17 weeks of age, whereas all neonatal AAV9-HexB–treated SD mice survived until 43 weeks (P < 0.0001) with only three exhibiting neurological dysfunction. SD mice treated as adults with AAV9-HexB died between 17 and 35 weeks. Neonatal SD-HexB–treated mice had a significant increase in brain β-hexosaminidase activity, and a reduction in GM2 ganglioside storage and neuroinflammation compared to adult SD-HexB– and SD-LacZ–treated groups. However, at 43 weeks, 8 of 10 neonatal-HexB injected control and SD mice exhibited liver or lung tumors. This study demonstrates the potential for long-term correction of SD and other GM2 gangliosidoses through early rAAV9 based systemic gene therapy. PMID:25515709

  1. Neonatal Fc Receptor Regulation of Lung Immunoglobulin and CD103+ Dendritic Cells Confers Transient Susceptibility to Tuberculosis.

    PubMed

    Vogelzang, Alexis; Lozza, Laura; Reece, Stephen T; Perdomo, Carolina; Zedler, Ulrike; Hahnke, Karin; Oberbeck-Mueller, Dagmar; Dorhoi, Anca; Kaufmann, Stefan H E

    2016-10-01

    The neonatal Fc receptor (FcRn) extends the systemic half-life of IgG antibodies by chaperoning bound Fc away from lysosomal degradation inside stromal and hematopoietic cells. FcRn also transports IgG across mucosal barriers into the lumen, and yet little is known about how FcRn modulates immunity in the lung during homeostasis or infection. We infected wild-type (WT) and FcRn-deficient (fcgrt(-/-)) mice with Pseudomonas aeruginosa or Mycobacterium tuberculosis to investigate whether recycling and transport of IgG via FcRn influences innate and adaptive immunity in the lung in response to bacterial infection. We found that FcRn expression maintains homeostatic IgG levels in lung and leads to preferential secretion of low-affinity IgG ligands into the lumen. Fcgrt(-/-) animals exhibited no evidence of developmental impairment of innate immunity in the lung and were able to efficiently recruit neutrophils in a model of acute bacterial pneumonia. Although local humoral immunity in lung increased independently of the presence of FcRn during tuberculosis, there was nonetheless a strong impact of FcRn deficiency on local adaptive immunity. We show that the quantity and quality of IgG in airways, as well as the abundance of dendritic cells in the lung, are maintained by FcRn. FcRn ablation transiently enhanced local T cell immunity and neutrophil recruitment during tuberculosis, leading to a lower bacterial burden in lung. This novel understanding of tissue-specific modulation of mucosal IgG isotypes in the lung by FcRn sheds light on the role of mucosal IgG in immune responses in the lung during homeostasis and bacterial disease. Copyright © 2016 Vogelzang et al.

  2. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats.

    PubMed

    van Haaften, Timothy; Byrne, Roisin; Bonnet, Sebastien; Rochefort, Gael Y; Akabutu, John; Bouchentouf, Manaf; Rey-Parra, Gloria J; Galipeau, Jacques; Haromy, Alois; Eaton, Farah; Chen, Ming; Hashimoto, Kyoko; Abley, Doris; Korbutt, Greg; Archer, Stephen L; Thébaud, Bernard

    2009-12-01

    Bronchopulmonary dysplasia (BPD) and emphysema are characterized by arrested alveolar development or loss of alveoli; both are significant global health problems and currently lack effective therapy. Bone marrow-derived mesenchymal stem cells (BMSCs) prevent adult lung injury, but their therapeutic potential in neonatal lung disease is unknown. We hypothesized that intratracheal delivery of BMSCs would prevent alveolar destruction in experimental BPD. In vitro, BMSC differentiation and migration were assessed using co-culture assays and a modified Boyden chamber. In vivo, the therapeutic potential of BMSCs was assessed in a chronic hyperoxia-induced model of BPD in newborn rats. In vitro, BMSCs developed immunophenotypic and ultrastructural characteristics of type II alveolar epithelial cells (AEC2) (surfactant protein C expression and lamellar bodies) when co-cultured with lung tissue, but not with culture medium alone or liver. Migration assays revealed preferential attraction of BMSCs toward oxygen-damaged lung versus normal lung. In vivo, chronic hyperoxia in newborn rats led to air space enlargement and loss of lung capillaries, and this was associated with a decrease in circulating and resident lung BMSCs. Intratracheal delivery of BMSCs on Postnatal Day 4 improved survival and exercise tolerance while attenuating alveolar and lung vascular injury and pulmonary hypertension. Engrafted BMSCs coexpressed the AEC2-specific marker surfactant protein C. However, engraftment was disproportionately low for cell replacement to account for the therapeutic benefit, suggesting a paracrine-mediated mechanism. In vitro, BMSC-derived conditioned medium prevented O(2)-induced AEC2 apoptosis, accelerated AEC2 wound healing, and enhanced endothelial cord formation. BMSCs prevent arrested alveolar and vascular growth in part through paracrine activity. Stem cell-based therapies may offer new therapeutic avenues for lung diseases that currently lack efficient treatments.

  3. Neutrophil elastase-induced elastin degradation mediates macrophage influx and lung injury in 60% O2-exposed neonatal rats.

    PubMed

    Masood, Azhar; Yi, Man; Belcastro, Rosetta; Li, Jun; Lopez, Lianet; Kantores, Crystal; Jankov, Robert P; Tanswell, A Keith

    2015-07-01

    Neutrophil (PMNL) influx precedes lung macrophage (LM) influx into the lung following exposure of newborn pups to 60% O2. We hypothesized that PMNL were responsible for the signals leading to LM influx. This was confirmed when inhibition of PMNL influx with a CXC chemokine receptor-2 antagonist, SB-265610, also prevented the 60% O2-dependent LM influx, LM-derived nitrotyrosine formation, and pruning of small arterioles. Exposure to 60% O2 was associated with increased lung contents of neutrophil elastase and α-elastin, a marker of denatured elastin, and a decrease in elastin fiber density. This led us to speculate that neutrophil elastase-induced elastin fragments were the chemokines that led to a LM influx into the 60% O2-exposed lung. Inhibition of neutrophil elastase with sivelestat or elafin attenuated the LM influx. Sivelestat also attenuated the 60% O2-induced decrease in elastin fiber density. Daily injections of pups with an antibody to α-elastin prevented the 60% O2-dependent LM influx, impaired alveologenesis, and impaired small vessel formation. This suggests that neutrophil elastase inhibitors may protect against neonatal lung injury not only by preventing structural elastin degradation, but also by blocking elastin fragment-induced LM influx, thus preventing tissue injury from LM-derived peroxynitrite formation. Copyright © 2015 the American Physiological Society.

  4. Benign outcome of pulmonary hypertension in neonates with a restrictive patent foramen ovale versus result for neonates with an unrestrictive patent foramen ovale.

    PubMed

    Gupta, Umang; Abdulla, Ra-id; Bokowski, John

    2011-10-01

    Premature closure or restriction of foramen ovale (FO) is a rare but known entity. FO diameter <2 mm and Doppler velocity >120 cm/s, diameter <3 mm with Doppler velocity measured gradient >5 mmHg have all being used by various authors to describe this entity. Some neonates with restrictive FO have been noted to have severe pulmonary hypertension with no clinical signs or symptoms and with spontaneous resolution without any intervention. Seven consecutive neonates were indentified in the database between 01/01/2003 and 06/30/2010 with diagnosis of restrictive PFO (diameter <2 mm) with structurally normal heart and their initial and follow-up echocardiogram as well as hospital medical records were reviewed. As a control, seven neonates with diagnosis of pulmonary hypertension and respiratory distress syndrome or meconium aspiration syndrome were randomly selected. Eighty-six percent of the patients in the control group were symptomatic and required treatment as compared to 14% in the restrictive FO group (p = 0.03). Further, the fall in the peak instantaneous pulmonary artery pressure on follow-up echocardiogram was greater in the restrictive FO group compared with the non-restrictive group (p = 0.03). Patients with pulmonary hypertension and a restrictive FO with no other associated congenital heart disease and/or lung pathology behave differently when compared to neonates with non-restrictive FO and pulmonary hypertension with associated lung disease. They seldom manifest symptoms requiring intervention and tend to show a faster drop in their pulmonary artery pressure toward the normal.

  5. Pulmonary FGF-18 gene expression is downregulated during the canalicular-saccular stages in nitrofen-induced hypoplastic lungs.

    PubMed

    Takahashi, Hiromizu; Friedmacher, Florian; Fujiwara, Naho; Hofmann, Alejandro; Kutasy, Balazs; Gosemann, Jan-Hendrik; Puri, Prem

    2013-11-01

    Pulmonary hypoplasia (PH) associated with congenital diaphragmatic hernia (CDH) represents one of the major challenges in neonatal intensive care. However, the molecular pathogenesis of PH is still poorly understood. In developing fetal lungs, fibroblast growth factor 18 (FGF-18) plays a crucial role in distal airway maturation. FGF-18 knockouts show smaller lung sizes with reduced alveolar spaces and thicker interstitial mesenchymal compartments, highlighting its important function for fetal lung growth and differentiation. We hypothesized that pulmonary FGF-18 gene expression is downregulated during late gestation in nitrofen-induced hypoplastic lungs. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetuses were harvested on D18 and D21, and lungs were divided into three groups: controls, hypoplastic lungs without CDH [CDH(-)], and hypoplastic lungs with CDH [CDH(+)] (n = 24 at each time-point). Pulmonary FGF-18 gene expression levels were analyzed by qRT-PCR. Immunohistochemistry was performed to investigate FGF-18 protein expression/distribution. Relative mRNA levels of pulmonary FGF-18 gene expression were significantly decreased in CDH(-) and CDH(+) on D18 and D21 compared to controls (p < 0.05 and p < 0.01, respectively). Immunoreactivity of FGF-18 was markedly diminished in mesenchymal cells surrounding the airway epithelium on D18 and D21 compared to controls. Downregulation of FGF-18 gene expression in nitrofen-induced hypoplastic lungs suggests that decreased FGF-18 expression during the canalicular-saccular stages may interfere with saccular-alveolar differentiation and distal airway maturation resulting in PH.

  6. Neonatal extracorporeal membrane oxygenation: impaired health at 5 years of age.

    PubMed

    Madderom, Marlous J; Gischler, Saskia J; Duivenvoorden, Hugo; Tibboel, Dick; Ijsselstijn, Hanneke

    2013-02-01

    Children treated with neonatal extracorporeal membrane oxygenation may show physical and mental morbidity at a later age. We compared the health-related quality of life of these children with normative data. Prospective longitudinal follow-up study. Outpatient clinic of a level III university hospital. Ninety-five 5-yr-old children who had received neonatal extracorporeal membrane oxygenation support between January 1999 and December 2005. None. The pediatric quality of life inventory was administered at 5 yrs of age. The mothers (n = 74) as proxy-reporters assigned significantly lower health-related quality of life scores for their children than did the parents in the healthy reference group for the total functioning scale of the pediatric quality of life inventory (mean difference: 8.1; p < 0.001). Mothers' scores for 31 children (42%) were indicative of impaired health-related quality of life (≥-1 SD below the reference norm). The children (n = 78) themselves scored significantly lower than did their healthy peers on total functioning (mean difference: 11.0; p < 0.001). Thirty-two children (41%) indicated an impaired health-related quality of life themselves. For the mother proxy- reports, the duration of extracorporeal membrane oxygenation support (R = 0.009; p = 0.010) and the presence of chronic lung disease (R = 0.133; p = 0.002) were negatively related to total functioning. Children with a disabled health status for neuromotor functioning, maximum exercise capacity, behavior, and cognitive functioning at 5 yrs of age had a higher odds ratio of also having a lower health-related quality of life. Health status had no influence on reported emotional functioning. Overall, children treated with extracorporeal membrane oxygenation in the neonatal period reported low health-related quality of life at 5 yrs of age. Because only emotional health-related quality of life was not associated with health status, the pediatric quality of life inventory might be a measure of health status rather than of health-related quality of life. In contrast with conclusions from others, we found that 5-yr-old children might be too young to rate their own health-related quality of life.

  7. Can maternal DHA supplementation offer long-term protection against neonatal hyperoxic lung injury?

    PubMed

    Lingappan, Krithika; Moorthy, Bhagavatula

    2015-12-15

    The effect of adverse perinatal environment (like maternal infection) has long-standing effects on many organ systems, including the respiratory system. Use of maternal nutritional supplements is an exciting therapeutic option that could be used to protect the developing fetus. In a recent issue of the journal, Ali and associates (Ali M, Heyob KM, Velten M, Tipple TE, Rogers LK. Am J Physiol Lung Cell Mol Physiol 309: L441-L448, 2015) specifically look at maternal docosahexaenoic acid (DHA) supplementation and its effect on chronic apoptosis in the lung in a mouse model of perinatal inflammation and postnatal hyperoxia. Strikingly, the authors show that pulmonary apoptosis was augmented even 8 wk after the hyperoxia-exposed mice had been returned to room air. This effect was significantly attenuated in mice that were subjected to maternal dietary DHA supplementation. These findings are novel, significantly advance our understanding of chronic effects of adverse perinatal and neonatal events on the developing lung, and thereby offer novel therapeutic options in the form of maternal dietary supplementation with DHA. This editorial reviews the long-term effects of adverse perinatal environment on postnatal lung development and the protective effects of dietary supplements such as DHA. Copyright © 2015 the American Physiological Society.

  8. Liquid Therapy Delivery Models Using Microfluidic Airways

    NASA Astrophysics Data System (ADS)

    Mulligan, Molly K.; Grotberg, James B.; Waisman, Dan; Filoche, Marcel; Sznitman, Josué

    2013-11-01

    The propagation and break-up of viscous and surfactant-laden liquid plugs in the lungs is an active area of research in view of liquid plug installation in the lungs to treat a host of different pulmonary conditions. This includes Infant Respiratory Distress Syndrome (IRDS) the primary cause of neonatal death and disability. Until present, experimental studies of liquid plugs have generally been restricted to low-viscosity Newtonian fluids along a single bifurcation. However, these fluids reflect poorly the actual liquid medication therapies used to treat pulmonary conditions. The present work attempts to uncover the propagation, rupture and break-up of liquid plugs in the airway tree using microfluidic models spanning three or more generations of the bronchiole tree. Our approach allows the dynamics of plug propagation and break-up to be studied in real-time, in a one-to-one scale in vitro model, as a function of fluid rheology, trailing film dynamics and bronchial tree geometry. Understanding these dynamics are a first and necessary step to deliver more effectively boluses of liquid medication to the lungs while minimizing the injury caused to epithelial cells lining the lungs from the rupture of such liquid plugs.

  9. Elective Cesarean Section: It’s Impact on Neonatal Respiratory Outcome

    PubMed Central

    Ramachandrappa, Ashwin; Jain, Lucky

    2008-01-01

    The transition from a fluid filled lung to one filled with air in a very short period of time is one of the biggest challenges a newborn faces after birth. Respiratory morbidity as a result of failure to clear fetal lung fluid is not uncommon, and can be particularly problematic in some infants delivered by elective cesarean section (ECS) without being exposed to labor. The increasing rates of cesarean deliveries in the United States and worldwide, have the potential for a significant impact on public health and health care costs due to the morbidity associated with this subgroup. Whereas the occurrence of birth asphyxia, trauma, and meconium aspiration is reduced by elective cesarean delivery, the risk of respiratory distress secondary to transient tachypnea of the newborn, surfactant deficiency, and pulmonary hypertension is increased. It is clear that physiologic events in the last few weeks of pregnancy coupled with the onset of spontaneous labor are accompanied by changes in the hormonal milieu of the fetus and its mother, resulting in preparation of the fetus for neonatal transition. Rapid clearance of fetal lung fluid is a key part of these changes, and is mediated in large part by transepithelial sodium reabsorption through amiloride-sensitive sodium channels in the alveolar epithelial cells, with only a limited contribution from mechanical factors and Starling forces. In this chapter we discuss the respiratory morbidity associated with ECS, the physiologic mechanisms underlying fetal lung fluid absorption and potential strategies for facilitating neonatal transition when infants are delivered by ECS before the onset of spontaneous labor. PMID:18456075

  10. Fitness to Fly Testing in Patients with Congenital Heart and Lung Disease.

    PubMed

    Spoorenberg, Mandy E; van den Oord, Marieke H A H; Meeuwsen, Ted; Takken, Tim

    2016-01-01

    During commercial air travel passengers are exposed to a low ambient cabin pressure, comparable to altitudes of 5000 to 8000 ft (1524 to 2438 m). In healthy passengers this causes a fall in partial pressure of oxygen, which results in relative hypoxemia, usually without symptoms. Patients with congenital heart or lung disease may experience more severe hypoxemia during air travel. This systematic review provides an overview of the current literature focusing on whether it is safe for patients with congenital heart or lung disease to fly. The Pubmed database was searched and all studies carried out at an (simulated) altitude of 5000-8000 ft (1524-2438 m) for a short time period (several hours) and related to patients with congenital heart or lung disease were reviewed. Included were 11 studies. These studies examined patients with cystic fibrosis, neonatal (chronic) lung disease and congenital (a)cyanotic heart disease during a hypoxic challenge test, in a hypobaric chamber, during commercial air travel, or in the mountains. Peripheral/arterial saturation, blood gases, lung function, and/or the occurrence of symptoms were listed. Based on the current literature, it can be concluded that air travel is safe for most patients. However, those at risk of hypoxia can benefit from supplemental in-flight oxygen. Therefore, patients with congenital heart and lung disease should be evaluated carefully prior to air travel to select the patients at risk for hypoxia using the current studies and guidelines.

  11. Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells dose-dependently attenuates hyperoxia-induced lung injury in neonatal rats.

    PubMed

    Chang, Yun Sil; Choi, Soo Jin; Sung, Dong Kyung; Kim, Soo Yoon; Oh, Wonil; Yang, Yoon Sun; Park, Won Soon

    2011-01-01

    Intratracheal transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuates the hyperoxia-induced neonatal lung injury. The aim of this preclinical translation study was to optimize the dose of human UCB-derived MSCs in attenuating hyperoxia-induced lung injury in newborn rats. Newborn Sprague-Dawley rats were randomly exposed to hyperoxia (95% oxygen) or normoxia after birth for 14 days. Three different doses of human UCB-derived MSCs, 5 × 10(3) (HT1), 5 × 10(4) (HT2), and 5 × 10(5) (HT3), were delivered intratracheally at postnatal day (P) 5. At P14, lungs were harvested for analyses including morphometry for alveolarization, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) staining, myeoloperoxidase activity, mRNA level of tumor necross factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and transforming growth factor-β (TGF-β), human glyceradehyde-3-phosphate dehydrogenase (GAPDH), and p47(phox), and collagen levels. Increases in TUNEL-positive cells were attenuated in all transplantation groups. However, hyperoxia-induced lung injuries, such as reduced alveolarization, as evidenced by increased mean linear intercept and mean alveolar volume, and increased collagen levels were significantly attenuated in both HT2 and HT3, but not in HT1, with better attenuation in HT3 than in HT2. Dose-dependent human GAPDH expression, indicative of the presence of human RNA in lung tissue, was observed only in the transplantation groups, with higher expression in HT3 than in HT2, and higher expression in HT2 than in HT1. Hyperoxia-induced inflammatory responses such as increased myeloperoxidase acitivity, mRNA levels of TNF-α, IL-1β, IL-6, and TGF-β of the lung tissue, and upregulation of both cytosolic and membrane p47(phox), indicative of oxidative stress, were significantly attenuated in both HT2 and HT3 but not in HT1. These results demonstrate that intratracheal transplantation of human UCB-derived MSCs with appropriate doses may attenuate hyperoxia-induced lung injury through active involvement of these cells in modulating host inflammatory responses and oxidative stress in neonatal rats.

  12. Improved pulmonary function in the nitrofen model of congenital diaphragmatic hernia following prenatal maternal dexamethasone and/or sildenafil.

    PubMed

    Burgos, Carmen Mesas; Pearson, Erik G; Davey, Marcus; Riley, John; Jia, Huimin; Laje, Pablo; Flake, Alan W; Peranteau, William H

    2016-10-01

    Pulmonary hypoplasia and hypertension is a leading cause of morbidity and mortality in congenital diaphragmatic hernia (CDH). The etiologic insult occurs early in gestation highlighting the potential of prenatal interventions. We evaluated prenatal pharmacologic therapies in the nitrofen CDH model. Olive oil or nitrofen were administered alone or with dexamethasone (DM), sildenafil, or DM+sildenafil to pregnant rats. Newborn pups were assessed for lung function, structure and pulmonary artery (PA) flow and resistance. Prenatal DM treatment of CDH pups increased alveolar volume density (Vva), decreased interalveloar septal thickness, increased tidal volumes and improved ventilation without improving oxygenation or PA resistance. Sildenafil decreased PA resistance and improved oxygenation without improving ventilation or resulting in significant histologic changes. DM+sildenafil decreased PA resistance, improved oxygenation and ventilation while increasing Vva and decreasing interalveolar septal and pulmonary arteriole medial wall thickness. Lung and body weights were decreased in pups treated with DM and/or sildenafil. Prenatal DM or sildenafil treatment increased pulmonary compliance and decreased pulmonary vascular resistance respectively, and was associated with improved neonatal gas exchange but had a detrimental effect on lung and fetal growth. This study highlights the potential of individual and combined prenatal pharmacologic therapies for CDH management.

  13. Effect of surfactant and partial liquid ventilation treatment on gas exchange and lung mechanics in immature lambs: influence of gestational age.

    PubMed

    Rey-Santano, Carmen; Mielgo, Victoria; Gastiasoro, Elena; Valls-i-Soler, Adolfo; Murgia, Xabier

    2013-01-01

    Surfactant (SF) and partial liquid ventilation (PLV) improve gas exchange and lung mechanics in neonatal RDS. However, variations in the effects of SF and PLV with degree of lung immaturity have not been thoroughly explored. Experimental Neonatal Respiratory Physiology Research Unit, Cruces University Hospital. Prospective, randomized study using sealed envelopes. 36 preterm lambs were exposed (at 125 or 133-days of gestational age) by laparotomy and intubated. Catheters were placed in the jugular vein and carotid artery. All the lambs were assigned to one of three subgroups given: 20 mL/Kg perfluorocarbon and managed with partial liquid ventilation (PLV), surfactant (Curosurf®, 200 mg/kg) or (3) no pulmonary treatment (Controls) for 3 h. Cardiovascular parameters, blood gases and pulmonary mechanics were measured. In 125-day gestation lambs, SF treatment partially improved gas exchange and lung mechanics, while PLV produced significant rapid improvements in these parameters. In 133-day lambs, treatments with SF or PLV achieved similarly good responses. Neither surfactant nor PLV significantly affected the cardiovascular parameters. SF therapy response was more effective in the older gestational age group whereas the effectiveness of PLV therapy was not gestational age dependent.

  14. Prenatal MRI fetal lung volumes and percent liver herniation predict pulmonary morbidity in congenital diaphragmatic hernia (CDH).

    PubMed

    Zamora, Irving J; Olutoye, Oluyinka O; Cass, Darrell L; Fallon, Sara C; Lazar, David A; Cassady, Christopher I; Mehollin-Ray, Amy R; Welty, Stephen E; Ruano, Rodrigo; Belfort, Michael A; Lee, Timothy C

    2014-05-01

    The purpose of this study was to determine whether prenatal imaging parameters are predictive of postnatal CDH-associated pulmonary morbidity. The records of all neonates with CDH treated from 2004 to 2012 were reviewed. Patients requiring supplemental oxygen at 30 days of life (DOL) were classified as having chronic lung disease (CLD). Fetal MRI-measured observed/expected total fetal lung volume (O/E-TFLV) and percent liver herniation (%LH) were recorded. Receiver operating characteristic (ROC) curves and multivariate regression were applied to assess the prognostic value of O/E-TFLV and %LH for development of CLD. Of 172 neonates with CDH, 108 had fetal MRIs, and survival was 76%. 82% (89/108) were alive at DOL 30, 46 (52%) of whom had CLD. Neonates with CLD had lower mean O/E-TFLV (30 vs.42%; p=0.001) and higher %LH (21.3±2.8 vs.7.1±1.8%; p<0.001) compared to neonates without CLD. Using ROC analysis, the best cutoffs in predicting CLD were an O/E-TFLV<35% (AUC=0.74; p<0.001) and %LH>20% (AUC=0.78; p<0.001). On logistic regression, O/E-TFLV<35% and a %LH>20% were highly associated with indicators of long-term pulmonary sequelae. On multivariate analysis, %LH was the strongest predictor of CLD in patients with CDH (OR: 10.96, 95%CI: 2.5-48.9, p=0.002). Prenatal measurement of O/E-TFLV and %LH is predictive of CDH pulmonary morbidity and can aid in establishing parental expectations of postnatal outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Neonatal Caffeine Treatment and Respiratory Function at 11 Years in Children under 1,251 g at Birth.

    PubMed

    Doyle, Lex W; Ranganathan, Sarath; Cheong, Jeanie L Y

    2017-11-15

    Caffeine in the newborn period shortens the duration of assisted ventilation and reduces the incidence of bronchopulmonary dysplasia, but its effects on respiratory function in later childhood are unknown. To determine if children born with birth weight less than 1,251 g who were treated with neonatal caffeine had improved respiratory function at 11 years of age compared with children treated with placebo. Children enrolled in the CAP (Caffeine for Apnea of Prematurity) randomized controlled trial and assessed at the Royal Women's Hospital in Melbourne at 11 years of age had expiratory flow rates measured according to the standards of the American Thoracic Society. Values were converted to z-scores predicted for age, height, ethnicity, and sex. Parents completed questionnaires related to their child's respiratory health. A total of 142 children had expiratory flows measured. Expiratory flows were better in the caffeine group, by approximately 0.5 SD for most variables (e.g., FEV 1 ; mean z-score, -1.00 vs. -1.53; mean difference, 0.54; 95% confidence interval, 0.14-0.94; P = 0.008). Fewer children in the caffeine group had values for FVC below the fifth centile (11% vs. 28%; odds ratio, 0.31; 95% confidence interval, 0.12-0.77; P = 0.012). When adjusted for bronchopulmonary dysplasia, the difference in flow rates between groups diminished. Caffeine treatment in the newborn period improves expiratory flow rates in midchildhood, which seems to be achieved by improving respiratory health in the newborn period. Follow-up lung function testing in adulthood is vital for these individuals. Future placebo-controlled randomized trials of neonatal caffeine are unlikely. Clinical trial registered with www.clinicaltrials.gov (NCT00182312).

  16. Low-grade disease activity in early life precedes childhood asthma and allergy.

    PubMed

    Chawes, Bo Lund Krogsgaard

    2016-08-01

    Asthma and allergies are today the most common chronic diseases in children and the leading causes of school absences, chronic medication usage, emergency department visits and hospitalizations, which affect all members of the family and represent a significant societal and scientific challenge. These highly prevalent disorders are thought to originate from immune distortion in early childhood, but the etiology and heterogeneity of the disease mechanisms are not understood, which hampers preventive initiatives and makes treatment inadequate. The objective of this thesis is to investigate the presence of an early life disease activity prior to clinical symptoms to understand the anteceding pathophysiological steps towards childhood asthma and allergy. The thesis is built on seven studies from the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC2000) birth cohort examining biomarkers of disease activity in 411 asymptomatic neonates in cord blood (I-II), urine (III), exhaled breath (IV-V) and infant lung function (VI-VII) in relation to the subsequent development of asthma and allergy during the first seven years of life. In papers I-II, we studied cord blood chemokines and 25(OH)-vitamin D, which represent a proxy of the inborn immature immune system, the intrauterine milieu, and the maternal immune health during pregnancy. High levels of the Th2-related chemokine CCL22 and high CCL22/CXCL11 ratio were positively correlated with total IgE level during preschool age (II). This suggests an inborn Th2 skewing of the immune system in healthy newborns subsequently developing elevated total IgE antibodies, which is considered to increase the risk of asthma and allergies later in life. Additionally, deficient cord blood 25(OH)-vitamin D levels were associated with a 2.7-fold increased risk of recurrent wheeze at age 0-7 years (I). Together, these findings support the concept that early life immune programming in the pre-symptomatic era plays an essential role for promotion of or protection against asthma and allergies. Therefore, preventive initiatives to restore immune health, such as vitamin D supplementation, should be directed to the fetus and the earliest postnatal life. The eosinophil granulocyte has a major role in the allergic inflammatory cascade and eosinophilia is considered a hallmark of many allergic phenotypes. In paper III, we examined neonatal urinary biomarkers including eosinophil protein X (u-EPX), which is contained in the eosinophil granules. Elevated u-EPX in asymptomatic neonates was associated with development of allergic sensitization and nasal eosinophilia, but not with wheezing or asthma (III). These findings suggest the presence of an ongoing low-grade disease process in early life characterized by eosinophil activation prior to appearance of allergy-related conditions. In papers IV-V, we investigated perinatal and genetic predictors of neonatal fractional exhaled nitric oxide (FeNO) and the relationship between neonatal FeNO and wheezing later in child-hood. The a priori selected determinants encompassed asthma genetic risk variants, anthropometrics, demographics, socioeconomics, parental asthma and allergy, maternal smoking, paracetamol and antibiotic usage during pregnancy, and neonatal bacterial airway colonization. Among those, only the DENND1B risk allele and paternal history of asthma and allergy were associated with increased FeNO values (V) suggesting that raised FeNO in neonatal life is primarily an inherited trait. The neonatal FeNO levels were widely dispersed (1-67 ppb) and children with values in the upper quartile were at increased risk of recurrent wheezing in early childhood, but not persistent wheezing, reduced lung function or allergy-related endpoints (IV). This suggests that elevated neonatal FeNO represents an early asymptomatic low-grade disease process other than congenitally small airway calibre contributing to a transient wheezing phenotype. Reduced lung function in neonates is associated with wheezing and asthma proneness, but it is unknown if such host factor also confers a risk of acute bronchiolitis, which is considered an index event of asthma persisting into school age. In paper VI, we investigated neonatal forced flow, volume, and responsiveness to methacholine in relation to occurrence of acute severe bronchiolitis at age 0-2 years. Children developing bronchiolitis had a 2.5-fold increased bronchial responsiveness as neonates (VI) suggesting a preexisting joint propensity of the airways to react adversely to common respiratory viruses and to develop asthma. This finding proposes airway hyperresponsiveness as yet another marker of low-grade disease activity among asymptomatic neonates on a trajectory towards childhood asthma. In paper VII, we examined whether neonates with impaired pulmonary capacity also had signs of systemic inflammation prior to clinical symptoms. Reduced FEV0.5 was significantly associated with elevated serum hs-CRP and other blood inflammatory markers (VII) suggesting presence of systemic low-grade inflammation from the beginning of life. Chronic low-grade inflammation is a common nominator of virtually all the major non-communicable welfare diseases (NCDs) of modernity whereof asthma and allergies are the earliest debuting disorders. The novel finding of systemic low-grade inflammation among neonates at increased risk of asthma and allergy, therefore implies that exploring the origins of asthma and allergy may also unravel disease mechanisms involved in other NCDs. In conclusion, the series of papers presented in this thesis (I-VII) evidence the presence of a pre-symptomatic disease process measurable in several body compartments, which supports the notion of low-grade disease activity in early life as a generic trait among neonates developing asthma and allergy. This hypothesis piggybacking on single biomarker assessments could be enforced and refined by applying novel global omics approaches. In particular, metabolomic analyses of serum, urine, and airway lining fluid from neonates as well as neonatal VOC profiling of exhaled breath may facilitate a broader understanding of the early low-grade disease activity preceding clinical symptoms. Disentangling the introductory pathophysiological mechanisms and underlying endotypes of disease is paramount for generating successful preventive measures to alleviate the major global burden of asthma, allergy, and other NCDs of modern time.

  17. Relationship between birth weight, maternal smoking during pregnancy and childhood and adolescent lung function: A path analysis.

    PubMed

    Balte, Pallavi; Karmaus, Wilfried; Roberts, Graham; Kurukulaaratchy, Ramesh; Mitchell, Frances; Arshad, Hasan

    2016-12-01

    Low birth weight and gestational maternal smoking have been linked with reduced lung function in children in many cross sectional studies. However, these associations have not yet been assessed with repeated measurements of lung function. Our aim was to investigate the effects of birth weight, gestational age, and gestational maternal smoking on lung function in children at age 10 and 18 years. In the Isle of Wight birth cohort spirometry was performed at age 10 and 18 years. Information on birth weight and gestational age were obtained from hospital records. Mothers were asked about smoking during pregnancy. We employed linear mixed models to estimate the effect of these risk factors on repeated measurements of lung function. We considered maternal asthma, sex, neonatal intensive care unit admission, height, socio-economic status, personal smoking in participants at age 18, body mass index and environmental tobacco smoke exposure as potential confounders. Finally, we used path analysis to determine links between birth weight, gestational age and gestational maternal smoking on lung function at age 10 and 18 years. Linear mixed models showed that with every 1 kg increase in birth weight, Forced expiratory volume in one second (FEV 1 ) increased by 42.6 ± 17.2 mL and Forced expiratory flow between 25% and 75% (FEF 25-75 ) of Forced vital capacity (FVC) increased by 95.5 ± 41.2 mL at age 18 years after adjusting for potential confounders. Path analysis suggested that birth weight had positive direct effects on FEV 1 and FEF 25-75 and positive indirect effect on FVC at 10 years which were carried forward to 18 years. Additionally, results also suggested a positive association between gestational age and FEV 1 , FVC and FEF 25-75  at ages 10 and 18 years and an inverse association between gestational smoke exposure and FEV 1 /FVC ratio and FEF 25-75  at age 18 years. Higher birth weight and gestational age were associated with higher FEV 1 , FVC and FEF 25-75 and maternal smoking during pregnancy was associated with reduced FEV 1 /FVC ratio and FEF 25-75 . The use of path analysis can improve our understanding of underlying "causal" pathways among different prenatal and childhood factors that affect lung function in both pre-adolescent and adolescent periods. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Randomised controlled trial of effect of terbutaline before elective caesarean section on postnatal respiration and glucose homeostasis

    PubMed Central

    Eisler, G.; Hjertberg, R.; Lagercrantz, H.

    1999-01-01

    AIM—To determine if terbutaline given to mothers before elective caesarean section facilitates neonatal respiration and metabolism.
METHODS—A randomised controlled trial of 25 full term infants delivered by elective caesarean section was conducted. The mothers received a continuous infusion of terbutaline or saline 120-0 minutes before birth. Umbilical artery blood was collected at birth and analysed for blood gases and catecholamines. The lung function of each infant was assessed two hours after birth, and blood pressure, heart rate, blood glucose and body temperature were monitored until 24 hours of age.
RESULTS—The infants of the treated mothers (n=13) had significantly higher dynamic lung compliance (p<0.001), lower airway resistance (p<0.001), and respiratory frequency than control infants (n=12). Blood glucose and adrenaline concentrations were significantly higher in the treated group (p=0.0014 and p<0.01). None of these infants had any clinical respiratory difficulties; there were two cases of transient tachypnoea in the control group. No negative side effects due to the terbutaline treatment were seen among the infants. The mothers felt no discomfort caused by the terbutaline infusion, although they bled more during surgery (p=0.03).
CONCLUSION—Stimulation of the β adrenoceptors in utero with terbutaline infusion to the mothers promotes neonatal respiratory and metabolic adaptation after elective caesarean section.

 PMID:10325782

  19. Oxygen Supplementation to Stabilize Preterm Infants in the Fetal to Neonatal Transition: No Satisfactory Answer.

    PubMed

    Torres-Cuevas, Isabel; Cernada, Maria; Nuñez, Antonio; Escobar, Javier; Kuligowski, Julia; Chafer-Pericas, Consuelo; Vento, Maximo

    2016-01-01

    Fetal life elapses in a relatively low oxygen environment. Immediately after birth with the initiation of breathing, the lung expands and oxygen availability to tissue rises by twofold, generating a physiologic oxidative stress. However, both lung anatomy and function and the antioxidant defense system do not mature until late in gestation, and therefore, very preterm infants often need respiratory support and oxygen supplementation in the delivery room to achieve postnatal stabilization. Notably, interventions in the first minutes of life can have long-lasting consequences. Recent trials have aimed to assess what initial inspiratory fraction of oxygen and what oxygen targets during this transitional period are best for extremely preterm infants based on the available nomogram. However, oxygen saturation nomogram informs only of term and late preterm infants but not on extremely preterm infants. Therefore, the solution to this conundrum may still have to wait before a satisfactory answer is available.

  20. Deregulation of the lysyl hydroxylase matrix cross-linking system in experimental and clinical bronchopulmonary dysplasia.

    PubMed

    Witsch, Thilo J; Turowski, Pawel; Sakkas, Elpidoforos; Niess, Gero; Becker, Simone; Herold, Susanne; Mayer, Konstantin; Vadász, István; Roberts, Jesse D; Seeger, Werner; Morty, Rory E

    2014-02-01

    Bronchopulmonary dysplasia (BPD) is a common and serious complication of premature birth, characterized by a pronounced arrest of alveolar development. The underlying pathophysiological mechanisms are poorly understood although perturbations to the maturation and remodeling of the extracellular matrix (ECM) are emerging as candidate disease pathomechanisms. In this study, the expression and regulation of three members of the lysyl hydroxylase family of ECM remodeling enzymes (Plod1, Plod2, and Plod3) in clinical BPD, as well as in an experimental animal model of BPD, were addressed. All three enzymes were localized to the septal walls in developing mouse lungs, with Plod1 also expressed in the vessel walls of the developing lung and Plod3 expressed uniquely at the base of developing septa. The expression of plod1, plod2, and plod3 was upregulated in the lungs of mouse pups exposed to 85% O2, an experimental animal model of BPD. Transforming growth factor (TGF)-β increased plod2 mRNA levels and activated the plod2 promoter in vitro in lung epithelial cells and in lung fibroblasts. Using in vivo neutralization of TGF-β signaling in the experimental animal model of BPD, TGF-β was identified as the regulator of aberrant plod2 expression. PLOD2 mRNA expression was also elevated in human neonates who died with BPD or at risk for BPD, compared with neonates matched for gestational age at birth or chronological age at death. These data point to potential roles for lysyl hydroxylases in normal lung development, as well as in perturbed late lung development associated with BPD.

  1. Heterogeneous Pulmonary Phenotypes Associated With Mutations in the Thyroid Transcription Factor Gene NKX2-1

    PubMed Central

    Deterding, Robin R.; Wert, Susan E.; White, Frances V.; Dishop, Megan K.; Alfano, Danielle N.; Halbower, Ann C.; Planer, Benjamin; Stephan, Mark J.; Uchida, Derek A.; Williames, Lee D.; Rosenfeld, Jill A.; Lebel, Robert Roger; Young, Lisa R.; Cole, F. Sessions; Nogee, Lawrence M.

    2013-01-01

    Background: Mutations in the gene encoding thyroid transcription factor, NKX2-1, result in neurologic abnormalities, hypothyroidism, and neonatal respiratory distress syndrome (RDS) that together are known as the brain-thyroid-lung syndrome. To characterize the spectrum of associated pulmonary phenotypes, we identified individuals with mutations in NKX2-1 whose primary manifestation was respiratory disease. Methods: Retrospective and prospective approaches identified infants and children with unexplained diffuse lung disease for NKX2-1 sequencing. Histopathologic results and electron micrographs were assessed, and immunohistochemical analysis for surfactant-associated proteins was performed in a subset of 10 children for whom lung tissue was available. Results: We identified 16 individuals with heterozygous missense, nonsense, and frameshift mutations and five individuals with heterozygous, whole-gene deletions of NKX2-1. Neonatal RDS was the presenting pulmonary phenotype in 16 individuals (76%), interstitial lung disease in four (19%), and pulmonary fibrosis in one adult family member. Altogether, 12 individuals (57%) had the full triad of neurologic, thyroid, and respiratory manifestations, but five (24%) had only pulmonary symptoms at the time of presentation. Recurrent respiratory infections were a prominent feature in nine subjects. Lung histopathology demonstrated evidence of disrupted surfactant homeostasis in the majority of cases, and at least five cases had evidence of disrupted lung growth. Conclusions: Patients with mutations in NKX2-1 may present with pulmonary manifestations in the newborn period or during childhood when thyroid or neurologic abnormalities are not apparent. Surfactant dysfunction and, in more severe cases, disrupted lung development are likely mechanisms for the respiratory disease. PMID:23430038

  2. Heterogeneous pulmonary phenotypes associated with mutations in the thyroid transcription factor gene NKX2-1.

    PubMed

    Hamvas, Aaron; Deterding, Robin R; Wert, Susan E; White, Frances V; Dishop, Megan K; Alfano, Danielle N; Halbower, Ann C; Planer, Benjamin; Stephan, Mark J; Uchida, Derek A; Williames, Lee D; Rosenfeld, Jill A; Lebel, Robert Roger; Young, Lisa R; Cole, F Sessions; Nogee, Lawrence M

    2013-09-01

    Mutations in the gene encoding thyroid transcription factor, NKX2-1, result in neurologic abnormalities, hypothyroidism, and neonatal respiratory distress syndrome (RDS) that together are known as the brain-thyroid-lung syndrome. To characterize the spectrum of associated pulmonary phenotypes, we identified individuals with mutations in NKX2-1 whose primary manifestation was respiratory disease. Retrospective and prospective approaches identified infants and children with unexplained diffuse lung disease for NKX2-1 sequencing. Histopathologic results and electron micrographs were assessed, and immunohistochemical analysis for surfactant-associated proteins was performed in a subset of 10 children for whom lung tissue was available. We identified 16 individuals with heterozygous missense, nonsense, and frameshift mutations and five individuals with heterozygous, whole-gene deletions of NKX2-1. Neonatal RDS was the presenting pulmonary phenotype in 16 individuals (76%), interstitial lung disease in four (19%), and pulmonary fibrosis in one adult family member. Altogether, 12 individuals (57%) had the full triad of neurologic, thyroid, and respiratory manifestations, but five (24%) had only pulmonary symptoms at the time of presentation. Recurrent respiratory infections were a prominent feature in nine subjects. Lung histopathology demonstrated evidence of disrupted surfactant homeostasis in the majority of cases, and at least five cases had evidence of disrupted lung growth. Patients with mutations in NKX2-1 may present with pulmonary manifestations in the newborn period or during childhood when thyroid or neurologic abnormalities are not apparent. Surfactant dysfunction and, in more severe cases, disrupted lung development are likely mechanisms for the respiratory disease.

  3. Ventilation-induced release of phosphatidylcholine from neonatal-rat lungs in vitro.

    PubMed Central

    Nijjar, M S

    1984-01-01

    Factors regulating the release of phosphatidylcholine (PC) from neonatal-rat lungs were investigated. The results show that the release of prelabelled PC from the newborn-rat lung was augmented by air ventilation at the onset of breathing. This response was mimicked in lungs of pups delivered 1 day before term and allowed to breathe for different time intervals. Anoxia further augmented the ventilation-enhanced PC release from the newborn-rat lungs. The ventilation-induced release of PC was not abolished by the prior treatment of pups in utero or mothers in vivo with phenoxybenzamine, propranolol or atropine, suggesting the lack of receptor stimulation in the ventilation-enhanced PC release at birth. The results also show that ventilation stimulated [methyl-14C]choline incorporation into lung PC, presumably to replenish the depleted surfactant stores. The ratio of adenylate cyclase/cyclic AMP phosphodiesterase activities, which reflects cyclic AMP levels in the developing rat lungs, did not change during the 120 min of air ventilation when the release of PC was much enhanced, implying that cyclic AMP may not be involved. This confirms our conclusion that stimulation of beta-adrenergic receptor was not involved in the air-ventilation-enhanced release of PC. Since the cell number or size did not change during 120 min of ventilation when the alveolar-cell surface was maximally distended, it is suggested that distension of alveolar wall by air ventilation at the onset of breathing may bring the lamellar bodies containing surfactant close to the luminal surface of alveolar type II cells, thereby enhancing their fusion and extrusion by exocytosis. PMID:6477485

  4. Postentry Processing of Recombinant Adeno-Associated Virus Type 1 and Transduction of the Ferret Lung Are Altered by a Factor in Airway Secretions

    PubMed Central

    Yan, Ziying; Sun, Xingshen; Evans, Idil A.; Tyler, Scott R.; Song, Yi; Liu, Xiaoming; Sui, Hongshu

    2013-01-01

    Abstract We recently created a cystic fibrosis ferret model that acquires neonatal lung infection. To develop lung gene therapies for this model, we evaluated recombinant adeno-associated virus (rAAV)-mediated gene transfer to the neonatal ferret lung. Unlike in vitro ferret airway epithelial (FAE) cells, in vivo infection of the ferret lung with rAAV1 required proteasome inhibitors to achieve efficient airway transduction. We hypothesized that differences in transduction between these two systems were because of an in vivo secreted factor that alter the transduction biology of rAAV1. Indeed, treatment of rAAV1 with ferret airway secretory fluid (ASF) strongly inhibited rAAV1, but not rAAV2, transduction of primary FAE and HeLa cells. Properties of the ASF inhibitory factor included a strong affinity for the AAV1 capsid, heat-stability, negative charge, and sensitivity to endoproteinase Glu-C. ASF-treated rAAV1 dramatically inhibited apical transduction of FAE ALI cultures (512-fold), while only reducing viral entry by 55-fold, suggesting that postentry processing of virus was influenced by the inhibitor factor. Proteasome inhibitors rescued transduction in the presence of ASF (∼1600-fold) without effecting virus internalization, while proteasome inhibitors only enhanced transduction 45-fold in the absence of ASF. These findings demonstrate that a factor in lung secretions can influence intracellular processing of rAAV1 in a proteasome-dependent fashion. PMID:23948055

  5. Postentry processing of recombinant adeno-associated virus type 1 and transduction of the ferret lung are altered by a factor in airway secretions.

    PubMed

    Yan, Ziying; Sun, Xingshen; Evans, Idil A; Tyler, Scott R; Song, Yi; Liu, Xiaoming; Sui, Hongshu; Engelhardt, John F

    2013-09-01

    We recently created a cystic fibrosis ferret model that acquires neonatal lung infection. To develop lung gene therapies for this model, we evaluated recombinant adeno-associated virus (rAAV)-mediated gene transfer to the neonatal ferret lung. Unlike in vitro ferret airway epithelial (FAE) cells, in vivo infection of the ferret lung with rAAV1 required proteasome inhibitors to achieve efficient airway transduction. We hypothesized that differences in transduction between these two systems were because of an in vivo secreted factor that alter the transduction biology of rAAV1. Indeed, treatment of rAAV1 with ferret airway secretory fluid (ASF) strongly inhibited rAAV1, but not rAAV2, transduction of primary FAE and HeLa cells. Properties of the ASF inhibitory factor included a strong affinity for the AAV1 capsid, heat-stability, negative charge, and sensitivity to endoproteinase Glu-C. ASF-treated rAAV1 dramatically inhibited apical transduction of FAE ALI cultures (512-fold), while only reducing viral entry by 55-fold, suggesting that postentry processing of virus was influenced by the inhibitor factor. Proteasome inhibitors rescued transduction in the presence of ASF (~1600-fold) without effecting virus internalization, while proteasome inhibitors only enhanced transduction 45-fold in the absence of ASF. These findings demonstrate that a factor in lung secretions can influence intracellular processing of rAAV1 in a proteasome-dependent fashion.

  6. Reliability of Displayed Tidal Volume in Healthy and Surfactant-Depleted Piglets.

    PubMed

    Mendiondo Luedloff, A Cecilia; Thurman, Tracy L; Holt, Shirley J; Bai, Shasha; Heulitt, Mark J; Courtney, Sherry E

    2016-12-01

    Volutrauma has been established as the key factor in ventilator-induced lung injury and can only be avoided if tidal volume (V T ) is accurately displayed and delivered. The purpose of this study was to investigate the accuracy of displayed exhaled V T in a ventilator commonly used in small infants with or without a proximal flow sensor and using 3 methods to achieve a target V T in both a healthy and lung-injured neonatal pig model. This was a prospective animal study utilizing 8 male pigs, approximately 2.0 kg (range 1.8-2.2 kg). Intubated, sedated, neonatal pigs were studied with both healthy and injured lungs using the Servo-i ventilator. In pressure-regulated volume control, both with and without a proximal flow sensor, we used 3 methods to set V T : (1) circuit compliance compensation (CCC) on, set V T 6-8 mL/kg; (2) CCC off, calculated V T using the manufacturer's circuit compliance factor; and (3) CCC off, set V T 10-12 mL/kg to approximate a target V T of 6-8 mL/kg. Ventilator-displayed exhaled V T measurements were compared with exhaled V T measured at the airway opening by a calibrated pneumotachograph. Bland-Altman plots were constructed to show the level of agreement between the two. CCC improved accuracy and precision of displayed exhaled V T when the sensor was not used, more markedly in the lung-injured model. Without CCC, the sensor improved accuracy and precision of displayed exhaled V T , again more markedly in the lung-injured model. When the Servo-i ventilator is used in neonates, CCC or the in-line sensor should be employed due to the large positive bias and imprecision seen with CCC off and no sensor in-line. Copyright © 2016 by Daedalus Enterprises.

  7. A role for a lithium-inhibited Golgi nucleotidase in skeletal development and sulfation

    PubMed Central

    Frederick, Joshua P.; Tafari, A. Tsahai; Wu, Sheue-Mei; Megosh, Louis C.; Chiou, Shean-Tai; Irving, Ryan P.; York, John D.

    2008-01-01

    Sulfation is an important biological process that modulates the function of numerous molecules. It is directly mediated by cytosolic and Golgi sulfotransferases, which use 3′-phosphoadenosine 5′-phosphosulfate to produce sulfated acceptors and 3′-phosphoadenosine 5′-phosphate (PAP). Here, we identify a Golgi-resident PAP 3′-phosphatase (gPAPP) and demonstrate that its activity is potently inhibited by lithium in vitro. The inactivation of gPAPP in mice led to neonatal lethality, lung abnormalities resembling atelectasis, and dwarfism characterized by aberrant cartilage morphology. The phenotypic similarities of gPAPP mutant mice to chondrodysplastic models harboring mutations within components of the sulfation pathway lead to the discovery of undersulfated chondroitin in the absence of functional enzyme. Additionally, we observed loss of gPAPP leads to perturbations in the levels of heparan sulfate species in lung tissue and whole embryos. Our data are consistent with a model that clearance of the nucleotide product of sulfotransferases within the Golgi plays an important role in glycosaminoglycan sulfation, provide a unique genetic basis for chondrodysplasia, and define a function for gPAPP in the formation of skeletal elements derived through endochondral ossification. PMID:18695242

  8. Novel role of NPY in neuroimmune interaction and lung growth after intrauterine growth restriction.

    PubMed

    Thangaratnarajah, Chansutha; Dinger, Katharina; Vohlen, Christina; Klaudt, Christian; Nawabi, Jawed; Lopez Garcia, Eva; Kwapiszewska, Grazyna; Dobner, Julia; Nüsken, Kai D; van Koningsbruggen-Rietschel, Silke; von Hörsten, Stephan; Dötsch, Jörg; Alejandre Alcázar, Miguel A

    2017-09-01

    Individuals with intrauterine growth restriction (IUGR) are at risk for chronic lung disease. Using a rat model, we showed in our previous studies that altered lung structure is related to IL-6/STAT3 signaling. As neuropeptide Y (NPY), a coneurotransmitter of the sympathetic nervous system, regulates proliferation and immune response, we hypothesized that dysregulated NPY after IUGR is linked to IL-6, impaired myofibroblast function, and alveolar growth. IUGR was induced in rats by isocaloric low-protein diet; lungs were analyzed on embryonic day (E) 21, postnatal day (P) 3, P12, and P23. Finally, primary neonatal lung myofibroblasts (pnF) and murine embryonic fibroblasts (MEF) were used to assess proliferation, apoptosis, migration, and IL-6 expression. At E21, NPY and IL-6 expression was decreased, and AKT/PKC and STAT3/AMPKα signaling was reduced. Early reduction of NPY/IL-6 was associated with increased chord length in lungs after IUGR at P3, indicating reduced alveolar formation. At P23, however, IUGR rats exhibited a catch-up of body weight and alveolar growth coupled with more proliferating myofibroblasts. These structural findings after IUGR were linked to activated NPY/PKC, IL-6/AMPKα signaling. Complementary, IUGR-pnF showed increased survival, impaired migration, and reduced IL-6 compared with control-pnF (Co-pnF). In contrast, NPY induced proliferation, migration, and increased IL-6 synthesis in fibroblasts. Additionally, NPY -/- mice showed reduced IL-6 signaling and less proliferation of lung fibroblasts. Our study presents a novel role of NPY during alveolarization: NPY regulates 1 ) IL-6 and lung STAT3/AMPKα signaling, and 2 ) proliferation and migration of myofibroblasts. These new insights in pulmonary neuroimmune interaction offer potential strategies to enable lung growth. Copyright © 2017 the American Physiological Society.

  9. Insulin Treatment Cannot Promote Lipogenesis in Rat Fetal Lung in Gestational Diabetes Mellitus Because of Failure to Redress the Imbalance Among SREBP-1, SCAP, and INSIG-1.

    PubMed

    Li, Jinyan; Qian, Guanhua; Zhong, Xiaocui; Yu, Tinghe

    2018-03-01

    Gestational diabetes mellitus (GDM) has a higher incidence of neonatal respiratory distress syndrome, and lipogenesis is required for the synthesis of pulmonary surfactants. The aim of this study was to determine the effect of insulin treatment in GDM on the production of lipids in the lungs of fetal rats. GDM was induced by streptozotocin, and insulin was used to manage diabetes. Type II alveolar epithelial cells (AEC II), bronchoalveolar lavage fluid (BALF), and lung tissues of the neonatal rats were sampled for analyses. Insulin treatment could not decrease plasma glucose to normal level at a later gestational stage. Lipids/phospholipids in AEC II, BALF, and lung tissues decreased in GDM, and insulin treatment could not increase the levels; quantitative PCR and western blotting demonstrated a lower level of sterol regulator element-binding protein 1 (SREBP-1), SREBP cleavage-activating protein (SCAP), and insulin-induced gene 1 (INSIG-1) in GDM, but insulin treatment upregulated only SREBP-1. Nuclear translocation of the SREBP-1 protein in AEC II was impaired in GDM, which could not be ameliorated by insulin treatment. These findings indicated that insulin treatment in GDM cannot promote lipogenesis in the fetal lung because of failure to redress the imbalance among SREBP-1, SCAP, and INSIG-1.

  10. Congenital pulmonary lymphangiectasia

    PubMed Central

    Bellini, Carlo; Boccardo, Francesco; Campisi, Corradino; Bonioli, Eugenio

    2006-01-01

    Congenital pulmonary lymphangiectasia (PL) is a rare developmental disorder involving the lung, and characterized by pulmonary subpleural, interlobar, perivascular and peribronchial lymphatic dilatation. The prevalence is unknown. PL presents at birth with severe respiratory distress, tachypnea and cyanosis, with a very high mortality rate at or within a few hours of birth. Most reported cases are sporadic and the etiology is not completely understood. It has been suggested that PL lymphatic channels of the fetal lung do not undergo the normal regression process at 20 weeks of gestation. Secondary PL may be caused by a cardiac lesion. The diagnostic approach includes complete family and obstetric history, conventional radiologic studies, ultrasound and magnetic resonance studies, lymphoscintigraphy, lung functionality tests, lung biopsy, bronchoscopy, and pleural effusion examination. During the prenatal period, all causes leading to hydrops fetalis should be considered in the diagnosis of PL. Fetal ultrasound evaluation plays a key role in the antenatal diagnosis of PL. At birth, mechanical ventilation and pleural drainage are nearly always necessary to obtain a favorable outcome of respiratory distress. Home supplemental oxygen therapy and symptomatic treatment of recurrent cough and wheeze are often necessary during childhood, sometimes associated with prolonged pleural drainage. Recent advances in intensive neonatal care have changed the previously nearly fatal outcome of PL at birth. Patients affected by PL who survive infancy, present medical problems which are characteristic of chronic lung disease. PMID:17074089

  11. Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation

    PubMed Central

    Yu, Wenjie; Li, Xiao; Eliason, Steven; Romero-Bustillos, Miguel; Ries, Ryan J.; Cao, Huojun; Amendt, Brad A.

    2017-01-01

    The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1−/− mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development. PMID:28746823

  12. Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation.

    PubMed

    Yu, Wenjie; Li, Xiao; Eliason, Steven; Romero-Bustillos, Miguel; Ries, Ryan J; Cao, Huojun; Amendt, Brad A

    2017-09-01

    The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1 -/- mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Prenatal diagnosis of fetal respiratory function: evaluation of fetal lung maturity using lung-to-liver signal intensity ratio at magnetic resonance imaging.

    PubMed

    Oka, Yasuko; Rahman, Mosfequr; Sasakura, Chihaya; Waseda, Tomoo; Watanabe, Yukio; Fujii, Ryota; Makinoda, Satoru

    2014-12-01

    The purpose of this retrospective study is to determine the fetal lung-to-liver signal intensity ratio (LLSIR) on T2-weighted images for the prediction of neonatal respiratory outcome. One hundred ten fetuses who underwent magnetic resonance imaging (MRI) examination for various indications after 22 weeks of gestation participated in this study. LLSIR was measured as the ratio of signal intensities of the fetal lung and liver on T2-weighted images at MRI. We examined the changes of the ratio with advancing gestation and the relations between LLSIR and the presence of the severe respiratory disorder (SRD) after birth. The best cut-off value of the LLSIR to predict respiratory outcome after birth was calculated using receiver operating characteristic (ROC) curve analysis. Lung-to-liver signal intensity ratio correlated significantly with advancing gestational age (R = 0.35, p < 0.001). The non-SRD group had higher LLSIR compared with the SRD group (2.15 ± 0.30 vs. 1.53 ± 0.40, p < 0.001). ROC curve analysis showed that fetuses with an LLSIR < 2.00 were more likely to develop SRD [sensitivity: 100%, 95% confidence interval (CI): 52-100%; specificity: 73%, 95% CI 54-88%]. The fetal LLSIR on T2-weighted images is an accurate marker to diagnose the fetal lung maturity. © 2014 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd.

  14. Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.

    PubMed

    DeVincenzo, John P

    2009-10-01

    A revolution in the understanding of RNA biological processing and control is leading to revolutionary new concepts in human therapeutics. It has become increasingly clear that the so called "non-coding RNA" exerts specific and profound functional control on regulation of protein production and indeed controls the expression of all genes. Harnessing this naturally-occurring RNA-mediated regulation of protein production has immense human therapeutic potential. These processes are collectively known as RNA interference (RNAi). RNAi is a recently discovered, naturally-occurring intracellular process that regulates gene expression through the silencing of specific mRNAs. Methods of harnessing this natural pathway are being developed that allow the catalytic degradation of targeted mRNAs using specifically designed complementary small inhibitory RNAs (siRNA). siRNAs are being chemically modified to acquire drug-like properties. Numerous recent high profile publications have provided proofs of concept that RNA interference may be useful therapeutically. Much of the design of these siRNAs can be accomplished bioinformatically, thus potentially expediting drug discovery and opening new avenues of therapy for many uncommon, orphan, or emerging diseases. This makes this approach very attractive for developing therapies targeting orphan diseases including neonatal diseases. Theoretically, any disease that can be ameliorated through knockdown of any endogenous or exogenous protein is a potential therapeutic target for RNAi-based therapeutics. Lung diseases are particularly attractive targets for RNAi therapeutics since the affected cells' location increases their accessibility to topical administration of siRNA, for example by aerosol. Respiratory viral infections and chronic lung disease are examples of such diseases. RNAi therapeutics have been shown to be active against RSV, parainfluenza and human metapneumoviruses in vitro and in vivo resulting in profound antiviral effects. The first proof of concept test of efficacy of an RNAi-based therapeutic in man has been initiated. A discussion of the science behind RNA interference is followed by a presentation of the potential practical issues in applying this technology to neonatal respiratory viral diseases. RNAi may offer new strategies for the treatment of a variety of orphan diseases including neonatal diseases, RSV infections, and other respiratory viruses.

  15. Antenatal glucocorticoid treatment of the growth-restricted fetus: benefit or cost?

    PubMed

    Morrison, Janna L; Orgeig, Sandra

    2009-06-01

    Women at risk of preterm labor are commonly treated with antenatal glucocorticoids to reduce neonatal complications, including respiratory distress syndrome. Despite the benefits of antenatal glucocorticoid for neonatal lung function, they are associated with negative cardiovascular outcomes. Among this population, there is a group of intrauterine growth-restricted fetuses in which substrate supply is reduced and these fetuses must undergo a range of cardiovascular adaptations to survive. Interestingly, the cardiovascular changes caused by antenatal glucocorticoid in normally grown fetuses are contrary to the cardiovascular adaptations that the intrauterine growth-restricted fetus must make to survive. Hence, the possibility exists that antenatal glucocorticoid in intrauterine growth-restricted infants may compromise cardiovascular development. This review first provides an overview of general antenatal glucocorticoid effects, before outlining the effects on cardiorespiratory development in normally grown fetuses, the cardiovascular adaptations that occur in the intrauterine growth-restricted fetus and finally integrating this with the very limited evidence for the effect of antenatal glucocorticoid in intrauterine growth-restricted infants.

  16. Midtrimester preterm prelabour rupture of membranes (PPROM): expectant management or amnioinfusion for improving perinatal outcomes (PPROMEXIL - III trial).

    PubMed

    van Teeffelen, Augustinus S P; van der Ham, David P; Willekes, Christine; Al Nasiry, Salwan; Nijhuis, Jan G; van Kuijk, Sander; Schuyt, Ewoud; Mulder, Twan L M; Franssen, Maureen T M; Oepkes, Dick; Jansen, Fenna A R; Woiski, Mallory D; Bekker, Mireille N; Bax, Caroline J; Porath, Martina M; de Laat, Monique W M; Mol, Ben W; Pajkrt, Eva

    2014-04-04

    Babies born after midtrimester preterm prelabour rupture of membranes (PPROM) are at risk to develop neonatal pulmonary hypoplasia. Perinatal mortality and morbidity after this complication is high. Oligohydramnios in the midtrimester following PPROM is considered to cause a delay in lung development. Repeated transabdominal amnioinfusion with the objective to alleviate oligohydramnios might prevent this complication and might improve neonatal outcome. Women with PPROM and persisting oligohydramnios between 16 and 24 weeks gestational age will be asked to participate in a multi-centre randomised controlled trial. random allocation to (repeated) abdominal amnioinfusion (intervention) or expectant management (control). The primary outcome is perinatal mortality. Secondary outcomes are lethal pulmonary hypoplasia, non-lethal pulmonary hypoplasia, survival till discharge from NICU, neonatal mortality, chronic lung disease (CLD), number of days ventilatory support, necrotizing enterocolitis (NEC), periventricular leucomalacia (PVL) more than grade I, severe intraventricular hemorrhage (IVH) more than grade II, proven neonatal sepsis, gestational age at delivery, time to delivery, indication for delivery, successful amnioinfusion, placental abruption, cord prolapse, chorioamnionitis, fetal trauma due to puncture. The study will be evaluated according to intention to treat. To show a decrease in perinatal mortality from 70% to 35%, we need to randomise two groups of 28 women (two sided test, β-error 0.2 and α-error 0.05). This study will answer the question if (repeated) abdominal amnioinfusion after midtrimester PPROM with associated oligohydramnios improves perinatal survival and prevents pulmonary hypoplasia and other neonatal morbidities. Moreover, it will assess the risks associated with this procedure. NTR3492 Dutch Trial Register (http://www.trialregister.nl).

  17. Septicemic pasteurellosis in free-ranging neonatal pronghorn in Oregon

    USGS Publications Warehouse

    Dunbar, Michael R.; Wolcott, Mark J.; Rimler, R.B.; Berlowski, Brenda M.

    2000-01-01

    As part of a study to determine the cause(s) of population decline and low survival of pronghorn (Antilocapra americana) neonates on Hart Mountain National Antelope Refuge (HMNAR), Oregon (USA), 55 of 104 neonates captured during May 1996 and 1997 were necropsied (n = 28, 1996; n = 27, 1997) to determine cause of death. Necropsies were conducted on fawns that died during May, June, or July of each year. The objectives of this study were to report the occurrence and pathology of pasteurellosis in neonates and determine if the isolated strain of Pasteurella multocida was unique. Septicemic pasteurellosis, caused by P. multocida, was diagnosed as the cause of death for two neonates in May and June 1997. Necropsy findings included widely scattered petechial and ecchymotic hemorrhages found over a large portion of the subcutaneous tissue, meninges of the brain, epicardium, skeletal muscle, and serosal surface of the thorasic and abdominal cavities. Histological examination of lung tissues revealed diffuse congestion and edema and moderate to marked multifocal infiltrate of macrophages, neutrophils, and numerous bacteria within many terminal bronchioles and alveoli. Pasteurella multocida serotypes A:3,4, and B:1 were isolated from several tissues including lung, intestinal, thorasic fluid, and heart blood. Each B:1 isolate had DNA restriction endonuclease fingerprint profiles distinct from isolates previously characterized from domestic cattle, swan (Olor spp.), moose (Alces alces), and pronghorn from Montana (USA). This is the first report of pasteurellosis in pronghorn from Oregon and the B:1 isolates appear to be unique in comparison to DNA fingerprint profiles from selected domestic and wild species.

  18. Specific Activation of K-RasG12D Allele in the Bladder Urothelium Results in Lung Alveolar and Vascular Defects

    PubMed Central

    Kanasaki, Megumi; Vong, Sylvia; Rovira, Carlota; Kalluri, Raghu

    2014-01-01

    K-ras is essential for embryogenesis and its mutations are involved in human developmental syndromes and cancer. To determine the consequences of K-ras activation in urothelium, we used uroplakin-II (UPK II) promoter driven Cre recombinase mice and generated mice with mutated KrasG12D allele in the urothelium (UPK II-Cre;LSL-K-rasG12D). The UPK II-Cre;LSL-K-rasG12D mice died neonatally due to lung morphogenesis defects consisting of simplification with enlargement of terminal air spaces and dysmorphic pulmonary vasculature. A significant alteration in epithelial and vascular basement membranes, together with fragmentation of laminin, points to extracellular matrix degradation as the causative mechanism of alveolar and vascular defects. Our data also suggest that altered protease activity in amniotic fluid might be associated with matrix defects in lung of UPK II-Cre;LSL-K-rasG12. These defects resemble those observed in early stage human neonatal bronchopulmonary dysplasia (BPD), although the relevance of this new mouse model for BPD study needs further investigation. PMID:24760005

  19. Salmonella meningoencephalomyelitis in a northern fur seal (Callorhinus ursinsus)

    USGS Publications Warehouse

    Stroud, R.K.; Roelke, M.E.

    1980-01-01

    Salmonella enteritidis was isolated from the brain of a neonatal northern fur seal (Callorhinus ursinus) with gross and microscopic lesions of meningoencephalomyelitis. Microscopic lesions in the liver and lung suggested septicemia.

  20. Toward improving mucosal barrier defenses: rhG-CSF plus IgG antibody.

    PubMed

    Simmonds, Aryeh; LaGamma, Edmund F

    2006-11-01

    Epithelial cell functions ultimately define the ability of the extremely low birth weight human fetus to survive outside of the uterus. These specialized epithelial cell capacities manage all human interactions with the ex utero world including: (i) lung mechanics, surface chemistry and gas exchange, (ii) renal tubular balance of fluid and electrolytes, (iii) barrier functions of the intestine and skin for keeping bacteria out and water in, plus enabling intestinal digestion, as well as (iv) maintaining an intact neuroepithelium lining of the ventricles of the brain and retina. In Part I of this two part review, the authors describe why the gut barrier is a clinically relevant model system for studying the complex interplay between innate and adaptive immunity, dendritic &epithelial cell interactions, intraepithelial lymphocytes, M-cells, as well as the gut associated lymphoid tissues where colonization after birth, clinician feeding practices, use of antibiotics as well as exposure to prebiotics, probiotics and maternal vaginal flora all program the neonate for a life-time of immune competence distinguishing "self" from foreign antigens. These barrier defense capacities become destructive during disease processes like necrotizing enterocolitis (NEC) when an otherwise maturationally normal, yet dysregulated and immature, immune defense system is associated with high levels of certain inflammatory mediators like TNFa. In Part II the authors discuss the rationale for why rhG-CSF has theoretical advantages in managing NEC or sepsis by augmenting neonatal neutrophil number, neutrophil expression of Fcg and complement receptors, as well as phagocytic function and oxidative burst. rhG-CSF also has potent anti-TNFa functions that may serve to limit extension of tissue destruction while not impairing bacterial killing capacity. Healthy, non-infected neutropenic and septic neonates differ in their ability to respond to rhG-CSF; however, no neonatal clinical trials to date have identified a clear clinical benefit of rhG-CSF therapy. This manuscript will review the literature and evidence available for identifying the ideal subject for cytokine treatment using NEC as the model disease target.

  1. Prediction of postnatal outcomes in fetuses with isolated congenital diaphragmatic hernias using different lung-to-head ratio measurements.

    PubMed

    Kehl, Sven; Siemer, Jörn; Brunnemer, Suna; Weiss, Christel; Eckert, Sven; Schaible, Thomas; Sütterlin, Marc

    2014-05-01

    The purpose of this study was to compare different methods for measuring the fetal lung area-to-head circumference ratio and to investigate their prediction of postpartum survival and the need for neonatal extracorporeal membrane oxygenation (ECMO) therapy in fetuses with isolated congenital diaphragmatic hernias. This prospective study included 118 fetuses of at least 20 weeks' gestation with isolated left-sided congenital diaphragmatic hernias. The lung-to-head ratio was measured with 3 different methods (longest diameter, anteroposterior diameter, and tracing). To eliminate the influence of gestational age, the observed-to-expected lung-to-head ratio was calculated. Receiver operating characteristic (ROC) curves were calculated for the statistical prediction of survival and need for ECMO therapy by the observed-to-expected lung-to-head ratio measured with the different methods. For survival and ECMO necessity 118 and 102 cases (16 neonates were not eligible for ECMO) were assessed, respectively. For prediction of postpartum survival and ECMO necessity, the areas under the ROC curves and 95% confidence intervals showed very similar results for the 3 methods for prediction of survival (tracing, 0.8445 [0.7553-0.9336]; longest diameter, 0.8248 [0.7360-0.9136]; and anteroposterior diameter, 0.8002 [0.7075-0.8928]) and for ECMO necessity (tracing, 0.7344 [0.6297-0.8391]; longest diameter, 0.7128 [0.6027-0.8228]; and anteroposterior diameter, 0.7212 [0.6142-0.8281]). Comparisons between the areas under the ROC curves showed that the tracing method was superior to the anteroposterior diameter method in predicting postpartum survival (P = .0300). Lung-to-head ratio and observed-to-expected lung-to-head ratio measurements were shown to accurately predict postnatal survival and the need for ECMO therapy in fetuses with left-sided congenital diaphragmatic hernias. Tracing the limits of the lungs seems to be the favorable method for calculating the fetal lung area.

  2. Increased airway reactivity in a neonatal mouse model of Continuous Positive Airway Pressure (CPAP)

    PubMed Central

    Mayer, Catherine A.; Martin, Richard J.; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure (CPAP) is a primary form of respiratory support used in the intensive care of preterm infants, but its long-term effects on airway (AW) function are unknown. Methods We developed a neonatal mouse model of CPAP treatment to determine whether it modifies later AW reactivity. Un-anesthetized spontaneously breathing mice were fitted with a mask to deliver CPAP (6cmH2O, 3hrs/day) for 7 consecutive days starting at postnatal day 1. Airway reactivity to methacholine was assessed using the in vitro living lung slice preparation. Results One week of CPAP increased AW responsiveness to methacholine in male, but not female mice, compared to untreated control animals. The AW hyper-reactivity of male mice persisted for 2 weeks (at P21) after CPAP treatment ended. 4 days of CPAP, however, did not significantly increase AW reactivity. Females also exhibited AW hyper-reactivity at P21, suggesting a delayed response to early (7 days) CPAP treatment. The effects of 7 days of CPAP on hyper-reactivity to methacholine were unique to smaller AWs whereas larger ones were relatively unaffected. Conclusion These data may be important to our understanding of the potential long-term consequences of neonatal CPAP therapy used in the intensive care of preterm infants. PMID:25950451

  3. Aerophagia and anesthesia: an unusual cause of ventilatory insufficiency in a neonate.

    PubMed

    Lalwani, Kirk

    2005-10-01

    We describe a healthy neonate with abdominal distention, inadequate ventilation, and delayed extubation during anesthesia for minor surgery. Following rectal decompression and successful extubation, extreme abdominal distention recurred postoperatively after ingestion of clear fluids. We elicited a history of frequent and excessive flatus from the parents, and abdominal radiography revealed distended loops of small bowel with small lung volumes suggestive of aerophagia. The differential diagnosis of aerophagia is reviewed, the anesthetic implications discussed, and relevant literature pertaining to this condition summarized.

  4. Neonatal pulmonary physiology.

    PubMed

    Davis, Ryan P; Mychaliska, George B

    2013-11-01

    Managing pulmonary issues faced by both term and preterm infants remains a challenge to the practicing pediatric surgeon. An understanding of normal fetal and neonatal pulmonary development and physiology is the cornerstone for understanding the pathophysiology and treatment of many congenital and acquired problems in the neonate. Progression through the phases of lung development and the transition to postnatal life requires a symphony of complex and overlapping events to work in concert for smooth and successful transition to occur. Pulmonary physiology and oxygen transport in the neonate are similar to older children; however, there are critical differences that are important to take into consideration when treating the youngest of patients. Our understanding of fetal and neonatal pulmonary physiology continues to evolve as the molecular and cellular events governing these processes are better understood. This deeper understanding has helped to facilitate groundbreaking research, leading to improved technology and treatment of term and preterm infants. As therapeutics and research continue to advance, a review of neonatal pulmonary physiology is essential to assist the clinician with his/her management of the wide variety of challenging congenital and acquired pulmonary disease. © 2013 Published by Elsevier Inc.

  5. Midtrimester preterm prelabour rupture of membranes (PPROM): expectant management or amnioinfusion for improving perinatal outcomes (PPROMEXIL – III trial)

    PubMed Central

    2014-01-01

    Background Babies born after midtrimester preterm prelabour rupture of membranes (PPROM) are at risk to develop neonatal pulmonary hypoplasia. Perinatal mortality and morbidity after this complication is high. Oligohydramnios in the midtrimester following PPROM is considered to cause a delay in lung development. Repeated transabdominal amnioinfusion with the objective to alleviate oligohydramnios might prevent this complication and might improve neonatal outcome. Methods/Design Women with PPROM and persisting oligohydramnios between 16 and 24 weeks gestational age will be asked to participate in a multi-centre randomised controlled trial. Intervention: random allocation to (repeated) abdominal amnioinfusion (intervention) or expectant management (control). The primary outcome is perinatal mortality. Secondary outcomes are lethal pulmonary hypoplasia, non-lethal pulmonary hypoplasia, survival till discharge from NICU, neonatal mortality, chronic lung disease (CLD), number of days ventilatory support, necrotizing enterocolitis (NEC), periventricular leucomalacia (PVL) more than grade I, severe intraventricular hemorrhage (IVH) more than grade II, proven neonatal sepsis, gestational age at delivery, time to delivery, indication for delivery, successful amnioinfusion, placental abruption, cord prolapse, chorioamnionitis, fetal trauma due to puncture. The study will be evaluated according to intention to treat. To show a decrease in perinatal mortality from 70% to 35%, we need to randomise two groups of 28 women (two sided test, β-error 0.2 and α-error 0.05). Discussion This study will answer the question if (repeated) abdominal amnioinfusion after midtrimester PPROM with associated oligohydramnios improves perinatal survival and prevents pulmonary hypoplasia and other neonatal morbidities. Moreover, it will assess the risks associated with this procedure. Trial registration NTR3492 Dutch Trial Register (http://www.trialregister.nl). PMID:24708702

  6. Inflammation-induced preterm lung maturation: lessons from animal experimentation.

    PubMed

    Moss, Timothy J M; Westover, Alana J

    2017-06-01

    Intrauterine inflammation, or chorioamnionitis, is a major contributor to preterm birth. Prematurity per se is associated with considerable morbidity and mortality resulting from lung immaturity but exposure to chorioamnionitis reduces the risk of neonatal respiratory distress syndrome (RDS) in preterm infants. Animal experiments have identified that an increase in pulmonary surfactant production by the preterm lungs likely underlies this decreased risk of RDS in infants exposed to chorioamnionitis. Further animal experimentation has shown that infectious or inflammatory agents in amniotic fluid exert their effects on lung development by direct effects within the developing respiratory tract, and probably not by systemic pathways. Differences in the effects of intrauterine inflammation and glucocorticoids demonstrate that canonical glucocorticoid-mediated lung maturation is not responsible for inflammation-induced changes in lung development. Animal experimentation is identifying alternative lung maturational pathways, and transgenic animals and cell culture techniques will allow identification of novel mechanisms of lung maturation that may lead to new treatments for the prevention of RDS. Copyright © 2016. Published by Elsevier Ltd.

  7. Cell type-dependent variation in paracrine potency determines therapeutic efficacy against neonatal hyperoxic lung injury.

    PubMed

    Ahn, So Yoon; Chang, Yun Sil; Sung, Dong Kyung; Yoo, Hye Soo; Sung, Se In; Choi, Soo Jin; Park, Won Soon

    2015-08-01

    The aim of this study was to determine the optimal cell type for transplantation to protect against neonatal hyperoxic lung injury. To this end, the in vitro and in vivo therapeutic efficacies and paracrine potencies of human umbilical cord blood-derived mesenchymal stromal cells (HUMs), human adipose tissue-derived mesenchymal stromal cells (HAMs) and human umbilical cord blood mononuclear cells (HMNs) were compared. Hyperoxic injury was induced in vitro in A549 cells by challenge with H2O2. Alternatively, hyperoxic injury was induced in newborn Sprague-Dawley rats in vivo by exposure to hyperoxia (90% oxygen) for 14 days. HUMs, HAMs or HMNs (5 × 10(5) cells) were given intratracheally at postnatal day 5. Hyperoxia-induced increases in in vitro cell death and in vivo impaired alveolarization were significantly attenuated in both the HUM and HAM groups but not in the HMN group. Hyperoxia impaired angiogenesis, increased the cell death and pulmonary macrophages and elevated inflammatory cytokine levels. These effects were significantly decreased in the HUM group but not in the HAM or HMN groups. The levels of human vascular endothelial growth factor and hepatocyte growth factor produced by donor cells were highest in HUM group, followed by HAM group and then HMN group. HUMs exhibited the best therapeutic efficacy and paracrine potency than HAMs or HMNs in protecting against neonatal hyperoxic lung injury. These cell type-dependent variations in therapeutic efficacy might be associated or mediated with the paracrine potency of the transplanted donor cells. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Wearable sensors for patient-specific boundary shape estimation to improve the forward model for electrical impedance tomography (EIT) of neonatal lung function.

    PubMed

    Khor, Joo Moy; Tizzard, Andrew; Demosthenous, Andreas; Bayford, Richard

    2014-06-01

    Electrical impedance tomography (EIT) could be significantly advantageous to continuous monitoring of lung development in newborn and, in particular, preterm infants as it is non-invasive and safe to use within the intensive care unit. It has been demonstrated that accurate boundary form of the forward model is important to minimize artefacts in reconstructed electrical impedance images. This paper presents the outcomes of initial investigations for acquiring patient-specific thorax boundary information using a network of flexible sensors that imposes no restrictions on the patient's normal breathing and movements. The investigations include: (1) description of the basis of the reconstruction algorithms, (2) tests to determine a minimum number of bend sensors, (3) validation of two approaches to reconstruction and (4) an example of a commercially available bend sensor and its performance. Simulation results using ideal sensors show that, in the worst case, a total shape error of less than 6% with respect to its total perimeter can be achieved.

  9. Volume Oscillations Delivered to a Lung Model Using 4 Different Bubble CPAP Systems.

    PubMed

    Poli, Jonathan A; Richardson, C Peter; DiBlasi, Robert M

    2015-03-01

    High-frequency pressure oscillations created by gas bubbling through an underwater seal during bubble CPAP may enhance ventilation and aid in lung recruitment in premature infants. We hypothesized that there are no differences in the magnitude of oscillations in lung volume (ΔV) in a preterm neonatal lung model when different bubble CPAP systems are used. An anatomically realistic replica of an infant nasal airway model was attached to a Silastic test lung sealed within a calibrated plethysmograph. Nasal prongs were affixed to the simulated neonate and supported using bubble CPAP systems set at 6 cm H2O. ΔV was calculated using pressure measurements obtained from the plethysmograph. The Fisher & Paykel Healthcare bubble CPAP system provided greater ΔV than any of the other devices at all of the respective bias flows (P < .05). The Fisher & Paykel Healthcare and Babi.Plus systems generally provided ΔV at lower frequencies than the other bubble CPAP systems. The magnitude of ΔV increased at bias flows of > 4 L/min in the Fisher & Paykel Healthcare, Airways Development, and homemade systems, but appeared to decrease as bias flow increased with the Babi.Plus system. The major finding of this study is that bubble CPAP can provide measureable ventilation effects in an infant lung model. We speculate that the differences noted in ΔV between the different devices are a combination of the circuit/nasal prong configuration, bubbler configuration, and frequency of oscillations. Additional testing is needed in spontaneously breathing infants to determine whether a physiologic benefit exists when using the different bubble CPAP systems. Copyright © 2015 by Daedalus Enterprises.

  10. State of the Art: Neonatal Non-invasive Respiratory Support: Physiological Implications

    PubMed Central

    Shaffer, Thomas H.; Alapati, Deepthi; Greenspan, Jay S.; Wolfson, Marla R.

    2013-01-01

    Summary The introduction of assisted ventilation for neonatal pulmonary insufficiency has resulted in the successful treatment of many previously fatal diseases. During the past three decades, refinement of invasive mechanical ventilation techniques has dramatically improved survival of many high-risk neonates. However, as with many advances in medicine, while mortality has been reduced, morbidity has increased in the surviving high-risk neonate. In this regard, introduction of assisted ventilation has been associated with chronic lung injury, also known as bronchopulmonary dysplasia. This disease, unknown prior to the appearance of mechanical ventilation, has produced a population of patients characterized by ventilator or oxygen dependence with serious accompanying pulmonary and neurodevelopmental morbidity. The purpose of this article is to review non-invasive respiratory support methodologies to address the physiologic mechanisms by which these methods may prevent the pathophysiologic effects of invasive mechanical ventilation. PMID:22777738

  11. [Morphometry of pulmonary tissue: From manual to high throughput automation].

    PubMed

    Sallon, C; Soulet, D; Tremblay, Y

    2017-12-01

    Weibel's research has shown that any alteration of the pulmonary structure has effects on function. This demonstration required a quantitative analysis of lung structures called morphometry. This is possible thanks to stereology, a set of methods based on principles of geometry and statistics. His work has helped to better understand the morphological harmony of the lung, which is essential for its proper functioning. An imbalance leads to pathophysiology such as chronic obstructive pulmonary disease in adults and bronchopulmonary dysplasia in neonates. It is by studying this imbalance that new therapeutic approaches can be developed. These advances are achievable only through morphometric analytical methods, which are increasingly precise and focused, in particular thanks to the high-throughput automation of these methods. This review makes a comparison between an automated method that we developed in the laboratory and semi-manual methods of morphometric analyzes. The automation of morphometric measurements is a fundamental asset in the study of pulmonary pathophysiology because it is an assurance of robustness, reproducibility and speed. This tool will thus contribute significantly to the acceleration of the race for the development of new drugs. Copyright © 2017 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  12. Regulated overexpression of interleukin 11 in the lung. Use to dissociate development-dependent and -independent phenotypes.

    PubMed Central

    Ray, P; Tang, W; Wang, P; Homer, R; Kuhn, C; Flavell, R A; Elias, J A

    1997-01-01

    Standard overexpression transgenic approaches are limited in their ability to model waxing and waning diseases and frequently superimpose development-dependent and -independent phenotypic manifestations. We used the clara cell 10-kD protein (CC10) promoter and the reverse tetracycline transactivator (rtTA) to create a lung-specific, externally regulatable, overexpression transgenic system and used this system to express human interleukin 11 (IL-11) in respiratory structures. Gene induction could be achieved in utero, in neonates and in adult animals. Moreover, gene expression could be turned off by removal of the inducing stimulus. When gene activation was initiated in utero and continued into adulthood, subepithelial airway fibrosis, peribronchiolar mononuclear nodules, and alveolar enlargement (emphysema) were noted. Induction in the mature lung caused airway remodeling and peribronchiolar nodules, but alveolar enlargement was not appreciated. In contrast, induction in utero and during the first 14 d of life caused alveolar enlargement without airway remodeling or peribronchiolar nodules. Thus, IL-11 overexpression causes abnormalities that are dependent (large alveoli) and independent (airway remodeling, peribronchiolar nodules) of lung growth and development, and the CC10-rtTA system can be used to differentiate among these effector functions. The CC10-rtTA transgenic system can be used to model waxing and waning, childhood and growth and development-related biologic processes with enhanced fidelity. PMID:9366564

  13. Special Considerations in Neonatal Mechanical Ventilation.

    PubMed

    Dalgleish, Stacey; Kostecky, Linda; Charania, Irina

    2016-12-01

    Care of infants supported with mechanical ventilation is complex, time intensive, and requires constant vigilance by an expertly prepared health care team. Current evidence must guide nursing practice regarding ventilated neonates. This article highlights the importance of common language to establish a shared mental model and enhance clear communication among the interprofessional team. Knowledge regarding the underpinnings of an open lung strategy and the interplay between the pathophysiology and individual infant's response to a specific ventilator strategy is most likely to result in a positive clinical outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Role of Mutant CFTR in Hypersusceptibility of Cystic Fibrosis Patients to Lung Infections

    NASA Astrophysics Data System (ADS)

    Pier, Gerald B.; Grout, Martha; Zaidi, Tanweer S.; Olsen, John C.; Johnson, Larry G.; Yankaskas, James R.; Goldberg, Joanna B.

    1996-01-01

    Cystic fibrosis (CF) patients are hypersusceptible to chronic Pseudomonas aeruginosa lung infections. Cultured human airway epithelial cells expressing the ΔF508 allele of the cystic fibrosis transmembrane conductance regulator (CFTR) were defective in uptake of P. aeruginosa compared with cells expressing the wild-type allele. Pseudomonas aeruginosa lipopolysaccharide (LPS)-core oligosaccharide was identified as the bacterial ligand for epithelial cell ingestion; exogenous oligosaccharide inhibited bacterial ingestion in a neonatal mouse model, resulting in increased amounts of bacteria in the lungs. CFTR may contribute to a host-defense mechanism that is important for clearance of P. aeruginosa from the respiratory tract.

  15. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer.

    PubMed

    Baker, Kristi; Rath, Timo; Flak, Magdalena B; Arthur, Janelle C; Chen, Zhangguo; Glickman, Jonathan N; Zlobec, Inti; Karamitopoulou, Eva; Stachler, Matthew D; Odze, Robert D; Lencer, Wayne I; Jobin, Christian; Blumberg, Richard S

    2013-12-12

    Cancers arising in mucosal tissues account for a disproportionately large fraction of malignancies. Immunoglobulin G (IgG) and the neonatal Fc receptor for IgG (FcRn) have an important function in the mucosal immune system that we have now shown extends to the induction of CD8(+) T cell-mediated antitumor immunity. We demonstrate that FcRn within dendritic cells (DCs) was critical for homeostatic activation of mucosal CD8(+) T cells that drove protection against the development of colorectal cancers and lung metastases. FcRn-mediated tumor protection was driven by DCs activation of endogenous tumor-reactive CD8(+) T cells via the cross-presentation of IgG complexed antigens (IgG IC), as well as the induction of cytotoxicity-promoting cytokine secretion, particularly interleukin-12, both of which were independently triggered by the FcRn-IgG IC interaction in murine and human DCs. FcRn thus has a primary role within mucosal tissues in activating local immune responses that are critical for priming efficient anti-tumor immunosurveillance. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Drug-induced apnea.

    PubMed

    Boutroy, M J

    1994-01-01

    Drugs have been in the past and will in the future still be liable to induce apnea in neonates, infants and older children. At these different stages of development, the child may be abnormally vulnerable to respiratory disorders and apnea, and doses of drugs, without any abnormal side effects in adult patients, can be harmful in younger subjects. Drugs responsible for apnea during development are numerous, but more than half of the problems are induced by sedatives and hypnotics, among which phenothiazines, barbiturates, benzodiazepines (included transplacentally acquired) and general anesthetics are a few. Other pharmacological families are apnea inducers in the neonatal period and childhood: analgesics and opioid narcotics, agents acting at the levels of neuromuscular function and autonomic ganglia, and cardiovascular agents. The pathogenesis of these apneas depends on the disturbance of any mechanism responsible for the respiratory activity: medullary centers and brain stem structures, afferent influx to CNS, sleep stages, upper airways, lungs and respiratory muscles. At key stages such as birth and infancy, drugs may emphasize the particular sensitivity of the mechanisms responsible for inducing apnea. This might explain unexpected respiratory disorders during development.

  17. Perinatal Mortality Associated with Positive Postmortem Cultures for Common Oral Flora.

    PubMed

    He, Mai; Migliori, Alison R; Lauro, Patricia; Sung, C James; Pinar, Halit

    2017-01-01

    Introduction . To investigate whether maternal oral flora might be involved in intrauterine infection and subsequent stillbirth or neonatal death and could therefore be detected in fetal and neonatal postmortem bacterial cultures. Methods . This retrospective study of postmortem examinations from 1/1/2000 to 12/31/2010 was searched for bacterial cultures positive for common oral flora from heart blood or lung tissue. Maternal age, gestational age, age at neonatal death, and placental and fetal/neonatal histopathological findings were collected. Results . During the study period 1197 postmortem examinations (861 stillbirths and 336 neonatal deaths) were performed in our hospital with gestational ages ranging from 13 to 40+ weeks. Cultures positive for oral flora were identified in 24 autopsies including 20 pure and 8 mixed growths (26/227, 11.5%), found in 16 stillbirths and 8 neonates. Microscopic examinations of these 16 stillbirths revealed 8 with features of infection and inflammation in fetus and placenta. The 7 neonatal deaths within 72 hours after birth grew 6 pure isolates and 1 mixed, and 6 correlated with fetal and placental inflammation. Conclusions . Pure isolates of oral flora with histological evidence of inflammation/infection in the placenta and fetus or infant suggest a strong association between maternal periodontal conditions and perinatal death.

  18. Neonatal morbidity in moderately preterm infants: a Swedish national population-based study.

    PubMed

    Altman, Maria; Vanpée, Mireille; Cnattingius, Sven; Norman, Mikael

    2011-02-01

    To determine the gestational age (GA)-specific risks for neonatal morbidity and use of interventions in infants born at 30 to 34 completed gestational weeks. A population-based Swedish study including 6674 infants born during 2004-2008. Risks for neonatal morbidity and use of interventions were investigated with respect to GA and birth weight standard deviation scores. Acute lung disorder was diagnosed in 28%, hypoglycemia in 16%, bacterial infection in 15% and hyperbilirubinemia in 59% of the infants. Thirty-eight percent had received antenatal steroid therapy, 43% nasal continuous positive airway pressure, 5.5% required mechanical ventilation, 5.2% were treated with surfactant, and 30% with antibiotic therapy. Neonatal morbidity rates increased with decreasing GA, with odds ratios for different outcomes ranging from 2.1 to 23 at 30 weeks compared with 34 weeks of GA. Low birth weight standard deviation scores was more common at lower GA and was associated with increased morbidity rates. Despite general advances in perinatal care, moderately preterm infants still have substantially increased risks for neonatal morbidity. Whereas the neonatal morbidity rate was similar to results of previous reports, management of respiratory problems differed markedly from other studies. Copyright © 2011 Mosby, Inc. All rights reserved.

  19. [Dynamic changes of lung function in infant of different gestational ages].

    PubMed

    Qi, Li-feng; Yu, Jia-lin; Liu, Xiao-hong; Wei, Min-chao

    2013-06-25

    To explore the dynamic changes of lung function in infants born at different gestational ages without respiratory complications. A total of 110 cases of hospitalized neonatal patients were retrospectively recruited and analyzed at Shenzhen Children's Hospital from July 2010 to August 2012. By gestational age they were divided into 3 groups of full term (37-40 weeks, n = 55, 29 males and 26 females) with an average birth weight (3.1 ± 0.3) kg, late preterm group (34- < 37 weeks, n = 30, 18 males and 12 females) with an average birth weight (2.1 ± 0.3) kg and early preterm (<34 weeks, n = 25, 16 males and 9 females )with an average birth weight (1.4 ± 0.3) kg. At Days 1, 14 and 28, lung function parameters of functional residual capacity (FRC) and lung clear index (LCI) were measured by multiple breath washouts with an ultrasonic flow meter and tidal breathing. One-way ANOVA was used for each index. Tidal expiratory flow 75% remaining tidal volume (TEF75), tidal expiratory flow 50% remaining tidal volume (TEF50) and tidal expiratory flow 25% remaining tidal volume (TEF25) gradually increased at Days 1, 14 and 28 in 3 groups. However respiratory rate (RR) gradually decreased. Compared with full term and late preterm, the early preterm infants had lower TEF75, TEF50 and TEF25, lower the ratios of time to peak expiratory flow and expiratory time (TPTEF/TE), lower ratios of volume to peak expiratory flow and expiratory volume (VPEF/VE) ((71 ± 21) and (66 ± 16) vs (55 ± 19)ml/s, (70 ± 20) and (62 ± 17) vs (51 ± 16)ml/s, (54 ± 17) and (51 ± 13) vs (38 ± 10)ml/s, 37% ± 8% and 34% ± 9% vs 29% ± 6%, 38% ± 6% and 33% ± 8% vs 28% ± 7%, F = 5.82, 8.74, 11.30, 7.72, 16.40, all P < 0.01), higher RR and LCI at Day 28((49 ± 6) and (51 ± 8) vs (56 ± 7)/min, 8.6 ± 2.7 and 8.9 ± 2.2 vs 10.8 ± 2.0,F = 10.09, 7.15, both P < 0.05). At a matched post-menstrual age of 40 weeks, compared with full term and late preterm, the early preterm group had lower TEF50, TEF25, TPTEF/TE, VPEF/VE ((65 ± 21) and (62 ± 12) vs (50 ± 17)ml/s,(51 ± 13) and (47 ± 10) vs (39 ± 10)ml/s, 36% ± 8% and 31% ± 7% vs 30% ± 6%, 37% ± 10% and 32% ± 8% vs 29% ± 6%,F = 4.41, 8.23, 9.08, 7.35, all P < 0.05). Lung function improves with the elongation of days. The parameters of lung function in early infants are worse than those in full and late-preterm counterparts. At a corrected gestational age of 40 weeks, early preterm infants fail to achieve catch-up growth in lung function. Dynamic monitoring of lung function in preterm infants of different gestational ages is of vital importance for gauging respiratory maturity and assessing lung development especially for preterm infants.

  20. Vitamin E toxicity in neonatal piglets.

    PubMed

    Hale, T W; Rais-Bahrami, K; Montgomery, D L; Harkey, C; Habersang, R W

    1995-01-01

    Intravenous vitamin E was associated with the deaths of 38 infants in the US in 1984. Because the vitamin E preparation used contained both vitamin E and a high level of polysorbate detergent, the etiology of the syndrome remains unknown. In this study, we determined the tissue disposition of an intravenous preparation of vitamin E solubilized with polysorbate (E-Ferol) in neonatal piglets. One to two-day-old piglets were injected daily with 50 IU/kg/d of vitamin E for a period of 13 days. Other groups were injected intramuscularly, or with a slow, 7 h intravenous infusion with 50 IU/kg/d vitamin E for six days. Massive splenic accumulation of vitamin E (16,004 micrograms/g vs 73 micrograms/g in controls) occurred following rapid injection, with far lesser concentrations in the liver and lung. Levels of vitamin E in the kidney and heart were only slightly above control. Tissue changes correlated with dosage and duration of vitamin E administration and suggested massive accumulation of vitamin E in cells of the mononuclear phagocyte system. Following slow intravenous infusion the highest levels of vitamin E occurred in the liver rather than spleen. Intramuscular injections at similar doses produced slight, but insignificant changes in tissue levels of vitamin E. We speculate that rapid intravenous injection of vitamin E emulsions produces massive accumulation in phagocytic cells of the spleen and to a lesser extent liver and lung, possibly leading to increased susceptibility to sepsis and/or abnormal pulmonary function. Slow infusions of vitamin E produce major accumulations in the liver rather than spleen.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. 'End-stage' heart failure therapy: potential lessons from congenital heart disease: from pulmonary artery banding and interatrial communication to parallel circulation.

    PubMed

    Schranz, Dietmar; Akintuerk, Hakan; Voelkel, Norbert F

    2017-02-15

    The final therapy of 'end-stage heart failure' is orthotopic heart, lung or heart-lung transplantation. However, these options are not available for many patients worldwide. Therefore, novel therapeutical strategies are needed. Based on pathophysiological insights regarding (1) the long-term impact of an obstructive pulmonary outflow tract in neonates with congenitally corrected transposition of the great arteries, (2) the importance of a restrictive versus a non-restrictive atrial septum in neonates born with a borderline left ventricle and (3) the significance of both, a patent foramen ovale and/or open ductus arteriosus for survival of newborns with persistent pulmonary hypertension, the current review introduces some therapeutical strategies that may be applicable to selected patients with heart failure. These strategies include (1) reversible pulmonary artery banding in left ventricular-dilated cardiomyopathy with preserved right ventricular function, (2) the creation of restrictive interatrial communication to treat diastolic (systolic) heart failure, (3) atrioseptostomy or reverse Potts shunt in pulmonary arterial hypertension and (4) return to a fetal, parallel circulation by combining atrioseptostomy and reversed Potts shunt with or without placement of a bilateral pulmonary artery banding. While still being experimental, it is hoped that the procedures presented in the current overview will inspire future novel therapeutic strategies that may be applicable to selected patients with heart failure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Transcriptome Analysis in Prenatal IGF1-Deficient Mice Identifies Molecular Pathways and Target Genes Involved in Distal Lung Differentiation

    PubMed Central

    Hernández-Porras, Isabel; López, Icíar Paula; De Las Rivas, Javier; Pichel, José García

    2013-01-01

    Background Insulin-like Growth Factor 1 (IGF1) is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R) controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. Methods/Principal Findings Prenatal Igf1−/− mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1−/− E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1−/− lungs. IGF1 addition to Igf1−/− embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. Conclusions/Significance We demonstrated the functional tissue specific implication of IGF1 on fetal lung development in mice. Results revealed novel target genes and gene networks mediators of IGF1 action on pulmonary cellular proliferation, differentiation, adhesion and immunity, and on vascular and distal epithelium maturation during prenatal lung development. PMID:24391734

  3. Down-regulation of lung Kruppel-like factor in the nitrofen-induced hypoplastic lung.

    PubMed

    Lukošiūtė, A; Doi, T; Dingemann, J; Ruttenstock, E M; Puri, P

    2011-01-01

    Pulmonary hypoplasia is a primary cause of high morbidity and mortality in neonates with Congenital Diaphragmatic Hernia (CDH). However, the precise pathogenesis of PH associated with CDH is still not clearly understood. It has been recently reported that lung Kruppel-like factor (LKLF), a member of the Kruppel-like factor family of transcription factors, is predominantly expressed in lungs and plays an important role in lung morphogenesis and functional maturation. It has been reported that homozygous deletion of LKLF gene in mice results in reduced lung morphogenesis. It is further reported that chimeric mice derived from LKLF (-/-) embryonic stem cells exhibit delayed lung development especially in the later gestational stages. We therefore designed this study to test the hypothesis that the LKLF gene is down-regulated during later stages of lung development in nitrofen-induced hypoplastic lungs. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetal lungs were harvested on D15, D18, and D21 and divided into 3 groups:control, nitrofen without CDH(CDH(-)) and nitrofen with CDH(CDH(+)) (n=24 for each group). Real-time RT-PCR analysis was performed to investigate pulmonary gene expression levels of LKLF. Differences between the 3 groups at each time point were tested statistically and significance was accepted at p<0.05. Immunohistochemistry was also performed to evaluate LKLF protein expression and distribution. The relative mRNA expression levels of LKLF on D18 and D21 were significantly decreased (p<0.01) in CDH(-) and CDH(+) groups compared to controls. The gene expression levels of LKLF on D15 did not differ significantly between the nitrofen group and controls. Immunohistochemical study showed strong LKLF immunoreactivity on D18 and D21 in nitrofen-induced hypoplastic lung compared to controls, whereas no difference was seen on D15. Our results provide evidence for the first time that LKLF is down-regulated in the later stages of lung development in nitrofen-induced hypoplastic lungs. These data suggest that the down-regulation of LKLF during this critical period of lung morphogenesis may impair lung development and maturation, resulting in pulmonary hypoplasia in the nitrofen CDH model. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Effects of recombinant human keratinocyte growth factor on surfactant, plasma, and liver phospholipid homeostasis in hyperoxic neonatal rats.

    PubMed

    Raith, Marco; Schaal, Katharina; Koslowski, Roland; Fehrenbach, Heinz; Poets, Christian F; Schleicher, Erwin; Bernhard, Wolfgang

    2012-04-01

    Respiratory distress and bronchopulmonary dysplasia (BPD) are major problems in preterm infants that are often addressed by glucocorticoid treatment and increased oxygen supply, causing catabolic and injurious side effects. Recombinant human keratinocyte growth factor (rhKGF) is noncatabolic and antiapoptotic and increases surfactant pools in immature lungs. Despite its usefulness in injured neonatal lungs, the mechanisms of improved surfactant homeostasis in vivo and systemic effects on lipid homeostasis are unknown. We therefore exposed newborn rats to 85% vs. 21% oxygen and treated them systemically with rhKGF for 48 h before death at 7 days. We determined type II pneumocyte (PN-II) proliferation, surfactant protein (SP) mRNA expression, and the pulmonary metabolism of individual phosphatidylcholine (PC) species using [D(9)-methyl]choline and tandem mass spectrometry. In addition, we assessed liver and plasma lipid metabolism, addressing PC synthesis de novo, the liver-specific phosphatidylethanolamine methyl transferase (PEMT) pathway, and triglyceride concentrations. rhKGF was found to maintain PN-II proliferation and increased SP-B/C expression and surfactant PC in both normoxic and hyperoxic lungs. We found increased total PC together with decreased [D(9)-methyl]choline enrichment, suggesting decreased turnover rather than increased secretion and synthesis as the underlying mechanism. In the liver, rhKGF increased PC synthesis, both de novo and via PEMT, underlining the organotypic differences of rhKGF actions on lipid metabolism. rhKGF increased the hepatic secretion of newly synthesized polyunsaturated PC, indicating improved systemic supply with choline and essential fatty acids. We suggest that rhKGF has potential as a therapeutic agent in neonates by improving pulmonary and systemic PC homeostasis.

  5. Breath-by-breath analysis of cardiorespiratory interaction for quantifying developmental maturity in premature infants

    PubMed Central

    Rusin, Craig G.; Hudson, John L.; Lee, Hoshik; Delos, John B.; Guin, Lauren E.; Vergales, Brooke D.; Paget-Brown, Alix; Kattwinkel, John; Lake, Douglas E.; Moorman, J. Randall

    2012-01-01

    In healthy neonates, connections between the heart and lungs through brain stem chemosensory pathways and the autonomic nervous system result in cardiorespiratory synchronization. This interdependence between cardiac and respiratory dynamics can be difficult to measure because of intermittent signal quality in intensive care settings and variability of heart and breathing rates. We employed a phase-based measure suggested by Schäfer and coworkers (Schäfer C, Rosenblum MG, Kurths J, Abel HH. Nature 392: 239–240, 1998) to obtain a breath-by-breath analysis of cardiorespiratory interaction. This measure of cardiorespiratory interaction does not distinguish between cardiac control of respiration associated with cardioventilatory coupling and respiratory influences on the heart rate associated with respiratory sinus arrhythmia. We calculated, in sliding 4-min windows, the probability density of heartbeats as a function of the concurrent phase of the respiratory cycle. Probability density functions whose Shannon entropy had a <0.1% chance of occurring from random numbers were classified as exhibiting interaction. In this way, we analyzed 18 infant-years of data from 1,202 patients in the Neonatal Intensive Care Unit at University of Virginia. We found evidence of interaction in 3.3 patient-years of data (18%). Cardiorespiratory interaction increased several-fold with postnatal development, but, surprisingly, the rate of increase was not affected by gestational age at birth. We find evidence for moderate correspondence between this measure of cardiorespiratory interaction and cardioventilatory coupling and no evidence for respiratory sinus arrhythmia, leading to the need for further investigation of the underlying mechanism. Such continuous measures of physiological interaction may serve to gauge developmental maturity in neonatal intensive care patients and prove useful in decisions about incipient illness and about hospital discharge. PMID:22174403

  6. Effect of sustained inflation duration; resuscitation of near-term asphyxiated lambs.

    PubMed

    Klingenberg, Claus; Sobotka, Kristina S; Ong, Tracey; Allison, Beth J; Schmölzer, Georg M; Moss, Timothy J M; Polglase, Graeme R; Dawson, Jennifer A; Davis, Peter G; Hooper, Stuart B

    2013-05-01

    The 2010 ILCOR neonatal resuscitation guidelines do not specify appropriate inflation times for the initial lung inflations in apnoeic newborn infants. The authors compared three ventilation strategies immediately after delivery in asphyxiated newborn lambs. Experimental animal study. Facility for animal research. Eighteen near-term lambs (weight 3.5-3.9 kg) delivered by caesarean section. Asphyxia was induced by occluding the umbilical cord and delaying ventilation onset (10-11 min) until mean carotid blood pressure (CBP) was ≤22 mm Hg. Animals were divided into three groups (n=6) and ventilation started with: (1) inflation times of 0.5 s at a ventilation rate 60/min, (2) five 3 s inflations or (3) a single 30 s inflation. Subsequent ventilation used inflations at 0.5 s at 60/min for all groups. Times to reach a heart rate (HR) of 120 bpm and a mean CBP of 40 mm Hg. Secondary outcome was change in lung compliance. Median time to reach HR 120 bpm and mean CBP 40 mm Hg was significantly shorter in the single 30 s inflation group (8 s and 74 s) versus the 5×3 s inflation group (38 s and 466 s) and the conventional ventilation group (64 s and 264 s). Lung compliance was significantly better in the single 30 s inflation group. A single sustained inflation of 30 s immediately after birth improved speed of circulatory recovery and lung compliance in near-term asphyxiated lambs. This approach for neonatal resuscitation merits further investigation.

  7. Mesenchymal stem cells in combination with erythropoietin repair hyperoxia-induced alveoli dysplasia injury in neonatal mice via inhibition of TGF-β1 signaling.

    PubMed

    Luan, Yun; Zhang, Luan; Chao, Sun; Liu, Xiaoli; Li, Kaili; Wang, Yibiao; Zhang, Zhaohua

    2016-07-26

    The aim of the present study is to investigate the protection effects of bone marrow mesenchymal stem cells (MSCs) in combination with EPO against hyperoxia-induced bronchopulmonary dysplasia (BPD) injury in neonatal mice. BPD model was prepared by continuous high oxygen exposure, 1×106 bone marrow MSCs and 5000U/kg recombinant human erythropoietin (EPO) were injected respectively. Results showed that administration of MSCs, EPO especially MSCs+EPO significant attenuated hyperoxia-induced lung damage with a decrease of fibrosis, radical alveolar counts and inhibition of the occurrence of epithelial-mesenchymal transition (EMT). Furthermore, MSCs+EPO co-treatment more significantly suppressed the levels of transforming growth factor-β1(TGF-β1) than MSCs or EPO alone. Collectively, these results suggested that MSCs, EPO in particular MSCs+EPO co-treatment could promote lung repair in hyperoxia-induced alveoli dysplasia injury via inhibition of TGF-β1 signaling pathway to further suppress EMT process and may be a promising therapeutic strategy.

  8. Preliminary investigation of a possible lung worm (Parafilaroides decorus), fish (Girella nigricans), and marine mammal (Callorhinus ursinus) cycle for San Miguel sea lion virus type 5.

    PubMed

    Smith, A W; Skilling, D E; Brown, R J

    1980-11-01

    Colostrum-deprived neonatal Northern fur seal pups (Callorhinus ursinus) were exposed to San Miguel sea lion virus type 5 (SMSV-5) by feeding them fish (Girella nigricans) infected with virus or fish infected with both the sea lion lung worm larvae (Parafilaroides decorus) and virus. Virus infection was demonstrated in 8 of 9 pups, and 1 of these developed a vesicular lesion on the flipper. In this sequence, P decorus larvae exposed to SMSV-5 were fed to G nigricans held at 15 C in a salt water aquarium; 32 days later, these fish were killed, then fed to the fur seal pups. The vesicle developed 22 days subsequent to this and SMSV-5 was reisolated from the lesion. The SMSV-5 was shown to persist for at least 23 days in infected neonatal fur seals. Attempts to establish P decorus infection in Northern fur seal pups were apparently unsuccessful.

  9. Cystic fibrosis: a clinical view.

    PubMed

    Castellani, Carlo; Assael, Baroukh M

    2017-01-01

    Cystic fibrosis (CF), a monogenic disease caused by mutations in the CFTR gene on chromosome 7, is complex and greatly variable in clinical expression. Airways, pancreas, male genital system, intestine, liver, bone, and kidney are involved. The lack of CFTR or its impaired function causes fat malabsorption and chronic pulmonary infections leading to bronchiectasis and progressive lung damage. Previously considered lethal in infancy and childhood, CF has now attained median survivals of 50 years of age, mainly thanks to the early diagnosis through neonatal screening, recognition of mild forms, and an aggressive therapeutic attitude. Classical treatment includes pancreatic enzyme replacement, respiratory physiotherapy, mucolitics, and aggressive antibiotic therapy. A significant proportion of patients with severe symptoms still requires lung or, less frequently, liver transplantation. The great number of mutations and their diverse effects on the CFTR protein account only partially for CF clinical variability, and modifier genes have a role in modulating the clinical expression of the disease. Despite the increasing understanding of CFTR functioning, several aspects of CF need still to be clarified, e.g., the worse outcome in females, the risk of malignancies, the pathophysiology, and best treatment of comorbidities, such as CF-related diabetes or CF-related bone disorder. Research is focusing on new drugs restoring CFTR function, some already available and with good clinical impact, others showing promising preliminary results that need to be confirmed in phase III clinical trials.

  10. [Fetal urology].

    PubMed

    Jakobovits, Akos; Jakobovits, Antal

    2009-06-14

    Although it becomes vitally important only after birth, renal function already plays significant role in maintaining fetal metabolic equilibrium. The kidneys significantly contribute to production of amniotic fluid. Adequate amount of amniotic fluid is needed to stimulate the intrauterine fetal respiratory activity. Intrauterine breathing is essential for lung development. As a result, oligohydramnion is conducive to pulmonary hypoplasia. The latter may lead to neonatal demise soon after birth. In extrauterine life kidneys eliminate nitrogen containing metabolic byproducts. Inadequate renal function results therefore lethal uremia. Integrity of ureters and the urethra is essential for the maintenance of renal function. Retention of urine causes degeneration of the functional units of the kidneys and ensuing deterioration of renal function. Intrauterine kidney puncture or shunt procedure may delay this process in some cases. On the other hand, once renal function has been damaged, no therapy can restart it. Certain anomalies of renal excretory pathways may also be associated with other congenital abnormalities, making the therapeutic efforts pointless. Presence of these associated intrauterine defects makes early pregnancy termination a management alternative, as well as it affects favorably perinatal mortality rates.

  11. Melatonin Decreases Pulmonary Vascular Remodeling and Oxygen Sensitivity in Pulmonary Hypertensive Newborn Lambs

    PubMed Central

    Astorga, Cristian R.; González-Candia, Alejandro; Candia, Alejandro A.; Figueroa, Esteban G.; Cañas, Daniel; Ebensperger, Germán; Reyes, Roberto V.; Llanos, Aníbal J.; Herrera, Emilio A.

    2018-01-01

    Background: Chronic hypoxia and oxidative stress during gestation lead to pulmonary hypertension of the neonate (PHN), a condition characterized by abnormal pulmonary arterial reactivity and remodeling. Melatonin has strong antioxidant properties and improves pulmonary vascular function. Here, we aimed to study the effects of melatonin on the function and structure of pulmonary arteries from PHN lambs. Methods: Twelve lambs (Ovis aries) gestated and born at highlands (3,600 m) were instrumented with systemic and pulmonary catheters. Six of them were assigned to the control group (CN, oral vehicle) and 6 were treated with melatonin (MN, 1 mg.kg−1.d−1) during 10 days. At the end of treatment, we performed a graded oxygenation protocol to assess cardiopulmonary responses to inspired oxygen variations. Further, we obtained lung and pulmonary trunk samples for histology, molecular biology, and immunohistochemistry determinations. Results: Melatonin reduced the in vivo pulmonary pressor response to oxygenation changes. In addition, melatonin decreased cellular density of the media and diminished the proliferation marker KI67 in resistance vessels and pulmonary trunk (p < 0.05). This was associated with a decreased in the remodeling markers α-actin (CN 1.28 ± 0.18 vs. MN 0.77 ± 0.04, p < 0.05) and smoothelin-B (CN 2.13 ± 0.31 vs. MN 0.88 ± 0.27, p < 0.05). Further, melatonin increased vascular density by 134% and vascular luminal surface by 173% (p < 0.05). Finally, melatonin decreased nitrotyrosine, an oxidative stress marker, in small pulmonary vessels (CN 5.12 ± 0.84 vs. MN 1.14 ± 0.34, p < 0.05). Conclusion: Postnatal administration of melatonin blunts the cardiopulmonary response to hypoxia, reduces the pathological vascular remodeling, and increases angiogenesis in pulmonary hypertensive neonatal lambs.These effects improve the pulmonary vascular structure and function in the neonatal period under chronic hypoxia. PMID:29559926

  12. [Magnesium and bronchopulmonary dysplasia].

    PubMed

    Fridman, Elena; Linder, Nehama

    2013-03-01

    Bronchopulmonary dysplasia (BPD) is a chronic lung disease that occurs in premature infants who have needed mechanical ventilation and oxygen therapy. BPD is defined as the presence of persistent respiratory symptoms, the need for supplemental oxygen to treat hypoxemia, and an abnormal chest radiograph at 36 weeks gestational age. Proinflammatory cytokines and altered angiogenic gene signaling impair prenatal and postnatal lung growth, resulting in BPD. Postnatal hyperoxia exposure further increases the production of cytotoxic free radicals, which cause lung injury and increase the levels of proinflammatory cytokines. Magnesium is the fourth most abundant metal in the body. It is commonly used for the treatment of preeclamsia, as well as for premature labor alleviation. Magnesium's role in BPD development is not clear. A significant association between high magnesium levels at birth and respiratory distress syndrome (RDS), pulmonary interstitial emphysema in the extremely low birth weight, respiratory failure, and later development BPD was found. Conversely, low magnesium intake is associated with lower lung functions, and hypomagnesemia was found in 16% of patients with acute pulmonary diseases. Magnesium is used for the treatment of asthmatic attacks. Magnesium deficiency in pregnant women is frequently seen due to low intake. Hypomagnesemia was also found among preterm neonates and respiratory distress syndrome (RDS). Experimental hypomagnesemia evokes an inflammatory response, and oxidative damage of tissues. These were accompanied by changes in gene expression mostly involved in regulation of cell cycle, apoptosis and remodeling, processes associated with BPD. It is rational to believe that hypomagnesemia can contribute to BPD pathogenesis.

  13. The therapeutic effect of mesenchymal stem cells on pulmonary myeloid cells following neonatal hyperoxic lung injury in mice.

    PubMed

    Al-Rubaie, Ali; Wise, Andrea F; Sozo, Foula; De Matteo, Robert; Samuel, Chrishan S; Harding, Richard; Ricardo, Sharon D

    2018-06-08

    Exposure to high levels of oxygen (hyperoxia) after birth leads to lung injury. Our aims were to investigate the modulation of myeloid cell sub-populations and the reduction of fibrosis in the lungs following administration of human mesenchymal stem cells (hMSC) to neonatal mice exposed to hyperoxia. Newborn mice were exposed to 90% O 2 (hyperoxia) or 21% O 2 (normoxia) from postnatal days 0-4. A sub-group of hyperoxia mice were injected intratracheally with 2.5X10 5 hMSCs. Using flow cytometry we assessed pulmonary immune cells at postnatal days 0, 4, 7 and 14. The following markers were chosen to identify these cells: CD45 + (leukocytes), Ly6C + Ly6G + (granulocytes), CD11b + CD11c + (macrophages); macrophage polarisation was assessed by F4/80 and CD206 expression. hMSCs expressing enhanced green fluorescent protein (eGFP) and firefly luciferase (fluc) were administered via the trachea at day 4. Lung macrophages in all groups were profiled using next generation sequencing (NGS) to assess alterations in macrophage phenotype. Pulmonary collagen deposition and morphometry were assessed at days 14 and 56 respectively. At day 4, hyperoxia increased the number of pulmonary Ly6C + Ly6G + granulocytes and F4/80 low CD206 low macrophages but decreased F4/80 high CD206 high macrophages. At days 7 and 14, hyperoxia increased numbers of CD45 + leukocytes, CD11b + CD11c + alveolar macrophages and F4/80 low CD206 low macrophages but decreased F4/80 high CD206 high macrophages. hMSCs administration ameliorated these effects of hyperoxia, notably reducing numbers of CD11b + CD11c + and F4/80 low CD206 low macrophages; in contrast, F4/80 high CD206 high macrophages were increased. Genes characteristic of anti-inflammatory 'M2' macrophages (Arg1, Stat6, Retnla, Mrc1, Il27ra, Chil3, and Il12b) were up-regulated, and pro-inflammatory 'M1' macrophages (Cd86, Stat1, Socs3, Slamf1, Tnf, Fcgr1, Il12b, Il6, Il1b, and Il27ra) were downregulated in isolated lung macrophages from hyperoxia-exposed mice administered hMSCs, compared to mice without hMSCs. Hydroxyproline assay at day 14 showed that the 2-fold increase in lung collagen following hyperoxia was reduced to control levels in mice administered hMSCs. By day 56 (early adulthood), hMSC administration had attenuated structural changes in hyperoxia-exposed lungs. Our findings suggest that hMSCs reduce neonatal lung injury caused by hyperoxia by modulation of macrophage phenotype. Not only did our cell-based therapy using hMSC induce structural repair, it limited the progression of pulmonary fibrosis.

  14. Real-time X-ray Imaging of Lung Fluid Volumes in Neonatal Mouse Lung.

    PubMed

    Van Avermaete, Ashley E; Trac, Phi T; Gauthier, Theresa W; Helms, My N

    2016-07-18

    At birth, the lung undergoes a profound phenotypic switch from secretion to absorption, which allows for adaptation to breathing independently. Promoting and sustaining this phenotype is critically important in normal alveolar growth and gas exchange throughout life. Several in vitro studies have characterized the role of key regulatory proteins, signaling molecules, and steroid hormones that can influence the rate of lung fluid clearance. However, in vivo examinations must be performed to evaluate whether these regulatory factors play important physiological roles in regulating perinatal lung liquid absorption. As such, the utilization of real time X-ray imaging to determine perinatal lung fluid clearance, or pulmonary edema, represents a technological advancement in the field. Herein, we explain and illustrate an approach to assess the rate of alveolar lung fluid clearance and alveolar flooding in C57BL/6 mice at post natal day 10 using X-ray imaging and analysis. Successful implementation of this protocol requires prior approval from institutional animal care and use committees (IACUC), an in vivo small animal X-ray imaging system, and compatible molecular imaging software.

  15. Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis

    PubMed Central

    Sun, Xingshen; Sui, Hongshu; Fisher, John T.; Yan, Ziying; Liu, Xiaoming; Cho, Hyung-Ju; Joo, Nam Soo; Zhang, Yulong; Zhou, Weihong; Yi, Yaling; Kinyon, Joann M.; Lei-Butters, Diana C.; Griffin, Michelle A.; Naumann, Paul; Luo, Meihui; Ascher, Jill; Wang, Kai; Frana, Timothy; Wine, Jeffrey J.; Meyerholz, David K.; Engelhardt, John F.

    2010-01-01

    Cystic fibrosis (CF) is a recessive disease that affects multiple organs. It is caused by mutations in CFTR. Animal modeling of this disease has been challenging, with species- and strain-specific differences in organ biology and CFTR function influencing the emergence of disease pathology. Here, we report the phenotype of a CFTR-knockout ferret model of CF. Neonatal CFTR-knockout ferrets demonstrated many of the characteristics of human CF disease, including defective airway chloride transport and submucosal gland fluid secretion; variably penetrant meconium ileus (MI); pancreatic, liver, and vas deferens disease; and a predisposition to lung infection in the early postnatal period. Severe malabsorption by the gastrointestinal (GI) tract was the primary cause of death in CFTR-knockout kits that escaped MI. Elevated liver function tests in CFTR-knockout kits were corrected by oral administration of ursodeoxycholic acid, and the addition of an oral proton-pump inhibitor improved weight gain and survival. To overcome the limitations imposed by the severe intestinal phenotype, we cloned 4 gut-corrected transgenic CFTR-knockout kits that expressed ferret CFTR specifically in the intestine. One clone passed feces normally and demonstrated no detectable ferret CFTR expression in the lung or liver. The animals described in this study are likely to be useful tools for dissecting CF disease pathogenesis and developing treatments. PMID:20739752

  16. Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis.

    PubMed

    Sun, Xingshen; Sui, Hongshu; Fisher, John T; Yan, Ziying; Liu, Xiaoming; Cho, Hyung-Ju; Joo, Nam Soo; Zhang, Yulong; Zhou, Weihong; Yi, Yaling; Kinyon, Joann M; Lei-Butters, Diana C; Griffin, Michelle A; Naumann, Paul; Luo, Meihui; Ascher, Jill; Wang, Kai; Frana, Timothy; Wine, Jeffrey J; Meyerholz, David K; Engelhardt, John F

    2010-09-01

    Cystic fibrosis (CF) is a recessive disease that affects multiple organs. It is caused by mutations in CFTR. Animal modeling of this disease has been challenging, with species- and strain-specific differences in organ biology and CFTR function influencing the emergence of disease pathology. Here, we report the phenotype of a CFTR-knockout ferret model of CF. Neonatal CFTR-knockout ferrets demonstrated many of the characteristics of human CF disease, including defective airway chloride transport and submucosal gland fluid secretion; variably penetrant meconium ileus (MI); pancreatic, liver, and vas deferens disease; and a predisposition to lung infection in the early postnatal period. Severe malabsorption by the gastrointestinal (GI) tract was the primary cause of death in CFTR-knockout kits that escaped MI. Elevated liver function tests in CFTR-knockout kits were corrected by oral administration of ursodeoxycholic acid, and the addition of an oral proton-pump inhibitor improved weight gain and survival. To overcome the limitations imposed by the severe intestinal phenotype, we cloned 4 gut-corrected transgenic CFTR-knockout kits that expressed ferret CFTR specifically in the intestine. One clone passed feces normally and demonstrated no detectable ferret CFTR expression in the lung or liver. The animals described in this study are likely to be useful tools for dissecting CF disease pathogenesis and developing treatments.

  17. Congenital lobar emphysema: a case report

    PubMed Central

    2009-01-01

    Congenital lobar emphysema is a rare variety of congenital malformation of lung characterized by over distension of a lobe of a lung due to partial obstruction of the bronchus. We are reporting a neonate admitted in the pediatric emergency ward with the respiratory distress since 16th day of life. Investigation revealed the overexpansion of the left upper lobe with mediastinal herniation, shifting of the mediastinum to the opposite side and collapse of the ipsilateral lower lobe. The baby was treated with conservative treatment and the condition of the baby was improved. PMID:19154591

  18. Gestational age is more important for short-term neonatal outcome than microbial invasion of the amniotic cavity or intra-amniotic inflammation in preterm prelabor rupture of membranes.

    PubMed

    Rodríguez-Trujillo, Adriano; Cobo, Teresa; Vives, Irene; Bosch, Jordi; Kacerovsky, Marian; Posadas, David E; Ángeles, Martina A; Gratacós, Eduard; Jacobsson, Bo; Palacio, Montse

    2016-08-01

    The aim of this study was to evaluate, in women with preterm prelabor rupture of membranes (PPROM), the impact on short-term neonatal outcome of microbial invasion of the amniotic cavity (MIAC), intra-amniotic inflammation (IAI), and the microorganisms isolated in women with MIAC, when gestational age is taken into account. Prospective cohort study. We included women with PPROM (22.0-34.0 weeks of gestation) with available information about MIAC, IAI and short-term neonatal outcome. MIAC was defined as positive aerobic/anaerobic/genital Mycoplasma culture in amniotic fluid. Definition of IAI was based on interleukin-6 levels in amniotic fluid. Main outcome measures were Apgar score <7 at 5 min, umbilical artery pH ≤7.0, days in the neonatal intensive care unit, and composite neonatal morbidity, including any of the following: intraventricular hemorrhage grade III-IV, respiratory distress syndrome, early-onset neonatal sepsis, periventricular leukomalacia, necrotizing enterocolitis, and fetal or neonatal death. Labor was induced after 32.0 weeks if lung maturity was confirmed; and otherwise after 34.0 weeks. MIAC and IAI were found in 38% (72/190) and 67% (111/165), respectively. After adjustment for gestational age at delivery, no differences in short-term neonatal outcome were found between women with either MIAC or IAI, compared with the non-infection/non-inflammation ("No-MIAC/No-IAI") group. Furthermore, short-term neonatal outcome did not differ between the MIAC caused by Ureaplasma spp. group, the MIAC caused by other microorganisms group and the "No-MIAC/No-IAI" group. Gestational age at delivery seems to be more important for short-term neonatal outcome than MIAC or IAI in PPROM. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.

  19. Stem cells for the prevention of neonatal lung disease.

    PubMed

    O'Reilly, Megan; Thébaud, Bernard

    2015-01-01

    Preterm birth affects approximately 11% of all newborns worldwide and is a major risk factor for infant mortality and morbidity. A common complication of preterm birth is the chronic lung disease of prematurity called bronchopulmonary dysplasia (BPD). Due to the lack of a specific treatment for BPD, preterm infants surviving with BPD face a lifelong risk of poor lung health. The therapeutic potential of stem cells in regenerative medicine is being harnessed for many diseases, including BPD. Compelling preclinical data using stem cells to prevent/repair lung damage in animal models of experimental BPD has built the basis for its translation into the clinic in preterm infants. This review highlights the exciting translation from bench to bedside that will hopefully lead in the near future to improved pulmonary outcomes in preterm infants. © 2015 S. Karger AG, Basel.

  20. Neonatal Lipopolysaccharide Exposure Gender-Dependently Increases Heart Susceptibility to Ischemia/Reperfusion Injury in Male Rats.

    PubMed

    Zhang, Peng; Lv, Juanxiu; Li, Yong; Zhang, Lubo; Xiao, Daliao

    2017-01-01

    Background: Adverse stress exposure during the early neonatal period has been shown to cause aberrant development, resulting in an increased risk of adult disease. We tested the hypothesis that neonatal exposure to lipopolysaccharide (LPS) does not alter heart function at rest condition but causes heart dysfunction under stress stimulation later in life. Methods: Saline control or LPS were administered to neonatal rats via intraperitoneal injection. Experiments were conducted in 6 week-old male and female rats. Isolated hearts were perfused in a Langendorff preparation. Results: Neonatal LPS exposure exhibited no effects on the body weight of the developing rats, but induced decreases in the left ventricle (LV) to the body weight ratio in male rats. Neonatal LPS exposure showed no effects on the baseline heart function determined by in vivo and ex vivo experiments, but caused decreases in the post-ischemic recovery of the LV function in male but not female rats. Neonatal LPS-mediated LV dysfunction was associated with an increase in myocardial infarct size and the LDH release in the male rats. Conclusion: The present study provides novel evidence that neonatal immune challenges could induce gender-dependent long-term effects on cardiac development and heart function, which reinforces the notion that adverse stress exposure during the early neonatal period can aggravate heart functions and the development of a heart ischemia-sensitive phenotype later in life.

  1. Human umbilical cord blood-derived mesenchymal stem cells attenuate hyperoxia-induced lung injury in neonatal rats.

    PubMed

    Chang, Yun Sil; Oh, Wonil; Choi, Soo Jin; Sung, Dong Kyung; Kim, Soo Yoon; Choi, Eun Yang; Kang, Saem; Jin, Hye Jin; Yang, Yoon Sun; Park, Won Soon

    2009-01-01

    Recent evidence suggests mesenchymal stem cells (MSCs) can downmodulate bleomycin-induced lung injury, and umbilical cord blood (UCB) is a promising source for human MSCs. This study examined whether intratracheal or intraperitoneal transplantation of human UCB-derived MSCs can attenuate hyperoxia-induced lung injury in immunocompetent newborn rats. Wild-type Sprague-Dawley rats were randomly exposed to 95% oxygen or air from birth. In the transplantation groups, a single dose of PKH26-labeled human UCB-derived MSCs was administered either intratracheally (2 x 10(6) cells) or intraperitoneally (5 x 10(5) cells) at postnatal day (P) 5. At P14, the harvested lungs were examined for morphometric analyses of alveolarization and TUNEL staining, as well as the myeoloperoxidase activity, the level of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and transforming growth factor (TGF)-beta mRNA, alpha-smooth muscle actin (SMA) protein, and collagen levels. Differentiation of MSCs to the respiratory epithelium was also evaluated both in vitro before transplantation and in vivo after transplantation. Despite one fourth dosage of MSCs, significantly more PKH26-labeled donor cells were recovered with intratracheal administration than with intraperitoneal administration both during normoxia and hyperoxia. The hyperoxia-induced increase in the number of TUNEL-positive cells, myeloperoixdase activity, and the level of IL-6 mRNA were significantly attenuated with both intratracheal and intraperitoneal MSCs transplantation. However, the hyperoxia-induced impaired alveolarization and increased the level of TNF-alpha and TGF-beta mRNA, alpha-SMA protein, and collagen were significantly attenuated only with intratracheal MSCs transplantation. MSCs differentiated into respiratory epithelium in vitro and a few PKH26-positive donor cells were colocalized with pro surfactant protein C in the damaged lungs. In conclusion, intratracheal transplantation of human UCB-derived MSCs is more effective than intraperitoneal transplantation in attenuating the hyperoxia-induced lung injury in neonatal rats.

  2. Substance P protects against hyperoxic-induced lung injury in neonatal rats.

    PubMed

    Huang, Bo; Li, Qing; Xu, Shuhong; Tian, Mingyang; Zhen, Xinghui; Bi, Yunxia; Xu, Feng

    2015-02-01

    The aim of the study was to investigate the effects of substance P (SP) in hyperoxia-induced lung injury in newborn rats. Thirty-two rat pups were randomly divided into four groups: normoxia/saline, normoxia/SP, hyperoxia/saline and hyperoxia/SP. In a separate set of experiments, the neonatal rat pups were exposed to 21% or >95% O2 for 14 days with or without intraperitoneal administration of SP. On day 14, the animals were sacrificed and the lungs were processed for histology and biochemical analysis. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used for the detection of apoptosis. Antioxidant capacity was assessed by glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), oxidative stress was assessed by determining the extent of formation of malondialdehyde (MDA), activities of NADPH oxidase activity, and formation of reactive oxygen species (ROS). The activity of phospho-p38 (p-p38) and -ERK1/2 (p-ERK1/2) proteins and expression of NF-E2-related factor 2 (NRF2) were detected by Western blot, and the expression of p-p38 was detected by immunofluorescence analysis. Compared with the hyperoxia treatment, the lung damage was significantly ameliorated following the SP treatment. Furthermore, the lungs from the pups exposed to hyperoxia TUNEL-positive nuclei increased markedly and decreased significantly after SP treatment. The levels of MDA decreased and that of GSH-Px and SOD increased following the SP treatment. The SP treatment significantly suppressed the activity of NADPH oxidase and reduced ROS production. SP stimulation may result in blocking p38 MAPK and ERK signaling pathways, and the activities of p-p38 and p-ERK, and expression of NRF2 decreased following the SP treatment. These findings indicate that SP can ameliorate hyperoxic lung injury through decreasing cell apoptosis, elevating antioxidant activities, and attenuating oxidative stress.

  3. [Effects of the spaceflight on organ-development in the neonatal rats: results in the Neurolab (STS-90)].

    PubMed

    Miyake, Masao; Yamasaki, Masao; Katahira, Kiyoaki; Waki, Hidefumi; Katsuda, Shin-ichiro; Ijiri, Kenichi; Shimizu, Tsuyoshi

    2002-11-01

    In the Neurolab mission, we found that spaceflight affects the development of the aortic baroreflex system and the body weight of the flight rats was significantly lighter [correction of lightess] than that of the control group. The aim of this study is to examine the structural and functional development in various tissues and organs. One hundred and eighteen nine-day old rats and seven fifteen-day old rats, which were launched at these ages and nursed by their dams in the space shuttle Columbia for 16 days, were served for this study. Two hundred and twenty one neonates were used as the ground controls (VIV: vivarium and AGC: asynchronous ground controls). On the landing day after they returned to the earth, the rats were perfused with a fixative under deep urethane anesthesia, and the organs were weighed and the ratio of the organ weight to the body weight was calculated. Six animals of the nine-day old group were reared on the ground for 30 more days after landing and also examined in the same protocol as the landing-day-examination. The organs obtained to examine were heart, lung, spleen, thymus, adrenal glands, kidney, liver, small intestine, large intestine, mesentery, pancreas, testis and ovary. Paraffin sections were made from some organ tissues and prepared for HE staining and immunohistochemistry. We compared these organs in the flight rat with those in the ground controls. All organs except the lung of nine-day old group were significantly smaller. In the ratio of organ weight to body weight, the lung and heart were significantly larger. The weight and ratio of the liver showed no significant difference. The thymus, spleen, mesentery and pancreas were smaller in the weight and the ratio. There were no differences in the body weight among 30-day reared groups, but the lung in the flight group is significantly heavier than the control groups and thymus also tends to be relatively heavy. In flight rats of the fifteen-day group, the kidney was heavy and the ovary was light as compared to the controls. The adipose tissue was macroscopically little found around the thoracic and abdominal organs in all rats of the flight group. These results suggest that the organs related to oxygen supply like as the lung and heart have priority in development over the mesentery and immune system organs even during spaceflight. Lightness of the mesentery in space rats is due to small contents of adipose tissues, and may reflect amounts of the food taken by the flight dams. Lightness of the organs like as the thymus, spleen and pancreas suggests that spaceflight may affect the immune system and also affect continuously the lung and thymus development even after landing.

  4. Sustained Inflation and Its Role in the Delivery Room Management of Preterm Infants.

    PubMed

    Lista, Gianluca; La Verde, Paola Azzurra; Castoldi, Francesca

    2016-01-01

    A noninvasive approach in the delivery room in place of intubation and mechanical ventilation can reduce rates of bronchopulmonary dysplasia and death. Nevertheless, the rate of nasal continuous positive airway pressure failure still remains high. In order to prevent lung injury and to enhance the success of continuous positive airway pressure, sustained inflation (administration by face mask or nasopharyngeal tube of a high peak pressure of 20-25 cm H2O, maintained for 10-15 s) has been recently proposed to establish an early and efficient functional residual capacity in the delivery room. Sustained inflation is an intriguing therapy, although the results of clinical trials are controversial in terms of respiratory outcomes. A critical role in the success of sustained inflation could be the presence of open or closed glottis and the contribution of spontaneous breathing that allows air to enter the lungs during the maneuver. Recent neonatal resuscitation guidelines suggest that sustained inflation may be considered in individual clinical circumstances or research settings. © 2016 S. Karger AG, Basel.

  5. Effect of birth order on neonatal morbidity and mortality among very low birthweight twins: a population based study

    PubMed Central

    Shinwell, E; Blickstein, I; Lusky, A; Reichman, B

    2004-01-01

    Objective: To study the effect of birth order on the risk for respiratory distress syndrome (RDS), chronic lung disease (CLD), adverse neurological findings, and death in very low birthweight (VLBW; < 1500 g) twins. Methods: A population based study of VLBW infants from the Israel National VLBW Infant Database. The sample included all complete sets of VLBW twin pairs admitted to all 28 neonatal intensive care units between 1995 and 1999. Outcome variables were compared by birth order and stratified by mode of delivery and gestational age, using General Estimating Equation models, with results expressed as odds ratio (OR) with 95% confidence interval (CI). Results: Second twins were at increased risk for RDS (OR 1.51, 95% CI 1.29 to 1.76), CLD (OR 1.36, 95% CI 1.11 to 1.66), and death (OR 1.24, 95% CI 1.02 to 1.51) but not for adverse neurological findings (OR 1.20, 95% CI 0.91 to 1.60). Mode of delivery did not significantly influence outcome. The odds ratio for RDS in the second twin was inversely related to gestational age, and the increased risk for RDS and CLD was found in both vaginal and caesarean deliveries. Conclusions: VLBW second twins are at increased risk for acute and chronic lung disease and neonatal mortality, irrespective of mode of delivery. PMID:14977899

  6. Analysis of a dielectric EAP as smart component for a neonatal respiratory simulator.

    PubMed

    Tognarelli, S; Deri, L; Cecchi, F; Scaramuzzo, R; Cuttano, A; Laschi, C; Menciassi, A; Dario, P

    2013-01-01

    Nowadays, respiratory syndrome represents the most common neonatal pathology. Nevertheless, being respiratory assistance in newborns a great challenge for neonatologists and nurses, use of simulation-based training is quickly becoming a valid meaning of clinical education for an optimal therapy outcome. Commercially available simulators, are, however, not able to represent complex breathing patterns and to evaluate specific alterations. The purpose of this work has been to develop a smart, lightweight, compliant system with variable rigidity able to replicate the anatomical behavior of the neonatal lung, with the final aim to integrate such system into an innovative mechatronic simulator device. A smart material based-system has been proposed and validated: Dielectric Electro Active Polymers (DEAP), coupled to a purposely shaped silicone camera, has been investigated as active element for a compliance change simulator able to replicate both physiological and pathological lung properties. Two different tests have been performed by using a bi-components camera (silicone shape coupled to PolyPower film) both as an isolated system and connected to an infant ventilator. By means of a pressure sensor held on the silicon structure, pressure values have been collected and compared for active and passive PolyPower working configuration. The obtained results confirm a slight pressure decrease in active configuration, that is in agreement with the film stiffness reduction under activation and demonstrates the real potentiality of DEAP for active volume changing of the proposed system.

  7. Optimal Route for Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Transplantation to Protect Against Neonatal Hyperoxic Lung Injury: Gene Expression Profiles and Histopathology.

    PubMed

    Sung, Dong Kyung; Chang, Yun Sil; Ahn, So Yoon; Sung, Se In; Yoo, Hye Soo; Choi, Soo Jin; Kim, Soo Yoon; Park, Won Soon

    2015-01-01

    The aim of this study was to determine the optimal route of mesenchymal stem cell (MSC) transplantation. To this end, gene expression profiling was performed to compare the effects of intratracheal (i.t.) versus intravenous (i.v.) MSC administration. Furthermore, the therapeutic efficacy of each route to protect against neonatal hyperoxic lung injury was also determined. Newborn Sprague-Dawley rats were exposed to hyperoxia (90% oxygen) from birth for 14 days. Human umbilical cord blood-derived MSCs labeling with PKH26 were transplanted through either the i.t. (5×10(5)) or i.v. (2×10(6)) route at postnatal day (P) 5. At P14, lungs were harvested for histological, biochemical and microarray analyses. Hyperoxic conditions induced an increase in the mean linear intercept and mean alveolar volume (MAV), indicative of impaired alveolarization. The number of ED-1 positive cells was significantly decreased by both i.t. and i.v. transplantations. However, i.t. administration of MSCs resulted in a greater decrease in MAV and ED-1 positive cells compared to i.v. administration. Moreover, the number of TUNEL-positive cells was significantly decreased in the i.t. group, but not in the i.v. group. Although the i.t. group received only one fourth of the number of MSCs that the i.v. group did, a significantly higher number of donor cell-derived red PKH 26 positivity were recovered in the i.t. group. Hyperoxic conditions induced the up regulation of genes associated with the inflammatory response, such as macrophage inflammatory protein-1 α, tumor necrosis factor-α and inter leukin-6; genes associated with cell death, such as p53 and caspases; and genes associated with fibrosis, such as connective tissue growth factor. In contrast, hyperoxic conditions induced the dwon-regulation of vascular endothelial growth factor and hepatocyte growth factor. These hyperoxia-induced changes in gene expression were decreased in the i.t. group, but not in the i.v. group. Thus, local i.t. MSC transplantation was more effective than systemic i.v. MSC administration in protecting against neonatal hyperoxic lung injury.

  8. Optimal Route for Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Transplantation to Protect Against Neonatal Hyperoxic Lung Injury: Gene Expression Profiles and Histopathology

    PubMed Central

    Ahn, So Yoon; Sung, Se In; Yoo, Hye Soo; Choi, Soo Jin; Kim, Soo Yoon; Park, Won Soon

    2015-01-01

    The aim of this study was to determine the optimal route of mesenchymal stem cell (MSC) transplantation. To this end, gene expression profiling was performed to compare the effects of intratracheal (IT) versus intravenous (IV) MSC administration. Furthermore, the therapeutic efficacy of each route to protect against neonatal hyperoxic lung injury was also determined. Newborn Sprague-Dawley rats were exposed to hyperoxia (90% oxygen) from birth for 14 days. Human umbilical cord blood-derived MSCs labeling with PKH26 were transplanted through either the IT (5×105) or IV (2×106) route at postnatal day (P) 5. At P14, lungs were harvested for histological, biochemical and microarray analyses. Hyperoxic conditions induced an increase in the mean linear intercept and mean alveolar volume (MAV), indicative of impaired alveolarization. The number of ED-1 positive cells was significantly decreased by both IT and IV transplantations. However, IT administration of MSCs resulted in a greater decrease in MAV and ED-1 positive cells compared to IV administration. Moreover, the number of TUNEL-positive cells was significantly decreased in the IT group, but not in the IV group. Although the IT group received only one fourth of the number of MSCs that the IV group did, a significantly higher number of donor cell-derived red PKH 26 positivity were recovered in the IT group. Hyperoxic conditions induced the up regulation of genes associated with the inflammatory response, such as macrophage inflammatory protein-1 α, tumor necrosis factor-α and inter leukin-6; genes associated with cell death, such as p53 and caspases; and genes associated with fibrosis, such as connective tissue growth factor. In contrast, hyperoxic conditions induced the dwon-regulation of vascular endothelial growth factor and hepatocyte growth factor. These hyperoxia-induced changes in gene expression were decreased in the IT group, but not in the IV group. Thus, local IT MSC transplantation was more effective than systemic IV MSC administration in protecting against neonatal hyperoxic lung injury. PMID:26305093

  9. Efficacy of a new technique - INtubate-RECruit-SURfactant-Extubate - "IN-REC-SUR-E" - in preterm neonates with respiratory distress syndrome: study protocol for a randomized controlled trial.

    PubMed

    Vento, Giovanni; Pastorino, Roberta; Boni, Luca; Cota, Francesco; Carnielli, Virgilio; Cools, Filip; Dani, Carlo; Mosca, Fabio; Pillow, Jane; Polglase, Graeme; Tagliabue, Paolo; van Kaam, Anton H; Ventura, Maria Luisa; Tana, Milena; Tirone, Chiara; Aurilia, Claudia; Lio, Alessandra; Ricci, Cinzia; Gambacorta, Alessandro; Consigli, Chiara; D'Onofrio, Danila; Gizzi, Camilla; Massenzi, Luca; Cardilli, Viviana; Casati, Alessandra; Bottino, Roberto; Pontiggia, Federica; Ciarmoli, Elena; Martinelli, Stefano; Ilardi, Laura; Colnaghi, Mariarosa; Matassa, Piero Giuseppe; Vendettuoli, Valentina; Villani, Paolo; Fusco, Francesca; Gazzolo, Diego; Ricotti, Alberto; Ferrero, Federica; Stasi, Ilaria; Magaldi, Rosario; Maffei, Gianfranco; Presta, Giuseppe; Perniola, Roberto; Messina, Francesco; Montesano, Giovanna; Poggi, Chiara; Giordano, Lucio; Roma, Enza; Grassia, Carolina; Ausanio, Gaetano; Sandri, Fabrizio; Mescoli, Giovanna; Giura, Francesco; Garani, Giampaolo; Solinas, Agostina; Lucente, Maria; Nigro, Gabriella; Del Vecchio, Antonello; Petrillo, Flavia; Orfeo, Luigi; Grappone, Lidia; Quartulli, Lorenzo; Scorrano, Antonio; Messner, Hubert; Staffler, Alex; Gargano, Giancarlo; Balestri, Eleonora; Nobile, Stefano; Cacace, Caterina; Meli, Valerio; Dallaglio, Sara; Pasqua, Betta; Mattia, Loretta; Gitto, Eloisa; Vitaliti, Marcello; Re, Maria Paola; Vedovato, Stefania; Grison, Alessandra; Berardi, Alberto; Torcetta, Francesco; Guidotti, Isotta; di Fabio, Sandra; Maranella, Eugenia; Mondello, Isabella; Visentin, Stefano; Tormena, Francesca

    2016-08-18

    Although beneficial in clinical practice, the INtubate-SURfactant-Extubate (IN-SUR-E) method is not successful in all preterm neonates with respiratory distress syndrome, with a reported failure rate ranging from 19 to 69 %. One of the possible mechanisms responsible for the unsuccessful IN-SUR-E method, requiring subsequent re-intubation and mechanical ventilation, is the inability of the preterm lung to achieve and maintain an "optimal" functional residual capacity. The importance of lung recruitment before surfactant administration has been demonstrated in animal studies showing that recruitment leads to a more homogeneous surfactant distribution within the lungs. Therefore, the aim of this study is to compare the application of a recruitment maneuver using the high-frequency oscillatory ventilation (HFOV) modality just before the surfactant administration followed by rapid extubation (INtubate-RECruit-SURfactant-Extubate: IN-REC-SUR-E) with IN-SUR-E alone in spontaneously breathing preterm infants requiring nasal continuous positive airway pressure (nCPAP) as initial respiratory support and reaching pre-defined CPAP failure criteria. In this study, 206 spontaneously breathing infants born at 24(+0)-27(+6) weeks' gestation and failing nCPAP during the first 24 h of life, will be randomized to receive an HFOV recruitment maneuver (IN-REC-SUR-E) or no recruitment maneuver (IN-SUR-E) just prior to surfactant administration followed by prompt extubation. The primary outcome is the need for mechanical ventilation within the first 3 days of life. Infants in both groups will be considered to have reached the primary outcome when they are not extubated within 30 min after surfactant administration or when they meet the nCPAP failure criteria after extubation. From all available data no definitive evidence exists about a positive effect of recruitment before surfactant instillation, but a rationale exists for testing the following hypothesis: a lung recruitment maneuver performed with a step-by-step Continuous Distending Pressure increase during High-Frequency Oscillatory Ventilation (and not with a sustained inflation) could have a positive effects in terms of improved surfactant distribution and consequent its major efficacy in preterm newborns with respiratory distress syndrome. This represents our challenge. ClinicalTrials.gov identifier: NCT02482766 . Registered on 1 June 2015.

  10. Age, strain, and gender as factors for increased sensitivity of the mouse lung to inhaled ozone

    EPA Science Inventory

    Ozone (O(3)) is a respiratory irritant that leads to airway inflammation and pulmonary dysfunction. Animal studies show that neonates are more sensitive to O(3) inhalation than adults, and children represent a potentially susceptible population. This latter notion is not well est...

  11. 78 FR 1158 - Anesthesiology Devices; Reclassification of Membrane Lung for Long-Term Pulmonary Support...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... controls) for conditions where imminent death is threatened by cardiopulmonary failure in neonates and... to the same regulatory controls, all of the device components used in an ECMO procedure are being... regulatory controls needed to provide reasonable assurance of their safety and effectiveness. The three...

  12. Surfactant-Associated Protein A Provides Critical Immunoprotection in Neonatal Mice▿

    PubMed Central

    George, Caroline L. S.; Goss, Kelli L.; Meyerholz, David K.; Lamb, Fred S.; Snyder, Jeanne M.

    2008-01-01

    The collectins surfactant-associated protein A (SP-A) and SP-D are components of innate immunity that are present before birth. Both proteins bind pathogens and assist in clearing infection. The significance of SP-A and SP-D as components of the neonatal immune system has not been investigated. To determine the role of SP-A and SP-D in neonatal immunity, wild-type, SP-A null, and SP-D null mice were bred in a bacterium-laden environment (corn dust bedding) or in a semisterile environment (cellulose fiber bedding). When reared in the corn dust bedding, SP-A null pups had significant mortality (P < 0.001) compared to both wild-type and SP-D null pups exposed to the same environment. The mortality of the SP-A null pups was associated with significant gastrointestinal tract pathology but little lung pathology. Moribund SP-A null newborn mice exhibited Bacillus sp. and Enterococcus sp. peritonitis. When the mother or newborn produced SP-A, newborn survival was significantly improved (P < 0.05) compared to the results when there was a complete absence of SP-A in both the mother and the pup. Significant sources of SP-A likely to protect a newborn include the neonatal lung and gastrointestinal tract but not the lactating mammary tissue of the mother. Furthermore, exogenous SP-A delivered by mouth to newborn SP-A null pups with SP-A null mothers improved newborn survival in the corn dust environment. Therefore, a lack of SP-D did not affect newborn survival, while SP-A produced by either the mother or the pup or oral exogenous SP-A significantly reduced newborn mortality associated with environmentally induced infection in SP-A null newborns. PMID:17967856

  13. Heliox Adjunct Therapy for Neonates With Congenital Diaphragmatic Hernia.

    PubMed

    Wise, Audra C; Boutin, Mallory A; Knodel, Ellen M; Proudfoot, James A; Lane, Brian P; Evans, Marva L; Suttner, Denise M; Kimball, Amy L

    2018-05-22

    Congenital diaphragmatic hernia remains a complex disease with significant morbidity and mortality. Hypercarbia is a common derangement in this population, which often requires escalating ventilator support. By decreasing airway turbulence and enhancing CO 2 removal, inhaled helium-oxygen mixture (heliox) has the potential to improve ventilation and thereby decrease ventilator support and its associated lung injury. Retrospective cohort review of all neonates with congenital diaphragmatic hernia treated at Rady Children's Hospital San Diego during 2011-2015. Clinical characteristics were compared between the infants who were treated with heliox and those who did not receive this intervention. To analyze the effect of heliox in the subgroup that received this treatment, ventilator settings and arterial blood gas values were compared before and after starting heliox by using paired t tests. During the study period, 45 neonates with congenital diaphragmatic hernia were admitted to our neonatal ICU, 28 received heliox, and 27 were analyzed. During heliox treatment, Pa CO 2 levels decreased from 68 to 49 mm Hg ( P < .001), amplitude decreased from 33 to 23 cm H 2 O ( P < .001), ventilator frequency decreased from 28 to 23 breaths/min ( P = .02), F IO 2 decreased from 0.52 to 0.40 ( P < .01), and pH increased from 7.3 to 7.4 ( P < .001). The addition of heliox to the standard practice of permissive hypercapnia facilitated improvement in gas exchange, which allowed a decrease in ventilator settings and oxygen exposure, both of which are known to contribute to lung injury in this population. A prospective trial is needed to more clearly define the acute and long-term impacts of this treatment. Copyright © 2018 by Daedalus Enterprises.

  14. A comparison of Wisconsin neonatal intensive care units with national data on outcomes and practices.

    PubMed

    Hagen, Erika W; Sadek-Badawi, Mona; Albanese, Aggie; Palta, Mari

    2008-11-01

    Improvements in neonatal care over the past 3 decades have increased survival of infants at lower birthweights and gestational ages. However, outcomes and practices vary considerably between hospitals. To describe maternal and infant characteristics, neonatal intensive care units (NICU) practices, morbidity, and mortality in Wisconsin NICUs, and to compare outcomes in Wisconsin to the National Institute of Child Health and Human Development network of large academic medical center NICUs. The Newborn Lung Project Statewide Cohort is a prospective observational study of all very low birthweight (< or =1500 grams) infants admitted during 2003 and 2004 to the 16 level III NICUs in Wisconsin. Anonymous data were collected for all admitted infants (N=1463). Major neonatal morbidities, including bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH), necrotizing enterocolitis (NEC), and retinopathy of prematurity (ROP) were evaluated. The overall incidence of BPD was 24% (8%-56% between NICUs); IVH incidence was 23% (9%-41%); the incidence of NEC was 7% (0%-21%); and the incidence of grade III or higher ROP was 10% (0%-35%). The incidence rates of major neonatal morbidities in Wisconsin were similar to those of a national network of academic NICUs.

  15. Labour room Continuous Positive Airway Pressure (LR CPAP) in preterm neonates <34 weeks: An Indian experience.

    PubMed

    Desai, Saumil Ashvinkumar; Tule, Pankaj; Nanavati, Ruchi Nimish

    2017-01-01

    Early continuous positive airway pressure (CPAP) has proven to be beneficial in reducing ventilator dependence and subsequent chronic lung disease in neonates suffering from Respiratory distress syndrome (RDS). However, the efficacy of initiating labour room (LR) CPAP has not been determined prospectively in resource limited settings like India. Hence the objective of the present study was to study the efficacy of LR CPAP in preterm neonates with RDS in resource limited Indian settings. This was a prospective observational study including preterm neonates (26-34 weeks with RDS) carried out over a period of 6 months (January to June 2016) when the CPAP was initiated in LR. The outcome was compared with a similar population during the corresponding period of the previous year when CPAP was initiated in NICU. The historical controls were retrieved from case records and matched for gestational age and birth weight with the study population. There was 36% absolute risk reduction in the need for surfactant and 56% for mechanical ventilation in the LR CPAP group respectively. LR CPAP reduces the need for mechanical ventilation and surfactant in preterm neonates with RDS in resource limited settings.

  16. Association of Patent Ductus Arteriosus Ligation With Death or Neurodevelopmental Impairment Among Extremely Preterm Infants

    PubMed Central

    Mirea, Lucia; Rosenberg, Erin; Jang, Maximus; Ly, Linh; Church, Paige T.; Kelly, Edmond; Kim, S. Joseph; Jain, Amish; McNamara, Patrick J.; Shah, Prakesh S.

    2017-01-01

    Importance Observational studies have associated patent ductus arteriosus (PDA) ligation among preterm infants with adverse neonatal outcomes and neurodevelopmental impairment in early childhood, with a resultant secular trend away from surgical treatment. However, to our knowledge, studies have inadequately addressed sources of residual bias, including survival bias and major neonatal morbidities arising before exposure to ligation. Objective Evaluate the association between PDA ligation vs medical management and neonatal and neurodevelopmental outcomes. Design, Setting, and Participants This retrospective cohort study of preterm infants younger than 28 weeks gestational age born between January 1, 2006, and December 31, 2012, with clinical and echocardiography diagnoses of hemodynamically significant PDA was conducted at 3 tertiary neonatal intensive care units and affiliated follow-up programs. Exposure Surgical ligation vs medical management. Main Outcomes and Measures The primary outcome was a composite of death or neurodevelopmental impairment (NDI) at 18 to 24 months corrected age. Secondary outcomes included death before discharge, NDI, moderate-severe chronic lung disease, and severe retinopathy of prematurity. Multivariable logistic regression analysis was used to adjust for perinatal and postnatal confounders. Results Of 754 infants with hemodynamically significant PDA (mean [standard deviation] gestational age 25.7 [1.2] weeks and birth weight 813 [183] grams), 184 (24%) underwent ligation. Infants who underwent ligation had a higher frequency of morbidities before PDA closure, including sepsis, necrotizing enterocolitis, and a dependence on mechanical ventilation. After adjusting for perinatal characteristics and preligation morbidities, there was no difference in the odds of death or NDI (adjusted odds ratio (aOR), 0.83; 95% CI, 0.52-1.32), NDI (aOR, 1.27; 95% CI, 0.78-2.06), chronic lung disease (aOR, 1.36; 95% CI, 0.78-2.39) or severe retinopathy of prematurity (aOR, 1.61; 95% CI, 0.85-3.06). Ligation was associated with lower odds of mortality (aOR, 0.09; 95% CI, 0.04-0.21). Conclusions and Relevance Patent ductus arteriosus ligation among preterm neonates younger than 28 weeks gestational age was not associated with the composite outcome of death or NDI, and there were no differences in chronic lung disease, retinopathy of prematurity, or NDI among survivors. Mortality was lower among infants who underwent ligation, though residual survival bias could not be excluded. Previously reported associations of ligation with increased morbidity may be because of bias from confounding by indication. PMID:28264088

  17. Targeting acetylcholine receptor M3 prevents the progression of airway hyperreactivity in a mouse model of childhood asthma.

    PubMed

    Patel, Kruti R; Bai, Yan; Trieu, Kenneth G; Barrios, Juliana; Ai, Xingbin

    2017-10-01

    Asthma often progresses into adulthood from early-life episodes of adverse environmental exposures. However, how the injury to developing lungs contributes to the pathophysiology of persistent asthma remains poorly understood. In this study, we identified an age-related mechanism along the cholinergic nerve-airway smooth muscle (ASM) axis that underlies prolonged airway hyperreactivity (AHR) in mice. We showed that ASM continued to mature until ∼3 wk after birth. Coinciding with postnatal ASM maturation, there was a critical time window for the development of ASM hypercontractility after cholinergic stimulation. We found that allergen exposure in neonatal mice, but not in adult mice, elevated the level and activity of cholinergic nerves (termed neuroplasticity). We demonstrated that cholinergic neuroplasticity is necessary for the induction of persistent AHR after neonatal exposure during rescue assays in mice deficient in neuroplasticity. In addition, early intervention with cholinergic receptor muscarinic (ChRM)-3 blocker reversed the progression of AHR in the neonatal exposure model, whereas β2-adrenoceptor agonists had no such effect. Together, our findings demonstrate a functional relationship between cholinergic neuroplasticity and ASM contractile phenotypes that operates uniquely in early life to induce persistent AHR after allergen exposure. Targeting ChRM3 may have disease-modifying benefits in childhood asthma.-Patel, K. R., Bai, Y., Trieu, K. G., Barrios, J., Ai, X. Targeting acetylcholine receptor M3 prevents the progression of airway hyperreactivity in a mouse model of childhood asthma. © FASEB.

  18. Renal Function Descriptors in Neonates: Which Creatinine-Based Formula Best Describes Vancomycin Clearance?

    PubMed

    Bhongsatiern, Jiraganya; Stockmann, Chris; Yu, Tian; Constance, Jonathan E; Moorthy, Ganesh; Spigarelli, Michael G; Desai, Pankaj B; Sherwin, Catherine M T

    2016-05-01

    Growth and maturational changes have been identified as significant covariates in describing variability in clearance of renally excreted drugs such as vancomycin. Because of immaturity of clearance mechanisms, quantification of renal function in neonates is of importance. Several serum creatinine (SCr)-based renal function descriptors have been developed in adults and children, but none are selectively derived for neonates. This review summarizes development of the neonatal kidney and discusses assessment of the renal function regarding estimation of glomerular filtration rate using renal function descriptors. Furthermore, identification of the renal function descriptors that best describe the variability of vancomycin clearance was performed in a sample study of a septic neonatal cohort. Population pharmacokinetic models were developed applying a combination of age-weight, renal function descriptors, or SCr alone. In addition to age and weight, SCr or renal function descriptors significantly reduced variability of vancomycin clearance. The population pharmacokinetic models with Léger and modified Schwartz formulas were selected as the optimal final models, although the other renal function descriptors and SCr provided reasonably good fit to the data, suggesting further evaluation of the final models using external data sets and cross validation. The present study supports incorporation of renal function descriptors in the estimation of vancomycin clearance in neonates. © 2015, The American College of Clinical Pharmacology.

  19. Hand Sensorimotor Function in Older Children With Neonatal Brachial Plexus Palsy.

    PubMed

    Brown, Susan H; Wernimont, Cory W; Phillips, Lauren; Kern, Kathy L; Nelson, Virginia S; Yang, Lynda J-S

    2016-03-01

    Routine sensory assessments in neonatal brachial plexus palsy are infrequently performed because it is generally assumed that sensory recovery exceeds motor recovery. However, studies examining sensory function in neonatal brachial plexus palsy have produced equivocal findings. The purpose of this study was to examine hand sensorimotor function in older children with neonatal brachial plexus palsy using standard clinical and research-based measures of tactile sensibility. Seventeen children with neonatal brachial plexus palsy (mean age: 11.6 years) and 19 age-matched controls participated in the study. Functional assessments included grip force, monofilament testing, and hand dexterity (Nine-Hole Peg, Jebsen-Taylor Hand Function). Tactile spatial perception involving the discrimination of pin patterns and movement-enhanced object recognition (stereognosis) were also assessed. In the neonatal brachial plexus palsy group, significant deficits in the affected hand motor function were observed compared with the unaffected hand. Median monofilament scores were considered normal for both hands. In contrast, tactile spatial perception was impaired in the neonatal brachial plexus palsy group. This impairment was seen as deficits in both pin pattern and object recognition accuracy as well as the amount of time required to identify patterns and objects. Tactile pattern discrimination time significantly correlated with performance on both functional assessment tests (P < 0.01). This study provides evidence that tactile perception deficits may accompany motor deficits in neonatal brachial plexus palsy even when measures of tactile registration (i.e., monofilament testing) are normal. These results may reflect impaired processing of somatosensory feedback associated with reductions in goal-directed upper limb use and illustrate the importance of including a broader range of sensory assessments in neonatal brachial plexus palsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Dietary L-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus.

    PubMed

    Ren, Wenkai; Luo, Wei; Wu, Miaomiao; Liu, Gang; Yu, Xinglong; Fang, Jun; Li, Teijun; Yin, Yulong; Wu, Guoyao

    2013-09-01

    Porcine circovirus type 2 (PCV2) causes reproductive failure in swine. As glutamine can enhance immune function in animals, this study was conducted with mice to test the hypothesis that dietary glutamine supplementation will improve pregnancy outcome in PCV2-infected dams. Beginning on day 0 of gestation, mice were fed a standard diet supplemented with 1.0% L-glutamine or 1.22% L-alanine (isonitrogenous control). All mice were infected with PCV2 (2000 TCID50) on day 10 of gestation. On day 17 of gestation, six mice from each group were euthanized to obtain maternal tissues and fetuses for hematology and histopathology tests. The remaining mice continued to receive their respective diets supplemented with 1.0% L-glutamine or 1.22% L-alanine through lactation. The PCV2 virus was present in maternal samples (serum and lung) of most mice in the control group but was not detected in the glutamine-supplemented mice. Dietary glutamine supplementation reduced abortion, decreased fetal deaths, and enhanced neonatal survival. The glutamine treatment also reduced concentrations of interleukin-6, while increasing concentrations of tumor necrosis factor-α and C-reactive protein, in the maternal serum of mice. Furthermore, glutamine supplementation attenuated microscopic lesions in maternal tissues (lung, spleen, and liver). Collectively, these results indicate that dietary glutamine supplementation is beneficial for ameliorating reproductive failure in virus-infected mice. The findings support the notion that gestating dams require adequate amounts of dietary glutamine for the optimal survival and growth of embryos, fetuses, and neonates, and have important implications for nutritional support of mammals (including swine and humans) during gestation and lactation.

  1. The use of chilled condensers for the recovery of perfluorocarbon liquid in an experimental model of perfluorocarbon vapour loss during neonatal partial liquid ventilation

    PubMed Central

    Dunster, Kimble R; Davies, Mark W; Fraser, John F

    2007-01-01

    Background Perfluorocarbon (PFC) vapour in the expired gases during partial liquid ventilation should be prevented from entering the atmosphere and recovered for potential reuse. This study aimed to determine how much PFC liquid could be recovered using a conventional humidified neonatal ventilator with chilled condensers in place of the usual expiratory ventilator circuit and whether PFC liquid could be recovered when using the chilled condensers at the ventilator exhaust outlet. Methods Using a model lung, perfluorocarbon vapour loss during humidified partial liquid ventilation of a 3.5 kg infant was approximated. For each test 30 mL of FC-77 was infused into the model lung. Condensers were placed in the expiratory limb of the ventilator circuit and the amounts of PFC (FC-77) and water recovered were measured five times. This was repeated with the condensers placed at the ventilator exhaust outlet. Results When the condensers were used as the expiratory limb, the mean (± SD) volume of FC77 recovered was 16.4 mL (± 0.18 mL). When the condensers were connected to the ventilator exhaust outlet the mean (± SD) volume of FC-77 recovered was 7.6 mL (± 1.14 mL). The volume of FC-77 recovered was significantly higher when the condenser was used as an expiratory limb. Conclusion Using two series connected condensers in the ventilator expiratory line 55% of PFC liquid (FC-77) can be recovered during partial liquid ventilation without altering the function of the of the ventilator circuit. This volume of PFC recovered was just over twice that recovered with the condensers connected to the ventilator exhaust outlet. PMID:17537270

  2. Intermittent hypoxia during recovery from neonatal hyperoxic lung injury causes long-term impairment of alveolar development: A new rat model of BPD.

    PubMed

    Mankouski, Anastasiya; Kantores, Crystal; Wong, Mathew J; Ivanovska, Julijana; Jain, Amish; Benner, Eric J; Mason, Stanley N; Tanswell, A Keith; Auten, Richard L; Jankov, Robert P

    2017-02-01

    Bronchopulmonary dysplasia (BPD) is a chronic lung injury characterized by impaired alveologenesis that may persist into adulthood. Rat models of BPD using varying degrees of hyperoxia to produce injury either cause early mortality or spontaneously recover following removal of the inciting stimulus, thus limiting clinical relevance. We sought to refine an established rat model induced by exposure to 60% O 2 from birth by following hyperoxia with intermittent hypoxia (IH). Rats exposed from birth to air or 60% O 2 until day 14 were recovered in air with or without IH (FI O 2 = 0.10 for 10 min every 6 h) until day 28 Animals exposed to 60% O 2 and recovered in air had no evidence of abnormal lung morphology on day 28 or at 10-12 wk. In contrast, 60% O 2 -exposed animals recovered in IH had persistently increased mean chord length, more dysmorphic septal crests, and fewer peripheral arteries. Recovery in IH also increased pulmonary vascular resistance, Fulton index, and arterial wall thickness. IH-mediated abnormalities in lung structure (but not pulmonary hypertension) persisted when reexamined at 10-12 wk, accompanied by increased pulmonary vascular reactivity and decreased exercise tolerance. Increased mean chord length secondary to IH was prevented by treatment with a peroxynitrite decomposition catalyst [5,10,15,20-Tetrakis(4-sulfonatophenyl)-21H,23H-porphyrin iron (III) chloride, 30 mg/kg/day, days 14-28], an effect accompanied by fewer inflammatory cells. We conclude that IH during recovery from hyperoxia-induced injury prevents recovery of alveologenesis and leads to changes in lung and pulmonary vascular function lasting into adulthood, thus more closely mimicking contemporary BPD. Copyright © 2017 the American Physiological Society.

  3. Activation of Invariant Natural Killer T Cells Redirects the Inflammatory Response in Neonatal Sepsis.

    PubMed

    Bolognese, Alexandra C; Yang, Weng-Lang; Hansen, Laura W; Sharma, Archna; Nicastro, Jeffrey M; Coppa, Gene F; Wang, Ping

    2018-01-01

    Sepsis is the third leading cause of death in the neonatal population, due to susceptibility to infection conferred by immaturity of both the innate and adaptive components of the immune system. Invariant natural killer T (iNKT) cells are specialized adaptive immune cells that possess important innate-like characteristics and have not yet been well-studied in septic neonates. We hypothesized that iNKT cells would play an important role in mediating the neonatal immune response to sepsis. To study this, we subjected 5- to 7-day-old neonatal C57BL/6 mice to sepsis by intraperitoneal (i.p.) cecal slurry (CS) injection. Thirty hours prior to or immediately following sepsis induction, pups received i.p. injection of the iNKT stimulator KRN7000 (KRN, 0.2 µg/g) or vehicle. Ten hours after CS injection, blood and tissues were collected for various analyses. Thirty-hour pretreatment with KRN resulted in better outcomes in inflammation, lung injury, and survival, while immediate treatment with KRN resulted in worse outcomes compared to vehicle treatment. We further analyzed the activation status of neonatal iNKT cells for 30 h after KRN administration, and showed a peak in frequency of CD69 expression on iNKT cells and serum IFN-γ levels at 5 and 10 h, respectively. We then used CD1d knockout neonatal mice to demonstrate that KRN acts through the major histocompatibility complex-like molecule CD1d to improve outcomes in neonatal sepsis. Finally, we identified that KRN pretreatment exerts its protective effect by increasing systemic levels of TGF-β1. These findings support the importance of iNKT cells for prophylactic immunomodulation in neonates susceptible to sepsis.

  4. Quantitative CT characterization of pediatric lung development using routine clinical imaging

    PubMed Central

    Stein, Jill M.; Walkup, Laura L.; Brody, Alan S.; Fleck, Robert J.

    2016-01-01

    Background The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. Objective To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions. Materials and methods We conducted a retrospective query of normal CT chest examinations in children ages 0–7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation. Results We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42±27 months). Lung volume ranged 0.10–1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as −380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately −650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of −860 HU as age and lung volume increased. Conclusion Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging. PMID:27576458

  5. Human umbilical cord-derived mesenchymal stem cells protect from hyperoxic lung injury by ameliorating aberrant elastin remodeling in the lung of O2-exposed newborn rat.

    PubMed

    Hou, Chen; Peng, Danyi; Gao, Li; Tian, Daiyin; Dai, Jihong; Luo, Zhengxiu; Liu, Enmei; Chen, Hong; Zou, Lin; Fu, Zhou

    2018-01-08

    The incidence and mortality rates of bronchopulmonary dysplasia (BPD) remain very high. Therefore, novel therapies are imminently needed to improve the outcome of this disease. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) show promising therapeutic effects on oxygen-induced model of BPD. In our experiment, UC-MSCs were intratracheally delivered into the newborn rats exposed to hyperoxia, a well-established BPD model. This study demonstrated that UC-MSCs reduce elastin expression stimulated by 90% O 2 in human lung fibroblasts-a (HLF-a), and inhibit HLF-a transdifferentiation into myofibroblasts. In addition, the therapeutic effects of UC-MSCs in neonatal rats with BPD, UC-MSCs could inhibit lung elastase activity and reduce aberrant elastin expression and deposition in the lung of BPD rats. Overall, this study suggested that UC-MSCs could ameliorate aberrant elastin expression in the lung of hyperoxia-induced BPD model which may be associated with suppressing increased TGFβ1 activation. Copyright © 2017. Published by Elsevier Inc.

  6. Clinico-pathological Characteristics of Congenital Pulmonary Lymphangiectasis: Report of Two Cases

    PubMed Central

    Eom, Minseob; Choi, Yoo Duk; Kim, Youn Shin; Cho, Mee-Yon; Lee, Han Young

    2007-01-01

    Congenital pulmonary lymphangiectasis (CPL) is a rare, poorly documented disease, characterized by abnormal dilatation of pulmonary lymphatics without lymphatic proliferation. This disease is seen almost exclusively in infancy and early childhood. It can usually be divided into primary (congenital) and secondary forms. The primary form presents in neonates, and the patients mostly die due to the respiratory distress, shortly after birth. The authors experienced two cases of primary CPL in a 13-day-old male neonate and a one-day-old male neonate, showing prominent lymphatic dilatation in the septal, subpleural, and peri-bronchial tissue throughout both lungs. The latter case was associated with congenital cardiac anomaly including single ventricle. These are unique cases of CPL in Korea of which the diagnosis was established through post-mortem examination. Therefore, the authors report these two cases with primary CPL with a review of the literature. PMID:17728521

  7. Overview of Lung Development in the Newborn Human.

    PubMed

    Warburton, David

    2017-01-01

    In human neonates rapid adaptation from an aqueous intrauterine environment to permanent air breathing is the rate-limiting step for extrauterine life, failure of which justifies the existence of neonatal intensive care units. The lung develops at about 4-6 weeks' gestation in humans as a ventral outpouching of the primitive foregut into the surrounding ventral mesenchyme, termed the laryngotracheal groove. At its posterior end lie progenitor cells that form a pair of bronchial tubes, from which arise all the distal epithelial structures of the lung. In humans, formation of the distal gas exchange surfaces begins in utero at about 20 weeks' gestation and is substantially established by term. Stereotypic branching of the proximal airway ends relatively early at 16-18 weeks at the bronchoalveolar duct junctions. Distally, about 5 finger-like alveolar ducts arise from each bronchoalveolar duct junction and ramify outwards towards the pleura. The majority of alveolar air sacs arise from the sides of the alveolar ducts and each of these alveoli can have up to 5 daughter alveoli arising from the outer surface as subsequent buds. At the end of each alveolar duct lie the mouths of 5 interconnected alveoli. Each family of alveoli arising from each bronchoalveolar duct junction has a different shape depending upon the limitations imposed by the pleural surface as well as the interstitial fascial planes. © 2017 S. Karger AG, Basel.

  8. Innate Immunity to Respiratory Infection in Early Life

    PubMed Central

    Lambert, Laura; Culley, Fiona J.

    2017-01-01

    Early life is a period of particular susceptibility to respiratory infections and symptoms are frequently more severe in infants than in adults. The neonatal immune system is generally held to be deficient in most compartments; responses to innate stimuli are weak, antigen-presenting cells have poor immunostimulatory activity and adaptive lymphocyte responses are limited, leading to poor immune memory and ineffective vaccine responses. For mucosal surfaces such as the lung, which is continuously exposed to airborne antigen and to potential pathogenic invasion, the ability to discriminate between harmless and potentially dangerous antigens is essential, to prevent inflammation that could lead to loss of gaseous exchange and damage to the developing lung tissue. We have only recently begun to define the differences in respiratory immunity in early life and its environmental and developmental influences. The innate immune system may be of relatively greater importance than the adaptive immune system in the neonatal and infant period than later in life, as it does not require specific antigenic experience. A better understanding of what constitutes protective innate immunity in the respiratory tract in this age group and the factors that influence its development should allow us to predict why certain infants are vulnerable to severe respiratory infections, design treatments to accelerate the development of protective immunity, and design age specific adjuvants to better boost immunity to infection in the lung. PMID:29184555

  9. Extracorporeal Membrane Oxygenation (ECMO): A Treatment for Neonates in Respiratory Failure.

    ERIC Educational Resources Information Center

    Morris, Donna S.; Gonzalez, Lori S.; Stewart, Sharon R.; Sampers, Jackie

    2000-01-01

    A brief history is provided of extracorporeal membrane oxygenation (ECMO), a treatment option for infants that provides prolonged circulation and reoxgenation of blood outside the body to temporarily support a failing heart or lungs. The University of Kentucky ECMO program is described, along with the positive outcomes of 19 infants. (Contains…

  10. Characterization of CD31 expression on murine and human neonatal T lymphocytes during development and activation

    PubMed Central

    Fike, Adam J.; Nguyen, Linda T.; Kumova, Ogan K.; Carey, Alison J.

    2017-01-01

    Background CD31, expressed by the majority of the neonatal T cell pool, is involved in modulation of T-cell Receptor signalling by increasing the threshold for T cell activation. Therefore, CD31 could modulate neonatal tolerance and adaptive immune responses. Methods Lymphocytes were harvested from murine neonates at different ages, human late preterm and term cord blood, and adult peripheral blood. Human samples were activated over a five-day period to simulate acute inflammation. Mice were infected with influenza; lungs and spleens were harvested at days 6 and 9 post-infection and analyzed by flow cytometry. Results CD31 expressing neonatal murine CD4+ and CD8a+ T cells increase over the first week of life. Upon in vitro stimulation, human infants’ CD4+ and CD8a+ T cells shed CD31 faster in comparison to adults. In the context of acute infection, mice infected at 3-days old have an increased number of naive and activated CD31+ T lymphocytes at the site of infection at day 6 and 9 post-infection, as compared to 7-days old; however, the opposite is true in the periphery. Conclusion Differences in trafficking of CD31+ Cytotoxic T Lymphocytes (CTLs) during acute influenza infection could modulate tolerance and contribute to a dampened adaptive immune response in neonates. PMID:28355204

  11. Lung function comparison between two decades in cystic fibrosis children: A single centre study.

    PubMed

    Tridello, Gloria; Volpi, Sonia; Assael, Baroukh M; Meneghelli, Ilaria; Passiu, Marianna; Circelli, Maria

    2015-12-01

    The purpose of this study was to compare two cohorts of cystic fibrosis (CF) patients born and treated in two different decades, diagnosed through a CF neonatal screening program. We compared pulmonary function decline from 10 to 15 years of age in patients with cystic fibrosis born between 1979 and 1984 (Cohort 1) and between 1991 and 1996 (Cohort 2). Forced expiratory volume in 1 sec (FEV1%) and forced expiratory flow from 25% to 75% (FEF 25-75%) were analyzed by a linear mixed model approach. The differences between the two cohorts were estimated and the overall cohort effect was tested. Ninety-two patients (51 males, 41 females) fulfilled the selection criteria. Pancreatic insufficiency and CF related diabetes were present in 91% and 20% of patients, respectively. The mean absolute decrement of FEV1% was 9.2 (standard deviation [SD] 11.2) in Cohort 1 and 0.6 (SD 10.4) in Cohort 2 (P < 0.001). The mean decrement of FEF 25-75% was 16.3 (SD 19.5) in Cohort 1 and 1.3 (SD 16.8) in Cohort 2 (P < 0.001) and the Pseudomonas aeruginosa (Pa) colonization was 28% and 15% respectively (P = 0.1). Our results show that pulmonary function has clearly ameliorated over a decade in young CF patients, in a period during which several significant therapeutic changes have been introduced, such as dornase alfa, tobramycin and hypertonic saline. To our knowledge this is the first study showing a cohort effect in patients diagnosed after neonatal screening. © 2015 Wiley Periodicals, Inc.

  12. Vasculoprotective effects of heme oxygenase-1 in a murine model of hyperoxia-induced bronchopulmonary dysplasia

    PubMed Central

    Fernandez-Gonzalez, Angeles; Alex Mitsialis, S.; Liu, Xianlan

    2012-01-01

    Bronchopulmonary dysplasia (BPD) is characterized by simplified alveolarization and arrested vascular development of the lung with associated evidence of endothelial dysfunction, inflammation, increased oxidative damage, and iron deposition. Heme oxygenase-1 (HO-1) has been reported to be protective in the pathogenesis of diseases of inflammatory and oxidative etiology. Because HO-1 is involved in the response to oxidative stress produced by hyperoxia and is critical for cellular heme and iron homeostasis, it could play a protective role in BPD. Therefore, we investigated the effect of HO-1 in hyperoxia-induced lung injury using a neonatal transgenic mouse model with constitutive lung-specific HO-1 overexpression. Hyperoxia triggered an increase in pulmonary inflammation, arterial remodeling, and right ventricular hypertrophy that was attenuated by HO-1 overexpression. In addition, hyperoxia led to pulmonary edema, hemosiderosis, and a decrease in blood vessel number, all of which were markedly improved in HO-1 overexpressing mice. The protective vascular response may be mediated at least in part by carbon monoxide, due to its anti-inflammatory, antiproliferative, and antiapoptotic properties. HO-1 overexpression, however, did not prevent alveolar simplification nor altered the levels of ferritin and lactoferrin, proteins involved in iron binding and transport. Thus the protective mechanisms elicited by HO-1 overexpression primarily preserve vascular growth and barrier function through iron-independent, antioxidant, and anti-inflammatory pathways. PMID:22287607

  13. Lung recruitment manoeuvres do not cause haemodynamic instability or oxidative stress but improve oxygenation and lung mechanics in a newborn animal model: an observational study.

    PubMed

    de la Osa, Agustín Mendiola; Garcia-Fernandez, Javier; Llorente-Cantarero, Francisco J; Gil-Campos, Mercedes; Muñoz-Villanueva, María C; De la Torre Aguilar, María J; de la Rosa, Ignacio Ibarra; Pérez-Navero, Juan L

    2014-09-01

    Lung recruitment manoeuvres in neonates during anaesthesia are not performed routinely due to concerns about causing barotrauma, haemodynamic instability and oxidative stress. To assess the influence of recruitment manoeuvres and positive end-expiratory pressure (PEEP) on haemodynamics, oxidative stress, oxygenation and lung mechanics. A prospective experimental study. Experimental Unit, La Paz University Hospital, Madrid, Spain. Eight newborn piglets (<48 h) with healthy lungs under general anaesthesia. The recruitment manoeuvres in pressure-controlled ventilation (PCV) were performed along with a constant driving pressure of 15 cmH2O. After the recruitment manoeuvres, PEEP was reduced in a stepwise fashion to find the maximal dynamic compliance step (maxCDyn-PEEP). Blood oxidative stress biomarkers (lipid peroxidation products, protein carbonyls, total glutathione, oxidised glutathione, reduced glutathione and activity of glutathione peroxidase) were analysed. Haemodynamic parameters, arterial partial pressure of oxygen (paO2), tidal volume (Vt), dynamic compliance (Cdyn) and oxidative stress biomarkers were measured. The recruitment manoeuvres did not induce barotrauma. Haemodynamic instability was not detected either in the maximum pressure step (overdistension step 5) or during the entire process. No substantial differences were observed in blood oxidative stress parameters analysed as compared with their baseline values (with 0 PEEP) or the values obtained 180 min after the onset of the recruitment manoeuvres (optimal PEEP). Significant maximal values were achieved in step 14 with an increase in paO2 (32.43 ± 8.48 vs. 40.39 ± 15.66 kPa; P = 0.037), Vt (47.75 ± 13.59 vs. 73.87 ± 13.56 ml; P = 0.006) and Cdyn (2.50 ± 0.64 vs. 4.75 ± 0.88 ml cmH2O; P < 0.001). Maximal dynamic compliance step (maxCdyn-PEEP) was 2 cmH2O. Recruitment manoeuvres in PCV with a constant driving pressure are a well tolerated open-lung strategy in a healthy-lung neonatal animal model under general anaesthesia. The recruitment manoeuvres improve oxygenation parameters and lung mechanics and do not cause barotrauma, haemodynamic instability or oxidative stress.

  14. An in vitro evaluation of the influence of neonatal endotracheal tube diameter and length on the work of breathing.

    PubMed

    Miyake, Fuyu; Suga, Rika; Akiyama, Takahiro; Namba, Fumihiko

    2018-04-06

    Neonates, particularly premature babies, are often managed with endotracheal intubation and subsequent mechanical ventilation to maintain adequate pulmonary gas exchange. There is no consensus on the standard length of endotracheal tube. Although a short tube reduces resistance and respiratory dead space, it is believed to increase the risk of accidental extubation. There are not entirely coherent data regarding the effect of endotracheal tube length on work of breathing in infants. The aim of this study was to evaluate the impact of neonatal endotracheal tube diameter and length on the work of breathing using an infant in vitro lung model. We assessed the work of breathing index and mechanical ventilation settings with various endotracheal tube diameters and lengths using the JTR100 in vitro infant lung model. The basic parameters of the model were breathing frequency of 20 per minutes, inspiratory-expiratory ratio of 1:3, and positive end-expiratory pressure of 5 cmH 2 O. In addition, the diaphragm driving pressure to maintain the set tidal volume was measured as the work of breathing index. The JTR100 was connected to the Babylog 8000plus through the endotracheal tube. Finally, we monitored the peak inspiratory pressure generated during assist-control volume guarantee mode with a targeted tidal volume of 10-30 mL. The diaphragm driving pressure using a 2.0-mm inner diameter tube was twice as high as that using a 4.0-mm inner diameter tube. To maintain the targeted tidal volume, a shorter tube reduced both the diaphragm driving pressure and ventilator-generated peak inspiratory pressure. The difference in the generated peak inspiratory pressure between the shortest and longest tubes was 5 cmH 2 O. In our infant lung model, a shorter tube resulted in a lower work of breathing and lower ventilator-generated peak inspiratory pressure. © 2018 John Wiley & Sons Ltd.

  15. Distortion product otoacoustic emission (2f1-f2) amplitude growth in human adults and neonates.

    PubMed

    Abdala, C

    2000-01-01

    Distortion product otoacoustic emissions (DPOAEs) are thought to be by-products of an active amplification process in the cochlea and thus serve as a metric for evaluating the integrity of this process. Because the cochlear amplifier functions in a level-dependent fashion, DPOAEs recorded as a function of stimulus level (i.e., a DPOAE growth function) may provide important information about the range and operational characteristics of the cochlear amplifier. The DPOAE growth functions recorded in human adults and neonates may provide information about the maturation of these active cochlear processes. Two experiments were conducted. Experiment I included normal-hearing adults and term-born neonates. The 2f1-f2 DPOAE growth functions were recorded for both age groups at three f2 frequencies. Experiment II was an extension of the first experiment but added a subject group of premature neonates. The results of these studies indicate that DPOAE growth functions most often show amplitude saturation and nonmonotonic growth for all age groups. However, premature neonates show monotonic growth and the absence of amplitude saturation more often than adults. Those premature neonates who do show saturation also show an elevated threshold for amplitude saturation relative to adults. In contrast, term neonates are adultlike for most measures except that they show a larger percentage of nonsaturating growth functions than adults. These results may indicate immaturity in cochlear amplifier function prior to term birth in humans. Outer hair cell function and/or efferent regulation of outer hair cell function are hypothesized sources of this immaturity, although some contribution from the immature middle ear cannot be ruled out.

  16. Frequency and Intensive Care Related Risk Factors of Pneumothorax in Ventilated Neonates

    PubMed Central

    Bhat Yellanthoor, Ramesh; Ramdas, Vidya

    2014-01-01

    Objectives. Relationships of mechanical ventilation to pneumothorax in neonates and care procedures in particular are rarely studied. We aimed to evaluate the relationship of selected ventilator variables and risk events to pneumothorax. Methods. Pneumothorax was defined as accumulation of air in pleural cavity as confirmed by chest radiograph. Relationship of ventilator mode, selected settings, and risk procedures prior to detection of pneumothorax was studied using matched controls. Results. Of 540 neonates receiving mechanical ventilation, 10 (1.85%) were found to have pneumothorax. Respiratory distress syndrome, meconium aspiration syndrome, and pneumonia were the underlying lung pathology. Pneumothorax mostly (80%) occurred within 48 hours of life. Among ventilated neonates, significantly higher percentage with pneumothorax received mandatory ventilation than controls (70% versus 20%; P < 0.01). Peak inspiratory pressure >20 cm H2O and overventilation were not significantly associated with pneumothorax. More cases than controls underwent care procedures in the preceding 3 hours of pneumothorax event. Mean airway pressure change (P = 0.052) and endotracheal suctioning (P = 0.05) were not significantly associated with pneumothorax. Reintubation (P = 0.003), and bagging (P = 0.015) were significantly associated with pneumothorax. Conclusion. Pneumothorax among ventilated neonates occurred at low frequency. Mandatory ventilation and selected care procedures in the preceding 3 hours had significant association. PMID:24876958

  17. A comparison of Wisconsin Neonatal Intensive Care Units with National data on outcomes and practices

    PubMed Central

    Hagen, Erika W.; Sadek-Badawi, Mona; Albanese, Aggie; Palta, Mari

    2009-01-01

    Context: Improvements in neonatal care over the past three decades have resulted in increased survival of infants at lower birthweights and gestational ages. However, outcomes and practices vary considerably between hospitals. Objective: To describe maternal and infant characteristics, NICU practices, morbidity, and mortality in Wisconsin neonatal intensive care units (NICU) and to compare outcomes in Wisconsin to the National Institute of Child Health and Human Development network of large academic medical center NICUs. Design and Setting: The Newborn Lung Project Statewide Cohort is a prospective observational study of all very low birthweight (≤ 1500 grams) infants admitted during 2003 and 2004 to the 16 level III NICUs in Wisconsin. Anonymous data were collected for all admitted infants (N=1463). Main outcome measures: Major neonatal morbidities, including bronchopulmonary dysplasia, intraventricular hemorrhage, necrotizing enterocolitis, and retinopathy of prematurity were evaluated. Results: The overall incidence of bronchopulmonary dysplasia was 24% (range 8-56% between NICUs); intraventricular hemorrhage incidence was 23% (9-41%); the incidence of necrotizing enterocolitis was 7% (0-21%); and the incidence of grade III or higher retinopathy of prematurity was 10% (0-35%). Conclusion: The incidence rates of major neonatal morbidities in Wisconsin were similar to those of a national network of academic NICUs. PMID:19180870

  18. Sex-specific associations between cerebrovascular blood pressure autoregulation and cardiopulmonary injury in neonatal encephalopathy and therapeutic hypothermia.

    PubMed

    Chavez-Valdez, Raul; O'Connor, Matthew; Perin, Jamie; Reyes, Michael; Armstrong, Jillian; Parkinson, Charlamaine; Gilmore, Maureen; Jennings, Jacky; Northington, Frances J; Lee, Jennifer K

    2017-05-01

    Cardiopulmonary injury is common in neonatal encephalopathy, but the link with cerebrovascular dysfunction is unknown. We hypothesized that alterations of cerebral autoregulation are associated with cardiopulmonary injury in neonates treated with therapeutic hypothermia (TH) for neonatal encephalopathy. The cerebral hemoglobin volume index (HVx) from near-infrared spectroscopy was used to identify the mean arterial blood pressure (MAP) with optimal autoregulatory vasoreactivity (MAP OPT ). We measured associations between MAP relative to MAP OPT and indicators of cardiopulmonary injury (duration of mechanical respiratory support and administration of inhaled nitric oxide (iNO), milrinone, or steroids). We identified associations between cerebrovascular autoregulation and cardiopulmonary injury that were often sex-specific. Greater MAP deviation above MAP OPT was associated with shorter duration of intubation in boys but longer ventilatory support in girls. Greater MAP deviation below MAP OPT related to longer intensive care stay in boys. Milrinone was associated with greater MAP deviation below MAP OPT in girls. MAP deviation from MAP OPT may relate to cardiopulmonary injury after neonatal encephalopathy, and sex may modulate this relationship. Whereas MAP above MAP OPT may protect the brain and lungs in boys, it may be related to cardiopulmonary injury in girls. Future studies are needed to characterize the role of sex in these associations.

  19. Sex-specific associations between cerebrovascular blood pressure autoregulation and cardiopulmonary injury in neonatal encephalopathy and therapeutic hypothermia

    PubMed Central

    Chavez-Valdez, Raul; O’Connor, Matthew; Perin, Jamie; Reyes, Michael; Armstrong, Jillian; Parkinson, Charlamaine; Gilmore, Maureen; Jennings, Jacky; Northington, Frances J.; Lee, Jennifer K.

    2017-01-01

    Background Cardiopulmonary injury is common in neonatal encephalopathy, but the link with cerebrovascular dysfunction is unknown. We hypothesized that cerebral autoregulation is associated with cardiopulmonary injury in neonates treated with therapeutic hypothermia (TH) for neonatal encephalopathy. Methods The cerebral hemoglobin volume index (HVx) from near-infrared spectroscopy was used to identify the mean arterial blood pressure (MAP) with optimal autoregulatory vasoreactivity (MAPOPT). We measured associations between MAP relative to MAPOPT and indicators of cardiopulmonary injury (duration of mechanical respiratory support and administration of inhaled nitric oxide (iNO), milrinone, or steroids). Results We identified associations between cerebrovascular autoregulation and cardiopulmonary injury that were often sex-specific. Greater MAP deviation above MAPOPT was associated with shorter duration of intubation in boys but longer ventilatory support in girls. Greater MAP deviation below MAPOPT related to longer intensive care stay in boys. Milrinone was associated with greater MAP deviation below MAPOPT in girls. Conclusion MAP deviation from MAPOPT may relate to cardiopulmonary injury after neonatal encephalopathy, and sex may modulate this relationship. Whereas MAP above MAPOPT may protect the brain and lungs in boys, it may be related to cardiopulmonary injury in girls. Future studies are needed to characterize the role of sex in these associations. PMID:28141793

  20. Tissue distribution and cell tropism of Brucella canis in naturally infected canine foetuses and neonates.

    PubMed

    de Souza, Tayse Domingues; de Carvalho, Tatiane Furtado; Mol, Juliana Pinto da Silva; Lopes, João Vítor Menezes; Silva, Monique Ferreira; da Paixão, Tatiane Alves; Santos, Renato Lima

    2018-05-08

    Brucella canis infection is an underdiagnosed zoonotic disease. Knowledge about perinatal brucellosis in dogs is extremely limited, although foetuses and neonates are under risk of infection due to vertical transmission. In this study, immunohistochemistry was used to determine tissue distribution and cell tropism of B. canis in canine foetuses and neonates. Diagnosis of B. canis in tissues of naturally infected pups was based on PCR and sequencing of amplicons, bacterial isolation, and immunohistochemistry, whose specificity was confirmed by laser capture microdissection. PCR positivity among 200 puppies was 21%, and nine isolates of B. canis were obtained. Tissues from 13 PCR-positive puppies (4 stillborn and 9 neonates) presented widespread immunolabeling. Stomach, intestines, kidney, nervous system, and umbilicus were positive in all animals tested. Other frequently infected organs included the liver (92%), lungs (85%), lymph nodes (69%), and spleen (62%). Immunolabeled coccobacilli occurred mostly in macrophages, but they were also observed in erythrocytes, epithelial cells of gastrointestinal mucosa, renal tubules, epidermis, adipocytes, choroid plexus, ependyma, neuroblasts, blood vessels endothelium, muscle cells, and in the intestinal lumen. These results largely expand our knowledge about perinatal brucellosis in the dog, clearly demonstrating a pantropic distribution of B. canis in naturally infected foetuses and neonates.

  1. [Effects of maternal hyperthyroidism and antithyroid drug therapy on thyroid function of newborn infants].

    PubMed

    Lian, Xiao-lan; Bai, Yao; Xun, Yun-hua; Dai, Wei-xin; Guo, Zhi-sheng

    2005-12-01

    To evaluate the relationship between the incidence of abnormal thyroid function of newborns and maternal hyperthyroidism with antithyroid drug therapy. The clinical data of 35 neonates born to mothers with hyperthyroidism from 1983 to 2003 in Peking Union Medical College Hospital were retrospectively analyzed. According to the maternal thyroid function and the antithyroid drugs taken during pregnancy, subjects were divided into different groups. The proportion of abnormal thyroid function in newborn was 48.6% (17/35). The prevalences of primary hypothyroidism, subclinical hypothyroidism, hypothyroxinemia, and central hypothyroidism were 29.4%, 29.4%, 35.3%, and 5.9%, respectively. The incidence of abnormal thyroid function of neonates whose mothers did not take the antithyroid drugs (ATDs) until the third trimester of pregnancy was significantly higher than those without and with ATDs during the first or second trimester (P < 0.01). The incidence of abnormal thyroid function significantly increased in premature neonates, neonates whose mothers with modest or heavy pregnant hypertension, or neonates whose core serum thyroid-stimulating hormone or serum anti-thyroid peroxidase antibodies levels were abnormal. The risk of abnormal thyroid function of infants whose hyperthyroid mothers did not take ATDs until the third trimester of pregnancy may be increased. Prompt diagnosis and appropriate treatment of hyperthyroidism in pregnant women are essential for the prevention of neonatal thyroid functional abnormality.

  2. Humidity and Inspired Oxygen Concentration During High-Flow Nasal Cannula Therapy in Neonatal and Infant Lung Models.

    PubMed

    Chikata, Yusuke; Ohnishi, Saki; Nishimura, Masaji

    2017-05-01

    High-flow nasal cannula therapy (HFNC) for neonate/infants can deliver up to 10 L/min of heated and humidified gas, and F IO 2 can be adjusted to between 0.21 and 1.0. With adults, humidification and actual F IO 2 are known to vary according to inspiratory and HFNC gas flow, tidal volume (V T ), and ambient temperature. There have been few studies focused on humidification and F IO 2 in HFNC settings for neonates/infants, so we performed a bench study to investigate the influence of gas flow, ambient temperature, and respiratory parameters on humidification and actual F IO 2 in a neonate/infant simulation. HFNC gas flow was set at 3, 5, and 7 L/min, and F IO 2 was set at 0.3, 0.5, and 0.7. Spontaneous breathing was simulated using a 2-bellows-in-a-box model of a neonate lung. Tests were conducted with V T settings of 20, 30, and 40 mL and breathing frequencies of 20 and 30 breaths/min. Inspiratory time was 0.8 s with decelerating flow waveform. The HFNC tube was placed in an incubator, which was either set at 37°C or turned off. Absolute humidity (AH) and actual F IO 2 were measured for 1 min using a hygrometer and an oxygen analyzer, and data for the final 3 breaths were extracted. At all settings, when the incubator was turned on, AH was greater than when it was turned off ( P < .001). When the incubator was turned off, as gas flow increased, AH increased ( P < .001); however, V T did not affect AH ( P = .16). As gas flow increased, actual F IO 2 more closely corresponded to set F IO 2 . When gas flow was 3 L/min, measured F IO 2 decreased proportionally more at each F IO 2 setting increment ( P < .001). AH was affected by ambient temperature and HFNC gas flow. Actual F IO 2 depended on V T when gas flow was 3 L/min. Copyright © 2017 by Daedalus Enterprises.

  3. Protective effects of BMSCs in combination with erythropoietin in bronchopulmonary dysplasia-induced lung injury.

    PubMed

    Zhang, Zhao-Hua; Pan, Yan-Yan; Jing, Rui-Sheng; Luan, Yun; Zhang, Luan; Sun, Chao; Kong, Feng; Li, Kai-Lin; Wang, Yi-Biao

    2016-08-01

    Bronchopulmonary dysplasia (BPD) is the most common type of chronic lung disease in infancy, for which no effective therapy is currently available. The aim of the present study was to investigate the effect of treatment with bone marrow mesenchymal stem cells (BMSCs) in combination with recombinant human erythropoietin (rHuEPO) on BPD‑induced mouse lung injury, and discuss the underlying mechanism. The BPD model was established by the exposure of neonatal mice to continuous high oxygen exposure for 14 days, following which 1x106 BMSCs and 5,000 U/kg rHuEPO were injected into the mice 1 h prior to and 7 days following exposure to hyperoxia. The animals received four treatments in total (n=10 in each group). After 14 days, the body weights, airway structure, and levels of matrix metalloproteinase‑9 (MMP‑9) and vascular endothelial growth factor (VEGF) were detected using histological and immunohistochemical analyses. The effect on cell differentiation was observed by examining the presence of platelet endothelial cell adhesion molecule (PECAM) and VEGF using immunofluorescence. Compared with the administration of BMSCs alone, the body weight, airway structure, and the levels of MMP‑9 and VEGF were significantly improved in the BMSCs/rHuEPO group. The results of the present study demonstrated that the intravenous injection of BMSCs significantly improved lung damage in the hyperoxia‑exposed neonatal mouse model. Furthermore, the injection of BMSCs in combination with intraperitoneal injection of rHuEPO had a more marked effect, compared with BMSCs alone, and the mechanism may be mediated by the promoting effects of BMSCs and EPO. The results of the present study provided information, which may assist in future clinical trials.

  4. Chronic lung disease in very low birth weight infants: Persistence and improvement of a quality improvement process in a tertiary level neonatal intensive care unit.

    PubMed

    Birenbaum, H J; Pfoh, E R; Helou, S; Pane, M A; Marinkovich, G A; Dentry, A; Yeh, Hsin-Chieh; Updegraff, L; Arnold, C; Liverman, S; Cawman, H

    2016-05-19

    We previously demonstrated a significant reduction in our incidence of chronic lung disease in our NICU using potentially better practices of avoiding delivery room endotracheal intubation and using early nasal CPAP. We sought to demonstrate whether these improvements were sustained and or improved over time. We conducted a retrospective, cross-sectional analysis of infants 501-1500 grams born at our hospital between 2005 and 2013. Infants born during the 2005-2007, 2008-2010 and 2011-2013 epochs were grouped together, respectively. Descriptive analysis was conducted to determine the number and percent of maternal and neonatal characteristics by year grouping. Chi-squared tests were used to determine whether there were any statistically significant changes in characteristics across year groupings.. Two outcome variables were assessed: a diagnosis of chronic lung disease based on the Vermont Oxford Network definition and being discharged home on supplemental oxygen. There was a statistically significant improvement in the incidence of chronic lung disease in infants below 27 weeks' gestation in the three year period in the 2011-2013 cohort compared with those in the 2005-2007 cohort. We also found a statistically significant improvement in the number of infants discharged on home oxygen with birth weights 751-1000 grams and infants with gestational age less than 27 weeks in the 2011-2013 cohort compared to the 2005-2007 cohort. We demonstrated sustained improvement in our incidence of CLD between 2005 and 2013. We speculate that a multifaceted strategy of avoiding intubation and excessive oxygen in the delivery room, the early use of CPAP, as well as the use of volume targeted ventilation, when needed, may help significantly reduce the incidence of CLD.

  5. Long term effects of neonatal hypoglycaemia on pancreatic function.

    PubMed

    Anju, T R; Paulose, C S

    2015-02-01

    Low blood glucose in neonates predisposes to long term pancreatic damage. We focused on evaluating long term consequences of neonatal hypoglycaemia in pancreatic functions. Pancreatic function was analysed by measuring DNA/protein synthesis, glucose/ATP uptake in vitro. Gene expression of Pdx1, NeuroD1, Pax4, Bax, caspase 3, Beclin1 were done. Muscarinic receptors were analysed by radio receptor assay. Overall pancreatic efficiency was reduced in one-month-old rats exposed to neonatal hypoglycaemia as indicated by decreased DNA/protein synthesis and glucose/ATP uptake in vitro. Both Pdx1 and Neuro D1 expression were significantly down-regulated whereas Pax4 was up-regulated. Up-regulated Bax, caspase 3 and beclin1 along with reduced muscarinic receptors accounts for activation of cell death pathways. The study revealed a drastic reduction in pancreatic functions along with activation of apoptotic factors in one month old rats exposed to neonatal hypoglycaemia.

  6. Effects of Neonatal Dexamethasone Exposure on Adult Neuropsychiatric Traits in Rats

    PubMed Central

    Robertson, Donald; Rodger, Jennifer; Martin-Iverson, Mathew T.

    2016-01-01

    The effects of early life stress in utero or in neonates has long-term consequences on hypothalamic-pituitary-adrenal (HPA) stress axis function and neurodevelopment. These effects extend into adulthood and may underpin a variety of mental illnesses and be related to various developmental and cognitive changes. We examined the potential role of neonatal HPA axis activation on adult psychopathology and dopamine sensitivity in the mature rat using neonatal exposure to the synthetic glucocorticoid receptor agonist and stress hormone, dexamethasone. We utilized a comprehensive battery of assessments for behaviour, brain function and gene expression to determine if elevated early life HPA activation is associated with adult-onset neuropsychiatric traits. Dexamethasone exposure increased startle reactivity under all conditions tested, but decreased sensitivity of sensorimotor gating to dopaminergic disruption–contrasting with what is observed in several neuropsychiatric diseases. Under certain conditions there also appeared to be mild long-term changes in stress and anxiety-related behaviours with neonatal dexamethasone exposure. Electrophysiology revealed that there were no consistent neuropsychiatric abnormalities in auditory processing or resting state brain function with dexamethasone exposure. However, neonatal dexamethasone altered auditory cortex glucocorticoid activation, and auditory cortex synchronization. Our results indicate that neonatal HPA axis activation by dexamethasone alters several aspects of adult brain function and behaviour and may induce long-term changes in emotional stress-reactivity. However, neonatal dexamethasone exposure is not specifically related to any particular neuropsychiatric disease. PMID:27936175

  7. Neonatal pain-related stress, functional cortical activity and visual-perceptual abilities in school-age children born at extremely low gestational age

    PubMed Central

    Doesburg, Sam M.; Chau, Cecil M.; Cheung, Teresa P.L.; Moiseev, Alexander; Ribary, Urs; Herdman, Anthony T.; Miller, Steven P.; Cepeda, Ivan L.; Synnes, Anne; Grunau, Ruth E.

    2013-01-01

    Children born very prematurely (≤32 weeks) often exhibit visual-perceptual difficulties at school-age, even in the absence of major neurological impairment. The alterations in functional brain activity that give rise to such problems, as well as the relationship between adverse neonatal experience and neurodevelopment, remain poorly understood. Repeated procedural pain-related stress during neonatal intensive care has been proposed to contribute to altered neurocognitive development in these children. Due to critical periods in the development of thalamocortical systems, the immature brain of infants born at extremely low gestational age (ELGA; ≤28 weeks) may have heightened vulnerability to neonatal pain. In a cohort of school-age children followed since birth we assessed relations between functional brain activity measured using magnetoencephalogragy (MEG), visual-perceptual abilities and cumulative neonatal pain. We demonstrated alterations in the spectral structure of spontaneous cortical oscillatory activity in ELGA children at school-age. Cumulative neonatal pain-related stress was associated with changes in background cortical rhythmicity in these children, and these alterations in spontaneous brain oscillations were negatively correlated with visual-perceptual abilities at school-age, and were not driven by potentially confounding neonatal variables. These findings provide the first evidence linking neonatal painrelated stress, the development of functional brain activity, and school-age cognitive outcome in these vulnerable children. PMID:23711638

  8. EFFECTS OF PRENATAL PERFLUOROOCTANESULFONATE (PFOS) EXPOSURE ON LUNG MATURATION IN THE PERINATAL RAT

    EPA Science Inventory

    PFOS is an environmentally stable compound that has been detected at 3 ppb -10 ppm in serum samples from the general public and occupationally exposed individuals. We have shown that exposing pregnant rats to PFOS (25, or 50 mg/kg/d on GD 19-20) induces neonatal death in the rat...

  9. Local Intratracheal Delivery of Perfluorocarbon Nanoparticles to Lung Cancer Demonstrated with Magnetic Resonance Multimodal Imaging

    PubMed Central

    Wu, Lina; Wen, Xiaofei; Wang, Xiance; Wang, Chunan; Sun, Xilin; Wang, Kai; Zhang, Huiying; Williams, Todd; Stacy, Allen J.; Chen, Junjie; Schmieder, Anne H.; Lanza, Gregory M.; Shen, Baozhong

    2018-01-01

    Eighty percent of lung cancers originate as subtle premalignant changes in the airway mucosal epithelial layer of bronchi and alveoli, which evolve and penetrate deeper into the parenchyma. Liquid-ventilation, with perfluorocarbons (PFC) was first demonstrated in rodents in 1966 then subsequently applied as lipid-encapsulated PFC emulsions to improve pulmonary function in neonatal infants suffering with respiratory distress syndrome in 1996. Subsequently, PFC nanoparticles (NP) were extensively studied as intravenous (IV) vascular-constrained nanotechnologies for diagnostic imaging and targeted drug delivery applications. Methods: This proof-of-concept study compared intratumoral localization of fluorescent paramagnetic (M) PFC NP in the Vx2 rabbit model using proton (1H) and fluorine (19F) magnetic resonance (MR) imaging (3T) following intratracheal (IT) or IV administration. MRI results were corroborated by fluorescence microscopy. Results: Dynamic 1H-MR and 19F-MR images (3T) obtained over 72 h demonstrated marked and progressive accumulation of M-PFC NP within primary lung Vx2 tumors during the first 12 h post IT administration. Marked 1H and 19F MR signal persisted for over 72 h. In contradistinction, IV M-PFC NP produced a modest transient signal during the initial 2 h post-injection that was consistent circumferential blood pool tumor enhancement. Fluorescence microscopy of excised tumors corroborated the MR results and revealed enormous intratumor NP deposition on day 3 after IT but not IV treatment. Rhodamine-phospholipid incorporated into the PFC nanoparticle surfactant was distributed widely within the tumor on day 3, which is consistent with a hemifusion-based contact drug delivery mechanism previously reported. Fluorescence microscopy also revealed similar high concentrations of M-PFC NP given IT for metastatic Vx2 lung tumors. Biodistribution studies in mice revealed that M-PFC NP given IV distributed into the reticuloendothelial organs, whereas, the same dosage given IT was basically not detected beyond the lung itself. PFC NP given IT did not impact rabbit behavior or impair respiratory function. PFC NP effects on cells in culture were negligible and when given IV or IT no changes in rabbit hematology nor serum clinical chemistry parameters were measured. Conclusion: IT delivery of PFC NP offered unique opportunity to locally deliver PFC NP in high concentrations into lung cancers with minimal extratumor systemic exposure. PMID:29290827

  10. Neonatal mucosal immunology.

    PubMed

    Torow, N; Marsland, B J; Hornef, M W; Gollwitzer, E S

    2017-01-01

    Although largely deprived from exogenous stimuli in utero, the mucosal barriers of the neonate after birth are bombarded by environmental, nutritional, and microbial exposures. The microbiome is established concurrently with the developing immune system. The nature and timing of discrete interactions between these two factors underpins the long-term immune characteristics of these organs, and can set an individual on a trajectory towards or away from disease. Microbial exposures in the gastrointestinal and respiratory tracts are some of the key determinants of the overall immune tone at these mucosal barriers and represent a leading target for future intervention strategies. In this review, we discuss immune maturation in the gut and lung and how microbes have a central role in this process.

  11. In vitro cardiomyocyte-driven biogenerator based on aligned piezoelectric nanofibers

    NASA Astrophysics Data System (ADS)

    Liu, Xia; Zhao, Hui; Lu, Yingxian; Li, Song; Lin, Liwei; Du, Yanan; Wang, Xiaohong

    2016-03-01

    Capturing the body's mechanical energy from the heart, lungs, and diaphragm can probably meet the requirements for in vivo applications of implantable biomedical devices. In this work, we present a novel contractile cardiomyocyte (CM)-driven biogenerator based on piezoelectric nanofibers (NFs) uniaxially aligned on a PDMS thin film. Flexible nanostructures interact with the CMs, as a physical cue to guide the CMs to align in a specific way, and create mechanical interfaces of contractile CMs and piezoelectric NFs. As such, the cellular construct features specific alignment and synchronous contraction, which realizes the maximal resultant force to drive the NFs to bend periodically. Studies on contraction mapping show that neonatal rat CMs self-assemble into a functional bio-bot film with well-defined axes of force generation. Consequently, the biogenerator produces an average voltage of 200 mV and current of 45 nA at the cell concentration of 1.0 million per ml, offering a biocompatible and scalable platform for biological energy conversion.Capturing the body's mechanical energy from the heart, lungs, and diaphragm can probably meet the requirements for in vivo applications of implantable biomedical devices. In this work, we present a novel contractile cardiomyocyte (CM)-driven biogenerator based on piezoelectric nanofibers (NFs) uniaxially aligned on a PDMS thin film. Flexible nanostructures interact with the CMs, as a physical cue to guide the CMs to align in a specific way, and create mechanical interfaces of contractile CMs and piezoelectric NFs. As such, the cellular construct features specific alignment and synchronous contraction, which realizes the maximal resultant force to drive the NFs to bend periodically. Studies on contraction mapping show that neonatal rat CMs self-assemble into a functional bio-bot film with well-defined axes of force generation. Consequently, the biogenerator produces an average voltage of 200 mV and current of 45 nA at the cell concentration of 1.0 million per ml, offering a biocompatible and scalable platform for biological energy conversion. Electronic supplementary information (ESI) available: Includes the ESI methods and figures, and videos of cell contraction and biogenerator bending. See DOI: 10.1039/c5nr08430j

  12. Safe excipient exposure in neonates and small children - protocol for the SEEN project.

    PubMed

    Valeur, Kristine Svinning; Hertel, Steen Axel; Lundstrøm, Kaare Engell; Holst, Helle

    2017-02-01

    The pharmacokinetics of excipients in neonates differs from that of older children. In a recent pan--European survey, two thirds of neonates received at least one potentially harmful excipient, such as ethanol and benzoates. The content of sweeteners varied by route of administration (more common by enteral than parenteral route), and regional differences were revealed. The survey did not identify if the content of excipients was more pronounced in medications prescribed for specific medical diseases, e.g. more common in cardiovascular conditions than lung diseases. Furthermore, the quantitative amount of e.g. ethanol in the multi-medicated neonate has not been investigated. The aim of the present study was to quantify the total amount of excipients administered to poly-medicated neonatal and paediatric patients during hospitalisation; and to investigate if any particular medical diseases are treated with potentially harmful excipients. This is a retrospective cohort study based on chart-audit on multi-medicated patients ≤ 5 years of age treated at the Rigshospitalet, Denmark. Preparations with ethanol, propylene glycol, benzyl alcohol, parabens, acesulfame p, aspartame, glycerol, sorbitol and polysorbate-80 will be recorded and cumulative amounts will be calculated. By quantifying the amount of harmful excipients to which paediatric patients are exposed, the study will contribute to a risk/benefit assessment of the medication standards of neonatal and paediatric patients. The Danish Council for Independent Research, grant-id: DFF - 6110-00266. This study was registered at clinicaltrials.gov (reg. no. NCT02545712).

  13. Endothelial nitric oxide synthase in hypoxic newborn porcine pulmonary vessels

    PubMed Central

    Hislop, A; Springall, D; Oliveira, H; Pollock, J; Polak, J; Haworth, S

    1997-01-01

    AIMS—To determine if the failure of neonatal pulmonary arteries to dilate is due to a lack of nitric oxide synthase (NOS).
METHODS—A monoclonal antibody to endothelial NOS was used to demonstrate the distribution and density of NOS in the developing porcine lung after a period in hypobaric hypoxia. Newborn piglets were made hypertensive by exposure to hypobaric hypoxia (50.8 kPa) from < 5 minutes of age to 2.5 days of age, 3-6 days of age or 14-17 days of age. A semiquantitative scoring system was used to assess the distribution of endothelial NOS by light microscopy.
RESULTS—NOS was present in the arteries in all hypoxic animals. However, hypoxia from birth caused a reduction in NOS compared with those lungs normal at birth and those normal at 3 days. Hypoxia from 3-6 days led to a high density of NOS compared with normal lungs at 6 days. Hypoxia from 14-17 days had little effect on the amount of NOS. On recovery in room air after exposure to hypoxia from birth there was a transient increase in endothelial NOS after three days of recovery, mirroring that seen at three days in normal animals.
CONCLUSIONS—Suppression of NOS production in the first few days of life may contribute to pulmonary hypertension in neonates.

 Keywords: pulmonary circulation; nitric oxide synthase; hypoxia; endothelium; piglets PMID:9279177

  14. Analysis of the AHR gene proximal promoter GGGGC-repeat polymorphism in lung, breast, and colon cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spink, Barbara C.; Bloom, Michael S.; Wu, Susan

    The aryl hydrocarbon receptor (AhR) regulates expression of numerous genes, including those of the CYP1 gene family. With the goal of determining factors that control AHR gene expression, our studies are focused on the role of the short tandem repeat polymorphism, (GGGGC){sub n}, located in the proximal promoter of the human AHR gene. When luciferase constructs containing varying GGGGC repeats were transfected into cancer cell lines derived from the lung, colon, and breast, the number of GGGGC repeats affected AHR promoter activity. The number of GGGGC repeats was determined in DNA from 327 humans and from 38 samples representing 5more » species of non-human primates. In chimpanzees and 3 species of macaques, only (GGGGC){sub 2} alleles were observed; however, in western gorilla, (GGGGC){sub n} alleles with n = 2, 4, 5, 6, 7, and 8 were identified. In all human populations examined, the frequency of (GGGGC){sub n} was n = 4 > 5 ≫ 2, 6. When frequencies of the (GGGGC){sub n} alleles in DNA from patients with lung, colon, or breast cancer were evaluated, the occurrence of (GGGGC){sub 2} was found to be 8-fold more frequent among lung cancer patients in comparison with its incidence in the general population, as represented by New York State neonates. Analysis of matched tumor and non-tumor DNA samples from the same individuals provided no evidence of microsatellite instability. These studies indicate that the (GGGGC){sub n} short tandem repeats are inherited, and that the (GGGGC){sub 2} allele in the AHR proximal promoter region should be further investigated with regard to its potential association with lung cancer susceptibility. - Highlights: • The AHR proximal promoter contains a polymorphism, (GGGGC){sub n}, where n = 4 > 5 ≫ 2, 6 • Matched tumor and non-tumor DNA did not show (GGGGC){sub n} microsatellite instability • AHR promoter activity of a construct with (GGGGC){sub 2} was lower than that of (GGGGC){sub 4} • The frequency of (GGGGC){sub 2} in lung cancer patients was 8-fold higher than in neonates • The (GGGGC){sub 2} allele may be associated with lung cancer susceptibility.« less

  15. Pulmonary vascular responsiveness in rats following neonatal exposure to high altitude or carbon monoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, A.; Penney, D.G.

    1993-01-01

    Exposure of adult and neonatal rats to high altitude increases pulmonary vascular responsiveness during the exposure. A study was undertaken to determine if a short exposure of neonatal rats to either high-altitude or carbon monoxide (CO) hypoxia would cause persistent alterations in pulmonary vascular responsiveness postexposure. One-day-old male Sprague-Dawley rats were obtained as 16 litters of 10-12 pups each. At 2 days of age, 4 litters were exposed to CO (500 ppm) for 32 days, and 4 litters were exposed to ambient air (AIR) in Detroit (200 m). Another 4 litters were exposed to 3500 m altitude (ALT) in amore » chamber for 32 days, and 3 litters were exposed to ambient conditions in Fort Collins (CON, 1524 m). After the exposures, all rats were maintained at 1524 m. At 2, 40, 76 and 112 days postexposure, lungs were isolated and perfused with Earle's salt solution (+Ficoll, 4 g%). Pulmonary vascular responsiveness was assessed by dose responses to angiotensin II (AII, 0.025-0.40 [mu]g) and acute hypoxia (3% O[sub 2] for 3 min). AII responses were higher in ALT vs CON rats at 2 and 40 days postexposure, but no differences were noted between CO and AIR rats. Baseline pulmonary vascular resistance and pulmonary arterial pressure (in isolated lungs) were higher in ALT rats at all four ages compared to the other three groups. Both the ALT and CO rats displayed hypertrophy of the right ventricle (RV) and the left ventricle (LV) at the termination of treatment and elevated hematocrit. LV hypertrophy and polycythemia regressed with time, but RV hypertrophy remained significant in the ALT rats through 112 days postexposure. The results indicate that neonatal exposure to ALT, but no CO, causes a persistent increase in pulmonary vascular responsiveness and RV hypertrophy for at least 112 days after termination of the exposure. 40 refs., 3 figs., 2 tabs.« less

  16. Silencing hyperoxia-induced C/EBPα in neonatal mice improves lung architecture via enhanced proliferation of alveolar epithelial cells

    PubMed Central

    Yang, Guang; Hinson, Maurice D.; Bordner, Jessica E.; Lin, Qing S.; Fernando, Amal P.; La, Ping; Wright, Clyde J.

    2011-01-01

    Postnatal lung development requires proliferation and differentiation of specific cell types at precise times to promote proper alveolar formation. Hyperoxic exposure can disrupt alveolarization by inhibiting cell growth; however, it is not fully understood how this is mediated. The transcription factor CCAAT/enhancer binding protein-α (C/EBPα) is highly expressed in the lung and plays a role in cell proliferation and differentiation in many tissues. After 72 h of hyperoxia, C/EBPα expression was significantly enhanced in the lungs of newborn mice. The increased C/EBPα protein was predominantly located in alveolar type II cells. Silencing of C/EBPα with a transpulmonary injection of C/EBPα small interfering RNA (siRNA) prior to hyperoxic exposure reduced expression of markers of type I cell and differentiation typically observed after hyperoxia but did not rescue the altered lung morphology at 72 h. Nevertheless, when C/EBPα hyperoxia-exposed siRNA-injected mice were allowed to recover for 2 wk in room air, lung epithelial cell proliferation was increased and lung morphology was restored compared with hyperoxia-exposed control siRNA-injected mice. These data suggest that C/EBPα is an important regulator of postnatal alveolar epithelial cell proliferation and differentiation during injury and repair. PMID:21571903

  17. Congenital Lobar Emphysema: An Approach of Anesthetic Management.

    PubMed

    Mourya, Meenakshi; Meena, Dharam Singh

    2016-08-01

    Congenital Lobar Emphysema (CLE) is a medical condition which is quiet rarely seen especially in neonates. The disease is characterized by over inflation of lungs which is produced due to inhibition of escape of inspired air from lungs. This condition usually occurs in infants due to partial obstruction of the bronchus and can be reversed with timely and planned anaesthetic management. Here in, we are presenting a case of an infant who was merely four months of age. CLE was affecting his left upper lobe since birth which was being treated as lobar pneumonia outside at some peripheral health center. The case presented to hospital with the symptoms acute respiratory distress and was taken up for urgent surgical management. Left upper lobectomy was performed which relived his symptoms. Case was discharged from hospital after 10 days of uneventful hospital stay. The case was challenging, as it involved careful and planned anaesthetic management of lung separation as well as prevention of hyperventilation of the un-involved lung.

  18. Neonatal pain-related stress, functional cortical activity and visual-perceptual abilities in school-age children born at extremely low gestational age.

    PubMed

    Doesburg, Sam M; Chau, Cecil M; Cheung, Teresa P L; Moiseev, Alexander; Ribary, Urs; Herdman, Anthony T; Miller, Steven P; Cepeda, Ivan L; Synnes, Anne; Grunau, Ruth E

    2013-10-01

    Children born very prematurely (< or =32 weeks) often exhibit visual-perceptual difficulties at school-age, even in the absence of major neurological impairment. The alterations in functional brain activity that give rise to such problems, as well as the relationship between adverse neonatal experience and neurodevelopment, remain poorly understood. Repeated procedural pain-related stress during neonatal intensive care has been proposed to contribute to altered neurocognitive development in these children. Due to critical periods in the development of thalamocortical systems, the immature brain of infants born at extremely low gestational age (ELGA; < or =28 weeks) may have heightened vulnerability to neonatal pain. In a cohort of school-age children followed since birth we assessed relations between functional brain activity measured using magnetoencephalogragy (MEG), visual-perceptual abilities and cumulative neonatal pain. We demonstrated alterations in the spectral structure of spontaneous cortical oscillatory activity in ELGA children at school-age. Cumulative neonatal pain-related stress was associated with changes in background cortical rhythmicity in these children, and these alterations in spontaneous brain oscillations were negatively correlated with visual-perceptual abilities at school-age, and were not driven by potentially confounding neonatal variables. These findings provide the first evidence linking neonatal pain-related stress, the development of functional brain activity, and school-age cognitive outcome in these vulnerable children. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  19. Clinical comparison of CR and screen film for imaging the critically ill neonate

    NASA Astrophysics Data System (ADS)

    Andriole, Katherine P.; Brasch, Robert C.; Gooding, Charles A.; Gould, Robert G.; Cohen, Pierre A.; Rencken, Ingo R.; Huang, H. K.

    1996-05-01

    A clinical comparison of computed radiography (CR) versus screen-film for imaging the critically-ill neonate is performed, utilizing a modified (hybrid) film cassette containing a CR (standard ST-V) imaging plate, a conventional screen and film, allowing simultaneous acquisition of perfectly matched CR and plain film images. For 100 portable neonatal chest and abdominal projection radiographs, plain film was subjectively compared to CR hardcopy. Three pediatric radiologists graded overall image quality on a scale of one (poor) to five (excellent), as well as visualization of various anatomic structures (i.e., lung parenchyma, pulmonary vasculature, tubes/lines) and pathological findings (i.e., pulmonary interstitial emphysema, pleural effusion, pneumothorax). Results analyzed using a combined kappa statistic of the differences between scores from each matched set, combined over the three readers showed no statistically significant difference in overall image quality between screen- film and CR (p equals 0.19). Similarly, no statistically significant difference was seen between screen-film and CR for anatomic structure visualization and for visualization of pathological findings. These results indicate that the image quality of CR is comparable to plain film, and that CR may be a suitable alternative to screen-film imaging for portable neonatal chest and abdominal examinations.

  20. Clinical evaluation of CR versus plain film for neonatal ICU applications

    NASA Astrophysics Data System (ADS)

    Andriole, Katherine P.; Brasch, Robert C.; Gooding, Charles A.; Gould, Robert G.; Huang, H. K.

    1995-05-01

    The clinical utility of computed radiography (CR) versus screen-film for neonatal intensive care unit (ICU) applications is investigated. The latest versions of standard ST-V and high- resolution HR-V CR imaging plates were compared via measurements of image contrast, spatial resolution and signal-to-noise. The ST-V imaging plate was found to have equivalent spatial resolution and object detectability at a lower required dose than the HR-V, and was therefore chosen as the CR plate to use in clinical trials in which a modified film cassette containing the CR imaging plate, a conventional screen and film was utilized. For 50 portable neonatal chest examinations, plain film was subjectively compared to the perfectly matched, simultaneously obtained CR hardcopy and softcopy images. Grading of overall image quality was on a scale of one (poor) to five (excellent). Readers rated the visualization of various structures in the chest (i.e., lung parenchyma, pulmonary vasculature, tubes/lines) as well as the visualization of pathologic findings. Preliminary results indicate that the image quality of both CR soft and hardcopy are comparable to plain film and that CR may be a suitable alternative to screen-film imaging for portable neonatal chest x rays.

  1. Heparin for prolonging peripheral intravenous catheter use in neonates: a randomized controlled trial.

    PubMed

    Upadhyay, A; Verma, K K; Lal, P; Chawla, D; Sreenivas, V

    2015-04-01

    To determine the efficacy of heparinized saline administered as intermittent flush on functional duration of the peripheral intravenous catheter (PIVC) in neonates. Randomized, double-blind and placebo-controlled trial. Neonatal intensive care unit of a teaching hospital. Term and preterm neonates born at >32 weeks of gestation who required PIVC only for intermittent administration of antibiotics. Eligible neonates were randomized to receive 1 ml of either heparinized saline (10 U ml(-1)) (n=60) or normal saline (n=60) every 12 h before and after intravenous antibiotics. Functional duration of first peripheral intravenous catheter. A total of 120 neonates were randomized to two groups of 60 neonates each. The mean (s.d.) of age of babies in case and control group was 5.7 (2.5) days and 4.6 (3.1) days, respectively. The average weight of babies in both the groups was 2.1 kg. Mean functional duration of first catheter was more in heparinized saline group, mean (s.d.) of 71.68 h  (27.3) as compared with 57.7 h (23.6) in normal saline group (P<0.005). The mean (95% confidence interval) difference in functional duration in the two groups was 13.9 h (4.7-23.15). Mean duration of patency for any catheter was also significantly more in heparinized saline group than control group. Heparinized saline flush increases the functional duration of peripheral intravenous catheter.

  2. Does Ureaplasma spp. cause chronic lung disease of prematurity: Ask the audience?

    PubMed Central

    Maxwell, Nicola C.; Nuttall, Diane; Kotecha, Sailesh

    2009-01-01

    Ureaplasma has long been implicated in the pathogenesis of both preterm labour and neonatal morbidity, particularly chronic lung disease of prematurity (CLD), but despite numerous studies, reviews and meta-analyses, its exact role remains unclear. Many papers call for a definitive randomised control trial to determine if eradication of pulmonary Ureaplasma decreases the rates of CLD but few address in detail the obstacles to an adequately powered clinical trial. We review the evidence for Ureaplasma as a causative agent in CLD, asking why a randomised control trial has not been performed. We surveyed the opinions of senior neonatologists in the UK on whether they felt that there was sufficient evidence for Ureaplasma either causing or not causing CLD and whether a definitive trial was needed, as well as their views on the design of such a trial. Additionally, we ascertained current practice with respect to Ureaplasma detection in preterm neonates in the UK. There is clear support for an adequately powered randomised controlled clinical trial by senior neonatologists in the UK. There are no reasons why a definitive trial cannot be conducted especially as the appropriate samples, and methods to culture or identify the organism by PCR are already available. PMID:19144476

  3. Patent ductus arteriosus: are current neonatal treatment options better or worse than no treatment at all?

    PubMed Central

    Clyman, Ronald I.; Couto, Jim; Murphy, Gail M.

    2012-01-01

    Although a moderate-size PDA needs to be closed by the time a child is 1–2 years old, there is great uncertainty about whether it needs to be closed during the neonatal period. While 95% of neonatologists believe that a moderate-size PDA should be closed if it persists in infants (born before 28 weeks) who still require mechanical ventilation, the number that treat a PDA when it occurs in infants that do not require mechanical ventilation varies widely. Both the high likelihood of spontaneous ductus closure and the absence of RCTs, specifically addressing the risks and benefits of neonatal ductus closure, adds to the current uncertainty. New information suggests that early pharmacologic treatment has several important short-term benefits for the preterm newborn. On the other hand, ductus ligation, while eliminating the detrimental effects of a PDA on lung development, may create its own set of morbidities that counteract many of the benefits derived from ductus closure. PMID:22414883

  4. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    PubMed

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p < 0.05). Similarly, when compared to extremely preterm neonates without exposure to prenatal stress, extremely preterm neonates with exposure to prenatal stress show significantly less connectivity between the left amygdala and the thalamus, the hypothalamus, and the peristriate cortex (p < 0.05). Exploratory analysis of the combined cohorts suggests additive effects of prenatal stress on alterations in amygdala connectivity associated with preterm birth. Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these decreases.

  5. Dexpanthenol therapy reduces lung damage in a hyperoxic lung injury in neonatal rats.

    PubMed

    Ozdemir, Ramazan; Demirtas, Gulsum; Parlakpinar, Hakan; Polat, Alaadin; Tanbag, Kevser; Taslidere, Elif; Karadag, Ahmet

    2016-01-01

    Dexpanthenol (Dxp) plays a major role in cellular defense and in repair systems against oxidative stress and inflammatory response and it has not yet been evaluated in treatment of bronchopulmonary dysplasia (BPD). We tested the hypothesis that proposes whether Dxp decreases the severity of lung injury in an animal model of BPD. Forty rat pups were divided into four groups: control, control + Dxp, hyperoxia and hyperoxia + Dxp. All animals were processed for lung histology and tissue analysis. The degree of lung inflammation, oxidative and antioxidant capacity was assessed from lung homogenates. Lung injury score and alveol diameter increased in the hyperoxia group (p < 0.001). Median level of malondialdehyde, total oxidant status and oxidative stress indexes was significantly higher in the hyperoxia group compared to the other groups. The median superoxide dismutase activity in the hyperoxia group was notably less than those of control + Dxp and hyperoxia + Dxp groups (p < 0.01). Similarly, lung catalase, glutathione (GSH) peroxidase and reduced GSH activities in the hyperoxia group were significantly lower than other groups. Furthermore, the hyperoxia + Dxp group had lower tumor necrosis factor-α and interleukin-1β median levels compared to the hyperoxia group (p = 0.007). Dxp treatment results in less emphysematous change as well as decrease in inflammation and oxidative stress markers in an animal model of BPD.

  6. Long-term effects of recurrent intermittent hypoxia and hyperoxia on respiratory system mechanics in neonatal mice.

    PubMed

    Dylag, Andrew M; Mayer, Catherine A; Raffay, Thomas M; Martin, Richard J; Jafri, Anjum; MacFarlane, Peter M

    2017-04-01

    Premature infants are at increased risk for wheezing disorders. Clinically, these neonates experience recurrent episodes of apnea and desaturation often treated by increasing the fraction of inspired oxygen (FIO 2 ). We developed a novel paradigm of neonatal intermittent hypoxia with subsequent hyperoxia overshoots (CIH O/E ) and hypothesized that CIH O/E elicits long-term changes on pulmonary mechanics in mice. Neonatal C57BL/6 mice received CIH O/E , which consisted of 10% O2 (1 min) followed by a transient exposure to 50% FIO 2 , on 10-min repeating cycles 24 h/d from birth to P7. Baseline respiratory mechanics, methacholine challenge, RT-PCR for pro and antioxidants, radial alveolar counts, and airway smooth muscle actin were assessed at P21 after 2-wk room air recovery. Control groups were mice exposed to normoxia, chronic intermittent hyperoxia (CIH E ), and chronic intermittent hypoxia (CIH O ). CIH O/E and CIH E increased airway resistance at higher doses of methacholine and decreased baseline compliance compared with normoxia mice. Lung mRNA for NOX2 was increased by CIH O/E . Radial alveolar counts and airway smooth muscle actin was not different between groups. Neonatal intermittent hypoxia/hyperoxia exposure results in long-term changes in respiratory mechanics. We speculate that recurrent desaturation with hyperoxia overshoot may increase oxidative stress and contribute to wheezing in former preterm infants.

  7. Reduced nephron endowment in the neonates of Indigenous Australian peoples.

    PubMed

    Kandasamy, Y; Smith, R; Wright, I M R; Lumbers, E R

    2014-02-01

    Rates of chronic kidney disease (CKD) among Indigenous groups in Australia exceed non-Indigenous rates eight-fold. Using kidney volume as a surrogate for nephron number, we carried out a study to determine if Indigenous neonates have a smaller kidney volume (and thus a reduced nephron number) from birth compared with non-Indigenous neonates. We recruited term and preterm neonates (<32 weeks) at a tertiary care neonatal unit over a 12 months period. Preterm neonates were assessed (renal sonography and renal function measurement) at 32 weeks corrected age (CA) and again at 38 weeks CA when blood pressure was also measured. All term neonates were assessed in the first post-natal week, including renal sonography, renal function and blood pressure measurement. The primary outcome measured was total kidney volume (TKV) and estimated glomerular filtration rate (eGFR) was a secondary outcome. Data was available for 44 preterm (11 Indigenous) and 39 term (13 Indigenous) neonates. TKV of Indigenous neonates was significantly lower at 32 weeks [12.0 (2.0) v. 15.4 (5.1) ml; P=0.03] and 38 weeks CA [18.6 (4.0) v. 22.6 (5.9) ml; P=0.04] respectively. Term Indigenous neonates also had smaller kidney volumes compared with non-Indigenous neonates. Despite a smaller kidney volume (and reduced nephron number), Indigenous neonates did not have a significantly lower eGFR. Indigenous neonates achieve similar eGFRs to Non-Indigenous neonates, presumably through a higher single nephron filtration rate. This places Indigenous neonates at a greater risk of long-term kidney damage later in life.

  8. From Imitation to Conversation: The First Dialogues with Human Neonates

    ERIC Educational Resources Information Center

    Nagy, Emese

    2006-01-01

    The functional maturity of the newborn infant's brain, the resemblances between neonatal imitation and imitation in adults and the possibly lateralized neonatal imitation suggest that the mirror neuron system may contribute to neonatal imitation. Newborn infants not only imitate but also initiate previously imitated gestures, and are able to…

  9. Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat

    PubMed Central

    Lopez, David Fernandez; Faustino, Joel; Daneman, Richard; Zhou, Lu; Lee, Sarah; Derugin, Nikita; Wendland, Michael F.; Vexler, Zinaida S

    2012-01-01

    The immaturity of the CNS at birth greatly affects injury after stroke but the contribution of the blood-brain barrier (BBB) to the differential response to stroke in adults and neonates is poorly understood. We asked if the structure and function of the BBB is disrupted differently in neonatal and adult rats by transient middle cerebral artery occlusion. In adult rats, albumin leakage into injured regions was markedly increased during 2–24 h reperfusion but leakage remained low in the neonates. Functional assays employing intravascular tracers in the neonates showed that BBB permeability to both large (70-kDa dextran) and small (3-kDa dextran, Gd-DTPA) tracers remained largely undisturbed 24h after reperfusion. The profoundly different functional integrity of the BBB was associated with the largely nonoverlapping patterns of regulated genes in endothelial cells purified from injured and uninjured adult and neonatal brain at 24h (endothelial transcriptome, 31,042 total probe sets). Within significantly regulated 1,266 probe sets in injured adults and 361 probe sets in neonates, changes in the gene expression of the basal lamina components, adhesion molecules, the tight junction protein occludin, and MMP-9 were among the key differences. The protein expression of collagen-IV, laminin, claudin-5, occludin and ZO-1 was also better preserved in neonatal rats. Neutrophil infiltration remained low in acutely injured neonates but neutralization of CINC-1 in the systemic circulation enhanced neutrophil infiltration, BBB permeability and injury. The markedly more integrant BBB in neonatal brain than in adult brain after acute stroke may have major implications for the treatment of neonatal stroke. PMID:22787045

  10. [FRENCH CYSTIC FIBROSIS EPIDEMIOLOGY AFTER A DECADE OF NEONATAL SCREENING].

    PubMed

    Durieu, Isabelle

    2015-10-01

    Since its description in 1938, the life expectancy of cystic fibrosis patients has increased from a few months to nearly 50 years in most Western countries. This significant improvement was related to new symptomatic treatments, for nutritional and respiratory cares in specialized multidisciplinary teams. Systematic neonatal screening for the disease avoides the diagnostic delays that have very deleterious impact on the prognosis of the disease. It allows early optimal management; their nutritional benefit has been demonstrated. The French registry of cystic fibrosis shows that adult patients outnumber children. The median age of death remains under thirty years and the prognosis is very closely linked to the progression chronic respiratory insufficiency. About one hundred patients were annually treated by lung transplant

  11. Prenatal imaging of a fetus with the rare combination of a right congenital diaphragmatic hernia and a giant omphalocele.

    PubMed

    Nonaka, Ayasa; Hidaka, Nobuhiro; Kido, Saki; Fukushima, Kotaro; Kato, Kiyoko

    2014-11-01

    A co-existing right congenital diaphragmatic hernia and omphalocele is rare. We present images of a fetus diagnosed with this rare combination of anomalies. Early neonatal death occurred immediately after full-term birth due to severe respiratory insufficiency. In this case, disturbance of chest wall development due to the omphalocele rather than the diaphragmatic hernia was considered as the main cause of lung hypoplasia. Our experience suggests that caution should be exercised for severe respiratory insufficiency in a neonate with an omphalocele and diaphragmatic hernia, even in the absence of an intra-thoracic liver, one of the indicators of poor outcome for congenital diaphragmatic hernia. © 2014 Japanese Teratology Society.

  12. Right Ventricular Function in Preterm and Term Neonates: Reference Values for Right Ventricle Areas and Fractional Area of Change

    PubMed Central

    Levy, Philip T.; Diodena, Brittney; Holland, Mark R.; Sekarski, Timothy J.; Lee, Caroline K.; Mathur, Amit; Cade, W. Todd; Cahill, Alison G.; Hamvas, Aaron; Singh, Gautam K.

    2015-01-01

    Background Right Ventricle fractional area of change (RV FAC) is a quantitative two- dimensional echocardiographic measurement of RV function. RV FAC expresses the percentage change in the RV chamber area between end-diastole (RVEDA) to end-systole (RVESA). The objectives of this study were to determine the maturational (age- and weight- related) changes of RV FAC and RV areas and to establish reference values in healthy preterm and term neonates. Methods A prospective longitudinal study was conducted in 115 preterm infants (23-28 weeks gestational age at birth, 500-1500 gram). RV FAC was measured at 24 hours of age, 72 hours of age, 32 weeks and 36 weeks postmenstrual age (PMA). The maturational patterns of RVEDA, RVESA, and RV FAC were compared to 60 healthy full term infants in a cross sectional study (> 37 weeks, 3.5 +/− 1 kg), who received echocardiograms at birth (n=25) and one month of age (n=35). RVEDA and RVESA were traced in the RV focused apical 4-chamber view, and FAC was calculated using the formula: 100 * [(RVEDA – RVESA)/RVEDA)]. Premature infants that developed chronic lung disease or had a clinically and hemodynamically significant PDA were excluded (n=55) from the reference values. Intra- and inter- observer reproducibility analysis was performed. Results RV FAC ranged from 26% at birth to 35% by 36 weeks PMA in preterm infants (n=60) and increased almost two times faster in the first month of age as compared to healthy term infants (n=60). Similarly, RVEDA and RVESA increased throughout maturation in both term and preterm infants. RV FAC and RV areas correlated with weight (r=0.81, p<0.001), but were independent of gestational age at birth (r=0.3, p=0.45). RVEDA and RVESA correlated with PMA in weeks (r=0.81, p<0.001). RV FAC trended lower in preterm infants with bronchopulmonary dysplasia (p=0.04), but did not correlate to size of PDA (p=0.56). There was no difference in RV FAC based on gender or need for mechanical ventilation. Conclusions This study establishes reference values of RV areas (RVEDA and RVESA) and RV fractional area of change (RV FAC) in healthy term and preterm infants and tracks their maturational changes during postnatal development. These measures increase from birth to 36 weeks PMA, and this is reflective of the postnatal cardiac growth as a contributor to the maturation of cardiac function These measures are also linearly associated with increasing weight throughout maturation. This study suggests that two-dimensional RV FAC can be used as a complementary modality to assess global RV systolic function in neonates and facilitates its incorporation into clinical pediatric and neonatal guidelines. PMID:25753503

  13. Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults

    PubMed Central

    Yu, Hong-Ren; Hsu, Te-Yao; Huang, Hsin-Chun; Kuo, Ho-Chang; Li, Sung-Chou; Yang, Kuender D.; Hsieh, Kai-Sheng

    2016-01-01

    Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies. PMID:28066425

  14. WE-AB-202-04: Statistical Evaluation of Lung Function Using 4DCT Ventilation Imaging: Proton Therapy VS IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Q; Zhang, M; Chen, T

    Purpose: Variation in function of different lung regions has been ignored so far for conventional lung cancer treatment planning, which may lead to higher risk of radiation induced lung disease. 4DCT based lung ventilation imaging provides a novel yet convenient approach for lung functional imaging as 4DCT is taken as routine for lung cancer treatment. Our work aims to evaluate the impact of accounting for spatial heterogeneity in lung function using 4DCT based lung ventilation imaging for proton and IMRT plans. Methods: Six patients with advanced stage lung cancer of various tumor locations were retrospectively evaluated for the study. Protonmore » and IMRT plans were designed following identical planning objective and constrains for each patient. Ventilation images were calculated from patients’ 4DCT using deformable image registration implemented by Velocity AI software based on Jacobian-metrics. Lung was delineated into two function level regions based on ventilation (low and high functional area). High functional region was defined as lung ventilation greater than 30%. Dose distribution and statistics in different lung function area was calculated for patients. Results: Variation in dosimetric statistics of different function lung region was observed between proton and IMRT plans. In all proton plans, high function lung regions receive lower maximum dose (100.2%–108.9%), compared with IMRT plans (106.4%–119.7%). Interestingly, three out of six proton plans gave higher mean dose by up to 2.2% than IMRT to high function lung region. Lower mean dose (lower by up to 14.1%) and maximum dose (lower by up to 9%) were observed in low function lung for proton plans. Conclusion: A systematic approach was developed to generate function lung ventilation imaging and use it to evaluate plans. This method hold great promise in function analysis of lung during planning. We are currently studying more subjects to evaluate this tool.« less

  15. Reference intervals of citrated-native whole blood thromboelastography in premature neonates.

    PubMed

    Motta, Mario; Guaragni, Brunetta; Pezzotti, Elena; Rodriguez-Perez, Carmen; Chirico, Gaetano

    2017-12-01

    Bleeding due to acquired coagulation disorders is a common complication in premature neonates. In this clinical setting, standard coagulation laboratory tests might be unsuitable to investigate the hemostatic function as they reflect the concentration of pro-coagulant proteins but not of anti-coagulant proteins. Thromboelastography (TEG), providing a more complete assessment of hemostasis, may be able to overcome some of these limitations. Unfortunately, experience on the use of TEG in premature neonates is very limited and, in particular in this population, reference ranges of TEG parameters have not been yet evaluated. To evaluate TEG in preterm neonates, and to assess their reference ranges. One hundred and eighteen preterm neonates were analyzed for TEG in a retrospective cohort study. Double-sided 95% reference intervals were calculated using a bootstrap method after Box-Cox transformation. TEG parameters were compared between early-preterm and moderate-/late-preterm neonates and between bleeding and non-bleeding preterm neonates. Comparing early-preterm with moderate-/late-preterm neonates, TEG parameters were not statistically different, except for fibrinolysis which was significantly higher in early preterm neonates. Platelet count significantly correlated with α angle and MA parameters. Bleeding and non-bleeding neonates had similar TEG values. These results reinforce the concept that in stable preterm neonates, in spite of lower concentration of pro- and anti-coagulants proteins, the hemostasis is normally balanced and well functioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. New clinical practice guidelines on the classification, evaluation and management of childhood interstitial lung disease in infants: what do they mean?

    PubMed

    Wambach, Jennifer A; Young, Lisa R

    2014-12-01

    The American Thoracic Society (ATS) recently published a clinical practice guideline regarding the classification, evaluation, and management of childhood interstitial lung disease in infancy (chILD). As disease entities among infants with ILD are often distinct from forms seen in older children and adults, the guideline encourages an age-based classification system and focuses on the diagnostic approach to neonates and infants <2 years of age. The guideline reviews current evidence and recommendations for the evaluation, relevant genetic studies, and management of symptomatic infants. Here, we summarize the ATS guideline, highlight the major concepts, and discuss future strategies aimed at addressing current gaps in knowledge.

  17. BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill.

    PubMed

    Lichtenstein, Daniel A

    2015-06-01

    This review article describes two protocols adapted from lung ultrasound: the bedside lung ultrasound in emergency (BLUE)-protocol for the immediate diagnosis of acute respiratory failure and the fluid administration limited by lung sonography (FALLS)-protocol for the management of acute circulatory failure. These applications require the mastery of 10 signs indicating normal lung surface (bat sign, lung sliding, A-lines), pleural effusions (quad and sinusoid sign), lung consolidations (fractal and tissue-like sign), interstitial syndrome (lung rockets), and pneumothorax (stratosphere sign and the lung point). These signs have been assessed in adults, with diagnostic accuracies ranging from 90% to 100%, allowing consideration of ultrasound as a reasonable bedside gold standard. In the BLUE-protocol, profiles have been designed for the main diseases (pneumonia, congestive heart failure, COPD, asthma, pulmonary embolism, pneumothorax), with an accuracy > 90%. In the FALLS-protocol, the change from A-lines to lung rockets appears at a threshold of 18 mm Hg of pulmonary artery occlusion pressure, providing a direct biomarker of clinical volemia. The FALLS-protocol sequentially rules out obstructive, then cardiogenic, then hypovolemic shock for expediting the diagnosis of distributive (usually septic) shock. These applications can be done using simple grayscale machines and one microconvex probe suitable for the whole body. Lung ultrasound is a multifaceted tool also useful for decreasing radiation doses (of interest in neonates where the lung signatures are similar to those in adults), from ARDS to trauma management, and from ICUs to points of care. If done in suitable centers, training is the least of the limitations for making use of this kind of visual medicine.

  18. Central pattern generation involved in oral and respiratory control for feeding in the term infant

    PubMed Central

    Barlow, Steven M.

    2009-01-01

    Purpose of review Drinking and eating are essential skills for survival and benefit from the coordination of several pattern generating networks and their musculoskeletal effectors to achieve safe swallows. Oral-pharyngo-esophageal motility develops during infancy and early childhood, and is influenced by various factors, including neuromuscular maturation, dietary and postural habits, arousal state, ongoing illnesses, congenital anomalies, and the effects of medical or surgical interventions. Gastroesophageal reflux is frequent in neonates and infants, and its role in neonatal morbidity including dysphagia, chronic lung disease, or apparent life-threatening events is not well understood. This review highlights recent studies aimed at understanding the development of oral feeding skills, and cross-system interactions among the brainstem, spinal, and cerebral networks involved in feeding. Recent Findings Functional linkages between suck-swallow and swallow-respiration manifest transitional forms during late gestation through the first year of life which can be delayed or modified by sensory experience and/or disease processes. Relevant central pattern generator (CPG) networks and their neuromuscular targets attain functional status at different rates, which ultimately influences cross-system CPG interactions. Entrainment of trigeminal primary afferents accelerates pattern genesis for the suck CPG and transition-to-oral feed in the RDS preterm infant. Summary The genesis of within-system CPG control for rate and amplitude scaling matures differentially for suck, mastication, swallow, and respiration. Cross-system interactions among these CPGs represent targets of opportunity for new interventions which optimize experience-dependent mechanisms to promote safe swallows among newborn and pediatric patients. PMID:19417662

  19. Evaluation of a Low-Cost Bubble CPAP System Designed for Resource-Limited Settings.

    PubMed

    Bennett, Desmond J; Carroll, Ryan W; Kacmarek, Robert M

    2018-04-01

    Respiratory compromise is a leading contributor to global neonatal death. CPAP is a method of treatment that helps maintain lung volume during expiration, promotes comfortable breathing, and improves oxygenation. Bubble CPAP is an effective alternative to standard CPAP. We sought to determine the reliability and functionality of a low-cost bubble CPAP device designed for low-resource settings. The low-cost bubble CPAP device was compared to a commercially available bubble CPAP system. The devices were connected to a lung simulator that simulated neonates of 4 different weights with compromised respiratory mechanics (∼1, ∼3, ∼5, and ∼10 kg). The devices' abilities to establish and maintain pressure and flow under normal conditions as well as under conditions of leak were compared. Multiple combinations of pressure levels (5, 8, and 10 cm H 2 O) and flow levels (3, 6, and 10 L/min) were tested. The endurance of both devices was also tested by running the systems continuously for 8 h and measuring the changes in pressure and flow. Both devices performed equivalently during the no-leak and leak trials. While our testing revealed individual differences that were statistically significant and clinically important (>10% difference) within specific CPAP and flow-level settings, no overall comparisons of CPAP or flow were both statistically significant and clinically important. Each device delivered pressures similar to the desired pressures, although the flows delivered by both machines were lower than the set flows in most trials. During the endurance trials, the low-cost device was marginally better at maintaining pressure, while the commercially available device was better at maintaining flow. The low-cost bubble CPAP device evaluated in this study is comparable to a bubble CPAP system used in developed settings. Extensive clinical trials, however, are necessary to confirm its effectiveness. Copyright © 2018 by Daedalus Enterprises.

  20. Overexpression of TGF-alpha increases lung tissue hysteresivity in transgenic mice.

    PubMed

    Pillow, J J; Korfhagen, T R; Ikegami, M; Sly, P D

    2001-12-01

    Increased transforming growth factor (TGF)-alpha has been observed in neonatal chronic lung disease. Lungs of transgenic mice that overexpress TGF-alpha develop enlarged air spaces and pulmonary fibrosis compared with wild-type mice. We hypothesized that these pathological changes may alter the mechanical coupling of viscous and elastic forces within lung parenchyma. Respiratory impedance was measured in open-chested, tracheostomized adult wild-type and TGF-alpha mice by using the forced oscillation technique (0.25-19.63 Hz) delivered by flexiVent (Scireq, Montreal, PQ). Estimates of airway resistance (Raw), inertance (I), and the coefficients of tissue damping (G(L)) and tissue elastance (H(L)) were obtained by fitting a model to each impedance spectrum. Hysteresivity (eta) was calculated as G(L)/H(L). There was a significant increase in eta (P < 0.01) and a trend to a decrease in H(L) (P = 0.07) of TGF-alpha mice compared with the wild-type group. There was no significant change in Raw, I, or G(L). Structural abnormality present in the lungs of adult TGF-alpha mice alters viscoelastic coupling of the tissues, as evidenced by a change in eta.

  1. Lung inflammatory and oxidative alterations after exogenous surfactant therapy fortified with budesonide in rabbit model of meconium aspiration syndrome.

    PubMed

    Mikolka, P; Kopincová, J; Košútová, P; Čierny, D; Čalkovská, A; Mokrá, D

    2016-12-22

    Meconium aspiration syndrome (MAS) triggers inflammatory and oxidative pathways which can inactivate both pulmonary surfactant and therapeutically given exogenous surfactant. Glucocorticoid budesonide added to exogenous surfactant can inhibit inflammation and thereby enhance treatment efficacy. Neonatal meconium (25 mg/ml, 4 ml/kg) was administered intratracheally (i.t.) to rabbits. When the MAS model was prepared, animals were treated with budesonide i.t. (Pulmicort, 0.25 mg/kg, M+B); with surfactant lung lavage (Curosurf®, 10 ml/kg, 5 mg phospholipids/ml, M+S) followed by undiluted Curosurf® i.t. (100 mg phospholipids/kg); with combination of budesonide and surfactant (M+S+B); or were untreated (M); or served as controls with saline i.t. instead of meconium (C). Animals were oxygen-ventilated for additional 5 h. Cell counts in the blood and bronchoalveolar lavage fluid (BAL), lung edema formation (wet/dry weight ratio), oxidative damage of lipids/ proteins and inflammatory expression profiles (IL-2, IL-6, IL-13, TNF-alpha) in the lung homogenate and plasma were determined. Combined surfactant+budesonide therapy was the most effective in reduction of neutrophil counts in BAL, oxidative damage, levels and mRNA expression of cytokines in the lung, and lung edema formation compared to untreated animals. Curosurf fortified with budesonide mitigated lung inflammation and oxidative modifications what indicate the perspectives of this treatment combination for MAS therapy.

  2. Overexpression of transforming growth factor-β1 in fetal monkey lung results in prenatal pulmonary fibrosis

    PubMed Central

    Tarantal, A.F.; Chen, H.; Shi, T.T.; Lu, C-H.; Fang, A.B.; Buckley, S.; Kolb, M.; Gauldie, J.; Warburton, D.; Shi, W.

    2011-01-01

    Altered transforming growth factor (TGF)-β expression levels have been linked to a variety of human respiratory diseases, including bronchopulmonary dysplasia and pulmonary fibrosis. However, a causative role for aberrant TGF-β in neonatal lung diseases has not been defined in primates. Exogenous and transient TGF-β1 overexpression in fetal monkey lung was achieved by transabdominal ultrasound-guided fetal intrapulmonary injection of adenoviral vector expressing TGF-β1 at the second or third trimester of pregnancy. The lungs were then harvested near term, and fixed for histology and immunohistochemistry. Lung hypoplasia was observed where TGF-β1 was overexpressed during the second trimester. The most clearly marked phenotype consisted of severe pulmonary and pleural fibrosis, which was independent of the gestational time point when TGF-β1 was overexpressed. Increased cell proliferation, particularly in α-smooth muscle actin-positive myofibroblasts, was detected within the fibrotic foci. But epithelium to mesenchyme transdifferentiation was not detected. Massive collagen fibres were deposited on the inner and outer sides of the pleural membrane, with an intact elastin layer in the middle. This induced fibrotic pathology persisted even after adenoviral-mediated TGF-β1 overexpression was no longer evident. Therefore, overexpression of TGF-β1 within developing fetal monkey lung results in severe and progressive fibrosis in lung parenchyma and pleural membrane, in addition to pulmonary hypoplasia. PMID:20351039

  3. Postmortem CT investigation of air/gas distribution in the lungs and gastrointestinal tracts of newborn infants: a serial case study with regard to still- and live birth.

    PubMed

    Michiue, Tomomi; Ishikawa, Takaki; Kawamoto, Osamu; Sogawa, Nozomi; Oritani, Shigeki; Maeda, Hitoshi

    2013-03-10

    Flotation tests on the lungs and gastrointestinal tract to investigate aeration are classic procedures to examine the life of a newborn after birth; however, there are arguments about the reliability. The present study investigated serial forensic autopsy cases of newborn infants without marked decomposition (n=4) with regard to air/gas distribution in the lungs and gastrointestinal tracts by means of postmortem CT (PM-CT) as well as macromorphology and histology, compared with intrauterine and aborted fetuses (n=3). No gas was detected in the lungs or gastrointestinal tracts in all of three intrauterine fetal deaths. Gas was diffusely detected in the lungs of a newborn fatality attributed to smothering after birth; however, two neonatal fatalities had poor lung gas contents due to marked congestion with edema and diffuse atelectasis. In a case of unsuccessful cardiopulmonary resuscitation following possible birth asphyxia, pulmonary aeration was evidently localized on CT morphology, despite a larger amount of bowel gas, and was also uneven in histology, showing a membranous immunostaining pattern of pulmonary surfactant on the intra-alveolar surfaces of expanded alveoli. The combined use of PM-CT is useful to demonstrate air/gas distributions in the lungs and gastrointestinal tract for interpretation of spontaneous breathing after birth in newborn fatalities. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Neural Stem Cells Expressing bFGF Reduce Brain Damage and Restore Sensorimotor Function after Neonatal Hypoxia-Ischemia.

    PubMed

    Ye, Qingsong; Wu, Yanqing; Wu, Jiamin; Zou, Shuang; Al-Zaazaai, Ali Ahmed; Zhang, Hongyu; Shi, Hongxue; Xie, Ling; Liu, Yanlong; Xu, Ke; He, Huacheng; Zhang, Fabiao; Ji, Yiming; He, Yan; Xiao, Jian

    2018-01-01

    Neonatal hypoxia-ischemia (HI) causes severe brain damage and significantly increases neonatal morbidity and mortality. Increasing evidences have verified that stem cell-based therapy has the potential to rescue the ischemic tissue and restore function via secreting growth factors after HI. Here, we had investigated whether intranasal neural stem cells (NSCs) treatment improves the recovery of neonatal HI, and NSCs overexpressing basic fibroblast growth factor (bFGF) has a better therapeutic effect for recovery than NSCs treatment only. We performed permanent occlusion of the right common carotid artery in 9-day old ICR mice as animal model of neonatal hypoxia-ischemia. At 3 days post-HI, NSC, NSC-GFP, NSC-bFGF and vehicle were delivered intranasally. To determine the effect of intranasal NSC, NSC-GFP and NSC-bFGF treatment on recovery after HI, we analyzed brain damage, sensor-motor function and cell differentiation. It was observed that intranasal NSC, NSC-GFP and NSC-bFGF treatment decreased gray and white matter loss area in comparison with vehicle-treated mouse. NSC, NSC-GFP and NSC-bFGF treatment also significantly improved sensor motor function in cylinder rearing test and adhesive removal test, however, NSC-bFGF-treatment was more effective than NSC-treatment in the improvement of somatosensory function. Furthermore, compared with NSC and NSC-GFP, NSC-bFGF treatment group appeared to differentiate into more neurons. Taken together, intranasal administration of NSCs is a promising therapy for treatment of neonatal HI, but NSCs overexpressing bFGF promotes the survival and differentiation of NSCs, and consequently achieves a better therapeutic effect in improving recovery after neonatal HI. © 2018 The Author(s). Published by S. Karger AG, Basel.

  5. KATP Channel Mutations and Neonatal Diabetes.

    PubMed

    Shimomura, Kenju; Maejima, Yuko

    2017-09-15

    Since the discovery of the K ATP channel in 1983, numerous studies have revealed its physiological functions. The K ATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the K ATP channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the K ATP channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the K ATP channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.

  6. Postnatal lung mechanics, lung composition, and surfactant synthesis after tracheal occlusion vs prenatal intrapulmonary instillation of perfluorocarbon in fetal rabbits.

    PubMed

    Muensterer, Oliver J; Flemmer, Andreas W; Bergmann, Florian; Hajek, Kerstin S; Lu, Hui Qi; Simbruner, Georg; Deprest, Jan A; Till, Holger

    2005-01-01

    Fetal tracheal occlusion (TO) accelerates lung growth but decreases surfactant production. We have previously shown that instillation of perfluorooctylbromide (PFOB) into fetal rabbit lungs leads to lung growth similar to TO. This study compares neonatal lung mechanics and surfactant production after prenatal intrapulmonary PFOB instillation vs TO. In each of 18 pregnant rabbits on gestational day 27, sets of 4 fetuses underwent either (1) intrapulmonary instillation of 1 mL PFOB, (2) TO, (3) instillation of 1 mL 0.9% NaCl (saline), and (4) hysteroamniotomy without fetal manipulation (control). Fetuses were born by cesarean delivery after 48 hours. Fetuses of 12 rabbits were mechanically ventilated for 15 minutes to evaluate lung compliance and airway resistance. Pulmonary surfactant protein B (SP-B) was quantified by immunohistochemistry in fetuses of the remaining 6 rabbits. Compliance was decreased in the TO group after cesarean delivery (0.33 +/- 0.13 mL/cm H2O) compared with PFOB (0.59 +/- 0.12 mL/cm H2O), saline (0.50 +/- 0.12 mL/cm H2O), and control (0.52 +/- 0.10 mL/cm H2O) fetuses. Mean fetal lung to body weight ratio was higher in TO and PFOB fetuses compared with saline and control. Higher water content and lower numbers of surfactant protein B-positive cells were found in the TO-treated fetuses. Both prenatal intrapulmonary instillation of PFOB and TO accelerate lung growth, but TO is associated with decreased postnatal lung compliance, possibly influenced by decreased surfactant production and increased fluid retention. Conversely, instillation of PFOB preserved lung compliance and surfactant synthesis.

  7. Chest physiotherapy in preterm infants with lung diseases

    PubMed Central

    2010-01-01

    Background In neonatology the role of chest physiotherapy is still uncertain because of the controversial outcomes. Methods The aim of this study was to test the applicability in preterm infants of 'reflex rolling', from the Vojta method, in preterm neonates with lung pathology, with particular attention to the effects on blood gases and oxygen saturation, on the spontaneous breathing, on the onset of stress or pain. The study included 34 preterm newborns with mean gestational age of 30.5 (1.6) weeks - mean (DS) - and birth weight of 1430 (423) g - mean (DS) -, who suffered from hyaline membrane disease, under treatment with nasal CPAP (continuous positive airways pressure), or from pneumonia, under treatment with oxygen-therapy. The neonates underwent phase 1 of 'reflex rolling' according to Vojta method three times daily. Respiratory rate, SatO2, transcutaneous PtcCO2 e PtcO2 were monitored; in order to evaluate the onset of stress or pain following the stimulations, the NIPS score and the PIPP score were recorded; cerebral ultrasound scans were performed on postnatal days 1-3-5-7, and then weekly. Results In this population the first phase of Vojta's 'reflex rolling' caused an increase of PtcO2 and SatO2 values. No negative effects on PtcCO2 and respiratory rate were observed, NIPS and PIPP stress scores remained unmodified during the treatment; in no patient the intraventricular haemorrhage worsened in time and none of the infants developed periventricular leucomalacia. Conclusions Our experience, using the Vojta method, allows to affirm that this method is safe for preterm neonates, but further investigations are necessary to confirm its positive effects and to evaluate long-term respiratory outcomes. PMID:20868518

  8. Correlation of neonatal intensive care unit performance across multiple measures of quality of care.

    PubMed

    Profit, Jochen; Zupancic, John A F; Gould, Jeffrey B; Pietz, Kenneth; Kowalkowski, Marc A; Draper, David; Hysong, Sylvia J; Petersen, Laura A

    2013-01-01

    To examine whether high performance on one measure of quality is associated with high performance on others and to develop a data-driven explanatory model of neonatal intensive care unit (NICU) performance. We conducted a cross-sectional data analysis of a statewide perinatal care database. Risk-adjusted NICU ranks were computed for each of 8 measures of quality selected based on expert input. Correlations across measures were tested using the Pearson correlation coefficient. Exploratory factor analysis was used to determine whether underlying factors were driving the correlations. Twenty-two regional NICUs in California. In total, 5445 very low-birth-weight infants cared for between January 1, 2004, and December 31, 2007. Pneumothorax, growth velocity, health care-associated infection, antenatal corticosteroid use, hypothermia during the first hour of life, chronic lung disease, mortality in the NICU, and discharge on any human breast milk. The NICUs varied substantially in their clinical performance across measures of quality. Of 28 unit-level correlations, 6 were significant (ρ < .05). Correlations between pairs of measures of quality of care were strong (ρ ≥ .5) for 1 pair, moderate (range, ρ ≥ .3 to ρ < .5) for 8 pairs, weak (range, ρ ≥ .1 to ρ < .3) for 5 pairs, and negligible (ρ < .1) for 14 pairs. Exploratory factor analysis revealed 4 underlying factors of quality in this sample. Pneumothorax, mortality in the NICU, and antenatal corticosteroid use loaded on factor 1; growth velocity and health care-associated infection loaded on factor 2; chronic lung disease loaded on factor 3; and discharge on any human breast milk loaded on factor 4. In this sample, the ability of individual measures of quality to explain overall quality of neonatal intensive care was modest.

  9. Correlation of Neonatal Intensive Care Unit Performance Across Multiple Measures of Quality of Care

    PubMed Central

    Profit, J; Zupancic, JAF; Gould, JB; Pietz, K; Kowalkowski, MA; Draper, D; Hysong, SJ; Petersen, LA

    2014-01-01

    Objectives To examine whether high performance on one measure of quality is associated with high performance on others and to develop a data-driven explanatory model of neonatal intensive care unit (NICU) performance. Design We conducted a cross-sectional data analysis of a statewide perinatal care database. Risk-adjusted NICU ranks were computed for each of 8 measures of quality selected based on expert input. Correlations across measures were tested using the Pearson correlation coefficient. Exploratory factor analysis was used to determine whether underlying factors were driving the correlations. Setting Twenty-two regional NICUs in California. Patients In total, 5445 very low-birth-weight infants cared for between January 1, 2004, and December 31, 2007. Main Outcomes Measures Pneumothorax, growth velocity, health care–associated infection, antenatal corticosteroid use, hypothermia during the first hour of life, chronic lung disease, mortality in the NICU, and discharge on any human breast milk. Results The NICUs varied substantially in their clinical performance across measures of quality. Of 28 unit-level correlations only 6 were significant (P < .05). Correlations between pairs of quality measures were strong (ρ > .5) for 1 pair, moderate (.3 < |ρ| < .5) for 8 pairs, weak (.1 < |ρ| < .3) for 5 pairs and negligible (|ρ| < .1) for 14 pairs. Exploratory factor analysis revealed 4 underlying factors of quality in this sample. Pneumothorax, mortality in the NICU, and antenatal corticosteroid use loaded on factor 1; growth velocity and health care–associated infection loaded on factor 2; chronic lung disease loaded on factor 3; and discharge on any human breast milk loaded on factor 4. Conclusion In this sample, the ability of individual measures of quality to explain overall quality of neonatal intensive care was modest. PMID:23403539

  10. Gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters retinoid homeostasis in maternal and perinatal tissues of the Holtzman rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kransler, Kevin M.; Tonucci, David A.; McGarrigle, Barbara P.

    2007-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), one of the most widely studied environmental contaminants, causes a variety of adverse health effects including teratogenesis and altered development which may be related to disruptions in retinoid homeostasis. The purpose of this study was to determine the effect that gestational administration of TCDD has on retinoid homeostasis in both pregnant Holtzman rats and developing fetuses and neonates. A single oral dose of TCDD (0, 1.5, 3, or 6 {mu}g/kg) was administered to pregnant rats on gestation day 10, with fetuses analyzed on gestation days 17 and 20, and neonates analyzed on post natal day 7. Exposure tomore » TCDD generally produced decreases in the concentrations of retinyl esters, such as retinyl palmitate, and retinol in maternal and perinatal liver and lung, while increasing levels in the maternal kidney. Additionally, perinatal hepatic retinol binding protein 1-dependent retinyl ester hydrolysis was also decrease by TCDD. Sensitivity of the developing perinates to TCDD appeared to have an age-related component demonstrated by an increased rate of mortality and significant alterations to body weight and length on post natal day 7 relative to that observed at gestation day 20. A unique observation made in this study was a significant decrease in lung weight observed in the perinates exposed to TCDD. Taken together, these data demonstrate that TCDD significantly alters retinoid homeostasis in tissues of the developing fetus and neonate, suggesting that their unique sensitivity to TCDD may at least be in part the result of altered retinoid homeostasis.« less

  11. Assessment of volume and leak measurements during CPAP using a neonatal lung model.

    PubMed

    Fischer, H S; Roehr, C C; Proquitté, H; Wauer, R R; Schmalisch, G

    2008-01-01

    Although several commercial devices are available which allow tidal volume and air leak monitoring during continuous positive airway pressure (CPAP) in neonates, little is known about their measurement accuracy and about the influence of air leaks on volume measurement. The aim of this in vitro study was the validation of volume and leak measurement under CPAP using a commercial ventilatory device, taking into consideration the clinical conditions in neonatology. The measurement accuracy of the Leoni ventilator (Heinen & Löwenstein, Germany) was investigated both in a leak-free system and with leaks simulated using calibration syringes (2-10 ml, 20-100 ml) and a mechanical lung model. Open tubes of variable lengths were connected for leak simulation. Leak flow was measured with the flow-through technique. In a leak-free system the mean relative volume error +/-SD was 3.5 +/- 2.6% (2-10 ml) and 5.9 +/- 0.7% (20-60 ml), respectively. The influence of CPAP level, driving flow, respiratory rate and humidification of the breathing gas on the volume error was negligible. However, an increasing F(i)O(2) caused the measured tidal volume to increase by up to 25% (F(i)O(2) = 1.0). The relative error +/- SD of the leak measurements was -0.2 +/- 11.9%. For leaks > 19%, measured tidal volume was underestimated by more than 10%. In conclusion, the present in vitro study showed that the Leoni allowed accurate volume monitoring under CPAP conditions similar to neonates. Air leaks of up to 90% of patient flow were reliably detected. For an F(i)O(2) > 0.4 and for leaks > 19%, a numerical correction of the displayed volume should be performed.

  12. Pre-flight testing of preterm infants with neonatal lung disease: a retrospective review.

    PubMed

    Udomittipong, K; Stick, S M; Verheggen, M; Oostryck, J; Sly, P D; Hall, G L

    2006-04-01

    The low oxygen environment during air travel may result in hypoxia in patients with respiratory disease. However, little information exists on the oxygen requirements of infants with respiratory disease planning to fly. A study was undertaken to identify the clinical factors predictive of an in-flight oxygen requirement from a retrospective review of hypoxia challenge tests (inhalation of 14-15% oxygen for 20 minutes) in infants referred for fitness to fly assessment. Data from 47 infants (median corrected age 1.4 months) with a history of neonatal lung disease but not receiving supplemental oxygen at the time of hypoxia testing are reported. The neonatal and current clinical information of the infants were analysed in terms of their ability to predict the hypoxia test results. Thirty eight infants (81%) desaturated below 85% and warranted prescription of supplemental in-flight oxygen. Baseline oxygen saturation was >95% in all infants. Age at the time of the hypoxia test, either postmenstrual or corrected, significantly predicted the outcome of the hypoxia test (odds ratio 0.82; 95% confidence intervals 0.62 to 0.95; p = 0.005). Children passing the hypoxia test were significantly older than those requiring in-flight oxygen (median corrected age (10-90th centiles) 12.7 (3.0-43.4) v 0 (-0.9-10.9) months; p < 0.0001). A high proportion of ex-preterm infants not currently requiring supplemental oxygen referred for fitness-to-fly assessment and less than 12 months corrected age are at a high risk of requiring in-flight oxygen. Referral of this patient group for fitness to fly assessment including a hypoxia test may be indicated.

  13. Mechanical ventilation causes pulmonary mitochondrial dysfunction and delayed alveolarization in neonatal mice.

    PubMed

    Ratner, Veniamin; Sosunov, Sergey A; Niatsetskaya, Zoya V; Utkina-Sosunova, Irina V; Ten, Vadim S

    2013-12-01

    Hyperoxia inhibits pulmonary bioenergetics, causing delayed alveolarization in mice. We hypothesized that mechanical ventilation (MV) also causes a failure of bioenergetics to support alveolarization. To test this hypothesis, neonatal mice were ventilated with room air for 8 hours (prolonged) or for 2 hours (brief) with 15 μl/g (aggressive) tidal volume (Tv), or for 8 hours with 8 μl/g (gentle) Tv. After 24 hours or 10 days of recovery, lung mitochondria were examined for adenosine diphosphate (ADP)-phosphorylating respiration, using complex I (C-I)-dependent, complex II (C-II)-dependent, or cytochrome C oxidase (C-IV)-dependent substrates, ATP production rate, and the activity of C-I and C-II. A separate cohort of mice was exposed to 2,4-dinitrophenol (DNP), a known uncoupler of oxidative phosphorylation. At 10 days of recovery, pulmonary alveolarization and the expression of vascular endothelial growth factor (VEGF) were assessed. Sham-operated littermates were used as control mice. At 24 hours after aggressive MV, mitochondrial ATP production rates and the activity of C-I and C-II were significantly decreased compared with control mice. However, at 10 days of recovery, only mice exposed to prolonged-aggressive MV continued to exhibit significantly depressed mitochondrial respiration. This was associated with significantly poorer alveolarization and VEGF expression. In contrast, mice exposed to brief-aggressive or prolonged-gentle MV exhibited restored mitochondrial ADP-phosphorylation, normal alveolarization and pulmonary VEGF content. Exposure to DNP fully replicated the phenotype consistent with alveolar developmental arrest. Our data suggest that the failure of bioenergetics to support normal lung development caused by aggressive and prolonged ventilation should be considered a fundamental mechanism for the development of bronchopulmonary dysplasia in premature neonates.

  14. Genetically determined heterogeneity of lung disease in a mouse model of airway mucus obstruction

    PubMed Central

    Grubb, Barbara R.; Kelly, Elizabeth J.; Wilkinson, Kristen J.; Yang, Huifang; Geiser, Marianne; Randell, Scott H.; Boucher, Richard C.; O'Neal, Wanda K.

    2012-01-01

    Mucus clearance is an important airway innate defense mechanism. Airway-targeted overexpression of the epithelial Na+ channel β-subunit [encoded by sodium channel nonvoltage gated 1, beta subunit (Scnn1b)] in mice [Scnn1b-transgenic (Tg) mice] increases transepithelial Na+ absorption and dehydrates the airway surface, which produces key features of human obstructive lung diseases, including mucus obstruction, inflammation, and air-space enlargement. Because the first Scnn1b-Tg mice were generated on a mixed background, the impact of genetic background on disease phenotype in Scnn1b-Tg mice is unknown. To explore this issue, congenic Scnn1b-Tg mice strains were generated on C57BL/6N, C3H/HeN, BALB/cJ, and FVB/NJ backgrounds. All strains exhibited a two- to threefold increase in tracheal epithelial Na+ absorption, and all developed airway mucus obstruction, inflammation, and air-space enlargement. However, there were striking differences in neonatal survival, ranging from 5 to 80% (FVB/NJ

  15. Pulmonary hypertension associated with acute or chronic lung diseases in the preterm and term neonate and infant. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK.

    PubMed

    Hilgendorff, Anne; Apitz, Christian; Bonnet, Damien; Hansmann, Georg

    2016-05-01

    Persistent pulmonary hypertension of the newborn (PPHN) is the most common neonatal form and mostly reversible after a few days with improvement of the underlying pulmonary condition. When pulmonary hypertension (PH) persists despite adequate treatment, the severity of parenchymal lung disease should be assessed by chest CT. Pulmonary vein stenosis may need to be ruled out by cardiac catheterisation and lung biopsy, and genetic workup is necessary when alveolar capillary dysplasia is suspected. In PPHN, optimisation of the cardiopulmonary situation including surfactant therapy should aim for preductal SpO2between 91% and 95% and severe cases without post-tricuspid-unrestrictive shunt may receive prostaglandin E1 to maintain ductal patency in right heart failure. Inhaled nitric oxide is indicated in mechanically ventilated infants to reduce the need for extracorporal membrane oxygenation (ECMO), and sildenafil can be considered when this therapy is not available. ECMO may be indicated according to the ELSO guidelines. In older preterm infant, where PH is mainly associated with bronchopulmonary dysplasia (BPD) or in term infants with developmental lung anomalies such as congenital diaphragmatic hernia or cardiac anomalies, left ventricular diastolic dysfunction/left atrial hypertension or pulmonary vein stenosis, can add to the complexity of the disease. Here, oral or intravenous sildenafil should be considered for PH treatment in BPD, the latter for critically ill patients. Furthermore, prostanoids, mineralcorticoid receptor antagonists, and diuretics can be beneficial. Infants with proven or suspected PH should receive close follow-up, including preductal/postductal SpO2measurements, echocardiography and laboratory work-up including NT-proBNP, guided by clinical improvement or lack thereof. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Rotavirus Viremia and Extraintestinal Viral Infection in the Neonatal Rat Model

    PubMed Central

    Crawford, Sue E.; Patel, Dinesh G.; Cheng, Elly; Berkova, Zuzana; Hyser, Joseph M.; Ciarlet, Max; Finegold, Milton J.; Conner, Margaret E.; Estes, Mary K.

    2006-01-01

    Rotaviruses infect mature, differentiated enterocytes of the small intestine and, by an unknown mechanism, escape the gastrointestinal tract and cause viremia. The neonatal rat model of rotavirus infection was used to determine the kinetics of viremia, spread, and pathology of rotavirus in extraintestinal organs. Five-day-old rat pups were inoculated intragastrically with an animal (RRV) or human (HAL1166) rotavirus or phosphate-buffered saline. Blood was collected from a subset of rat pups, and following perfusion to remove residual blood, organs were removed and homogenized to analyze rotavirus-specific antigen by enzyme-linked immunosorbent assay and infectious rotavirus by fluorescent focus assay or fixed in formalin for histology and immunohistochemistry. Viremia was detected following rotavirus infection with RRV and HAL1166. The RRV 50% antigenemia dose was 1.8 × 103 PFU, and the 50% diarrhea dose was 7.7 × 105 PFU, indicating that infection and viremia occurred in the absence of diarrhea and that detecting rotavirus antigen in the blood was a more sensitive measure of infection than diarrhea. Rotavirus antigens and infectious virus were detected in multiple organs (stomach, intestines, liver, lungs, spleen, kidneys, pancreas, thymus, and bladder). Histopathological changes due to rotavirus infection included acute inflammation of the portal tract and bile duct, microsteatosis, necrosis, and inflammatory cell infiltrates in the parenchymas of the liver and lungs. Colocalization of structural and nonstructural proteins with histopathology in the liver and lungs indicated that the histological changes observed were due to rotavirus infection and replication. Replicating rotavirus was also detected in macrophages in the lungs and blood vessels, indicating a possible mechanism of rotavirus dissemination. Extraintestinal infectious rotavirus, but not diarrhea, was observed in the presence of passively or actively acquired rotavirus-specific antibody. These findings alter the previously accepted concept of rotavirus pathogenesis to include not only gastroenteritis but also viremia, and they indicate that rotavirus could cause a broad array of systemic diseases in a number of different organs. PMID:16641274

  17. ILC2 memory: Recollection of previous activation.

    PubMed

    Martinez-Gonzalez, Itziar; Ghaedi, Maryam; Steer, Catherine A; Mathä, Laura; Vivier, Eric; Takei, Fumio

    2018-05-01

    Immunological memory, traditionally thought to belong to T and B cells, has now been extended to innate lymphocytes, including NK cells and ILC2s, myeloid cells such as macrophages, also termed "trained immunity" and more recently to epithelial stem cells. In this review, we discuss the mechanisms underlying memory generation on ILC2s and speculate about their potential role in human allergic diseases, such as asthma. Moreover, we examine the relevance of the spontaneous ILC2 activation in the lung during the neonatal period in order to efficiently respond to stimuli later in life. These "training" of neonatal ILC2s may have an impact on the generation of memory ILC2s in the adulthood. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Molecular and cellular characteristics of ABCA3 mutations associated with diffuse parenchymal lung diseases in children

    PubMed Central

    Flamein, Florence; Riffault, Laure; Muselet-Charlier, Céline; Pernelle, Julie; Feldmann, Delphine; Jonard, Laurence; Durand-Schneider, Anne-Marie; Coulomb, Aurore; Maurice, Michèle; Nogee, Lawrence M.; Inagaki, Nobuya; Amselem, Serge; Dubus, Jean Christophe; Rigourd, Virginie; Brémont, François; Marguet, Christophe; Brouard, Jacques; de Blic, Jacques; Clement, Annick; Epaud, Ralph; Guillot, Loïc

    2012-01-01

    ABCA3 (ATP-binding cassette subfamily A, member 3) is expressed in the lamellar bodies of alveolar type II cells and is crucial to pulmonary surfactant storage and homeostasis. ABCA3 gene mutations have been associated with neonatal respiratory distress (NRD) and pediatric interstitial lung disease (ILD). The objective of this study was to look for ABCA3 gene mutations in patients with severe NRD and/or ILD. The 30 ABCA3 coding exons were screened in 47 patients with severe NRD and/or ILD. ABCA3 mutations were identified in 10 out of 47 patients, including 2 homozygous, 5 compound heterozygous and 3 heterozygous patients. SP-B and SP-C expression patterns varied across patients. Among patients with ABCA3 mutations, five died shortly after birth and five developed ILD (including one without NRD). Functional studies of p.D253H and p.T1173R mutations revealed that p.D253H and p.T1173R induced abnormal lamellar bodies. Additionally, p.T1173R increased IL-8 secretion in vitro. In conclusion, we identified new ABCA3 mutations in patients with life-threatening NRD and/or ILD. Two mutations associated with ILD acted via different pathophysiological mechanisms despite similar clinical phenotypes. PMID:22068586

  19. Structural connectivity asymmetry in the neonatal brain.

    PubMed

    Ratnarajah, Nagulan; Rifkin-Graboi, Anne; Fortier, Marielle V; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi

    2013-07-15

    Asymmetry of the neonatal brain is not yet understood at the level of structural connectivity. We utilized DTI deterministic tractography and structural network analysis based on graph theory to determine the pattern of structural connectivity asymmetry in 124 normal neonates. We tracted white matter axonal pathways characterizing interregional connections among brain regions and inferred asymmetry in left and right anatomical network properties. Our findings revealed that in neonates, small-world characteristics were exhibited, but did not differ between the two hemispheres, suggesting that neighboring brain regions connect tightly with each other, and that one region is only a few paths away from any other region within each hemisphere. Moreover, the neonatal brain showed greater structural efficiency in the left hemisphere than that in the right. In neonates, brain regions involved in motor, language, and memory functions play crucial roles in efficient communication in the left hemisphere, while brain regions involved in emotional processes play crucial roles in efficient communication in the right hemisphere. These findings suggest that even at birth, the topology of each cerebral hemisphere is organized in an efficient and compact manner that maps onto asymmetric functional specializations seen in adults, implying lateralized brain functions in infancy. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Reduction of Endotracheal Tube Connector Dead Space Improves Ventilation: A Bench Test on a Model Lung Simulating an Extremely Low Birth Weight Neonate.

    PubMed

    Ivanov, Vadim A

    2016-02-01

    The reduction of instrumental dead space is a recognized approach to preventing ventilation-induced lung injury in premature infants. However, there are no published data regarding the effectiveness of instrumental dead-space reduction in endotracheal tube (ETT) connectors. We tested the impact of the Y-piece/ETT connector pairs with reduced instrumental dead space on CO2 elimination in a model of the premature neonate lung. The standard ETT connector was compared with a low-dead-space ETT connector and with a standard connector equipped with an insert. We compared the setups by measuring the CO2 elimination rate in an artificial lung ventilated via the connectors. The lung was connected to a ventilator via a standard circuit, a 2.5-mm ETT, and one of the connectors under investigation. The ventilator was run in volume-controlled continuous mandatory ventilation mode. The low-dead-space ETT connector/Y-piece and insert-equipped standard connector/Y-piece pairs had instrumental dead space reduced by 36 and 67%, respectively. With set tidal volumes (VT) of 2.5, 5, and 10 mL, in comparison with the standard ETT connector, the low-dead-space connector reduced CO2 elimination time by 4.5% (P < .05), 4.4% (P < .01), and 7.1% (not significant), respectively. The insert-equipped standard connector reduced CO2 elimination time by 13.5, 25.1, and 16.1% (all P < .01). The low-dead-space connector increased inspiratory resistance by 17.8% (P < .01), 9.6% (P < .05), and 5.0% (not significant); the insert-equipped standard connector increased inspiratory resistance by 9.1, 8.4, and 5.9% (all not significant). The low-dead-space connector decreased expiratory resistance by 6.8% (P < .01) and 1.8% (not significant) and increased it by 1.4% (not significant); the insert-equipped standard connector decreased expiratory resistance by 1.5 and 1% and increased it by 1% (all not significant). The low-dead-space connector increased work of breathing by 4.7% (P < .01), 3.8% (P < .01), and 2.5% (not significant); the insert-equipped standard connector increased it by 0.8% (not significant), 2.5% (P < .01), and 2.8% (P < .01). Both methods of instrumental dead-space reduction led to improvements in artificial lung ventilation. Negative effects on resistance and work of breathing appeared minimal. Further testing in vivo should be performed to confirm the lung model results and, if successful, translated into clinical practice. Copyright © 2016 by Daedalus Enterprises.

  1. Analysis of Consequences of Birth Asphyxia in Infants: A Regional Study in Southern Punjab, Pakistan.

    PubMed

    Samad, Noreen; Farooq, Samia; Hafeez, Kinza; Maryam, Mukharma; Rafi, Muhammad Aftab

    2016-12-01

    To evaluate the biochemical consequences and platelet counts of birth asphyxia in neonates. Cohort study. Department of Child Health, Nishter Medical College and Hospital, Multan, from September to November 2015. The data of 50 (50%) asphyxiated neonates and 50 (50%) non-asphyxiated neonates, with age range less than 1 month, was collected from Children Ward of Nishtar Hospital, Multan, Pakistan. Data on platelet count in blood, kidney function tests (creatinine, urea), liver function tests (bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase (AST)) and cardiac enzyme test (lactate dehydrogenase (LDH)) were analysed by paired sample t-test by SPSS software. Sociodemographic data of those neonate's mothers was also collected. In asphyxiated neonates LDH, ALT, AST, creatinine, bilirubin, urea levels were higher than healthy infants, while the platelet count was smaller in asphyxiated neonates than healthy infants. There was a higher rate of alteration in platelet count, levels of LDH, AST, ALT, urea creatinine and bilirubin in asphyxiated infants. These alterations may be correlated with damage of vital organ of asphyxiated neonates.

  2. U.S. Army Medical Department Journal, July-September 2004

    DTIC Science & Technology

    2004-09-01

    on the surface of intestinal, lung, and brain cells. The TF protein then converts FVII into an activated form. Activated factor VII then combines...and FIX, which limits generation of thrombin. Platelets are able to increase production of thrombin when increased FVIIa is present. Normally FVII ...hemorrhage in severe neonatal FVII deficiency. Hemophilia. 2000; 6: 50-54. 12. Gilchrist J. Use of recombinant factor VIIa to treat a severe

  3. En Route Critical Care: Evolving, Improving & Advancing Capabilities

    DTIC Science & Technology

    2011-01-26

    Neonatal Intensive Care – Burn Team – Acute Lung Team 18 2011 MHS Conference OCONUS Medical Center/ASF INTRA-THEATER INTER-THEATER Theater...MASF, FST Theater Hospital Care Forward Resuscitative Care 68W, PA, FS, PJ, 4N, RN, SOFME/SOCCET, CCATT Battalion Aid Station SABC/TCCC US Medical...Lvl-II/Forward Surgical Teams Damage Control Surgery/ Resuscitation Lvl-III/CSH, EMEDS, EMF Theater Hospitals Definitive Care GOAL: Maintain

  4. In-vitro evaluation of limitations and possibilities for the future use of intracorporeal gas exchangers placed in the upper lobe position.

    PubMed

    Schumer, Erin; Höffler, Klaus; Kuehn, Christian; Slaughter, Mark; Haverich, Axel; Wiegmann, Bettina

    2018-03-01

    The lack of donor organs has led to the development of alternative "destination therapies", such as a bio-artificial lung (BA) for end-stage lung disease. Ultimately aiming at a fully implantable BA, general capabilities and limitations of different oxygenators were tested based on the model of BA positioning at the right upper lobe. Three different-sized oxygenators (neonatal, paediatric, and adult) were tested in a mock circulation loop regarding oxygenation and decarboxylation capacities for three respiratory pathologies. Blood flows were imitated by a roller pump, and respiration was imitated by a mechanical ventilator with different FiO 2 applications. Pressure drops across the oxygenators and the integrity of the gas-exchange hollow fibers were analyzed. The neonatal oxygenator proved to be insufficient regarding oxygenation and decarboxylation. Despite elevated pCO 2 levels, the paediatric and adult oxygenators delivered comparable sufficient oxygen levels, but sufficient decarboxylation across the oxygenators was ensured only at flow rates of 0.5 L min. Only the adult oxygenator indicated no significant pressure drops. For all tested conditions, gas-exchange hollow fibers remained intact. This is the first study showing the general feasibility of delivering sufficient levels of gas exchange to an intracorporeal BA via patient's breathing, without damaging gas-exchange hollow fiber membranes.

  5. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation

    PubMed Central

    Rajavelu, Priya; Chen, Gang; Xu, Yan; Kitzmiller, Joseph A.; Korfhagen, Thomas R.; Whitsett, Jeffrey A.

    2015-01-01

    Epithelial cells that line the conducting airways provide the initial barrier and innate immune responses to the abundant particles, microbes, and allergens that are inhaled throughout life. The transcription factors SPDEF and FOXA3 are both selectively expressed in epithelial cells lining the conducting airways, where they regulate goblet cell differentiation and mucus production. Moreover, these transcription factors are upregulated in chronic lung disorders, including asthma. Here, we show that expression of SPDEF or FOXA3 in airway epithelial cells in neonatal mice caused goblet cell differentiation, spontaneous eosinophilic inflammation, and airway hyperresponsiveness to methacholine. SPDEF expression promoted DC recruitment and activation in association with induction of Il33, Csf2, thymic stromal lymphopoietin (Tslp), and Ccl20 transcripts. Increased Il4, Il13, Ccl17, and Il25 expression was accompanied by recruitment of Th2 lymphocytes, group 2 innate lymphoid cells, and eosinophils to the lung. SPDEF was required for goblet cell differentiation and pulmonary Th2 inflammation in response to house dust mite (HDM) extract, as both were decreased in neonatal and adult Spdef–/– mice compared with control animals. Together, our results indicate that SPDEF causes goblet cell differentiation and Th2 inflammation during postnatal development and is required for goblet cell metaplasia and normal Th2 inflammatory responses to HDM aeroallergen. PMID:25866971

  6. TGF-α equalizes age disparities in stem cell-mediated cardioprotection.

    PubMed

    Herrmann, Jeremy L; Fiege, Jeremy W; Abarbanell, Aaron M; Weil, Brent R; Wang, Yue; Poynter, Jeffrey A; Manukyan, Mariuxi C; Brewster, Benjamin D; Meldrum, Daniel R

    2012-08-01

    Neonatal mesenchymal stem cells exhibit less cardioprotective potential than their adult counterparts. Transforming growth factor-α (TGF-α) has been shown to stimulate adult stem cell VEGF production, however, it remains unknown whether it may augment neonatal stem cell paracrine function. We hypothesized that TGF-α would equalize adult and neonatal stem cell paracrine function and cardioprotection during acute ischemia/reperfusion. Bone marrow mesenchymal stem cells isolated from adult and 2.5 wk-old mice were treated with TGF-α (250 ng/mL) for 24 h. VEGF, HGF, IGF-1, IL-1β, and IL-6 production were measure in vitro, and cells were infused via an intracoronary route using a model of isolated heart perfusion. TGF-α equalized adult and neonatal stem cell VEGF production but did not affect production of HGF, IGF-1, IL-1β, or IL-6. ERK, p38 MAPK, and JNK phosphorylation were greater in adult cells in response to TGF-α. Whereas infusion of adult but not neonatal stem cells was associated with improved myocardial functional recovery during reperfusion, infusions of either TGF-α-pretreated cell group were associated with the greatest functional recovery. TGF-α equalizes adult and neonatal mesenchymal stem cell VEGF production and cardioprotection in association with differential regulation of ERK, p38 MAPK, and JNK phosphorylation. Copyright © 2012. Published by Elsevier Inc.

  7. Programming social, cognitive, and neuroendocrine development by early exposure to novelty.

    PubMed

    Tang, Akaysha C; Akers, Katherine G; Reeb, Bethany C; Romeo, Russell D; McEwen, Bruce S

    2006-10-17

    Mildly stressful early life experiences can potentially impact a broad range of social, cognitive, and physiological functions in humans, nonhuman primates, and rodents. Recent rodent studies favor a maternal-mediation hypothesis that considers maternal-care differences induced by neonatal stimulation as the cause of individual differences in offspring development. Using neonatal novelty exposure, a neonatal stimulation paradigm that dissociates maternal individual differences from a direct stimulation effect on the offspring, we investigated the effect of early exposures to novelty on a diverse range of psychological functions using several assessment paradigms. Pups that received brief neonatal novelty exposures away from the home environment showed enhancement in spatial working memory, social competition, and corticosterone response to surprise during adulthood compared with their home-staying siblings. These functional enhancements in novelty-exposed rats occurred despite evidence that maternal care was directed preferentially toward home-staying instead of novelty-exposed pups, indicating that greater maternal care is neither necessary nor sufficient for these early stimulation-induced functional enhancements. We suggest a unifying maternal-modulation hypothesis, which distinguishes itself from the maternal-mediation hypothesis in that (i) neonatal stimulation can have direct effects on pups, cumulatively leading to long-term improvement in adult offspring; and (ii) maternal behavior can attenuate or potentiate these effects, thereby decreasing or increasing this long-term functional improvement.

  8. Telehealth to improve asthma control in pregnancy: A randomized controlled trial.

    PubMed

    Zairina, Elida; Abramson, Michael J; McDonald, Christine F; Li, Jonathan; Dharmasiri, Thanuja; Stewart, Kay; Walker, Susan P; Paul, Eldho; George, Johnson

    2016-07-01

    Poorly controlled asthma during pregnancy is hazardous for both mother and foetus. Better asthma control may be achieved if patients are involved in regular self-monitoring of symptoms and self-management according to a written asthma action plan. Telehealth applications to optimize asthma management and outcomes in pregnant women have not yet been evaluated. This study evaluated the efficacy of a telehealth programme supported by a handheld respiratory device in improving asthma control during pregnancy. Pregnant women with asthma (n = 72) from two antenatal clinics in Melbourne, Australia, were randomized to one of two groups: (i) intervention-involving a telehealth programme (management of asthma with supportive telehealth of respiratory function in pregnancy (MASTERY(©) )) supported by a handheld respiratory device and an Android smart phone application (Breathe-easy(©) ) and written asthma action plan or (ii) control-usual care. The primary outcome was change in asthma control at 3 and 6 months (prenatal). Secondary outcomes included changes in quality of life and lung function, and perinatal/neonatal outcomes. At baseline, participants' mean (± standard deviation) age was 31.4 ± 4.5 years and gestational age 16.7 ± 3.1 weeks. At 6 months, the MASTERY group had better asthma control (P = 0.02) and asthma-related quality of life (P = 0.002) compared with usual care. There were no significant differences between groups in lung function, unscheduled health-care visits, days off work/study, oral corticosteroid use, or perinatal outcomes. Differences between groups were not significant at 3 months. Telehealth interventions supporting self-management are feasible and could potentially improve asthma control and asthma-related quality of life during pregnancy. © 2016 Asian Pacific Society of Respirology.

  9. Neonatal air leak syndrome and the role of high-frequency ventilation in its prevention.

    PubMed

    Jeng, Mei-Jy; Lee, Yu-Sheng; Tsao, Pei-Chen; Soong, Wen-Jue

    2012-11-01

    Air leak syndrome includes pulmonary interstitial emphysema, pneumothorax, pneumomediastinum, pneumopericardium, pneumoperitoneum, subcutaneous emphysema, and systemic air embolism. The most common cause of air leak syndrome in neonates is inadequate mechanical ventilation of the fragile and immature lungs. The incidence of air leaks in newborns is inversely related to the birth weight of the infants, especially in very-low-birth-weight and meconium-aspirated infants. When the air leak is asymptomatic and the infant is not mechanically ventilated, there is usually no specific treatment. Emergent needle aspiration and/or tube drainage are necessary in managing tension pneumothorax or pneumopericardium with cardiac tamponade. To prevent air leak syndrome, gentle ventilation with low pressure, low tidal volume, low inspiratory time, high rate, and judicious use of positive end expiratory pressure are the keys to caring for mechanically ventilated infants. Both high-frequency oscillatory ventilation (HFOV) and high-frequency jet ventilation (HFJV) can provide adequate gas exchange using extremely low tidal volume and supraphysiologic rate in neonates with acute pulmonary dysfunction, and they are considered to have the potential to reduce the risks of air leak syndrome in neonates. However, there is still no conclusive evidence that HFOV or HFJV can help to reduce new air leaks in published neonatal clinical trials. In conclusion, neonatal air leaks may present as a thoracic emergency requiring emergent intervention. To prevent air leak syndrome, gentle ventilations are key to caring for ventilated infants. There is insufficient evidence showing the role of HFOV and HFJV in the prevention or reduction of new air leaks in newborn infants, so further investigation will be necessary for future applications. Copyright © 2012. Published by Elsevier B.V.

  10. Role of Reactive Oxygen Species in Neonatal Pulmonary Vascular Disease

    PubMed Central

    Steinhorn, Robin H.

    2014-01-01

    Abstract Significance: Abnormal lung development in the perinatal period can result in severe neonatal complications, including persistent pulmonary hypertension (PH) of the newborn and bronchopulmonary dysplasia. Reactive oxygen species (ROS) play a substantive role in the development of PH associated with these diseases. ROS impair the normal pulmonary artery (PA) relaxation in response to vasodilators, and ROS are also implicated in pulmonary arterial remodeling, both of which can increase the severity of PH. Recent Advances: PA ROS levels are elevated when endogenous ROS-generating enzymes are activated and/or when endogenous ROS scavengers are inactivated. Animal models have provided valuable insights into ROS generators and scavengers that are dysregulated in different forms of neonatal PH, thus identifying potential therapeutic targets. Critical Issues: General antioxidant therapy has proved ineffective in reversing PH, suggesting that it is necessary to target specific signaling pathways for successful therapy. Future Directions: Development of novel selective pharmacologic inhibitors along with nonantioxidant therapies may improve the treatment outcomes of patients with PH, while further investigation of the underlying mechanisms may enable earlier detection of the disease. Antioxid. Redox Signal. 21, 1926–1942. PMID:24350610

  11. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS

    PubMed Central

    SEPEHR, REYHANEH; AUDI, SAID H.; MALEKI, SEPIDEH; STANISZEWSKI, KEVIN; EIS, ANNIE L.; KONDURI, GIRIJA G.; RANJI, MAHSA

    2014-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure. PMID:24672581

  12. Performance of Leak Compensation in All-Age ICU Ventilators During Volume-Targeted Neonatal Ventilation: A Lung Model Study.

    PubMed

    Itagaki, Taiga; Bennett, Desmond J; Chenelle, Christopher T; Fisher, Daniel F; Kacmarek, Robert M

    2017-01-01

    Volume-targeted ventilation is increasingly used in low birthweight infants because of the potential for reducing volutrauma and avoiding hypocapnea. However, it is not known what level of air leak is acceptable during neonatal volume-targeted ventilation when leak compensation is activated concurrently. Four ICU ventilators (Servo-i, PB980, V500, and Avea) were compared in available invasive volume-targeted ventilation modes (pressure control continuous spontaneous ventilation [PC-CSV] and pressure control continuous mandatory ventilation [PC-CMV]). The Servo-i and PB980 were tested with (+) and without (-) their proximal flow sensor. The V500 and Avea were tested with their proximal flow sensor as indicated by their manufacturers. An ASL 5000 lung model was used to simulate 4 neonatal scenarios (body weight 0.5, 1, 2, and 4 kg). The ASL 5000 was ventilated via an endotracheal tube with 3 different leaks. Two minutes of data were collected after each change in leak level, and the asynchrony index was calculated. Tidal volume (V T ) before and after the change in leak was assessed. The differences in delivered V T between before and after the change in leak were within ±5% in all scenarios with the PB980 (-/+) and V500. With the Servo-i (-/+), baseline V T was ≥10% greater than set V T during PC-CSV, and delivered V T markedly changed with leak. The Avea demonstrated persistent high V T in all leak scenarios. Across all ventilators, the median asynchrony index was 1% (interquartile range 0-27%) in PC-CSV and 1.8% (0-45%) in PC-CMV. The median asynchrony index was significantly higher in the Servo-i (-/+) than in the PB980 (-/+) and V500 in 1 and 2 kg scenarios during PC-CSV and PC-CMV. The PB980 and V500 were the only ventilators to acclimate to all leak scenarios and achieve targeted V T . Further clinical investigation is needed to validate the use of leak compensation during neonatal volume-targeted ventilation. Copyright © 2017 by Daedalus Enterprises.

  13. Krüppel-like factors: three fingers in control.

    PubMed

    Swamynathan, Shivalingappa K

    2010-04-01

    Krüppel-like factors (KLFs), members of the zinc-finger family of transcription factors capable of binding GC-rich sequences, have emerged as critical regulators of important functions all over the body. They are characterised by a highly conserved C-terminal DNA-binding motif containing three C2H2 zinc-finger domains, with variable N-terminal regulatory domains. Currently, there are 17 KLFs annotated in the human genome. In spite of their structural similarity to one another, the genes encoding different KLFs are scattered all over the genome. By virtue of their ability to activate and/or repress the expression of a large number of genes, KLFs regulate a diverse array of developmental events and cellular processes, such as erythropoiesis, cardiac remodelling, adipogenesis, maintenance of stem cells, epithelial barrier formation, control of cell proliferation and neoplasia, flow-mediated endothelial gene expression, skeletal and smooth muscle development, gluconeogenesis, monocyte activation, intestinal and conjunctival goblet cell development, retinal neuronal regeneration and neonatal lung development. Characteristic features, nomenclature, evolution and functional diversities of the human KLFs are reviewed here.

  14. Cross sectional study on lung function of coke oven workers: a lung function surveillance system from 1978 to 1990

    PubMed Central

    Wu, J; Kreis, I; Griffiths, D; Darling, C

    2002-01-01

    Aims: To determine the association between lung function of coke oven workers and exposure to coke oven emissions. Methods: Lung function data and detailed work histories for workers in recovery coke ovens of a steelworks were extracted from a lung function surveillance system. Multiple regressions were employed to determine significant predictors for lung function indices. The first sets of lung function tests for 613 new starters were pooled to assess the selection bias. The last sets of lung function tests for 834 subjects with one or more year of coke oven history were pooled to assess determinants of lung function. Results: Selection bias associated with the recruitment process was not observed among the exposure groups. For subjects with a history of one or more years of coke oven work, each year of working in the most exposed "operation" position was associated with reductions in FEV1 of around 9 ml (p = 0.006, 95% CI: 3 ml to 16 ml) and in FVC of around 12 ml (p = 0.002, 95% CI: 4 ml to 19 ml). Negative effects of smoking on lung function were also observed. Conclusions: Exposure to coke oven emissions was found to be associated with lower FEV1 and FVC. Effects of work exposure on lung function are similar to those found in other studies. PMID:12468747

  15. Left ventricular dimensions, systolic functions, and mass in term neonates with symmetric and asymmetric intrauterine growth restriction.

    PubMed

    Cinar, Bahar; Sert, Ahmet; Gokmen, Zeynel; Aypar, Ebru; Aslan, Eyup; Odabas, Dursun

    2015-02-01

    Previous studies have demonstrated structural changes in the heart and cardiac dysfunction in foetuses with intrauterine growth restriction. There are no available data that evaluated left ventricular dimensions and mass in neonates with symmetric and asymmetric intrauterine growth restriction. Therefore, we aimed to evaluate left ventricular dimensions, systolic functions, and mass in neonates with symmetric and asymmetric intrauterine growth restriction. We also assessed associated maternal risk factors, and compared results with healthy appropriate for gestational age neonates. In all, 62 asymmetric intrauterine growth restriction neonates, 39 symmetric intrauterine growth restriction neonates, and 50 healthy appropriate for gestational age neonates were evaluated by transthoracic echocardiography. The asymmetric intrauterine growth restriction group had significantly lower left ventricular end-systolic and end-diastolic diameters and posterior wall diameter in systole and diastole than the control group. The symmetric intrauterine growth restriction group had significantly lower left ventricular end-diastolic diameter than the control group. All left ventricular dimensions were lower in the asymmetric intrauterine growth restriction neonates compared with symmetric intrauterine growth restriction neonates (p>0.05), but not statistically significant except left ventricular posterior wall diameter in diastole (3.08±0.83 mm versus 3.54 ±0.72 mm) (p<0.05). Both symmetric and asymmetric intrauterine growth restriction groups had significantly lower relative posterior wall thickness (0.54±0.19 versus 0.48±0.13 versus 0.8±0.12), left ventricular mass (9.8±4.3 g versus 8.9±3.4 g versus 22.2±5.7 g), and left ventricular mass index (63.6±29.1 g/m2 versus 54.5±24.4 g/m2 versus 109±28.8 g/m2) when compared with the control group. Our study has demonstrated that although neonates with both symmetric and asymmetric intrauterine growth restriction had lower left ventricular dimensions, relative posterior wall thickness, left ventricular mass, and mass index when compared with appropriate for gestational age neonates, left ventricular systolic functions were found to be preserved. In our study, low socio-economic level, short maternal stature, and low maternal weight were found to be risk factors to develop intrauterine growth restriction. To our knowledge, our study is the first to evaluate left ventricular dimensions, wall thicknesses, mass, and systolic functions in neonates with intrauterine growth restriction and compare results with respect to asymmetric or symmetric subgroups.

  16. Amniocentesis compared with antenatal corticosteroids prior to early term scheduled cesarean delivery.

    PubMed

    Zafman, Kelly B; Fox, Nathan S

    2018-05-06

    There are a variety of maternal or fetal conditions that require late preterm or early term delivery. In cases where early delivery is indicated, optimal management is not always clear. Historically, obstetricians used amniocentesis to document fetal lung maturity, but recently, many have transitioned to administration of antenatal corticosteroids (ACS). The objective of this study was to compare neonatal outcomes between women undergoing amniocentesis or receiving ACS prior to scheduled cesarean delivery (CD) less than 39 weeks. This was a retrospective cohort study of women undergoing scheduled CD by one maternal-fetal medicine practice between 36 and 38 6/7 weeks, from 2005 to 2017. We identified women who underwent amniocentesis or received ACS within 2 weeks prior to delivery. Neonatal outcomes were compared between the two groups, with the primary outcome being neonatal intensive care unit (NICU) admission. A total of 502 women were included, of whom 313 (62.4%) underwent amniocentesis and 189 (37.6%) received ACS. Overall, 55 (11.0%) of neonates were admitted to the NICU. NICU admission was not significantly different between groups (11.8 versus 9.5%, p=.46). This held true after adjusting for gestational age and other differences in baseline characteristics. There were no significant differences between groups for all other neonatal outcomes, including NICU admission for respiratory indications, respiratory support, neonatal greater than maternal length of stay, low Apgar scores, and neonatal death. Rates of hypoglycemia were low and not significantly different between groups (2.2% in the amniocentesis group versus 0.5% in the ACS group, p=.27). Diabetes was the only covariate significantly associated with NICU admission (aOR 3.19, 95% CI 1.35, 7.54). In women undergoing scheduled CD between 36 and 38 6/7 weeks, administration of ACS is associated with similar neonatal outcomes compared to amniocentesis. This supports the current notion that outcomes are similar with ACS compared to amniocentesis for late preterm and early term deliveries. Brief rationale: The objective of this study was to compare neonatal outcomes between women undergoing amniocentesis or receiving antenatal corticosteroids (ACS) prior to scheduled cesarean delivery (CD) less than 39 weeks. We found that in women undergoing scheduled cesarean delivery between 36 and 38 6/7 weeks, administration of antenatal corticosteroids is associated with similar neonatal outcomes compared to amniocentesis.

  17. Dose-Dependent Effect of Intravenous Administration of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Neonatal Stroke Mice

    PubMed Central

    Tanaka, Emi; Ogawa, Yuko; Mukai, Takeo; Sato, Yoshiaki; Hamazaki, Takashi; Nagamura-Inoue, Tokiko; Harada-Shiba, Mariko; Shintaku, Haruo; Tsuji, Masahiro

    2018-01-01

    Neonatal brain injury induced by stroke causes significant disability, including cerebral palsy, and there is no effective therapy for stroke. Recently, mesenchymal stem cells (MSCs) have emerged as a promising tool for stem cell-based therapies. In this study, we examined the safety and efficacy of intravenously administered human umbilical cord-derived MSCs (UC-MSCs) in neonatal stroke mice. Pups underwent permanent middle cerebral artery occlusion at postnatal day 12 (P12), and low-dose (1 × 104) or high-dose (1 × 105) UC-MSCs were administered intravenously 48 h after the insult (P14). To evaluate the effect of the UC-MSC treatment, neurological behavior and cerebral blood flow were measured, and neuroanatomical analysis was performed at P28. To investigate the mechanisms of intravenously injected UC-MSCs, systemic blood flowmetry, in vivo imaging and human brain-derived neurotrophic factor (BDNF) measurements were performed. Functional disability was significantly improved in the high-dose UC-MSC group when compared with the vehicle group, but cerebral blood flow and cerebral hemispheric volume were not restored by UC-MSC therapy. The level of exogenous human BDNF was elevated only in the cerebrospinal fluid of one pup 24 h after UC-MSC injection, and in vivo imaging revealed that most UC-MSCs were trapped in the lungs and disappeared in a week without migration toward the brain or other organs. We found that systemic blood flow was stable over the 10 min after cell administration and that there were no differences in mortality among the groups. Immunohistopathological assessment showed that the percent area of Iba1-positive staining in the peri-infarct cortex was significantly reduced with the high-dose UC-MSC treatment compared with the vehicle treatment. These results suggest that intravenous administration of UC-MSCs is safe for a mouse model of neonatal stroke and improves dysfunction after middle cerebral artery occlusion by modulating the microglial reaction in the peri-infarct cortex. PMID:29568282

  18. Surfactant therapy and antibiotics in neonates with meconium aspiration syndrome: a systematic review and meta-analysis.

    PubMed

    Natarajan, C K; Sankar, M J; Jain, K; Agarwal, R; Paul, V K

    2016-05-01

    Meconium aspiration syndrome (MAS), a common cause of respiratory failure in neonates, is associated with high mortality and morbidity. The objectives of this review were to evaluate the effects of administration of (a) surfactant-either as lung lavage (SLL) or bolus surfactant (BS) and (b) antibiotics on mortality and severe morbidities in neonates with MAS. We searched the following databases: MEDLINE via PubMed, Cochrane CENTRAL, WHOLIS and CABI using sensitive search strategies. We included eight studies on use of surfactant and three studies on use of antibiotics. Neither SLL nor BS reduced the risk of mortality in neonates with MAS (relative risk (RR) 0.38, 95% confidence interval (CI) 0.09 to 1.57; and RR 0.80, 95% CI 0.39 to 1.66, respectively). Both SLL and BS reduced the duration of hospital stay (mean difference -2.0, 95% CI -3.66 to -0.34; and RR -4.68, 95% CI -7.11 to -2.24 days, respectively) and duration of mechanical ventilation (mean difference -1.31, 95% CI -1.91 to -0.72; and mean difference 5.4, 95% CI -9.76 to -1.03 days). Neonates who received BS needed extracorporeal membrane oxygenation (ECMO) less often than the controls (RR 0.64, 95% CI 0.46 to 0.91). Use of antibiotics for MAS did not result in significant reduction in the risk of mortality, sepsis or duration of hospital stay. Surfactant administration either as SLL or BS for MAS was found to reduce the duration of mechanical ventilation and hospital stay; BS also reduced the need for ECMO. Administration of antibiotics did not show any significant clinical benefits in neonates with MAS and no evidence of sepsis. Given the limited number of studies and small number of neonates enrolled, there is an urgent need to generate more evidence on the efficacy and cost-effectiveness of these two treatment modalities before recommending them in routine clinical practice.

  19. Marsupial tammar wallaby delivers milk bioactives to altricial pouch young to support lung development.

    PubMed

    Modepalli, Vengamanaidu; Hinds, Lyn A; Sharp, Julie A; Lefevre, Christophe; Nicholas, Kevin R

    2016-11-01

    Our research is exploiting the marsupial as a model to understand the signals required for lung development. Marsupials have a unique reproductive strategy, the mother gives birth to altricial neonate with an immature lung and the changes in milk composition during lactation in marsupials appears to provide bioactives that can regulate diverse aspects of lung development, including branching morphogenesis, cell proliferation and cell differentiation. These effects are seen with milk collected between 25 and 100days postpartum. To better understand the temporal effects of milk composition on postnatal lung development we used a cross-fostering technique to restrict the tammar pouch young to milk composition not extending beyond day 25 for 45days of its early postnatal life. These particular time points were selected as our previous study showed that milk protein collected prior to ~day 25 had no developmental effect on mouse embryonic lungs in culture. The comparative analysis of the foster group and control young at day 45 postpartum demonstrated that foster pouch young had significantly reduced lung size. The lungs in fostered young were comprised of large intermediate tissue, had a reduced size of airway lumen and a higher percentage of parenchymal tissue. In addition, expression of marker genes for lung development (BMP4, WNT11, AQP-4, HOPX and SPB) were significantly reduced in lungs from fostered young. Further, to identify the potential bioactive expressed by mammary gland that may have developmental effect on pouch young lungs, we performed proteomics analysis on tammar milk through mass-spectrometry and listed the potential bioactives (PDGF, IGFBP5, IGFBPL1 and EGFL6) secreted in milk that may be involved in regulating pouch young lung development. The data suggest that postnatal lung development in the tammar young is most likely regulated by maternal signalling factors supplied through milk. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Altered expressions of fibroblast growth factor receptors and alveolarization in neonatal mice exposed to 85% oxygen.

    PubMed

    Park, Min Soo; Rieger-Fackeldey, Esther; Schanbacher, Brandon L; Cook, Angela C; Bauer, John A; Rogers, Lynette K; Hansen, Thomas N; Welty, Stephen E; Smith, Charles V

    2007-12-01

    In the present study, we tested the hypothesis that exposure of newborn mice to sublethal hyperoxia would alter lung development and expressions of fibroblast growth factor receptors (FGFRs)-3 and FGFR-4. Newborn FVB mice were exposed to 85% O2 or maintained in room air for up to 14 d. No animal mortality was observed, and body weight gains were not affected by hyperoxia. At postnatal d 7 and 14 (P7, P14), lungs of mice exposed to 85% O2 showed fewer alveolar secondary crests and larger alveoli or terminal air spaces than did mice in room air. In pups kept in room air, lung levels of FGFR-3 and FGFR-4 mRNA were greater at P3 than at P1, but similar increases were not observed in hyperoxic mice. Immunoreactivity of FGFR-3 and FGFR-4 was lower in lungs of hyperoxic mice than in controls at P14. In pups kept in room air, lung fibroblast growth factor (FGF)-7 mRNA levels were greater at P14 than at P1, but similar changes were not observed in hyperoxic mice. The temporally and spatially specific alterations in the expressions of FGFR-3, FGFR-4, and FGF-7 in the mice exposed to hyperoxia may contribute to aberrant lung development.

  1. Cardiovascular adaptation to extrauterine life after intrauterine growth restriction.

    PubMed

    Rodriguez-Guerineau, Luciana; Perez-Cruz, Miriam; Gomez Roig, María D; Cambra, Francisco J; Carretero, Juan; Prada, Fredy; Gómez, Olga; Crispi, Fátima; Bartrons, Joaquim

    2018-02-01

    Introduction The adaptive changes of the foetal heart in intrauterine growth restriction can persist postnatally. Data regarding its consequences for early circulatory adaptation to extrauterine life are scarce. The aim of this study was to assess cardiac morphometry and function in newborns with late-onset intrauterine growth restriction to test the hypothesis that intrauterine growth restriction causes cardiac shape and functional changes at birth. A comprehensive echocardiographic study was performed in 25 neonates with intrauterine growth restriction and 25 adequate-for-gestational-age neonates. Compared with controls, neonates with intrauterine growth restriction had more globular ventricles, lower longitudinal tricuspid annular motion, and higher left stroke volume without differences in the heart rate. Neonates with intrauterine growth restriction also showed subclinical signs of diastolic dysfunction in the tissue Doppler imaging with lower values of early (e') diastolic annular peak velocities in the septal annulus. Finally, the Tei index in the tricuspid annulus was higher in the intrauterine growth restriction group. Neonates with history of intrauterine growth restriction showed cardiac remodelling and signs of systolic and diastolic dysfunction. Overall, there was a significant tendency to worse cardiac function results in the right heart. The adaptation to extrauterine life occurred with more globular hearts, higher stroke volumes but a similar heart rate compared to adequate-for-gestational-age neonates.

  2. Animal models to study neonatal nutrition in humans

    USDA-ARS?s Scientific Manuscript database

    The impact of neonatal nutrition on the health status of the newborn and incidence of disease in later life is a topic of intense interest. Animal models are an invaluable tool to identify mechanisms that mediate the effect of nutrition on neonatal development and metabolic function. This review hig...

  3. Lung and Diaphragm Damage at Varying Oxygen Levels and Ventilator Modes Pst Hemorrhagic

    DTIC Science & Technology

    2011-12-20

    scavenging in prenatal neonates (Vento et al., 2009). In addition, Lee et al. found that mice breathing 40% oxygen had elevated tissue levels of...pulmonary mechanics. Another limitation was that we did not administer any fluid resuscitation to correct the hemorrhagic shock during mechanical... resuscitation . Testing only a controlled mode of mechanical ventilation was a limitation to our study. Most mechanical ventilations offer a mixed mode of

  4. Outcomes of very low birth weight infants in a newborn tertiary center in Turkey, 1997-2000.

    PubMed

    Atasay, Begüm; Günlemez, Ayla; Unal, Sevim; Arsan, Saadet

    2003-01-01

    Our purpose was to determine mortality and morbidity rates and selected outcome variables for infants weighing less than 1500 g, who were admitted to the neonatal intensive care unit of our hospital from 1997 to 2000. The ultimate goal of the study was to define a model for developing a regional database. Information on all very low birth weight (VLBW) admissions to a tertiary level neonatal intensive care unit (NICU) in Ankara between January 1997 and December 2000 was prospectively collected by three neonatologists using a standard manual of operation and definitions. The data consisted of patient information including sociodemographic characteristics; antenatal history; mode of delivery; APGAR scores; need for resuscitation; admission illness severity (Clinical Risk Index for Babies-CRIB) and therapeutic intensity (Neonatal Therapeutic Intensity Scoring System-NTISS); selected NICU parameters and procedures such as respiratory support, surfactant therapy, and postnatal corticosteroid therapy; and selected patient outcomes such as intraventricular hemorrhage, septicemia, necrotizing enterecolitis, retinopathy of prematurity, and chronic lung disease. The number of VLBW admissions to the NICU was 133, with 51 (28.6%) referrals from other maternity centers. The mean birth weight and gestational age of the infants were 1175 +/- 252 g and 30.3 +/- 2.9 weeks, respectively. One hundred and seventeen of 133 cases (88.7%) received at least one antenatal care visit. The median CRIB and NTISS scores were 4.5 and 31, respectively. Antenatal steroids had been given to 74 (55.6%) infants. Surfactant treatment and respiratory support were given to 33 (24.8%) and 73 (54.8%) infants, respectively. Among selected outcomes, chronic lung disease (CLD), threshold retinopathy of prematurity (ROP), severe intraventricular hemorrhage (IVH > or = grade III), nosocomial infection and necrotizing enterocolitis (NEC) were encountered in 14 (12.6%), 9 (8.1%), 3 (2.2%), 34 (25.5%) and 35 (26.3%) of the infants, respectively. Overall survival rate was 83.5% (111/133); most of the deceased cases were under 750 g (12/22). It was prospectively shown that 111 (100%) of the surviving infants could be regularly followed in a newborn follow-up clinic to provide health maintenance, developmental assessment and support. Compared with reports from other developing countries, VLBW infants at our center had higher survival rates. Compared to developed countries, survival rate was lower, especially for extremely very low birth weight infants. There is interaction between birth weight and survival rate. Among selected neonatal outcomes, chronic lung disease, threshold retinopathy, severe intraventricular hemorrhage (IVH > or = grade III) and nosocomial infection rates at this center were comparable with some reports from developed nations.

  5. Isolated Major Aortopulmonary Collateral as the Sole Pulmonary Blood Supply to an Entire Lung Segment.

    PubMed

    Kim, Hannah S; Grady, R Mark; Shahanavaz, Shabana

    2017-01-01

    Congenital systemic-to-pulmonary collateral arteries or major aortopulmonary collaterals are associated with cyanotic congenital heart disease with decreased pulmonary blood flow. Though it is usually associated with congenital heart diseases, there is an increased incidence of isolated acquired aortopulmonary collaterals in premature infants with chronic lung disease. Interestingly, isolated congenital aortopulmonary collaterals can occur without any lung disease, which may cause congestive heart failure and require closure. We present a neonate with an echocardiogram that showed only left-sided heart dilation. Further workup with a CT angiogram demonstrated an anomalous systemic artery from the descending thoracic aorta supplying the left lower lobe. He eventually developed heart failure symptoms and was taken to the catheterization laboratory for closure of the collateral. However, with the collateral being the only source of blood flow to the entire left lower lobe, he required surgical unifocalization. Isolated aortopulmonary collaterals without any other congenital heart disease or lung disease are rare. Our patient is the first reported case to have an isolated aortopulmonary collateral being the sole pulmonary blood supply to an entire lung segment. Due to its rarity, there is still much to learn about the origin and development of these collaterals that possibly developed prenatally.

  6. The most important questions in cancer research and clinical oncology : Question 1. Could the vertical transmission of human papilloma virus (HPV) infection account for the cause, characteristics, and epidemiology of HPV-positive oropharyngeal carcinoma, non-smoking East Asian female lung adenocarcinoma, and/or East Asian triple-negative breast carcinoma?

    PubMed

    Wee, Joseph T S; Poh, Sharon Shuxian

    2017-01-16

    Specific research foci: (1) Mouse models of gamma-herpes virus-68 (γHV-68) and polyomavirus (PyV) infections during neonatal versus adult life. (2) For human papilloma virus (HPV)-positive oropharyngeal carcinoma (OPC)-(a) Asking the question: Is oral sex a powerful carcinogen? (b) Examining the evidence for the vertical transmission of HPV infection. (c) Examining the relationship between HPV and Epstein-Barr virus (EBV) infections and nasopharyngeal cancer (NPC) in West European, East European, and East Asian countries. (d) Examining the association between HPV-positive OPC and human leukocyte antigen (HLA). (3) For non-smoking East Asian female lung adenocarcinoma-(a) Examining the incidence trends of HPV-positive OPC and female lung adenocarcinoma according to birth cohorts. (b) Examining the association between female lung adenocarcinoma and HPV. (c) Examining the associations of lung adenocarcinoma with immune modulating factors. (4) For triple-negative breast carcinoma (TNBC) in East Asians-(a) Examining the association between TNBC and HPV. (b) Examining the unique epidemiological characteristics of patients with TNBC. A summary "epidemiological" model tying some of these findings together.

  7. Outcomes following neonatal cardiopulmonary resuscitation.

    PubMed

    Boldingh, Anne Marthe; Solevåg, Anne Lee; Nakstad, Britt

    2018-05-29

    Hjerte-lunge-redning av et kritisk sykt barn ved fødsel kan føre til overlevelse eller død. De som overlever kan utvikle komplikasjoner direkte etter fødsel eller senere i småbarns- og skolealder. Hypoksisk iskemisk encefalopati er en tilstand med nevrologiske symptomer hos den nyfødte etter hypoksi ved fødsel. Tilstanden klassifiseres som mild, moderat eller alvorlig. Vi ønsket å gi en oversikt over kort- og langtidsutfall etter hjerte-lunge-redning ved fødsel. Vi søkte i databasen Medline for utfall etter hjerte-lunge-redning ved fødsel. Vi identifiserte 15 indekserte, fagfellevurderte originalartikler og to metaanalyser om utfall etter hjerte-lunge-redning ved fødsel eller fødselsasfyksi. Hypoksisk iskemisk encefalopati rammer generelt 38 % av pasientene i mild til moderat grad og 23 % i alvorlig grad. Dødeligheten varierte fra 10 % i høy- til 28 % i lavinntektsland. Overlevende utvikler ofte motoriske, kognitive og sensoriske utviklingshemninger. I noen tilfeller blir det først avdekket ved skolestart når mer komplekse ferdigheter kreves. Funksjonshemning ved skolealder er sterkt korrelert til tilstanden i småbarnsalder. Endringer i algoritmene ved hjerte-lunge-redning og rutinebehandling med hypotermi har redusert risikoen for alvorlige følgetilstander etter hypoksisk iskemisk encefalopati.

  8. Methylxanthines during pregnancy and early postnatal life.

    PubMed

    Adén, Ulrika

    2011-01-01

    World-wide, many fetuses and infants are exposed to methylxanthines via maternal consumption of coffee and other beverages containing these substances. Methylxanthines (caffeine, theophylline and aminophylline) are also commonly used as a medication for apnea of prematurity.The metabolism of methylxanthines is impaired in pregnant women, fetuses and neonates, leading to accumulating levels thereof. Methylxanthines readily passes the placenta barrier and enters all tissues and thus may affect the fetus/newborn at any time during pregnancy or postnatal life, given that the effector systems are mature.At clinically relevant doses, the major effector system for methylxanthines is adenosine receptors. Animal studies suggest that adenosine receptors in the cardiovascular, respiratory and immune system are developed at birth, but that cerebral adenosine receptors are not fully functional. Furthermore animal studies have shown protective positive effects of methylxanthines in situations of hypoxia/ischemia in neonates. Similarly, a positive long-term effect on lung function and CNS development was found in human preterm infants treated with high doses of caffeine for apneas. There is now evidence that the overall benefits from methylxanthine therapy for apnea of prematurity outweigh potential short-term risks.On the other hand it is important to note that experimental studies have indicated that long-term effects of caffeine during pregnancy and postnatally may include altered behavior and altered respiratory control in the offspring, although there is currently no human data to support this.Some epidemiology studies have reported negative effects on pregnancy and perinatal outcomes related to maternal ingestion of high doses of caffeine, but the results are inconclusive. The evidence base for adverse effects of caffeine in first third of pregnancy are stronger than for later parts of pregnancy and there is currently insufficient evidence to advise women to restrict caffeine intake after the first trimester.

  9. [Fetal magnetic resonance imaging evaluation of congenital diaphragmatic hernia].

    PubMed

    Sebastià, C; Garcia, R; Gomez, O; Paño, B; Nicolau, C

    2014-01-01

    A diaphragmatic hernia is defined as the protrusion of abdominal viscera into the thoracic cavity through a normal or pathological orifice. The herniated viscera compress the lungs, resulting in pulmonary hypoplasia and secondary pulmonary hypertension, which are the leading causes of neonatal death in patients with congenital diaphragmatic hernia. Congenital diaphragmatic hernia is diagnosed by sonography in routine prenatal screening. Although magnetic resonance imaging is fundamentally used to determine whether the liver is located within the abdomen or has herniated into the thorax, it also can provide useful information about other herniated structures and the degree of pulmonary hypoplasia. The aim of this article is to review the fetal magnetic resonance findings for congenital diaphragmatic hernia and the signs that enable us to establish the neonatal prognosis when evaluating pulmonary hypoplasia. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  10. Preeclampsia; short and long-term consequences for mother and neonate.

    PubMed

    Bokslag, Anouk; van Weissenbruch, Mirjam; Mol, Ben Willem; de Groot, Christianne J M

    2016-11-01

    Preeclampsia is a common pregnancy specific disease, that presents with hypertension and a variety of organ failures, including malfunction of kidneys, liver and lungs. At present, the only definitive treatment of preeclampsia is end the pregnancy and deliver the neonate and placenta. For women with mild preeclampsia in the preterm phase of pregnancy, expectant management is generally indicated to improve fetal maturity, often requiring maternal medical treatment. Last decades, more evidence is available that the underlying mechanism of preeclampsia, endothelial disease, is not limited to pregnancy but increases cardiovascular risk in later life. In this review, we present the most recent insight in preeclampsia with focus on impact on the fetus, short and long-term outcome of offspring's, and long-term outcome of women with a history of preeclampsia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil.

    PubMed

    Scheef, Lukas; Nordmeyer-Massner, Jurek A; Smith-Collins, Adam Pr; Müller, Nicole; Stegmann-Woessner, Gaby; Jankowski, Jacob; Gieseke, Jürgen; Born, Mark; Seitz, Hermann; Bartmann, Peter; Schild, Hans H; Pruessmann, Klaas P; Heep, Axel; Boecker, Henning

    2017-01-01

    Functional magnetic resonance imaging (fMRI) in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD) responses in sensorimotor cortex (SMC). Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level. Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL). Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR) was performed on the whole brain and the SMC, and was compared to data acquired with an 'adult' 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p < 0.05, whole-brain FWE-corrected. Using a custom-designed neonatal MR-coil, we found significant positive BOLD responses in contralateral SMC after unilateral passive sensorimotor stimulation in all neonates (analyses restricted to artifact-free data sets = 8/13). Improved imaging characteristics of the neonatal MR-coil were evidenced by additional phantom and in vivo tSNR measurements: phantom studies revealed a 240% global increase in tSNR; in vivo studies revealed a 73% global and a 55% local (SMC) increase in tSNR, as compared to the 'adult' MR-coil. Our findings strengthen the importance of using optimized coil settings for neonatal fMRI, yielding robust and reproducible SMC activation at the single subject level. We conclude that functional lateralization of SMC activation, as found in children and adults, is already present in the newborn period.

  12. Neonatal maternal separation delays the GABA excitatory-to-inhibitory functional switch by inhibiting KCC2 expression.

    PubMed

    Furukawa, Minami; Tsukahara, Takao; Tomita, Kazuo; Iwai, Haruki; Sonomura, Takahiro; Miyawaki, Shouichi; Sato, Tomoaki

    2017-11-25

    The excitatory-to-inhibitory functional switch of γ-aminobutyric acid (GABA; GABA switch), which normally occurs in the first to the second postnatal week in the hippocampus, is necessary for the development of appropriate central nervous system function. A deficit in GABAergic inhibitory function could cause excitatory/inhibitory (E/I) neuron imbalance that is found in many neurodegenerative disorders. In the present study, we examined whether neonatal stress can affect the timing of the GABA functional switch and cause disorders during adolescence. Neonatal stress was induced in C57BL/6J male mouse pups by maternal separation (MS) on postnatal days (PND) 1-21. Histological quantification of K + -Cl - co-transporter (KCC2) and Ca 2+ imaging were performed to examine the timing of the GABA switch during the MS period. To evaluate the influence of neonatal MS on adolescent hippocampal function, we quantified KCC2 expression and evaluated hippocampal-related behavioral tasks at PND35-38. We showed that MS delayed the timing of the GABA switch in the hippocampus and inhibited the increase in membrane KCC2 expression, with KCC2 expression inhibition persisting until adolescence. Behavioral tests showed impaired cognition, declined attention, hyperlocomotion, and aggressive character in maternally separated mice. Taken together, our results show that neonatal stress delayed the timing of the GABA switch, which could change the E/I balance and cause neurodegenerative disorders in later life. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group

    PubMed Central

    Frerichs, Inéz; Amato, Marcelo B P; van Kaam, Anton H; Tingay, David G; Zhao, Zhanqi; Grychtol, Bartłomiej; Bodenstein, Marc; Gagnon, Hervé; Böhm, Stephan H; Teschner, Eckhard; Stenqvist, Ola; Mauri, Tommaso; Torsani, Vinicius; Camporota, Luigi; Schibler, Andreas; Wolf, Gerhard K; Gommers, Diederik; Leonhardt, Steffen; Adler, Andy

    2017-01-01

    Electrical impedance tomography (EIT) has undergone 30 years of development. Functional chest examinations with this technology are considered clinically relevant, especially for monitoring regional lung ventilation in mechanically ventilated patients and for regional pulmonary function testing in patients with chronic lung diseases. As EIT becomes an established medical technology, it requires consensus examination, nomenclature, data analysis and interpretation schemes. Such consensus is needed to compare, understand and reproduce study findings from and among different research groups, to enable large clinical trials and, ultimately, routine clinical use. Recommendations of how EIT findings can be applied to generate diagnoses and impact clinical decision-making and therapy planning are required. This consensus paper was prepared by an international working group, collaborating on the clinical promotion of EIT called TRanslational EIT developmeNt stuDy group. It addresses the stated needs by providing (1) a new classification of core processes involved in chest EIT examinations and data analysis, (2) focus on clinical applications with structured reviews and outlooks (separately for adult and neonatal/paediatric patients), (3) a structured framework to categorise and understand the relationships among analysis approaches and their clinical roles, (4) consensus, unified terminology with clinical user-friendly definitions and explanations, (5) a review of all major work in thoracic EIT and (6) recommendations for future development (193 pages of online supplements systematically linked with the chief sections of the main document). We expect this information to be useful for clinicians and researchers working with EIT, as well as for industry producers of this technology. PMID:27596161

  14. Pleural plaques and their effect on lung function in Libby vermiculite miners.

    PubMed

    Clark, Kathleen A; Flynn, J Jay; Goodman, Julie E; Zu, Ke; Karmaus, Wilfried J J; Mohr, Lawrence C

    2014-09-01

    Multiple studies have investigated the relationship between asbestos-related pleural plaques (PPs) and lung function, with disparate and inconsistent results. Most use chest radiographs to identify PPs and simple spirometry to measure lung function. High-resolution CT (HRCT) scanning improves the accuracy of PP identification. Complete pulmonary function tests (PFTs), including spirometry, lung volumes, and diffusing capacity of the lung for carbon monoxide, provide a more definitive assessment of lung function. The goal of this study was to determine, using HRCT scanning and complete PFTs, the effect of PPs on lung function in Libby vermiculite miners. The results of HRCT scanning and complete PFTs performed between January 2000 and August 2012 were obtained from the medical records of 166 Libby vermiculite miners. Multivariate regression analyses with Tukey multivariate adjustment were used to assess statistical associations between the presence of PPs and lung function. Adjustments were made for age, BMI, smoking history, duration of employment, and years since last occupational asbestos exposure. Nearly 90% of miners (n = 149) had evidence of PPs on HRCT scan. No significant differences in spirometry results, lung volumes, or diffusing capacity of the lung for carbon monoxide were found between miners with PPs alone and miners with normal HRCT scans. Miners with both interstitial fibrosis and the presence of PPs had a significantly decreased total lung capacity in comparison with miners with normal HRCT scans (P = .02). Age, cumulative smoking history, and BMI were significant covariates that contributed to abnormal lung function. Asbestos-related PPs alone have no significant effect on lung function in Libby vermiculite miners.

  15. High tidal volume ventilation in infant mice.

    PubMed

    Cannizzaro, Vincenzo; Zosky, Graeme R; Hantos, Zoltán; Turner, Debra J; Sly, Peter D

    2008-06-30

    Infant mice were ventilated with either high tidal volume (V(T)) with zero end-expiratory pressure (HVZ), high V(T) with positive end-expiratory pressure (PEEP) (HVP), or low V(T) with PEEP. Thoracic gas volume (TGV) was determined plethysmographically and low-frequency forced oscillations were used to measure the input impedance of the respiratory system. Inflammatory cells, total protein, and cytokines in bronchoalveolar lavage fluid (BALF) and interleukin-6 (IL-6) in serum were measured as markers of pulmonary and systemic inflammatory response, respectively. Coefficients of tissue damping and tissue elastance increased in all ventilated mice, with the largest rise seen in the HVZ group where TGV rapidly decreased. BALF protein levels increased in the HVP group, whereas serum IL-6 rose in the HVZ group. PEEP keeps the lungs open, but provides high volumes to the entire lungs and induces lung injury. Compared to studies in adult and non-neonatal rodents, infant mice demonstrate a different response to similar ventilation strategies underscoring the need for age-specific animal models.

  16. Resuscitator’s perceptions and time for corrective ventilation steps during neonatal resuscitation☆

    PubMed Central

    Sharma, Vinay; Lakshminrusimha, Satyan; Carrion, Vivien; Mathew, Bobby

    2016-01-01

    Background The 2010 neonatal resuscitation program (NRP) guidelines incorporate ventilation corrective steps (using the mnemonic – MRSOPA) into the resuscitation algorithm. The perception of neonatal providers, time taken to perform these maneuvers or the effectiveness of these additional steps has not been evaluated. Methods Using two simulated clinical scenarios of varying degrees of cardiovascular compromise –perinatal asphyxia with (i) bradycardia (heart rate – 40 min−1) and (ii) cardiac arrest, 35 NRP certified providers were evaluated for preference to performing these corrective measures, the time taken for performing these steps and time to onset of chest compressions. Results The average time taken to perform ventilation corrective steps (MRSOPA) was 48.9 ± 21.4 s. Providers were less likely to perform corrective steps and proceed directly to endotracheal intubation in the scenario of cardiac arrest as compared to a state of bradycardia. Cardiac compressions were initiated significantly sooner in the scenario of cardiac arrest 89 ± 24 s as compared to severe bradycardia 122 ± 23 s, p < 0.0001. There were no differences in the time taken to initiation of chest compressions between physicians or mid-level care providers or with the level of experience of the provider. Conclusions Effective ventilation of the lungs with corrective steps using a mask is important in most cases of neonatal resuscitation. Neonatal resuscitators prefer early endotracheal intubation and initiation of chest compressions in the presence of asystolic cardiac arrest. Corrective ventilation steps can potentially postpone initiation of chest compressions and may delay return of spontaneous circulation in the presence of severe cardiovascular compromise. PMID:25796996

  17. Effects of perfluorooctanoic acid (PFOA) exposure to pregnant mice on reproduction.

    PubMed

    Yahia, Doha; El-Nasser, Mahmoud Abd; Abedel-Latif, Manal; Tsukuba, Chiaki; Yoshida, Midori; Sato, Itaru; Tsuda, Shuji

    2010-08-01

    Perfluorooctanoic acid (PFOA) has similar characteristics to perfluorooctane sulfonate (PFOS) in reproduction toxicity featured by neonatal death. We found that PFOS exposure to mice during pregnancy led to intracranial blood vessel dilatation of fetuses accompanied by severe lung collapse which caused neonatal mortality. Thus, we adopted the corresponding experimental design to PFOS in order to characterize the neonatal death by PFOA. Pregnant ICR mice were given 1, 5 and 10 mg/kg PFOA daily by gavage from gestational day (GD) 0 to 17 and 18 for prenatal and postnatal evaluations, respectively. Five to nine dams per group were sacrificed on GD 18 for prenatal evaluation; other 10 dams were left to give birth. No maternal death was observed. The liver weight increased dose-dependently, with hepatocellular hypertrophy, necrosis, increased mitosis and mild calcification at 10 mg/kg. PFOA at 10 mg/kg increased serum enzyme activities (GGT, ALT, AST and ALP) with hypoproteinemia and hypolipidemia. PFOA treatment reduced the fetal body weight at 5 and 10 mg/kg. Teratological evaluation showed delayed ossification of the sternum and phalanges and delayed eruption of incisors at 10 mg/kg, but did not show intracranial blood vessel dilatation. Postnatal evaluation revealed that PFOA reduced the neonatal survival rate at 5 and 10 mg/kg. At 5 mg/kg pups were born alive and active and 16% died within 4 days observation, while all died within 6 hr after birth at 10 mg/kg without showing intracranial blood vessel dilatation. The cause of neonatal death by PFOA may be different from PFOS.

  18. Zinc in Early Life: A Key Element in the Fetus and Preterm Neonate

    PubMed Central

    Terrin, Gianluca; Berni Canani, Roberto; Di Chiara, Maria; Pietravalle, Andrea; Aleandri, Vincenzo; Conte, Francesca; De Curtis, Mario

    2015-01-01

    Zinc is a key element for growth and development. In this narrative review, we focus on the role of dietary zinc in early life (including embryo, fetus and preterm neonate), analyzing consequences of zinc deficiency and adequacy of current recommendations on dietary zinc. We performed a systematic search of articles on the role of zinc in early life. We selected and analyzed 81 studies. Results of this analysis showed that preservation of zinc balance is of critical importance for the avoidance of possible consequences of low zinc levels on pre- and post-natal life. Insufficient quantities of zinc during embryogenesis may influence the final phenotype of all organs. Maternal zinc restriction during pregnancy influences fetal growth, while adequate zinc supplementation during pregnancy may result in a reduction of the risk of preterm birth. Preterm neonates are at particular risk to develop zinc deficiency due to a combination of different factors: (i) low body stores due to reduced time for placental transfer of zinc; (ii) increased endogenous losses; and (iii) marginal intake. Early diagnosis of zinc deficiency, through the measurement of serum zinc concentrations, may be essential to avoid severe prenatal and postnatal consequences in these patients. Typical clinical manifestations of zinc deficiency are growth impairment and dermatitis. Increasing data suggest that moderate zinc deficiency may have significant subclinical effects, increasing the risk of several complications typical of preterm neonates (i.e., necrotizing enterocolitis, chronic lung disease, and retinopathy), and that current recommended intakes should be revised to meet zinc requirements of extremely preterm neonates. Future studies evaluating the adequacy of current recommendations are advocated. PMID:26690476

  19. Fibroblast growth factor 10 haploinsufficiency causes chronic obstructive pulmonary disease.

    PubMed

    Klar, Joakim; Blomstrand, Peter; Brunmark, Charlott; Badhai, Jitendra; Håkansson, Hanna Falk; Brange, Charlotte Sollie; Bergendal, Birgitta; Dahl, Niklas

    2011-10-01

    Genetic factors influencing lung function may predispose to chronic obstructive pulmonary disease (COPD). The fibroblast growth factor 10 (FGF10) signalling pathway is critical for lung development and lung epithelial renewal. The hypothesis behind this study was that constitutive FGF10 insufficiency may lead to pulmonary disorder. Therefore investigation of the pulmonary functions of patients heterozygous for loss of function mutations in the FGF10 gene was performed. The spirometric measures of lung function from patients and non-carrier siblings were compared and both groups were related to matched reference data for normal human lung function. The patients show a significant decrease in lung function parameters when compared to control values. The average FEV1/IVC quota (FEV1%) for the patients is 0.65 (80% of predicted) and reversibility test using Terbutalin resulted in a 3.7% increase in FEV1. Patients with FGF10 haploinsufficiency have lung function parameters indicating COPD. A modest response to Terbutalin confirms an irreversible obstructive lung disease. These findings support the idea that genetic variants affecting the FGF10 signalling pathway are important determinants of lung function that may ultimately contribute to COPD. Specifically, the results show that FGF10 haploinsufficiency affects lung function measures providing a model for a dosage sensitive effect of FGF10 in the development of COPD.

  20. Role of Nitric Oxide Isoforms in Vascular and Alveolar Development and Lung Injury in Vascular Endothelial Growth Factor Overexpressing Neonatal Mice Lungs.

    PubMed

    Syed, Mansoor A; Choo-Wing, Rayman; Homer, Robert J; Bhandari, Vineet

    2016-01-01

    The role of vascular endothelial growth factor (VEGF)-induced 3 different nitric oxide synthase (NOS) isoforms in lung development and injury in the newborn (NB) lung are not known. We hypothesized that VEGF-induced specific NOS pathways are critical regulators of lung development and injury. We studied NB wild type (WT), lung epithelial cell-targeted VEGF165 doxycycline-inducible overexpressing transgenic (VEGFTG), VEGFTG treated with a NOS1 inhibitor (L-NIO), VEGFTG x NOS2-/- and VEGFTG x NOS3+/- mice in room air (RA) for 7 postnatal (PN) days. Lung morphometry (chord length), vascular markers (Ang1, Ang2, Notch2, vWF, CD31 and VE-cadherin), cell proliferation (Ki67), vascular permeability, injury and oxidative stress markers (hemosiderin, nitrotyrosine and 8-OHdG) were evaluated. VEGF overexpression in RA led to increased chord length and vascular markers at PN7, which were significantly decreased to control values in VEGFTG x NOS2-/- and VEGFTG x NOS3+/- lungs. However, we found no noticeable effect on chord length and vascular markers in the VEGFTG / NOS1 inhibited group. In the NB VEGFTG mouse model, we found VEGF-induced vascular permeability in the NB murine lung was partially dependent on NOS2 and NOS3-signaling pathways. In addition, the inhibition of NOS2 and NOS3 resulted in a significant decrease in VEGF-induced hemosiderin, nitrotyrosine- and 8-OHdG positive cells at PN7. NOS1 inhibition had no significant effect. Our data showed that the complete absence of NOS2 and partial deficiency of NOS3 confers protection against VEGF-induced pathologic lung vascular and alveolar developmental changes, as well as injury markers. Inhibition of NOS1 does not have any modulating role on VEGF-induced changes in the NB lung. Overall, our data suggests that there is a significant differential regulation in the NOS-mediated effects of VEGF overexpression in the developing mouse lung.

  1. Neonatal nonepileptic myoclonus is a prominent clinical feature of KCNQ2 gain-of-function variants R201C and R201H.

    PubMed

    Mulkey, Sarah B; Ben-Zeev, Bruria; Nicolai, Joost; Carroll, John L; Grønborg, Sabine; Jiang, Yong-Hui; Joshi, Nishtha; Kelly, Megan; Koolen, David A; Mikati, Mohamad A; Park, Kristen; Pearl, Phillip L; Scheffer, Ingrid E; Spillmann, Rebecca C; Taglialatela, Maurizio; Vieker, Silvia; Weckhuysen, Sarah; Cooper, Edward C; Cilio, Maria Roberta

    2017-03-01

    To analyze whether KCNQ2 R201C and R201H variants, which show atypical gain-of-function electrophysiologic properties in vitro, have a distinct clinical presentation and outcome. Ten children with heterozygous, de novo KCNQ2 R201C or R201H variants were identified worldwide, using an institutional review board (IRB)-approved KCNQ2 patient registry and database. We reviewed medical records and, where possible, interviewed parents and treating physicians using a structured, detailed phenotype inventory focusing on the neonatal presentation and subsequent course. Nine patients had encephalopathy from birth and presented with prominent startle-like myoclonus, which could be triggered by sound or touch. In seven patients, electroencephalography (EEG) was performed in the neonatal period and showed a burst-suppression pattern. However, myoclonus did not have an EEG correlate. In many patients the paroxysmal movements were misdiagnosed as seizures. Seven patients developed epileptic spasms in infancy. In all patients, EEG showed a slow background and multifocal epileptiform discharges later in life. Other prominent features included respiratory dysfunction (perinatal respiratory failure and/or chronic hypoventilation), hypomyelination, reduced brain volume, and profound developmental delay. One patient had a later onset, and sequencing indicated that a low abundance (~20%) R201C variant had arisen by postzygotic mosaicism. Heterozygous KCNQ2 R201C and R201H gain-of-function variants present with profound neonatal encephalopathy in the absence of neonatal seizures. Neonates present with nonepileptic myoclonus that is often misdiagnosed and treated as seizures. Prognosis is poor. This clinical presentation is distinct from the phenotype associated with loss-of-function variants, supporting the value of in vitro functional screening. These findings suggest that gain-of-function and loss-of-function variants need different targeted therapeutic approaches. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  2. Pulmonary Arterial Hypertension and Neonatal Arterial Switch Surgery for Correction of Transposition of the Great Arteries.

    PubMed

    Domínguez Manzano, Paula; Mendoza Soto, Alberto; Román Barba, Violeta; Moreno Galdó, Antonio; Galindo Izquierdo, Alberto

    2016-09-01

    There are few reports of the appearance of pulmonary arterial hypertension following arterial switch surgery in the neonatal period to correct transposition of the great arteries. We assessed the frequency and clinical pattern of this complication in our series of patients. Our database was reviewed to select patients with transposition of the great arteries corrected by neonatal arterial switch at our hospital and who developed pulmonary hypertension over time. We identified 2 (1.3%) patients with transposition of the great arteries successfully repaired in the first week of life who later experienced pulmonary arterial hypertension. The first patient was a 7-year-old girl diagnosed with severe pulmonary hypertension at age 8 months who did not respond to medical treatment and required lung transplantation. The anatomic pathology findings were consistent with severe pulmonary arterial hypertension. The second patient was a 24-month-old boy diagnosed with severe pulmonary hypertension at age 13 months who did not respond to medical therapy. Pulmonary hypertension is a rare but very severe complication that should be investigated in all patients with transposition of the great arteries who have undergone neonatal arterial switch, in order to start early aggressive therapy for affected patients, given the poor therapeutic response and poor prognosis involved. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety.

    PubMed

    Sominsky, Luba; Fuller, Erin A; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R; Dickson, Phillip W; Hodgson, Deborah M

    2013-01-01

    Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.

  4. Functional Programming of the Autonomic Nervous System by Early Life Immune Exposure: Implications for Anxiety

    PubMed Central

    Sominsky, Luba; Fuller, Erin A.; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R.; Dickson, Phillip W.; Hodgson, Deborah M.

    2013-01-01

    Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes. PMID:23483921

  5. A prospective study of the impact of diabetes mellitus on restrictive and obstructive lung function impairment: The Saku study.

    PubMed

    Sonoda, Nao; Morimoto, Akiko; Tatsumi, Yukako; Asayama, Kei; Ohkubo, Takayoshi; Izawa, Satoshi; Ohno, Yuko

    2018-05-01

    To assess the impact of diabetes on restrictive and obstructive lung function impairment. This 5-year prospective study included 7524 participants aged 40-69years without lung function impairment at baseline who underwent a comprehensive medical check-up between April 2008 and March 2009 at Saku Central Hospital. Diabetes was defined by fasting plasma glucose ≥7.0mmol/l (126mg/dl), HbA1c≥6.5% (48mmol/mol), or a history of diabetes, as determined by interviews conducted by the physicians. Restrictive and obstructive lung function impairment were defined as forced vital capacity (FVC) <80% predicted and forced expiratory volume in 1s (FEV 1 ) to FVC ratio (FEV 1 /FVC) <0.70, respectively. Participants were screened until they developed restrictive or obstructive lung function impairment or until March 2014. During the follow-up period, 171 and 639 individuals developed restrictive and obstructive lung function impairment, respectively. Individuals with diabetes had a 1.6-fold higher risk of restrictive lung function impairment than those without diabetes after adjusting for sex, age, height, abdominal obesity, smoking status, exercise habits, systolic blood pressure, HDL-cholesterol, log-transformed high-sensitivity C-reactive protein, and baseline lung function [multivariable-adjusted HR and 95% CI; 1.57 (1.04-2.36)]. In contrast, individuals with diabetes did not have a significantly higher risk of obstructive lung function impairment [multivariable-adjusted HR and 95% CI; 0.93 (0.72-1.21)]. Diabetes was associated with restrictive lung function impairment but not obstructive lung function impairment. Copyright © 2017. Published by Elsevier Inc.

  6. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses

    PubMed Central

    Dantoft, Widad; Martínez-Vicente, Pablo; Jafali, James; Pérez-Martínez, Lara; Martin, Kim; Kotzamanis, Konstantinos; Craigon, Marie; Auer, Manfred; Young, Neil T.; Walsh, Paul; Marchant, Arnaud; Angulo, Ana; Forster, Thorsten; Ghazal, Peter

    2017-01-01

    Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro. In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner. PMID:28993767

  7. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses.

    PubMed

    Dantoft, Widad; Martínez-Vicente, Pablo; Jafali, James; Pérez-Martínez, Lara; Martin, Kim; Kotzamanis, Konstantinos; Craigon, Marie; Auer, Manfred; Young, Neil T; Walsh, Paul; Marchant, Arnaud; Angulo, Ana; Forster, Thorsten; Ghazal, Peter

    2017-01-01

    Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro . In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner.

  8. Functional respiratory morphology in the newborn quokka wallaby (Setonix brachyurus)

    PubMed Central

    Makanya, A N; Tschanz, S A; Haenni, B; Burri, P H

    2007-01-01

    A morphological and morphometric study of the lung of the newborn quokka wallaby (Setonix brachyurus) was undertaken to assess its morphofunctional status at birth. Additionally, skin structure and morphometry were investigated to assess the possibility of cutaneous gas exchange. The lung was at canalicular stage and comprised a few conducting airways and a parenchyma of thick-walled tubules lined by stretches of cuboidal pneumocytes alternating with squamous epithelium, with occasional portions of thin blood–gas barrier. The tubules were separated by abundant intertubular mesenchyme, aggregations of developing capillaries and mesenchymal cells. Conversion of the cuboidal pneumocytes to type I cells occurred through cell broadening and lamellar body extrusion. Superfluous cuboidal cells were lost through apoptosis and subsequent clearance by alveolar macrophages. The establishment of the thin blood–gas barrier was established through apposition of the incipient capillaries to the formative thin squamous epithelium. The absolute volume of the lung was 0.02 ± 0.001 cm3 with an air space surface area of 4.85 ± 0.43 cm2. Differentiated type I pneumocytes covered 78% of the tubular surface, the rest 22% going to long stretches of type II cells, their precursors or low cuboidal transitory cells with sparse lamellar bodies. The body weight-related diffusion capacity was 2.52 ± 0.56 mL O2 min−1 kg−1. The epidermis was poorly developed, and measured 29.97 ± 4.88 µm in thickness, 13% of which was taken by a thin layer of stratum corneum, measuring 4.87 ± 0.98 µm thick. Superficial capillaries were closely associated with the epidermis, showing the possibility that the skin also participated in some gaseous exchange. Qualitatively, the neonate quokka lung had the basic constituents for gas exchange but was quantitatively inadequate, implying the significance of percutaneous gas exchange. PMID:17553103

  9. Proteasome function is not impaired in healthy aging of the lung.

    PubMed

    Caniard, Anne; Ballweg, Korbinian; Lukas, Christina; Yildirim, Ali Ö; Eickelberg, Oliver; Meiners, Silke

    2015-10-01

    Aging is the progressive loss of cellular function which inevitably leads to death. Failure of proteostasis including the decrease in proteasome function is one hallmark of aging. In the lung, proteasome activity was shown to be impaired in age-related diseases such as chronic obstructive pulmonary disease. However, little is known on proteasome function during healthy aging. Here, we comprehensively analyzed healthy lung aging and proteasome function in wildtype, proteasome reporter and immunoproteasome knockout mice. Wildtype mice spontaneously developed senile lung emphysema while expression and activity of proteasome complexes and turnover of ubiquitinated substrates was not grossly altered in lungs of aged mice. Immunoproteasome subunits were specifically upregulated in the aged lung and the caspase-like proteasome activity concomitantly decreased. Aged knockout mice for the LMP2 or LMP7 immunoproteasome subunits showed no alteration in proteasome activities but exhibited typical lung aging phenotypes suggesting that immunoproteasome function is dispensable for physiological lung aging in mice. Our results indicate that healthy aging of the lung does not involve impairment of proteasome function. Apparently, the reserve capacity of the proteostasis systems in the lung is sufficient to avoid severe proteostasis imbalance during healthy aging.

  10. Age-related differences in cigarette smoke extract-induced H2O2 production by lung endothelial cells.

    PubMed

    Downs, Charles A; Montgomery, David W; Merkle, Carrie J

    2011-11-01

    Cigarette smoke causes oxidative stress in the lung resulting in injury and disease. The purpose of this study was to determine if there were age-related differences in cigarette smoke extract (CSE)-induced production of reactive species in single and co-cultures of alveolar epithelial type I (AT I) cells and microvascular endothelial cells harvested from the lungs (MVECLs) of neonatal, young and old male Fischer 344 rats. Cultures of AT I cells and MVECLs grown separately (single culture) and together (co-culture) were exposed to CSE (1, 10, 50, 100%). Cultures were assayed for the production of intracellular reactive oxygen species (ROS), hydroxyl radical (OH), peroxynitrite (ONOO(-)), nitric oxide (NO) and extracellular hydrogen peroxide (H(2)O(2)). Single and co-cultures of AT I cells and MVECLs from all three ages produced minimal intracellular ROS in response to CSE. All ages of MVECLs produced H(2)O(2) in response to CSE, but young MVECLs produced significantly less H(2)O(2) compared to neonatal and old MVECLs. Interestingly, when grown as a co-culture with age-matched AT I cells, neonatal and old MVECLs demonstrated ~50% reduction in H(2)O(2) production in response to CSE. However, H(2)O(2) production in young MVECLs grown as a co-culture with young AT I cells did not change with CSE exposure. To begin investigating for a potential mechanism to explain the reduction in H(2)O(2) production in the co-cultures, we evaluated single and co-cultures for extracellular total antioxidant capacity. We also performed gene expression profiling specific to oxidant and anti-oxidant pathways. The total antioxidant capacity of the AT I cell supernatant was ~5 times greater than that of the MVECLs, and when grown as a co-culture and exposed to CSE (≥ 10%), the total antioxidant capacity of the supernatant was reduced by ~50%. There were no age-related differences in total antioxidant capacity of the cell supernatants. Gene expression profiling found eight genes to be significantly up-regulated or down-regulated. This is the first study to describe age-related differences in MVECLs exposed to CSE. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adebiyi, Adebowale, E-mail: aadebiyi@uthsc.edu; Soni, Hitesh; John, Theresa A.

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1more » in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.« less

  12. [Neonatal hyperthyroidism in a premature infant born to a mother with Grave's disease].

    PubMed

    Nicaise, C; Gire, C; Brémond, V; Minodier, P; Soula, F; d'Ercole, C; Palix, C

    2000-05-01

    Neonatal thyrotoxicosis is most commonly due to transplacental transfer of maternal thyroid-stimulating hormone receptor antibodies (TRAb). Bioassay of thyrotropin receptor antibodies may help to determine the risk for neonatal hyperthyroidism. Thyrotoxicosis developed in a premature infant born to a mother with Graves' disease, with a low level of TRAb by bioassay. The infant was treated with carbimazole for two months, until TRAb had disappeared. Bioassay TRAb is not always reliable for predicting the development of neonatal hyperthyroidism in infants born to mothers with Graves' disease. Thyroid function should be measured in all these neonates.

  13. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  14. Association of Neonatal Glycemia With Neurodevelopmental Outcomes at 4.5 Years.

    PubMed

    McKinlay, Christopher J D; Alsweiler, Jane M; Anstice, Nicola S; Burakevych, Nataliia; Chakraborty, Arijit; Chase, J Geoffrey; Gamble, Gregory D; Harris, Deborah L; Jacobs, Robert J; Jiang, Yannan; Paudel, Nabin; San Diego, Ryan J; Thompson, Benjamin; Wouldes, Trecia A; Harding, Jane E

    2017-10-01

    Hypoglycemia is common during neonatal transition and may cause permanent neurological impairment, but optimal intervention thresholds are unknown. To test the hypothesis that neurodevelopment at 4.5 years is related to the severity and frequency of neonatal hypoglycemia. The Children With Hypoglycemia and Their Later Development (CHYLD) Study is a prospective cohort investigation of moderate to late preterm and term infants born at risk of hypoglycemia. Clinicians were masked to neonatal interstitial glucose concentrations; outcome assessors were masked to neonatal glycemic status. The setting was a regional perinatal center in Hamilton, New Zealand. The study was conducted from December 2006 to November 2010. The dates of the follow-up were September 2011 to June 2015. Participants were 614 neonates born from 32 weeks' gestation with at least 1 risk factor for hypoglycemia, including diabetic mother, preterm, small, large, or acute illness. Blood and masked interstitial glucose concentrations were measured for up to 7 days after birth. Infants with hypoglycemia (whole-blood glucose concentration <47 mg/dL) were treated to maintain blood glucose concentration of at least 47 mg/dL. Neonatal hypoglycemic episode, defined as at least 1 consecutive blood glucose concentration less than 47 mg/dL, a severe episode (<36 mg/dL), or recurrent (≥3 episodes). An interstitial episode was defined as an interstitial glucose concentration less than 47 mg/dL for at least 10 minutes. Cognitive function, executive function, visual function, and motor function were assessed at 4.5 years. The primary outcome was neurosensory impairment, defined as poor performance in one or more domains. In total, 477 of 604 eligible children (79.0%) were assessed. Their mean (SD) age at the time of assessment was 4.5 (0.1) years, and 228 (47.8%) were female. Those exposed to neonatal hypoglycemia (280 [58.7%]) did not have increased risk of neurosensory impairment (risk difference [RD], 0.01; 95% CI, -0.07 to 0.10 and risk ratio [RR], 0.96; 95% CI, 0.77 to 1.21). However, hypoglycemia was associated with increased risk of low executive function (RD, 0.05; 95% CI, 0.01 to 0.10 and RR, 2.32; 95% CI, 1.17 to 4.59) and visual motor function (RD, 0.03; 95% CI, 0.01 to 0.06 and RR, 3.67; 95% CI, 1.15 to 11.69), with highest risk in children exposed to severe, recurrent, or clinically undetected (interstitial episodes only) hypoglycemia. Neonatal hypoglycemia was not associated with increased risk of combined neurosensory impairment at 4.5 years but was associated with a dose-dependent increased risk of poor executive function and visual motor function, even if not detected clinically, and may thus influence later learning. Randomized trials are needed to determine optimal screening and intervention thresholds based on assessment of neurodevelopment at least to school age.

  15. Physiological effects of a single chest physiotherapy session in mechanically ventilated and extubated preterm neonates.

    PubMed

    Mehta, Y; Shetye, J; Nanavati, R; Mehta, A

    2016-01-01

    To assess the changes on various physiological cardio-respiratory parameters with a single chest physiotherapy session in mechanically ventilated and extubated preterm neonates with respiratory distress syndrome. This is a prospective observational study in a neonatal intensive care unit setting. Sixty preterm neonates with respiratory distress syndrome, thirty mechanically ventilated and thirty extubated preterm neonates requiring chest physiotherapy were enrolled in the study. Parameters like heart rate (HR), respiratory rate (RR), Silverman Anderson score (SA score in extubated), oxygen saturation (SpO2) and auscultation findings were noted just before, immediately after chest physiotherapy but before suctioning, immediately after suctioning and after 5 minutes of the session. The mean age of neonates was 9.55±5.86 days and mean birth weight was 1550±511.5 g. As there was no significant difference in the change in parameters on intergroup comparison, further analysis was done considering two groups together (n = 60) except for SA score. As SA score was measured only in extubated neonates. HR did not change significantly during chest physiotherapy compared to the baseline but significantly decreased after 15 minutes (p = 0.01). RR and SA score significantly increased after suctioning (p = 0.014) but reduced after 15 minutes (p = <0.0001). SpO2 significantly reduced post-suctioning compared to the baseline and increased after positioning and 15 minutes of chest physiotherapy (p = <0.0001). Clinically, there was a reduction in HR, RR and SA score with an improvement in SpO2. This signifies that chest physiotherapy may help facilitate the overall well-being of a fragile preterm neonate. Lung auscultation finding suggests that after suctioning, there was a significant reduction in crepitation (p = 0.0000) but significant increase in crepitation after 15 minutes (p = <0.01), suggesting the importance of around-the-clock chest physiotherapy. Chest physiotherapy is safe in preterm neonates. Suctioning causes significant cardio-respiratory parameter changes, but within normal physiological range. Thus, chest physiotherapy should be performed with continuous monitoring only when indicated and not as a routine procedure. More research is needed to study the long term effects of chest physical therapy.

  16. Ex Vivo Adenoviral Vector Gene Delivery Results in Decreased Vector-associated Inflammation Pre- and Post–lung Transplantation in the Pig

    PubMed Central

    Yeung, Jonathan C; Wagnetz, Dirk; Cypel, Marcelo; Rubacha, Matthew; Koike, Terumoto; Chun, Yi-Min; Hu, Jim; Waddell, Thomas K; Hwang, David M; Liu, Mingyao; Keshavjee, Shaf

    2012-01-01

    Acellular normothermic ex vivo lung perfusion (EVLP) is a novel method of donor lung preservation for transplantation. As cellular metabolism is preserved during perfusion, it represents a potential platform for effective gene transduction in donor lungs. We hypothesized that vector-associated inflammation would be reduced during ex vivo delivery due to isolation from the host immune system response. We compared ex vivo with in vivo intratracheal delivery of an E1-, E3-deleted adenoviral vector encoding either green fluorescent protein (GFP) or interleukin-10 (IL-10) to porcine lungs. Twelve hours after delivery, the lung was transplanted and the post-transplant function assessed. We identified significant transgene expression by 12 hours in both in vivo and ex vivo delivered groups. Lung function remained excellent in all ex vivo groups after viral vector delivery; however, as expected, lung function decreased in the in vivo delivered adenovirus vector encoding GFP (AdGFP) group with corresponding increases in IL-1β levels. Transplanted lung function was excellent in the ex vivo transduced lungs and inferior lung function was seen in the in vivo group after transplantation. In summary, ex vivo delivery of adenoviral gene therapy to the donor lung is superior to in vivo delivery in that it leads to less vector-associated inflammation and provides superior post-transplant lung function. PMID:22453765

  17. Effects of neurobehavioral assessment on feeding and weight gain in preterm neonates.

    PubMed

    Senn, Theresa E; Espy, Kimberly Andrews

    2003-04-01

    Neonatal intensive care unit personnel and parents often are concerned that developmental assessment will tire preterm neonates and impair their feeding ability and subsequent weight gain. Therefore, the amount of fluid consumed by 108 preterm neonates (

  18. [Clinical laboratory tests supporting respiratory disease treatment--chairman's introductory remarks].

    PubMed

    Takai, Daiya

    2014-12-01

    The symposium consisted of four parts: history of lung function tests, nitric oxide for diagnosis and monitoring of bronchial asthma, radiological and functional changes of the lung in COPD, and combined pulmonary fibrosis and emphysema (CPFE) occasionally showing almost normal results in lung function tests. The history of lung function tests was presented by Dr. Naoko Tojo of the Tokyo Medical and Dental University. Nitric oxide tests in clinical use for diagnosis and monitoring of bronchial asthma were presented by Dr. Hiroyuki Nagase of Teikyo University. Radiological and functional changes of the lung in COPD were presented by Dr. Shigeo Muro of Kyoto University. Clinical features of combined pulmonary fibrosis and emphysema and their associated lung function were presented by Dr. Daiya Takai of the University of Tokyo. I hope that discussing the history of lung function tests until the present was useful for many medical technologists. (Review).

  19. Cross-sectional changes in lung volume measured by electrical impedance tomography are representative for the whole lung in ventilated preterm infants.

    PubMed

    van der Burg, Pauline S; Miedema, Martijn; de Jongh, Frans H; Frerichs, Inez; van Kaam, Anton H

    2014-06-01

    Electrical impedance tomography measures lung volume in a cross-sectional slice of the lung. Whether these cross-sectional volume changes are representative of the whole lung has only been investigated in adults, showing conflicting results. This study aimed to compare cross-sectional and whole lung volume changes using electrical impedance tomography and respiratory inductive plethysmography. A prospective, single-center, observational, nonrandomized study. The study was conducted in a neonatal ICU in the Netherlands. High-frequency ventilated preterm infants with respiratory distress syndrome. Cross-sectional and whole lung volume changes were continuously and simultaneously measured by, respectively, electrical impedance tomography and respiratory inductive plethysmography during a stepwise recruitment procedure. End-expiratory lung volume changes were assessed by mapping the inflation and deflation limbs using both the pressure/impedance and pressure/inductance pairs and characterized by calculating the inflection points. In addition, oscillatory tidal volume changes were assessed at each pressure step. Twenty-three infants were included in the study. Of these, eight infants had to be excluded because the quality of the registration was insufficient for analysis (two electrical impedance tomography and six respiratory inductive plethysmography). In the remaining 15 infants (gestational age 28.0 ± 2.6 wk; birth weight 1,027 ± 514 g), end-expiratory lung volume changes measured by electrical impedance tomography were significantly correlated to respiratory inductive plethysmography measurements in 12 patients (mean r = 0.93 ± 0.05). This was also true for the upper inflection point on the inflation (r = 0.91, p < 0.01) and deflation limb (r = 0.83, p < 0.01). In 13 patients, impedance and inductance data also correlated significantly on oscillatory tidal volume/pressure relationships (mean r = 0.81 ± 0.18). This study shows that cross-sectional lung volume changes measured by electrical impedance tomography are representative for the whole lung and that this concept also applies to newborn infants.

  20. The intestinal-renal axis for arginine synthesis is present and functional in the neonatal pig

    USDA-ARS?s Scientific Manuscript database

    The intestinal-renal axis for endogenous arginine synthesis is an interorgan process in which citrulline produced in the small intestine is utilized by the kidney for arginine synthesis. The function of this axis in neonates has been questioned because during this period the enzymes needed for argin...

  1. Neonatal diet composition modulates ileum mitochondrial function in a neonatal pig model Eugenia Carvalho1

    USDA-ARS?s Scientific Manuscript database

    The composition of postnatal diet (i.e., breastmilk vs. formula) has a strong influence on a variety of physiological outcomes in infants, but the impact on bioenergetics and mitochondrial function remains an open question. In a published study (1), early ingestion of dairy-based infant formula vs....

  2. Evidence Regarding the Use of Bubble Continuous Positive Airway Pressure in the Extremely Low Birth-Weight Infant: Benefits, Challenges, and Implications for Nursing Practice.

    PubMed

    Alessi, Samantha

    2018-06-01

    Gentle ventilation with optimal oxygenation is integral to prevention of chronic lung disease in the extremely low birth-weight (ELBW) infant. Various types of noninvasive ventilation are used in neonatal intensive care units worldwide. Bubble continuous positive airway pressure (BCPAP) has been in use in newborn intensive care since 1975. To synthesize the current evidence on the use of BCPAP in the ELBW infant and its relationship to outcomes, particularly morbidity and mortality. A literature review was completed using PubMed, EMBASE, CINAHL, and Cochrane with a focus on BCPAP use in the ELBW population. No study found was exclusive to the ELBW population. All studies ranged from ELBW to full-term neonates. Studies supported the use of BCPAP in the ELBW, demonstrating decreased incidence of chronic lung disease and barotrauma through the use of oscillation and permissive hypercapnia. Literature supports the use of nasal bubble CPAP in the ELBW population. Barriers such as septal erosion, pneumothorax, inconsistent pressures, and air in the abdomen were identified and management recommendations were provided. Studies are needed comparing outcomes of nasal bubble CPAP use with other forms of CPAP in the ELBW infant, comparison of prongs to mask for nasal bubble CPAP, and comparing interventions to recommend optimal care bundles to prevent nasal septum injuries.

  3. Preparation and in vitro function of granulocyte concentrates for transfusion to neonates using the IBM 2991 blood processor.

    PubMed

    Goldfinger, D; Medici, M A; Hsi, R; McPherson, J; Connelly, M

    1983-01-01

    Clinical studies have suggested that granulocyte transfusions may be of value in the treatment of septic neonatal patients who present with severe granulocytopenia. We have developed a protocol for the preparation of granulocyte concentrates from freshly collected units of whole blood, using an automated blood cell processor. The red cells were washed with saline. Then, the buffy coats were collected from the washed red cells and studied for their suitability as granulocyte concentrates for neonatal transfusion. The mean number of granulocytes per concentrate was 1.6 X 10(9) in a mean volume of 25 ml. Studies of granulocyte function, including viability, random mobility, chemotaxis, phagocytosis and nitro-blue tetrazolium reduction, demonstrated that the granulocytes were functionally unimpaired following preparation of the concentrates. These studies suggest that concentrates of functional granulocytes, suitable for transfusion to neonatal patients, can be prepared from fresh units of whole blood, using a cell processor. This procedure is more cost-effective than leukapheresis and allows for delivery of granulocytes for transfusion in a more timely fashion.

  4. Quantification of heterogeneity in lung disease with image-based pulmonary function testing.

    PubMed

    Stahr, Charlene S; Samarage, Chaminda R; Donnelley, Martin; Farrow, Nigel; Morgan, Kaye S; Zosky, Graeme; Boucher, Richard C; Siu, Karen K W; Mall, Marcus A; Parsons, David W; Dubsky, Stephen; Fouras, Andreas

    2016-07-27

    Computed tomography (CT) and spirometry are the mainstays of clinical pulmonary assessment. Spirometry is effort dependent and only provides a single global measure that is insensitive for regional disease, and as such, poor for capturing the early onset of lung disease, especially patchy disease such as cystic fibrosis lung disease. CT sensitively measures change in structure associated with advanced lung disease. However, obstructions in the peripheral airways and early onset of lung stiffening are often difficult to detect. Furthermore, CT imaging poses a radiation risk, particularly for young children, and dose reduction tends to result in reduced resolution. Here, we apply a series of lung tissue motion analyses, to achieve regional pulmonary function assessment in β-ENaC-overexpressing mice, a well-established model of lung disease. The expiratory time constants of regional airflows in the segmented airway tree were quantified as a measure of regional lung function. Our results showed marked heterogeneous lung function in β-ENaC-Tg mice compared to wild-type littermate controls; identified locations of airway obstruction, and quantified regions of bimodal airway resistance demonstrating lung compensation. These results demonstrate the applicability of regional lung function derived from lung motion as an effective alternative respiratory diagnostic tool.

  5. Association between lung function and mental health problems among adults in the United States: findings from the First National Health and Nutrition Examination Survey.

    PubMed

    Goodwin, Renee D; Chuang, Shirley; Simuro, Nicole; Davies, Mark; Pine, Daniel S

    2007-02-15

    The objective of this study was to determine the association between lung function and mental health problems among adults in the United States. Data were drawn from the First National Health and Nutrition Examination Survey (1971-1975), with available information on a representative sample of US adults aged 25-74 years. Lung function was assessed by spirometry, and provisional diagnoses of restrictive and obstructive airway disease were assigned based on percentage of expected forced expiratory volume. Mental health problems were assessed with the General Well-Being scales. Restrictive lung function and obstructive lung function, compared with normal lung function, were each associated with a significantly increased likelihood of mental health problems. After adjustment for differences in demographic characteristics, obstructive lung function was associated with significantly lower overall well-being (p = 0.025), and restrictive lung function was associated with significantly lower overall well-being (p < 0.001), general health (p < 0.0001), vitality (p < 0.0001), and self-control (p = 0.001) and with higher depression (p = 0.002) subscale scores compared with no lung function problems. Consistent with previous findings from clinical and community-based studies, these results extend available data by providing evidence of a link between objectively measured lung function and self-reported mental health problems in a representative sample of community adults. Future studies are needed to determine the mechanisms of these associations.

  6. Population pharmacokinetics of paracetamol across the human age-range from (pre)term neonates, infants, children to adults.

    PubMed

    Wang, Chenguang; Allegaert, Karel; Tibboel, Dick; Danhof, Meindert; van der Marel, Caroline D; Mathot, Ron A A; Knibbe, Catherijne A J

    2014-06-01

    In order to characterize the variation in pharmacokinetics of paracetamol across the human age span, we performed a population pharmacokinetic analysis from preterm neonates to adults with specific focus on clearance. Concentration-time data obtained in 220 neonates (post-natal age 1-76 days, gestational age 27-42 weeks), infants (0.11-1.33 yrs), children (2-7 yrs) and adults (19-34 yrs) were analyzed using NONMEM 7.2. In the covariate analysis, linear functions, power functions, and a power function with a bodyweight-dependent exponent were tested. Between preterm neonates and adults, linear bodyweight functions were identified for Q2, Q3, V1, V2, and V3, while for CL a power function with a bodyweight-dependent exponent k was identified (CLi  = CLp  × (BW/70)(k) ). The exponent k was found to decrease in a sigmoidal manner with bodyweight from 1.2 to 0.75, with half the decrease in exponent reached at 12.2 kg. No other covariates such as age were identified. A pharmacokinetic model for paracetamol characterizing changes in pharmacokinetic parameters across the pediatric age-range was developed. Clearance was found to change in a nonlinear manner with bodyweight. Based on the final model, dosing guidelines are proposed from preterm neonates to adolescents resulting in similar exposure across all age ranges. © 2014, The American College of Clinical Pharmacology.

  7. Neonatal Odor-Shock Conditioning Alters the Neural Network Involved in Odor Fear Learning at Adulthood

    ERIC Educational Resources Information Center

    Sevelinges, Yannick; Sullivan, Regina M.; Messaoudi, Belkacem; Mouly, Anne-Marie

    2008-01-01

    Adult learning and memory functions are strongly dependent on neonatal experiences. We recently showed that neonatal odor-shock learning attenuates later life odor fear conditioning and amygdala activity. In the present work we investigated whether changes observed in adults can also be observed in other structures normally involved, namely…

  8. Influence of Pulmonary Rehabilitation on Lung Function Changes After the Lung Resection for Primary Lung Cancer in Patients with Chronic Obstructive Pulmonary Disease.

    PubMed

    Mujovic, Natasa; Mujovic, Nebojsa; Subotic, Dragan; Ercegovac, Maja; Milovanovic, Andjela; Nikcevic, Ljubica; Zugic, Vladimir; Nikolic, Dejan

    2015-11-01

    Influence of physiotherapy on the outcome of the lung resection is still controversial. Study aim was to assess the influence of physiotherapy program on postoperative lung function and effort tolerance in lung cancer patients with chronic obstructive pulmonary disease (COPD) that are undergoing lobectomy or pneumonectomy. The prospective study included 56 COPD patients who underwent lung resection for primary non small-cell lung cancer after previous physiotherapy (Group A) and 47 COPD patients (Group B) without physiotherapy before lung cancer surgery. In Group A, lung function and effort tolerance on admission were compared with the same parameters after preoperative physiotherapy. Both groups were compared in relation to lung function, effort tolerance and symptoms change after resection. In patients with tumors requiring a lobectomy, after preoperative physiotherapy, a highly significant increase in FEV1, VC, FEF50 and FEF25 of 20%, 17%, 18% and 16% respectively was registered with respect to baseline values. After physiotherapy, a significant improvement in 6-minute walking distance was achieved. After lung resection, the significant loss of FEV1 and VC occurred, together with significant worsening of the small airways function, effort tolerance and symptomatic status. After the surgery, a clear tendency existed towards smaller FEV1 loss in patients with moderate to severe, when compared to patients with mild baseline lung function impairment. A better FEV1 improvement was associated with more significant loss in FEV1. Physiotherapy represents an important part of preoperative and postoperative treatment in COPD patients undergoing a lung resection for primary lung cancer.

  9. Human fetal cardiovascular profile score and neonatal outcome in intrauterine growth restriction.

    PubMed

    Mäkikallio, K; Räsänen, J; Mäkikallio, T; Vuolteenaho, O; Huhta, J C

    2008-01-01

    To determine whether low cardiovascular profile (CVP) score has prognostic value for predicting neonatal mortality and severe morbidity in human fetuses with growth restriction. Seventy-five consecutive growth-restricted fetuses with Doppler examination of cardiovascular hemodynamics within a week prior to delivery comprised the study population. Hydrops, heart size, cardiac function and venous and arterial hemodynamics were evaluated for CVP score. The primary outcome measures were neonatal mortality and cerebral palsy. During the neonatal period, six of 75 neonates died and two had cerebral palsy (Group 1, n = 8). Compared with the fetuses discharged home from hospital (Group 2, n = 67), those in Group 1 were delivered at an earlier gestational age (28 (range, 24-35) weeks vs. 35 (range, 26-40) weeks, P < 0.01) and had lower CVP scores (4 (range, 2-6) vs. 9 (range, 5-10), P < 0.0001). All CVP subscale scores were lower (P < 0.01) in Group 1 than in Group 2 fetuses. Gestational age-adjusted hazard ratios (95% CIs) for adverse neonatal outcome were highest for cardiomegaly (13.9 (1.7-114.3), P = 0.014), monophasic atrioventricular filling pattern or holosystolic tricuspid regurgitation (9.5 (2.3-38.4), P = 0.002) and atrial pulsations in the umbilical vein 7.7 (1.4-41.2), P = 0.017). Growth-restricted fetuses with adverse neonatal outcome have lower CVP scores than do fetuses with favorable neonatal outcome. The strongest predictors for adverse neonatal outcome in the CVP score were cardiomegaly, abnormal cardiac function with monophasic atrioventricular filling or holosystolic tricuspid regurgitation and increased systemic venous pressure. These assessments have independent prognostic power for adverse neonatal outcome even after adjustment for gestational age. Copyright (c) 2007 ISUOG. Published by John Wiley & Sons, Ltd.

  10. The intestinal-renal axis for arginine synthesis is present and functional in the neonatal pig.

    PubMed

    Marini, Juan C; Agarwal, Umang; Robinson, Jason L; Yuan, Yang; Didelija, Inka C; Stoll, Barbara; Burrin, Douglas G

    2017-08-01

    The intestinal-renal axis for endogenous arginine synthesis is an interorgan process in which citrulline produced in the small intestine is utilized by the kidney for arginine synthesis. The function of this axis in neonates has been questioned because during this period the enzymes needed for arginine synthesis argininosuccinate synthase (ASS1) and lyase (ASL) are present in the gut. However, evidence of high plasma citrulline concentrations in neonates suggests otherwise. We quantified in vivo citrulline production in premature (10 days preterm), neonatal (7 days old), and young pigs (35 days old) using citrulline tracers. Neonatal pigs had higher fluxes (69 µmol·kg -1 ·h -1 , P < 0.001) than premature and young pigs (43 and 45 µmol·kg -1 ·h -1 , respectively). Plasma citrulline concentration was also greater in neonatal pigs than in the other age groups. We also determined the site of synthesis and utilization of citrulline in neonatal and young pigs by measuring organ balances across the gut and the kidney. Citrulline was released from the gut and utilized by the kidney in both neonatal and young pigs. The abundance and localization of the enzymes involved in the synthesis and utilization were determined in intestinal and kidney tissue. Despite the presence of ASS1 and ASL in the neonatal small intestine, the lack of colocalization with the enzymes that produce citrulline results in the release of citrulline by the PDV and its utilization by the kidney to produce arginine. In conclusion, the intestinal-renal axis for arginine synthesis is present in the neonatal pig. Copyright © 2017 the American Physiological Society.

  11. Does Whole-Body Hypothermia in Neonates with Hypoxic-Ischemic Encephalopathy Affect Surfactant Disaturated-Phosphatidylcholine Kinetics?

    PubMed

    Nespeca, Matteo; Giorgetti, Chiara; Nobile, Stefano; Ferrini, Ilaria; Simonato, Manuela; Verlato, Giovanna; Cogo, Paola; Carnielli, Virgilio Paolo

    2016-01-01

    It is unknown whether Whole-Body Hypothermia (WBH) affects pulmonary function. In vitro studies, at relatively low temperatures, suggest that hypothermia may induce significant changes to the surfactant composition. The effect of WBH on surfactant kinetics in newborn infants is unknown. We studied in vivo kinetics of disaturated-phosphatidylcholine (DSPC) in asphyxiated newborns during WBH and in normothermic controls (NTC) with no or mild asphyxia. Both groups presented no clinically apparent lung disease. Twenty-seven term or near term newborns requiring mechanical ventilation were studied (GA 38.6±2.2 wks). Fifteen during WBH and twelve NTC. All infants received an intra-tracheal dose of 13C labelled DSPC and tracheal aspirate were performed. DSPC amount, DSPC half-life (HL) and pool size (PS) were calculated. DSPC amount in tracheal aspirates was 0.42 [0.22-0.54] and 0.36 [0.10-0.58] mg/ml in WBH and NTC respectively (p = 0.578). DSPC HL was 24.9 [15.7-52.5] and 25.3 [15.8-59.3] h (p = 0.733) and DSPC PS was 53.2 [29.4-91.6] and 40.2 [29.8-64.6] mg/kg (p = 0.598) in WBH and NTC respectively. WBH does not alter DSPC HL and PS in newborn infants with no clinical apparent lung disease.

  12. Effects of Oral Stimulus Frequency Spectra on the Development of Non-nutritive Suck in Preterm Infants with Respiratory Distress Syndrome or Chronic Lung Disease, and Preterm Infants of Diabetic Mothers

    PubMed Central

    Barlow, SM; Lee, Jaehoon; Wang, Jingyan; Oder, Austin; Oh, Hyuntaek; Hall, Sue; Knox, Kendi; Weatherstone, Kathleen; Thompson, Diane

    2013-01-01

    The precocial nature of orofacial sensorimotor control underscores the biological importance of establishing ororythmic activity in human infants. The purpose of this study was to assess the effects of comparable doses of three forms of orosensory experience, including a low-velocity spectrally reduced orocutaneous stimulus (NT1), a high-velocity broad spectrum orocutaneous stimulus (NT2), and a SHAM stimulus consisting of a blind pacifier. Each orosensory experience condition was paired with gavage feedings 3x/day for 10 days in the neonatal intensive care unit (NICU). Four groups of preterm infants (N=214), including those with respiratory distress syndrome (RDS), chronic lung disease (CLD), infants of diabetic mothers (IDM), and healthy controls (HI) were randomized to the type of orosensory condition. Mixed modeling, adjusted for gender, gestational age, postmenstrual age, and birth weight, demonstrated the most significant gains in non-nutritive suck (NNS) development among CLD infants who were treated with the NT2 stimulus, with smaller gains realized among RDS and IDM infants. The broader spectrum of the NT2 stimulus maps closely to known response properties of mechanoreceptors in lip, tongue, and oral mucosa and is more effective in promoting NNS development among preterm infants with impaired oromotor function compared to the low-velocity, spectrally reduced NT1 orosensory stimulus. PMID:25018662

  13. Fetal-to-maternal signaling in the timing of birth.

    PubMed

    Mendelson, Carole R; Montalbano, Alina P; Gao, Lu

    2017-06-01

    Preterm birth remains the major cause of neonatal morbidity and mortality throughout the world. This is due, in part, to our incomplete understanding of the mechanisms that underlie the maintenance of pregnancy and the initiation of parturition at term. In this article, we review our current knowledge of the complex, interrelated and concerted mechanisms whereby progesterone maintains myometrial quiescence throughout most of pregnancy, as well as those that mediate the upregulation of the inflammatory response and decline in progesterone receptor function leading to parturition. Herein, we review findings that demonstrate a role of the fetus in the timing of birth. Specifically, we focus on our own studies indicating that maturation of the fetal lung and enhanced secretion of the surfactant components, surfactant protein A (SP-A) and the potent inflammatory glycerophospholipid, platelet-activating factor (PAF), initiate a signaling cascade culminating in parturition. Our studies suggest an essential role of steroid receptor coactivators, SRC-1 and SRC-2, which activate expression of genes encoding SP-A and LPCAT1. LPCAT1 is a key enzyme in the synthesis of PAF, as well as DPPC, a highly surface-active glycerophospholipid component of surfactant. Thus, we describe a novel pathway through which the fetus contributes to the initiation of labor by signaling the mother when its lungs have achieved sufficient maturity for survival in an aerobic environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Inhibition of macrophage proinflammatory cytokine expression by steroids and recombinant IL-10.

    PubMed

    Li, Y H; Brauner, A; Jonsson, B; Van der Ploeg, I; Söder, O; Holst, M; Jensen, J S; Lagercrantz, H; Tullus, K

    2001-08-01

    Chronic lung disease (CLD) of prematurity is a prolonged respiratory failure in very-low-birth-weight neonates. Proinflammatory cytokines have been implicated in the development of CLD. Steroids have been shown to produce some improvement in neonates with this disease. The purpose of this study was to evaluate the downregulation of these proinflammatory cytokines by dexamethasone, budesonide and recombinant IL-10 (rIL-10) in order to elucidate the mechanism of the clinical benefit of steroids in babies. Our results showed that dexamethasone, budesonide and rIL-10 significantly inhibited both IL-6 and TNF-alpha production in the THP-1 cell line stimulated by lipopolysaccharide and Ureaplasma urealyticum antigen. Similar effects were found in macrophages from tracheobronchial aspirate fluid from newborn infants. In the rat alveolar macrophage cell line, steroids inhibited IL-6 and TNF-alpha production, while rat rIL-10 did not significantly decrease production. In conclusion, steroids and human rIL-10 were able to downregulate proinflammatory cytokine production, which may explain the beneficial effect of steroids and suggests that rIL-10 could be tried as an anti-inflammatory agent in neonates with a high risk of CLD.

  15. Decreased phosphatidyl choline content in bronchoalveolar lavage fluids of children with bronchopulmonary dysplasia: a preliminary investigation.

    PubMed

    Clement, A; Masliah, J; Housset, B; Just, J; Garcia, J; Grimfeld, A; Tournier, G

    1987-01-01

    Bronchoalveolar lavage (BAL) was performed on 12 infants who had recovered from neonatal acute respiratory failure and on 12 patients with bronchopulmonary dysplasia (BPD) in order to evaluate the concentration of phosphatidyl choline (PC) in BAL fluid. These two groups were similar at birth (mean birth weight: 1,980 and 1,750 g, respectively; mean gestational age: 33.4 and 32.1 weeks respectively). Mechanical ventilation based on oxygen requirement lasted longer in the group with BPD. BAL was performed at the end of the first year of life (at 8.5 and 10.3 months, respectively) and the results were compared to control values (from infants of the same age without neonatal disease). Whereas the protein concentration in BAL fluid was similar in the two groups, a dramatic decrease of the BAL PC was found in BPD: The mean values of BAL-PC over protein ratio were 0.9 in the group without pulmonary sequelae and 0.3 in the group with BPD. These preliminary results suggest an impairment of the pulmonary surfactant metabolism in this chronic lung disease following neonatal acute respiratory failure.

  16. Variation in Cilia Protein Genes and Progression of Lung Disease in Cystic Fibrosis.

    PubMed

    Blue, Elizabeth; Louie, Tin L; Chong, Jessica X; Hebbring, Scott J; Barnes, Kathleen C; Rafaels, Nicholas M; Knowles, Michael R; Gibson, Ronald L; Bamshad, Michael J; Emond, Mary J

    2018-04-01

    Cystic fibrosis, like primary ciliary dyskinesia, is an autosomal recessive disorder characterized by abnormal mucociliary clearance and obstructive lung disease. We hypothesized that genes underlying the development or function of cilia may modify lung disease severity in persons with cystic fibrosis. To test this hypothesis, we compared variants in 93 candidate genes in both upper and lower tertiles of lung function in a large cohort of children and adults with cystic fibrosis with those of a population control dataset. Variants within candidate genes were tested for association using the SKAT-O test, comparing cystic fibrosis cases defined by poor (n = 127) or preserved (n = 127) lung function with population controls (n = 3,269 or 3,148, respectively). Associated variants were then tested for association with related phenotypes in independent datasets. Variants in DNAH14 and DNAAF3 were associated with poor lung function in cystic fibrosis, whereas variants in DNAH14 and DNAH6 were associated with preserved lung function in cystic fibrosis. Associations between DNAH14 and lung function were replicated in disease-related phenotypes characterized by obstructive lung disease in adults. Genetic variants within DNAH6, DNAH14, and DNAAF3 are associated with variation in lung function among persons with cystic fibrosis.

  17. Altered resting-state whole-brain functional networks of neonates with intrauterine growth restriction.

    PubMed

    Batalle, Dafnis; Muñoz-Moreno, Emma; Tornador, Cristian; Bargallo, Nuria; Deco, Gustavo; Eixarch, Elisenda; Gratacos, Eduard

    2016-04-01

    The feasibility to use functional MRI (fMRI) during natural sleep to assess low-frequency basal brain activity fluctuations in human neonates has been demonstrated, although its potential to characterise pathologies of prenatal origin has not yet been exploited. In the present study, we used intrauterine growth restriction (IUGR) as a model of altered neurodevelopment due to prenatal condition to show the suitability of brain networks to characterise functional brain organisation at neonatal age. Particularly, we analysed resting-state fMRI signal of 20 neonates with IUGR and 13 controls, obtaining whole-brain functional networks based on correlations of blood oxygen level-dependent (BOLD) signal in 90 grey matter regions of an anatomical atlas (AAL). Characterisation of the networks obtained with graph theoretical features showed increased network infrastructure and raw efficiencies but reduced efficiency after normalisation, demonstrating hyper-connected but sub-optimally organised IUGR functional brain networks. Significant association of network features with neurobehavioral scores was also found. Further assessment of spatiotemporal dynamics displayed alterations into features associated to frontal, cingulate and lingual cortices. These findings show the capacity of functional brain networks to characterise brain reorganisation from an early age, and their potential to develop biomarkers of altered neurodevelopment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Non-digestible carbohydrates in infant formula as substitution for human milk oligosaccharide functions: Effects on microbiota and gut maturation.

    PubMed

    Akkerman, Renate; Faas, Marijke M; de Vos, Paul

    2018-01-15

    Human milk (HM) is the golden standard for nutrition of newborn infants. Human milk oligosaccharides (HMOs) are abundantly present in HM and exert multiple beneficial functions, such as support of colonization of the gut microbiota, reduction of pathogenic infections and support of immune development. HMO-composition is during lactation continuously adapted by the mother to accommodate the needs of the neonate. Unfortunately, for many valid reasons not all neonates can be fed with HM and are either totally or partly fed with cow-milk derived infant formulas, which do not contain HMOs. These cow-milk formulas are supplemented with non-digestible carbohydrates (NDCs) that have functional effects similar to that of some HMOs, since production of synthetic HMOs is challenging and still very expensive. However, NDCs cannot substitute all HMO functions. More efficacious NDCs may be developed and customized for specific groups of neonates such as pre-matures and allergy prone infants. Here current knowledge of HMO functions in the neonate in view of possible replacement of HMOs by NDCs in infant formulas is reviewed. Furthermore, methods to expedite identification of suitable NDCs and structure/function relationships are reviewed as in vivo studies in babies are impossible.

  19. Conservation of small-airway function by tacrolimus/cyclosporine conversion in the management of bronchiolitis obliterans following lung transplantation.

    PubMed

    Revell, M P; Lewis, M E; Llewellyn-Jones, C G; Wilson, I C; Bonser, R S

    2000-12-01

    We studied serial lung function in 11 patients with bronchiolitis obliterans syndrome who were treated with tacrolimus conversion following lung or heart-lung transplantation. Our results show that tacrolimus conversion slows the decline of lung function in bronchiolitis obliterans syndrome. The attenuation continues for at least 1 year following conversion.

  20. Sphingolipids in Congenital Diaphragmatic Hernia; Results from an International Multicenter Study

    PubMed Central

    Snoek, Kitty G.; Reiss, Irwin K. M.; Tibboel, Jeroen; van Rosmalen, Joost; Capolupo, Irma; van Heijst, Arno; Schaible, Thomas; Post, Martin; Tibboel, Dick

    2016-01-01

    Background Congenital diaphragmatic hernia is a severe congenital anomaly with significant mortality and morbidity, for instance chronic lung disease. Sphingolipids have shown to be involved in lung injury, but their role in the pathophysiology of chronic lung disease has not been explored. We hypothesized that sphingolipid profiles in tracheal aspirates could play a role in predicting the mortality/ development of chronic lung disease in congenital diaphragmatic hernia patients. Furthermore, we hypothesized that sphingolipid profiles differ between ventilation modes; conventional mechanical ventilation versus high-frequency oscillation. Methods Sphingolipid levels in tracheal aspirates were determined at days 1, 3, 7 and 14 in 72 neonates with congenital diaphragmatic hernia, born after > 34 weeks gestation at four high-volume congenital diaphragmatic hernia centers. Data were collected within a multicenter trial of initial ventilation strategy (NTR 1310). Results 36 patients (50.0%) died or developed chronic lung disease, 34 patients (47.2%) by stratification were initially ventilated by conventional mechanical ventilation and 38 patients (52.8%) by high-frequency oscillation. Multivariable logistic regression analysis with correction for side of the defect, liver position and observed-to-expected lung-to-head ratio, showed that none of the changes in sphingolipid levels were significantly associated with mortality /development of chronic lung disease. At day 14, long-chain ceramides 18:1 and 24:0 were significantly elevated in patients initially ventilated by conventional mechanical ventilation compared to high-frequency oscillation. Conclusions We could not detect significant differences in temporal sphingolipid levels in congenital diaphragmatic hernia infants with mortality/development of chronic lung disease versus survivors without development of CLD. Elevated levels of ceramides 18:1 and 24:0 in the conventional mechanical ventilation group when compared to high-frequency oscillation could probably be explained by high peak inspiratory pressures and remodeling of the alveolar membrane. PMID:27159222

  1. Comparative analysis of the mechanical signals in lung development and compensatory growth.

    PubMed

    Hsia, Connie C W

    2017-03-01

    This review compares the manner in which physical stress imposed on the parenchyma, vasculature and thorax and the thoraco-pulmonary interactions, drive both developmental and compensatory lung growth. Re-initiation of anatomical lung growth in the mature lung is possible when the loss of functioning lung units renders the existing physiologic-structural reserves insufficient for maintaining adequate function and physical stress on the remaining units exceeds a critical threshold. The appropriate spatial and temporal mechanical interrelationships and the availability of intra-thoracic space, are crucial to growth initiation, follow-on remodeling and physiological outcome. While the endogenous potential for compensatory lung growth is retained and may be pharmacologically augmented, supra-optimal mechanical stimulation, unbalanced structural growth, or inadequate remodeling may limit functional gain. Finding ways to optimize the signal-response relationships and resolve structure-function discrepancies are major challenges that must be overcome before the innate compensatory ability could be fully realized. Partial pneumonectomy reproducibly removes a known fraction of functioning lung units and remains the most robust model for examining the adaptive mechanisms, structure-function consequences and plasticity of the remaining functioning lung units capable of regeneration. Fundamental mechanical stimulus-response relationships established in the pneumonectomy model directly inform the exploration of effective approaches to maximize compensatory growth and function in chronic destructive lung diseases, transplantation and bioengineered lungs.

  2. Comparative Analysis of the Mechanical Signals in Lung Development and Compensatory Growth

    PubMed Central

    Hsia, Connie C.W.

    2017-01-01

    This review compares the manner in which physical stress imposed on the parenchyma, vasculature and thorax, and the thoraco-pulmonary interactions, drive both developmental and compensatory lung growth. Re-initiation of anatomical lung growth in the mature lung is possible when the loss of functioning lung units renders the existing physiologic-structural reserves insufficient for maintaining adequate function and physical stress on the remaining units exceeds a critical threshold. The appropriate spatial and temporal mechanical interrelationships, and the availability of intra-thoracic space, are crucial to growth initiation, follow-on remodeling and physiological outcome. While the endogenous potential for compensatory lung growth is retained and may be pharmacologically augmented, supra-optimal mechanical stimulation, unbalanced structural growth, or inadequate remodeling, may limit functional gain. Finding ways to optimize the signal-response relationships and resolve structure-function discrepancies are major challenges that must be overcome before the innate compensatory ability could be fully realized. Partial pneumonectomy reproducibly removes a known fraction of functioning lung units and remains the most robust model for examining the adaptive mechanisms, structure-function consequences, and plasticity of the remaining functioning lung units capable of regeneration. Fundamental mechanical stimulus-response relationships established in the pneumonectomy model directly inform the exploration of effective approaches to maximize compensatory growth and function in chronic destructive lung diseases, transplantation and bioengineered lungs. PMID:28084523

  3. Are all pulmonary hypoplasias the same? A comparison of pulmonary outcomes in neonates with congenital diaphragmatic hernia, omphalocele and congenital lung malformation.

    PubMed

    Akinkuotu, Adesola C; Sheikh, Fariha; Cass, Darrell L; Zamora, Irving J; Lee, Timothy C; Cassady, Christopher I; Mehollin-Ray, Amy R; Williams, Jennifer L; Ruano, Rodrigo; Welty, Stephen E; Olutoye, Oluyinka O

    2015-01-01

    Patients with congenital diaphragmatic hernias (CDH), omphaloceles, and congenital lung malformations (CLM) may have pulmonary hypoplasia and experience respiratory insufficiency. We hypothesize that given equivalent lung volumes, the degree of respiratory insufficiency will be comparable regardless of the etiology. Records of all fetuses with CDH, omphalocele, and CLM between January 2000 and June 2013 were reviewed. MRI-based observed-to-expected total fetal lung volumes (O/E-TFLV) were calculated. An analysis of outcomes in patients with O/E-TFLV between 40% and 60%, the most inclusive range, was performed. 285 patients were evaluated (161, CDH; 24, omphalocele; 100, CLM). Fetuses with CDH had the smallest mean O/E-TFLV. CDH patients were intubated for longer and had a higher incidence of pulmonary hypertension. Fifty-six patients with the three diagnoses had an O/E-TFLV of 40%-60%. The need for ECMO, supplemental oxygen at 30days of life, and 6-month mortality were similar among groups. CDH patients had a significantly longer duration of intubation and higher incidence of pulmonary hypertension than the other two diagnoses. Given equivalent lung volumes (40%-60% of expected), CDH patients require more pulmonary support initially than omphalocele and CLM patients. In addition to lung volumes, disease-specific factors, such as pulmonary hypertension in CDH, also contribute to pulmonary morbidity and overall outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. [Assistenza cardiocircolatoria. (Cardio-circulatory care)].

    PubMed

    Cogo, P E

    2010-06-01

    Mortality in pediatric cardiovascular failure is markedly improved with the advent of neonatal and pediatric intensive care and with the implementation of treatment guidelines. In 2002 the American College of Critical Care Medicine Clinical Practice Parameters for Hemodynamic Support of Pediatric and Neonatal Shock reported mortality rates of 0%-5% in previously healthy and 10% in chronically ill children with septic shock associated with implementation of "best clinical practices". Early recognition of shock is the key to successful resuscitation in critically ill children. Often, shock results in or co-exists with myo-cardial dysfunction or acute lung injury. Recognition and appropriate management of these insults is crucial for successful outcomes. Resuscitation should be directed to restoration of tissue perfusion and normalization of cardiac and respiratory function. The underlying cause of shock should also be addressed urgently. The physiological response of individual children to shock resuscitation varies and is often unpredictable. Therefore, repeated assessments of vital parameters are needed for taking appropriate decisions. Global indices of tissue oxygen delivery help in targeting therapies more accurately. Isotonic fluids form the cornerstone of treatment and the amount required for resuscitation is based on etiologies and therapeutic response. After resuscitation has been initiated, targeted history and clinical evaluation must be performed to ascertain the cause of shock and management of co-morbidities should be implemented simultaneously. While the management of shock can be protocol based, the treatment needs to be individualized depending on the suspected etiology and therapeutic response particularly for children who suffer from congenital heart disease.

  5. The ELGAN study of the brain and related disorders in extremely low gestational age newborns.

    PubMed

    O'Shea, T M; Allred, E N; Dammann, O; Hirtz, D; Kuban, K C K; Paneth, N; Leviton, A

    2009-11-01

    Extremely low gestational age newborns (ELGANs) are at increased risk for structural and functional brain abnormalities. To identify factors that contribute to brain damage in ELGANs. Multi-center cohort study. We enrolled 1506 ELGANs born before 28 weeks gestation at 14 sites; 1201 (80%) survived to 2 years corrected age. Information about exposures and characteristics was collected by maternal interview, from chart review, microbiologic and histological examination of placentas, and measurement of proteins in umbilical cord and early postnatal blood spots. Indicators of white matter damage, i.e. ventriculomegaly and echolucent lesions, on protocol cranial ultrasound scans; head circumference and developmental outcomes at 24 months adjusted age, i.e., cerebral palsy, mental and motor scales of the Bayley Scales of Infant Development, and a screen for autism spectrum disorders. ELGAN Study publications thus far provide evidence that the following are associated with ultrasongraphically detected white matter damage, cerebral palsy, or both: preterm delivery attributed to preterm labor, prelabor premature rupture of membranes, or cervical insufficiency; recovery of microorganisms in the placenta parenchyma, including species categorized as human skin microflora; histological evidence of placental inflammation; lower gestational age at delivery; greater neonatal illness severity; severe chronic lung disease; neonatal bacteremia; and necrotizing enterocolitis. In addition to supporting a potential role for many previously identified antecedents of brain damage in ELGANs, our study is the first to provide strong evidence that brain damage in extremely preterm infants is associated with microorganisms in placenta parenchyma.

  6. Postnatal Corticosteroids for Prevention and Treatment of Chronic Lung Disease in the Preterm Newborn

    PubMed Central

    Gupta, Sachin; Prasanth, Kaninghat; Chen, Chung-Ming; Yeh, Tsu F.

    2012-01-01

    Despite significant progress in the treatment of preterm neonates, bronchopulmonary dysplasia (BPD) continues to be a major cause of neonatal morbidity. Affected infants suffered from long-term pulmonary and nonpulmonary sequel. The pulmonary sequels include reactive airway disease and asthma during childhood and adolescence. Nonpulmonary sequels include poor coordination and muscle tone, difficulty in walking, vision and hearing problems, delayed cognitive development, and poor academic achievement. As inflammation seems to be a primary mediator of injury in pathogenesis of BPD, role of steroids as antiinflammatory agent has been extensively studied and proven to be efficacious in management. However, evidence is insufficient to make a recommendation regarding other glucocorticoid doses and preparations. Numerous studies have been performed to investigate the effects of steroid. The purpose of this paper is to evaluate these studies in order to elucidate the beneficial and harmful effects of steroid on the prevention and treatment of BPD. PMID:22007245

  7. Fatal persistent pulmonary hypertension presenting late in the neonatal period.

    PubMed Central

    Raine, J; Hislop, A A; Redington, A N; Haworth, S G; Shinebourne, E A

    1991-01-01

    Two cases of fatal idiopathic persistent pulmonary hypertension presented late in the neonatal period. Lungs were examined histologically by light and electron microscopy, and immunocytochemical studies were used to identify nerves. There was extension of medial smooth muscle distally along the arterial pathway so that most precapillary arteries had completely muscular walls, which in some cases completely obliterated the vessel lumen. Enlarged endothelial cells also contributed to the reduction in the size of the lumen. Nerve fibres accompanying muscular arteries were found in the alveolar region, more distal than is normal. The predominant neuropeptide was the vasoconstrictor tyrosine. Possible aetiological factors in persistent pulmonary hypertension of the newborn are increased muscularity of the peripheral pulmonary arteries antenatally, an increase in the number of vasoconstrictor nerves, or an imbalance in the production of leukotrienes and prostacyclins in the perinatal period. Images Figure 1 Figure 2 Figure 3 PMID:2025031

  8. The Impact of Neonatal Illness on Nutritional Requirements—One Size Does Not Fit All

    PubMed Central

    Ramel, Sara E.; Brown, Laura D.

    2015-01-01

    Sick neonates are at high risk for growth failure and poorer neurodevelopment than their healthy counterparts. The etiology of postnatal growth failure in sick infants is likely multi-factorial and includes undernutrition due to the difficulty of feeding them during their illness and instability. Illness also itself induces fundamental changes in cellular metabolism that appear to significantly alter nutritional demand and nutrient handling. Inflammation and physiologic stress play a large role in inducing the catabolic state characteristic of the critically ill newborn infant. Inflammatory and stress responses are critical short-term adaptations to promote survival, but are not conducive to promoting long-term growth and development. Conditions such as sepsis, surgery, necrotizing enterocolitis, chronic lung disease and intrauterine growth restriction and their treatments are characterized by altered energy, protein and micronutrient metabolism that result in nutritional requirements that are different from those of the healthy, growing term or preterm infant. PMID:25722954

  9. Neonatal physical therapy. Part II: Practice frameworks and evidence-based practice guidelines.

    PubMed

    Sweeney, Jane K; Heriza, Carolyn B; Blanchard, Yvette; Dusing, Stacey C

    2010-01-01

    (1) To outline frameworks for neonatal physical therapy based on 3 theoretical models, (2) to describe emerging literature supporting neonatal physical therapy practice, and (3) to identify evidence-based practice recommendations. Three models are presented as a framework for neonatal practice: (1) dynamic systems theory including synactive theory and the theory of neuronal group selection, (2) the International Classification of Functioning, Disability and Health, and (3) family-centered care. Literature is summarized to support neonatal physical therapists in the areas of examination, developmental care, intervention, and parent education. Practice recommendations are offered with levels of evidence identified. Neonatal physical therapy practice has a theoretical and evidence-based structure, and evidence is emerging for selected clinical procedures. Continued research to expand the science of neonatal physical therapy is critical to elevate the evidence and support practice recommendations.

  10. Quantitative computed tomography for the prediction of pulmonary function after lung cancer surgery: a simple method using simulation software.

    PubMed

    Ueda, Kazuhiro; Tanaka, Toshiki; Li, Tao-Sheng; Tanaka, Nobuyuki; Hamano, Kimikazu

    2009-03-01

    The prediction of pulmonary functional reserve is mandatory in therapeutic decision-making for patients with resectable lung cancer, especially those with underlying lung disease. Volumetric analysis in combination with densitometric analysis of the affected lung lobe or segment with quantitative computed tomography (CT) helps to identify residual pulmonary function, although the utility of this modality needs investigation. The subjects of this prospective study were 30 patients with resectable lung cancer. A three-dimensional CT lung model was created with voxels representing normal lung attenuation (-600 to -910 Hounsfield units). Residual pulmonary function was predicted by drawing a boundary line between the lung to be preserved and that to be resected, directly on the lung model. The predicted values were correlated with the postoperative measured values. The predicted and measured values corresponded well (r=0.89, p<0.001). Although the predicted values corresponded with values predicted by simple calculation using a segment-counting method (r=0.98), there were two outliers whose pulmonary functional reserves were predicted more accurately by CT than by segment counting. The measured pulmonary functional reserves were significantly higher than the predicted values in patients with extensive emphysematous areas (<-910 Hounsfield units), but not in patients with chronic obstructive pulmonary disease. Quantitative CT yielded accurate prediction of functional reserve after lung cancer surgery and helped to identify patients whose functional reserves are likely to be underestimated. Hence, this modality should be utilized for patients with marginal pulmonary function.

  11. Sustained inflation versus positive pressure ventilation at birth: a systematic review and meta-analysis.

    PubMed

    Schmölzer, Georg M; Kumar, Manoj; Aziz, Khalid; Pichler, Gerhard; O'Reilly, Megan; Lista, Gianluca; Cheung, Po-Yin

    2015-07-01

    Sustained inflation (SI) has been advocated as an alternative to intermittent positive pressure ventilation (IPPV) during the resuscitation of neonates at birth, to facilitate the early development of an effective functional residual capacity, reduce atelectotrauma and improve oxygenation after the birth of preterm infants. The primary aim was to review the available literature on the use of SI compared with IPPV at birth in preterm infants for major neonatal outcomes, including bronchopulmonary dysplasia (BPD) and death. MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials, until 6 October 2014. Randomised clinical trials comparing the effects of SI with IPPV at birth in preterm infants for neonatal outcomes. Descriptive and quantitative information was extracted; data were pooled using a random effects model. Heterogeneity was assessed using the Q statistic and I(2). Pooled analysis showed significant reduction in the need for mechanical ventilation within 72 h after birth (relative risk (RR) 0.87 (0.77 to 0.97), absolute risk reduction (ARR) -0.10 (-0.17 to -0.03), number needed to treat 10) in preterm infants treated with an initial SI compared with IPPV. However, significantly more infants treated with SI received treatment for patent ductus arteriosus (RR 1.27 (1.05 to 1.54), ARR 0.10 (0.03 to 0.16), number needed to harm 10). There were no differences in BPD, death at the latest follow-up and the combined outcome of death or BPD among survivors between the groups. Compared with IPPV, preterm infants initially treated with SI at birth required less mechanical ventilation with no improvement in the rate of BPD and/or death. The use of SI should be restricted to randomised trials until future studies demonstrate the efficacy and safety of this lung aeration manoeuvre. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery.

    PubMed

    Chu, Derrick M; Ma, Jun; Prince, Amanda L; Antony, Kathleen M; Seferovic, Maxim D; Aagaard, Kjersti M

    2017-03-01

    Human microbial communities are characterized by their taxonomic, metagenomic and metabolic diversity, which varies by distinct body sites and influences human physiology. However, when and how microbial communities within each body niche acquire unique taxonomical and functional signatures in early life remains underexplored. We thus sought to determine the taxonomic composition and potential metabolic function of the neonatal and early infant microbiota across multiple body sites and assess the effect of the mode of delivery and its potential confounders or modifiers. A cohort of pregnant women in their early third trimester (n = 81) were prospectively enrolled for longitudinal sampling through 6 weeks after delivery, and a second matched cross-sectional cohort (n = 81) was additionally recruited for sampling once at the time of delivery. Samples across multiple body sites, including stool, oral gingiva, nares, skin and vagina were collected for each maternal-infant dyad. Whole-genome shotgun sequencing and sequencing analysis of the gene encoding the 16S rRNA were performed to interrogate the composition and function of the neonatal and maternal microbiota. We found that the neonatal microbiota and its associated functional pathways were relatively homogeneous across all body sites at delivery, with the notable exception of the neonatal meconium. However, by 6 weeks after delivery, the infant microbiota structure and function had substantially expanded and diversified, with the body site serving as the primary determinant of the composition of the bacterial community and its functional capacity. Although minor variations in the neonatal (immediately at birth) microbiota community structure were associated with the cesarean mode of delivery in some body sites (oral gingiva, nares and skin; R 2 = 0.038), this was not true for neonatal stool (meconium; Mann-Whitney P > 0.05), and there was no observable difference in community function regardless of delivery mode. For infants at 6 weeks of age, the microbiota structure and function had expanded and diversified with demonstrable body site specificity (P < 0.001, R 2 = 0.189) but without discernable differences in community structure or function between infants delivered vaginally or by cesarean surgery (P = 0.057, R 2 = 0.007). We conclude that within the first 6 weeks of life, the infant microbiota undergoes substantial reorganization, which is primarily driven by body site and not by mode of delivery.

  13. Maturation of the Infant Microbiome Community Structure and Function Across Multiple Body Sites and in Relation to Mode of Delivery

    PubMed Central

    Chu, Derrick M.; Ma, Jun; Prince, Amanda L.; Antony, Kathleen M.; Seferovic, Maxim D.; Aagaard, Kjersti M.

    2017-01-01

    Human microbial communities are characterized by their taxonomic, metagenomic, and metabolic diversity, which varies by distinct body sites and influences human physiology. However, when and how microbial communities within each body niche acquire unique taxonomical and functional signatures in early life remains underexplored. We thus sought to assess the taxonomic composition and potential metabolic function of the neonatal and early infant microbiota across multiple body sites, and assess the impact of mode of delivery and its potential confounders or modifiers. A cohort of pregnant women in their early 3rd trimester (n=81) were prospectively enrolled for longitudinal sampling through 6 weeks post-delivery, and a second matched cross-sectional cohort (n=81) was additionally recruited for sampling once at delivery. Samples were collected for each maternal-infant dyad across multiple body sites, including stool, oral gingiva, nares, skin and vagina. 16S rRNA gene sequencing analysis and whole genome shotgun sequencing was performed to interrogate the composition and function of the neonatal and maternal microbiota. We found that the neonatal microbiota and its associated functional pathways were relatively homogenous across all body sites at delivery, with the notable exception of neonatal meconium. However, by 6 weeks, the infant microbiota structure and function had significantly expanded and diversified, with body site serving as the primary determinant of the bacterial community composition and its functional capacity. Although minor variations in the neonatal (immediately at birth) microbiota community structure were associated with Cesarean delivery in some body sites (oral, nares, and skin; R2 = 0.038), this was not true in neonatal stool (meconium, Mann-Whitney p>0.05) and there was no observable difference in community function regardless of delivery mode. By 6 weeks of age, the infant microbiota structure and function had expanded and diversified with demonstrable body site specificity (p<0.001, R2 = 0.189), and no discernable differences in neither community structure nor function by Cesarean delivery were identifiable (p=0.057, R2 = 0.007). We conclude that within the first 6 weeks of life, the infant microbiota undergoes significant reorganization that is primarily driven by body site and not by mode of delivery. PMID:28112736

  14. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation.

    PubMed

    Orellana, Renán A; Jeyapalan, Asumthia; Escobar, Jeffery; Frank, Jason W; Nguyen, Hanh V; Suryawan, Agus; Davis, Teresa A

    2007-11-01

    In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study, we determined the effect of amino acids on protein synthesis in skeletal muscle and other tissues in septic neonates. Overnight-fasted neonatal pigs were infused with endotoxin (LPS, 0 and 10 microg.kg(-1).h(-1)), whereas glucose and insulin were maintained at fasting levels; amino acids were clamped at fasting or fed levels. In the presence of fasting insulin and amino acids, LPS reduced protein synthesis in longissimus dorsi (LD) and gastrocnemius muscles and increased protein synthesis in the diaphragm, but had no effect in masseter and heart muscles. Increasing amino acids to fed levels accelerated muscle protein synthesis in LD, gastrocnemius, masseter, and diaphragm. LPS stimulated protein synthesis in liver, lung, spleen, pancreas, and kidney in fasted animals. Raising amino acids to fed levels increased protein synthesis in liver of controls, but not LPS-treated animals. The increase in muscle protein synthesis in response to amino acids was associated with increased mTOR, 4E-BP1, and S6K1 phosphorylation and eIF4G-eIF4E association in control and LPS-infused animals. These findings suggest that amino acids stimulate skeletal muscle protein synthesis during acute endotoxemia via mTOR-dependent ribosomal assembly despite reduced basal protein synthesis rates in neonatal pigs. However, provision of amino acids does not further enhance the LPS-induced increase in liver protein synthesis.

  15. Newborn physiological responses to noise in the neonatal unit.

    PubMed

    Cardoso, Sandra Maria Schefer; Kozlowski, Lorena de Cássia; Lacerda, Adriana Bender Moreira de; Marques, Jair Mendes; Ribas, Angela

    2015-01-01

    The incorporation of technologies in the care of infants has contributed to increased survival; however, this has turned neonatal unit into a noisy environment. To evaluate the physiological and functional effects resulting from the exposure to noise on low-weight newborns in incubators in a neonatal unit. Prospective, observational, quantitative, exploratory, descriptive study. The adopted statistical method included tables of frequency, descriptive statistics, and Student's t-test, with a 0.05 level of significance. As data collection tools, the environmental noise and the noise inside of the incubator were evaluated, and the Assessment of Preterm Infant Behavior scale was used to assess premature newborn behavior and projected specifically to document the neurobehavioral functioning of preterm infants. The data collection occurred from September of 2012 to April of 2013; 61 low-weight newborns admitted in the neonatal unit and in incubators were observed. Significant differences in the variables heart rate and oxygen saturation were noted when newborns were exposed to noise. Low-weight neonates in incubators present physiological alterations when facing discomfort caused by environmental noise in neonatal units. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  16. Animal Models, Learning Lessons to Prevent and Treat Neonatal Chronic Lung Disease

    PubMed Central

    Jobe, Alan H.

    2015-01-01

    Bronchopulmonary dysplasia (BPD) is a unique injury syndrome caused by prolonged injury and repair imposed on an immature and developing lung. The decreased septation and decreased microvascular development phenotype of BPD can be reproduced in newborn rodents with increased chronic oxygen exposure and in premature primates and sheep with oxygen and/or mechanical ventilation. The inflammation caused by oxidants, inflammatory agonists, and/or stretch injury from mechanical ventilation seems to promote the anatomic abnormalities. Multiple interventions targeted to specific inflammatory cells or pathways or targeted to decreasing ventilation-mediated injury can substantially prevent the anatomic changes associated with BPD in term rodents and in preterm sheep or primate models. Most of the anti-inflammatory therapies with benefit in animal models have not been tested clinically. None of the interventions that have been tested clinically are as effective as anticipated from the animal models. These inconsistencies in responses likely are explained by the antenatal differences in lung exposures of the developing animals relative to very preterm humans. The animals generally have normal lungs while the lungs of preterm infants are exposed variably to intrauterine inflammation, growth abnormalities, antenatal corticosteroids, and poorly understood effects from the causes of preterm delivery. The animal models have been essential for the definition of the mediators that can cause a BPD phenotype. These models will be necessary to develop and test future-targeted interventions to prevent and treat BPD. PMID:26301222

  17. Determination of airway humidification in high-frequency oscillatory ventilation using an artificial neonatal lung model. Comparison of a heated humidifier and a heat and moisture exchanger.

    PubMed

    Schiffmann, H; Singer, S; Singer, D; von Richthofen, E; Rathgeber, J; Züchner, K

    1999-09-01

    Thus far only few data are available on airway humidification during high-frequency oscillatory ventilation (HFOV). Therefore, we studied the performance and efficiency of a heated humidifier (HH) and a heat and moisture exchanger (HME) in HFOV using an artificial lung model. Experiments were performed with a pediatric high-frequency oscillatory ventilator. The artificial lung contained a sponge saturated with water to simulate evaporation and was placed in an incubator heated to 37 degrees C to prevent condensation. The airway humidity was measured using a capacitive humidity sensor. The water loss of the lung model was determined gravimetrically. The water loss of the lung model varied between 2.14 and 3.1 g/h during active humidification; it was 2.85 g/h with passive humidification and 7.56 g/h without humidification. The humidity at the tube connector varied between 34. 2 and 42.5 mg/l, depending on the temperature of the HH and the ventilator setting during active humidification, and between 37 and 39.9 mg/l with passive humidification. In general, HH and HME are suitable devices for airway humidification in HFOV. The performance of the ventilator was not significantly influenced by the mode of humidification. However, the adequacy of humidification and safety of the HME remains to be demonstrated in clinical practice.

  18. Suggested Mechanisms of Tracheal Occlusion Mediated Accelerated Fetal Lung Growth: A Case for Heterogeneous Topological Zones

    PubMed Central

    Marwan, Ahmed I.; Shabeka, Uladzimir; Dobrinskikh, Evgenia

    2018-01-01

    In this article, we report an up-to-date summary on tracheal occlusion (TO) as an approach to drive accelerated lung growth and strive to review the different maternal- and fetal-derived local and systemic signals and mechanisms that may play a significant biological role in lung growth and formation of heterogeneous topological zones following TO. Pulmonary hypoplasia is a condition whereby branching morphogenesis and embryonic pulmonary vascular development are globally affected and is classically seen in congenital diaphragmatic hernia. TO is an innovative approach aimed at driving accelerated lung growth in the most severe forms of diaphragmatic hernia and has been shown to result in improved neonatal outcomes. Currently, most research on mechanisms of TO-induced lung growth is focused on mechanical forces and is viewed from the perspective of homogeneous changes within the lung. We suggest that the key principle in understanding changes in fetal lungs after TO is taking into account formation of unique variable topological zones. Following TO, fetal lungs might temporarily look like a dynamically changing topologic mosaic with varying proliferation rates, dissimilar scale of vasculogenesis, diverse patterns of lung tissue damage, variable metabolic landscape, and different structures. The reasons for this dynamic topological mosaic pattern may include distinct degree of increased hydrostatic pressure in different parts of the lung, dissimilar degree of tissue stress/damage and responses to this damage, and incomparable patterns of altered lung zones with variable response to systemic maternal and fetal factors, among others. The local interaction between these factors and their accompanying processes in addition to the potential role of other systemic factors might lead to formation of a common vector of biological response unique to each zone. The study of the interaction between various networks formed after TO (action of mechanical forces, activation of mucosal mast cells, production and secretion of damage-associated molecular pattern substances, low-grade local pulmonary inflammation, and cardiac contraction-induced periodic agitation of lung tissue, among others) will bring us closer to an appreciation of the biological phenomenon of topological heterogeneity within the fetal lungs. PMID:29376042

  19. Structural basis for pulmonary functional imaging.

    PubMed

    Itoh, H; Nakatsu, M; Yoxtheimer, L M; Uematsu, H; Ohno, Y; Hatabu, H

    2001-03-01

    An understanding of fine normal lung morphology is important for effective pulmonary functional imaging. The lung specimens must be inflated. These include (a) unfixed, inflated lung specimen, (b) formaldehyde fixed lung specimen, (c) fixed, inflated dry lung specimen, and (d) histology specimen. Photography, magnified view, radiograph, computed tomography, and histology of these specimens are demonstrated. From a standpoint of diagnostic imaging, the main normal lung structures consist of airways (bronchi and bronchioles), alveoli, pulmonary vessels, secondary pulmonary lobules, and subpleural pulmonary lymphatic channels. This review summarizes fine radiologic normal lung morphology as an aid to effective pulmonary functional imaging.

  20. Dosimetric feasibility of 4DCT-ventilation imaging guided proton therapy for locally advanced non-small-cell lung cancer.

    PubMed

    Huang, Qijie; Jabbour, Salma K; Xiao, Zhiyan; Yue, Ning; Wang, Xiao; Cao, Hongbin; Kuang, Yu; Zhang, Yin; Nie, Ke

    2018-04-25

    The principle aim of this study is to incorporate 4DCT ventilation imaging into functional treatment planning that preserves high-functioning lung with both double scattering and scanning beam techniques in proton therapy. Eight patients with locally advanced non-small-cell lung cancer were included in this study. Deformable image registration was performed for each patient on their planning 4DCTs and the resultant displacement vector field with Jacobian analysis was used to identify the high-, medium- and low-functional lung regions. Five plans were designed for each patient: a regular photon IMRT vs. anatomic proton plans without consideration of functional ventilation information using double scattering proton therapy (DSPT) and intensity modulated proton therapy (IMPT) vs. functional proton plans with avoidance of high-functional lung using both DSPT and IMPT. Dosimetric parameters were compared in terms of tumor coverage, plan heterogeneity, and avoidance of normal tissues. Our results showed that both DSPT and IMPT plans gave superior dose advantage to photon IMRTs in sparing low dose regions of the total lung in terms of V5 (volume receiving 5Gy). The functional DSPT only showed marginal benefit in sparing high-functioning lung in terms of V5 or V20 (volume receiving 20Gy) compared to anatomical plans. Yet, the functional planning in IMPT delivery, can further reduce the low dose in high-functioning lung without degrading the PTV dosimetric coverages, compared to anatomical proton planning. Although the doses to some critical organs might increase during functional planning, the necessary constraints were all met. Incorporating 4DCT ventilation imaging into functional proton therapy is feasible. The functional proton plans, in intensity modulated proton delivery, are effective to further preserve high-functioning lung regions without degrading the PTV coverage.

  1. Applications and interpretation of krypton 81m ventilation/technetium 99m macroaggregate perfusion lung scanning in childhood

    NASA Astrophysics Data System (ADS)

    Davies, Hugh Trevor Frimston

    Radionuclide ventilation perfusion lung scans now play an important part in the investigation of paediatric lung disease, providing a safe, noninvasive assessment of regional lung function in children with suspected pulmonary disease. In paediatric practice the most suitable radionuclides are Krypton 81m (Kr81m) and Technetium 99m (Tc99m), which are jointly used in the Kr81m ventilation/Tc99m macroaggregate perfusion lung scan (V/Q lung scan). The Kr81m ventilation scan involves a low radiation dose, requires little or no subject cooperation and because of the very short half life of Kr81m (13 seconds) the steady state image acquired during continuous inhalation of the radionuclide is considered to reflect regional distribution of ventilation. It is now the most important noninvasive method available for the investigation of the regional abnormalities of ventilation characteristic of many congenital and acquired paediatric respiratory diseases, such as diaphragmatic hernia, pulmonary sequestration, bronchopulmonary dysplasia, foreign body inhalation and bronchiectasis. It improves diagnostic accuracy, aids clinical decision making and is used to monitor the progress of disease and response to therapy. Theoretical analysis of the steady state Kr81m ventilation image suggests that it may only reflect regional ventilation when specific ventilation (ventilation per unit volume of lung) is within or below the normal adult range (1-3 L/L/min). At higher values such as those seen in neonates and infants (8-15 L/L/min) Kr81m activity may reflect regional lung volume rather than ventilation, a conclusion supported by the studies of Ciofetta et al. There is some controversy on this issue as animal studies have demonstrated that the Kr81m image reflects ventilation over a much wider range of specific ventilation (up to 13 L/L/min). A clinical study of sick infants and very young children is in agreement with this animal work and suggests that the steady state Kr81m image still reflects regional ventilation in this age group. The doubt cast on the interpretation of the Kr81m steady state image could limit the value of V/Q lung scans in following regional lung function through childhood, a period when specific ventilation is falling rapidly as the child grows. Therefore the first aim of this study was to examine the application of this theoretical model to children and determine whether the changing specific ventilation seen through childhood significantly alters the interpretation of the steady state Kr81m image. This is a necessary first step before conducting longitudinal studies of regional ventilation and perfusion in children. The effect of posture on regional ventilation and perfusion in the adult human lung has been extensively studied. Radiotracer studies have consistently shown that both ventilation and perfusion are preferentially distributed to dependent lung regions during tidal breathing regardless of posture. There is little published information concerning the pattern in children yet there are many differences in lung and chest wall mechanics of children and adults which, along with clinical observation, have led to the hypothesis that the pattern of regional ventilation observed in adults may not be seen in children. Recent reports of regional ventilation in infants and very young children have provided support for this theory. The paper of Heaf et al demonstrated that these differences may in certain circumstances be clinically important. It is not clear however at what age children adopt the "adult pattern of ventilation". In addition to the problems referred to above, attenuation of Kr81m activity as it passes through the chest wall and the changing geometry of the chest during tidal breathing have made quantitative analysis of the image difficult although fractional ventilation and perfusion to each lung can be calculated from the steady state image. In clinical practise, therefore, ventilation and perfusion are usually assessed by inspection of the steady state image. The aims of the present study were therefore: 1. To critically assess Kr81m ventilation and Tc99m MAA perfusion images in children. 2. To derive fractional ventilation and perfusion to each lung in children with normal chest radiography and homogeneous distribution of the radionuclides. 3. To conduct further studies into the effects of gravity on regional lung function. 4. To apply the technique in clinical practise. 5. To attempt to improve quantitation of the Kr81m ventilation image.

  2. Neonatal Graves' Disease with Maternal Hypothyroidism.

    PubMed

    Akangire, Gangaram; Cuna, Alain; Lachica, Charisse; Fischer, Ryan; Raman, Sripriya; Sampath, Venkatesh

    2017-07-01

    Neonatal Graves' disease presenting as conjugated hyperbilirubinemia is a diagnostic challenge because the differential includes a gamut of liver and systemic diseases. We present a unique case of neonatal Graves' disease in a premature infant with conjugated hyperbilirubinemia born to a mother with hypothyroidism during pregnancy and remote history of Graves' disease. Infant was treated with a combination of methimazole, propranolol, and potassium iodide for 4 weeks. Thyroid function improved after 8 weeks of treatment with full recovery of thyroid function, disappearance of thyroid-stimulating antibodies, and resolution of failure to thrive and conjugated hyperbilirubinemia. This case provides several clinical vignettes as it is a rare, severe, presentation of an uncommon neonatal disease, signs, symptoms, and clinical history presented a diagnostic challenge for neonatologists and endocrinologists, normal newborn screen was misleading, and yet timely treatment led to a full recovery.

  3. Molecular mechanisms of intrauterine growth restriction.

    PubMed

    Gurugubelli Krishna, Rao; Vishnu Bhat, B

    2017-07-10

    Intrauterine growth restriction (IUGR) is a pregnancy specific disease characterized by decreased growth rate of fetus than the normal growth potential at particular gestational age. In the current scenario it is a leading cause of fetal and neonatal morbidity and mortality. In the last decade exhilarating experimental studies from several laboratories have provided fascinating proof for comprehension of molecular basis of IUGR. Atypical expression of enzymes governed by TGFβ causes the placental apoptosis and altered expression of TGFβ due to hyper alimentation causes impairment of lung function. Crosstalk of cAMP with protein kinases plays a prominent role in the regulation of cortisol levels. Increasing levels of NOD1 proteins leads to development of IUGR by increasing the levels of inflammatory mediators. Increase in leptin synthesis in placental trophoblast cells is associated with IUGR. In this review, we emphasize on the regulatory mechanisms of IUGR and its associated diseases. They may help improve the in-utero fetal growth and provide a better therapeutic intervention for prevention and treatment of IUGR.

  4. Sustained inflation during neonatal resuscitation.

    PubMed

    Keszler, Martin

    2015-04-01

    Sustained inflation performed shortly after birth to help clear lung fluid and establish functional residual capacity in preterm infants is gaining popularity, but definitive evidence for its effectiveness is lacking. Although there is a sound physiologic basis for this approach, and much preclinical experimental evidence of effectiveness, the results of recent animal studies and clinical trials have been inconsistent. The most recent data from a multicenter randomized trial suggest a modest benefit of sustained inflation in reducing the need for mechanical ventilation in extremely-low-birth-weight infants. However, the impact may be more modest than earlier retrospective cohort comparisons suggested. The trend toward more airleak and a higher rate of intraventricular hemorrhage is worrisome. Sustained inflation may be ineffective unless some spontaneous respiratory effort is present. Several on-going trials should further clarify the putative benefits of sustained inflation. Delivery room sustained inflation is an attractive concept that holds much promise, but widespread clinical application should await definitive evidence from on-going clinical trials.

  5. Unraveling the Links Between the Initiation of Ventilation and Brain Injury in Preterm Infants

    PubMed Central

    Barton, Samantha K.; Tolcos, Mary; Miller, Suzie L.; Roehr, Charles C.; Schmölzer, Georg M.; Davis, Peter G.; Moss, Timothy J. M.; LaRosa, Domenic A.; Hooper, Stuart B.; Polglase, Graeme R.

    2015-01-01

    The initiation of ventilation in the delivery room is one of the most important but least controlled interventions a preterm infant will face. Tidal volumes (V T) used in the neonatal intensive care unit are carefully measured and adjusted. However, the V Ts that an infant receives during resuscitation are usually unmonitored and highly variable. Inappropriate V Ts delivered to preterm infants during respiratory support substantially increase the risk of injury and inflammation to the lungs and brain. These may cause cerebral blood flow instability and initiate a cerebral inflammatory cascade. The two pathways increase the risk of brain injury and potential life-long adverse neurodevelopmental outcomes. The employment of new technologies, including respiratory function monitors, can improve and guide the optimal delivery of V Ts and reduce confounders, such as leak. Better respiratory support in the delivery room has the potential to improve both respiratory and neurological outcomes in this vulnerable population. PMID:26618148

  6. Visuocortical Function in Infants With a History of Neonatal Jaundice

    PubMed Central

    Hou, Chuan; Norcia, Anthony M.; Madan, Ashima; Good, William V.

    2014-01-01

    Purpose. High concentrations of unconjugated bilirubin are neurotoxic and cause brain damage in newborn infants. However, the exact level of bilirubin that may be neurotoxic in a given infant is unknown. The aim of this study was to use a quantitative measure of neural activity, the swept parameter visual evoked potential (sVEP) to determine the relationship between neonatal bilirubin levels and visual responsivity several months later. Methods. We compared sVEP response functions over a wide range of contrast, spatial frequency, and Vernier offset sizes in 16 full-term infants with high bilirubin levels (>10 mg/dL) and 18 age-matched infants with no visible neonatal jaundice, all enrolled at 14 to 22 weeks of age. The group means of sVEP thresholds and suprathreshold response amplitudes were compared. The correlation between individual sVEP thresholds and bilirubin levels in jaundiced infants was studied. Results. Infants who had a history of neonatal jaundice showed lower response amplitudes (P < 0.05) and worse or immeasurable sVEP thresholds compared with control infants for all three measures (P < 0.05). Swept parameter visual evoked potential thresholds for Vernier offset were correlated with bilirubin level (P < 0.05), but spatial acuity and contrast sensitivity measures in the infants with neonatal jaundice were not (P > 0.05). Conclusions. These results indicate that elevated neonatal bilirubin levels affect measures of visual function in infancy up to at least 14 to 22 weeks of postnatal age. PMID:25183760

  7. Surfactant therapy and antibiotics in neonates with meconium aspiration syndrome: a systematic review and meta-analysis

    PubMed Central

    Natarajan, C K; Sankar, M J; Jain, K; Agarwal, R; Paul, V K

    2016-01-01

    Meconium aspiration syndrome (MAS), a common cause of respiratory failure in neonates, is associated with high mortality and morbidity. The objectives of this review were to evaluate the effects of administration of (a) surfactant—either as lung lavage (SLL) or bolus surfactant (BS) and (b) antibiotics on mortality and severe morbidities in neonates with MAS. We searched the following databases: MEDLINE via PubMed, Cochrane CENTRAL, WHOLIS and CABI using sensitive search strategies. We included eight studies on use of surfactant and three studies on use of antibiotics. Neither SLL nor BS reduced the risk of mortality in neonates with MAS (relative risk (RR) 0.38, 95% confidence interval (CI) 0.09 to 1.57; and RR 0.80, 95% CI 0.39 to 1.66, respectively). Both SLL and BS reduced the duration of hospital stay (mean difference −2.0, 95% CI −3.66 to −0.34; and RR −4.68, 95% CI −7.11 to −2.24 days, respectively) and duration of mechanical ventilation (mean difference −1.31, 95% CI −1.91 to −0.72; and mean difference 5.4, 95% CI −9.76 to −1.03 days). Neonates who received BS needed extracorporeal membrane oxygenation (ECMO) less often than the controls (RR 0.64, 95% CI 0.46 to 0.91). Use of antibiotics for MAS did not result in significant reduction in the risk of mortality, sepsis or duration of hospital stay. Surfactant administration either as SLL or BS for MAS was found to reduce the duration of mechanical ventilation and hospital stay; BS also reduced the need for ECMO. Administration of antibiotics did not show any significant clinical benefits in neonates with MAS and no evidence of sepsis. Given the limited number of studies and small number of neonates enrolled, there is an urgent need to generate more evidence on the efficacy and cost-effectiveness of these two treatment modalities before recommending them in routine clinical practice. PMID:27109092

  8. Brain and visceral involvement during congenital cytomegalovirus infection of guinea pigs.

    PubMed

    Griffith, B P; Lucia, H L; Hsiung, G D

    1982-06-01

    The virologic and histologic characteristics of congenital cytomegalovirus infection (CMV) were defined in 65 neonatal guinea pigs born from 27 mothers infected pregnancy. Infectious virus or tissue lesions were present in 54% of the neonates tested. Guinea pig CMV was detected most often in the salivary glands (72%) and spleen (33%) of infected guinea pigs. Less frequently, virus was also detected in the brain, lung, pancreas and liver. Tissue lesions were most frequently observed in the brain and kidney, but also occurred in the salivary glands, liver, pancreas, thymus and spleen. The histopathology was identical to that observed in infants with congenital CMV infection. Infectious virus and histopathology were present in newborn guinea pigs born from mothers infected at any time during gestation. Newborns from mothers infected during early stages of gestation and virus present most frequently in the salivary glands, whereas offspring of mothers infected in late pregnancy had virus present in several tissues. Acute maternal guinea pig CMV infection produced generalized CMV infection of the offspring which was followed by persistent infection in neonatal salivary glands. Lesions remained present in several neonatal tissues including the brain. The long term consequences of such lesions in affected guinea pigs remain to be determined. The results of the study emphasize the similarities between human congenital CMV infection and congenital guinea pig CMV infection, thereby underlining the utility of this animal model as a means of understanding human congenital CMV infection.

  9. Prediction of survival without morbidity for infants born at under 33 weeks gestational age: a user-friendly graphical tool.

    PubMed

    Shah, Prakesh S; Ye, Xiang Y; Synnes, Anne; Rouvinez-Bouali, Nicole; Yee, Wendy; Lee, Shoo K

    2012-03-01

    To develop models and a graphical tool for predicting survival to discharge without major morbidity for infants with a gestational age (GA) at birth of 22-32 weeks using infant information at birth. Retrospective cohort study. Canadian Neonatal Network data for 2003-2008 were utilised. Neonates born between 22 and 32 weeks gestation admitted to neonatal intensive care units in Canada. Survival to discharge without major morbidity defined as survival without severe neurological injury (intraventricular haemorrhage grade 3 or 4 or periventricular leukomalacia), severe retinopathy (stage 3 or higher), necrotising enterocolitis (stage 2 or 3) or chronic lung disease. Of the 17 148 neonates who met the eligibility criteria, 65% survived without major morbidity. Sex and GA at birth were significant predictors. Birth weight (BW) had a significant but non-linear effect on survival without major morbidity. Although maternal information characteristics such as steroid use, improved the prediction of survival without major morbidity, sex, GA at birth and BW for GA predicted survival without major morbidity almost as accurately (area under the curve: 0.84). The graphical tool based on the models showed how the GA and BW for GA interact, to enable prediction of outcomes especially for small and large for GA infants. This graphical tool provides an improved and easily interpretable method to predict survival without major morbidity for very preterm infants at the time of birth. These curves are especially useful for small and large for GA infants.

  10. A Quantitative Analysis of Ureaplasma urealyticum and Ureaplasma parvum Compared with Host Immune Response in Preterm Neonates at Risk of Developing Bronchopulmonary Dysplasia

    PubMed Central

    Payne, Matthew S.; Goss, Kevin C. W.; Connett, Gary J.; Legg, Julian P.; Bruce, Ken D.

    2012-01-01

    Multiplex, real-time PCR for the identification of Ureaplasma urealyticum and Ureaplasma parvum was performed on nucleic acids extracted from sequential endotracheal aspirates obtained from preterm neonates born at <29 weeks of gestation and ventilated for more than 48 h admitted to two level 3 neonatal intensive care units. Specimens were obtained shortly after birth and sequentially up until extubation. One hundred fifty-two specimens (93.8%) contained material suitable for analysis. Ureaplasma spp. were identified in 5 of 13 neonates studied. In most cases, the DNA load of the detected Ureaplasma species was low and decreased over time. In addition, changes in detectable Ureaplasma species DNA did not relate to changes in the inflammatory marker C-reactive protein (CRP) or respiratory status. All but two blood samples obtained at times of suspected sepsis were culture positive for other microorganisms; the species cultured were typically coagulase-negative staphylococci and were associated with increased levels of CRP (>10 mg/liter). This study was limited by the small number of patients examined and does not have the power to support or contradict the hypothesis that postnatal lung infection with Ureaplasma parvum is causally related to bronchopulmonary dysplasia (BPD) or adverse respiratory outcomes after preterm birth. However, in this study, increases in CRP levels were not associated with patients in whom Ureaplasma parvum was detected, in contrast to the detection of other bacterial species. PMID:22189123

  11. A quantitative analysis of Ureaplasma urealyticum and Ureaplasma parvum compared with host immune response in preterm neonates at risk of developing bronchopulmonary dysplasia.

    PubMed

    Payne, Matthew S; Goss, Kevin C W; Connett, Gary J; Legg, Julian P; Bruce, Ken D; Chalker, Vicki

    2012-03-01

    Multiplex, real-time PCR for the identification of Ureaplasma urealyticum and Ureaplasma parvum was performed on nucleic acids extracted from sequential endotracheal aspirates obtained from preterm neonates born at <29 weeks of gestation and ventilated for more than 48 h admitted to two level 3 neonatal intensive care units. Specimens were obtained shortly after birth and sequentially up until extubation. One hundred fifty-two specimens (93.8%) contained material suitable for analysis. Ureaplasma spp. were identified in 5 of 13 neonates studied. In most cases, the DNA load of the detected Ureaplasma species was low and decreased over time. In addition, changes in detectable Ureaplasma species DNA did not relate to changes in the inflammatory marker C-reactive protein (CRP) or respiratory status. All but two blood samples obtained at times of suspected sepsis were culture positive for other microorganisms; the species cultured were typically coagulase-negative staphylococci and were associated with increased levels of CRP (>10 mg/liter). This study was limited by the small number of patients examined and does not have the power to support or contradict the hypothesis that postnatal lung infection with Ureaplasma parvum is causally related to bronchopulmonary dysplasia (BPD) or adverse respiratory outcomes after preterm birth. However, in this study, increases in CRP levels were not associated with patients in whom Ureaplasma parvum was detected, in contrast to the detection of other bacterial species.

  12. Differential Regenerative Capacity of Neonatal Mouse Hearts after Cryoinjury

    PubMed Central

    Darehzereshki, Ali; Rubin, Nicole; Gamba, Laurent; Kim, Jieun; Fraser, James; Huang, Ying; Billings, Joshua; Mohammadzadeh, Robabeh; Wood, John; Warburton, David; Kaartinen, Vesa; Lien, Ching-Ling

    2015-01-01

    Neonatal mouse hearts fully regenerate after ventricular resection similar to adult zebrafish. We established cryoinjury models to determine if different types and varying degrees of severity in cardiac injuries trigger different responses in neonatal mouse hearts. In contrast to ventricular resection, neonatal mouse hearts fail to regenerate and show severe impairment of cardiac function post transmural cryoinjury. However, neonatal hearts fully recover after non-transmural cryoinjury. Interestingly, cardiomyocyte proliferation does not significantly increase in neonatal mouse hearts after cryoinjuries. Epicardial activation and new coronary vessel formation occur after cryoinjury. The profibrotic marker PAI-1 is highly expressed after transmural but not non-transmural cryoinjuries, which may contribute to the differential scarring. Our results suggest that regenerative medicine strategies for heart injuries should vary depending on the nature of the injury. PMID:25555840

  13. Quantitative computed tomography of lung parenchyma in patients with emphysema: analysis of higher-density lung regions

    NASA Astrophysics Data System (ADS)

    Lederman, Dror; Leader, Joseph K.; Zheng, Bin; Sciurba, Frank C.; Tan, Jun; Gur, David

    2011-03-01

    Quantitative computed tomography (CT) has been widely used to detect and evaluate the presence (or absence) of emphysema applying the density masks at specific thresholds, e.g., -910 or -950 Hounsfield Unit (HU). However, it has also been observed that subjects with similar density-mask based emphysema scores could have varying lung function, possibly indicating differences of disease severity. To assess this possible discrepancy, we investigated whether density distribution of "viable" lung parenchyma regions with pixel values > -910 HU correlates with lung function. A dataset of 38 subjects, who underwent both pulmonary function testing and CT examinations in a COPD SCCOR study, was assembled. After the lung regions depicted on CT images were automatically segmented by a computerized scheme, we systematically divided the lung parenchyma into different density groups (bins) and computed a number of statistical features (i.e., mean, standard deviation (STD), skewness of the pixel value distributions) in these density bins. We then analyzed the correlations between each feature and lung function. The correlation between diffusion lung capacity (DLCO) and STD of pixel values in the bin of -910HU <= PV < -750HU was -0.43, as compared with a correlation of -0.49 obtained between the post-bronchodilator ratio (FEV1/FVC) measured by the forced expiratory volume in 1 second (FEV1) dividing the forced vital capacity (FVC) and the STD of pixel values in the bin of -1024HU <= PV < -910HU. The results showed an association between the distribution of pixel values in "viable" lung parenchyma and lung function, which indicates that similar to the conventional density mask method, the pixel value distribution features in "viable" lung parenchyma areas may also provide clinically useful information to improve assessments of lung disease severity as measured by lung functional tests.

  14. Effects of low-dose hydrocortisone therapy on immune function in neonatal horses

    PubMed Central

    Hart, Kelsey A.; Barton, Michelle H.; Vandenplas, Michel L.; Hurley, David J.

    2011-01-01

    Low-dose hydrocortisone therapy modulates inflammatory responses in adults and improves outcomes in some septic adults and neonates, but its immunologic effects have not been evaluated in neonates. The objective of this study was to evaluate effects of low-dose hydrocortisone (LDHC) therapy on ex vivo immune function in neonatal horses (foals). We hypothesized that LDHC treatment would dampen pro-inflammatory responses without impairing neutrophil function. Hydrocortisone (1.3 mg/kg/day i.v.) was administered to foals in a tapering 3.5 day course. Peripheral blood leukocytes were collected from foals before, during and after hydrocortisone treatment. A separate group of age-matched untreated foals served as controls. Endotoxin-induced peripheral blood mononuclear cell gene expression of inflammatory cytokines was measured by real time quantitative RT-PCR. Neutrophils were incubated with labeled, killed S. aureus or E. coli for assessment of phagocytosis, and with phorbol myristate acetate, zymosan, or endotoxin for measurement of reactive oxygen species (ROS) production. Neutrophil phagocytosis and ROS production were similar in both groups. Foals receiving hydrocortisone had significantly decreased endotoxin-induced expression of TNF-α, IL-6, IL-8, and IL-1β. These data suggest that this LDHC treatment regimen ameliorates endotoxin-induced pro-inflammatory cytokine expression in neonatal foals without impairing innate immune responses needed to combat bacterial infection. PMID:21430601

  15. Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM

    PubMed Central

    Ma, Dan; Shield, Julian P.H.; Dean, Wendy; Leclerc, Isabelle; Knauf, Claude; Burcelin, Rémy; Rutter, Guy A.; Kelsey, Gavin

    2004-01-01

    Transient neonatal diabetes mellitus (TNDM) is a rare inherited diabetic syndrome apparent in the first weeks of life and again during early adulthood. The relative contributions of reduced islet β cell number and impaired β cell function to the observed hypoinsulinemia are unclear. The inheritance pattern of this imprinted disorder implicates overexpression of one or both genes within the TNDM locus: ZAC, which encodes a proapoptotic zinc finger protein, and HYMAI, which encodes an untranslated mRNA. To investigate the consequences for pancreatic function, we have developed a high-copy transgenic mouse line, TNDM29, carrying the human TNDM locus. TNDM29 neonates display hyperglycemia, and older adults, impaired glucose tolerance. Neonatal hyperglycemia occurs only on paternal transmission, analogous to paternal dependence of TNDM in humans. Embryonic pancreata of TNDM29 mice showed reductions in expression of endocrine differentiation factors and numbers of insulin-staining structures. By contrast, β cell mass was normal or elevated at all postnatal stages, whereas pancreatic insulin content in neonates and peak serum insulin levels after glucose infusion in adults were reduced. Expression of human ZAC and HYMAI in these transgenic mice thus recapitulates key features of TNDM and implicates impaired development of the endocrine pancreas and β cell function in disease pathogenesis. PMID:15286800

  16. Scintigraphy at 3 months after single lung transplantation and observations of primary graft dysfunction and lung function.

    PubMed

    Belmaati, Esther Okeke; Iversen, Martin; Kofoed, Klaus F; Nielsen, Michael B; Mortensen, Jann

    2012-06-01

    Scintigraphy has been used as a tool to detect dysfunction of the lung before and after transplantation. The aims of this study were to evaluate the development of the ventilation-perfusion relationships in single lung transplant recipients in the first year, at 3 months after transplantation, and to investigate whether scintigraphic findings at 3 months were predictive for the outcome at 12 months in relation to primary graft dysfunction (PGD) and lung function. A retrospective study was carried out on all patients who prospectively and consecutively were referred for a routine lung scintigraphy procedure 3 months after single lung transplantation (SLTX). A total of 41 patients were included in the study: 20 women and 21 men with the age span of patients at transplantation being 38-66 years (mean ± SD: 54.2 ± 6.0). Patient records also included lung function tests and chest X-ray images. We found no significant correlation between lung function distribution at 3 months and PGD at 72 h. There was also no significant correlation between PGD scores at 72 h and lung function at 6 and 12 months. The same applied to scintigraphic scores for heterogeneity at 3 months compared with lung function at 6 and 12 months. Fifty-five percent of all patients had decreased ventilation function measured in the period from 6 to 12 months. Forty-nine percent of the patients had normal perfusion evaluations, and 51% had abnormal perfusion evaluations at 3 months. For ventilation evaluations, 72% were normal and 28% were abnormal. There was a significant difference in the normal versus abnormal perfusion and ventilation scintigraphic images evaluated from the same patients. Ventilation was distributed more homogenously in the transplanted lung than perfusion in the same lung. The relative distribution of perfusion and ventilation to the transplanted lung of patients with and without a primary diagnosis of fibrosis did not differ significantly from each other. We conclude that PGD defined at 72 h does not lead to recognizable changes in ventilation-perfusion scintigrapy at 3 months, and scintigraphic findings do not correlate with development in lung function in the first 12 months.

  17. Mitochondrial dysfunction in alveolar and white matter developmental failure in premature infants

    PubMed Central

    Ten, Vadim S.

    2017-01-01

    At birth, some organs in premature infants are not developed enough to meet challenges of the extra-uterine life. Although growth and maturation continues after premature birth, postnatal organ development may become sluggish or even arrested, leading to organ dysfunction. There is no clear mechanistic concept of this postnatal organ developmental failure in premature neonates. This review introduces a concept-forming hypothesis: Mitochondrial bioenergetic dysfunction is a fundamental mechanism of organs maturation failure in premature infants. Data collected in support of this hypothesis are relevant to two major diseases of prematurity: white matter injury and broncho-pulmonary dysplasia. In these diseases, totally different clinical manifestations are defined by the same biological process, developmental failure of the main functional units—alveoli in the lungs and axonal myelination in the brain. Although molecular pathways regulating alveolar and white matter maturation differ, proper bioenergetic support of growth and maturation remains critical biological requirement for any actively developing organ. Literature analysis suggests that successful postnatal pulmonary and white matter development highly depends on mitochondrial function which can be inhibited by sublethal postnatal stress. In premature infants, sublethal stress results mostly in organ maturation failure without excessive cellular demise. PMID:27901512

  18. Mitochondrial dysfunction in alveolar and white matter developmental failure in premature infants.

    PubMed

    Ten, Vadim S

    2017-02-01

    At birth, some organs in premature infants are not developed enough to meet challenges of the extra-uterine life. Although growth and maturation continues after premature birth, postnatal organ development may become sluggish or even arrested, leading to organ dysfunction. There is no clear mechanistic concept of this postnatal organ developmental failure in premature neonates. This review introduces a concept-forming hypothesis: Mitochondrial bioenergetic dysfunction is a fundamental mechanism of organs maturation failure in premature infants. Data collected in support of this hypothesis are relevant to two major diseases of prematurity: white matter injury and broncho-pulmonary dysplasia. In these diseases, totally different clinical manifestations are defined by the same biological process, developmental failure of the main functional units-alveoli in the lungs and axonal myelination in the brain. Although molecular pathways regulating alveolar and white matter maturation differ, proper bioenergetic support of growth and maturation remains critical biological requirement for any actively developing organ. Literature analysis suggests that successful postnatal pulmonary and white matter development highly depends on mitochondrial function which can be inhibited by sublethal postnatal stress. In premature infants, sublethal stress results mostly in organ maturation failure without excessive cellular demise.

  19. Vibrissae-evoked behavior and conditioning before functional ontogeny of the somatosensory vibrissae cortex.

    PubMed

    Landers, M S; Sullivan, R M

    1999-06-15

    The following experiments determined that the somatosensory whisker system is functional and capable of experience-dependent behavioral plasticity in the neonate before functional maturation of the somatosensory whisker cortex. First, unilateral whisker stimulation caused increased behavioral activity in both postnatal day (P) 3-4 and P8 pups, whereas stimulation-evoked cortical activity (14C 2-deoxyglucose autoradiography) was detectable only in P8 pups. Second, neonatal rat pups are capable of forming associations between whisker stimulation and a reinforcer. A classical conditioning paradigm (P3-P4) showed that the learning groups (paired whisker stimulation-shock or paired whisker stimulation-warm air stream) exhibited significantly higher behavioral responsiveness to whisker stimulation than controls. Finally, stimulus-evoked somatosensory cortical activity during testing [P8; using 14C 2-deoxyglucose (2-DG) autoradiography] was assessed after somatosensory conditioning from P1-P8. No learning-associated differences in stimulus-evoked cortical activity were detected between learning and nonlearning control groups. Together, these experiments demonstrate that the whisker system is functional in neonates and capable of experience-dependent behavioral plasticity. Furthermore, in contrast to adult somatosensory classical conditioning, these data suggest that the cortex is not required for associative somatosensory learning in neonates.

  20. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group.

    PubMed

    Frerichs, Inéz; Amato, Marcelo B P; van Kaam, Anton H; Tingay, David G; Zhao, Zhanqi; Grychtol, Bartłomiej; Bodenstein, Marc; Gagnon, Hervé; Böhm, Stephan H; Teschner, Eckhard; Stenqvist, Ola; Mauri, Tommaso; Torsani, Vinicius; Camporota, Luigi; Schibler, Andreas; Wolf, Gerhard K; Gommers, Diederik; Leonhardt, Steffen; Adler, Andy

    2017-01-01

    Electrical impedance tomography (EIT) has undergone 30 years of development. Functional chest examinations with this technology are considered clinically relevant, especially for monitoring regional lung ventilation in mechanically ventilated patients and for regional pulmonary function testing in patients with chronic lung diseases. As EIT becomes an established medical technology, it requires consensus examination, nomenclature, data analysis and interpretation schemes. Such consensus is needed to compare, understand and reproduce study findings from and among different research groups, to enable large clinical trials and, ultimately, routine clinical use. Recommendations of how EIT findings can be applied to generate diagnoses and impact clinical decision-making and therapy planning are required. This consensus paper was prepared by an international working group, collaborating on the clinical promotion of EIT called TRanslational EIT developmeNt stuDy group. It addresses the stated needs by providing (1) a new classification of core processes involved in chest EIT examinations and data analysis, (2) focus on clinical applications with structured reviews and outlooks (separately for adult and neonatal/paediatric patients), (3) a structured framework to categorise and understand the relationships among analysis approaches and their clinical roles, (4) consensus, unified terminology with clinical user-friendly definitions and explanations, (5) a review of all major work in thoracic EIT and (6) recommendations for future development (193 pages of online supplements systematically linked with the chief sections of the main document). We expect this information to be useful for clinicians and researchers working with EIT, as well as for industry producers of this technology. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Neutrophil chemotaxis in cord blood of term and preterm neonates is reduced in preterm neonates and influenced by the mode of delivery and anaesthesia.

    PubMed

    Birle, Alexandra; Nebe, C Thomas; Hill, Sandra; Hartmann, Karin; Poeschl, Johannes; Koch, Lutz

    2015-01-01

    Bacterial infections, even without any perinatal risk factors, are common in newborns, especially in preterm neonates. The aim of this study was to evaluate possible impairment of neutrophil chemotaxis in term and preterm neonates compared with adults as well as neonates with different modes of delivery and anaesthesia. We analysed the expression of the adhesion molecule L-Selectin as well as shape change, spontaneous and N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced transmigration of neutrophils in a flow cytometric assay of chemotaxis after spontaneous delivery with Cesarian Section (CS) under spinal anaesthesia (mepivacaine, sufentanil), epidural anaesthesia (ropivacaine or bupivacaine, sufentanil) or general anaesthesia (ketamine, thiopental, succinylcholine). Chemokinesis was higher (p=0.008) in cord blood neutrophils than in the adult ones, whereas those could be more stimulated by fMLP (p=0.02). After vaginal delivery neutrophils showed a higher spontaneous and fMLP-stimulated chemotactic response compared to neonates after CS without labor. Comparing different types of anaesthesia for CS, spinal anaesthesia resulted in less impairment on chemotaxis than general anaesthesia or epidural anaesthesia. The new flow cytometric assay of neutrophil chemotaxis is an appropriate and objective method to analyse functional differences even in very small volumes of blood, essential in neonatology. Term neonates do not show reduced chemotaxis compared to adults. Preterm neonates present with reduced chemotaxis and chemokinesis, confirming the well known deficits in their neutrophil function. The side effects of maternal drugs on the neonatal immune system have to be considered especially when the immune response is already impaired, as in preterm infants.

  2. Relationship between age-dependent changes of bovine neutrophil functions and their intracellular Ca2+ concentrations.

    PubMed

    Higuchi, H; Nagahata, H; Hiroki, M; Noda, H

    1997-04-01

    Neutrophil functions and intracellular Ca2+ concentrations ([Ca2+]i) were evaluated in 15 Holstein cattle divided into the following 3 groups: 5 neonatal calves less than 1 week old (group 1), 5 young calves 2 to 4 weeks old (group 2) and 5 cows 2 to 3 years old (group 3). The ability of neutrophils to phagocytose Candida albicans (C. albicans) was significantly higher (p < 0.05) in neonatal and young calves than in cows, whereas the phagocytosis by neutrophils of bovine IgG-coated yeasts (IgG-yeasts) was significantly lower (p < 0.05) in neonatal and young calves than that in cows. The killing activity by neutrophils of C. albicans in neonatal and young calves was significantly lower (p < 0.05) than that in cows. Luminol dependent chemiluminescent (LDCL) responses stimulated with opsonized zymosan (OPZ), heat-aggregated IgG (H-agg.IgG) and phorbol myristate acetate (PMA) were apparently lower in neonatal and young calves than in cows. No clearly different expressions of complement receptor type 3 (CR3) on neutrophils were observed among the 3 groups of cattle, although the values due to the binding of FITC-anti-bovine IgG to neutrophils in neonatal and young calves were lower than those in group 3. The OPZ-induced [Ca2+]i of neutrophils in neonatal and young calves were significantly higher (p < 0.05) than those in cows, but they were lower in neonatal and young calves when stimulated with H-agg.IgG. These results indicate that CR3- and FcR-mediated phagocytic and killing activities of neutrophils in neonatal and young calves are different from those in cows. These phenomena may be associated with age-dependent changes in [Ca2+]i.

  3. Impact of neonatal iron deficiency on hippocampal DNA methylation and gene transcription in a porcine biomedical model of cognitive development.

    PubMed

    Schachtschneider, Kyle M; Liu, Yingkai; Rund, Laurie A; Madsen, Ole; Johnson, Rodney W; Groenen, Martien A M; Schook, Lawrence B

    2016-11-03

    Iron deficiency is a common childhood micronutrient deficiency that results in altered hippocampal function and cognitive disorders. However, little is known about the mechanisms through which neonatal iron deficiency results in long lasting alterations in hippocampal gene expression and function. DNA methylation is an epigenetic mark involved in gene regulation and altered by environmental factors. In this study, hippocampal DNA methylation and gene expression were assessed via reduced representation bisulfite sequencing and RNA-seq on samples from a previous study reporting reduced hippocampal-based learning and memory in a porcine biomedical model of neonatal iron deficiency. In total 192 differentially expressed genes (DEGs) were identified between the iron deficient and control groups. GO term and pathway enrichment analysis identified DEGs associated with hypoxia, angiogenesis, increased blood brain barrier (BBB) permeability, and altered neurodevelopment and function. Of particular interest are genes previously implicated in cognitive deficits and behavioral disorders in humans and mice, including HTR2A, HTR2C, PAK3, PRSS12, and NETO1. Altered genome-wide DNA methylation was observed across 0.5 million CpG and 2.4 million non-CpG sites. In total 853 differentially methylated (DM) CpG and 99 DM non-CpG sites were identified between groups. Samples clustered by group when comparing DM non-CpG sites, suggesting high conservation of non-CpG methylation in response to neonatal environment. In total 12 DM sites were associated with 9 DEGs, including genes involved in angiogenesis, neurodevelopment, and neuronal function. Neonatal iron deficiency leads to altered hippocampal DNA methylation and gene regulation involved in hypoxia, angiogenesis, increased BBB permeability, and altered neurodevelopment and function. Together, these results provide new insights into the mechanisms through which neonatal iron deficiency results in long lasting reductions in cognitive development in humans.

  4. Regional Lung Function Profiles of Stage I and III Lung Cancer Patients: An Evaluation for Functional Avoidance Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradskiy, Yevgeniy, E-mail: yevgeniy.vinogradskiy@ucdenver.edu; Schubert, Leah; Diot, Quentin

    2016-07-15

    Purpose: The development of clinical trials is underway to use 4-dimensional computed tomography (4DCT) ventilation imaging to preferentially spare functional lung in patients undergoing radiation therapy. The purpose of this work was to generate data to aide with clinical trial design by retrospectively characterizing dosimetric and functional profiles for patients with different stages of lung cancer. Methods and Materials: A total of 118 lung cancer patients (36% stage I and 64% stage III) from 2 institutions were used for the study. A 4DCT-ventilation map was calculated using the patient's 4DCT imaging, deformable image registration, and a density-change–based algorithm. To assessmore » each patient's spatial ventilation profile both quantitative and qualitative metrics were developed, including an observer-based defect observation and metrics based on the ventilation in each lung third. For each patient we used the clinical doses to calculate functionally weighted mean lung doses and metrics that assessed the interplay between the spatial location of the dose and high-functioning lung. Results: Both qualitative and quantitative metrics revealed a significant difference in functional profiles between the 2 stage groups (P<.01). We determined that 65% of stage III and 28% of stage I patients had ventilation defects. Average functionally weighted mean lung dose was 19.6 Gy and 5.4 Gy for stage III and I patients, respectively, with both groups containing patients with large spatial overlap between dose and high-function regions. Conclusion: Our 118-patient retrospective study found that 65% of stage III patients have regionally variant ventilation profiles that are suitable for functional avoidance. Our results suggest that regardless of disease stage, it is possible to have unique spatial interplay between dose and high-functional lung, highlighting the importance of evaluating the function of each patient and developing a personalized functional avoidance treatment approach.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundar, Isaac K.; Hwang, Jae-Woong; Wu, Shaoping

    Research highlights: {yields} Vitamin D deficiency is linked to accelerated decline in lung function. {yields} Levels of vitamin D receptor (VDR) are decreased in lungs of patients with COPD. {yields} VDR knock-out mouse showed increased lung inflammation and emphysema. {yields} This was associated with decline in lung function and increased MMPs. {yields} VDR knock-out mouse model is useful for studying the mechanisms of lung diseases. -- Abstract: Deficiency of vitamin D is associated with accelerated decline in lung function. Vitamin D is a ligand for nuclear hormone vitamin D receptor (VDR), and upon binding it modulates various cellular functions. Themore » level of VDR is reduced in lungs of patients with chronic obstructive pulmonary disease (COPD) which led us to hypothesize that deficiency of VDR leads to significant alterations in lung phenotype that are characteristics of COPD/emphysema associated with increased inflammatory response. We found that VDR knock-out (VDR{sup -/-}) mice had increased influx of inflammatory cells, phospho-acetylation of nuclear factor-kappaB (NF-{kappa}B) associated with increased proinflammatory mediators, and up-regulation of matrix metalloproteinases (MMPs) MMP-2, MMP-9, and MMP-12 in the lung. This was associated with emphysema and decline in lung function associated with lymphoid aggregates formation compared to WT mice. These findings suggest that deficiency of VDR in mouse lung can lead to an early onset of emphysema/COPD because of chronic inflammation, immune dysregulation, and lung destruction.« less

  6. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Nishibuchi, Ikuno; Murakami, Yuji

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung.more » Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.« less

  7. PREOPERATIVE PREDICTION OF LUNG FUNCTION IN PNEUMONECTOMY BY SPIROMETRY AND LUNG PERFUSION SCINTIGRAPHY

    PubMed Central

    Cukic, Vesna

    2012-01-01

    Introduction: Nowadays an increasing number of lung resections are being done because of the rising prevalence of lung cancer that occurs mainly in patients with limited lung function, what is caused by common etiologic factor - smoking cigarettes. Loss of lung tissue in such patients can worsen much the postoperative pulmonary function. So it is necessary to asses the postoperative pulmonary function especially after maximal resection, i.e. pneumonectomy. Objective: To check over the accuracy of preoperative prognosis of postoperative lung function after pneumonectomy using spirometry and lung perfusion scinigraphy. Material and methods: The study was done on 17 patients operated at the Clinic for thoracic surgery, who were treated previously at the Clinic for Pulmonary Diseases “Podhrastovi” in the period from 01. 12. 2008. to 01. 06. 2011. Postoperative pulmonary function expressed as ppoFEV1 (predicted postoperative forced expiratory volume in one second) was prognosticated preoperatively using spirometry, i.e.. simple calculation according to the number of the pulmonary segments to be removed and perfusion lung scintigraphy. Results: There is no significant deviation of postoperative achieved values of FEV1 from predicted ones obtained by both methods, and there is no significant differences between predicted values (ppoFEV1) obtained by spirometry and perfusion scintigraphy. Conclusion: It is necessary to asses the postoperative pulmonary function before lung resection to avoid postoperative respiratory failure and other cardiopulmonary complications. It is absolutely necessary for pneumonectomy, i.e.. maximal pulmonary resection. It can be done with great possibility using spirometry or perfusion lung scintigraphy. PMID:23378687

  8. Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival.

    PubMed

    Alonso-Gonzalez, Rafael; Borgia, Francesco; Diller, Gerhard-Paul; Inuzuka, Ryo; Kempny, Aleksander; Martinez-Naharro, Ana; Tutarel, Oktay; Marino, Philip; Wustmann, Kerstin; Charalambides, Menelaos; Silva, Margarida; Swan, Lorna; Dimopoulos, Konstantinos; Gatzoulis, Michael A

    2013-02-26

    Restrictive lung defects are associated with higher mortality in patients with acquired chronic heart failure. We investigated the prevalence of abnormal lung function, its relation to severity of underlying cardiac defect, its surgical history, and its impact on outcome across the spectrum of adult congenital heart disease. A total of 1188 patients with adult congenital heart disease (age, 33.1±13.1 years) undergoing lung function testing between 2000 and 2009 were included. Patients were classified according to the severity of lung dysfunction based on predicted values of forced vital capacity. Lung function was normal in 53% of patients with adult congenital heart disease, mildly impaired in 17%, and moderately to severely impaired in the remainder (30%). Moderate to severe impairment of lung function related to complexity of underlying cardiac defect, enlarged cardiothoracic ratio, previous thoracotomy/ies, body mass index, scoliosis, and diaphragm palsy. Over a median follow-up period of 6.7 years, 106 patients died. Moderate to severe impairment of lung function was an independent predictor of survival in this cohort. Patients with reduced force vital capacity of at least moderate severity had a 1.6-fold increased risk of death compared with patients with normal lung function (P=0.04). A reduced forced vital capacity is prevalent in patients with adult congenital heart disease; its severity relates to the complexity of the underlying heart defect, surgical history, and scoliosis. Moderate to severe impairment of lung function is an independent predictor of mortality in contemporary patients with adult congenital heart disease.

  9. Effect of preoperative and postoperative incentive spirometry on lung functions after laparoscopic cholecystectomy.

    PubMed

    Kundra, Pankaj; Vitheeswaran, Madhurima; Nagappa, Mahesh; Sistla, Sarath

    2010-06-01

    This study was designed to compare the effects of preoperative and postoperative incentive spirometry on lung functions after laparoscopic cholecystectomy in 50 otherwise normal healthy adults. Patients were randomized into a control group (group PO, n=25) and a study group (group PR, n=25). Patients in group PR were instructed to carry out incentive spirometry before the surgery 15 times, every fourth hourly, for 1 week whereas in group PO, incentive spirometry was carried out during the postoperative period. Lung functions were recorded at the time of preanesthetic evaluation, on the day before the surgery, postoperatively at 6, 24, and 48 hours, and at discharge. Significant improvement in the lung functions was seen after preoperative incentive spirometry (group PR), P<0.05. The lung functions were significantly reduced till the time of discharge in both the groups. However, lung functions were better preserved in group PR at all times when compared with group PO; P<0.05. To conclude, lung functions are better preserved with preoperative than postoperative incentive spirometry.

  10. Wideband acoustic immittance for assessing middle ear functioning for preterm neonates in the neonatal intensive care unit.

    PubMed

    Gouws, Nandel; Swanepoel, De Wet; De Jager, Leigh Biagio

    2017-06-28

    The primary aim of newborn hearing screening is to detect permanent hearing loss. Because otoacoustic emissions (OAEs) and automated auditory brainstem response (AABR) are sensitive to hearing loss, they are often used as screening tools. On the other hand, false-positive results are most often because of transient outer- and middle ear conditions. Wideband acoustic immittance (WAI), which includes physical measures known as reflectance and absorbance, has shown potential for accurate assessment of middle ear function in young infants. The main objective of this study was to determine the feasibility of WAI as a diagnostic tool for assessing middle ear functioning in preterm neonates in the neonatal intensive care unit (NICU) designed for premature and ill neonates. A further objective was to indicate the difference between the reflectance values of tones and click stimuli. Fifty-six at-risk neonates (30 male and 26 female), with a mean age at testing of 35.6 weeks (range: 32-37 weeks) and a standard deviation of 1.6 from three private hospitals, who passed both the distortion product otoacoustic emission (DPOAE) and AABR tests, were evaluated prior to discharge from the NICU. Neonates who presented with abnormal DPOAE and AABR results were excluded from the study. WAI was measured by using chirp and tone stimuli. In addition to reflectance, the reflectance area index (RAI) values were calculated. Both tone and chirp stimuli indicated high-power reflectance values below a frequency of 1.5 kHz. Median reflectance reached a minimum of 0.67 at 1 kHz - 2 kHz but increased to 0.7 below 1 kHz and 0.72 above 2 kHz for the tone stimuli. For chirp stimuli, the median reflectance reached a minimum of 0.51 at 1 kHz - 2 kHz but increased to 0.68 below 1 kHz and decreased to 0.5 above 2 kHz. A comparison between the present study and previous studies on WAI indicated a substantial variability across all frequency ranges. These WAI measurements conducted on at-risk preterm NICU neonates (mean age at testing: 35.6 weeks, range: 32-37 weeks) identified WAI patterns not previously reported in the literature. High reflective values were obtained across all frequency ranges. The age of the neonates when tested might have influenced the results. The neonates included in the present study were very young preterm neonates compared to the ages of neonates in previous studies. WAI measured in at-risk preterm neonates in the NICU was variable with environmental and internal noise influences. Transient conditions affecting the sound-conduction pathway might have influenced the results. Additional research is required to investigate WAI testing in ears with and without middle ear dysfunction. The findings of the current study imply that in preterm neonates it was not possible to determine the feasibility of WAI as a diagnostic tool to differentiate between ears with and without middle ear pathology.

  11. Incidental lung volume reduction following fulminant pulmonary hemorrhage in a patient with severe emphysema.

    PubMed

    Hetzel, Juergen; Spengler, Werner; Horger, Marius; Boeckeler, Michael

    2015-06-01

    Endoscopic lung volume reduction is an emerging technique meant to improve lung function parameters, quality of life, and exercise tolerance in patients with severe lung emphysema. This is the first report of lung volume reduction by autologous blood in a patient with non-bullous lung emphysema. A 74-year-old woman with heterogeneous lung emphysema developed accidentally diffuse lobar bleeding immediately after valve placement. Due to persistent hemorrhage, the valves had to be removed shortly thereafter. Despite extraction of the valves, respiratory function of the patient improved rapidly indicated also by a drop in the COPD assessment test questionnaire, 3 months later. This was consistent with both improvement of lung function tests and six-minute walking test.

  12. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development

    PubMed Central

    Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V.; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K.; Bellusci, Saverio

    2015-01-01

    Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10+ progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. PMID:26511927

  13. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development.

    PubMed

    Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K; Bellusci, Saverio

    2015-12-01

    Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. © 2015. Published by The Company of Biologists Ltd.

  14. l-Arginine-Dependent Epigenetic Regulation of Interleukin-10, but Not Transforming Growth Factor-β, Production by Neonatal Regulatory T Lymphocytes

    PubMed Central

    Yu, Hong-Ren; Tsai, Ching-Chang; Chang, Ling-Sai; Huang, Hsin-Chun; Cheng, Hsin-Hsin; Wang, Jiu-Yao; Sheen, Jiunn-Ming; Kuo, Ho-Chang; Hsieh, Kai-Sheng; Huang, Ying-Hsien; Yang, Kuender D.; Hsu, Te-Yao

    2017-01-01

    A growing number of diseases in humans, including trauma, certain cancers, and infection, are known to be associated with l-arginine deficiency. In addition, l-arginine must be supplemented by diet during pregnancy to aid fetal development. In conditions of l-arginine depletion, T cell proliferation is impaired. We have previously shown that neonatal blood has lower l-arginine levels than adult blood, which is associated with poor neonatal lymphocyte proliferation, and that l-arginine enhances neonatal lymphocyte proliferation through an interleukin (IL)-2-independent pathway. In this study, we have further investigated how exogenous l-arginine enhances neonatal regulatory T-cells (Tregs) function in relation to IL-10 production under epigenetic regulation. Results showed that cord blood mononuclear cells (CBMCs) produced higher levels of IL-10 than adult peripheral blood mononuclear cells (PBMCs) by phytohemagglutinin stimulation but not by anti-CD3/anti-CD28 stimulation. Addition of exogenous l-arginine had no effect on transforming growth factor-β production by PBMCs or CBMCs, but enhanced IL-10 production by neonatal CD4+CD25+FoxP3+ Tregs. Further studies showed that IL-10 promoter DNA hypomethylation, rather than histone modification, corresponded to the l-arginine-induced increase in IL-10 production by neonatal CD4+ T cells. These results suggest that l-arginine modulates neonatal Tregs through the regulation of IL-10 promoter DNA methylation. l-arginine supplementation may correct the Treg function in newborns with l-arginine deficiency. PMID:28487700

  15. LINKING LUNG AIRWAY STRUCTURE TO PULMONARY FUNCTION VIA COMPOSITE BRIDGE REGRESSION

    PubMed Central

    Chen, Kun; Hoffman, Eric A.; Seetharaman, Indu; Jiao, Feiran; Lin, Ching-Long; Chan, Kung-Sik

    2017-01-01

    The human lung airway is a complex inverted tree-like structure. Detailed airway measurements can be extracted from MDCT-scanned lung images, such as segmental wall thickness, airway diameter, parent-child branch angles, etc. The wealth of lung airway data provides a unique opportunity for advancing our understanding of the fundamental structure-function relationships within the lung. An important problem is to construct and identify important lung airway features in normal subjects and connect these to standardized pulmonary function test results such as FEV1%. Among other things, the problem is complicated by the fact that a particular airway feature may be an important (relevant) predictor only when it pertains to segments of certain generations. Thus, the key is an efficient, consistent method for simultaneously conducting group selection (lung airway feature types) and within-group variable selection (airway generations), i.e., bi-level selection. Here we streamline a comprehensive procedure to process the lung airway data via imputation, normalization, transformation and groupwise principal component analysis, and then adopt a new composite penalized regression approach for conducting bi-level feature selection. As a prototype of composite penalization, the proposed composite bridge regression method is shown to admit an efficient algorithm, enjoy bi-level oracle properties, and outperform several existing methods. We analyze the MDCT lung image data from a cohort of 132 subjects with normal lung function. Our results show that, lung function in terms of FEV1% is promoted by having a less dense and more homogeneous lung comprising an airway whose segments enjoy more heterogeneity in wall thicknesses, larger mean diameters, lumen areas and branch angles. These data hold the potential of defining more accurately the “normal” subject population with borderline atypical lung functions that are clearly influenced by many genetic and environmental factors. PMID:28280520

  16. [Appropriate usage of antibiotics by therapeutic drug monitoring].

    PubMed

    Kokubun, Hideya; Kimura, Toshimi; Yago, Kazuo

    2007-06-01

    Aminoglycosides are mainly distributed in the extracellular fluid, so when they are given to neonates who have a large amount of extracellular fluid, their distribution is increased. In our data, the volume of distribution (Vd) of Arbekacin in the neonates was twice that of the adults, 0.54 l/kg. Therefore, the dose per weight of aminoglycosides to the neonates should be increased more than to the adults. In the renal function of the neonates, differentiation of the nephron is completed within 36 weeks after conception, but it is functionally immature. In our data, renal drug excretion increased rapidly in the post-conceptional ages (PCAs) of 34-35 weeks. Consequently, we based the Arbekacin administration schedule for the neonates on the PCAs. There is excellent correlation between serum level of vancomicin (VCM) and dose x serum creatinine (Scr)/weight in the haemodialysis patients, suggesting that we can use weight and Scr to set the VCM administration schedule for these patients. We also established on administration schedule of Teicoplanin for the haemodialysis patients. In this article, we present the TDM analysis result of the antibiotics in our hospital.

  17. The increasing incidence of foetal echogenic congenital lung malformations: an observational study.

    PubMed

    Stocker, Linden J; Wellesley, Diana G; Stanton, Michael P; Parasuraman, Rajeswari; Howe, David T

    2015-02-01

    The aim of this study was to investigate the incidence of congenital lung malformations over the past 19 years. Congenital lung malformations (CLM) are a heterogeneous group of lung abnormalities. The antenatal diagnosis is important for foetal and neonatal management but there have been no studies examining whether the reported incidence of this abnormality is constant. A retrospective cross-sectional study of cases identified from the Wessex Antenatally Detected Anomalies (WANDA) register 1994-2012. One hundred and thirty-three cases of CLM in 524 372 live and stillbirths were identified. All but seven were identified on antenatal ultrasound. During the early registry (1994-1998) the average incidence of CLM was 1.27 per 10,000 births. By the last 4 years (2008-2012) this had risen to 4.15 per 10,000 births, with a progressive increase during the intervening years. There was over a three-fold increase in the antenatally detected CLM in the Wessex region 1994-2012. Comparison with the antenatal detection of diaphragmatic hernia suggests that this is a true rise in incidence rather than an artefactual increase due to increased antenatal recognition secondary to improved ultrasound resolution and operator experience. These results have clinical and cost implications for practitioners of foetal medicine, neonatology and paediatric surgery services. © 2014 John Wiley & Sons, Ltd.

  18. Adrenomedullin promotes lung angiogenesis, alveolar development, and repair.

    PubMed

    Vadivel, Arul; Abozaid, Sameh; van Haaften, Tim; Sawicka, Monika; Eaton, Farah; Chen, Ming; Thébaud, Bernard

    2010-08-01

    Bronchopulmonary dysplasia (BPD) and emphysema are significant global health problems at the extreme stages of life. Both are characterized by alveolar simplification and abnormal distal airspace enlargement due to arrested development or loss of alveoli, respectively. Both lack effective treatments. Mechanisms that inhibit distal lung growth are poorly understood. Adrenomedullin (AM), a recently discovered potent vasodilator, promotes angiogenesis and has protective effects on the cardiovascular and respiratory system. Its role in the developing lung is unknown. We hypothesized that AM promotes lung angiogenesis and alveolar development. Accordingly, we report that lung mRNA expression of AM increases during normal alveolar development. In vivo, intranasal administration of the AM antagonist, AM22-52 decreases lung capillary density (12.4 +/- 1.5 versus 18 +/- 1.5 in control animals; P < 0.05) and impairs alveolar development (mean linear intercept, 52.3 +/- 1.5 versus 43.8 +/- 1.8 [P < 0.05] and septal counts 62.0 +/- 2.7 versus 90.4 +/- 3.5 [P < 0.05]) in neonatal rats, resulting in larger and fewer alveoli, reminiscent of BPD. This was associated with decreased lung endothelial nitric oxide synthase and vascular endothelial growth factor-A mRNA expression. In experimental oxygen-induced BPD, a model of arrested lung vascular and alveolar growth, AM attenuates arrested lung angiogenesis (vessel density, 6.9 +/- 1.1 versus 16.2 +/- 1.3, P < 0.05) and alveolar development (mean linear intercept, 51.9 +/- 3.2 versus 44.4 +/- 0.7, septal counts 47.6 +/- 3.4 versus 67.7 +/- 4.0, P < 0.05), an effect in part mediated by inhibition of apoptosis. AM also prevents pulmonary hypertension in this model, as assessed by decreased right ventricular hypertrophy and pulmonary artery medial wall thickness. Our findings suggest a role for AM during normal alveolar development. AM may have therapeutic potential in diseases associated with alveolar injury.

  19. Disruption to functional networks in neonates with perinatal brain injury predicts motor skills at 8 months.

    PubMed

    Linke, Annika C; Wild, Conor; Zubiaurre-Elorza, Leire; Herzmann, Charlotte; Duffy, Hester; Han, Victor K; Lee, David S C; Cusack, Rhodri

    2018-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) of neonates with perinatal brain injury could improve prediction of motor impairment before symptoms manifest, and establish how early brain organization relates to subsequent development. This cohort study is the first to describe and quantitatively assess functional brain networks and their relation to later motor skills in neonates with a diverse range of perinatal brain injuries. Infants ( n  = 65, included in final analyses: n  = 53) were recruited from the neonatal intensive care unit (NICU) and were stratified based on their age at birth (premature vs. term), and on whether neuropathology was diagnosed from structural MRI. Functional brain networks and a measure of disruption to functional connectivity were obtained from 14 min of fcMRI acquired during natural sleep at term-equivalent age. Disruption to connectivity of the somatomotor and frontoparietal executive networks predicted motor impairment at 4 and 8 months. This disruption in functional connectivity was not found to be driven by differences between clinical groups, or by any of the specific measures we captured to describe the clinical course. fcMRI was predictive over and above other clinical measures available at discharge from the NICU, including structural MRI. Motor learning was affected by disruption to somatomotor networks, but also frontoparietal executive networks, which supports the functional importance of these networks in early development. Disruption to these two networks might be best addressed by distinct intervention strategies.

  20. Impact of childhood anthropometry trends on adult lung function.

    PubMed

    Suresh, Sadasivam; O'Callaghan, Michael; Sly, Peter D; Mamun, Abdullah A

    2015-04-01

    Poor fetal growth rate is associated with lower respiratory function; however, there is limited understanding of the impact of growth trends and BMI during childhood on adult respiratory function. The current study data are from the Mater-University of Queensland Study of Pregnancy birth cohort. Prospective data were available from 1,740 young adults who performed standard spirometry at 21 years of age and whose birth weight and weight, height, and BMI at 5, 14, and 21 years of age were available. Catch-up growth was defined as an increase of 0.67 Z score in weight between measurements. The impact of catch-up growth on adult lung function and the relationship between childhood BMI trends and adult lung function were assessed using regression analyses. Lung function was higher at 21 years in those demonstrating catch-up growth from birth to 5 years (FVC, men: 5.33 L vs 5.54 L; women: 3.78 L vs 4.03 L; and FEV1, men: 4.52 L/s vs 4.64 L/s; women: 3.31 L/s vs 3.45 L/s). Subjects in the lowest quintile of birth (intrauterine growth retardation) also showed improved lung function if they had catch-up growth in the first 5 years of life. There was a positive correlation between increasing BMI and lung function at 5 years of age. However, in the later measurements when BMI increased into the obese category, a drop in lung function was observed. These data show evidence for a positive contribution of catch-up growth in early life to adult lung function. However, if weight gain or onset of obesity occurs after 5 years of age, an adverse impact on adult lung function is noted.

  1. Comparison of colony stimulation factors on in vitro rat and human neutrophil function.

    PubMed

    Wheeler, J G; Huffine, M E; Childress, S; Sikes, J

    1994-01-01

    The effects of rhCSFs on in vitro polymorphonuclear leukocyte (PMN) function were studied in Sprague-Dawley neonatal and adult rats and adult and umbilical cord derived human PMN to compare species response. Following in vitro exposure to buffer or rhCSFs (50-100 micrograms/ml), PMN oxidative burst, chemotactic activity and adherence protein expression were measured. RhG-CSF increased the oxidative burst of adult rat PMN as measured by chemiluminescence and altered CD11b/CD18 in resting neonatal rat but not adult rat cells. RhGM-CSF had no effect on adult rat PMN function in vitro, but led to modest changes in adult rat PMN diapedesis across rat peritoneum. No responses were noted to rhM-CSF. Human PMN responded best to GM-CSF (particularly in the neonate), intermediately to G-CSF and none to M-CSF. These experiments show that the profile of cytokine effects is not similar in adult and neonatal rat PMN when compared to human cells. The diversity of actions in other species must be considered when using rhCSFs in animal models.

  2. Changes in Functional Lung Regions During the Course of Radiation Therapy and Their Potential Impact on Lung Dosimetry for Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xue; Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan; Frey, Kirk

    2014-05-01

    Purpose: To study changes in functional activity on ventilation (V)/perfusion (Q) single-photon emission computed tomography (SPECT) during radiation therapy (RT) and explore the impact of such changes on lung dosimetry in patients with non-small cell lung cancer (NSCLC). Methods and Materials: Fifteen NSCLC patients with centrally located tumors were enrolled. All patients were treated with definitive RT dose of ≥60 Gy. V/Q SPECT-CT scans were performed prior to and after delivery of 45 Gy of fractionated RT. SPECT images were used to define temporarily dysfunctional regions of lung caused by tumor or other potentially reversible conditions as B3. The functional lung (FL)more » was defined on SPECT by 2 separate approaches: FL1, a threshold of 30% of the maximum uptake of the patient's lung; and FL2, FL1 plus B3 region. The impact of changes in FL between initiation of RT and delivery of 45 Gy on lung dosimetry were analyzed. Results: Fourteen patients (93%) had larger FL2 volumes than FL1 pre-RT (P<.001). Dysfunctional lung became functional in 11 patients (73%) on V SPECT and in 10 patients (67%) on Q SPECT. The dosimetric parameters generated from CT-based anatomical lung had significantly lower values in FL1 than FL2, with a median reduction in the volume of lung receiving a dose of at least 20 Gy (V{sub 20}) of 3%, 5.6%, and mean lung dose of 0.95 and 1.55 on V and Q SPECT respectively. Conclusions: Regional ventilation and perfusion function improve significantly during RT in centrally located NSCLC. Lung dosimetry values vary notably between different definitions of functional lung.« less

  3. A novel surgical approach for intratracheal administration of bioactive agents in a fetal mouse model.

    PubMed

    Carlon, Marianne S; Toelen, Jaan; da Cunha, Marina Mori; Vidović, Dragana; Van der Perren, Anke; Mayer, Steffi; Sbragia, Lourenço; Nuyts, Johan; Himmelreich, Uwe; Debyser, Zeger; Deprest, Jan

    2012-10-31

    Prenatal pulmonary delivery of cells, genes or pharmacologic agents could provide the basis for new therapeutic strategies for a variety of genetic and acquired diseases. Apart from congenital or inherited abnormalities with the requirement for long-term expression of the delivered gene, several non-inherited perinatal conditions, where short-term gene expression or pharmacological intervention is sufficient to achieve therapeutic effects, are considered as potential future indications for this kind of approach. Candidate diseases for the application of short-term prenatal therapy could be the transient neonatal deficiency of surfactant protein B causing neonatal respiratory distress syndrome(1,2) or hyperoxic injuries of the neonatal lung(3). Candidate diseases for permanent therapeutic correction are Cystic Fibrosis (CF)(4), genetic variants of surfactant deficiencies(5) and α1-antitrypsin deficiency(6). Generally, an important advantage of prenatal gene therapy is the ability to start therapeutic intervention early in development, at or even prior to clinical manifestations in the patient, thus preventing irreparable damage to the individual. In addition, fetal organs have an increased cell proliferation rate as compared to adult organs, which could allow a more efficient gene or stem cell transfer into the fetus. Furthermore, in utero gene delivery is performed when the individual's immune system is not completely mature. Therefore, transplantation of heterologous cells or supplementation of a non-functional or absent protein with a correct version should not cause immune sensitization to the cell, vector or transgene product, which has recently been proven to be the case with both cellular and genetic therapies(7). In the present study, we investigated the potential to directly target the fetal trachea in a mouse model. This procedure is in use in larger animal models such as rabbits and sheep(8), and even in a clinical setting(9), but has to date not been performed before in a mouse model. When studying the potential of fetal gene therapy for genetic diseases such as CF, the mouse model is very useful as a first proof-of-concept because of the wide availability of different transgenic mouse strains, the well documented embryogenesis and fetal development, less stringent ethical regulations, short gestation and the large litter size. Different access routes have been described to target the fetal rodent lung, including intra-amniotic injection(10-12), (ultrasound-guided) intrapulmonary injection(13,14) and intravenous administration into the yolk sac vessels(15,16) or umbilical vein(17). Our novel surgical procedure enables researchers to inject the agent of choice directly into the fetal mouse trachea which allows for a more efficient delivery to the airways than existing techniques(18).

  4. The Neonatal Connectome During Preterm Brain Development

    PubMed Central

    van den Heuvel, Martijn P.; Kersbergen, Karina J.; de Reus, Marcel A.; Keunen, Kristin; Kahn, René S.; Groenendaal, Floris; de Vries, Linda S.; Benders, Manon J.N.L.

    2015-01-01

    The human connectome is the result of an elaborate developmental trajectory. Acquiring diffusion-weighted imaging and resting-state fMRI, we studied connectome formation during the preterm phase of macroscopic connectome genesis. In total, 27 neonates were scanned at week 30 and/or week 40 gestational age (GA). Examining the architecture of the neonatal anatomical brain network revealed a clear presence of a small-world modular organization before term birth. Analysis of neonatal functional connectivity (FC) showed the early formation of resting-state networks, suggesting that functional networks are present in the preterm brain, albeit being in an immature state. Moreover, structural and FC patterns of the neonatal brain network showed strong overlap with connectome architecture of the adult brain (85 and 81%, respectively). Analysis of brain development between week 30 and week 40 GA revealed clear developmental effects in neonatal connectome architecture, including a significant increase in white matter microstructure (P < 0.01), small-world topology (P < 0.01) and interhemispheric FC (P < 0.01). Computational analysis further showed that developmental changes involved an increase in integration capacity of the connectivity network as a whole. Taken together, we conclude that hallmark organizational structures of the human connectome are present before term birth and subject to early development. PMID:24833018

  5. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC).

    PubMed

    Kneyber, Martin C J; de Luca, Daniele; Calderini, Edoardo; Jarreau, Pierre-Henri; Javouhey, Etienne; Lopez-Herce, Jesus; Hammer, Jürg; Macrae, Duncan; Markhorst, Dick G; Medina, Alberto; Pons-Odena, Marti; Racca, Fabrizio; Wolf, Gerhard; Biban, Paolo; Brierley, Joe; Rimensberger, Peter C

    2017-12-01

    Much of the common practice in paediatric mechanical ventilation is based on personal experiences and what paediatric critical care practitioners have adopted from adult and neonatal experience. This presents a barrier to planning and interpretation of clinical trials on the use of specific and targeted interventions. We aim to establish a European consensus guideline on mechanical ventilation of critically children. The European Society for Paediatric and Neonatal Intensive Care initiated a consensus conference of international European experts in paediatric mechanical ventilation to provide recommendations using the Research and Development/University of California, Los Angeles, appropriateness method. An electronic literature search in PubMed and EMBASE was performed using a combination of medical subject heading terms and text words related to mechanical ventilation and disease-specific terms. The Paediatric Mechanical Ventilation Consensus Conference (PEMVECC) consisted of a panel of 15 experts who developed and voted on 152 recommendations related to the following topics: (1) general recommendations, (2) monitoring, (3) targets of oxygenation and ventilation, (4) supportive measures, (5) weaning and extubation readiness, (6) normal lungs, (7) obstructive diseases, (8) restrictive diseases, (9) mixed diseases, (10) chronically ventilated patients, (11) cardiac patients and (12) lung hypoplasia syndromes. There were 142 (93.4%) recommendations with "strong agreement". The final iteration of the recommendations had none with equipoise or disagreement. These recommendations should help to harmonise the approach to paediatric mechanical ventilation and can be proposed as a standard-of-care applicable in daily clinical practice and clinical research.

  6. Antenatal exposure to Ureaplasma species exacerbates bronchopulmonary dysplasia synergistically with subsequent prolonged mechanical ventilation in preterm infants.

    PubMed

    Inatomi, Tadashi; Oue, Shinya; Ogihara, Tohru; Hira, Seigo; Hasegawa, Masashi; Yamaoka, Shigeo; Yasui, Masako; Tamai, Hiroshi

    2012-03-01

    The presence of microorganisms in gastric fluid in neonates at birth is postulated to reflect antenatal infection and also to be associated with the development of bronchopulmonary dysplasia (BPD). A logistic regression analysis, after controlling for other risk factors, indicated that Ureaplasma-positive infants were not at increased risk for moderate/severe BPD (adjusted odds ratio (OR): 2.58, 95% confidence interval (CI): 0.57-6.89, P = 0.12). However, the association between the presence of Ureaplasma species and the risk for moderate/severe BPD increased significantly in infants on mechanical ventilation (MV) ≥2 wk (adjusted OR: 4.17, 95% CI: 1.62-44.1, P = 0.009). An analysis using a lung injury marker indicated that Ureaplasma-positive infants with MV ≥2 wk, but not other infants, showed higher serum KL-6 levels in samples taken from cord blood, and that KL-6 levels increased time-dependently up to 4 wk of age. Antenatal exposure to Ureaplasma species induces lung injury prior to birth and synergistically contributes to the development of BPD in infants requiring prolonged MV (≥2 wk). We recovered gastric fluid specimens from 122 infants with gestational age (GA) <29 wk or birth weight <1,000 g to investigate whether these microorganisms influence respiratory outcome of BPD. A PCR analysis was used to detect urease and 16S ribosomal RNA (rRNA) genes to classify neonates into Ureaplasma-positive or Ureaplasma-negative infants.

  7. SU-C-BRA-06: Developing Clinical and Quantitative Guidelines for a 4DCT-Ventilation Functional Avoidance Clinical Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradskiy, Y; Waxweiler, T; Diot, Q

    Purpose: 4DCT-ventilation is an exciting new imaging modality that uses 4DCTs to calculate lung ventilation. Because 4DCTs are acquired as part of routine care, calculating 4DCT-ventilation allows for lung function evaluation without additional cost or inconvenience to the patient. Development of a clinical trial is underway at our institution to use 4DCT-ventilation for thoracic functional avoidance with the idea that preferential sparing of functional lung regions can decrease pulmonary toxicity. The purpose of our work was to develop the practical aspects of a 4DCT-ventilation functional avoidance clinical trial including: 1.assessing patient eligibility 2.developing trial inclusion criteria and 3.developing treatment planningmore » and dose-function evaluation strategies. Methods: 96 stage III lung cancer patients from 2 institutions were retrospectively reviewed. 4DCT-ventilation maps were calculated using the patient’s 4DCTs, deformable image registrations, and a density-change-based algorithm. To assess patient eligibility and develop trial inclusion criteria we used an observer-based binary end point noting the presence or absence of a ventilation defect and developed an algorithm based on the percent ventilation in each lung third. Functional avoidance planning integrating 4DCT-ventilation was performed using rapid-arc and compared to the patient’s clinically used plan. Results: Investigator-determined clinical ventilation defects were present in 69% of patients. Our regional/lung-thirds ventilation algorithm identified that 59% of patients have lung functional profiles suitable for functional avoidance. Compared to the clinical plan, functional avoidance planning was able to reduce the mean dose to functional lung by 2 Gy while delivering comparable target coverage and cord/heart doses. Conclusions: 4DCT-ventilation functional avoidance clinical trials have great potential to reduce toxicity, and our data suggest that 59% of lung cancer patients have lung function profiles suitable for functional avoidance. Our study used a retrospective evaluation of a large lung cancer patient database to develop the practical aspects of a 4DCT-ventilation functional avoidance clinical trial. (R.C., E.C., T.G.), NIH Research Scientist Development Award K01-CA181292 (R.C.), and State of Colorado Advanced Industries Accelerator Grant (Y.V.)« less

  8. Intravenous and intratracheal mesenchymal stromal cell injection in a mouse model of pulmonary emphysema.

    PubMed

    Tibboel, Jeroen; Keijzer, Richard; Reiss, Irwin; de Jongste, Johan C; Post, Martin

    2014-06-01

    The aim of this study was to characterize the evolution of lung function and -structure in elastase-induced emphysema in adult mice and the effect of mesenchymal stromal cell (MSC) administration on these parameters. Adult mice were treated with intratracheal (4.8 units/100 g bodyweight) elastase to induce emphysema. MSCs were administered intratracheally or intravenously, before or after elastase injection. Lung function measurements, histological and morphometric analysis of lung tissue were performed at 3 weeks, 5 and 10 months after elastase and at 19, 20 and 21 days following MSC administration. Elastase-treated mice showed increased dynamic compliance and total lung capacity, and reduced tissue-specific elastance and forced expiratory flows at 3 weeks after elastase, which persisted during 10 months follow-up. Histology showed heterogeneous alveolar destruction which also persisted during long-term follow-up. Jugular vein injection of MSCs before elastase inhibited deterioration of lung function but had no effects on histology. Intratracheal MSC treatment did not modify lung function or histology. In conclusion, elastase-treated mice displayed persistent characteristics of pulmonary emphysema. Jugular vein injection of MSCs prior to elastase reduced deterioration of lung function. Intratracheal MSC treatment had no effect on lung function or histology.

  9. Potential Role of Lung Ventilation Scintigraphy in the Assessment of COPD

    PubMed Central

    Cukic, Vesna; Begic, Amela

    2014-01-01

    Objective: To highlight the importance of the lung ventilation scintigraphy (LVS) to study the regional distribution of lung ventilation and to describe most frequent abnormal patterns of lung ventilation distribution obtained by this technique in COPD and to compare the information obtained by LVS with the that obtained by traditional lung function tests. Material and methods: The research was done in 20 patients with previously diagnosed COPD who were treated in Intensive care unit of Clinic for pulmonary diseases and TB “Podhrastovi” Clinical Center, University of Sarajevo in exacerbation of COPD during first three months of 2014. Each patient was undergone to testing of pulmonary function by body plethysmography and ventilation/perfusion lung scintigraphy with radio pharmaceutics Technegas, 111 MBq Tc -99m-MAA. We compared the results obtained by these two methods. Results: All patients with COPD have a damaged lung function tests examined by body plethysmography implying airflow obstruction, but LVS indicates not only airflow obstruction and reduced ventilation, but also indicates the disorders in distribution in lung ventilation. Conclusion: LVS may add further information to the functional evaluation of COPD to that provided by traditional lung function tests and may contribute to characterizing the different phenotypes of COPD. PMID:25132709

  10. Characterization of slowly inactivating KV{alpha} current in rabbit pulmonary neuroepithelial bodies: effects of hypoxia and nicotine.

    PubMed

    Fu, Xiao Wen; Nurse, Colin; Cutz, Ernest

    2007-10-01

    Pulmonary neuroepithelial bodies (NEB) form innervated cell clusters that express voltage-activated currents and function as airway O(2) sensors. We investigated A-type K(+) currents in NEB cells using neonatal rabbit lung slice preparation. The whole cell K(+) current was slowly inactivating with activation threshold of approximately -30 mV. This current was blocked approximately 27% by blood-depressing substance I (BDS-I; 3 microM), a selective blocker of Kv3.4 subunit, and reduced approximately 20% by tetraethylammonium (TEA; 100 microM). The BDS-I-sensitive component had an average peak value of 189 +/- 14 pA and showed fast inactivation kinetics that could be fitted by one-component exponential function with a time constant of (tau1) 77 +/- 10 ms. This Kv slowly inactivating current was also blocked by heteropodatoxin-2 (HpTx-2; 0.2 microM), a blocker of Kv4 subunit. The HpTx-2-sensitive current had an average peak value of 234 +/- 23 pA with a time constant (tau) 82 +/- 11 ms. Hypoxia (Po(2) = 15-20 mmHg) inhibited the slowly inactivating K(+) current by approximately 47%, during voltage steps from -30 to +30 mV, and no further inhibition occurred when TEA was combined with hypoxia. Nicotine at concentrations of 50 and 100 microM suppressed the slowly inactivating K(+) current by approximately 24 and approximately 40%, respectively. This suppression was not reversed by mecamylamine suggesting a direct effect of nicotine on these K(+) channels. In situ hybridization experiments detected expression of mRNAs for Kv3.4 and Kv4.3 subunits, while double-label immunofluorescence confirmed membrane localization of respective channel proteins in NEB cells. These studies suggest that the hypoxia-sensitive current in NEB cells is carried by slowly inactivating A-type K(+) channels, which underlie their oxygen-sensitive potassium currents, and that exposure to nicotine may directly affect their function, contributing to smoking-related lung disease.

  11. 17-year outcome of preterm infants with diverse neonatal morbidities: part 2, impact on activities and participation.

    PubMed

    Sullivan, Mary C; Miller, Robin J; Msall, Michael E

    2012-10-01

    To examine functioning and participation in a diverse U.S. sample of 180 infants at age 17 years. The World Health Organization International Classification of Functioning, Disability and Health model framed functioning and participation domains and contextual factors. Assessment included cognition, executive functioning, academic achievement, personal functioning, community participation, and social involvement. Socioeconomic status, not prematurity, impacted cognitive and academic outcomes. Across neonatal morbidities, male gender and social disadvantage are key determinants of cognitive, academic, and social functioning. Interventions addressing academic and social-behavioral competencies in early school years may potentially optimize long-term preterm outcomes. © 2012, Wiley Periodicals, Inc.

  12. Molecular mechanisms underlying variations in lung function: a systems genetics analysis

    PubMed Central

    Obeidat, Ma’en; Hao, Ke; Bossé, Yohan; Nickle, David C; Nie, Yunlong; Postma, Dirkje S; Laviolette, Michel; Sandford, Andrew J; Daley, Denise D; Hogg, James C; Elliott, W Mark; Fishbane, Nick; Timens, Wim; Hysi, Pirro G; Kaprio, Jaakko; Wilson, James F; Hui, Jennie; Rawal, Rajesh; Schulz, Holger; Stubbe, Beate; Hayward, Caroline; Polasek, Ozren; Järvelin, Marjo-Riitta; Zhao, Jing Hua; Jarvis, Deborah; Kähönen, Mika; Franceschini, Nora; North, Kari E; Loth, Daan W; Brusselle, Guy G; Smith, Albert Vernon; Gudnason, Vilmundur; Bartz, Traci M; Wilk, Jemma B; O’Connor, George T; Cassano, Patricia A; Tang, Wenbo; Wain, Louise V; Artigas, María Soler; Gharib, Sina A; Strachan, David P; Sin, Don D; Tobin, Martin D; London, Stephanie J; Hall, Ian P; Paré, Peter D

    2016-01-01

    Summary Background Lung function measures reflect the physiological state of the lung, and are essential to the diagnosis of chronic obstructive pulmonary disease (COPD). The SpiroMeta-CHARGE consortium undertook the largest genome-wide association study (GWAS) so far (n=48 201) for forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FEV1/FVC) in the general population. The lung expression quantitative trait loci (eQTLs) study mapped the genetic architecture of gene expression in lung tissue from 1111 individuals. We used a systems genetics approach to identify single nucleotide polymorphisms (SNPs) associated with lung function that act as eQTLs and change the level of expression of their target genes in lung tissue; termed eSNPs. Methods The SpiroMeta-CHARGE GWAS results were integrated with lung eQTLs to map eSNPs and the genes and pathways underlying the associations in lung tissue. For comparison, a similar analysis was done in peripheral blood. The lung mRNA expression levels of the eSNP-regulated genes were tested for associations with lung function measures in 727 individuals. Additional analyses identified the pleiotropic effects of eSNPs from the published GWAS catalogue, and mapped enrichment in regulatory regions from the ENCODE project. Finally, the Connectivity Map database was used to identify potential therapeutics in silico that could reverse the COPD lung tissue gene signature. Findings SNPs associated with lung function measures were more likely to be eQTLs and vice versa. The integration mapped the specific genes underlying the GWAS signals in lung tissue. The eSNP-regulated genes were enriched for developmental and inflammatory pathways; by comparison, SNPs associated with lung function that were eQTLs in blood, but not in lung, were only involved in inflammatory pathways. Lung function eSNPs were enriched for regulatory elements and were over-represented among genes showing differential expression during fetal lung development. An mRNA gene expression signature for COPD was identified in lung tissue and compared with the Connectivity Map. This in-silico drug repurposing approach suggested several compounds that reverse the COPD gene expression signature, including a nicotine receptor antagonist. These findings represent novel therapeutic pathways for COPD. Interpretation The system genetics approach identified lung tissue genes driving the variation in lung function and susceptibility to COPD. The identification of these genes and the pathways in which they are enriched is essential to understand the pathophysiology of airway obstruction and to identify novel therapeutic targets and biomarkers for COPD, including drugs that reverse the COPD gene signature in silico. Funding The research reported in this article was not specifically funded by any agency. See Acknowledgments for a full list of funders of the lung eQTL study and the Spiro-Meta CHARGE GWAS. PMID:26404118

  13. Assessment of lung function in a large cohort of patients with acromegaly.

    PubMed

    Störmann, Sylvère; Gutt, Bodo; Roemmler-Zehrer, Josefine; Bidlingmaier, Martin; Huber, Rudolf M; Schopohl, Jochen; Angstwurm, Matthias W

    2017-07-01

    Acromegaly is associated with increased mortality due to respiratory disease. To date, lung function in patients with acromegaly has only been assessed in small studies, with contradicting results. We assessed lung function parameters in a large cohort of patients with acromegaly. Lung function of acromegaly patients was prospectively assessed using spirometry, blood gas analysis and body plethysmography. Biochemical indicators of acromegaly were assessed through measurement of growth hormone and IGF-I levels. This study was performed at the endocrinology outpatient clinic of a tertiary referral center in Germany. We prospectively tested lung function of 109 acromegaly patients (53 male, 56 female; aged 24-82 years; 80 with active acromegaly) without severe acute or chronic pulmonary disease. We compared lung volume, air flow, airway resistance and blood gases to normative data. Acromegaly patients had greater lung volumes (maximal vital capacity, intra-thoracic gas volume and residual volume: P  < 0.001, total lung capacity: P  = 0.006) and showed signs of small airway obstruction (reduced maximum expiratory flow when 75% of the forced vital capacity (FVC) has been exhaled: P  < 0.001, lesser peak expiratory flow: P  = 0.01). There was no significant difference between active and inactive acromegaly. Female patients had significantly altered lung function in terms of subclinical airway obstruction. In our cross-sectional analysis of lung function in 109 patients with acromegaly, lung volumes were increased compared to healthy controls. Additionally, female patients showed signs of subclinical airway obstruction. There was no difference between patients with active acromegaly compared with patients biochemically in remission. © 2017 European Society of Endocrinology.

  14. Lung transplantation in adults and children: putting lung function into perspective.

    PubMed

    Thompson, Bruce Robert; Westall, Glen Philip; Paraskeva, Miranda; Snell, Gregory Ian

    2014-11-01

    The number of lung transplants performed globally continues to increase year after year. Despite this growing experience, long-term outcomes following lung transplantation continue to fall far short of that described in other solid-organ transplant settings. Chronic lung allograft dysfunction (CLAD) remains common and is the end result of exposure to a multitude of potentially injurious insults that include alloreactivity and infection among others. Central to any description of the clinical performance of the transplanted lung is an assessment of its physiology by pulmonary function testing. Spirometry and the evaluation of forced expiratory volume in 1 s and forced vital capacity, remain core indices that are measured as part of routine clinical follow-up. Spirometry, while reproducible in detecting lung allograft dysfunction, lacks specificity in differentiating the different complications of lung transplantation such as rejection, infection and bronchiolitis obliterans. However, interpretation of spirometry is central to defining the different 'chronic rejection' phenotypes. It is becoming apparent that the maximal lung function achieved following transplantation, as measured by spirometry, is influenced by a number of donor and recipient factors as well as the type of surgery performed (single vs double vs lobar lung transplant). In this review, we discuss the wide range of variables that need to be considered when interpreting lung function testing in lung transplant recipients. Finally, we review a number of novel measurements of pulmonary function that may in the future serve as better biomarkers to detect and diagnose the cause of the failing lung allograft. © 2014 Asian Pacific Society of Respirology.

  15. Parenteral Lipid Dose Restriction With Soy Oil, Not Fish Oil, Preserves Retinal Function in Neonatal Piglets.

    PubMed

    Lansing, Marihan; Sauvé, Yves; Dimopoulos, Ioannis; Field, Catherine J; Suh, Miyoung; Wizzard, Pamela; Goruk, Susan; Lim, David; Muto, Mitsuru; Wales, Paul; Turner, Justine

    2018-03-13

    A dietary supply of docosahexaenoic acid (DHA) and arachidonic acid (AA) is critical for neonatal retinal development. Both are absent/minimal in parenteral nutrition (PN) using soy-oil emulsions ([SO] Intralipid®) traditionally used for neonatal intestinal failure. In contrast, fish-oil emulsions ([FO] Omegaven®) are enriched in DHA/AA. The aim of this study was to compare retinal function and fatty acid content in neonatal piglets fed PN with SO or FO. Two-5-day-old piglets were randomly allocated to SO (n = 4) or FO (n = 4), provided at equivalent doses (5g/kg/d). After 14 days of PN, retinal function was assessed by electroretinography and retinas were harvested for fatty acid content analysis. Sow-fed piglets served as a reference (REF). Light flash-elicited stoppage of cone and rod dark-currents (a-waves) and the ensuing postsynaptic activation of cone and rod ON bipolar cells (b-waves) were comparable between SO and REF. Responses recorded from FO were subnormal (P <0.001) when compared with both SO and REF. Retinal DHA content was similar in both groups (FO, 14.59% vs SO, 12.22%; P = 0.32); while AA was lower in FO (FO, 6.01% vs SO, 8.21%; P = .001). Paradoxically, FO containing more DHA and AA did not preserve retinal function when compared with the same low dose of SO. This may be due to the reduced AA enrichment in the retina with FO treatment. Further investigation into the ideal amounts of DHA and AA for optimal neonatal retinal function is required. © 2018 American Society for Parenteral and Enteral Nutrition.

  16. Genotype–phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits

    PubMed Central

    Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; Barrese, Vincenzo; Migliore, Michele; Cilio, Maria Roberta; Taglialatela, Maurizio

    2013-01-01

    Mutations in the KV7.2 gene encoding for voltage-dependent K+ channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the S4 domain of KV7.2 have been found in children affected with benign familial neonatal seizures (R213W mutation) or with neonatal epileptic encephalopathy with severe pharmacoresistant seizures and neurocognitive delay, suppression-burst pattern at EEG, and distinct neuroradiological features (R213Q mutation). To examine the molecular basis for this strikingly different phenotype, we studied the functional characteristics of mutant channels by using electrophysiological techniques, computational modeling, and homology modeling. Functional studies revealed that, in homomeric or heteromeric configuration with KV7.2 and/or KV7.3 subunits, both mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. These functional changes were (i) more pronounced for channels incorporating R213Q- than R213W-carrying KV7.2 subunits; (ii) proportional to the number of mutant subunits incorporated; and (iii) fully restored by the neuronal Kv7 activator retigabine. Homology modeling confirmed a critical role for the R213 residue in stabilizing the activated voltage sensor configuration. Modeling experiments in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation. These results suggest that the clinical disease severity may be related to the extent of the mutation-induced functional K+ channel impairment, and set the preclinical basis for the potential use of Kv7 openers as a targeted anticonvulsant therapy to improve developmental outcome in neonates with KV7.2 encephalopathy. PMID:23440208

  17. Choriodecidual Group B Streptococcal Inoculation Induces Fetal Lung Injury without Intra-Amniotic Infection and Preterm Labor in Macaca nemestrina

    PubMed Central

    Adams Waldorf, Kristina M.; Gravett, Michael G.; McAdams, Ryan M.; Paolella, Louis J.; Gough, G. Michael; Carl, David J.; Bansal, Aasthaa; Liggitt, H. Denny; Kapur, Raj P.; Reitz, Frederick B.; Rubens, Craig E.

    2011-01-01

    Background Early events leading to intrauterine infection and fetal lung injury remain poorly defined, but may hold the key to preventing neonatal and adult chronic lung disease. Our objective was to establish a nonhuman primate model of an early stage of chorioamnionitis in order to determine the time course and mechanisms of fetal lung injury in utero. Methodology/Principal Findings Ten chronically catheterized pregnant monkeys (Macaca nemestrina) at 118–125 days gestation (term = 172 days) received one of two treatments: 1) choriodecidual and intra-amniotic saline (n = 5), or 2) choriodecidual inoculation of Group B Streptococcus (GBS) 1×106 colony forming units (n = 5). Cesarean section was performed regardless of labor 4 days after GBS or 7 days after saline infusion to collect fetal and placental tissues. Only two GBS animals developed early labor with no cervical change in the remaining animals. Despite uterine quiescence in most cases, blinded review found histopathological evidence of fetal lung injury in four GBS animals characterized by intra-alveolar neutrophils and interstitial thickening, which was absent in controls. Significant elevations of cytokines in amniotic fluid (TNF-α, IL-8, IL-1β, IL-6) and fetal plasma (IL-8) were detected in GBS animals and correlated with lung injury (p<0.05). Lung injury was not directly caused by GBS, because GBS was undetectable in amniotic fluid (∼10 samples tested/animal), maternal and fetal blood by culture and polymerase chain reaction. In only two cases was GBS cultured from the inoculation site in low numbers. Chorioamnionitis occurred in two GBS animals with lung injury, but two others with lung injury had normal placental histology. Conclusions/Significance A transient choriodecidual infection can induce cytokine production, which is associated with fetal lung injury without overt infection of amniotic fluid, chorioamnionitis or preterm labor. Fetal lung injury may, thus, occur silently without symptoms and before the onset of the fetal systemic inflammatory response syndrome. PMID:22216148

  18. Lung ultrasound in the critically ill.

    PubMed

    Lichtenstein, Daniel A

    2014-01-09

    Lung ultrasound is a basic application of critical ultrasound, defined as a loop associating urgent diagnoses with immediate therapeutic decisions. It requires the mastery of ten signs: the bat sign (pleural line), lung sliding (yielding seashore sign), the A-line (horizontal artifact), the quad sign, and sinusoid sign indicating pleural effusion, the fractal, and tissue-like sign indicating lung consolidation, the B-line, and lung rockets indicating interstitial syndrome, abolished lung sliding with the stratosphere sign suggesting pneumothorax, and the lung point indicating pneumothorax. Two more signs, the lung pulse and the dynamic air bronchogram, are used to distinguish atelectasis from pneumonia. All of these disorders were assessed using CT as the "gold standard" with sensitivity and specificity ranging from 90% to 100%, allowing ultrasound to be considered as a reasonable bedside "gold standard" in the critically ill. The BLUE-protocol is a fast protocol (<3 minutes), which allows diagnosis of acute respiratory failure. It includes a venous analysis done in appropriate cases. Pulmonary edema, pulmonary embolism, pneumonia, chronic obstructive pulmonary disease, asthma, and pneumothorax yield specific profiles. Pulmonary edema, e.g., yields anterior lung rockets associated with lung sliding, making the "B-profile." The FALLS-protocol adapts the BLUE-protocol to acute circulatory failure. It makes sequential search for obstructive, cardiogenic, hypovolemic, and distributive shock using simple real-time echocardiography (right ventricle dilatation, pericardial effusion), then lung ultrasound for assessing a direct parameter of clinical volemia: the apparition of B-lines, schematically, is considered as the endpoint for fluid therapy. Other aims of lung ultrasound are decreasing medical irradiation: the LUCIFLR program (most CTs in ARDS or trauma can be postponed), a use in traumatology, intensive care unit, neonates (the signs are the same than in adults), many disciplines (pulmonology, cardiology…), austere countries, and a help in any procedure (thoracentesis). A 1992, cost-effective gray-scale unit, without Doppler, and a microconvex probe are efficient. Lung ultrasound is a holistic discipline for many reasons (e.g., one probe, perfect for the lung, is able to scan the whole-body). Its integration can provide a new definition of priorities. The BLUE-protocol and FALLS-protocol allow simplification of expert echocardiography, a clear advantage when correct cardiac windows are missing.

  19. Lung ultrasound in the critically ill

    PubMed Central

    2014-01-01

    Lung ultrasound is a basic application of critical ultrasound, defined as a loop associating urgent diagnoses with immediate therapeutic decisions. It requires the mastery of ten signs: the bat sign (pleural line), lung sliding (yielding seashore sign), the A-line (horizontal artifact), the quad sign, and sinusoid sign indicating pleural effusion, the fractal, and tissue-like sign indicating lung consolidation, the B-line, and lung rockets indicating interstitial syndrome, abolished lung sliding with the stratosphere sign suggesting pneumothorax, and the lung point indicating pneumothorax. Two more signs, the lung pulse and the dynamic air bronchogram, are used to distinguish atelectasis from pneumonia. All of these disorders were assessed using CT as the “gold standard” with sensitivity and specificity ranging from 90% to 100%, allowing ultrasound to be considered as a reasonable bedside “gold standard” in the critically ill. The BLUE-protocol is a fast protocol (<3 minutes), which allows diagnosis of acute respiratory failure. It includes a venous analysis done in appropriate cases. Pulmonary edema, pulmonary embolism, pneumonia, chronic obstructive pulmonary disease, asthma, and pneumothorax yield specific profiles. Pulmonary edema, e.g., yields anterior lung rockets associated with lung sliding, making the “B-profile.” The FALLS-protocol adapts the BLUE-protocol to acute circulatory failure. It makes sequential search for obstructive, cardiogenic, hypovolemic, and distributive shock using simple real-time echocardiography (right ventricle dilatation, pericardial effusion), then lung ultrasound for assessing a direct parameter of clinical volemia: the apparition of B-lines, schematically, is considered as the endpoint for fluid therapy. Other aims of lung ultrasound are decreasing medical irradiation: the LUCIFLR program (most CTs in ARDS or trauma can be postponed), a use in traumatology, intensive care unit, neonates (the signs are the same than in adults), many disciplines (pulmonology, cardiology…), austere countries, and a help in any procedure (thoracentesis). A 1992, cost-effective gray-scale unit, without Doppler, and a microconvex probe are efficient. Lung ultrasound is a holistic discipline for many reasons (e.g., one probe, perfect for the lung, is able to scan the whole-body). Its integration can provide a new definition of priorities. The BLUE-protocol and FALLS-protocol allow simplification of expert echocardiography, a clear advantage when correct cardiac windows are missing. PMID:24401163

  20. Risk factors for neonatal thyroid dysfunction in pregnancies complicated by Graves' disease.

    PubMed

    Uenaka, Mizuki; Tanimura, Kenji; Tairaku, Shinya; Morioka, Ichiro; Ebina, Yasuhiko; Yamada, Hideto

    2014-06-01

    To determine the factors related to adverse pregnancy outcomes and neonatal thyroid dysfunction in pregnancies complicated by Graves' disease. Thirty-five pregnancies complicated by Graves' disease were divided into two groups: adverse pregnancy outcome (n=15) and no adverse pregnancy outcome (n=20). Adverse pregnancy outcomes included spontaneous abortion, stillbirth, premature delivery, fetal growth restriction, and pregnancy-induced hypertension. The 31 pregnancies resulting in live births were also divided into two groups: neonatal thyroid dysfunction (n=9) and normal neonatal thyroid function (n=22). Serum levels of thyroid-stimulating hormone (TSH), free thyroxine (FT4), TSH-receptor antibody (TRAb), the duration of hyperthyroidism in pregnancy, doses of antithyroid medication, and the duration of maternal antithyroid medication throughout pregnancy were compared. There were no significant differences in these factors between pregnancies with an adverse pregnancy outcome and those with no adverse pregnancy outcome. However, serum levels of FT4, TRAb, the duration of hyperthyroidism in pregnancy, the maximum daily dose of antithyroid medication, and the total dose of antithyroid medication were significantly different between pregnancies with neonatal thyroid dysfunction and those with normal neonatal thyroid function. Multivariate logistic regression analysis showed that the FT4 level in mothers was a significant factor related to the development of neonatal thyroid dysfunction (odds ratio 28.84, 95% confidence interval 1.65-503.62, p<0.05). Graves' disease activity in women of childbearing age should be well controlled prior to conception. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Effect of Ventilation Support on Oxidative Stress and Ischemia-Modified Albumin in Neonates.

    PubMed

    Dursun, Arzu; Okumuş, Nurullah; Erol, Sara; Bayrak, Tülin; Zenciroğlu, Ayşegül

    2016-01-01

    Mechanical ventilation (MV) can induce oxidative stress, which plays a critical role in pulmonary injury in intubated neonates. Ischemia-modified albumin (IMA)-a variant of human serum albumin-is a novel biomarker of myocardial ischemia that occurs due to reactive oxygen species during ischemic insult. This study aimed to investigate IMA production due to oxidative stress induced during MV in neonates. This study included 17 neonates that were ventilated using synchronized intermittent mechanical ventilation (SIMV; SIMV group) and 20 neonates ventilated using continuous positive airway pressure (CPAP; CPAP group). Blood samples were collected from each neonate during ventilation support and following cessation of ventilation support. Total antioxidant capacity (TAC) and total oxidant status (TOS) were measured using the Erel method. IMA was measured via an enzyme-linked immunosorbent assay kit (Cusabio Biotech Co., Ltd., Wuhan, China). The oxidant stress index (OSI) was calculated as OSI = TOS/TAC. Statistical analysis was performed using SPSS v.18.0 (SPSS Inc., Chicago, IL) for Windows. Among the neonates included in the study, mean gestational age was 34.7 ± 3.8 weeks, mean birth weight was 2,553 ± 904 g, and 54% were premature. There were not any significant differences in mean gestational age or birth weight between the SIMV and CPAP groups. Among the neonates in both the groups, mean IMA, TOS, and OSI levels were significantly higher during ventilation support (102.2 ± 9.3 IU mL(-1), 15.5 ± 1.3 µmol H2O2 equivalent L(-1), and 0.85 ± 0.22 arbitrary units [ABU], respectively), as compared with following cessation of ventilation support (82.9 ± 11.9 IU mL(-1), 13.4 ± 1.3 µmol H2O2 equivalent L(-1), and 0.64 ± 0.14 ABU, respectively) (p = 0.001). Among all the neonates in the study, mean TAC was significantly lower during ventilation support than the postventilation support (1.82 ± 0.28 mmol 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid [Trolox] equivalent L(-1) vs. 2.16 ± 0.31 mmol Trolox equivalent L(-1)) (p = 0.001). There were no significant differences in mean TAC, OSI, or IMA levels between the SIMV and CPAP groups. The mean TOS level during ventilation support and the mean difference in TOS between during and postventilation support was significantly greater in the CPAP group than in the SIMV group. There were no significant relationships between the mean TOS, TAC, OSI, or IMA levels, and gestational age of the neonates. SIMV and CPAP activated the oxidative stress and increased the IMA level in neonates; therefore, measurement of IMA and oxidant markers may be useful in the follow-up of lung injury in neonates due to ventilation support. Additional prospective studies are needed to compare the effects of various ventilation methods on oxidative stress and the IMA level in neonates. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Lung Cancer Risk Prediction Model Incorporating Lung Function: Development and Validation in the UK Biobank Prospective Cohort Study.

    PubMed

    Muller, David C; Johansson, Mattias; Brennan, Paul

    2017-03-10

    Purpose Several lung cancer risk prediction models have been developed, but none to date have assessed the predictive ability of lung function in a population-based cohort. We sought to develop and internally validate a model incorporating lung function using data from the UK Biobank prospective cohort study. Methods This analysis included 502,321 participants without a previous diagnosis of lung cancer, predominantly between 40 and 70 years of age. We used flexible parametric survival models to estimate the 2-year probability of lung cancer, accounting for the competing risk of death. Models included predictors previously shown to be associated with lung cancer risk, including sex, variables related to smoking history and nicotine addiction, medical history, family history of lung cancer, and lung function (forced expiratory volume in 1 second [FEV1]). Results During accumulated follow-up of 1,469,518 person-years, there were 738 lung cancer diagnoses. A model incorporating all predictors had excellent discrimination (concordance (c)-statistic [95% CI] = 0.85 [0.82 to 0.87]). Internal validation suggested that the model will discriminate well when applied to new data (optimism-corrected c-statistic = 0.84). The full model, including FEV1, also had modestly superior discriminatory power than one that was designed solely on the basis of questionnaire variables (c-statistic = 0.84 [0.82 to 0.86]; optimism-corrected c-statistic = 0.83; p FEV1 = 3.4 × 10 -13 ). The full model had better discrimination than standard lung cancer screening eligibility criteria (c-statistic = 0.66 [0.64 to 0.69]). Conclusion A risk prediction model that includes lung function has strong predictive ability, which could improve eligibility criteria for lung cancer screening programs.

  3. On the contribution of height to predict lung volumes, capacities and diffusion in healthy school children of 10-17 years.

    PubMed

    Gupta, C K; Mishra, G; Mehta, S C; Prasad, J

    1993-01-01

    Lung volumes, capacities, diffusion and alveolar volumes with physical characteristics (age, height and weight) were recorded for 186 healthy school children (96 boys and 90 girls) of 10-17 years age group. The objective was to study the relative importance of physical characteristics as regressor variables in regression models to estimate lung functions. We observed that height is best correlated with all the lung functions. Inclusion of all physical characteristics in the models have little gain compared to the ones having just height as regressor variable. We also find that exponential models were not only statistically valid but fared better compared to the linear ones. We conclude that lung functions covary with height and other physical characteristics but do not depend upon them. The rate of increase in the functions depend upon initial lung functions. Further, we propose models and provide ready reckoners to give estimates of lung functions with 95 per cent confidence limits based on heights from 125 to 170 cm for the age group of 10 to 17 years.

  4. Estimation of Lung Ventilation

    NASA Astrophysics Data System (ADS)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  5. Extracorporeal Membrane Oxygenation in Premature Infants With Congenital Diaphragmatic Hernia.

    PubMed

    Cuevas Guamán, Milenka; Akinkuotu, Adesola C; Cruz, Stephanie M; Griffiths, Pamela A; Welty, Stephen E; Lee, Timothy C; Olutoye, Oluyinka O

    2017-11-14

    Prematurity and low birth weight have been exclusion criteria for extracorporeal membrane oxygenation (ECMO); however, these criteria are not evidence based. With advances in anticoagulation, improved technology, and surgical expertise, it is difficult to deny a potential therapy based on these criteria alone. We report the outcome of three neonates who were ineligible based on traditional criteria but were offered ECMO as a life-saving measure. We highlight the interdisciplinary nature of modern decision-making. All three neonates had severe congenital diaphragmatic hernia diagnosed prenatally, had normal fetal karyotypes, were born prematurely, and weighed less than 2 kg. All three neonates underwent cervical venoarterial cannulation, stabilization on ECMO, and repair of their congenital diaphragmatic hernia early in their ECMO courses. All three infants had long courses of respiratory support attributable to lung hypoplasia, but there were no short- or long-term complications attributable to ECMO support directly. All three are alive at 2 years of age and were making progress developmentally. In conclusion, with interdisciplinary collaboration and clinical guidelines uniformly implemented, low birth weight infants may benefit from ECMO and should not be denied the therapy arbitrarily based on gestational age or size alone. Further research is essential to determine appropriate patient selection in premature infants.

  6. The mirror neuron system as revealed through neonatal imitation: presence from birth, predictive power and evidence of plasticity

    PubMed Central

    Simpson, Elizabeth A.; Murray, Lynne; Paukner, Annika; Ferrari, Pier F.

    2014-01-01

    There is strong evidence that neonates imitate previously unseen behaviours. These behaviours are predominantly used in social interactions, demonstrating neonates' ability and motivation to engage with others. Research on neonatal imitation can provide a wealth of information about the early mirror neuron system (MNS), namely its functional characteristics, its plasticity from birth and its relation to skills later in development. Although numerous studies document the existence of neonatal imitation in the laboratory, little is known about its natural occurrence during parent–infant interactions and its plasticity as a consequence of experience. We review these critical aspects of imitation, which we argue are necessary for understanding the early action–perception system. We address common criticisms and misunderstandings about neonatal imitation and discuss methodological differences among studies. Recent work reveals that individual differences in neonatal imitation positively correlate with later social, cognitive and motor development. We propose that such variation in neonatal imitation could reflect important individual differences of the MNS. Although postnatal experience is not necessary for imitation, we present evidence that neonatal imitation is influenced by experience in the first week of life. PMID:24778381

  7. The mirror neuron system as revealed through neonatal imitation: presence from birth, predictive power and evidence of plasticity.

    PubMed

    Simpson, Elizabeth A; Murray, Lynne; Paukner, Annika; Ferrari, Pier F

    2014-01-01

    There is strong evidence that neonates imitate previously unseen behaviours. These behaviours are predominantly used in social interactions, demonstrating neonates' ability and motivation to engage with others. Research on neonatal imitation can provide a wealth of information about the early mirror neuron system (MNS), namely its functional characteristics, its plasticity from birth and its relation to skills later in development. Although numerous studies document the existence of neonatal imitation in the laboratory, little is known about its natural occurrence during parent-infant interactions and its plasticity as a consequence of experience. We review these critical aspects of imitation, which we argue are necessary for understanding the early action-perception system. We address common criticisms and misunderstandings about neonatal imitation and discuss methodological differences among studies. Recent work reveals that individual differences in neonatal imitation positively correlate with later social, cognitive and motor development. We propose that such variation in neonatal imitation could reflect important individual differences of the MNS. Although postnatal experience is not necessary for imitation, we present evidence that neonatal imitation is influenced by experience in the first week of life.

  8. Design of a Functional Training Prototype for Neonatal Resuscitation

    PubMed Central

    Rajaraman, Sivaramakrishnan; Ganesan, Sona; Jayapal, Kavitha; Kannan, Sadhani

    2014-01-01

    Birth Asphyxia is considered to be one of the leading causes of neonatal mortality around the world. Asphyxiated neonates require skilled resuscitation to survive the neonatal period. The project aims to train health professionals in a basic newborn care using a prototype with an ultimate objective to have one person at every delivery trained in neonatal resuscitation. This prototype will be a user-friendly device with which one can get trained in performing neonatal resuscitation in resource-limited settings. The prototype consists of a Force Sensing Resistor (FSR) that measures the pressure applied and is interfaced with Arduino® which controls the Liquid Crystal Display (LCD) and Light Emitting Diode (LED) indication for pressure and compression counts. With the increase in population and absence of proper medical care, the need for neonatal resuscitation program is not well addressed. The proposed work aims at offering a promising solution for training health care individuals on resuscitating newborn babies under low resource settings. PMID:27417489

  9. Reduction of Pulmonary Function After Surgical Lung Resections of Different Volume

    PubMed Central

    Cukic, Vesna

    2014-01-01

    Introduction: In recent years an increasing number of lung resections are being done because of the rising prevalence of lung cancer that occurs mainly in patients with limited lung function, what is caused with common etiologic factor - smoking cigarettes. Objective: To determine how big the loss of lung function is after surgical resection of lung of different range. Methods: The study was done on 58 patients operated at the Clinic for thoracic surgery KCU Sarajevo, previously treated at the Clinic for pulmonary diseases “Podhrastovi” in the period from 01.06.2012. to 01.06.2014. The following resections were done: pulmectomy (left, right), lobectomy (upper, lower: left and right). The values of postoperative pulmonary function were compared with preoperative ones. As a parameter of lung function we used FEV1 (forced expiratory volume in one second), and changes in FEV1 are expressed in liters and in percentage of the recorded preoperative and normal values of FEV1. Measurements of lung function were performed seven days before and 2 months after surgery. Results: Postoperative FEV1 was decreased compared to preoperative values. After pulmectomy the maximum reduction of FEV1 was 44%, and after lobectomy it was 22% of the preoperative values. Conclusion: Patients with airway obstruction are limited in their daily life before the surgery, and an additional loss of lung tissue after resection contributes to their inability. Potential benefits of lung resection surgery should be balanced in relation to postoperative morbidity and mortality. PMID:25568542

  10. Cyanosis and Stroke due to Functional Cor Triatriatum Dexter in a Neonate.

    PubMed

    León, Rachel L; Zaban, Nicholas B; Schamberger, Marcus S; Ho, Chang Y; Mietzsch, Ulrike

    2018-01-01

    Small remnants of the right valve of the sinus venosus are commonly found in adults, but the incidence and risk associated with these embryonic remnants in neonates are not well studied. The following report describes a cyanotic neonate with a large Eustachian valve remnant creating a functional cor triatriatum dexter who was initially diagnosed with persistent pulmonary hypertension of the newborn. The cyanosis in this infant improved over the first postnatal week with conservative management, but she suffered multifocal subcortical stroke, likely related to her intracardiac shunt. The clinical presentation and questions regarding long-term management of this rare diagnosis are explored. © 2018 S. Karger AG, Basel.

  11. Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes

    PubMed Central

    Loe, Irene M.

    2015-01-01

    Bilirubin-induced neurologic dysfunction (BIND) is the constellation of neurologic sequelae following milder degrees of neonatal hyperbilirubinemia than are associated with kernicterus. Clinically, BIND may manifest after the neonatal period as developmental delay, cognitive impairment, disordered executive function, and behavioral and psychiatric disorders. However, there is controversy regarding the relative contribution of neonatal hyperbilirubinemia versus other risk factors to the development of later neurodevelopmental disorders in children with BIND. In this review, we focus on the empiric data from the past 25 years regarding neurodevelopmental outcomes and BIND, including specific effects on developmental delay, cognition, speech and language development, executive function, and th neurobehavioral disorders, such as attention deficit/hyperactivity disorder and autism. PMID:25585889

  12. Surfactant protein-A nanobody-conjugated liposomes loaded with methylprednisolone increase lung-targeting specificity and therapeutic effect for acute lung injury.

    PubMed

    Li, Nan; Weng, Dong; Wang, Shan-Mei; Zhang, Yuan; Chen, Shan-Shan; Yin, Zhao-Fang; Zhai, Jiali; Scoble, Judy; Williams, Charlotte C; Chen, Tao; Qiu, Hui; Wu, Qin; Zhao, Meng-Meng; Lu, Li-Qin; Mulet, Xavier; Li, Hui-Ping

    2017-11-01

    The advent of nanomedicine requires novel delivery vehicles to actively target their site of action. Here, we demonstrate the development of lung-targeting drug-loaded liposomes and their efficacy, specificity and safety. Our study focuses on glucocorticoids methylprednisolone (MPS), a commonly used drug to treat lung injuries. The steroidal molecule was loaded into functionalized nano-sterically stabilized unilamellar liposomes (NSSLs). Targeting functionality was performed through conjugation of surfactant protein A (SPANb) nanobodies to form MPS-NSSLs-SPANb. MPS-NSSLs-SPANb exhibited good size distribution, morphology, and encapsulation efficiency. Animal experiments demonstrated the high specificity of MPS-NSSLs-SPANb to the lung. Treatment with MPS-NSSLs-SPANb reduced the levels of TNF-α, IL-8, and TGF-β1 in rat bronchoalveolar lavage fluid and the expression of NK-κB in the lung tissues, thereby alleviating lung injuries and increasing rat survival. The nanobody functionalized nanoparticles demonstrate superior performance to treat lung injury when compared to that of antibody functionalized systems.

  13. Joint Effects of Smoking and Sedentary Lifestyle on Lung Function in African Americans: The Jackson Heart Study Cohort

    PubMed Central

    Campbell Jenkins, Brenda W.; Sarpong, Daniel F.; Addison, Clifton; White, Monique S.; Hickson, DeMarc A.; White, Wendy; Burchfiel, Cecil

    2014-01-01

    This study examined: (a) differences in lung function between current and non current smokers who had sedentary lifestyles and non sedentary lifestyles and (b) the mediating effect of sedentary lifestyle on the association between smoking and lung function in African Americans. Sedentary lifestyle was defined as the lowest quartile of the total physical activity score. The results of linear and logistic regression analyses revealed that non smokers with non sedentary lifestyles had the highest level of lung function, and smokers with sedentary lifestyles had the lowest level. The female non-smokers with sedentary lifestyles had a significantly higher FEV1% predicted and FVC% predicted than smokers with non sedentary lifestyles (93.3% vs. 88.6%; p = 0.0102 and 92.1% vs. 86.9%; p = 0.0055 respectively). FEV1/FVC ratio for men was higher in non smokers with sedentary lifestyles than in smokers with non sedentary lifestyles (80.9 vs. 78.1; p = 0.0048). Though smoking is inversely associated with lung function, it seems to have a more deleterious effect than sedentary lifestyle on lung function. Physically active smokers had higher lung function than their non physically active counterparts. PMID:24477212

  14. Joint effects of smoking and sedentary lifestyle on lung function in African Americans: the Jackson Heart Study cohort.

    PubMed

    Campbell Jenkins, Brenda W; Sarpong, Daniel F; Addison, Clifton; White, Monique S; Hickson, Demarc A; White, Wendy; Burchfiel, Cecil

    2014-01-28

    This study examined: (a) differences in lung function between current and non current smokers who had sedentary lifestyles and non sedentary lifestyles and (b) the mediating effect of sedentary lifestyle on the association between smoking and lung function in African Americans. Sedentary lifestyle was defined as the lowest quartile of the total physical activity score. The results of linear and logistic regression analyses revealed that non smokers with non sedentary lifestyles had the highest level of lung function, and smokers with sedentary lifestyles had the lowest level. The female non-smokers with sedentary lifestyles had a significantly higher FEV1% predicted and FVC% predicted than smokers with non sedentary lifestyles (93.3% vs. 88.6%; p = 0.0102 and 92.1% vs. 86.9%; p = 0.0055 respectively). FEV1/FVC ratio for men was higher in non smokers with sedentary lifestyles than in smokers with non sedentary lifestyles (80.9 vs. 78.1; p = 0.0048). Though smoking is inversely associated with lung function, it seems to have a more deleterious effect than sedentary lifestyle on lung function. Physically active smokers had higher lung function than their non physically active counterparts.

  15. Chest circumference and birth weight are good predictors of lung function in preschool children from an e-waste recycling area.

    PubMed

    Zeng, Xiang; Xu, Xijin; Zhang, Yuling; Li, Weiqiu; Huo, Xia

    2017-10-01

    The purpose of this study was to investigate the associations between birth weight, chest circumference, and lung function in preschool children from e-waste exposure area. A total of 206 preschool children from Guiyu (an e-waste recycling area) and Haojiang and Xiashan (the reference areas) in China were recruited and required to undergo physical examination, blood tests, and lung function tests during the study period. Birth outcome such as birth weight and birth height were obtained by questionnaire. Children living in the e-waste-exposed area have a lower birth weight, chest circumference, height, and lung function when compare to their peers from the reference areas (all p value <0.05). Both Spearman and partial correlation analyses showed that birth weight and chest circumference were positively correlated with lung function levels including forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV 1 ). After adjustment for the potential confounders in further linear regression analyses, birth weight, and chest circumference were positively associated with lung function levels, respectively. Taken together, birth weight and chest circumference may be good predictors for lung function levels in preschool children.

  16. Lung Ultrasound for Diagnosing Pneumothorax in the Critically Ill Neonate.

    PubMed

    Raimondi, Francesco; Rodriguez Fanjul, Javier; Aversa, Salvatore; Chirico, Gaetano; Yousef, Nadya; De Luca, Daniele; Corsini, Iuri; Dani, Carlo; Grappone, Lidia; Orfeo, Luigi; Migliaro, Fiorella; Vallone, Gianfranco; Capasso, Letizia

    2016-08-01

    To evaluate the accuracy of lung ultrasound for the diagnosis of pneumothorax in the sudden decompensating patient. In an international, prospective study, sudden decompensation was defined as a prolonged significant desaturation (oxygen saturation <65% for more than 40 seconds) and bradycardia or sudden increase of oxygen requirement by at least 50% in less than 10 minutes with a final fraction of inspired oxygen ≥0.7 to keep stable saturations. All eligible patients had an ultrasound scan before undergoing a chest radiograph, which was the reference standard. Forty-two infants (birth weight = 1531 ± 812 g; gestational age = 31 ± 3.5 weeks) were enrolled in 6 centers; pneumothorax was detected in 26 (62%). Lung ultrasound accuracy in diagnosing pneumothorax was as follows: sensitivity 100%, specificity 100%, positive predictive value 100%, and negative predictive value 100%. Clinical evaluation of pneumothorax showed sensitivity 84%, specificity 56%, positive predictive value 76%, and negative predictive value 69%. After sudden decompensation, a lung ultrasound scan was performed in an average time of 5.3 ± 5.6 minutes vs 19 ± 11.7 minutes required for a chest radiography. Emergency drainage was performed after an ultrasound scan but before radiography in 9 cases. Lung ultrasound shows high accuracy in detecting pneumothorax in the critical infant, outperforming clinical evaluation and reducing time to imaging diagnosis and drainage. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Left ventricular obstruction with restrictive inter-atrial communication leads to retardation in fetal lung maturation.

    PubMed

    Goltz, Diane; Lunkenheimer, Jean-Marc; Abedini, Mojtaba; Herberg, Ulrike; Berg, Christoph; Gembruch, Ulrich; Fischer, Hans-Peter

    2015-05-01

    Intact atrial septum or highly restrictive inter-atrial communication (I/HRAS) combined with either severe aortic stenosis (SAS) or hypoplastic left heart syndrome (HLHS), respectively, is associated with adverse outcome. This study focusses on changes in alveolo-septal lung parenchyma due to increased left atrial pressure. In a retrospective cross-sectional autoptic study, we investigated fetal/neonatal lung specimens of 18 patients with SAS/HLHS with I/HRAS, 11 patients with SAS/HLHS and unrestrictive inter-atrial communications and 18 controls. Pulmonary maturation was investigated by means of morphometric and immunohistochemical analyses. In a comparison of all three groups, alveolo-capillary membrane maturation was significantly disturbed in I/HRAS fetuses from week 23 of pregnancy on. I/HRAS lungs showed angiomatoid hyper-capillarisation and significantly wider inter-airspace mesenchyme. Differences in width ranged between 34.58 µm (95% CI: 11.41-57.75 µm) and 46.74 µm (95% CI: 13.97-79.50 µm) in the second and third trimesters. In I/HRAS infants with HLHS, inter-airspace mesenchymal diameters steadily normalised with age; however, significant fibroelastosis of alveolar septae developed. Fetal lung maturation with respect to alveolo-capillary membrane formation is severely disordered in patients with SAS/HLHS with I/HRAS. Our findings indicate that, from a morphological point of view, timing of fetal invention in fetuses with I/HRAS should be fixed within the second trimester of pregnancy. © 2015 John Wiley & Sons, Ltd.

  18. Quantitative Pulmonary Imaging Using Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Washko, George R.; Parraga, Grace; Coxson, Harvey O.

    2011-01-01

    Measurements of lung function, including spirometry and body plethesmography, are easy to perform and are the current clinical standard for assessing disease severity. However, these lung functional techniques do not adequately explain the observed variability in clinical manifestations of disease and offer little insight into the relationship of lung structure and function. Lung imaging and the image based assessment of lung disease has matured to the extent that it is common for clinical, epidemiologic, and genetic investigation to have a component dedicated to image analysis. There are several exciting imaging modalities currently being used for the non-invasive study of lung anatomy and function. In this review we will focus on two of them, x-ray computed tomography and magnetic resonance imaging. Following a brief introduction of each method we detail some of the most recent work being done to characterize smoking-related lung disease and the clinical applications of such knowledge. PMID:22142490

  19. The association between anthropometric measures and lung function in a population-based study of Canadian adults.

    PubMed

    Rowe, A; Hernandez, P; Kuhle, S; Kirkland, S

    2017-10-01

    Decreased lung function has health impacts beyond diagnosable lung disease. It is therefore important to understand the factors that may influence even small changes in lung function including obesity, physical fitness and physical activity. The aim of this study was to determine the anthropometric measure most useful in examining the association with lung function and to determine how physical activity and physical fitness influence this association. The current study used cross-sectional data on 4662 adults aged 40-79 years from the Canadian Health Measures Survey Cycles 1 and 2. Linear regression models were used to examine the association between the anthropometric and lung function measures (forced expiratory volume in 1 s [FEV 1 ] and forced vital capacity [FVC]); R 2 values were compared among models. Physical fitness and physical activity terms were added to the models and potential confounding was assessed. Models using sum of 5 skinfolds and waist circumference consistently had the highest R 2 values for FEV 1 and FVC, while models using body mass index consistently had among the lowest R 2 values for FEV 1 and FVC and for men and women. Physical activity and physical fitness were confounders of the relationships between waist circumference and the lung function measures. Waist circumference remained a significant predictor of FVC but not FEV 1 after adjustment for physical activity or physical fitness. Waist circumference is an important predictor of lung function. Physical activity and physical fitness should be considered as potential confounders of the relationship between anthropometric measures and lung function. Copyright © 2017. Published by Elsevier Ltd.

  20. [Testing and analyzing the lung functions in the normal population in Hebei province].

    PubMed

    Chen, Li; Zhao, Ming; Han, Shao-mei; Li, Zhong-ming; Zhu, Guang-jin

    2004-08-01

    To investigate the lung function of the normal subjects living in Hebei province and its correlative factors such as living circumstance, age, height, and body weight. The lung volumes and breath capacities of 1,587 normal subjects were tested by portable spirometers (Scope Rotry) from August to October in 2002. The influences of living circumstance, age, gender, height, and body weight on lung functions were observed and analyzed. No significant difference was found between urban and rural areas in all indexes (P > 0.05); however, significant difference existed between male and female subjects (P = 0.000). The change trends of lung function in male and female subjects were similar. Growth spurt appeared at the age of 12-16 years in male subjects and 12-14 years in female subjects. Vital capacity (VC), forced vital capacity (FVC), and forced expiratory volume in one second (FEV1) reached their peaks at the age of 26-34 years and then decreased with age. Peak expiratory flow (PEF), 25% forced expiratory flow (FEF50%), and 75% forced expiratory flow (FEF75%) appeared at the age of 18 and then went down with age. Both height and weight had a correlation with all the indexes of lung functions, although the influence of height is stronger than weight. All the indexes of lung function have correlations with age, height, and weight. Lung function changes with aging, therefore different expected values shall be available for the adolescence, young adults, and middle-aged and old people. This study provides reference values of lung function for normal population.

Top