Science.gov

Sample records for neonicotinoids structural insights

  1. Insight into the mechanism of reproductive dysfunction caused by neonicotinoid pesticides.

    PubMed

    Hoshi, Nobuhiko; Hirano, Tetsushi; Omotehara, Takuya; Tokumoto, Junko; Umemura, Yuria; Mantani, Youhei; Tanida, Takashi; Warita, Katsuhiko; Tabuchi, Yoshiaki; Yokoyama, Toshifumi; Kitagawa, Hiroshi

    2014-01-01

    Neonicotinoids, which were developed in the 1990 s as an insecticide having selective toxicity, were later found to cause reproductive abnormalities in experimental animals. In Japan there is an attempt to preserve endangered animals, including the Japanese crested ibis, and there is a question of whether neonicotinoids affect the reproduction of this bird, since they are used in its habitat. Hence, we investigated whether the daily oral administration of the neonicotinoid clothianidin (CTD) has any deleterious effects on the reproductive function of mature male only or both young male and female quails as experimental animals. Vacuolization and the number of germ cells having fragmented DNA in seminiferous tubules, as well as the number and size of vacuoles in hepatocytes, increased dose-dependently. The ovaries showed abnormal histology in the granulosa cells, which produce progesterone. There were significant differences in egg-laying rates and embryo weights between the groups. Glutathione Peroxidase 4 (GPx4) and Manganese Superoxide Dismutase (Mn-SOD), which protect the organism from oxidative damage, showed a dose-dependent decrease. Thus, it is possible neonicotinoids affect the bird's reproductive system through oxidative stress, reflecting an imbalance between the production of reactive oxygen species (ROS) and a biological system's ability to readily detoxify the reactive intermediates or easily repair the resulting damage. Responding to our study, Sado Island has since succeeded in breeding Japanese crested ibis in the wild without the use of neonicotinoids. PMID:25177026

  2. Insight into the mechanism of reproductive dysfunction caused by neonicotinoid pesticides.

    PubMed

    Hoshi, Nobuhiko; Hirano, Tetsushi; Omotehara, Takuya; Tokumoto, Junko; Umemura, Yuria; Mantani, Youhei; Tanida, Takashi; Warita, Katsuhiko; Tabuchi, Yoshiaki; Yokoyama, Toshifumi; Kitagawa, Hiroshi

    2014-01-01

    Neonicotinoids, which were developed in the 1990 s as an insecticide having selective toxicity, were later found to cause reproductive abnormalities in experimental animals. In Japan there is an attempt to preserve endangered animals, including the Japanese crested ibis, and there is a question of whether neonicotinoids affect the reproduction of this bird, since they are used in its habitat. Hence, we investigated whether the daily oral administration of the neonicotinoid clothianidin (CTD) has any deleterious effects on the reproductive function of mature male only or both young male and female quails as experimental animals. Vacuolization and the number of germ cells having fragmented DNA in seminiferous tubules, as well as the number and size of vacuoles in hepatocytes, increased dose-dependently. The ovaries showed abnormal histology in the granulosa cells, which produce progesterone. There were significant differences in egg-laying rates and embryo weights between the groups. Glutathione Peroxidase 4 (GPx4) and Manganese Superoxide Dismutase (Mn-SOD), which protect the organism from oxidative damage, showed a dose-dependent decrease. Thus, it is possible neonicotinoids affect the bird's reproductive system through oxidative stress, reflecting an imbalance between the production of reactive oxygen species (ROS) and a biological system's ability to readily detoxify the reactive intermediates or easily repair the resulting damage. Responding to our study, Sado Island has since succeeded in breeding Japanese crested ibis in the wild without the use of neonicotinoids.

  3. Imidacloprid and thiacloprid neonicotinoids bind more favourably to cockroach than to honeybee α6 nicotinic acetylcholine receptor: insights from computational studies.

    PubMed

    Selvam, Balaji; Graton, Jérôme; Laurent, Adèle D; Alamiddine, Zakaria; Mathé-Allainmat, Monique; Lebreton, Jacques; Coqueret, Olivier; Olivier, Christophe; Thany, Steeve H; Le Questel, Jean-Yves

    2015-02-01

    The binding interactions of two neonicotinoids, imidacloprid (IMI) and thiacloprid (THI) with the extracellular domains of cockroach and honeybee α6 nicotinic acetylcholine receptor (nAChR) subunits in an homomeric receptor have been studied through docking and molecular dynamics (MD) simulations. The binding mode predicted for the two neonicotinoids is validated through the good agreement observed between the theoretical results with the crystal structures of the corresponding complexes with Ac-AChBP, the recognized structural surrogate for insects nAChR extracellular ligand binding domain. The binding site of the two insect α6 receptors differs by only one residue of loop D, a serine residue (Ser83) in cockroach being replaced by a lysine residue (Lys108) in honeybee. The docking results show very close interactions for the two neonicotinoids with both α6 nAChR models, in correspondence to the trends observed in the experimental neonicotinoid-Ac-AChBP complexes. However, the docking parameters (scores and energies) are not significantly different between the two insect α6 nAChRs to draw clear conclusions. The MD results bring distinct trends. The analysis of the average interaction energies in the two insects α6 nAChRs shows indeed better affinity of neonicotinoids bound to α6 cockroach compared to honeybee nAChR. This preference is explained by tighter contacts with aromatic residues (Trp and Tyr) of the binding pocket. Interestingly, the non-conserved residue Lys108 of loop D of α6 honeybee nAChR interacts through van der Waals contacts with neonicotinoids, which appear more favourable than the direct or water mediated hydrogen-bond interaction between the OH group of Ser83 of α6 cockroach nAChR and the electronegative terminal group of the two neonicotinoids (nitro in IMI and cyano in THI). Finally, in both insects nAChRs, THI is consistently found to bind more favourably than IMI. PMID:25424654

  4. Functional Insights from Structural Genomics

    SciTech Connect

    Forouhar,F.; Kuzin, A.; Seetharaman, J.; Lee, I.; Zhou, W.; Abashidze, M.; Chen, Y.; Montelione, G.; Tong, L.; et al

    2007-01-01

    Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNA methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF{_}0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP{_}1951), and a 12-stranded {beta}-barrel with a novel fold (V. parahaemolyticus VPA1032).

  5. Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore

    SciTech Connect

    Talley, Todd T.; Harel, Michal; Hibbs, Ryan E.; Radi, Zoran; Tomizawa, Motohiro; Casida, John E.; Taylor, Palmer

    2008-07-28

    Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 {angstrom} in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids.

  6. Neonicotinoids interfere with specific components of navigation in honeybees.

    PubMed

    Fischer, Johannes; Müller, Teresa; Spatz, Anne-Kathrin; Greggers, Uwe; Grünewald, Bernd; Menzel, Randolf

    2014-01-01

    Three neonicotinoids, imidacloprid, clothianidin and thiacloprid, agonists of the nicotinic acetylcholine receptor in the central brain of insects, were applied at non-lethal doses in order to test their effects on honeybee navigation. A catch-and-release experimental design was applied in which feeder trained bees were caught when arriving at the feeder, treated with one of the neonicotinoids, and released 1.5 hours later at a remote site. The flight paths of individual bees were tracked with harmonic radar. The initial flight phase controlled by the recently acquired navigation memory (vector memory) was less compromised than the second phase that leads the animal back to the hive (homing flight). The rate of successful return was significantly lower in treated bees, the probability of a correct turn at a salient landscape structure was reduced, and less directed flights during homing flights were performed. Since the homing phase in catch-and-release experiments documents the ability of a foraging honeybee to activate a remote memory acquired during its exploratory orientation flights, we conclude that non-lethal doses of the three neonicotinoids tested either block the retrieval of exploratory navigation memory or alter this form of navigation memory. These findings are discussed in the context of the application of neonicotinoids in plant protection.

  7. Neonicotinoids Interfere with Specific Components of Navigation in Honeybees

    PubMed Central

    Fischer, Johannes; Müller, Teresa; Spatz, Anne-Kathrin; Greggers, Uwe; Grünewald, Bernd; Menzel, Randolf

    2014-01-01

    Three neonicotinoids, imidacloprid, clothianidin and thiacloprid, agonists of the nicotinic acetylcholine receptor in the central brain of insects, were applied at non-lethal doses in order to test their effects on honeybee navigation. A catch-and-release experimental design was applied in which feeder trained bees were caught when arriving at the feeder, treated with one of the neonicotinoids, and released 1.5 hours later at a remote site. The flight paths of individual bees were tracked with harmonic radar. The initial flight phase controlled by the recently acquired navigation memory (vector memory) was less compromised than the second phase that leads the animal back to the hive (homing flight). The rate of successful return was significantly lower in treated bees, the probability of a correct turn at a salient landscape structure was reduced, and less directed flights during homing flights were performed. Since the homing phase in catch-and-release experiments documents the ability of a foraging honeybee to activate a remote memory acquired during its exploratory orientation flights, we conclude that non-lethal doses of the three neonicotinoids tested either block the retrieval of exploratory navigation memory or alter this form of navigation memory. These findings are discussed in the context of the application of neonicotinoids in plant protection. PMID:24646521

  8. Biological Monitoring of Human Exposure to Neonicotinoids Using Urine Samples, and Neonicotinoid Excretion Kinetics

    PubMed Central

    Harada, Kouji H.; Tanaka, Keiko; Sakamoto, Hiroko; Imanaka, Mie; Niisoe, Tamon; Hitomi, Toshiaki; Kobayashi, Hatasu; Okuda, Hiroko; Inoue, Sumiko; Kusakawa, Koichi; Oshima, Masayo; Watanabe, Kiyohiko; Yasojima, Makoto; Takasuga, Takumi; Koizumi, Akio

    2016-01-01

    Background Neonicotinoids, which are novel pesticides, have entered into usage around the world because they are selectively toxic to arthropods and relatively non-toxic to vertebrates. It has been suggested that several neonicotinoids cause neurodevelopmental toxicity in mammals. The aim was to establish the relationship between oral intake and urinary excretion of neonicotinoids by humans to facilitate biological monitoring, and to estimate dietary neonicotinoid intakes by Japanese adults. Methodology/Principal Findings Deuterium-labeled neonicotinoid (acetamiprid, clothianidin, dinotefuran, and imidacloprid) microdoses were orally ingested by nine healthy adults, and 24 h pooled urine samples were collected for 4 consecutive days after dosing. The excretion kinetics were modeled using one- and two-compartment models, then validated in a non-deuterium-labeled neonicotinoid microdose study involving 12 healthy adults. Increased urinary concentrations of labeled neonicotinoids were observed after dosing. Clothianidin was recovered unchanged within 3 days, and most dinotefuran was recovered unchanged within 1 day. Around 10% of the imidacloprid dose was excreted unchanged. Most of the acetamiprid was metabolized to desmethyl-acetamiprid. Spot urine samples from 373 Japanese adults were analyzed for neonicotinoids, and daily intakes were estimated. The estimated average daily intake of these neonicotinoids was 0.53–3.66 μg/day. The highest intake of any of the neonicotinoids in the study population was 64.5 μg/day for dinotefuran, and this was <1% of the acceptable daily intake. PMID:26731104

  9. Structural insights into microtubule doublet interactions inaxonemes

    SciTech Connect

    Downing, Kenneth H.; Sui, Haixin

    2007-06-06

    Coordinated sliding of microtubule doublets, driven by dynein motors, produces periodic beating of the axoneme. Recent structural studies of the axoneme have used cryo-electron tomography to reveal new details of the interactions among some of the multitude of proteins that form the axoneme and regulate its movement. Connections among the several sets of dyneins, in particular, suggest ways in which their actions may be coordinated. Study of the molecular architecture of isolated doublets has provided a structural basis for understanding the doublet's mechanical properties that are related to the bending of the axoneme, and has also offered insight into its potential role in the mechanism of dynein activity regulation.

  10. Molecular recognition of neonicotinoid insecticides: the determinants of life or death.

    PubMed

    Tomizawa, Motohiro; Casida, John E

    2009-02-17

    Until the mid-20th century, pest insect control in agriculture relied on largely inorganic and botanical insecticides, which were inadequate. Then, the remarkable insecticidal properties of several organochlorines, organophosphates, methylcarbamates, and pyrethroids were discovered, leading to an arsenal of synthetic organics. The effectiveness of these insecticides, however, diminished over time due to the emergence of resistant insect strains with less sensitive molecular targets in their nervous systems. This created a critical need for a new type of neuroactive insecticide with a different yet highly sensitive target. Nicotine in tobacco extract was for centuries the best available agent to prevent sucking insects from damaging crops, although this alkaloid was hazardous to people and not very effective. The search for unusual structures and optimization revealed a new class of potent insecticides, known as neonicotinoids, which are similar to nicotine in their structure and action as agonists of the nicotinic acetylcholine receptor (nAChR). Fortunately, neonicotinoids are much more toxic to insects than mammals due in large part to differences in their binding site interactions at the corresponding nAChRs. This Account discusses the progress that has been made in defining the structural basis of neonicotinoid and nicotinoid potency and selectivity. The findings are based on comparisons of two acetylcholine binding proteins (AChBPs) with distinct pharmacological profiles that serve as structural surrogates for the extracellular ligand-binding domain of the nAChRs. Saltwater mollusk (Aplysia californica) AChBP has high neonicotinoid sensitivity, whereas freshwater snail (Lymnaea stagnalis) AChBP has low neonicotinoid and high nicotinoid sensitivities, pharmacologies reminiscent of insect and vertebrate nAChR subtypes, respectively. The ligand-receptor interactions for these AChBPs were established by photoaffinity labeling and X-ray crystallography. Both

  11. Structural insights into eukaryotic aquaporin regulation.

    PubMed

    Törnroth-Horsefield, Susanna; Hedfalk, Kristina; Fischer, Gerhard; Lindkvist-Petersson, Karin; Neutze, Richard

    2010-06-18

    Aquaporin-mediated water transport across cellular membranes is an ancient, ubiquitous mechanism within cell biology. This family of integral membrane proteins includes both water selective pores (aquaporins) and transport facilitators of other small molecules such as glycerol and urea (aquaglyceroporins). Eukaryotic aquaporins are frequently regulated post-translationally by gating, whereby the rate of flux through the channel is controlled, or by trafficking, whereby aquaporins are shuttled from intracellular storage sites to the plasma membrane. A number of high-resolution X-ray structures of eukaryotic aquaporins have recently been reported and the new structural insights into gating and trafficking that emerged from these studies are described. Basic structural themes reoccur, illustrating how the problem of regulation in diverse biological contexts builds upon a limited set of possible solutions. PMID:20416297

  12. Botulinum neurotoxins: genetic, structural and mechanistic insights.

    PubMed

    Rossetto, Ornella; Pirazzini, Marco; Montecucco, Cesare

    2014-08-01

    Botulinum neurotoxins (BoNTs) are produced by anaerobic bacteria of the genus Clostridium and cause a persistent paralysis of peripheral nerve terminals, which is known as botulism. Neurotoxigenic clostridia belong to six phylogenetically distinct groups and produce more than 40 different BoNT types, which inactivate neurotransmitter release owing to their metalloprotease activity. In this Review, we discuss recent studies that have improved our understanding of the genetics and structure of BoNT complexes. We also describe recent insights into the mechanisms of BoNT entry into the general circulation, neuronal binding, membrane translocation and neuroparalysis.

  13. Structural and mechanistic insights on nitrate reductases.

    PubMed

    Coelho, Catarina; Romão, Maria João

    2015-12-01

    Nitrate reductases (NR) belong to the DMSO reductase family of Mo-containing enzymes and perform key roles in the metabolism of the nitrogen cycle, reducing nitrate to nitrite. Due to variable cell location, structure and function, they have been divided into periplasmic (Nap), cytoplasmic, and membrane-bound (Nar) nitrate reductases. The first crystal structure obtained for a NR was that of the monomeric NapA from Desulfovibrio desulfuricans in 1999. Since then several new crystal structures were solved providing novel insights that led to the revision of the commonly accepted reaction mechanism for periplasmic nitrate reductases. The two crystal structures available for the NarGHI protein are from the same organism (Escherichia coli) and the combination with electrochemical and spectroscopic studies also lead to the proposal of a reaction mechanism for this group of enzymes. Here we present an overview on the current advances in structural and functional aspects of bacterial nitrate reductases, focusing on the mechanistic implications drawn from the crystallographic data. PMID:26362109

  14. Understanding cochleate formation: insights into structural development.

    PubMed

    Nagarsekar, Kalpa; Ashtikar, Mukul; Steiniger, Frank; Thamm, Jana; Schacher, Felix; Fahr, Alfred

    2016-04-20

    Understanding the structure and the self-assembly process of cochleates has become increasingly necessary considering the advances of this drug delivery system towards the pharmaceutical industry. It is well known that the addition of cations like calcium to a dispersion of anionic lipids such as phosphatidylserines results in stable, multilamellar cochleates through a spontaneous assembly. In the current investigation we have studied the intermediate structures generated during this self-assembly of cochleates. To achieve this, we have varied the process temperature for altering the rate of cochleate formation. Our findings from electron microscopy studies showed the formation of ribbonlike structures, which with proceeding interaction associate to form lipid stacks, networks and eventually cochleates. We also observed that the variation in lipid acyl chains did not make a remarkable difference to the type of structure evolved during the formation of cochleates. More generally, our observations provide a new insight into the self-assembly process of cochleates based on which we have proposed a pathway for cochleate formation from phosphatidylserine and calcium. This knowledge could be employed in using cochleates for a variety of possible biomedical applications in the future.

  15. Review of crop pests targeted by neonicotinoid seed treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed treatment with neonicotinoid insecticides is an increasingly popular crop protection practice, intended to reduce damage due to early season pests. A large proportion of major U.S. crops are planted with neonicotinoid-treated seed. Use of the three most popular neonicotinoids (imidacloprid, thi...

  16. Bees prefer foods containing neonicotinoid pesticides.

    PubMed

    Kessler, Sébastien C; Tiedeken, Erin Jo; Simcock, Kerry L; Derveau, Sophie; Mitchell, Jessica; Softley, Samantha; Radcliffe, Amy; Stout, Jane C; Wright, Geraldine A

    2015-05-01

    The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.

  17. Bees prefer foods containing neonicotinoid pesticides

    PubMed Central

    Simcock, Kerry L.; Derveau, Sophie; Mitchell, Jessica; Softley, Samantha; Stout, Jane C.; Wright, Geraldine A.

    2015-01-01

    The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies1-3. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants4. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure4,5. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly-used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO) in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX, and CLO neither elicited spiking responses from gustatory neurons in the bees’ mouthparts nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a significant hazard to foraging bees. PMID:25901684

  18. Bees prefer foods containing neonicotinoid pesticides

    NASA Astrophysics Data System (ADS)

    Kessler, Sébastien C.; Tiedeken, Erin Jo; Simcock, Kerry L.; Derveau, Sophie; Mitchell, Jessica; Softley, Samantha; Stout, Jane C.; Wright, Geraldine A.

    2015-05-01

    The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.

  19. Ecotoxicity of neonicotinoid insecticides to bees.

    PubMed

    Decourtye, Axel; Devillers, James

    2010-01-01

    This chapter reviews the available data on the toxicity of neonicotinoid insecticides to bees that are the prominent and the most economically important group of pollinators worldwide. Classical and new methods developed to take into account the characteristics and different types of effects of the neonicotinoid insecticides to bees are described. The available toxicity results are critically analyzed. Thus, the nitro-substituted compounds (clothianidin, dinotefuran, imidacloprid and its metabolites, thiamethoxam, nitenpyram) appear the most toxic to bees. The cyano-substituted neonicotinoids seem to exhibit a much lower toxicity (acetamiprid and thiacloprid). The chapter ends with suggestions for additional studies aiming at better assess the hazard of this important insecticide family to bees.

  20. Target-site resistance to neonicotinoids.

    PubMed

    Crossthwaite, Andrew J; Rendine, Stefano; Stenta, Marco; Slater, Russell

    2014-10-01

    Neonicotinoid insecticides selectively target the invertebrate nicotinic acetylcholine receptor and disrupt excitatory cholinergic neurotransmission. First launched over 20 years ago, their broad pest spectrum, variety of application methods and relatively low risk to nontarget organisms have resulted in this class dominating the insecticide market with global annual sales in excess of $3.5 bn. This remarkable commercial success brings with it conditions in the field that favour selection of resistant phenotypes. A number of important pest species have been identified with mutations at the nicotinic acetylcholine receptor associated with insensitivity to neonicotinoids. The detailed characterization of these mutations has facilitated a greater understanding of the invertebrate nicotinic acetylcholine receptor.

  1. Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects.

    PubMed

    Anderson, J C; Dubetz, C; Palace, V P

    2015-02-01

    Developed to replace organophosphate and carbamate insecticides, neonicotinoids are structurally similar to nicotine. The three main neonicotinoid insecticides, imidacloprid, clothianidin, and thiamethoxam, are being re-evaluated by Health Canada's Pest Management Regulatory Agency (PMRA). An important aspect of the re-evaluation is the potential for effects in non-target organisms, including aquatic organisms. Leaching into surface waters is one of the major concerns surrounding extensive use of neonicotinoids, especially in close proximity to water bodies. The PMRA has classified IMI as 'persistent' with a 'high' leaching potential. Globally, neonicotinoids have been detected in a variety of water bodies, typically at concentrations in the low μg/L range. While IMI has been included in some monitoring exercises, there are currently very few published data for the presence of CLO and THM in Canadian water bodies. The majority of neonicotinoid toxicity studies have been conducted with IMI due to its longer presence on the market and high prevalence of use. Aquatic insects are particularly vulnerable to neonicotinoids and chronic toxicity has been observed at concentrations of IMI below 1 μg/L. Acute toxicity has been reported at concentrations below 20 μg/L for the most sensitive species, including Hyalella azteca, ostracods, and Chironomus riparius. Fish, algae, amphibians, and molluscs are relatively insensitive to IMI. However, the biological effects of THM and CLO have not been as well explored. The Canadian interim water quality guideline for IMI is 0.23 μg/L, but there is currently insufficient use, fate, and toxicological information available to establish guidelines for CLO and THM. Based on concentrations of neonicotinoids reported in surface waters in Canada and globally, there is potential for aquatic invertebrates to be negatively impacted by neonicotinoids. Therefore, it is necessary to address knowledge gaps to inform decisions around guidelines

  2. Neonicotinoid pesticides severely affect honey bee queens.

    PubMed

    Williams, Geoffrey R; Troxler, Aline; Retschnig, Gina; Roth, Kaspar; Yañez, Orlando; Shutler, Dave; Neumann, Peter; Gauthier, Laurent

    2015-01-01

    Queen health is crucial to colony survival of social bees. Recently, queen failure has been proposed to be a major driver of managed honey bee colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field-realistic concentrations of neonicotinoid pesticides during development can severely affect queens of western honey bees (Apis mellifera). In pesticide-exposed queens, reproductive anatomy (ovaries) and physiology (spermathecal-stored sperm quality and quantity), rather than flight behaviour, were compromised and likely corresponded to reduced queen success (alive and producing worker offspring). This study highlights the detriments of neonicotinoids to queens of environmentally and economically important social bees, and further strengthens the need for stringent risk assessments to safeguard biodiversity and ecosystem services that are vulnerable to these substances. PMID:26459072

  3. Neonicotinoid pesticides severely affect honey bee queens.

    PubMed

    Williams, Geoffrey R; Troxler, Aline; Retschnig, Gina; Roth, Kaspar; Yañez, Orlando; Shutler, Dave; Neumann, Peter; Gauthier, Laurent

    2015-10-13

    Queen health is crucial to colony survival of social bees. Recently, queen failure has been proposed to be a major driver of managed honey bee colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field-realistic concentrations of neonicotinoid pesticides during development can severely affect queens of western honey bees (Apis mellifera). In pesticide-exposed queens, reproductive anatomy (ovaries) and physiology (spermathecal-stored sperm quality and quantity), rather than flight behaviour, were compromised and likely corresponded to reduced queen success (alive and producing worker offspring). This study highlights the detriments of neonicotinoids to queens of environmentally and economically important social bees, and further strengthens the need for stringent risk assessments to safeguard biodiversity and ecosystem services that are vulnerable to these substances.

  4. Neonicotinoid pesticides severely affect honey bee queens

    PubMed Central

    Williams, Geoffrey R.; Troxler, Aline; Retschnig, Gina; Roth, Kaspar; Yañez, Orlando; Shutler, Dave; Neumann, Peter; Gauthier, Laurent

    2015-01-01

    Queen health is crucial to colony survival of social bees. Recently, queen failure has been proposed to be a major driver of managed honey bee colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field-realistic concentrations of neonicotinoid pesticides during development can severely affect queens of western honey bees (Apis mellifera). In pesticide-exposed queens, reproductive anatomy (ovaries) and physiology (spermathecal-stored sperm quality and quantity), rather than flight behaviour, were compromised and likely corresponded to reduced queen success (alive and producing worker offspring). This study highlights the detriments of neonicotinoids to queens of environmentally and economically important social bees, and further strengthens the need for stringent risk assessments to safeguard biodiversity and ecosystem services that are vulnerable to these substances. PMID:26459072

  5. New insights into nucleolar structure and function

    PubMed Central

    Lam, Yun Wah

    2015-01-01

    The nucleolus is a non-membrane-bound nuclear organelle found in all eukaryotes. It is the quintessential ‘RNA-seeded’ nuclear body, forming around specific chromosomal features called nucleolar organizing regions that contain arrays of ribosomal DNA. Assembly is triggered by activation of RNA polymerase I-mediated transcription and regulated in mammalian cells in a cell cycle-dependent manner. Although the nucleolus is best known for its role in coordinating ribosome biogenesis, biochemical and proteomic analyses have revealed a much wider functional complexity than previously appreciated, including roles in cell cycle regulation, DNA damage sensing and repair, pre-mRNA processing, telomere metabolism, processing of non-coding RNAs, and coordination of the cellular response to various stresses. Despite these advances, much remains to be learned about the full range of biological processes that occur within, or involve, this organelle and how its assembly/disassembly and functional reorganization in response to various stimuli are regulated. Here, we review the impact of recent studies that provide major insights into these fundamental questions, and we highlight the therapeutic potential of targeting nucleolar pathways. PMID:26097721

  6. Potential exposure of pollinators to neonicotinoid insecticides from the use of insecticide seed treatments in the mid-southern United States.

    PubMed

    Stewart, Scott D; Lorenz, Gus M; Catchot, Angus L; Gore, Jeff; Cook, Don; Skinner, John; Mueller, Thomas C; Johnson, Donald R; Zawislak, Jon; Barber, Jonathan

    2014-08-19

    Research was done during 2012 to evaluate the potential exposure of pollinators to neonicotinoid insecticides used as seed treatments on corn, cotton, and soybean. Samples were collected from small plot evaluations of seed treatments and from commercial fields in agricultural production areas in Arkansas, Mississippi, and Tennessee. In total, 560 samples were analyzed for concentrations of clothianidin, imidacloprid, thiamethoxam, and their metabolites. These included pollen from corn and cotton, nectar from cotton, flowers from soybean, honey bees, Apis mellifera L., and pollen carried by foragers returning to hives, preplanting and in-season soil samples, and wild flowers adjacent to recently planted fields. Neonicotinoid insecticides were detected at a level of 1 ng/g or above in 23% of wild flower samples around recently planted fields, with an average detection level of about 10 ng/g. We detected neonicotinoid insecticides in the soil of production fields prior to planting at an average concentration of about 10 ng/g, and over 80% of the samples having some insecticide present. Only 5% of foraging honey bees tested positive for the presence of neonicotinoid insecticides, and there was only one trace detection (< 1 ng/g) in pollen being carried by those bees. Soybean flowers, cotton pollen, and cotton nectar contained little or no neonicotinoids resulting from insecticide seed treatments. Average levels of neonicotinoid insecticides in corn pollen ranged from less than 1 to 6 ng/g. The highest neonicotinoid concentrations were found in soil collected during early flowering from insecticide seed treatment trials. However, these levels were generally not well correlated with neonicotinoid concentrations in flowers, pollen, or nectar. Concentrations in flowering structures were well below defined levels of concern thought to cause acute mortality in honey bees. The potential implications of our findings are discussed. PMID:25010122

  7. Potential exposure of pollinators to neonicotinoid insecticides from the use of insecticide seed treatments in the mid-southern United States.

    PubMed

    Stewart, Scott D; Lorenz, Gus M; Catchot, Angus L; Gore, Jeff; Cook, Don; Skinner, John; Mueller, Thomas C; Johnson, Donald R; Zawislak, Jon; Barber, Jonathan

    2014-08-19

    Research was done during 2012 to evaluate the potential exposure of pollinators to neonicotinoid insecticides used as seed treatments on corn, cotton, and soybean. Samples were collected from small plot evaluations of seed treatments and from commercial fields in agricultural production areas in Arkansas, Mississippi, and Tennessee. In total, 560 samples were analyzed for concentrations of clothianidin, imidacloprid, thiamethoxam, and their metabolites. These included pollen from corn and cotton, nectar from cotton, flowers from soybean, honey bees, Apis mellifera L., and pollen carried by foragers returning to hives, preplanting and in-season soil samples, and wild flowers adjacent to recently planted fields. Neonicotinoid insecticides were detected at a level of 1 ng/g or above in 23% of wild flower samples around recently planted fields, with an average detection level of about 10 ng/g. We detected neonicotinoid insecticides in the soil of production fields prior to planting at an average concentration of about 10 ng/g, and over 80% of the samples having some insecticide present. Only 5% of foraging honey bees tested positive for the presence of neonicotinoid insecticides, and there was only one trace detection (< 1 ng/g) in pollen being carried by those bees. Soybean flowers, cotton pollen, and cotton nectar contained little or no neonicotinoids resulting from insecticide seed treatments. Average levels of neonicotinoid insecticides in corn pollen ranged from less than 1 to 6 ng/g. The highest neonicotinoid concentrations were found in soil collected during early flowering from insecticide seed treatment trials. However, these levels were generally not well correlated with neonicotinoid concentrations in flowers, pollen, or nectar. Concentrations in flowering structures were well below defined levels of concern thought to cause acute mortality in honey bees. The potential implications of our findings are discussed.

  8. Risks of neonicotinoid insecticides to honeybees.

    PubMed

    Fairbrother, Anne; Purdy, John; Anderson, Troy; Fell, Richard

    2014-04-01

    The European honeybee, Apis mellifera, is an important pollinator of agricultural crops. Since 2006, when unexpectedly high colony losses were first reported, articles have proliferated in the popular press suggesting a range of possible causes and raising alarm over the general decline of bees. Suggested causes include pesticides, genetically modified crops, habitat fragmentation, and introduced diseases and parasites. Scientists have concluded that multiple factors in various combinations-including mites, fungi, viruses, and pesticides, as well as other factors such as reduction in forage, poor nutrition, and queen failure-are the most probable cause of elevated colony loss rates. Investigators and regulators continue to focus on the possible role that insecticides, particularly the neonicotinoids, may play in honeybee health. Neonicotinoid insecticides are insect neurotoxicants with desirable features such as broad-spectrum activity, low application rates, low mammalian toxicity, upward systemic movement in plants, and versatile application methods. Their distribution throughout the plant, including pollen, nectar, and guttation fluids, poses particular concern for exposure to pollinators. The authors describe how neonicotinoids interact with the nervous system of honeybees and affect individual honeybees in laboratory situations. Because honeybees are social insects, colony effects in semifield and field studies are discussed. The authors conclude with a review of current and proposed guidance in the United States and Europe for assessing the risks of pesticides to honeybees. PMID:24692231

  9. Risks of neonicotinoid insecticides to honeybees

    PubMed Central

    Fairbrother, Anne; Purdy, John; Anderson, Troy; Fell, Richard

    2014-01-01

    The European honeybee, Apis mellifera, is an important pollinator of agricultural crops. Since 2006, when unexpectedly high colony losses were first reported, articles have proliferated in the popular press suggesting a range of possible causes and raising alarm over the general decline of bees. Suggested causes include pesticides, genetically modified crops, habitat fragmentation, and introduced diseases and parasites. Scientists have concluded that multiple factors in various combinations—including mites, fungi, viruses, and pesticides, as well as other factors such as reduction in forage, poor nutrition, and queen failure—are the most probable cause of elevated colony loss rates. Investigators and regulators continue to focus on the possible role that insecticides, particularly the neonicotinoids, may play in honeybee health. Neonicotinoid insecticides are insect neurotoxicants with desirable features such as broad-spectrum activity, low application rates, low mammalian toxicity, upward systemic movement in plants, and versatile application methods. Their distribution throughout the plant, including pollen, nectar, and guttation fluids, poses particular concern for exposure to pollinators. The authors describe how neonicotinoids interact with the nervous system of honeybees and affect individual honeybees in laboratory situations. Because honeybees are social insects, colony effects in semifield and field studies are discussed. The authors conclude with a review of current and proposed guidance in the United States and Europe for assessing the risks of pesticides to honeybees. PMID:24692231

  10. Risks of neonicotinoid insecticides to honeybees.

    PubMed

    Fairbrother, Anne; Purdy, John; Anderson, Troy; Fell, Richard

    2014-04-01

    The European honeybee, Apis mellifera, is an important pollinator of agricultural crops. Since 2006, when unexpectedly high colony losses were first reported, articles have proliferated in the popular press suggesting a range of possible causes and raising alarm over the general decline of bees. Suggested causes include pesticides, genetically modified crops, habitat fragmentation, and introduced diseases and parasites. Scientists have concluded that multiple factors in various combinations-including mites, fungi, viruses, and pesticides, as well as other factors such as reduction in forage, poor nutrition, and queen failure-are the most probable cause of elevated colony loss rates. Investigators and regulators continue to focus on the possible role that insecticides, particularly the neonicotinoids, may play in honeybee health. Neonicotinoid insecticides are insect neurotoxicants with desirable features such as broad-spectrum activity, low application rates, low mammalian toxicity, upward systemic movement in plants, and versatile application methods. Their distribution throughout the plant, including pollen, nectar, and guttation fluids, poses particular concern for exposure to pollinators. The authors describe how neonicotinoids interact with the nervous system of honeybees and affect individual honeybees in laboratory situations. Because honeybees are social insects, colony effects in semifield and field studies are discussed. The authors conclude with a review of current and proposed guidance in the United States and Europe for assessing the risks of pesticides to honeybees.

  11. Structural insights into ABC transporter mechanism

    SciTech Connect

    Oldham, Michael L.; Davidson, Amy L.; Chen, Jue

    2010-07-27

    ATP-binding cassette (ABC) transporters utilize the energy from ATP hydrolysis to transport substances across the membrane. In recent years, crystal structures of several ABC transporters have become available. These structures show that both importers and exporters oscillate between two conformations: an inward-facing conformation with the substrate translocation pathway open to the cytoplasm and an outward-facing conformation with the translocation pathway facing the opposite side of the membrane. In this review, conformational differences found in the structures of homologous ABC transporters are analyzed to understand how alternating-access is achieved. It appears that rigid-body rotations of the transmembrane subunits, coinciding with the opening and closing of the nucleotide-binding subunits, couples ATP hydrolysis to substrate translocation.

  12. Structural insights into the translational infidelity mechanism

    NASA Astrophysics Data System (ADS)

    Rozov, Alexey; Demeshkina, Natalia; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara

    2015-06-01

    The decoding of mRNA on the ribosome is the least accurate process during genetic information transfer. Here we propose a unified decoding mechanism based on 11 high-resolution X-ray structures of the 70S ribosome that explains the occurrence of missense errors during translation. We determined ribosome structures in rare states where incorrect tRNAs were incorporated into the peptidyl-tRNA-binding site. These structures show that in the codon-anticodon duplex, a G.U mismatch adopts the Watson-Crick geometry, indicating a shift in the tautomeric equilibrium or ionization of the nucleobase. Additional structures with mismatches in the 70S decoding centre show that the binding of any tRNA induces identical rearrangements in the centre, which favours either isosteric or close to the Watson-Crick geometry codon-anticodon pairs. Overall, the results suggest that a mismatch escapes discrimination by preserving the shape of a Watson-Crick pair and indicate that geometric selection via tautomerism or ionization dominates the translational infidelity mechanism.

  13. Structural insights into the translational infidelity mechanism

    PubMed Central

    Rozov, Alexey; Demeshkina, Natalia; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara

    2015-01-01

    The decoding of mRNA on the ribosome is the least accurate process during genetic information transfer. Here we propose a unified decoding mechanism based on 11 high-resolution X-ray structures of the 70S ribosome that explains the occurrence of missense errors during translation. We determined ribosome structures in rare states where incorrect tRNAs were incorporated into the peptidyl-tRNA-binding site. These structures show that in the codon–anticodon duplex, a G·U mismatch adopts the Watson–Crick geometry, indicating a shift in the tautomeric equilibrium or ionization of the nucleobase. Additional structures with mismatches in the 70S decoding centre show that the binding of any tRNA induces identical rearrangements in the centre, which favours either isosteric or close to the Watson–Crick geometry codon–anticodon pairs. Overall, the results suggest that a mismatch escapes discrimination by preserving the shape of a Watson–Crick pair and indicate that geometric selection via tautomerism or ionization dominates the translational infidelity mechanism. PMID:26037619

  14. The Pion cloud: Insights into hadron structure

    SciTech Connect

    A.W. Thomas

    2007-11-01

    Modern nuclear theory presents a fascinating study in contrasting approaches to the structure of hadrons and nuclei. Nowhere is this more apparent than in the treatment of the pion cloud. As this discussion really begins with Yukawa, it is entirely appropriate that this invited lecture at the Yukawa Institute in Kyoto should deal with the issue.

  15. Environmental fate and exposure; neonicotinoids and fipronil.

    PubMed

    Bonmatin, J-M; Giorio, C; Girolami, V; Goulson, D; Kreutzweiser, D P; Krupke, C; Liess, M; Long, E; Marzaro, M; Mitchell, E A D; Noome, D A; Simon-Delso, N; Tapparo, A

    2015-01-01

    Systemic insecticides are applied to plants using a wide variety of methods, ranging from foliar sprays to seed treatments and soil drenches. Neonicotinoids and fipronil are among the most widely used pesticides in the world. Their popularity is largely due to their high toxicity to invertebrates, the ease and flexibility with which they can be applied, their long persistence, and their systemic nature, which ensures that they spread to all parts of the target crop. However, these properties also increase the probability of environmental contamination and exposure of nontarget organisms. Environmental contamination occurs via a number of routes including dust generated during drilling of dressed seeds, contamination and accumulation in arable soils and soil water, runoff into waterways, and uptake of pesticides by nontarget plants via their roots or dust deposition on leaves. Persistence in soils, waterways, and nontarget plants is variable but can be prolonged; for example, the half-lives of neonicotinoids in soils can exceed 1,000 days, so they can accumulate when used repeatedly. Similarly, they can persist in woody plants for periods exceeding 1 year. Breakdown results in toxic metabolites, though concentrations of these in the environment are rarely measured. Overall, there is strong evidence that soils, waterways, and plants in agricultural environments and neighboring areas are contaminated with variable levels of neonicotinoids or fipronil mixtures and their metabolites (soil, parts per billion (ppb)-parts per million (ppm) range; water, parts per trillion (ppt)-ppb range; and plants, ppb-ppm range). This provides multiple routes for chronic (and acute in some cases) exposure of nontarget animals. For example, pollinators are exposed through direct contact with dust during drilling; consumption of pollen, nectar, or guttation drops from seed-treated crops, water, and consumption of contaminated pollen and nectar from wild flowers and trees growing near

  16. Cell secretion: current structural and biochemical insights.

    PubMed

    Trikha, Saurabh; Lee, Elizabeth C; Jeremic, Aleksandar M

    2010-10-12

    Essential physiological functions in eukaryotic cells, such as release of hormones and digestive enzymes, neurotransmission, and intercellular signaling, are all achieved by cell secretion. In regulated (calcium-dependent) secretion, membrane-bound secretory vesicles dock and transiently fuse with specialized, permanent, plasma membrane structures, called porosomes or fusion pores. Porosomes are supramolecular, cup-shaped lipoprotein structures at the cell plasma membrane that mediate and control the release of vesicle cargo to the outside of the cell. The sizes of porosomes range from 150 nm in diameter in acinar cells of the exocrine pancreas to 12 nm in neurons. In recent years, significant progress has been made in our understanding of the porosome and the cellular activities required for cell secretion, such as membrane fusion and swelling of secretory vesicles. The discovery of the porosome complex and the molecular mechanism of cell secretion are summarized in this article.

  17. Structural insight into PPARgamma ligands binding.

    PubMed

    Farce, A; Renault, N; Chavatte, P

    2009-01-01

    Peroxisome Proliferator Activated Receptors (PPARs) are a family of three related nuclear receptors first cloned in 1990. Their involvement in glucidic and lipidic homeostasis quickly made them an attractive target for the treatment of metabolic syndrome, the most prevalent mortality factor in developed countries. They therefore attracted much synthetic efforts, more particularly PPARgamma. Supported by a large number of crystallographic studies, data derived from these compounds lead to a fairly clear view of the agonist binding mode into the Ligand Binding Domain (LBD). Nearly all the compounds conform to a three-module structure, with a binder group involved in a series of hydrogen bonds in front of the ligand-dependent Activation Function (AF2), a linker mostly arranged around a phenoxyethyl and an effector end occupying the large cavity of the binding site. Following the marketing of the glitazones and the observation of the hepatotoxicity of troglitazone, variations in the binder led to the glitazars, and then pharmacomodulations have been undertaken on the two other modules, leading to a large family of highly related chemical structures. Some compounds, while still adhering to the three-module structure, diverge from the mainstream, such as the phthalates. Curiously, these plasticizers were known to elicit biological effects that led to the discovery of PPARs but were not actively studied as PPARs agonists. As the biological effects of PPARs became clearer, new compounds were also found to exert at least a part of their actions by the activation of PPARgamma. PMID:19442144

  18. Structural Insights into Sulfite Oxidase Deficiency

    SciTech Connect

    Karakas,E.; Wilson, H.; Graf, T.; Xiang, S.; Jaramillo-Busquets, S.; Rajagopalan, K.; Kisker, C.

    2005-01-01

    Sulfite oxidase deficiency is a lethal genetic disease that results from defects either in the genes encoding proteins involved in molybdenum cofactor biosynthesis or in the sulfite oxidase gene itself. Several point mutations in the sulfite oxidase gene have been identified from patients suffering from this disease worldwide. Although detailed biochemical analyses have been carried out on these mutations, no structural data could be obtained because of problems in crystallizing recombinant human and rat sulfite oxidases and the failure to clone the chicken sulfite oxidase gene. We synthesized the gene for chicken sulfite oxidase de novo, working backward from the amino acid sequence of the native chicken liver enzyme by PCR amplification of a series of 72 overlapping primers. The recombinant protein displayed the characteristic absorption spectrum of sulfite oxidase and exhibited steady state and rapid kinetic parameters comparable with those of the tissue-derived enzyme. We solved the crystal structures of the wild type and the sulfite oxidase deficiency-causing R138Q (R160Q in humans) variant of recombinant chicken sulfite oxidase in the resting and sulfate-bound forms. Significant alterations in the substrate-binding pocket were detected in the structure of the mutant, and a comparison between the wild type and mutant protein revealed that the active site residue Arg-450 adopts different conformations in the presence and absence of bound sulfate. The size of the binding pocket is thereby considerably reduced, and its position relative to the cofactor is shifted, causing an increase in the distance of the sulfur atom of the bound sulfate to the molybdenum.

  19. A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides.

    PubMed

    Liu, Zewen; Williamson, Martin S; Lansdell, Stuart J; Han, Zhaojun; Denholm, Ian; Millar, Neil S

    2006-11-01

    Neonicotinoid insecticides are potent selective agonists of insect nicotinic acetylcholine receptors (nAChRs). Since their introduction in 1991, resistance to neonicotinoids has been slow to develop, but it is now established in some insect field populations such as the planthopper, Nilaparvata lugens, a major rice pest in many parts of Asia. We have reported recently the identification of a target-site mutation (Y151S) within two nAChR subunits (Nlalpha1 and Nlalpha3) from a laboratory-selected field population of N. lugens. In the present study, we have examined the influence of this mutation upon the functional properties of recombinant nAChRs expressed in Xenopus oocytes (as hybrid nAChRs, co-expressed with a rat beta2 subunit). The agonist potency of several nicotinic agonists has been examined, including all of the neonicotinoid insecticides that are currently licensed for either crop protection or animal health applications (acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam). The Y151S mutation was found to have no significant effect on the maximal current (I(max)) observed with the endogenous agonist, acetylcholine. In contrast, a significant reduction in I(max) was observed for all neonicotinoids (the I(max) for mutant nAChRs ranged from 13 to 81% of that observed on wild-type receptors). In addition, nAChRs containing the Y151S mutation caused a significant rightward shift in agonist dose-response curves for all neonicotinoids, but of varying magnitude (shifts in EC(50) values ranged from 1.3 to 3.6-fold). The relationship between neonicotinoid structure and their potency on nAChRs containing the Y151S target-site mutation is discussed.

  20. New Structural Insights into Translational Miscoding.

    PubMed

    Rozov, Alexey; Demeshkina, Natalia; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara

    2016-09-01

    The fidelity of translation depends strongly on the selection of the correct aminoacyl-tRNA that is complementary to the mRNA codon present in the ribosomal decoding center. The ribosome occasionally makes mistakes by selecting the wrong substrate from the pool of aminoacyl-tRNAs. Here, we summarize recent structural advances that may help to clarify the origin of missense errors that occur during decoding. These developments suggest that discrimination between tRNAs is based primarily on steric complementarity and shape acceptance rather than on the number of hydrogen bonds between the molding of the decoding center and the codon-anticodon duplex. They strengthen the hypothesis that spatial mimicry, due either to base tautomerism or ionization, drives infidelity in ribosomal translation.

  1. Structural insights into de novo actin polymerization

    PubMed Central

    Dominguez, Roberto

    2010-01-01

    Summary Many cellular functions depend on rapid and localized actin polymerization/depolymerization. Yet, the de novo polymerization of actin in cells is kinetically unfavorable because of the instability of polymerization intermediates (small actin oligomers) and the actions of actin monomer binding proteins. Cells use filament nucleation and elongation factors to initiate and sustain polymerization. Structural biology is beginning to shed light on the diverse mechanisms by which these unrelated proteins initiate polymerization, undergo regulation, and mediate the transition of monomeric actin onto actin filaments. A prominent role is played by the W domain, which in some of these proteins occurs in tandem repeats that recruit multiple actin subunits. Pro-rich regions are also abundant and mediate the binding of profilin-actin complexes, which are the main source of polymerization competent actin in cells. Filament nucleation and elongation factors frequently interact with Rho family GTPases, which relay signals from membrane receptors to regulate actin cytoskeleton remodeling. PMID:20096561

  2. Structural insight into equine lentivirus receptor 1.

    PubMed

    Qian, Lei; Han, Xiaodong; Liu, Xinqi

    2015-05-01

    Equine lentivirus receptor 1 (ELR1) has been identified as a functional cellular receptor for equine infectious anemia virus (EIAV). Herein, recombinant ELR1 and EIAV surface glycoprotein gp90 were respectively expressed in Drosophila melanogaster S2 cells, and purified to homogeneity by Ni-NTA affinity chromatography and gel filtration chromatography. Gel filtration chromatography and analytical ultracentrifugation (AUC) analyses indicated that both ELR1 and gp90 existed as individual monomers in solution and formed a complex with a stoichiometry of 1:1 when mixed. The structure of ELR1 was first determined with the molecular replacement method, which belongs to the space group P42 21 2 with one molecule in an asymmetric unit. It contains eight antiparallel β-sheets, of which four are in cysteine rich domain 1 (CRD1) and two are in CRD2 and CRD3, respectively. Alignment of ELR1 with HVEM and CD134 indicated that Tyr61, Leu70, and Gly72 in CRD1 of ELR1 are important residues for binding to gp90. Isothermal titration calorimetry (ITC) experiments further confirmed that Leu70 and Gly72 are the critical residues.

  3. Liquid chromatography-tandem mass spectrometry analysis of neonicotinoid pesticides and 6-chloronicotinic acid in environmental water with direct aqueous injection.

    PubMed

    Hao, Chunyan; Noestheden, Matthew R; Zhao, Xiaoming; Morse, David

    2016-06-21

    An efficient, high throughput and cost-effective direct aqueous injection approach for the analysis of neonicotinoid pesticides and a common metabolite in environmental water has been described here. The method determines eight neonicotinoid pesticides (acetamiprid, clothianidin, dinotefuran, flonicamid, imidacloprid, nitenpyram, thiacloprid, thiamethoxam) and 6-chloronicotinic acid (a common metabolite of the first generation neonicotinoids, acetamiprid, imidacloprid, nitenpyram and thiacloprid) without any sample enrichment/cleanup steps. The method detection limits are 2-8 ng/L for the neonicotinoids and 93 ng/L for 6-chloronicotinic acid. The performance of the QTRAP(®)5500 mass spectrometer was compared against a 4000QTRAP(®), and a QTRAP(®)6500, to provide insights for future method transfer among different generations of instrumentations. Critical mass spectrometric parameters such as collision energy were quite consistent among the three instruments evaluated. However, increased chemical background levels for some target compounds on the more sensitive instruments were observed. The application of differential ion mobility spectrometry combined with tandem mass spectrometry was demonstrated to have great potential in reducing chemical background and/or isobaric interferences inherited in sample matrices. This ISO 17025 accredited method was employed to quantitate neonicotinoids in Ontario stream water samples. Good correlation for analytical results of this direct aqueous injection approach and a previously published solid phase extraction approach warrant high confidence in data quality. PMID:27188316

  4. New insight into structural heterogeneity beneath Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2007-12-01

    To know whether the Eurasian lithosphere subducts beneath Taiwan is an important issue for a better understanding of mountain building, arc magmatism and plate collision in the western Pacific region. High- resolution 3-D velocity images are estimated at depths of 0-400 km beneath Taiwan by inverting a large number of arrival times from local and teleseismic events simultaneously. We used 215,676 P-wave arrival time data from 6782 shallow and intermediate-depth earthquakes that are located in and around the Taiwan Island. We also used 12,078 P-wave arrival times that are collected from 3-componenet seismograms of 1108 teleseismic events recorded by the networks installed by Taiwan, Japan and China. Our tomographic images provide further direct geophysical evidence for the tectonic models proposed by previous studies and revealed some new features of structural heterogeneity related to the subducted Eurasian lithosphere and the subducting Philippine Sea slab. Low-velocity anomalies beneath the active volcanoes are visible in the subduction zone of Taiwan, which might caused by the collision between the subducted Eurasian plate and the subducting Philippine Sea slab. In the southern portion of Taiwan, the Eurasian lithosphere is clearly imaged as a high velocity zone with a thickness of 65-80 km and subducted down to a depth of 300 km, whilst it has not been observed beneath North Taiwan. Despite that the existence of subducted Eurasia slab beneath Taiwan has been documented by Lellamant et al. (2001), the present study is the first one to provide high-resolution image and indicate that the Eurasian lithosphere stops at the depth of 300 km beneath South Taiwan but not under North Taiwan. Meanwhile, the present tomographic results are also coherent well with the geology and with plate reconstructions in the region. The previous study proposed that the plate convergence rate is constant at about 7 cm/yr (Seno et al., 1993), it takes about 4-5 Ma for the subducted slab

  5. Are neonicotinoid insecticides driving declines of widespread butterflies?

    PubMed Central

    Bunnefeld, Nils; Wilson, John McVean; Botham, Marc S.; Brereton, Tom M.; Fox, Richard; Goulson, Dave

    2015-01-01

    There has been widespread concern that neonicotinoid pesticides may be adversely impacting wild and managed bees for some years, but recently attention has shifted to examining broader effects they may be having on biodiversity. For example in the Netherlands, declines in insectivorous birds are positively associated with levels of neonicotinoid pollution in surface water. In England, the total abundance of widespread butterfly species declined by 58% on farmed land between 2000 and 2009 despite both a doubling in conservation spending in the UK, and predictions that climate change should benefit most species. Here we build models of the UK population indices from 1985 to 2012 for 17 widespread butterfly species that commonly occur at farmland sites. Of the factors we tested, three correlated significantly with butterfly populations. Summer temperature and the index for a species the previous year are both positively associated with butterfly indices. By contrast, the number of hectares of farmland where neonicotinoid pesticides are used is negatively associated with butterfly indices. Indices for 15 of the 17 species show negative associations with neonicotinoid usage. The declines in butterflies have largely occurred in England, where neonicotinoid usage is at its highest. In Scotland, where neonicotinoid usage is comparatively low, butterfly numbers are stable. Further research is needed urgently to show whether there is a causal link between neonicotinoid usage and the decline of widespread butterflies or whether it simply represents a proxy for other environmental factors associated with intensive agriculture. PMID:26623186

  6. Building structure-activity insights through patent mining.

    PubMed

    Tu, Meihua; Pfefferkorn, Jeffrey A; Guzman-Perez, Angel; Filipski, Kevin J

    2012-11-01

    One gap in current patent-mining practice is the lack of tools to build SAR knowledge. Here, we report a novel technique that enabled us to derive useful SAR information from the exemplified structures of a series of patents. In our approach, exemplified chemical structures were extracted from patent documents. They were grouped into structural series based on similarity and binding mode, after which the R-group table was generated. By analyzing R-group usages over time, we were able to build insights into SAR of a structural series, even though the biological activities were not available.

  7. Specific Synergist for Neonicotinoid Insecticides: IPPA08, a cis-Neonicotinoid Compound with a Unique Oxabridged Substructure.

    PubMed

    Bao, Haibo; Shao, Xusheng; Zhang, Yixi; Deng, Yayun; Xu, Xiaoyong; Liu, Zewen; Li, Zhong

    2016-06-29

    Insecticide synergists are key components to increase the control efficacy and reduce active ingredient use. Here, we describe a novel insecticide synergist with activity specific for insecticidal neonicotinoids. The synergist IPPA08, a cis configuration neonicotinoid compound with a unique oxabridged substructure, could increase the toxicity of most neonicotinoid insecticides belonging to the Insecticide Resistance Action Committee (IRAC) 4A subgroup against a range of insect species, although IPPA08 itself was almost inactive to insects at synergistic concentrations. Unfortunately, similar effects were observed on the honey bee (Apis mellifera) and the brown planthopper (Nilaparvata lugens), resistant to imidacloprid. IPPA08 did not show any effects on toxicity of insecticides with different targets, which made us define it as a neonicotinoid-specific synergist. Unlike most insecticide synergists, by inhibition of activities of detoxification enzymes, IPPA08 showed no effects on enzyme activities. The results revealed that IPPA08 worked as a synergist through a distinct way. Although the modulating insect nicotinic acetylcholine receptors (nAChRs, targets of neonicotinoid insecticides) were supposed as a possible mode of action for IPPA08 as a neonicotinoid-specific synergist, direct evidence is needed in further studies. In insect pest control, IPPA08 acts as a target synergist to increase neonicotinoid toxicity and reduce the amount of neonicotinoid used. Combinations of IPPA08 and insecticidal neonicotinoids may be developed into new insecticide formulations. In summary, combining an active ingredient with a "custom" synergist appears to be a very promising approach for the development of effective new insecticide products. PMID:27281691

  8. Seed coating with a neonicotinoid insecticide negatively affects wild bees.

    PubMed

    Rundlöf, Maj; Andersson, Georg K S; Bommarco, Riccardo; Fries, Ingemar; Hederström, Veronica; Herbertsson, Lina; Jonsson, Ove; Klatt, Björn K; Pedersen, Thorsten R; Yourstone, Johanna; Smith, Henrik G

    2015-05-01

    Understanding the effects of neonicotinoid insecticides on bees is vital because of reported declines in bee diversity and distribution and the crucial role bees have as pollinators in ecosystems and agriculture. Neonicotinoids are suspected to pose an unacceptable risk to bees, partly because of their systemic uptake in plants, and the European Union has therefore introduced a moratorium on three neonicotinoids as seed coatings in flowering crops that attract bees. The moratorium has been criticized for being based on weak evidence, particularly because effects have mostly been measured on bees that have been artificially fed neonicotinoids. Thus, the key question is how neonicotinoids influence bees, and wild bees in particular, in real-world agricultural landscapes. Here we show that a commonly used insecticide seed coating in a flowering crop can have serious consequences for wild bees. In a study with replicated and matched landscapes, we found that seed coating with Elado, an insecticide containing a combination of the neonicotinoid clothianidin and the non-systemic pyrethroid β-cyfluthrin, applied to oilseed rape seeds, reduced wild bee density, solitary bee nesting, and bumblebee colony growth and reproduction under field conditions. Hence, such insecticidal use can pose a substantial risk to wild bees in agricultural landscapes, and the contribution of pesticides to the global decline of wild bees may have been underestimated. The lack of a significant response in honeybee colonies suggests that reported pesticide effects on honeybees cannot always be extrapolated to wild bees.

  9. Molecular Effects of Neonicotinoids in Honey Bees (Apis mellifera).

    PubMed

    Christen, Verena; Mittner, Fabian; Fent, Karl

    2016-04-01

    Neonicotinoids are implicated in the decline of bee populations. As agonists of nicotinic acetylcholine receptors, they disturb acetylcholine receptor signaling leading to neurotoxicity. Several behavioral studies showed the link between neonicotinoid exposure and adverse effects on foraging activity and reproduction. However, molecular effects underlying these effects are poorly understood. Here we elucidated molecular effects at environmental realistic levels of three neonicotinoids and nicotine, and compared laboratory studies to field exposures with acetamiprid. We assessed transcriptional alterations of eight selected genes in caged honey bees exposed to different concentrations of the neonicotinoids acetamiprid, clothianidin, imidacloporid, and thiamethoxam, as well as nicotine. We determined transcripts of several targets, including nicotinic acetylcholine receptor α 1 and α 2 subunit, the multifunctional gene vitellogenin, immune system genes apidaecin and defensin-1, stress-related gene catalase and two genes linked to memory formation, pka and creb. Vitellogenin showed a strong increase upon neonicotinoid exposures in the laboratory and field, while creb and pka transcripts were down-regulated. The induction of vitellogenin suggests adverse effects on foraging activity, whereas creb and pka down-regulation may be implicated in decreased long-term memory formation. Transcriptional alterations occurred at environmental concentrations and provide an explanation for the molecular basis of observed adverse effects of neonicotinoids to bees. PMID:26990785

  10. The global status of insect resistance to neonicotinoid insecticides.

    PubMed

    Bass, Chris; Denholm, Ian; Williamson, Martin S; Nauen, Ralf

    2015-06-01

    The first neonicotinoid insecticide, imidacloprid, was launched in 1991. Today this class of insecticides comprises at least seven major compounds with a market share of more than 25% of total global insecticide sales. Neonicotinoid insecticides are highly selective agonists of insect nicotinic acetylcholine receptors and provide farmers with invaluable, highly effective tools against some of the world's most destructive crop pests. These include sucking pests such as aphids, whiteflies, and planthoppers, and also some coleopteran, dipteran and lepidopteran species. Although many insect species are still successfully controlled by neonicotinoids, their popularity has imposed a mounting selection pressure for resistance, and in several species resistance has now reached levels that compromise the efficacy of these insecticides. Research to understand the molecular basis of neonicotinoid resistance has revealed both target-site and metabolic mechanisms conferring resistance. For target-site resistance, field-evolved mutations have only been characterized in two aphid species. Metabolic resistance appears much more common, with the enhanced expression of one or more cytochrome P450s frequently reported in resistant strains. Despite the current scale of resistance, neonicotinoids remain a major component of many pest control programmes, and resistance management strategies, based on mode of action rotation, are of crucial importance in preventing resistance becoming more widespread. In this review we summarize the current status of neonicotinoid resistance, the biochemical and molecular mechanisms involved, and the implications for resistance management.

  11. Seed coating with a neonicotinoid insecticide negatively affects wild bees.

    PubMed

    Rundlöf, Maj; Andersson, Georg K S; Bommarco, Riccardo; Fries, Ingemar; Hederström, Veronica; Herbertsson, Lina; Jonsson, Ove; Klatt, Björn K; Pedersen, Thorsten R; Yourstone, Johanna; Smith, Henrik G

    2015-05-01

    Understanding the effects of neonicotinoid insecticides on bees is vital because of reported declines in bee diversity and distribution and the crucial role bees have as pollinators in ecosystems and agriculture. Neonicotinoids are suspected to pose an unacceptable risk to bees, partly because of their systemic uptake in plants, and the European Union has therefore introduced a moratorium on three neonicotinoids as seed coatings in flowering crops that attract bees. The moratorium has been criticized for being based on weak evidence, particularly because effects have mostly been measured on bees that have been artificially fed neonicotinoids. Thus, the key question is how neonicotinoids influence bees, and wild bees in particular, in real-world agricultural landscapes. Here we show that a commonly used insecticide seed coating in a flowering crop can have serious consequences for wild bees. In a study with replicated and matched landscapes, we found that seed coating with Elado, an insecticide containing a combination of the neonicotinoid clothianidin and the non-systemic pyrethroid β-cyfluthrin, applied to oilseed rape seeds, reduced wild bee density, solitary bee nesting, and bumblebee colony growth and reproduction under field conditions. Hence, such insecticidal use can pose a substantial risk to wild bees in agricultural landscapes, and the contribution of pesticides to the global decline of wild bees may have been underestimated. The lack of a significant response in honeybee colonies suggests that reported pesticide effects on honeybees cannot always be extrapolated to wild bees. PMID:25901681

  12. Signal Transduction in Histidine Kinases: Insights from New Structures

    PubMed Central

    Bhate, Manasi P.; Molnar, Kathleen S.; Goulian, Mark; DeGrado, William F.

    2015-01-01

    Histidine kinases (HKs) are major players in bacterial signaling. There has been an explosion of new HK crystal structures in the last five years. We globally analyze the structures of HKs to yield insights into the mechanisms by which signals are transmitted to and across protein structures in this family. We interpret known enzymological data in the context of new structural data to show how asymmetry across the dimer interface is a key feature of signal transduction in HKs, and discuss how different HK domains undergo asymmetric-to-symmetric transitions during signal transduction and catalysis. A thermodynamic framework for signaling that encompasses these various properties is presented and the consequences of weak thermodynamic coupling are discussed. The synthesis of observations from enzymology, structural biology, protein engineering and thermodynamics paves the way for a deeper molecular understanding of histidine kinase signal transduction. PMID:25982528

  13. Opioid receptors: Structural and mechanistic insights into pharmacology and signaling.

    PubMed

    Shang, Yi; Filizola, Marta

    2015-09-15

    Opioid receptors are important drug targets for pain management, addiction, and mood disorders. Although substantial research on these important subtypes of G protein-coupled receptors has been conducted over the past two decades to discover ligands with higher specificity and diminished side effects, currently used opioid therapeutics remain suboptimal. Luckily, recent advances in structural biology of opioid receptors provide unprecedented insights into opioid receptor pharmacology and signaling. We review here a few recent studies that have used the crystal structures of opioid receptors as a basis for revealing mechanistic details of signal transduction mediated by these receptors, and for the purpose of drug discovery.

  14. Monitoring changes in bemisia tabaci susceptibility to neonicotinoid insecticides in Arizona and California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory bioassays were carried out on field-collected and laboratory strains of Bemisia tabaci to evaluate relative toxicities of four neonicotinoid insecticides: acetamiprid, dinotefuran, imidacloprid and thiamethoxam. Susceptibility to all four neonicotinoids in leaf-uptake bioassays varied co...

  15. Insights into the biology of Escherichia coli through structural proteomics.

    PubMed

    Matte, Allan; Jia, Zongchao; Sunita, S; Sivaraman, J; Cygler, Miroslaw

    2007-09-01

    Escherichia coli has historically been an important organism for understanding a multitude of biological processes, and represents a model system as we attempt to simulate the workings of living cells. Many E. coli strains are also important human and animal pathogens for which new therapeutic strategies are required. For both reasons, a more complete and comprehensive understanding of the protein structure complement of E. coli is needed at the genome level. Here, we provide examples of insights into the mechanism and function of bacterial proteins that we have gained through the Bacterial Structural Genomics Initiative (BSGI), focused on medium-throughput structure determination of proteins from E. coli. We describe the structural characterization of several enzymes from the histidine biosynthetic pathway, the structures of three pseudouridine synthases, enzymes that synthesize one of the most abundant modified bases in RNA, as well as the combined use of protein structure and focused functional analysis to decipher functions for hypothetical proteins. Together, these results illustrate the power of structural genomics to contribute to a deeper biological understanding of bacterial processes.

  16. Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins.

    PubMed

    Xu, Chengchen; Wang, Bi-Cheng; Yu, Ziniu; Sun, Ming

    2014-09-16

    Since the first X-ray structure of Cry3Aa was revealed in 1991, numerous structures of B. thuringiensis toxins have been determined and published. In recent years, functional studies on the mode of action and resistance mechanism have been proposed, which notably promoted the developments of biological insecticides and insect-resistant transgenic crops. With the exploration of known pore-forming toxins (PFTs) structures, similarities between PFTs and B. thuringiensis toxins have provided great insights into receptor binding interactions and conformational changes from water-soluble to membrane pore-forming state of B. thuringiensis toxins. This review mainly focuses on the latest discoveries of the toxin working mechanism, with the emphasis on structural related progress. Based on the structural features, B. thuringiensis Cry, Cyt and parasporin toxins could be divided into three categories: three-domain type α-PFTs, Cyt toxin type β-PFTs and aerolysin type β-PFTs. Structures from each group are elucidated and discussed in relation to the latest data, respectively.

  17. Neonicotinoid insecticides can serve as inadvertent insect contraceptives

    PubMed Central

    Villamar-Bouza, Laura; Bruckner, Selina; Chantawannakul, Panuwan; Gauthier, Laurent; Khongphinitbunjong, Kitiphong; Retschnig, Gina; Troxler, Aline; Vidondo, Beatriz; Neumann, Peter; Williams, Geoffrey R.

    2016-01-01

    There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera. Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts. PMID:27466446

  18. Neonicotinoid insecticides can serve as inadvertent insect contraceptives.

    PubMed

    Straub, Lars; Villamar-Bouza, Laura; Bruckner, Selina; Chantawannakul, Panuwan; Gauthier, Laurent; Khongphinitbunjong, Kitiphong; Retschnig, Gina; Troxler, Aline; Vidondo, Beatriz; Neumann, Peter; Williams, Geoffrey R

    2016-07-27

    There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts.

  19. Neonicotinoid insecticides can serve as inadvertent insect contraceptives.

    PubMed

    Straub, Lars; Villamar-Bouza, Laura; Bruckner, Selina; Chantawannakul, Panuwan; Gauthier, Laurent; Khongphinitbunjong, Kitiphong; Retschnig, Gina; Troxler, Aline; Vidondo, Beatriz; Neumann, Peter; Williams, Geoffrey R

    2016-07-27

    There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts. PMID:27466446

  20. Structural insights into bacterial recognition of intestinal mucins.

    PubMed

    Etzold, Sabrina; Juge, Nathalie

    2014-10-01

    The mucosal layer covering our gut epithelium represents the first line of host defenses against the luminal content, while enabling contacts between the resident microbiota and the host. Mucus is mainly composed of mucins, large glycoproteins containing a protein core and a high number of O-linked oligosaccharides. Mucin glycans act as binding sites or carbon sources for the intestinal microbes, thereby functioning as a host-specific determinant affecting the microbiota composition and human health. Reflecting the structural diversity of mucin glycans and their prime location, commensal and pathogenic microbes have evolved a range of adhesins allowing their interaction with the host. However, despite the recognised importance of mucin glycans in modulating intestinal homeostasis, information on carbohydrate-binding proteins from gut bacteria is disparate. This review is focussed on recent structural insights into host-microbe interactions mediated by mucins.

  1. Structural insight into the lactoferrin receptors from pathogenic Neisseria.

    PubMed

    Noinaj, Nicholas; Cornelissen, Cynthia Nau; Buchanan, Susan K

    2013-10-01

    Neisseria are pathogenic bacteria that cause gonorrhea, septicemia, and meningitis. Like other pathogenic bacteria, Neisseria must acquire iron for survival from their local environment within the human host. Instead of secreting siderophores to scavenge iron, Neisseria steal iron from human iron binding proteins such as hemoglobin, transferrin and lactoferrin for survival. Recently we reported the crystal structures of the Neisseria meningitidis transferrin receptors TbpA and TbpB, as well as the structures of apo and holo human transferrin. We also analyzed these proteins using small angle X-ray scattering and electron microscopy to provide the molecular details explaining how Neisseria are able to interact with and extract iron from transferrin. Here, we utilize the structural reports, as well as the recently reported structure of the N-lobe of LbpB from Moraxella bovis, to assemble improved 3D homology models for the neisserial lactoferrin import receptors LbpA and LbpB, both of which are important vaccine targets against N. meningitidis. We then analyzed these models to gain structural insights into the lactoferrin-iron import system and form a mechanistic model fashioned in parallel to the homologous transferrin-iron import system.

  2. Initial insights into structure-activity relationships of avian defensins.

    PubMed

    Derache, Chrystelle; Meudal, Hervé; Aucagne, Vincent; Mark, Kevin J; Cadène, Martine; Delmas, Agnès F; Lalmanach, Anne-Christine; Landon, Céline

    2012-03-01

    Numerous β-defensins have been identified in birds, and the potential use of these peptides as alternatives to antibiotics has been proposed, in particular to fight antibiotic-resistant and zoonotic bacterial species. Little is known about the mechanism of antibacterial activity of avian β-defensins, and this study was carried out to obtain initial insights into the involvement of structural features or specific residues in the antimicrobial activity of chicken AvBD2. Chicken AvBD2 and its enantiomeric counterpart were chemically synthesized. Peptide elongation and oxidative folding were both optimized. The similar antimicrobial activity measured for both L- and D-proteins clearly indicates that there is no chiral partner. Therefore, the bacterial membrane is in all likelihood the primary target. Moreover, this work indicates that the three-dimensional fold is required for an optimal antimicrobial activity, in particular for gram-positive bacterial strains. The three-dimensional NMR structure of chicken AvBD2 defensin displays the structural three-stranded antiparallel β-sheet characteristic of β-defensins. The surface of the molecule does not display any amphipathic character. In light of this new structure and of the king penguin AvBD103b defensin structure, the consensus sequence of the avian β-defensin family was analyzed. Well conserved residues were highlighted, and the potential strategic role of the lysine 31 residue of AvBD2 was emphasized. The synthetic AvBD2-K31A variant displayed substantial N-terminal structural modifications and a dramatic decrease in activity. Taken together, these results demonstrate the structural as well as the functional role of the critical lysine 31 residue in antimicrobial activity. PMID:22205704

  3. Structural Insights into Reelin Function: Present and Future

    PubMed Central

    Ranaivoson, Fanomezana M.; von Daake, Sventja; Comoletti, Davide

    2016-01-01

    Reelin is a neuronal glycoprotein secreted by the Cajal-Retzius cells in marginal regions of the cerebral cortex and the hippocampus where it plays important roles in the control of neuronal migration and the formation of cellular layers during brain development. This 3461 residue-long protein is composed of a signal peptide, an F-spondin-like domain, eight Reelin repeats (RR1–8), and a positively charged sequence at the C-terminus. Biochemical data indicate that the central region of Reelin binds to the low-density lipoprotein receptors apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), leading to the phosphorylation of the intracellular adaptor protein Dab1. After secretion, Reelin is rapidly degraded in three major fragments, but the functional significance of this degradation is poorly understood. Probably due to its large mass and the complexity of its architecture, the high-resolution, three-dimensional structure of Reelin has never been determined. However, the crystal structures of some of the RRs have been solved, providing important insights into their fold and the interaction with the ApoER2 receptor. This review discusses the current findings on the structure of Reelin and its binding to the ApoER2 and VLDLR receptors, and we discuss some areas where proteomics and structural biology can help understanding Reelin function in brain development and human health. PMID:27303268

  4. Insights from the Sea: Structural Biology of Marine Polyketide Synthases

    PubMed Central

    Akey, David L.; Gehret, Jennifer J.; Khare, Dheeraj; Smith, Janet L.

    2013-01-01

    The world’s oceans are a rich source of natural products with extremely interesting chemistry. Biosynthetic pathways have been worked out for a few, and the story is being enriched with crystal structures of interesting pathway enzymes. By far, the greatest number of structural insights from marine biosynthetic pathways has originated with studies of curacin A, a poster child for interesting marine chemistry with its cyclopropane and thiazoline rings, internal cis double bond, and terminal alkene. Using the curacin A pathway as a model, structural details are now available for a novel loading enzyme with remarkable dual decarboxylase and acetyltransferase activities, an Fe2+/α-ketoglutarate-dependent halogenase that dictates substrate binding order through conformational changes, a decarboxylase that establishes regiochemistry for cyclopropane formation, and a thioesterase with specificity for β-sulfated substrates that lead to terminal alkene offloading. The four curacin A pathway dehydratases reveal an intrinsic flexibility that may accommodate bulky or stiff polyketide intermediates. In the salinosporamide A pathway, active site volume determines the halide specificity of a halogenase that catalyzes for the synthesis of a halogenated building block. Structures of a number of putative polyketide cyclases may help in understanding reaction mechanisms and substrate specificities although their substrates are presently unknown. PMID:22498975

  5. Structure Prediction: New Insights into Decrypting Long Noncoding RNAs

    PubMed Central

    Yan, Kun; Arfat, Yasir; Li, Dijie; Zhao, Fan; Chen, Zhihao; Yin, Chong; Sun, Yulong; Hu, Lifang; Yang, Tuanmin; Qian, Airong

    2016-01-01

    Long noncoding RNAs (lncRNAs), which form a diverse class of RNAs, remain the least understood type of noncoding RNAs in terms of their nature and identification. Emerging evidence has revealed that a small number of newly discovered lncRNAs perform important and complex biological functions such as dosage compensation, chromatin regulation, genomic imprinting, and nuclear organization. However, understanding the wide range of functions of lncRNAs related to various processes of cellular networks remains a great experimental challenge. Structural versatility is critical for RNAs to perform various functions and provides new insights into probing the functions of lncRNAs. In recent years, the computational method of RNA structure prediction has been developed to analyze the structure of lncRNAs. This novel methodology has provided basic but indispensable information for the rapid, large-scale and in-depth research of lncRNAs. This review focuses on mainstream RNA structure prediction methods at the secondary and tertiary levels to offer an additional approach to investigating the functions of lncRNAs. PMID:26805815

  6. Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches

    PubMed Central

    MÜLLER, DANIEL J.; WU, NAN; PALCZEWSKI, KRZYSZTOF

    2008-01-01

    Membrane proteins are key targets for pharmacological intervention because they are vital for cellular function. Here, we analyze recent progress made in the understanding of the structure and function of membrane proteins with a focus on rhodopsin and development of atomic force microscopy techniques to study biological membranes. Membrane proteins are compartmentalized to carry out extra- and intracellular processes. Biological membranes are densely populated with membrane proteins that occupy approximately 50% of their volume. In most cases membranes contain lipid rafts, protein patches, or paracrystalline formations that lack the higher-order symmetry that would allow them to be characterized by diffraction methods. Despite many technical difficulties, several crystal structures of membrane proteins that illustrate their internal structural organization have been determined. Moreover, high-resolution atomic force microscopy, near-field scanning optical microscopy, and other lower resolution techniques have been used to investigate these structures. Single-molecule force spectroscopy tracks interactions that stabilize membrane proteins and those that switch their functional state; this spectroscopy can be applied to locate a ligand-binding site. Recent development of this technique also reveals the energy landscape of a membrane protein, defining its folding, reaction pathways, and kinetics. Future development and application of novel approaches during the coming years should provide even greater insights to the understanding of biological membrane organization and function. PMID:18321962

  7. Structural insights into transcription initiation by RNA polymerase II

    PubMed Central

    Grünberg, Sebastian; Hahn, Steven

    2013-01-01

    Transcriptional regulation is one of the most important steps in control of cell identity, growth, differentiation and development. Many signaling pathways controlling these processes ultimately target the core transcription machinery that, for protein coding genes, consists of RNA polymerase II (Pol II) and the general transcription factors (GTFs). New studies on the structure and mechanism of the core assembly and how it interfaces with promoter DNA and coactivator complexes have given tremendous insight into early steps in the initiation process, genome-wide binding, and mechanisms conserved for all nuclear and archaeal Pols. Here we review recent developments in dissecting the architecture of the Pol II core machinery with a focus on early and regulated steps in transcription initiation. PMID:24120742

  8. Magnetic apatite for structural insights on the plasma membrane.

    PubMed

    Stanca, Sarmiza E; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-21

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  9. Magnetic apatite for structural insights on the plasma membrane

    NASA Astrophysics Data System (ADS)

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  10. Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa

    SciTech Connect

    Wang, T.; Li, H; Lin, G; Tang, C; Li, D; Nathan, C; Heran Darwin, K

    2009-01-01

    Proteasome-mediated protein turnover in all domains of life is an energy-dependent process that requires ATPase activity. Mycobacterium tuberculosis (Mtb) was recently shown to possess a ubiquitin-like proteasome pathway that plays an essential role in Mtb resistance to killing by products of host macrophages. Here we report our structural and biochemical investigation of Mpa, the presumptive Mtb proteasomal ATPase. We demonstrate that Mpa binds to the Mtb proteasome in the presence of ATPS, providing the physical evidence that Mpa is the proteasomal ATPase. X-ray crystallographic determination of the conserved interdomain showed a five stranded double {beta} barrel structure containing a Greek key motif. Structure and mutational analysis indicate a major role of the interdomain for Mpa hexamerization. Our mutational and functional studies further suggest that the central channel in the Mpa hexamer is involved in protein substrate translocation and degradation. These studies provide insights into how a bacterial proteasomal ATPase interacts with and facilitates protein degradation by the proteasome.

  11. Structural insights of a hormone sensitive lipase homologue Est22.

    PubMed

    Huang, Jing; Huo, Ying-Yi; Ji, Rui; Kuang, Siyun; Ji, Chaoneng; Xu, Xue-Wei; Li, Jixi

    2016-01-01

    Hormone sensitive lipase (HSL) catalyzes the hydrolysis of triacylglycerols into fatty acids and glycerol, thus playing key roles in energy homeostasis. However, the application of HSL serving as a pharmaceutical target and an industrial biocatalyst is largely hampered due to the lack of high-resolution structural information. Here we report biochemical properties and crystal structures of a novel HSL homologue esterase Est22 from a deep-sea metagenomic library. Est22 prefers short acyl chain esters and has a very high activity with substrate p-nitrophenyl butyrate. The crystal structures of wild type and mutated Est22 with its product p-nitrophenol are solved with resolutions ranging from 1.4 Å to 2.43 Å. The Est22 exhibits a α/β-hydrolase fold consisting with a catalytic domain and a substrate-recognizing cap domain. Residues Ser188, Asp287, and His317 comprise the catalytic triad in the catalytic domain. The p-nitrophenol molecule occupies the substrate binding pocket and forms hydrogen bonds with adjacent residues Gly108, Gly109, and Gly189. Est22 exhibits a dimeric form in solution, whereas mutants D287A and H317A change to polymeric form, which totally abolished its enzymatic activities. Our study provides insights into the catalytic mechanism of HSL family esterase and facilitates the understanding for further industrial and biotechnological applications of esterases. PMID:27328716

  12. Structural insights of a hormone sensitive lipase homologue Est22

    PubMed Central

    Huang, Jing; Huo, Ying-Yi; Ji, Rui; Kuang, Siyun; Ji, Chaoneng; Xu, Xue-Wei; Li, Jixi

    2016-01-01

    Hormone sensitive lipase (HSL) catalyzes the hydrolysis of triacylglycerols into fatty acids and glycerol, thus playing key roles in energy homeostasis. However, the application of HSL serving as a pharmaceutical target and an industrial biocatalyst is largely hampered due to the lack of high-resolution structural information. Here we report biochemical properties and crystal structures of a novel HSL homologue esterase Est22 from a deep-sea metagenomic library. Est22 prefers short acyl chain esters and has a very high activity with substrate p-nitrophenyl butyrate. The crystal structures of wild type and mutated Est22 with its product p-nitrophenol are solved with resolutions ranging from 1.4 Å to 2.43 Å. The Est22 exhibits a α/β-hydrolase fold consisting with a catalytic domain and a substrate-recognizing cap domain. Residues Ser188, Asp287, and His317 comprise the catalytic triad in the catalytic domain. The p-nitrophenol molecule occupies the substrate binding pocket and forms hydrogen bonds with adjacent residues Gly108, Gly109, and Gly189. Est22 exhibits a dimeric form in solution, whereas mutants D287A and H317A change to polymeric form, which totally abolished its enzymatic activities. Our study provides insights into the catalytic mechanism of HSL family esterase and facilitates the understanding for further industrial and biotechnological applications of esterases. PMID:27328716

  13. Eukaryotic V-ATPase: novel structural findings and functional insights.

    PubMed

    Marshansky, Vladimir; Rubinstein, John L; Grüber, Gerhard

    2014-06-01

    The eukaryotic V-type adenosine triphosphatase (V-ATPase) is a multi-subunit membrane protein complex that is evolutionarily related to F-type adenosine triphosphate (ATP) synthases and A-ATP synthases. These ATPases/ATP synthases are functionally conserved and operate as rotary proton-pumping nano-motors, invented by Nature billions of years ago. In the first part of this review we will focus on recent structural findings of eukaryotic V-ATPases and discuss the role of different subunits in the function of the V-ATPase holocomplex. Despite structural and functional similarities between rotary ATPases, the eukaryotic V-ATPases are the most complex enzymes that have acquired some unconventional cellular functions during evolution. In particular, the novel roles of V-ATPases in the regulation of cellular receptors and their trafficking via endocytotic and exocytotic pathways were recently uncovered. In the second part of this review we will discuss these unique roles of V-ATPases in modulation of function of cellular receptors, involved in the development and progression of diseases such as cancer and diabetes as well as neurodegenerative and kidney disorders. Moreover, it was recently revealed that the V-ATPase itself functions as an evolutionarily conserved pH sensor and receptor for cytohesin-2/Arf-family GTP-binding proteins. Thus, in the third part of the review we will evaluate the structural basis for and functional insights into this novel concept, followed by the analysis of the potentially essential role of V-ATPase in the regulation of this signaling pathway in health and disease. Finally, future prospects for structural and functional studies of the eukaryotic V-ATPase will be discussed.

  14. Nanoscale insights on one- and two-dimensional material structures

    NASA Astrophysics Data System (ADS)

    Floresca, Herman Carlo

    The race for smaller, faster and more efficient devices has led researchers to explore the possibilities of utilizing nanostructures for scaling. These one-dimensional and two-dimensional materials have properties that are attractive for this purpose but are still not well controlled. Control comes with a complete understanding of the materials' electrical, thermal, optical and structural characteristics but is difficult to obtain due to their small scale. This work is intended to help researchers overcome the difficulty in studying nanostructures by providing techniques for analysis and insights of nanostructures that have not been previously available. Two nanostructures were studied: silicon nanowires and graphene. The nanowires were prepared for cross-section transmission electron microscopy (TEM) to discover the effects that controlled oxidation has on the dimensions and shape of the nanowires. Since cross-section TEM is not able to provide information about surface structure, a method for manipulating the wires with orientation control was developed. With this ability, all three orthogonal views of the nanowire were compiled for a comprehensive study on its structure in terms of shape and surface roughness. Graphene was used for a two-dimensional analytical technique that took advantage of customized computer programs for data acquisition, measurement and display. With the information provided, distinctions between grain boundary types in polycrystalline graphene were made and supported by statistical information from the software's output. It was also applied to a growth series of graphene samples in conjunction with scanning electron microscopy (SEM) images and electron backscatter diffraction (EBSD) maps. The results help point to origins of graphene's polycrystalline nature. This dissertation concludes with a thought towards the future by highlighting a method that can help analyze nanostructures, which may become incorporated into the structures of large

  15. Structural Insight into HIV-1 Restriction by MxB

    PubMed Central

    Alvarez, Frances Joan D.; Summers, Brady J.; Dewdney, Tamaria G.; Aiken, Christopher; Zhang, Peijun; Engelman, Alan; Xiong, Yong

    2014-01-01

    Summary The myxovirus resistance (Mx) proteins are interferon-induced dynamin GTPases that can inhibit a variety of viruses. Recently, MxB, but not MxA, was shown to restrict HIV-1 by an unknown mechanism that likely occurs in close proximity to the host cell nucleus and involves the viral capsid. Here, we present the crystal structure of MxB and reveal determinants involved in HIV-1 restriction. MxB adopts an extended anti-parallel dimer and dimerization, but not higher-ordered oligomerization, is critical for restriction. Although MxB is structurally similar to MxA, the orientation of individual domains differs between MxA and MxB and their antiviral functions rely on separate determinants, indicating distinct mechanisms for virus inhibition. Additionally, MxB directly binds the HIV-1 capsid and this interaction depends on dimerization and the N-terminus of MxB as well as the assembled capsid lattice. These insights establish a framework for understanding the mechanism by which MxB restricts HIV-1. PMID:25312384

  16. Structural insights into anaphase-promoting complex function and mechanism

    PubMed Central

    Barford, David

    2011-01-01

    The anaphase-promoting complex or cyclosome (APC/C) controls sister chromatid segregation and the exit from mitosis by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. This unusually large E3 RING-cullin ubiquitin ligase is assembled from 13 different proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D box and KEN box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. Recent structural and biochemical studies of the APC/C are beginning to reveal an understanding of the roles of individual APC/C subunits and co-activators and how they mutually interact to mediate APC/C functions. This review focuses on the findings showing how information on the structural organization of the APC/C provides insights into the role of co-activators and core APC/C subunits in mediating substrate recognition. Mechanisms of regulating and modulating substrate recognition are discussed in the context of controlling the binding of the co-activator to the APC/C, and the accessibility and conformation of the co-activator when bound to the APC/C. PMID:22084387

  17. Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees.

    PubMed

    Henry, Mickaël; Cerrutti, Nicolas; Aupinel, Pierrick; Decourtye, Axel; Gayrard, Mélanie; Odoux, Jean-François; Pissard, Aurélien; Rüger, Charlotte; Bretagnolle, Vincent

    2015-11-22

    European governments have banned the use of three common neonicotinoid pesticides due to insufficiently identified risks to bees. This policy decision is controversial given the absence of clear consistency between toxicity assessments of those substances in the laboratory and in the field. Although laboratory trials report deleterious effects in honeybees at trace levels, field surveys reveal no decrease in the performance of honeybee colonies in the vicinity of treated fields. Here we provide the missing link, showing that individual honeybees near thiamethoxam-treated fields do indeed disappear at a faster rate, but the impact of this is buffered by the colonies' demographic regulation response. Although we could ascertain the exposure pathway of thiamethoxam residues from treated flowers to honeybee dietary nectar, we uncovered an unexpected pervasive co-occurrence of similar concentrations of imidacloprid, another neonicotinoid normally restricted to non-entomophilous crops in the study country. Thus, its origin and transfer pathways through the succession of annual crops need be elucidated to conveniently appraise the risks of combined neonicotinoid exposures. This study reconciles the conflicting laboratory and field toxicity assessments of neonicotinoids on honeybees and further highlights the difficulty in actually detecting non-intentional effects on the field through conventional risk assessment methods.

  18. Effective extraction method for determination of neonicotinoid residues in tea.

    PubMed

    Hou, Ru-Yan; Jiao, Wei-Ting; Qian, Xiao-San; Wang, Xiao-Hui; Xiao, Yu; Wan, Xiao-Chun

    2013-12-26

    Sample preparation using an absorbent for removal of polyphenols and a solid-phase extraction (SPE) cartridge for cleanup followed by high-performance liquid chromatography (HPLC) has been investigated for the simultaneous determination of eight neonicotinoid insecticides (dinotefuran, nitenpyram, thiamethoxam, imidacloprid, clothianidin, imidaclothiz, acetamiprid, and thiacloprid). After tea samples were soaked with water and extracted with acetonitrile, sample extracts were treated with an appropriate amount of polyvinylpolypyrrolidone (PVPP) to effectively remove polyphenols. The treated extract was cleaned up with a Carb-PSA cartridge. Neonicotinoid insecticides were eluted with acetonitrile from the cartridge and dried. The extract was redissolved with methanol/water (1:9, v/v) and analyzed by conventional HPLC coupled with an ultraviolet detector. The recoveries of eight neonicotinoid insecticides in tea samples were 71.4-106.6% at 0.1-1.0 mg kg(-1) spiked levels. Relative standard deviations were <10% for all of the recovery tests. The established method was simple, effective, and accurate and could be used for monitoring neonicotinoid insecticides in tea. PMID:24308380

  19. Declines in insectivorous birds are associated with high neonicotinoid concentrations.

    PubMed

    Hallmann, Caspar A; Foppen, Ruud P B; van Turnhout, Chris A M; de Kroon, Hans; Jongejans, Eelke

    2014-07-17

    Recent studies have shown that neonicotinoid insecticides have adverse effects on non-target invertebrate species. Invertebrates constitute a substantial part of the diet of many bird species during the breeding season and are indispensable for raising offspring. We investigated the hypothesis that the most widely used neonicotinoid insecticide, imidacloprid, has a negative impact on insectivorous bird populations. Here we show that, in the Netherlands, local population trends were significantly more negative in areas with higher surface-water concentrations of imidacloprid. At imidacloprid concentrations of more than 20 nanograms per litre, bird populations tended to decline by 3.5 per cent on average annually. Additional analyses revealed that this spatial pattern of decline appeared only after the introduction of imidacloprid to the Netherlands, in the mid-1990s. We further show that the recent negative relationship remains after correcting for spatial differences in land-use changes that are known to affect bird populations in farmland. Our results suggest that the impact of neonicotinoids on the natural environment is even more substantial than has recently been reported and is reminiscent of the effects of persistent insecticides in the past. Future legislation should take into account the potential cascading effects of neonicotinoids on ecosystems. PMID:25030173

  20. Effects of neonicotinoids and fipronil on non-target invertebrates.

    PubMed

    Pisa, L W; Amaral-Rogers, V; Belzunces, L P; Bonmatin, J M; Downs, C A; Goulson, D; Kreutzweiser, D P; Krupke, C; Liess, M; McField, M; Morrissey, C A; Noome, D A; Settele, J; Simon-Delso, N; Stark, J D; Van der Sluijs, J P; Van Dyck, H; Wiemers, M

    2015-01-01

    We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section "other invertebrates" review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large

  1. Insights into structural variations and genome rearrangements in prokaryotic genomes.

    PubMed

    Periwal, Vinita; Scaria, Vinod

    2015-01-01

    Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing.

  2. Quantitative analysis of neonicotinoid insecticide residues in foods: implication for dietary exposures.

    PubMed

    Chen, Mei; Tao, Lin; McLean, John; Lu, Chensheng

    2014-07-01

    This study quantitatively measured neonicotinoids in various foods that are common to human consumption. All fruit and vegetable samples (except nectarine and tomato) and 90% of honey samples were detected positive for at least one neonicotinoid; 72% of fruits, 45% of vegetables, and 50% of honey samples contained at least two different neonicotinoids in one sample, with imidacloprid having the highest detection rate among all samples. All pollen samples from New Zealand contained multiple neonicotinoids, and five of seven pollens from Massachusetts detected positive for imidacloprid. These results show the prevalence of low-level neonicotinoid residues in fruits, vegetables, and honey that are readily available in the market for human consumption and in the environment where honeybees forage. In light of new reports of toxicological effects in mammals, the results strengthen the importance of assessing dietary neonicotinoid intakes and the potential human health effects. PMID:24933495

  3. Impacts of neonicotinoid use on long-term population changes in wild bees in England

    NASA Astrophysics Data System (ADS)

    Woodcock, Ben A.; Isaac, Nicholas J. B.; Bullock, James M.; Roy, David B.; Garthwaite, David G.; Crowe, Andrew; Pywell, Richard F.

    2016-08-01

    Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines.

  4. Quantitative Analysis of Neonicotinoid Insecticide Residues in Foods: Implication for Dietary Exposures

    PubMed Central

    2015-01-01

    This study quantitatively measured neonicotinoids in various foods that are common to human consumption. All fruit and vegetable samples (except nectarine and tomato) and 90% of honey samples were detected positive for at least one neonicotinoid; 72% of fruits, 45% of vegetables, and 50% of honey samples contained at least two different neonicotinoids in one sample, with imidacloprid having the highest detection rate among all samples. All pollen samples from New Zealand contained multiple neonicotinoids, and five of seven pollens from Massachusetts detected positive for imidacloprid. These results show the prevalence of low-level neonicotinoid residues in fruits, vegetables, and honey that are readily available in the market for human consumption and in the environment where honeybees forage. In light of new reports of toxicological effects in mammals, the results strengthen the importance of assessing dietary neonicotinoid intakes and the potential human health effects. PMID:24933495

  5. Impacts of neonicotinoid use on long-term population changes in wild bees in England.

    PubMed

    Woodcock, Ben A; Isaac, Nicholas J B; Bullock, James M; Roy, David B; Garthwaite, David G; Crowe, Andrew; Pywell, Richard F

    2016-08-16

    Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines.

  6. Impacts of neonicotinoid use on long-term population changes in wild bees in England

    PubMed Central

    Woodcock, Ben A.; Isaac, Nicholas J. B.; Bullock, James M.; Roy, David B.; Garthwaite, David G.; Crowe, Andrew; Pywell, Richard F.

    2016-01-01

    Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines. PMID:27529661

  7. Impacts of neonicotinoid use on long-term population changes in wild bees in England.

    PubMed

    Woodcock, Ben A; Isaac, Nicholas J B; Bullock, James M; Roy, David B; Garthwaite, David G; Crowe, Andrew; Pywell, Richard F

    2016-01-01

    Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines. PMID:27529661

  8. Insights.

    ERIC Educational Resources Information Center

    Bogner, Donna, Ed.

    1988-01-01

    Describes two methods to teach radioactive decay to secondary students with wide ranging abilities. Activities are designed to follow classroom discussions of atomic structure, transmutation, half life, and nuclear decay. Includes "The Tasmanian Empire: A Radioactive Dating Activity" and an exercise to teach concepts of half life without using…

  9. Development of Immunoassay Based on Monoclonal Antibody Reacted with the Neonicotinoid Insecticides Clothianidin and Dinotefuran

    PubMed Central

    Uchigashima, Mikiko; Watanabe, Eiki; Ito, Shigekazu; Iwasa, Seiji; Miyake, Shiro

    2012-01-01

    Enzyme-linked immunosorbent assay (ELISA) based on a monoclonal antibody (MoAb) was developed for the neonicotinoid insecticide clothianidin. A new clothianidin hapten (3-[5-(3-methyl-2-nitroguanidinomethyl)-1,3-thiazol-2-ylthio] propionic acid) was synthesized and conjugated to keyhole limpet hemocyanin, and was used for monoclonal antibody preparation. The resulting MoAb CTN-16A3-13 was characterized by a direct competitive ELISA (dc-ELISA). The 50% of inhibition concentration value with clothianidin was 4.4 ng/mL, and the working range was 1.5–15 ng/mL. The antibody showed high cross-reactivity (64%) to dinotefuran among the structurally related neonicotinoid insecticides. The recovery examinations of clothianidin for cucumber, tomato and apple showed highly agreement with the spiked concentrations; the recovery rate was between 104% and 124% and the coefficient of variation value was between 1.8% and 15%. Although the recovery rate of the dc-ELISA was slightly higher than that of HPLC analysis, the difference was small enough to accept the dc-ELISA as a useful method for residue analysis of clothianidin in garden crops. PMID:23202236

  10. Seismological Insights into the Structure of the Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Schlaphorst, D.; Kendall, J.; Bastow, I. D.; Baptie, B.

    2012-12-01

    Due to an overall eastwards drift of the Caribbean plate of around 2cm/year relative to the Atlantic plate, the type of the subduction along the eastern part of the Caribbean changes. Compared to the simple subduction of the Atlantic plate in the east, the northern plate boundary zone is far more complex, predominantly characterised by a left-lateral east-west strike-slip motion that includes an oblique convergence of the Bahamas carbonate banks and a pull apart basin in the Mona Passage, the sea gate between Hispaniola and Puerto Rico. The island of Hispaniola is decoupled from the Caribbean plate, which leads to a second subduction zone south of Hispaniola where the Caribbean plate subducts beneath the Hispaniola micro plate. Strictly speaking, the arc only extends to the east of the island of Puerto Rico but since most of the northern Caribbean plate boundary zone is directly linked to it the results become more directly comparable. Fed by the Orinoco River the southern part of the Lesser Antilles is a sediment-rich subduction zone, which becomes sediment-poor towards the north as the sediments get blocked by several banks, including the accretionary prism containing the island of Barbados. Here we investigate the crustal and mantle structure variation along the Antilles Arc using measurements of seismic anisotropy and receiver functions. We use data from three component broadband stations that are located from the southern end of the arc to Hispaniola in the north. Seismic anisotropy refers to directional variations in wave speeds and their polarisations. The observation of two independently propagating shear waves (splitting) is the least ambiguous indication of anisotropy. Such observations can be used to constrain mantle flow beneath subduction regions, offering insights into slab dynamics. We generally observed trench parallel orientations around the plate boundary. However, we see significant local deviations in the inferred flow pattern, for example, in

  11. Survey of neonicotinoids and fipronil in corn seeds for agriculture.

    PubMed

    Sabatino, Leonardo; Scordino, Monica; Pantò, Valentina; Chiappara, Elena; Traulo, Pasqualino; Gagliano, Giacomo

    2013-01-01

    Recently, legislative decisions withdrew or temporarily suspended the use of neonicotinoids and fipronil as seeds tanning in many countries because of their endocrine-disrupting activity imputable to the bees' toxicity. In this study, the occurrence of acetamiprid, fipronil, clothianidin, flonicamid, imidacloprid, nitenpyram, thiacloprid and thiamethoxam was detected in 66 samples of commercial treated corn seeds, collected in the Italian market in the frame of ministerial institutional quality control activity. Because of the lack of a validated analytical protocol for neonicotinoid detection in seeds, a routinely suitable liquid chromatography-tandem mass spectroscopy (LC-MS/MS) analytical method was developed and statistically validated on fortified corn seeds. Survey results demonstrated that 88% of the investigated seed samples showed the presence of residues of clothianidin, fipronil, thiamethoxam and thiacloprid, either individually or simultaneously, with values that ranged from about 0.002 to 20 mg kg(-1), which evidenced the alarming illicit use of these pesticides in seed treatments.

  12. Survey of neonicotinoids and fipronil in corn seeds for agriculture.

    PubMed

    Sabatino, Leonardo; Scordino, Monica; Pantò, Valentina; Chiappara, Elena; Traulo, Pasqualino; Gagliano, Giacomo

    2013-01-01

    Recently, legislative decisions withdrew or temporarily suspended the use of neonicotinoids and fipronil as seeds tanning in many countries because of their endocrine-disrupting activity imputable to the bees' toxicity. In this study, the occurrence of acetamiprid, fipronil, clothianidin, flonicamid, imidacloprid, nitenpyram, thiacloprid and thiamethoxam was detected in 66 samples of commercial treated corn seeds, collected in the Italian market in the frame of ministerial institutional quality control activity. Because of the lack of a validated analytical protocol for neonicotinoid detection in seeds, a routinely suitable liquid chromatography-tandem mass spectroscopy (LC-MS/MS) analytical method was developed and statistically validated on fortified corn seeds. Survey results demonstrated that 88% of the investigated seed samples showed the presence of residues of clothianidin, fipronil, thiamethoxam and thiacloprid, either individually or simultaneously, with values that ranged from about 0.002 to 20 mg kg(-1), which evidenced the alarming illicit use of these pesticides in seed treatments. PMID:24786619

  13. Biological response of earthworm, Eisenia fetida, to five neonicotinoid insecticides.

    PubMed

    Wang, Kai; Pang, Sen; Mu, Xiyan; Qi, Suzhen; Li, Dongzhi; Cui, Feng; Wang, Chengju

    2015-08-01

    Earthworms (Eisenia fetida) are one of the most abundant terrestrial species, and play an important role in maintaining the ecological function of soil. Neonicotinoids are some of the most widely used insecticides applied to crops. Studies on the effect of neonicotinoids on E. fetida are limited. In the present work, we evaluated the effects of five neonicotinoid insecticides on reproduction, cellulase activity and the tissues of E. fetida. The results showed that, the LC50 of imidacloprid, acetamiprid, nitenpyram, clothianidin and thiacloprid was 3.05, 2.69, 4.34, 0.93 and 2.68mgkg(-1), respectively. They also could seriously affect the reproduction of E. fetida, reducing the fecundity by 84.0%, 39.5%, 54.3%, 45.7% and 39.5% at the sub-lethal concentrations of 2.0, 1.5, 0.80, 2.0 and 1.5mgkg(-1), respectively. The cellulase activity of E. fetida was most sensitive to clothianidin. Significant disruption of the epidermal and midgut tissue was observed after 14d exposure. In summary, we demonstrate that imidacloprid, acetamiprid, nitenpyram, clothianidin and thiacloprid have high toxic to earthworm, and can significantly inhibited fecundity and cellulase activity of E. fetida, and they also damage the epidermal and midgut cells of earthworm. PMID:25828917

  14. Biological response of earthworm, Eisenia fetida, to five neonicotinoid insecticides.

    PubMed

    Wang, Kai; Pang, Sen; Mu, Xiyan; Qi, Suzhen; Li, Dongzhi; Cui, Feng; Wang, Chengju

    2015-08-01

    Earthworms (Eisenia fetida) are one of the most abundant terrestrial species, and play an important role in maintaining the ecological function of soil. Neonicotinoids are some of the most widely used insecticides applied to crops. Studies on the effect of neonicotinoids on E. fetida are limited. In the present work, we evaluated the effects of five neonicotinoid insecticides on reproduction, cellulase activity and the tissues of E. fetida. The results showed that, the LC50 of imidacloprid, acetamiprid, nitenpyram, clothianidin and thiacloprid was 3.05, 2.69, 4.34, 0.93 and 2.68mgkg(-1), respectively. They also could seriously affect the reproduction of E. fetida, reducing the fecundity by 84.0%, 39.5%, 54.3%, 45.7% and 39.5% at the sub-lethal concentrations of 2.0, 1.5, 0.80, 2.0 and 1.5mgkg(-1), respectively. The cellulase activity of E. fetida was most sensitive to clothianidin. Significant disruption of the epidermal and midgut tissue was observed after 14d exposure. In summary, we demonstrate that imidacloprid, acetamiprid, nitenpyram, clothianidin and thiacloprid have high toxic to earthworm, and can significantly inhibited fecundity and cellulase activity of E. fetida, and they also damage the epidermal and midgut cells of earthworm.

  15. Environmental fate of soil applied neonicotinoid insecticides in an irrigated potato agroecosystem.

    PubMed

    Huseth, Anders S; Groves, Russell L

    2014-01-01

    Since 1995, neonicotinoid insecticides have been a critical component of arthropod management in potato, Solanum tuberosum L. Recent detections of neonicotinoids in groundwater have generated questions about the sources of these contaminants and the relative contribution from commodities in U.S. agriculture. Delivery of neonicotinoids to crops typically occurs as a seed or in-furrow treatment to manage early season insect herbivores. Applied in this way, these insecticides become systemically mobile in the plant and provide control of key pest species. An outcome of this project links these soil insecticide application strategies in crop plants with neonicotinoid contamination of water leaching from the application zone. In 2011 and 2012, our objectives were to document the temporal patterns of neonicotinoid leachate below the planting furrow following common insecticide delivery methods in potato. Leaching loss of thiamethoxam from potato was measured using pan lysimeters from three at-plant treatments and one foliar application treatment. Insecticide concentration in leachate was assessed for six consecutive months using liquid chromatography-tandem mass spectrometry. Findings from this study suggest leaching of neonicotinoids from potato may be greater following crop harvest in comparison to other times during the growing season. Furthermore, this study documented recycling of neonicotinoid insecticides from contaminated groundwater back onto the crop via high capacity irrigation wells. These results document interactions between cultivated potato, different neonicotinoid delivery methods, and the potential for subsurface water contamination via leaching.

  16. Environmental Fate of Soil Applied Neonicotinoid Insecticides in an Irrigated Potato Agroecosystem

    PubMed Central

    Huseth, Anders S.; Groves, Russell L.

    2014-01-01

    Since 1995, neonicotinoid insecticides have been a critical component of arthropod management in potato, Solanum tuberosum L. Recent detections of neonicotinoids in groundwater have generated questions about the sources of these contaminants and the relative contribution from commodities in U.S. agriculture. Delivery of neonicotinoids to crops typically occurs as a seed or in-furrow treatment to manage early season insect herbivores. Applied in this way, these insecticides become systemically mobile in the plant and provide control of key pest species. An outcome of this project links these soil insecticide application strategies in crop plants with neonicotinoid contamination of water leaching from the application zone. In 2011 and 2012, our objectives were to document the temporal patterns of neonicotinoid leachate below the planting furrow following common insecticide delivery methods in potato. Leaching loss of thiamethoxam from potato was measured using pan lysimeters from three at-plant treatments and one foliar application treatment. Insecticide concentration in leachate was assessed for six consecutive months using liquid chromatography-tandem mass spectrometry. Findings from this study suggest leaching of neonicotinoids from potato may be greater following crop harvest in comparison to other times during the growing season. Furthermore, this study documented recycling of neonicotinoid insecticides from contaminated groundwater back onto the crop via high capacity irrigation wells. These results document interactions between cultivated potato, different neonicotinoid delivery methods, and the potential for subsurface water contamination via leaching. PMID:24823765

  17. Determination of neonicotinoids in Estonian honey by liquid chromatography-electrospray mass spectrometry.

    PubMed

    Laaniste, Asko; Leito, Ivo; Rebane, Riin; Lõhmus, Rünno; Lõhmus, Ants; Punga, Fredrik; Kruve, Anneli

    2016-07-01

    The aim of the study was to provide a comprehensive overview of neonicotinoid pesticide residues in honey samples for a single country and compare the results with the import data for neonicotinoid pesticides. The levels of four neonicotinoid pesticides, namely thiamethoxam, imidacloprid, acetamiprid, and thiacloprid, were determined in 294 honey samples harvested from 2005 to 2013 from more than 200 locations in Estonia. For the analyzed honey samples, 27% contained thiacloprid, and its levels in all cases were below the maximum residue level set by the European Union. The other neonicotinoids were not detected. The proportion of thiacloprid-positive samples for different years correlates well with the data on thiacloprid imports into Estonia, indicating that honey contamination with neonicotinoids can be estimated based on the import data. PMID:27050772

  18. Determination of neonicotinoids in Estonian honey by liquid chromatography-electrospray mass spectrometry.

    PubMed

    Laaniste, Asko; Leito, Ivo; Rebane, Riin; Lõhmus, Rünno; Lõhmus, Ants; Punga, Fredrik; Kruve, Anneli

    2016-07-01

    The aim of the study was to provide a comprehensive overview of neonicotinoid pesticide residues in honey samples for a single country and compare the results with the import data for neonicotinoid pesticides. The levels of four neonicotinoid pesticides, namely thiamethoxam, imidacloprid, acetamiprid, and thiacloprid, were determined in 294 honey samples harvested from 2005 to 2013 from more than 200 locations in Estonia. For the analyzed honey samples, 27% contained thiacloprid, and its levels in all cases were below the maximum residue level set by the European Union. The other neonicotinoids were not detected. The proportion of thiacloprid-positive samples for different years correlates well with the data on thiacloprid imports into Estonia, indicating that honey contamination with neonicotinoids can be estimated based on the import data.

  19. Impact of Chronic Neonicotinoid Exposure on Honeybee Colony Performance and Queen Supersedure

    PubMed Central

    Sandrock, Christoph; Tanadini, Matteo; Tanadini, Lorenzo G.; Fauser-Misslin, Aline; Potts, Simon G.; Neumann, Peter

    2014-01-01

    Background Honeybees provide economically and ecologically vital pollination services to crops and wild plants. During the last decade elevated colony losses have been documented in Europe and North America. Despite growing consensus on the involvement of multiple causal factors, the underlying interactions impacting on honeybee health and colony failure are not fully resolved. Parasites and pathogens are among the main candidates, but sublethal exposure to widespread agricultural pesticides may also affect bees. Methodology/Principal Findings To investigate effects of sublethal dietary neonicotinoid exposure on honeybee colony performance, a fully crossed experimental design was implemented using 24 colonies, including sister-queens from two different strains, and experimental in-hive pollen feeding with or without environmentally relevant concentrations of thiamethoxam and clothianidin. Honeybee colonies chronically exposed to both neonicotinoids over two brood cycles exhibited decreased performance in the short-term resulting in declining numbers of adult bees (−28%) and brood (−13%), as well as a reduction in honey production (−29%) and pollen collections (−19%), but colonies recovered in the medium-term and overwintered successfully. However, significantly decelerated growth of neonicotinoid-exposed colonies during the following spring was associated with queen failure, revealing previously undocumented long-term impacts of neonicotinoids: queen supersedure was observed for 60% of the neonicotinoid-exposed colonies within a one year period, but not for control colonies. Linked to this, neonicotinoid exposure was significantly associated with a reduced propensity to swarm during the next spring. Both short-term and long-term effects of neonicotinoids on colony performance were significantly influenced by the honeybees’ genetic background. Conclusions/Significance Sublethal neonicotinoid exposure did not provoke increased winter losses. Yet

  20. Insights into Chromatin Structure and Dynamics in Plants

    PubMed Central

    Rosa, Stefanie; Shaw, Peter

    2013-01-01

    The packaging of chromatin into the nucleus of a eukaryotic cell requires an extraordinary degree of compaction and physical organization. In recent years, it has been shown that this organization is dynamically orchestrated to regulate responses to exogenous stimuli as well as to guide complex cell-type-specific developmental programs. Gene expression is regulated by the compartmentalization of functional domains within the nucleus, by distinct nucleosome compositions accomplished via differential modifications on the histone tails and through the replacement of core histones by histone variants. In this review, we focus on these aspects of chromatin organization and discuss novel approaches such as live cell imaging and photobleaching as important tools likely to give significant insights into our understanding of the very dynamic nature of chromatin and chromatin regulatory processes. We highlight the contribution plant studies have made in this area showing the potential advantages of plants as models in understanding this fundamental aspect of biology. PMID:24833230

  1. Leptin: From structural insights to the design of antagonists.

    PubMed

    Zabeau, Lennart; Peelman, Frank; Tavernier, Jan

    2015-11-01

    After its discovery in 1994, it soon became clear that leptin acts as an adipocyte-derived hormone with a central role in the control of body weight and energy homeostasis. However, a growing body of evidence has revealed that leptin is a pleiotropic cytokine with activities on many peripheral cell types. Inappropriate leptin signaling can promote autoimmunity, certain cardiovascular diseases, elevated blood pressure and cancer, which makes leptin and the leptin receptor interesting targets for antagonism. Profound insights in the leptin receptor (LR) activation mechanisms are a prerequisite for the rational design of these antagonists. In this review, we focus on the molecular mechanisms underlying leptin receptor activation and signaling. We also discuss the current strategies to interfere with leptin signaling and their therapeutic potential.

  2. A critical review of neonicotinoid insecticides for developmental neurotoxicity.

    PubMed

    Sheets, Larry P; Li, Abby A; Minnema, Daniel J; Collier, Richard H; Creek, Moire R; Peffer, Richard C

    2016-02-01

    A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood-brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of action and potential exposure with agricultural and residential uses. This review identified in vitro, in vivo, and epidemiology studies in the literature and studies performed in rats in accordance with GLP standards and EPA guidelines with imidacloprid, acetamiprid, thiacloprid, clothianidin, thiamethoxam, and dinotefuran, which are all the neonicotinoids currently registered in major markets. For the guideline-based studies, treatment was administered via the diet or gavage to primiparous female rats at three dose levels, plus a vehicle control (≥20/dose level), from gestation day 0 or 6 to lactation day 21. F1 males and females were evaluated using measures of motor activity, acoustic startle response, cognition, brain morphometry, and neuropathology. The principal effects in F1 animals were associated with decreased body weight (delayed sexual maturation, decreased brain weight, and morphometric measurements) and acute toxicity (decreased activity during exposure) at high doses, without neuropathology or impaired cognition. No common effects were identified among the neonicotinoids that were consistent with DNT or the neurodevelopmental effects associated with nicotine. Findings at high doses were associated with evidence of systemic toxicity, which indicates that these insecticides do not selectively affect the developing nervous system. PMID:26513508

  3. A critical review of neonicotinoid insecticides for developmental neurotoxicity.

    PubMed

    Sheets, Larry P; Li, Abby A; Minnema, Daniel J; Collier, Richard H; Creek, Moire R; Peffer, Richard C

    2016-02-01

    A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood-brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of action and potential exposure with agricultural and residential uses. This review identified in vitro, in vivo, and epidemiology studies in the literature and studies performed in rats in accordance with GLP standards and EPA guidelines with imidacloprid, acetamiprid, thiacloprid, clothianidin, thiamethoxam, and dinotefuran, which are all the neonicotinoids currently registered in major markets. For the guideline-based studies, treatment was administered via the diet or gavage to primiparous female rats at three dose levels, plus a vehicle control (≥20/dose level), from gestation day 0 or 6 to lactation day 21. F1 males and females were evaluated using measures of motor activity, acoustic startle response, cognition, brain morphometry, and neuropathology. The principal effects in F1 animals were associated with decreased body weight (delayed sexual maturation, decreased brain weight, and morphometric measurements) and acute toxicity (decreased activity during exposure) at high doses, without neuropathology or impaired cognition. No common effects were identified among the neonicotinoids that were consistent with DNT or the neurodevelopmental effects associated with nicotine. Findings at high doses were associated with evidence of systemic toxicity, which indicates that these insecticides do not selectively affect the developing nervous system.

  4. A critical review of neonicotinoid insecticides for developmental neurotoxicity

    PubMed Central

    Sheets, Larry P.; Li, Abby A.; Minnema, Daniel J.; Collier, Richard H.; Creek, Moire R.; Peffer, Richard C.

    2016-01-01

    Abstract A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood–brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of action and potential exposure with agricultural and residential uses. This review identified in vitro, in vivo, and epidemiology studies in the literature and studies performed in rats in accordance with GLP standards and EPA guidelines with imidacloprid, acetamiprid, thiacloprid, clothianidin, thiamethoxam, and dinotefuran, which are all the neonicotinoids currently registered in major markets. For the guideline-based studies, treatment was administered via the diet or gavage to primiparous female rats at three dose levels, plus a vehicle control (≥20/dose level), from gestation day 0 or 6 to lactation day 21. F1 males and females were evaluated using measures of motor activity, acoustic startle response, cognition, brain morphometry, and neuropathology. The principal effects in F1 animals were associated with decreased body weight (delayed sexual maturation, decreased brain weight, and morphometric measurements) and acute toxicity (decreased activity during exposure) at high doses, without neuropathology or impaired cognition. No common effects were identified among the neonicotinoids that were consistent with DNT or the neurodevelopmental effects associated with nicotine. Findings at high doses were associated with evidence of systemic toxicity, which indicates that these insecticides do not selectively affect the developing nervous system. PMID:26513508

  5. Increased Acetylcholinesterase Expression in Bumble Bees During Neonicotinoid-Coated Corn Sowing.

    PubMed

    Samson-Robert, Olivier; Labrie, Geneviève; Mercier, Pierre-Luc; Chagnon, Madeleine; Derome, Nicolas; Fournier, Valérie

    2015-01-01

    While honey bee exposure to systemic insecticides has received much attention, impacts on wild pollinators have not been as widely studied. Neonicotinoids have been shown to increase acetylcholinesterase (AChE) activity in honey bees at sublethal doses. High AChE levels may therefore act as a biomarker of exposure to neonicotinoids. This two-year study focused on establishing whether bumble bees living and foraging in agricultural areas using neonicotinoid crop protection show early biochemical signs of intoxication. Bumble bee colonies (Bombus impatiens) were placed in two different agricultural cropping areas: 1) control (≥ 3 km from fields planted with neonicotinoid-treated seeds) or 2) exposed (within 500 m of fields planted with neonicotinoid-treated seeds), and maintained for the duration of corn sowing. As determined by Real Time qPCR, AChE mRNA expression was initially significantly higher in bumble bees from exposed sites, then decreased throughout the planting season to reach a similar endpoint to that of bumble bees from control sites. These findings suggest that exposure to neonicotinoid seed coating particles during the planting season can alter bumble bee neuronal activity. To our knowledge, this is the first study to report in situ that bumble bees living in agricultural areas exhibit signs of neonicotinoid intoxication. PMID:26223214

  6. Ecological and Landscape Drivers of Neonicotinoid Insecticide Detections and Concentrations in Canada's Prairie Wetlands.

    PubMed

    Main, Anson R; Michel, Nicole L; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2015-07-21

    Neonicotinoids are commonly used seed treatments on Canada's major prairie crops. Transported via surface and subsurface runoff into wetlands, their ultimate aquatic fate remains largely unknown. Biotic and abiotic wetland characteristics likely affect neonicotinoid presence and environmental persistence, but concentrations vary widely between wetlands that appear ecologically (e.g., plant composition) and physically (e.g., depth) similar for reasons that remain unclear. We conducted intensive surveys of 238 wetlands, and documented 59 wetland (e.g., dominant plant species) and landscape (e.g., surrounding crop) characteristics as part of a novel rapid wetland assessment system. We used boosted regression tree (BRT) analysis to predict both probability of neonicotinoid analytical detection and concentration. BRT models effectively predicted the deviance in neonicotinoid detection (62.4%) and concentration (74.7%) from 21 and 23 variables, respectively. Detection was best explained by shallow marsh plant species identity (34.8%) and surrounding crop (13.9%). Neonicotinoid concentration was best explained by shallow marsh plant species identity (14.9%) and wetland depth (14.2%). Our research revealed that plant composition is a key indicator and/or driver of neonicotinoid presence and concentration in Prairie wetlands. We recommend wetland buffers consisting of diverse native vegetation be retained or restored to minimize neonicotinoid transport and retention in wetlands, thereby limiting their potential effects on wetland-dependent organisms. PMID:26098364

  7. Ecological and Landscape Drivers of Neonicotinoid Insecticide Detections and Concentrations in Canada's Prairie Wetlands.

    PubMed

    Main, Anson R; Michel, Nicole L; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2015-07-21

    Neonicotinoids are commonly used seed treatments on Canada's major prairie crops. Transported via surface and subsurface runoff into wetlands, their ultimate aquatic fate remains largely unknown. Biotic and abiotic wetland characteristics likely affect neonicotinoid presence and environmental persistence, but concentrations vary widely between wetlands that appear ecologically (e.g., plant composition) and physically (e.g., depth) similar for reasons that remain unclear. We conducted intensive surveys of 238 wetlands, and documented 59 wetland (e.g., dominant plant species) and landscape (e.g., surrounding crop) characteristics as part of a novel rapid wetland assessment system. We used boosted regression tree (BRT) analysis to predict both probability of neonicotinoid analytical detection and concentration. BRT models effectively predicted the deviance in neonicotinoid detection (62.4%) and concentration (74.7%) from 21 and 23 variables, respectively. Detection was best explained by shallow marsh plant species identity (34.8%) and surrounding crop (13.9%). Neonicotinoid concentration was best explained by shallow marsh plant species identity (14.9%) and wetland depth (14.2%). Our research revealed that plant composition is a key indicator and/or driver of neonicotinoid presence and concentration in Prairie wetlands. We recommend wetland buffers consisting of diverse native vegetation be retained or restored to minimize neonicotinoid transport and retention in wetlands, thereby limiting their potential effects on wetland-dependent organisms.

  8. Increased Acetylcholinesterase Expression in Bumble Bees During Neonicotinoid-Coated Corn Sowing.

    PubMed

    Samson-Robert, Olivier; Labrie, Geneviève; Mercier, Pierre-Luc; Chagnon, Madeleine; Derome, Nicolas; Fournier, Valérie

    2015-07-30

    While honey bee exposure to systemic insecticides has received much attention, impacts on wild pollinators have not been as widely studied. Neonicotinoids have been shown to increase acetylcholinesterase (AChE) activity in honey bees at sublethal doses. High AChE levels may therefore act as a biomarker of exposure to neonicotinoids. This two-year study focused on establishing whether bumble bees living and foraging in agricultural areas using neonicotinoid crop protection show early biochemical signs of intoxication. Bumble bee colonies (Bombus impatiens) were placed in two different agricultural cropping areas: 1) control (≥ 3 km from fields planted with neonicotinoid-treated seeds) or 2) exposed (within 500 m of fields planted with neonicotinoid-treated seeds), and maintained for the duration of corn sowing. As determined by Real Time qPCR, AChE mRNA expression was initially significantly higher in bumble bees from exposed sites, then decreased throughout the planting season to reach a similar endpoint to that of bumble bees from control sites. These findings suggest that exposure to neonicotinoid seed coating particles during the planting season can alter bumble bee neuronal activity. To our knowledge, this is the first study to report in situ that bumble bees living in agricultural areas exhibit signs of neonicotinoid intoxication.

  9. First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA

    USGS Publications Warehouse

    Hladik, Michelle L.; Kolpin, Dana W.

    2015-01-01

     To better understand the fate and transport of neonicotinoid insecticides, water samples were collected from streams across the United States. In a nationwide study, at least one neonicotinoid was detected in 53 % of the samples collected, with imidacloprid detected most frequently (37 %), followed by clothianidin (24 %), thiamethoxam (21 %), dinotefuran (13 %), acetamiprid (3 %) and thiacloprid (0 %). Clothianidin and thiamethoxam concentrations were positively related to the percentage of the land use in cultivated crop production and imidacloprid concentrations were positively related to the percentage of urban area within the basin. Additional sampling was also conducted in targeted research areas to complement these national-scale results, including determining: (1) neonicotinoid concentrations during elevated flow conditions in an intensely agricultural region; (2) temporal patterns of neonicotinoids in heavily urbanised basins; (3) neonicotinoid concentrations in agricultural basins in a nationally important ecosystem; and (4) in-stream transport of neonicotinoids near a wastewater treatment plant. Across all study areas, at least one neonicotinoid was detected in 63 % of the 48 streams sampled.

  10. Increased Acetylcholinesterase Expression in Bumble Bees During Neonicotinoid-Coated Corn Sowing

    PubMed Central

    Samson-Robert, Olivier; Labrie, Geneviève; Mercier, Pierre-Luc; Chagnon, Madeleine; Derome, Nicolas; Fournier, Valérie

    2015-01-01

    While honey bee exposure to systemic insecticides has received much attention, impacts on wild pollinators have not been as widely studied. Neonicotinoids have been shown to increase acetylcholinesterase (AChE) activity in honey bees at sublethal doses. High AChE levels may therefore act as a biomarker of exposure to neonicotinoids. This two-year study focused on establishing whether bumble bees living and foraging in agricultural areas using neonicotinoid crop protection show early biochemical signs of intoxication. Bumble bee colonies (Bombus impatiens) were placed in two different agricultural cropping areas: 1) control (≥3 km from fields planted with neonicotinoid-treated seeds) or 2) exposed (within 500 m of fields planted with neonicotinoid-treated seeds), and maintained for the duration of corn sowing. As determined by Real Time qPCR, AChE mRNA expression was initially significantly higher in bumble bees from exposed sites, then decreased throughout the planting season to reach a similar endpoint to that of bumble bees from control sites. These findings suggest that exposure to neonicotinoid seed coating particles during the planting season can alter bumble bee neuronal activity. To our knowledge, this is the first study to report in situ that bumble bees living in agricultural areas exhibit signs of neonicotinoid intoxication. PMID:26223214

  11. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment.

    PubMed

    Blacquière, Tjeerd; Smagghe, Guy; van Gestel, Cornelis A M; Mommaerts, Veerle

    2012-05-01

    Neonicotinoid insecticides are successfully applied to control pests in a variety of agricultural crops; however, they may not only affect pest insects but also non-target organisms such as pollinators. This review summarizes, for the first time, 15 years of research on the hazards of neonicotinoids to bees including honey bees, bumble bees and solitary bees. The focus of the paper is on three different key aspects determining the risks of neonicotinoid field concentrations for bee populations: (1) the environmental neonicotinoid residue levels in plants, bees and bee products in relation to pesticide application, (2) the reported side-effects with special attention for sublethal effects, and (3) the usefulness for the evaluation of neonicotinoids of an already existing risk assessment scheme for systemic compounds. Although environmental residue levels of neonicotinoids were found to be lower than acute/chronic toxicity levels, there is still a lack of reliable data as most analyses were conducted near the detection limit and for only few crops. Many laboratory studies described lethal and sublethal effects of neonicotinoids on the foraging behavior, and learning and memory abilities of bees, while no effects were observed in field studies at field-realistic dosages. The proposed risk assessment scheme for systemic compounds was shown to be applicable to assess the risk for side-effects of neonicotinoids as it considers the effect on different life stages and different levels of biological organization (organism versus colony). Future research studies should be conducted with field-realistic concentrations, relevant exposure and evaluation durations. Molecular markers may be used to improve risk assessment by a better understanding of the mode of action (interaction with receptors) of neonicotinoids in bees leading to the identification of environmentally safer compounds.

  12. Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada's Prairie Pothole Region.

    PubMed

    Main, Anson R; Headley, John V; Peru, Kerry M; Michel, Nicole L; Cessna, Allan J; Morrissey, Christy A

    2014-01-01

    Neonicotinoids currently dominate the insecticide market as seed treatments on Canada's major Prairie crops (e.g., canola). The potential impact to ecologically significant wetlands in this dominantly agro-environment has largely been overlooked while the distribution of use, incidence and level of contamination remains unreported. We modelled the spatial distribution of neonicotinoid use across the three Prairie Provinces in combination with temporal assessments of water and sediment concentrations in wetlands to measure four active ingredients (clothianidin, thiamethoxam, imidacloprid and acetamiprid). From 2009 to 2012, neonicotinoid use was increasing; by 2012, applications covered an estimated ∼11 million hectares (44% of Prairie cropland) with >216,000 kg of active ingredients. Thiamethoxam, followed by clothianidin, were the dominant seed treatments by mass and area. Areas of high neonicotinoid use were identified as high density canola or soybean production. Water sampled four times from 136 wetlands (spring, summer, fall 2012 and spring 2013) across four rural municipalities in Saskatchewan similarly revealed clothianidin and thiamethoxam in the majority of samples. In spring 2012 prior to seeding, 36% of wetlands contained at least one neonicotinoid. Detections increased to 62% in summer 2012, declined to 16% in fall, and increased to 91% the following spring 2013 after ice-off. Peak concentrations were recorded during summer 2012 for both thiamethoxam (range: neonicotinoid concentrations (which did not exceed 20 ng/L). Wetlands situated in barley, canola and oat fields consistently contained higher mean concentrations of neonicotinoids than in grasslands, but no individual crop singularly influenced overall detections or concentrations. Distribution maps indicate neonicotinoid use is increasing and becoming

  13. Widespread Use and Frequent Detection of Neonicotinoid Insecticides in Wetlands of Canada's Prairie Pothole Region

    PubMed Central

    Main, Anson R.; Headley, John V.; Peru, Kerry M.; Michel, Nicole L.; Cessna, Allan J.; Morrissey, Christy A.

    2014-01-01

    Neonicotinoids currently dominate the insecticide market as seed treatments on Canada's major Prairie crops (e.g., canola). The potential impact to ecologically significant wetlands in this dominantly agro-environment has largely been overlooked while the distribution of use, incidence and level of contamination remains unreported. We modelled the spatial distribution of neonicotinoid use across the three Prairie Provinces in combination with temporal assessments of water and sediment concentrations in wetlands to measure four active ingredients (clothianidin, thiamethoxam, imidacloprid and acetamiprid). From 2009 to 2012, neonicotinoid use was increasing; by 2012, applications covered an estimated ∼11 million hectares (44% of Prairie cropland) with >216,000 kg of active ingredients. Thiamethoxam, followed by clothianidin, were the dominant seed treatments by mass and area. Areas of high neonicotinoid use were identified as high density canola or soybean production. Water sampled four times from 136 wetlands (spring, summer, fall 2012 and spring 2013) across four rural municipalities in Saskatchewan similarly revealed clothianidin and thiamethoxam in the majority of samples. In spring 2012 prior to seeding, 36% of wetlands contained at least one neonicotinoid. Detections increased to 62% in summer 2012, declined to 16% in fall, and increased to 91% the following spring 2013 after ice-off. Peak concentrations were recorded during summer 2012 for both thiamethoxam (range: neonicotinoid concentrations (which did not exceed 20 ng/L). Wetlands situated in barley, canola and oat fields consistently contained higher mean concentrations of neonicotinoids than in grasslands, but no individual crop singularly influenced overall detections or concentrations. Distribution maps indicate neonicotinoid use is increasing and

  14. Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada's Prairie Pothole Region.

    PubMed

    Main, Anson R; Headley, John V; Peru, Kerry M; Michel, Nicole L; Cessna, Allan J; Morrissey, Christy A

    2014-01-01

    Neonicotinoids currently dominate the insecticide market as seed treatments on Canada's major Prairie crops (e.g., canola). The potential impact to ecologically significant wetlands in this dominantly agro-environment has largely been overlooked while the distribution of use, incidence and level of contamination remains unreported. We modelled the spatial distribution of neonicotinoid use across the three Prairie Provinces in combination with temporal assessments of water and sediment concentrations in wetlands to measure four active ingredients (clothianidin, thiamethoxam, imidacloprid and acetamiprid). From 2009 to 2012, neonicotinoid use was increasing; by 2012, applications covered an estimated ∼11 million hectares (44% of Prairie cropland) with >216,000 kg of active ingredients. Thiamethoxam, followed by clothianidin, were the dominant seed treatments by mass and area. Areas of high neonicotinoid use were identified as high density canola or soybean production. Water sampled four times from 136 wetlands (spring, summer, fall 2012 and spring 2013) across four rural municipalities in Saskatchewan similarly revealed clothianidin and thiamethoxam in the majority of samples. In spring 2012 prior to seeding, 36% of wetlands contained at least one neonicotinoid. Detections increased to 62% in summer 2012, declined to 16% in fall, and increased to 91% the following spring 2013 after ice-off. Peak concentrations were recorded during summer 2012 for both thiamethoxam (range: neonicotinoid concentrations (which did not exceed 20 ng/L). Wetlands situated in barley, canola and oat fields consistently contained higher mean concentrations of neonicotinoids than in grasslands, but no individual crop singularly influenced overall detections or concentrations. Distribution maps indicate neonicotinoid use is increasing and becoming

  15. Recent Structural Insights into Cytochrome P450 Function.

    PubMed

    Guengerich, F Peter; Waterman, Michael R; Egli, Martin

    2016-08-01

    Cytochrome P450 (P450) enzymes are important in the metabolism of drugs, steroids, fat-soluble vitamins, carcinogens, pesticides, and many other types of chemicals. Their catalytic activities are important issues in areas such as drug-drug interactions and endocrine function. During the past 30 years, structures of P450s have been very helpful in understanding function, particularly the mammalian P450 structures available in the past 15 years. We review recent activity in this area, focusing on the past 2 years (2014-2015). Structural work with microbial P450s includes studies related to the biosynthesis of natural products and the use of parasitic and fungal P450 structures as targets for drug discovery. Studies on mammalian P450s include the utilization of information about 'drug-metabolizing' P450s to improve drug development and also to understand the molecular bases of endocrine dysfunction. PMID:27267697

  16. Structural insights into neuronal K+ channel–calmodulin complexes

    PubMed Central

    Mruk, Karen; Shandilya, Shiven M.D.; Blaustein, Robert O.; Schiffer, Celia A.; Kobertz, William R.

    2012-01-01

    Calmodulin (CaM) is a ubiquitous intracellular calcium sensor that directly binds to and modulates a wide variety of ion channels. Despite the large repository of high-resolution structures of CaM bound to peptide fragments derived from ion channels, there is no structural information about CaM bound to a fully folded ion channel at the plasma membrane. To determine the location of CaM docked to a functioning KCNQ K+ channel, we developed an intracellular tethered blocker approach to measure distances between CaM residues and the ion-conducting pathway. Combining these distance restraints with structural bioinformatics, we generated an archetypal quaternary structural model of an ion channel–CaM complex in the open state. These models place CaM close to the cytoplasmic gate, where it is well positioned to modulate channel function. PMID:22869708

  17. Structural Insights into tRNA Dynamics on the Ribosome

    PubMed Central

    Agirrezabala, Xabier; Valle, Mikel

    2015-01-01

    High-resolution structures at different stages, as well as biochemical, single molecule and computational approaches have highlighted the elasticity of tRNA molecules when bound to the ribosome. It is well acknowledged that the inherent structural flexibility of the tRNA lies at the heart of the protein synthesis process. Here, we review the recent advances and describe considerations that the conformational changes of the tRNA molecules offer about the mechanisms grounded in translation. PMID:25941930

  18. Structural insight on processivity, human disease and antiviral drug toxicity

    PubMed Central

    Yin, Whitney

    2011-01-01

    DNA polymerase gamma (Pol γ) is a nuclear encoded, mitochondrially located replicase that conducts all DNA synthesis in the organelle. Structurally, human Pol γ closely resembles bacteriophage T7 DNA polymerase. Perhaps due to this prokaryotic-like feature, Pol γ is highly susceptible to inhibition by drugs designed against HIV reverse transcriptase and HCV RNA polymerase. In this review, I summarize recent structural and biochemical studies towards understanding Pol γ-mediated antiviral drug toxicity. PMID:21185718

  19. Structural insights into bacterial flagellar hooks similarities and specificities

    PubMed Central

    Yoon, Young-Ho; Barker, Clive S.; Bulieris, Paula V.; Matsunami, Hideyuki; Samatey, Fadel A.

    2016-01-01

    Across bacteria, the protein that makes the flagellar hook, FlgE, has a high variability in amino acid residue composition and sequence length. We hereby present the structure of two fragments of FlgE protein from Campylobacter jejuni and from Caulobacter crescentus, which were obtained by X-ray crystallography, and a high-resolution model of the hook from Caulobacter. By comparing these new structures of FlgE proteins, we show that bacterial hook can be divided in two distinct parts. The first part comprises domains that are found in all FlgE proteins and that will make the basic structure of the hook that is common to all flagellated bacteria. The second part, hyper-variable both in size and structure, will be bacteria dependent. To have a better understanding of the C. jejuni hook, we show that a special strain of Salmonella enterica, which was designed to encode a gene of flgE that has the extra domains found in FlgE from C. jejuni, is fully motile. It seems that no matter the size of the hook protein, the hook will always have a structure made of 11 protofilaments. PMID:27759043

  20. Structural Insights into Neonatal Fc Receptor-based Recycling Mechanisms

    PubMed Central

    Oganesyan, Vaheh; Damschroder, Melissa M.; Cook, Kimberly E.; Li, Qing; Gao, Changshou; Wu, Herren; Dall'Acqua, William F.

    2014-01-01

    We report the three-dimensional structure of human neonatal Fc receptor (FcRn) bound concurrently to its two known ligands. More particularly, we solved the crystal structure of the complex between human FcRn, wild-type human serum albumin (HSA), and a human Fc engineered for improved pharmacokinetics properties (Fc-YTE). The crystal structure of human FcRn bound to wild-type HSA alone is also presented. HSA domain III exhibits an extensive interface of contact with FcRn, whereas domain I plays a lesser role. A molecular explanation for the HSA recycling mechanism is provided with the identification of FcRn His161 as the only potential direct contributor to the corresponding pH-dependent process. At last, this study also allows an accurate structural definition of residues considered for decades as important to the human IgG/FcRn interaction and reveals Fc His310 as a significant contributor to pH-dependent binding. Finally, we explain various structural mechanisms by which several Fc mutations (including YTE) result in increased human IgG binding to FcRn. Our study provides an unprecedented relevant understanding of the molecular basis of human Fc interaction with human FcRn. PMID:24469444

  1. Structural insight into the UNC-45-myosin complex.

    PubMed

    Fratev, Filip; Osk Jónsdóttir, Svava; Pajeva, Ilza

    2013-07-01

    The UNC-45 chaperone protein interacts with and affects the folding, stability, and the ATPase activity of myosins. It plays a critical role in the cardiomyopathy development and in the breast cancer tumor growth. Here we propose the first structural model of the UNC-45-myosin complex using various in silico methods. Initially, the human UNC-45B binding epitope was identified and the protein was docked to the cardiac myosin (MYH7) motor domain. The final UNC45B-MYH7 structure was obtained by performing of total 630 ns molecular dynamics simulations. The results indicate a complex formation, which is mainly stabilized by electrostatic interactions. Remarkably, the contact surface area is similar to that of the myosin-actin complex. A significant interspecies difference in the myosin binding epitope is observed. Our results reveal the structural basis of MYH7 exons 15-16 hypertrophic cardiomyopathy mutations and provide directions for drug targeting. PMID:23408646

  2. Insights to primitive replication derived from structures of small oligonucleotides

    NASA Technical Reports Server (NTRS)

    Smith, G. K.; Fox, G. E.

    1995-01-01

    Available information on the structure of small oligonucleotides is surveyed. It is observed that even small oligomers typically exhibit defined structures over a wide range of pH and temperature. These structures rely on a plethora of non-standard base-base interactions in addition to the traditional Watson-Crick pairings. Stable duplexes, though typically antiparallel, can be parallel or staggered and perfect complementarity is not essential. These results imply that primitive template directed reactions do not require high fidelity. Hence, the extensive use of Watson-Crick complementarity in genes rather than being a direct consequence of the primitive condensation process, may instead reflect subsequent selection based on the advantage of accuracy in maintaining the primitive genetic machinery once it arose.

  3. New insights into plastid nucleoid structure and functionality.

    PubMed

    Krupinska, Karin; Melonek, Joanna; Krause, Kirsten

    2013-03-01

    Investigations over many decades have revealed that nucleoids of higher plant plastids are highly dynamic with regard to their number, their structural organization and protein composition. Membrane attachment and environmental cues seem to determine the activity and functionality of the nucleoids and point to a highly regulated structure-function relationship. The heterogeneous composition and the many functions that are seemingly associated with the plastid nucleoids could be related to the high number of chromosomes per plastid. Recent proteomic studies have brought novel nucleoid-associated proteins into the spotlight and indicated that plastid nucleoids are an evolutionary hybrid possessing prokaryotic nucleoid features and eukaryotic (nuclear) chromatin components, several of which are dually targeted to the nucleus and chloroplasts. Future studies need to unravel if and how plastid-nucleus communication depends on nucleoid structure and plastid gene expression.

  4. New insights into the structure and mechanism of iodothyronine deiodinases.

    PubMed

    Schweizer, Ulrich; Steegborn, Clemens

    2015-12-01

    Iodothyronine deiodinases are a family of enzymes that remove specific iodine atoms from one of the two aromatic rings in thyroid hormones (THs). They thereby fine-tune local TH concentrations and cellular TH signaling. Deiodinases catalyze a remarkable biochemical reaction, i.e., the reductive elimination of a halogenide from an aromatic ring. In metazoans, deiodinases depend on the rare amino acid selenocysteine. The recent solution of the first experimental structure of a deiodinase catalytic domain allowed for a reappraisal of the many mechanistic and mutagenesis data that had been accumulated over more than 30 years. Hence, the structure generates new impetus for research directed at understanding catalytic mechanism, substrate specificity, and regulation of deiodinases. This review will focus on structural and mechanistic aspects of iodothyronine deiodinases and briefly compare these enzymes with dehalogenases, which catalyze related reactions. A general mechanism for the selenium-dependent deiodinase reaction will be described, which integrates the mouse deiodinase 3 crystal structure and biochemical studies. We will summarize further, sometimes isoform-specific molecular features of deiodinase catalysis and regulation, and we will then discuss available compounds for modulating deiodinase activity for therapeutic purposes. PMID:26390881

  5. Structural Insight into Substrate Specificity of Phosphodiesterase 10

    SciTech Connect

    Wang,H.; Liu, Y.; Hou, J.; Zheng, M.; Robinson, H.; Ke, H.

    2007-01-01

    Phosphodiesterases (PDEs) hydrolyze the second messengers cAMP and cGMP. It remains unknown how individual PDE families selectively recognize cAMP and cGMP. This work reports structural studies on substrate specificity. The crystal structures of the catalytic domains of the D674A and D564N mutants of PDE10A2 in complex with cAMP and cGMP reveal that two substrates bind to the active site with the same syn configuration but different orientations and interactions. The products AMP and GMP bind PDE10A2 with the anti configuration and interact with both divalent metals, in contrast to no direct contact of the substrates. The structures suggest that the syn configurations of cAMP and cGMP are the genuine substrates for PDE10 and the specificity is achieved through the different interactions and conformations of the substrates. The PDE10A2 structures also show that the conformation of the invariant glutamine is locked by two hydrogen bonds and is unlikely to switch for substrate recognition. Sequence alignment shows a potential pocket, in which variation of amino acids across PDE families defines the size and shape of the pocket and thus determines the substrate specificity.

  6. Insight into the antiferromagnetic structure manipulated by electronic reconstruction

    NASA Astrophysics Data System (ADS)

    Cui, B.; Li, F.; Song, C.; Peng, J. J.; Saleem, M. S.; Gu, Y. D.; Li, S. N.; Wang, K. L.; Pan, F.

    2016-10-01

    Antiferromagnetic (AFM) materials, with robust rigidity to magnetic field perturbations and ultrafast spin dynamics, show great advantages in information storage and have developed into a fast-emerging field of AFM spintronics. However, a direct characterization of spin alignments in AFM films has been challenging, and their manipulation by lattice distortion and magnetic proximity is inevitably accompanied by "ferromagnetic" features within the AFM matrix. Here we resolve the G -type AFM structure of SrCo O2.5 and find that the interfacial AFM structure could be modulated intrinsically from in plane to out of plane with a canted angle of 60∘ by the charge transfer and orbital reconstruction in SrCo O2.5/L a2 /3S r1 /3Mn O3 heterostructures both experimentally and theoretically. Such an interfacial AFM reconfiguration caused by electronic reconstruction does not cause the ferromagnetic feature and changes the magnetization switching process of L a2 /3S r1 /3Mn O3 from in plane to perpendicular to the plane, in turn. Our study not only reveals the coupling between charge, orbital, and AFM structure, but also provides a unique approach to manipulating AFM structure.

  7. Structural Insights into Clostridium perfringens Delta Toxin Pore Formation

    PubMed Central

    Huyet, Jessica; Naylor, Claire E.; Savva, Christos G.; Gibert, Maryse; Popoff, Michel R.; Basak, Ajit K.

    2013-01-01

    Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB) cytotoxicity from that of the staphylococcal pore-forming toxins. PMID:23805259

  8. Improved prediction of RNA tertiary structure with insights into native state dynamics.

    PubMed

    Bida, John Paul; Maher, L James

    2012-03-01

    The importance of RNA tertiary structure is evident from the growing number of published high resolution NMR and X-ray crystallographic structures of RNA molecules. These structures provide insights into function and create a knowledge base that is leveraged by programs such as Assemble, ModeRNA, RNABuilder, NAST, FARNA, Mc-Sym, RNA2D3D, and iFoldRNA for tertiary structure prediction and design. While these methods sample native-like RNA structures during simulations, all struggle to capture the native RNA conformation after scoring. We propose RSIM, an improved RNA fragment assembly method that preserves RNA global secondary structure while sampling conformations. This approach enhances the quality of predicted RNA tertiary structure, provides insights into the native state dynamics, and generates a powerful visualization of the RNA conformational space. RSIM is available for download from http://www.github.com/jpbida/rsim.

  9. Structural neuroimaging in schizophrenia: from methods to insights to treatments.

    PubMed

    Shenton, Martha E; Whitford, Thomas J; Kubicki, Marek

    2010-01-01

    Historically, Kraepelin speculated that dementia praecox resulted from damage to the cerebral cortex, most notably the frontal and temporal cortices. It is only recently, however, that tools have been available to test this hypothesis. Now, more than a century later, we know that schizophrenia is a brain disorder. This knowledge comes from critical advances in imaging technology--including computerized axial tomography, magnetic resonance imaging, and diffusion imaging--all of which provide an unprecedented view of neuroanatomical structures, in vivo. Here, we review evidence for structural neuroimaging abnormalities, beginning with evidence for focal brain abnormalities, primarily in gray matter, and proceeding to the quest to identify abnormalities in brain systems and circuits by focusing on damage to white matter connections in the brain. We then review future prospects that need to be explored and pursued in order to translate our current knowledge into an understanding of the neurobiology of schizophrenia, which can then be translated into novel treatments. PMID:20954428

  10. Structural characterization of human heparanase reveals insights into substrate recognition

    PubMed Central

    Wu, Liang; Viola, Cristina M.; Brzozowski, Andrzej M.; Davies, Gideon J.

    2016-01-01

    Heparan Sulfate (HS) is a glycosaminoglycan (GAG) which forms a key component of the extracellular matrix (ECM). Breakdown of HS is carried out by heparanase (HPSE), an endo-β-glucuronidase of the glycoside hydrolase (GH)79 family. Overexpression of HPSE is strongly linked to cancer metastases - reflecting breakdown of extracellular HS and release of stored growth factors. Here we present crystal structures of human HPSE at 1.6-1.9 Å resolution reveal how an endo-acting binding cleft is exposed by proteolytic activation of latent proHPSE. Oligosaccharide complexes map the substrate-binding and sulfate recognition motifs. These data shed light on the structure and interactions for a key enzyme involved in ECM maintenance, and provide a starting point for design of HPSE inhibitors as biochemical tools and anti-cancer therapeutics. PMID:26575439

  11. Structural insights into enzymatic degradation of oxidized polyvinyl alcohol.

    PubMed

    Yang, Yu; Ko, Tzu-Ping; Liu, Long; Li, Jianghua; Huang, Chun-Hsiang; Chan, Hsiu-Chien; Ren, Feifei; Jia, Dongxu; Wang, Andrew H-J; Guo, Rey-Ting; Chen, Jian; Du, Guocheng

    2014-09-01

    The ever-increasing production and use of polyvinyl alcohol (PVA) threaten our environment. Yet PVA can be assimilated by microbes in two steps: oxidation and cleavage. Here we report novel α/β-hydrolase structures of oxidized PVA hydrolase (OPH) from two known PVA-degrading organisms, Sphingopyxis sp. 113P3 and Pseudomonas sp. VM15C, including complexes with substrate analogues, acetylacetone and caprylate. The active site is covered by a lid-like β-ribbon. Unlike other esterase and amidase, OPH is unique in cleaving the CC bond of β-diketone, although it has a catalytic triad similar to that of most α/β-hydrolases. Analysis of the crystal structures suggests a double-oxyanion-hole mechanism, previously only found in thiolase cleaving β-ketoacyl-CoA. Three mutations in the lid region showed enhanced activity, with potential in industrial applications.

  12. Structural neuroimaging in schizophrenia from methods to insights to treatments

    PubMed Central

    Shenton, Martha E.; Whitford, Thomas J.; Kubicki, Marek

    2010-01-01

    Historically, Kraepelin speculated that dementia praecox resulted from damage to the cerebral cortex, most notably the frontal and temporal cortices. It is only recently, however, that tools have been available to test this hypothesis. Now, more than a century later, we know that schizophrenia is a brain disorder. This knowledge comes from critical advances in imaging technology- including computerized axial tomography, magnetic resonance imaging, and diffusion imaging - all of which provide an unprecedented view of neuroanatomical structures, in vivo. Here, we review evidence for structural neuroimaging abnormalities, beginning with evidence for focal brain abnormalities, primarily in gray matter, and proceeding to the quest to identify abnormalities in brain systems and circuits by focusing on damage to white matter connections in the brain. We then review future prospects that need to be explored and pursued in order to translate our current knowledge into an understanding of the neurobiology of schizophrenia, which can then be translated into novel treatments. PMID:20954428

  13. Structural Insights into Ail-Mediated Adhesion in Yersinia pestis

    SciTech Connect

    Yamashita, Satoshi; Lukacik, Petra; Barnard, Travis J.; Noinaj, Nicholas; Felek, Suleyman; Tsang, Tiffany M.; Krukonis, Eric S.; Hinnebusch, B. Joseph; Buchanan, Susan K.

    2012-01-30

    Ail is an outer membrane protein from Yersinia pestis that is highly expressed in a rodent model of bubonic plague, making it a good candidate for vaccine development. Ail is important for attaching to host cells and evading host immune responses, facilitating rapid progression of a plague infection. Binding to host cells is important for injection of cytotoxic Yersinia outer proteins. To learn more about how Ail mediates adhesion, we solved two high-resolution crystal structures of Ail, with no ligand bound and in complex with a heparin analog called sucrose octasulfate. We identified multiple adhesion targets, including laminin and heparin, and showed that a 40 kDa domain of laminin called LG4-5 specifically binds to Ail. We also evaluated the contribution of laminin to delivery of Yops to HEp-2 cells. This work constitutes a structural description of how a bacterial outer membrane protein uses a multivalent approach to bind host cells.

  14. Structural Insights into Adeno-Associated Virus Serotype 5

    PubMed Central

    Govindasamy, Lakshmanan; DiMattia, Michael A.; Gurda, Brittney L.; Halder, Sujata; McKenna, Robert; Chiorini, John A.; Muzyczka, Nicholas; Zolotukhin, Sergei

    2013-01-01

    The adeno-associated viruses (AAVs) display differential cell binding, transduction, and antigenic characteristics specified by their capsid viral protein (VP) composition. Toward structure-function annotation, the crystal structure of AAV5, one of the most sequence diverse AAV serotypes, was determined to 3.45-Å resolution. The AAV5 VP and capsid conserve topological features previously described for other AAVs but uniquely differ in the surface-exposed HI loop between βH and βI of the core β-barrel motif and have pronounced conformational differences in two of the AAV surface variable regions (VRs), VR-IV and VR-VII. The HI loop is structurally conserved in other AAVs despite amino acid differences but is smaller in AAV5 due to an amino acid deletion. This HI loop is adjacent to VR-VII, which is largest in AAV5. The VR-IV, which forms the larger outermost finger-like loop contributing to the protrusions surrounding the icosahedral 3-fold axes of the AAVs, is shorter in AAV5, creating a smoother capsid surface topology. The HI loop plays a role in AAV capsid assembly and genome packaging, and VR-IV and VR-VII are associated with transduction and antigenic differences, respectively, between the AAVs. A comparison of interior capsid surface charge and volume of AAV5 to AAV2 and AAV4 showed a higher propensity of acidic residues but similar volumes, consistent with comparable DNA packaging capacities. This structure provided a three-dimensional (3D) template for functional annotation of the AAV5 capsid with respect to regions that confer assembly efficiency, dictate cellular transduction phenotypes, and control antigenicity. PMID:23926356

  15. Crustal structure of central Lake Baikal: Insights into intracontinental rifting

    USGS Publications Warehouse

    ten Brink, U.S.; Taylor, M.H.

    2002-01-01

    The Cenozoic rift system of Baikal, located in the interior of the largest continental mass on Earth, is thought to represent a potential analog of the early stage of breakup of supercontinents. We present a detailed P wave velocity structure of the crust and sediments beneath the Central Basin, the deepest basin in the Baikal rift system. The structure is characterized by a Moho depth of 39-42.5 km; an 8-km-thick, laterally continuous high-velocity (7.05-7.4 km/s) lower crust, normal upper mantle velocity (8 km/s), a sedimentary section reaching maximum depths of 9 km, and a gradual increase of sediment velocity with depth. We interpret the high-velocity lower crust to be part of the Siberian Platform that was not thinned or altered significantly during rifting. In comparison to published results from the Siberian Platform, Moho under the basin is elevated by <3 km. On the basis of these results we propose that the basin was formed by upper crustal extension, possibly reactivating structures in an ancient fold-and-thrust belt. The extent and location of upper mantle extension are not revealed by our data, and it may be offset from the rift. We believe that the Baikal rift structure is similar in many respects to the Mesozoic Atlantic rift system, the precursor to the formation of the North Atlantic Ocean. We also propose that the Central Baikal rift evolved by episodic fault propagation and basin enlargement, rather than by two-stage rift evolution as is commonly assumed.

  16. New Insights into Mitochondrial Structure during Cell Death

    PubMed Central

    Perkins, Guy; Bossy-Wetzel, Ella; Ellisman, Mark H.

    2009-01-01

    Mitochondria play a pivotal role in the cascade of events associated with cell death pathways that are involved with several forms of neurodegeneration. Recent findings show that in the Bax/Bak-dependent pathway of apoptosis, the release of cytochrome c from mitochondria is a consequence of two carefully coordinated events: opening of crista junctions triggered by OPA1 oligomer disassembly and formation of outer-membrane pores. Both steps are necessary for the complete release of proapoptotic proteins. The remodeling of mitochondrial structure accompanies this pathway, including mitochondrial fission, and cristae and crista junction alterations. Yet, there is controversy surrounding the timing of certain remodeling events and whether they are necessary early events required for the release of pro-apoptotic factors or are simply a downstream after-effect. Here, we analyze the current knowledge of mitochondrial remodeling during cell death and discuss what structural alterations occur to this organelle during neurodegeneration, focusing on the higher resolution structural correlates obtained by electron microscopy and electron tomography. PMID:19464290

  17. Structural Insights Into the Evolutionary Paths of Oxylipin Biosynthetic Enzymes

    SciTech Connect

    Lee, D.-S.; Nioche, P.; Hamberg, M.; Raman, C.S.

    2009-05-20

    The oxylipin pathway generates not only prostaglandin-like jasmonates but also green leaf volatiles (GLVs), which confer characteristic aromas to fruits and vegetables. Although allene oxide synthase (AOS) and hydroperoxide lyase are atypical cytochrome P450 family members involved in the synthesis of jasmonates and GLVs, respectively, it is unknown how these enzymes rearrange their hydroperoxide substrates into different products. Here we present the crystal structures of Arabidopsis thaliana AOS, free and in complex with substrate or intermediate analogues. The structures reveal an unusual active site poised to control the reactivity of an epoxyallylic radical and its cation by means of interactions with an aromatic {pi}-system. Replacing the amino acid involved in these steps by a non-polar residue markedly reduces AOS activity and, unexpectedly, is both necessary and sufficient for converting AOS into a GLV biosynthetic enzyme. Furthermore, by combining our structural data with bioinformatic and biochemical analyses, we have discovered previously unknown hydroperoxide lyase in plant growth-promoting rhizobacteria, AOS in coral, and epoxyalcohol synthase in amphioxus. These results indicate that oxylipin biosynthetic genes were present in the last common ancestor of plants and animals, but were subsequently lost in all metazoan lineages except Placozoa, Cnidaria and Cephalochordata.

  18. Structure of CD84 Provides Insight into SLAM Family Function

    SciTech Connect

    Yan,Q.; Malashkevich, V.; Fedorov, A.; Fedorov, E.; Cao, E.; Lary, J.; Cole, J.; Nathenson, S.; Almo, S.

    2007-01-01

    The signaling lymphocyte activation molecule (SLAM) family includes homophilic and heterophilic receptors that modulate both adaptive and innate immune responses. These receptors share a common ectodomain organization: a membrane-proximal immunoglobulin constant domain and a membrane-distal immunoglobulin variable domain that is responsible for ligand recognition. CD84 is a homophilic family member that enhances IFN-{gamma} secretion in activated T cells. Our solution studies revealed that CD84 strongly self-associates with a K{sub d} in the submicromolar range. These data, in combination with previous reports, demonstrate that the SLAM family homophilic affinities span at least three orders of magnitude and suggest that differences in the affinities may contribute to the distinct signaling behavior exhibited by the individual family members. The 2.0 {angstrom} crystal structure of the human CD84 immunoglobulin variable domain revealed an orthogonal homophilic dimer with high similarity to the recently reported homophilic dimer of the SLAM family member NTB-A. Structural and chemical differences in the homophilic interfaces provide a mechanism to prevent the formation of undesired heterodimers among the SLAM family homophilic receptors. These structural data also suggest that, like NTB-A, all SLAM family homophilic dimers adopt a highly kinked organization spanning an end-to-end distance of {approx}140 {angstrom}. This common molecular dimension provides an opportunity for all two-domain SLAM family receptors to colocalize within the immunological synapse and bridge the T cell and antigen-presenting cell.

  19. Structural and functional insights into sulfated galactans: a systematic review.

    PubMed

    Pomin, Vitor H

    2010-01-01

    Sulfated galactans (SGs) are highly anionic marine galactose-composed homopolysaccharides. Although their structures vary among species, their main features are conserved among phyla. Green algal SGs are quite heterogeneous, although preponderantly composed of 3-beta-D-Galp units. The red algal SGs (like agar and carrageen) are composed of repeating disaccharide units with different sulfation patterns which vary among species. The SGs from invertebrates such as sea urchins and ascidians (tunicates), and from the unique description of a sea-grass, are composed of well-defined repetitive units. Chains of 3-linked beta-galactoses are highly conserved in some marine taxonomic groups, with a strong tendency toward 4-sulfation in algae and marine angiosperm, and 2-sulfation in invertebrates. These carbohydrates are extracellular components of the cell wall in plants, of the body wall in tunicates, and of the jelly coat in sea urchin eggs. In sea urchins, the SGs are also responsible to induce the acrosome reaction. However, the wide range of potential pharmacological uses, especially as anticoagulants and antithrombotics, is the main reason for the increasing interest in these sugars. Both natural and clinical actions of SGs have a direct relation to their structural features, since the intermolecular complexes between SG and target proteins are much more stereospecific than only electric charge-dependent. This review will present an overview about the principle structural and functional information of SGs. Other important aspects concerning occurrence, biology, phylogeny, and future directions, will also be reported.

  20. Electronic structure of hydrogenated diamond: Microscopical insight into surface conductivity

    NASA Astrophysics Data System (ADS)

    Iacobucci, S.; Alippi, Paola; Calvani, P.; Girolami, M.; Offi, F.; Petaccia, L.; Trucchi, D. M.

    2016-07-01

    We have correlated the surface conductivity of hydrogen-terminated diamond to the electronic structure in the Fermi region. Significant density of electronic states (DOS) in proximity of the Fermi edge has been measured by photoelectron spectroscopy (PES) on surfaces exposed to air, corresponding to a p -type electric conductive regime, while upon annealing a depletion of the DOS has been achieved, resembling the diamond insulating state. The surface and subsurface electronic structure has been determined, exploiting the different probing depths of PES applied in a photon energy range between 7 and 31 eV. Ab initio density functional calculations including surface charge depletion and band-bending effects favorably compare with electronic states measured by angular-resolved photoelectron spectroscopy. Such states are organized in the energy-momentum space in a twofold structure: one, bulk-derived, band disperses in the Γ -X direction with an average hole effective mass of (0.43 ±0.02 ) m0 , where m0 is the bare electron mass; a second flatter band, with an effective mass of (2.2 ±0.9 ) m0 , proves that a hole gas confined in the topmost layers is responsible for the conductivity of the (2 ×1 ) hydrogen-terminated diamond (100 ) surface.

  1. Structural insights into μ-opioid receptor activation

    PubMed Central

    Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A. J.; Laeremans, Toon; Feinberg, Evan N.; Sanborn, Adrian L.; Kato, Hideaki E.; Livingston, Kathryn E.; Thorsen, Thor S.; Kling, Ralf; Granier, Sébastien; Gmeiner, Peter; Husbands, Stephen M.; Traynor, John R.; Weis, William I.; Steyaert, Jan; Dror, Ron O.; Kobilka, Brian K.

    2015-01-01

    Summary Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To understand the structural basis for μOR activation, we obtained a 2.1 Å X-ray crystal structure of the μOR bound to the morphinan agonist BU72 and stabilized by a G protein-mimetic camelid-antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2 adrenergic receptor (β2AR) and the M2 muscarinic receptor (M2R). Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three GPCRs. PMID:26245379

  2. Amyloid structure and assembly: insights from scanning transmission electron microscopy.

    PubMed

    Goldsbury, Claire; Baxa, Ulrich; Simon, Martha N; Steven, Alasdair C; Engel, Andreas; Wall, Joseph S; Aebi, Ueli; Müller, Shirley A

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  3. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    SciTech Connect

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  4. Structural insights into µ-opioid receptor activation.

    PubMed

    Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A J; Laeremans, Toon; Feinberg, Evan N; Sanborn, Adrian L; Kato, Hideaki E; Livingston, Kathryn E; Thorsen, Thor S; Kling, Ralf C; Granier, Sébastien; Gmeiner, Peter; Husbands, Stephen M; Traynor, John R; Weis, William I; Steyaert, Jan; Dror, Ron O; Kobilka, Brian K

    2015-08-20

    Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To shed light on the structural basis for μOR activation, here we report a 2.1 Å X-ray crystal structure of the murine μOR bound to the morphinan agonist BU72 and a G protein mimetic camelid antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2-adrenergic receptor (β2AR) and the M2 muscarinic receptor. Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three G-protein-coupled receptors. PMID:26245379

  5. Structural Insight into the Clostridium difficile Ethanolamine Utilisation Microcompartment

    PubMed Central

    Faulds-Pain, Alexandra; Lewis, Richard J.; Marles-Wright, Jon

    2012-01-01

    Bacterial microcompartments form a protective proteinaceous barrier around metabolic enzymes that process unstable or toxic chemical intermediates. The genome of the virulent, multidrug-resistant Clostridium difficile 630 strain contains an operon, eut, encoding a bacterial microcompartment with genes for the breakdown of ethanolamine and its utilisation as a source of reduced nitrogen and carbon. The C. difficile eut operon displays regulatory genetic elements and protein encoding regions in common with homologous loci found in the genomes of other bacteria, including the enteric pathogens Salmonella enterica and Enterococcus faecalis. The crystal structures of two microcompartment shell proteins, CD1908 and CD1918, and an uncharacterised protein with potential enzymatic activity, CD1925, were determined by X-ray crystallography. CD1908 and CD1918 display the same protein fold, though the order of secondary structure elements is permuted in CD1908 and this protein displays an N-terminal β-strand extension. These proteins form hexamers with molecules related by crystallographic and non-crystallographic symmetry. The structure of CD1925 has a cupin β-barrel fold and a putative active site that is distinct from the metal-ion dependent catalytic cupins. Thin-section transmission electron microscopy of Escherichia coli over-expressing eut proteins indicates that CD1918 is capable of self-association into arrays, suggesting an organisational role for CD1918 in the formation of this microcompartment. The work presented provides the basis for further study of the architecture and function of the C. difficile eut microcompartment, its role in metabolism and the wider consequences of intestinal colonisation and virulence in this pathogen. PMID:23144756

  6. Structural Insights into Polymorphic ABO Glycan Binding by Helicobacter pylori.

    PubMed

    Moonens, Kristof; Gideonsson, Pär; Subedi, Suresh; Bugaytsova, Jeanna; Romaõ, Ema; Mendez, Melissa; Nordén, Jenny; Fallah, Mahsa; Rakhimova, Lena; Shevtsova, Anna; Lahmann, Martina; Castaldo, Gaetano; Brännström, Kristoffer; Coppens, Fanny; Lo, Alvin W; Ny, Tor; Solnick, Jay V; Vandenbussche, Guy; Oscarson, Stefan; Hammarström, Lennart; Arnqvist, Anna; Berg, Douglas E; Muyldermans, Serge; Borén, Thomas; Remaut, Han

    2016-01-13

    The Helicobacter pylori adhesin BabA binds mucosal ABO/Le(b) blood group (bg) carbohydrates. BabA facilitates bacterial attachment to gastric surfaces, increasing strain virulence and forming a recognized risk factor for peptic ulcers and gastric cancer. High sequence variation causes BabA functional diversity, but the underlying structural-molecular determinants are unknown. We generated X-ray structures of representative BabA isoforms that reveal a polymorphic, three-pronged Le(b) binding site. Two diversity loops, DL1 and DL2, provide adaptive control to binding affinity, notably ABO versus O bg preference. H. pylori strains can switch bg preference with single DL1 amino acid substitutions, and can coexpress functionally divergent BabA isoforms. The anchor point for receptor binding is the embrace of an ABO fucose residue by a disulfide-clasped loop, which is inactivated by reduction. Treatment with the redox-active pharmaceutic N-acetylcysteine lowers gastric mucosal neutrophil infiltration in H. pylori-infected Le(b)-expressing mice, providing perspectives on possible H. pylori eradication therapies.

  7. Artemin Crystal Structure Reveals Insights into Heparan Sulfate Binding

    SciTech Connect

    Silvian,L.; Jin, P.; Carmillo, P.; Boriack-Sjodin, P.; Pelletier, C.; Rushe, M.; Gong, B.; Sah, D.; Pepinsky, B.; Rossomando, A.

    2006-01-01

    Artemin (ART) promotes the growth of developing peripheral neurons by signaling through a multicomponent receptor complex comprised of a transmembrane tyrosine kinase receptor (cRET) and a specific glycosylphosphatidylinositol-linked co-receptor (GFR{alpha}3). Glial cell line-derived neurotrophic factor (GDNF) signals through a similar ternary complex but requires heparan sulfate proteoglycans (HSPGs) for full activity. HSPG has not been demonstrated as a requirement for ART signaling. We crystallized ART in the presence of sulfate and solved its structure by isomorphous replacement. The structure reveals ordered sulfate anions bound to arginine residues in the pre-helix and amino-terminal regions that were organized in a triad arrangement characteristic of heparan sulfate. Three residues in the pre-helix were singly or triply substituted with glutamic acid, and the resulting proteins were shown to have reduced heparin-binding affinity that is partly reflected in their ability to activate cRET. This study suggests that ART binds HSPGs and identifies residues that may be involved in HSPG binding.

  8. Structural insights into RNA recognition by RIG-I

    PubMed Central

    Luo, Dahai; Ding, Steve C.; Vela, Adriana; Kohlway, Andrew; Lindenbach, Brett D.; Pyle, Anna Marie

    2011-01-01

    Summary Intracellular RIG-I-like receptors (RLRs, including RIG-I, MDA-5, and LGP-2) recognize viral RNAs as pathogen-associated molecular patterns (PAMPs) and initiate an antiviral immune response. To understand the molecular basis of this process, we determined the crystal structure of RIG-I in complex with double-stranded RNA. The dsRNA is sheathed within a network of protein domains that include a conserved “helicase” domain (regions HEL1 and HEL2), a specialized insertion domain (HEL2i), and a C-terminal regulatory domain (CTD). A V-shaped pincer connects HEL2 and the CTD by gripping an α-helical shaft that extends from HEL1. In this way, the pincer coordinates functions of all the domains and couples RNA binding with ATP hydrolysis. RIG-I falls within the Dicer-RIG-I clade of super family 2 of helicases and this structure reveals complex interplay between motor domains, accessory mechanical domains and RNA that has implications for understanding the nanomechanical function this protein family and other ATPases more broadly. PMID:22000018

  9. FRESH INSIGHTS ON THE STRUCTURE OF THE SOLAR CORE

    SciTech Connect

    Basu, Sarbani; Chaplin, William J.; Elsworth, Yvonne; New, Roger; Serenelli, Aldo M. E-mail: w.j.chaplin@bham.ac.uk E-mail: r.new@shu.ac.uk

    2009-07-10

    We present new results on the structure of the solar core, obtained with new sets of frequencies of solar low-degree p modes obtained from the BiSON network. We find that different methods used in extracting the different sets of frequencies cause shifts in frequencies, but the shifts are not large enough to affect solar structure results. We find that the BiSON frequencies show that the solar sound speed in the core is slightly larger than that inferred from data from Michelson Doppler Imager low-degree modes, and the uncertainties on the inversion results are smaller. Density results also change by a larger amount, and we find that solar models now tend to show smaller differences in density compared to the Sun. The result is seen at all radii, a result of the fact that conservation of mass implies that density differences in one region have to cancel out density differences in others, since our models are constructed to have the same mass as the Sun. The uncertainties on the density results are much smaller too. We attribute the change in results to having more, and lower frequency, low-degree mode frequencies available. These modes provide greater sensitivity to conditions in the core.

  10. Structural Insights into RNA Recognition by RIG-I

    SciTech Connect

    Luo, Dahai; Ding, Steve C.; Vela, Adriana; Kohlway, Andrew; Lindenbach, Brett D.; Pyle, Anna Marie

    2011-10-27

    Intracellular RIG-I-like receptors (RLRs, including RIG-I, MDA-5, and LGP2) recognize viral RNAs as pathogen-associated molecular patterns (PAMPs) and initiate an antiviral immune response. To understand the molecular basis of this process, we determined the crystal structure of RIG-I in complex with double-stranded RNA (dsRNA). The dsRNA is sheathed within a network of protein domains that include a conserved 'helicase' domain (regions HEL1 and HEL2), a specialized insertion domain (HEL2i), and a C-terminal regulatory domain (CTD). A V-shaped pincer connects HEL2 and the CTD by gripping an {alpha}-helical shaft that extends from HEL1. In this way, the pincer coordinates functions of all the domains and couples RNA binding with ATP hydrolysis. RIG-I falls within the Dicer-RIG-I clade of the superfamily 2 helicases, and this structure reveals complex interplay between motor domains, accessory mechanical domains, and RNA that has implications for understanding the nanomechanical function of this protein family and other ATPases more broadly.

  11. Structural and mechanistic insights into Mps1 kinase activation

    SciTech Connect

    Wang, Wei; Yang, Yuting; Gao, Yuefeng; Xu, Quanbin; Wang, Feng; Zhu, Songcheng; Old, William; Resing, Katheryn; Ahn, Natalie; Lei, Ming; Liu, Xuedong

    2010-11-05

    Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-{angstrom}-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the {alpha}C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation. Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices {alpha}EF and {alpha}F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.

  12. Structural and Biochemical Insights into MLL1 Core Complex Assembly

    SciTech Connect

    Avdic, Vanja; Zhang, Pamela; Lanouette, Sylvain; Groulx, Adam; Tremblay, Véronique; Brunzelle, Joseph; Couture, Jean-François

    2012-05-02

    Histone H3 Lys-4 methylation is predominantly catalyzed by a family of methyltransferases whose enzymatic activity depends on their interaction with a three-subunit complex composed of WDR5, RbBP5, and Ash2L. Here, we report that a segment of 50 residues of RbBP5 bridges the Ash2L C-terminal domain to WDR5. The crystal structure of WDR5 in ternary complex with RbBP5 and MLL1 reveals that both proteins binds peptide-binding clefts located on opposite sides of WDR5s {beta}-propeller domain. RbBP5 engages in several hydrogen bonds and van der Waals contacts within a V-shaped cleft formed by the junction of two blades on WDR5. Mutational analyses of both the WDR5 V-shaped cleft and RbBP5 residues reveal that the interactions between RbBP5 and WDR5 are important for the stimulation of MLL1 methyltransferase activity. Overall, this study provides the structural basis underlying the formation of the WDR5-RbBP5 subcomplex and further highlight the crucial role of WDR5 in scaffolding the MLL1 core complex.

  13. Structural insights into the bacterial carbon-phosphorus lyase machinery.

    PubMed

    Seweryn, Paulina; Van, Lan Bich; Kjeldgaard, Morten; Russo, Christopher J; Passmore, Lori A; Hove-Jensen, Bjarne; Jochimsen, Bjarne; Brodersen, Ditlev E

    2015-09-01

    Phosphorus is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use phosphonate compounds, which require specialized enzymatic machinery to break the stable carbon-phosphorus (C-P) bond. Despite its importance, the details of how this machinery catabolizes phosphonates remain unknown. Here we determine the crystal structure of the 240-kilodalton Escherichia coli C-P lyase core complex (PhnG-PhnH-PhnI-PhnJ; PhnGHIJ), and show that it is a two-fold symmetric hetero-octamer comprising an intertwined network of subunits with unexpected self-homologies. It contains two potential active sites that probably couple phosphonate compounds to ATP and subsequently hydrolyse the C-P bond. We map the binding site of PhnK on the complex using electron microscopy, and show that it binds to a conserved insertion domain of PhnJ. Our results provide a structural basis for understanding microbial phosphonate breakdown.

  14. Bismuth modified carbon-based electrodes for the determination of selected neonicotinoid insecticides.

    PubMed

    Guzsvány, Valéria; Papp, Zsigmond; Zbiljić, Jasmina; Vajdle, Olga; Rodić, Marko

    2011-05-27

    Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE) and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV) mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm⁻³ with a relative standard deviation (RSD) not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs), bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm⁻³ with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  15. Insights into Mercury's interior structure from geodesy measurements

    NASA Astrophysics Data System (ADS)

    Rivoldini, A.; Van Hoolst, T.; Trinh, A.

    2013-09-01

    The measurements of the gravitational field of Mercury by MESSENGER [1] and improved measurements of the spin state of Mercury [2] provide important constraints on the interior structure of Mercury. In particular, these data give strong constraints on the radius and density of Mercury's core and on the core's concentration of sulfur if sulfur is the only light element in the core [3]. Although sulfur is ubiquitously invoked as being the principal candidate light element in terrestrial planet's cores its abundance in the core depends on the redox conditions during planetary formation. MESSENGER data from remote sensing of Mercury's surface [4] indicate a high abundance of sulfur and confirm the low abundance in FeO supporting the hypotheses that Mercury formed under reducing conditions [5]. Therefore, substantial amounts of other light elements like for instance silicon could be present together with sulfur inside Mercury's core. Unlike sulfur, which does almost not partition into solid iron under Mercury's core pressure and temperature conditions, silicon partitions virtually equally between solid and liquid iron. Thus, if silicon is the only light element inside the core, the density jump at the inner-core outer-core boundary is significantly smaller if compared to an Fe - FeS core. If both silicon and sulfur are present inside Mercury's core then as a consequence of a large immiscibility region in liquid Fe - Si - S at Mercury's core conditions and for specific concentrations of light elements [6] a thin layer much enriched in sulfur and depleted in silicon could form at the top of the core. In this study we analyze interior structure models with silicon as the only light element in the core and with both silicon and sulfur in the core. Compared to models with Fe - FeS both settings have different mass distributions within their cores and will likely deform differently due to different elastic properties. Consequently their libration and tides will be different

  16. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA

    USGS Publications Warehouse

    Hladik, Michelle L.; Kolpin, Dana W.; Kuivila, Kathryn M.

    2014-01-01

    Neonicotinoid insecticides are of environmental concern, but little is known about their occurrence in surface water. An area of intense corn and soybean production in the Midwestern United States was chosen to study this issue because of the high agricultural use of neonicotinoids via both seed treatments and other forms of application. Water samples were collected from nine stream sites during the 2013 growing season. The results for the 79 water samples documented similar patterns among sites for both frequency of detection and concentration (maximum:median) with clothianidin (75%, 257 ng/L:8.2 ng/L) > thiamethoxam (47%, 185 ng/L: imidacloprid (23%, 42.7 ng/L: <2 ng/L). Neonicotinoids were detected at all nine sites sampled even though the basin areas spanned four orders of magnitude. Temporal patterns in concentrations reveal pulses of neonicotinoids associated with rainfall events during crop planting, suggesting seed treatments as their likely source.

  17. Microscopic insight into the structure of gallium isotopes

    NASA Astrophysics Data System (ADS)

    Verma, Preeti; Sharma, Chetan; Singh, Suram; Bharti, Arun; Khosa, S. K.

    2012-07-01

    Projected Shell Model technique has been applied to odd-A71-81Ga nuclei with the deformed single-particle states generated by the standard Nilsson potential. Various nuclear structure quantities have been calculated with this technique and compared with the available experimental data in the present work. The known experimental data of the yrast bands in these nuclei are persuasively described and the band diagrams obtained for these nuclei show that the yrast bands in these odd-A Ga isotopes don't belong to the single intrinsic state only but also have multi-particle states. The back-bending in moment of inertia and the electric quadrupole transitions are also calculated.

  18. Dynamic insight into protein structure utilizing red edge excitation shift.

    PubMed

    Chattopadhyay, Amitabha; Haldar, Sourav

    2014-01-21

    Proteins are considered the workhorses in the cellular machinery. They are often organized in a highly ordered conformation in the crowded cellular environment. These conformations display characteristic dynamics over a range of time scales. An emerging consensus is that protein function is critically dependent on its dynamics. The subtle interplay between structure and dynamics is a hallmark of protein organization and is essential for its function. Depending on the environmental context, proteins can adopt a range of conformations such as native, molten globule, unfolded (denatured), and misfolded states. Although protein crystallography is a well established technique, it is not always possible to characterize various protein conformations by X-ray crystallography due to transient nature of these states. Even in cases where structural characterization is possible, the information obtained lacks dynamic component, which is needed to understand protein function. In this overall scenario, approaches that reveal information on protein dynamics are much appreciated. Dynamics of confined water has interesting implications in protein folding. Interfacial hydration combines the motion of water molecules with the slow moving protein molecules. The red edge excitation shift (REES) approach becomes relevant in this context. REES is defined as the shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of absorption spectrum. REES arises due to slow rates (relative to fluorescence lifetime) of solvent relaxation (reorientation) around an excited state fluorophore in organized assemblies such as proteins. Consequently, REES depends on the environment-induced motional restriction imposed on the solvent molecules in the immediate vicinity of the fluorophore. In the case of a protein, the confined water in the protein creates a dipolar field that acts as the solvent for a fluorophore

  19. Structural insights into the rhabdovirus transcription/replication complex.

    PubMed

    Ivanov, Ivan; Yabukarski, Filip; Ruigrok, Rob W H; Jamin, Marc

    2011-12-01

    The rhabdoviruses have a non-segmented single stranded negative-sense RNA genome. Their multiplication in a host cell requires three viral proteins in addition to the viral RNA genome. The nucleoprotein (N) tightly encapsidates the viral RNA, and the N-RNA complex serves as the template for both transcription and replication. The viral RNA-dependent RNA polymerase is a two subunit complex that consists of a large subunit, L, and a non-catalytic cofactor, the phosphoprotein, P. P also acts as a chaperone of nascent RNA-free N by forming a N(0)-P complex that prevents N from binding to cellular RNAs and from polymerizing in the absence of RNA. Here, we discuss the recent molecular and structural studies of individual components and multi-molecular complexes that are involved in the transcription/replication complex of these viruses with regard to their implication in viral transcription and replication.

  20. Structural insights into the catalytic mechanism of cyclophilin A.

    PubMed

    Howard, Bruce R; Vajdos, Felix F; Li, Su; Sundquist, Wesley I; Hill, Christopher P

    2003-06-01

    Cyclophilins constitute a ubiquitous protein family whose functions include protein folding, transport and signaling. They possess both sequence-specific binding and proline cis-trans isomerase activities, as exemplified by the interaction between cyclophilin A (CypA) and the HIV-1 CA protein. Here, we report crystal structures of CypA in complex with HIV-1 CA protein variants that bind preferentially with the substrate proline residue in either the cis or the trans conformation. Cis- and trans-Pro substrates are accommodated within the enzyme active site by rearrangement of their N-terminal residues and with minimal distortions in the path of the main chain. CypA Arg55 guanidinium group probably facilitates catalysis by anchoring the substrate proline oxygen and stabilizing sp3 hybridization of the proline nitrogen in the transition state. PMID:12730686

  1. Arabinosylated glycopeptide hormones: new insights into CLAVATA3 structure.

    PubMed

    Shinohara, Hidefumi; Matsubayashi, Yoshikatsu

    2010-10-01

    Secreted peptides are now recognized as important members of hormones that coordinate and specify cellular functions in plants. Recent accumulating evidence shows that secreted peptide hormones are often post-translationally modified, and such modification is critical for their function. In this review, we highlight hydroxyproline arabinosylation, which has been found in several peptide hormones including CLAVATA3 (CLV3), a key peptide controlling stem cell renewal and differentiation in Arabidopsis shoot apical meristem. Arabinosylation of CLV3 is important for its biological activity and for high-affinity binding to its receptor, CLV1. We discuss the physiological functions of known glycopeptide hormones, the structural information on sugar chains, and possible mechanisms of glycosylation.

  2. Dynamic insight into protein structure utilizing red edge excitation shift.

    PubMed

    Chattopadhyay, Amitabha; Haldar, Sourav

    2014-01-21

    Proteins are considered the workhorses in the cellular machinery. They are often organized in a highly ordered conformation in the crowded cellular environment. These conformations display characteristic dynamics over a range of time scales. An emerging consensus is that protein function is critically dependent on its dynamics. The subtle interplay between structure and dynamics is a hallmark of protein organization and is essential for its function. Depending on the environmental context, proteins can adopt a range of conformations such as native, molten globule, unfolded (denatured), and misfolded states. Although protein crystallography is a well established technique, it is not always possible to characterize various protein conformations by X-ray crystallography due to transient nature of these states. Even in cases where structural characterization is possible, the information obtained lacks dynamic component, which is needed to understand protein function. In this overall scenario, approaches that reveal information on protein dynamics are much appreciated. Dynamics of confined water has interesting implications in protein folding. Interfacial hydration combines the motion of water molecules with the slow moving protein molecules. The red edge excitation shift (REES) approach becomes relevant in this context. REES is defined as the shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of absorption spectrum. REES arises due to slow rates (relative to fluorescence lifetime) of solvent relaxation (reorientation) around an excited state fluorophore in organized assemblies such as proteins. Consequently, REES depends on the environment-induced motional restriction imposed on the solvent molecules in the immediate vicinity of the fluorophore. In the case of a protein, the confined water in the protein creates a dipolar field that acts as the solvent for a fluorophore

  3. Structural insight into iodide uptake by AFm phases.

    PubMed

    Aimoz, Laure; Wieland, Erich; Taviot-Guého, Christine; Dähn, Rainer; Vespa, Marika; Churakov, Sergey V

    2012-04-01

    The ability of cement phases carrying positively charged surfaces to retard the mobility of (129)I, present as iodide (I(-)) in groundwater, was investigated in the context of safe disposal of radioactive waste. (125)I sorption experiments on ettringite, hydrotalcite, chloride-, carbonate- and sulfate-containing AFm phases indicated that calcium-monosulfate (AFm-SO(4)) is the only phase that takes up trace levels of iodide. The structures of AFm phases prepared by coprecipitating iodide with other anions were investigated in order to understand this preferential uptake mechanism. X-ray diffraction (XRD) investigations showed a segregation of monoiodide (AFm-I(2)) and Friedel's salt (AFm-Cl(2)) for I-Cl mixtures, whereas interstratifications of AFm-I(2) and hemicarboaluminate (AFm-OH-(CO(3))(0.5)) were observed for the I-CO(3) systems. In contrast, XRD measurements indicated the formation of a solid solution between AFm-I(2) and AFm-SO(4) for the I-SO(4) mixtures. Extended X-ray absorption fine structure spectroscopy showed a modification of the coordination environment of iodine in I-CO(3) and in I-SO(4) samples compared to pure AFm-I(2). This is assumed to be due to the introduction of stacking faults in I-CO(3) samples on one hand and due to the presence of sulfate and associated space-filling water molecules as close neighbors in I-SO(4) samples on the other hand. The formation of a solid solution between AFm-I(2) and AFm-SO(4), with a short-range mixing of iodide and sulfate, implies that AFm-SO(4) bears the potential to retard (129)I. PMID:22376086

  4. Structural insight into the type-II mitochondrial NADH dehydrogenases.

    PubMed

    Feng, Yue; Li, Wenfei; Li, Jian; Wang, Jiawei; Ge, Jingpeng; Xu, Duo; Liu, Yanjing; Wu, Kaiqi; Zeng, Qingyin; Wu, Jia-Wei; Tian, Changlin; Zhou, Bing; Yang, Maojun

    2012-11-15

    The single-component type-II NADH dehydrogenases (NDH-2s) serve as alternatives to the multisubunit respiratory complex I (type-I NADH dehydrogenase (NDH-1), also called NADH:ubiquinone oxidoreductase; EC 1.6.5.3) in catalysing electron transfer from NADH to ubiquinone in the mitochondrial respiratory chain. The yeast NDH-2 (Ndi1) oxidizes NADH on the matrix side and reduces ubiquinone to maintain mitochondrial NADH/NAD(+) homeostasis. Ndi1 is a potential therapeutic agent for human diseases caused by complex I defects, particularly Parkinson's disease, because its expression restores the mitochondrial activity in animals with complex I deficiency. NDH-2s in pathogenic microorganisms are viable targets for new antibiotics. Here we solve the crystal structures of Ndi1 in its substrate-free, NADH-, ubiquinone- and NADH-ubiquinone-bound states, to help understand the catalytic mechanism of NDH-2s. We find that Ndi1 homodimerization through its carboxy-terminal domain is critical for its catalytic activity and membrane targeting. The structures reveal two ubiquinone-binding sites (UQ(I) and UQ(II)) in Ndi1. NADH and UQ(I) can bind to Ndi1 simultaneously to form a substrate-protein complex. We propose that UQ(I) interacts with FAD to act as an intermediate for electron transfer, and that NADH transfers electrons through this FAD-UQ(I) complex to UQ(II). Together our data reveal the regulatory and catalytic mechanisms of Ndi1 and may facilitate the development or targeting of NDH-2s for potential therapeutic applications.

  5. Structural insights into the EB1–APC interaction

    PubMed Central

    Honnappa, Srinivas; John, Corinne M; Kostrewa, Dirk; Winkler, Fritz K; Steinmetz, Michel O

    2005-01-01

    EB1 proteins bind to microtubule ends where they act in concert with other components, including the adenomatous polyposis coli (APC) tumor suppressor, to regulate the microtubule filament system. We find that EB1 is a stable dimer with a parallel coiled coil and show that dimerization is essential for the formation of its C-terminal domain (EB1-C). The crystal structure of EB1-C reveals a highly conserved surface patch with a deep hydrophobic cavity at its center. EB1-C binds two copies of an APC-derived C-terminal peptide (C-APCp1) with equal 5 μM affinity. The conserved APC Ile2805–Pro2806 sequence motif serves as an anchor for the interaction of C-APCp1 with the hydrophobic cavity of EB1-C. Phosphorylation of the conserved Cdc2 site Ser2789–Lys2792 in C-APCp1 reduces binding four-fold, indicating that the interaction APC–EB1 is post-translationally regulated in cells. Our findings provide a basis for understanding the dynamic crosstalk of EB1 proteins with their molecular targets in eukaryotic organisms. PMID:15616574

  6. Vestibular migraine pathophysiology: insights from structural and functional neuroimaging.

    PubMed

    Tedeschi, Gioacchino; Russo, Antonio; Conte, Francesca; Laura, Marcuccio; Tessitore, Alessandro

    2015-05-01

    Vestibular migraine (VM) has been increasingly recognized as a frequent cause of episodic vertigo, affecting up to 1 % of the general population, with female preponderance. Recently, both the Bárány Society and the Migraine Classification Subcommittee of the International Headache Society have proposed original diagnostic criteria for VM, which have been included in the recent edition of the ICHD-3 beta version. VM diagnosis implies that vestibular symptoms are present during a migraine attack, with or without headache, in the absence of objectively demonstrated interictal vestibulopathy. Nevertheless, despite a growing body of literature, there is still an ongoing debate regarding whether VM origin is principally central or peripheral. However, during the past few years, the extensive application of advanced MRI techniques has contributed to significantly improve the understanding VM pathophysiology. Functional and structural abnormalities have been detected in brain areas involved in multisensory vestibular control and central vestibular processing in patients with VM. In this brief review, we will focus on these recent neuroimaging findings.

  7. Structural Insights into Mitochondrial Calcium Uniporter Regulation by Divalent Cations.

    PubMed

    Lee, Samuel K; Shanmughapriya, Santhanam; Mok, Mac C Y; Dong, Zhiwei; Tomar, Dhanendra; Carvalho, Edmund; Rajan, Sudarsan; Junop, Murray S; Madesh, Muniswamy; Stathopulos, Peter B

    2016-09-22

    Calcium (Ca(2+)) flux into the matrix is tightly controlled by the mitochondrial Ca(2+) uniporter (MCU) due to vital roles in cell death and bioenergetics. However, the precise atomic mechanisms of MCU regulation remain unclear. Here, we solved the crystal structure of the N-terminal matrix domain of human MCU, revealing a β-grasp-like fold with a cluster of negatively charged residues that interacts with divalent cations. Binding of Ca(2+) or Mg(2+) destabilizes and shifts the self-association equilibrium of the domain toward monomer. Mutational disruption of the acidic face weakens oligomerization of the isolated matrix domain and full-length human protein similar to cation binding and markedly decreases MCU activity. Moreover, mitochondrial Mg(2+) loading or blockade of mitochondrial Ca(2+) extrusion suppresses MCU Ca(2+)-uptake rates. Collectively, our data reveal that the β-grasp-like matrix region harbors an MCU-regulating acidic patch that inhibits human MCU activity in response to Mg(2+) and Ca(2+) binding.

  8. Structural Insights into Mitochondrial Calcium Uniporter Regulation by Divalent Cations.

    PubMed

    Lee, Samuel K; Shanmughapriya, Santhanam; Mok, Mac C Y; Dong, Zhiwei; Tomar, Dhanendra; Carvalho, Edmund; Rajan, Sudarsan; Junop, Murray S; Madesh, Muniswamy; Stathopulos, Peter B

    2016-09-22

    Calcium (Ca(2+)) flux into the matrix is tightly controlled by the mitochondrial Ca(2+) uniporter (MCU) due to vital roles in cell death and bioenergetics. However, the precise atomic mechanisms of MCU regulation remain unclear. Here, we solved the crystal structure of the N-terminal matrix domain of human MCU, revealing a β-grasp-like fold with a cluster of negatively charged residues that interacts with divalent cations. Binding of Ca(2+) or Mg(2+) destabilizes and shifts the self-association equilibrium of the domain toward monomer. Mutational disruption of the acidic face weakens oligomerization of the isolated matrix domain and full-length human protein similar to cation binding and markedly decreases MCU activity. Moreover, mitochondrial Mg(2+) loading or blockade of mitochondrial Ca(2+) extrusion suppresses MCU Ca(2+)-uptake rates. Collectively, our data reveal that the β-grasp-like matrix region harbors an MCU-regulating acidic patch that inhibits human MCU activity in response to Mg(2+) and Ca(2+) binding. PMID:27569754

  9. Bacterial tyrosine kinases: evolution, biological function and structural insights

    PubMed Central

    Grangeasse, Christophe; Nessler, Sylvie; Mijakovic, Ivan

    2012-01-01

    Reversible protein phosphorylation is a major mechanism in the regulation of fundamental signalling events in all living organisms. Bacteria have been shown to possess a versatile repertoire of protein kinases, including histidine and aspartic acid kinases, serine/threonine kinases, and more recently tyrosine and arginine kinases. Tyrosine phosphorylation is today recognized as a key regulatory device of bacterial physiology, linked to exopolysaccharide production, virulence, stress response and DNA metabolism. However, bacteria have evolved tyrosine kinases that share no resemblance with their eukaryotic counterparts and are unique in exploiting the ATP/GTP-binding Walker motif to catalyse autophosphorylation and substrate phosphorylation on tyrosine. These enzymes, named BY-kinases (for Bacterial tYrosine kinases), have been identified in a majority of sequenced bacterial genomes, and to date no orthologues have been found in Eukarya. The aim of this review was to present the most recent knowledge about BY-kinases by focusing primarily on their evolutionary origin, structural and functional aspects, and emerging regulatory potential based on recent bacterial phosphoproteomic studies. PMID:22889913

  10. Structure of the Tongariro Volcanic system: Insights from magnetotelluric imaging

    NASA Astrophysics Data System (ADS)

    Hill, Graham J.; Bibby, Hugh M.; Ogawa, Yasuo; Wallin, Erin L.; Bennie, Stewart L.; Caldwell, T. Grant; Keys, Harry; Bertrand, Edward A.; Heise, Wiebke

    2015-12-01

    The dynamics of magma reservoirs (the main repositories for eruptible magma) play a fundamental role in the style and behaviour of volcanic systems. A key first step in understanding these systems is to identify their location and size accurately. We present results from a broadband magnetotelluric study of the Tongariro Volcanic system and discuss how the results fit within current petrological models. The Tongariro Volcanic system is a composite andesitic cone complex, located at the southern end of the Taupo Volcanic Zone in the central North Island of New Zealand. We use data from 136 broadband magnetotelluric soundings within a 25 × 35 km area covering the volcanic system to construct a 3D image of the magmatic system of the Tongariro Volcanic Complex including Mount Ngauruhoe. The structure of the Tongariro magmatic system has been determined from 3D forward and inverse modelling of the magnetotelluric data and allowed for an estimation of the melt fraction present within the system. 3D inverse modelling of the magnetotelluric data shows: a well-developed shallow low resistivity zone outlining the geothermal system; a zone of even lower resistivity representing a shallow crustal magma accumulation zone located at a depth of ˜4-12 km offset to the east of the Tongariro vent system; and a zone with a slightly higher resistivity connecting these two components of the magmatic system providing the path for magmatic fluids from the deeper source region to reach the surface during eruptive events.

  11. Structural insight into magnetochrome-mediated magnetite biomineralization

    NASA Astrophysics Data System (ADS)

    Siponen, Marina I.; Legrand, Pierre; Widdrat, Marc; Jones, Stephanie R.; Zhang, Wei-Jia; Chang, Michelle C. Y.; Faivre, Damien; Arnoux, Pascal; Pignol, David

    2013-10-01

    Magnetotactic bacteria align along the Earth's magnetic field using an organelle called the magnetosome, a biomineralized magnetite (Fe(II)Fe(III)2O4) or greigite (Fe(II)Fe(III)2S4) crystal embedded in a lipid vesicle. Although the need for both iron(II) and iron(III) is clear, little is known about the biological mechanisms controlling their ratio. Here we present the structure of the magnetosome-associated protein MamP and find that it is built on a unique arrangement of a self-plugged PDZ domain fused to two magnetochrome domains, defining a new class of c-type cytochrome exclusively found in magnetotactic bacteria. Mutational analysis, enzyme kinetics, co-crystallization with iron(II) and an in vitro MamP-assisted magnetite production assay establish MamP as an iron oxidase that contributes to the formation of iron(III) ferrihydrite eventually required for magnetite crystal growth in vivo. These results demonstrate the molecular mechanisms of iron management taking place inside the magnetosome and highlight the role of magnetochrome in iron biomineralization.

  12. Potential application of immunoassays for simple, rapid and quantitative detections of phytoavailable neonicotinoid insecticides in cropland soils.

    PubMed

    Watanabe, Eiki; Seike, Nobuyasu; Motoki, Yutaka; Inao, Keiya; Otani, Takashi

    2016-10-01

    This study evaluated the applicability of commercially available kit-based enzyme-linked immunosorbent assay (ELISA) to simple, quick, and quantitative detection for three water-extractable (phytoavailable) neonicotinoid insecticides: dinotefuran, clothianidin, and imidacloprid in soils. ELISA showed excellent analytical sensitivity for determination, but with cross-reaction to structurally related neonicotinoid analogues, which might produce false positives. To analyze insecticides in soil samples of diverse physicochemical properties, they were extracted with water. The aqueous soil extracts were assayed directly with ELISA. No matrix interference was observed without additional dilution with water. Recovery experiments for the insecticides from aqueous soil extracts spiked at 2-10 ng/mL showed good accuracy (72-126%) and precision (<16%). Kit-based ELISAs were used to estimate soil-water distribution coefficients (Kd). Values estimated using this method showed positive correlation between organic carbon contents in soil and those for evaluated insecticides. Results indicate that the evaluated kit-based ELISA has applicability for simple, quick, and reliable detection of phytoavailable insecticides in soils and for estimating Kd values in soil.

  13. Potential application of immunoassays for simple, rapid and quantitative detections of phytoavailable neonicotinoid insecticides in cropland soils.

    PubMed

    Watanabe, Eiki; Seike, Nobuyasu; Motoki, Yutaka; Inao, Keiya; Otani, Takashi

    2016-10-01

    This study evaluated the applicability of commercially available kit-based enzyme-linked immunosorbent assay (ELISA) to simple, quick, and quantitative detection for three water-extractable (phytoavailable) neonicotinoid insecticides: dinotefuran, clothianidin, and imidacloprid in soils. ELISA showed excellent analytical sensitivity for determination, but with cross-reaction to structurally related neonicotinoid analogues, which might produce false positives. To analyze insecticides in soil samples of diverse physicochemical properties, they were extracted with water. The aqueous soil extracts were assayed directly with ELISA. No matrix interference was observed without additional dilution with water. Recovery experiments for the insecticides from aqueous soil extracts spiked at 2-10 ng/mL showed good accuracy (72-126%) and precision (<16%). Kit-based ELISAs were used to estimate soil-water distribution coefficients (Kd). Values estimated using this method showed positive correlation between organic carbon contents in soil and those for evaluated insecticides. Results indicate that the evaluated kit-based ELISA has applicability for simple, quick, and reliable detection of phytoavailable insecticides in soils and for estimating Kd values in soil. PMID:27344017

  14. Insights into heme structure from Soret excitation Raman spectroscopy.

    PubMed

    Callahan, P M; Babcock, G T

    1981-02-17

    Laser lines in resonance with the Soret band optical transitions of several heme proteins and heme model compounds have been used to obtain Raman spectra of these species. Correlations between the observed frequency of a polarized mode in the 1560-1600-cm-1 region and the heme iron spin and coordination geometry have been developed. The position of this band is also a function of the pattern of porphyrin pyrrole ring beta-carbon substitution, and therefore structural information can be extracted from the Raman data only after this dependence has been taken into account. Quantitative correlations between the frequency of this band and the porphyrin core size are presented for three commonly occurring classes of heme compounds: (a) protoheme derivatives, (b) iron porphyrins in which all ring positions are saturated, and (c) heme alpha species. A polarized mode in the 1470-1510-cm-1 region is also consistently enhanced upon Soret excitation of these compounds, but is relatively insensitive to peripheral substituents, and can be used in conjunction with the polarized mode described above to assign heme geometries. In the frequency region above 1600 cm-1, a vibration is observed which also responds to changes in porphyrin geometry. However, this band is sometimes obscured by vibrations of unsaturated beta-carbon substituents, particularly in the case of protoheme derivatives. The normal coordinate analysis developed by Abe and co-workers [Abe, M., Kitagawa, T., & Kyogoku, Y. (1978) J Chem. Phys. 69, 4526-4534] is used to rationalize the dependence of the various modes on porphyrin geometry and peripheral substitution.

  15. Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: laboratory and field experiments.

    PubMed

    Boily, Monique; Sarrasin, Benoit; Deblois, Christian; Aras, Philippe; Chagnon, Madeleine

    2013-08-01

    In Québec, as observed globally, abnormally high honey bee mortality rates have been reported recently. Several potential contributing factors have been identified, and exposure to pesticides is of increasing concern. In maize fields, foraging bees are exposed to residual concentrations of insecticides such as neonicotinoids used for seed coating. Highly toxic to bees, neonicotinoids are also reported to increase AChE activity in other invertebrates exposed to sub-lethal doses. The purpose of this study was therefore to test if the honey bee's AChE activity could be altered by neonicotinoid compounds and to explore possible effects of other common products used in maize fields: atrazine and glyphosate. One week prior to pollen shedding, beehives were placed near three different field types: certified organically grown maize, conventionally grown maize or non-cultivated. At the same time, caged bees were exposed to increasing sub-lethal doses of neonicotinoid insecticides (imidacloprid and clothianidin) and herbicides (atrazine and glyphosate) under controlled conditions. While increased AChE activity was found in all fields after 2 weeks of exposure, bees close to conventional maize crops showed values higher than those in both organic maize fields and non-cultivated areas. In caged bees, AChE activity increased in response to neonicotinoids, and a slight decrease was observed by glyphosate. These results are discussed with regard to AChE activity as a potential biomarker of exposure for neonicotinoids.

  16. Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape

    PubMed Central

    Budge, G. E.; Garthwaite, D.; Crowe, A.; Boatman, N. D.; Delaplane, K. S.; Brown, M. A.; Thygesen, H. H.; Pietravalle, S.

    2015-01-01

    Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop. PMID:26270806

  17. Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape

    NASA Astrophysics Data System (ADS)

    Budge, G. E.; Garthwaite, D.; Crowe, A.; Boatman, N. D.; Delaplane, K. S.; Brown, M. A.; Thygesen, H. H.; Pietravalle, S.

    2015-08-01

    Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop.

  18. Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments.

    PubMed

    Cloyd, Raymond A; Bethke, James A

    2011-01-01

    The neonicotinoid insecticides imidacloprid, acetamiprid, dinotefuran, thiamethoxam and clothianidin are commonly used in greenhouses and/or interiorscapes (plant interiorscapes and conservatories) to manage a wide range of plant-feeding insects such as aphids, mealybugs and whiteflies. However, these systemic insecticides may also be harmful to natural enemies, including predators and parasitoids. Predatory insects and mites may be adversely affected by neonicotinoid systemic insecticides when they: (1) feed on pollen, nectar or plant tissue contaminated with the active ingredient; (2) consume the active ingredient of neonicotinoid insecticides while ingesting plant fluids; (3) feed on hosts (prey) that have consumed leaves contaminated with the active ingredient. Parasitoids may be affected negatively by neonicotinoid insecticides because foliar, drench or granular applications may decrease host population levels so that there are not enough hosts to attack and thus sustain parasitoid populations. Furthermore, host quality may be unacceptable for egg laying by parasitoid females. In addition, female parasitoids that host feed may inadvertently ingest a lethal concentration of the active ingredient or a sublethal dose that inhibits foraging or egg laying. There are, however, issues that require further consideration, such as: the types of plant and flower that accumulate active ingredients, and the concentrations in which they are accumulated; the influence of flower age on the level of exposure of natural enemies to the active ingredient; the effect of neonicotinoid metabolites produced within the plant. As such, the application of neonicotinoid insecticides in conjunction with natural enemies in protected culture and interiorscape environments needs further investigation.

  19. Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape.

    PubMed

    Budge, G E; Garthwaite, D; Crowe, A; Boatman, N D; Delaplane, K S; Brown, M A; Thygesen, H H; Pietravalle, S

    2015-01-01

    Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop. PMID:26270806

  20. Exposure to neonicotinoids influences the motor function of adult worker honeybees.

    PubMed

    Williamson, Sally M; Willis, Sarah J; Wright, Geraldine A

    2014-10-01

    Systemic pesticides such as neonicotinoids are commonly used on flowering crops visited by pollinators, and their use has been implicated in the decline of insect pollinator populations in Europe and North America. Several studies show that neonicotinoids affect navigation and learning in bees but few studies have examined whether these substances influence their basic motor function. Here, we investigated how prolonged exposure to sublethal doses of four neonicotinoid pesticides (imidacloprid, thiamethoxam, clothianidin, dinotefuran) and the plant toxin, nicotine, affect basic motor function and postural control in foraging-age worker honeybees. We used doses of 10 nM for each neonicotinoid: field-relevant doses that we determined to be sublethal and willingly consumed by bees. The neonicotinoids were placed in food solutions given to bees for 24 h. After the exposure period, bees were more likely to lose postural control during the motor function assay and fail to right themselves if exposed to imidacloprid, thiamethoxam, clothianidin. Bees exposed to thiamethoxam and nicotine also spent more time grooming. Other behaviours (walking, sitting and flying) were not significantly affected. Expression of changes in motor function after exposure to imidacloprid was dose-dependent and affected all measured behaviours. Our data illustrate that 24 h exposure to sublethal doses of neonicotinoid pesticides has a subtle influence on bee behaviour that is likely to affect normal function in a field setting.

  1. Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape.

    PubMed

    Budge, G E; Garthwaite, D; Crowe, A; Boatman, N D; Delaplane, K S; Brown, M A; Thygesen, H H; Pietravalle, S

    2015-08-13

    Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop.

  2. Insight into nucleon structure from lattice calculations of moments of parton and generalized parton distributions

    SciTech Connect

    J.W. Negele; R.C. Brower; P. Dreher; R. Edwards; G. Fleming; Ph. Hagler; U.M. Heller; Th. Lippert; A.V.Pochinsky; D.B. Renner; D. Richards; K. Schilling; W. Schroers

    2004-04-01

    This talk presents recent calculations in full QCD of the lowest three moments of generalized parton distributions and the insight they provide into the behavior of nucleon electromagnetic form factors, the origin of the nucleon spin, and the transverse structure of the nucleon. In addition, new exploratory calculations in the chiral regime of full QCD are discussed.

  3. Cognitive Structures of the Gifted: Theoretical Perspectives, Factor Analysis, Triarchic Theories of Intelligence, and Insight Issues.

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.

    The paper reviews research on the cognitive structures of gifted students. Theories of R. Sternberg and his triarchic model of intelligence are described. Sternberg asserts that three processes appear to account for insight: selective encoding, selective combination, and selective comparison. H. Gardner's perspective citing six types of…

  4. The Manifest Association Structure of the Single-Factor Model: Insights from Partial Correlations

    ERIC Educational Resources Information Center

    Salgueiro, Maria de Fatima; Smith, Peter W. F.; McDonald, John W.

    2008-01-01

    The association structure between manifest variables arising from the single-factor model is investigated using partial correlations. The additional insights to the practitioner provided by partial correlations for detecting a single-factor model are discussed. The parameter space for the partial correlations is presented, as are the patterns of…

  5. Structural and Mechanistic Insights into C-P Bond Hydrolysis by Phosphonoacetate Hydrolase

    SciTech Connect

    Agarwal, Vinayak; Borisova, Svetlana A.; Metcalf, William W.; van der Donk, Wilfred A.; Nair, Satish K.

    2011-12-22

    Bacteria have evolved pathways to metabolize phosphonates as a nutrient source for phosphorus. In Sinorhizobium meliloti 1021, 2-aminoethylphosphonate is catabolized to phosphonoacetate, which is converted to acetate and inorganic phosphate by phosphonoacetate hydrolase (PhnA). Here we present detailed biochemical and structural characterization of PhnA that provides insights into the mechanism of C-P bond cleavage. The 1.35 {angstrom} resolution crystal structure reveals a catalytic core similar to those of alkaline phosphatases and nucleotide pyrophosphatases but with notable differences, such as a longer metal-metal distance. Detailed structure-guided analysis of active site residues and four additional cocrystal structures with phosphonoacetate substrate, acetate, phosphonoformate inhibitor, and a covalently bound transition state mimic provide insight into active site features that may facilitate cleavage of the C-P bond. These studies expand upon the array of reactions that can be catalyzed by enzymes of the alkaline phosphatase superfamily.

  6. Toxicity of a neonicotinoid insecticide, guadipyr, in earthworm (Eisenia fetida).

    PubMed

    Wang, Kai; Mu, Xiyan; Qi, Suzhen; Chai, Tingting; Pang, Sen; Yang, Yang; Wang, Chengju; Jiang, Jiazhen

    2015-04-01

    Neonicotinoid insecticides are new class of pesticides and it is very meaningful to evaluate the toxicity of guadipyr to earthworm (Eisenia fetida). In the present study, effects of guadipyr on reproduction, growth, catalase(CAT), superoxide dismutase (SOD), acetylcholinesterase (AChE) and DNA damage in earthworm were assessed using an artificial soil medium. Guadipyr showed low toxicity to earthworms and did not elicit an effect on earthworm reproduction or growth in artificial soils at concentrations <100mg/kg. However, after exposure to guadipyr, the activity of SOD and CAT in earthworm increased and then decreased to control level. AChE activity decreased at day 3 at 50 and 100mg/kg and then increased to control level. Our data indicate that guadipyr did not induce DNA damage in earthworms at concentration of <100mg/kg.

  7. Natural Products at Work: Structural Insights into Inhibition of the Bacterial Membrane Protein MraY.

    PubMed

    Koppermann, Stefan; Ducho, Christian

    2016-09-19

    Natural(ly) fit: The X-ray crystal structure of the bacterial membrane protein MraY in complex with its natural product inhibitor muraymycin D2 is discussed. MraY catalyzes one of the membrane-associated steps in peptidoglycan biosynthesis and, therefore, represents a promising target for novel antibiotics. Structural insights derived from the protein-inhibitor complex might now pave the way for the development of new antimicrobial drugs. PMID:27511599

  8. Insights into RNA structure and function from genome-wide studies.

    PubMed

    Mortimer, Stefanie A; Kidwell, Mary Anne; Doudna, Jennifer A

    2014-07-01

    A comprehensive understanding of RNA structure will provide fundamental insights into the cellular function of both coding and non-coding RNAs. Although many RNA structures have been analysed by traditional biophysical and biochemical methods, the low-throughput nature of these approaches has prevented investigation of the vast majority of cellular transcripts. Triggered by advances in sequencing technology, genome-wide approaches for probing the transcriptome are beginning to reveal how RNA structure affects each step of protein expression and RNA stability. In this Review, we discuss the emerging relationships between RNA structure and the regulation of gene expression. PMID:24821474

  9. Quantifying Neonicotinoid Insecticide Residues Escaping during Maize Planting with Vacuum Planters.

    PubMed

    Xue, Yingen; Limay-Rios, Victor; Smith, Jocelyn; Baute, Tracey; Forero, Luis Gabriel; Schaafsma, Arthur

    2015-11-01

    Neonicotinoid residues escaping in vacuum-planter exhaust during maize planting were measured in 25 fields in southwestern Ontario in 2013-2014 using filter bags to collect planter exhaust dust and horizontal and vertical sticky traps to collect planter operation-generated dust. Atrazine residues were used to differentiate between neonicotinoid residues originating from seed or from disturbed soil. Recovery rates of seed-applied neonicotinoids in exhaust were 0.014 and 0.365% in 2013 and 2014, respectively, calculated on the basis of neonicotinoid concentrations in preplant soil and seed application rates. Neonicotinoid exhaust emission rates were 0.0036 and 0.1104 g/ha for 2013 and 2014, respectively, with 99.9472 and 99.7820% originating from treated seed in 2013 and 2014, respectively, calculated on the basis of the atrazine marker. Rates of recovery of seed-applied neonicotinoid residues by exhaust filter bags were 0.015 and 0.437% for 2013 and 2014, respectively. Neonicotinoid residues captured on horizontal and vertical traps were 1.10 ng/cm2 (0.1104 g/ha) and 1.45 ng/cm2 (0.0029 g/ha), respectively, with 92.31 and 93.03% originating from treated seed, respectively, representing 0.3896% of the original active ingredient applied to the seed planted. Exposure to pollinators can be best reduced by strategies to keep active ingredient on the seed, below the soil surface, and in the field where applied.

  10. Quantifying Neonicotinoid Insecticide Residues Escaping during Maize Planting with Vacuum Planters.

    PubMed

    Xue, Yingen; Limay-Rios, Victor; Smith, Jocelyn; Baute, Tracey; Forero, Luis Gabriel; Schaafsma, Arthur

    2015-11-01

    Neonicotinoid residues escaping in vacuum-planter exhaust during maize planting were measured in 25 fields in southwestern Ontario in 2013-2014 using filter bags to collect planter exhaust dust and horizontal and vertical sticky traps to collect planter operation-generated dust. Atrazine residues were used to differentiate between neonicotinoid residues originating from seed or from disturbed soil. Recovery rates of seed-applied neonicotinoids in exhaust were 0.014 and 0.365% in 2013 and 2014, respectively, calculated on the basis of neonicotinoid concentrations in preplant soil and seed application rates. Neonicotinoid exhaust emission rates were 0.0036 and 0.1104 g/ha for 2013 and 2014, respectively, with 99.9472 and 99.7820% originating from treated seed in 2013 and 2014, respectively, calculated on the basis of the atrazine marker. Rates of recovery of seed-applied neonicotinoid residues by exhaust filter bags were 0.015 and 0.437% for 2013 and 2014, respectively. Neonicotinoid residues captured on horizontal and vertical traps were 1.10 ng/cm2 (0.1104 g/ha) and 1.45 ng/cm2 (0.0029 g/ha), respectively, with 92.31 and 93.03% originating from treated seed, respectively, representing 0.3896% of the original active ingredient applied to the seed planted. Exposure to pollinators can be best reduced by strategies to keep active ingredient on the seed, below the soil surface, and in the field where applied. PMID:26437361

  11. New insights about enzyme evolution from large scale studies of sequence and structure relationships.

    PubMed

    Brown, Shoshana D; Babbitt, Patricia C

    2014-10-31

    Understanding how enzymes have evolved offers clues about their structure-function relationships and mechanisms. Here, we describe evolution of functionally diverse enzyme superfamilies, each representing a large set of sequences that evolved from a common ancestor and that retain conserved features of their structures and active sites. Using several examples, we describe the different structural strategies nature has used to evolve new reaction and substrate specificities in each unique superfamily. The results provide insight about enzyme evolution that is not easily obtained from studies of one or only a few enzymes.

  12. Structural insights into the architecture of the hyperthermophilic Fusellovirus SSV1.

    PubMed

    Stedman, Kenneth M; DeYoung, Melissa; Saha, Mitul; Sherman, Michael B; Morais, Marc C

    2015-01-01

    The structure and assembly of many icosahedral and helical viruses are well-characterized. However, the molecular basis for the unique spindle-shaped morphology of many viruses that infect Archaea remains unknown. To understand the architecture and assembly of these viruses, the spindle-shaped virus SSV1 was examined using cryo-EM, providing the first 3D-structure of a spindle-shaped virus as well as insight into SSV1 biology, assembly and evolution. Furthermore, a geometric framework underlying the distinct spindle-shaped structure is proposed. PMID:25463608

  13. Structure-function insights of membrane and soluble proteins revealed by electron crystallography.

    PubMed

    Dreaden, Tina M; Devarajan, Bharanidharan; Barry, Bridgette A; Schmidt-Krey, Ingeborg

    2013-01-01

    Electron crystallography is emerging as an important method in solving protein structures. While it has found extensive applications in the understanding of membrane protein structure and function at a wide range of resolutions, from revealing oligomeric arrangements to atomic models, electron crystallography has also provided invaluable information on the soluble α/β-tubulin which could not be obtained by any other method to date. Examples of critical insights from selected structures of membrane proteins as well as α/β-tubulin are described here, demonstrating the vast potential of electron crystallography that is first beginning to unfold.

  14. Structural insights into the architecture of the hyperthermophilic Fusellovirus SSV1.

    PubMed

    Stedman, Kenneth M; DeYoung, Melissa; Saha, Mitul; Sherman, Michael B; Morais, Marc C

    2015-01-01

    The structure and assembly of many icosahedral and helical viruses are well-characterized. However, the molecular basis for the unique spindle-shaped morphology of many viruses that infect Archaea remains unknown. To understand the architecture and assembly of these viruses, the spindle-shaped virus SSV1 was examined using cryo-EM, providing the first 3D-structure of a spindle-shaped virus as well as insight into SSV1 biology, assembly and evolution. Furthermore, a geometric framework underlying the distinct spindle-shaped structure is proposed.

  15. Evaluation of river pollution of neonicotinoids in Osaka City (Japan) by LC/MS with dopant-assisted photoionisation.

    PubMed

    Yamamoto, Atsushi; Terao, Tomoko; Hisatomi, Hirotaka; Kawasaki, Hideya; Arakawa, Ryuichi

    2012-08-01

    An atmospheric pressure photoionisation (APPI) source for liquid chromatography/mass spectrometry (LC/MS) was applied to determine neonicotinoid pesticides in the aquatic environment. Dopant-assisted APPI was very effective in the ionisation of neonicotinoids. Neonicotinoids generated protonated molecules in APPI with high sensitivity, while adduct ions, such as sodiated molecules, were predominantly generated in conventional electrospray ionisation. The ionisation of neonicotinoids was confirmed by ultra-high-resolution MS. An analytical method coupled with solid phase extraction was developed for acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, and thiamethoxam. Method detection limits were 0.47 to 2.1 ng L(-1) for six neonicotinoids. Dinotefuran was the most frequent and highest among the neonicotinoids examined in the aquatic environment in Osaka, Japan. The maximum concentration of dinotefuran was 220 ng L(-1). Given the toxicity of neonicotinoids for aquatic creatures, the concentrations observed here were substantially low. The change in concentrations was temporally coincident with the period of the neonicotinoid application. Although rapid photodegradation and some degradation products have been elucidated, the degradation products in the aquatic environment were not identified in the present study. PMID:22767100

  16. Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides.

    PubMed

    Bodereau-Dubois, Béatrice; List, Olivier; Calas-List, Delphine; Marques, Olivier; Communal, Pierre-Yves; Thany, Steeve H; Lapied, Bruno

    2012-05-01

    Neonicotinoid insecticides act selectively on insect nicotinic acetylcholine receptors (nAChRs). Recent studies revealed that their efficiency was altered by the phosphorylation/dephosphorylation process and the intracellular signaling pathway involved in the regulation of nAChRs. Using whole-cell patch-clamp electrophysiology adapted for dissociated cockroach dorsal unpaired median (DUM) neurons, we demonstrated that intracellular factors involved in the regulation of nAChR function modulated neonicotinoid sensitivity. DUM neurons were known to express two α-bungarotoxin-insensitive nAChR subtypes: nAChR1 and nAChR2. Whereas nAChR1 was sensitive to imidacloprid, nAChR2 was insensitive to this insecticide. Here, we demonstrated that, like nicotine, acetamiprid and clothianidin, other types of neonicotinoid insecticides, acted as agonists on the nAChR2 subtype. Using acetamiprid, we revealed that both steady-state depolarization and hyperpolarization affected nAChR2 sensitivity. The measurement of the input membrane resistance indicated that change in the acetamiprid-induced agonist activity was related to the receptor conformational state. Using cadmium chloride, ω-conotoxin GVIA, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-acetamide (LOE 908), we found that inhibition of calcium influx through high voltage-activated calcium channels and transient receptor potential γ (TRPγ) activated by both depolarization and hyperpolarization increased nAChR2 sensitivity to acetamiprid. Finally, using N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), forskolin, and cAMP, we demonstrated that adenylyl cyclase sensitive to the calcium/calmodulin complex regulated internal cAMP concentration, which in turn modulated TRPγ function and nAChR2 sensitivity to acetamiprid. Similar TRPγ-induced modulatory effects were also obtained when clothianidin was tested. These findings bring insights into the signaling pathway modulating

  17. Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides.

    PubMed

    Bodereau-Dubois, Béatrice; List, Olivier; Calas-List, Delphine; Marques, Olivier; Communal, Pierre-Yves; Thany, Steeve H; Lapied, Bruno

    2012-05-01

    Neonicotinoid insecticides act selectively on insect nicotinic acetylcholine receptors (nAChRs). Recent studies revealed that their efficiency was altered by the phosphorylation/dephosphorylation process and the intracellular signaling pathway involved in the regulation of nAChRs. Using whole-cell patch-clamp electrophysiology adapted for dissociated cockroach dorsal unpaired median (DUM) neurons, we demonstrated that intracellular factors involved in the regulation of nAChR function modulated neonicotinoid sensitivity. DUM neurons were known to express two α-bungarotoxin-insensitive nAChR subtypes: nAChR1 and nAChR2. Whereas nAChR1 was sensitive to imidacloprid, nAChR2 was insensitive to this insecticide. Here, we demonstrated that, like nicotine, acetamiprid and clothianidin, other types of neonicotinoid insecticides, acted as agonists on the nAChR2 subtype. Using acetamiprid, we revealed that both steady-state depolarization and hyperpolarization affected nAChR2 sensitivity. The measurement of the input membrane resistance indicated that change in the acetamiprid-induced agonist activity was related to the receptor conformational state. Using cadmium chloride, ω-conotoxin GVIA, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-acetamide (LOE 908), we found that inhibition of calcium influx through high voltage-activated calcium channels and transient receptor potential γ (TRPγ) activated by both depolarization and hyperpolarization increased nAChR2 sensitivity to acetamiprid. Finally, using N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), forskolin, and cAMP, we demonstrated that adenylyl cyclase sensitive to the calcium/calmodulin complex regulated internal cAMP concentration, which in turn modulated TRPγ function and nAChR2 sensitivity to acetamiprid. Similar TRPγ-induced modulatory effects were also obtained when clothianidin was tested. These findings bring insights into the signaling pathway modulating

  18. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials.

    PubMed

    Alburaki, Mohamed; Boutin, Sébastien; Mercier, Pierre-Luc; Loublier, Yves; Chagnon, Madeleine; Derome, Nicolas

    2015-01-01

    Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads. PMID:25993642

  19. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials.

    PubMed

    Alburaki, Mohamed; Boutin, Sébastien; Mercier, Pierre-Luc; Loublier, Yves; Chagnon, Madeleine; Derome, Nicolas

    2015-01-01

    Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads.

  20. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials

    PubMed Central

    Alburaki, Mohamed; Boutin, Sébastien; Mercier, Pierre-Luc; Loublier, Yves; Chagnon, Madeleine; Derome, Nicolas

    2015-01-01

    Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads. PMID:25993642

  1. Neonicotinoid Insecticides Alter the Gene Expression Profile of Neuron-Enriched Cultures from Neonatal Rat Cerebellum

    PubMed Central

    Kimura-Kuroda, Junko; Nishito, Yasumasa; Yanagisawa, Hiroko; Kuroda, Yoichiro; Komuta, Yukari; Kawano, Hitoshi; Hayashi, Masaharu

    2016-01-01

    Neonicotinoids are considered safe because of their low affinities to mammalian nicotinic acetylcholine receptors (nAChRs) relative to insect nAChRs. However, because of importance of nAChRs in mammalian brain development, there remains a need to establish the safety of chronic neonicotinoid exposures with regards to children’s health. Here we examined the effects of long-term (14 days) and low dose (1 μM) exposure of neuron-enriched cultures from neonatal rat cerebellum to nicotine and two neonicotinoids: acetamiprid and imidacloprid. Immunocytochemistry revealed no differences in the number or morphology of immature neurons or glial cells in any group versus untreated control cultures. However, a slight disturbance in Purkinje cell dendritic arborization was observed in the exposed cultures. Next we performed transcriptome analysis on total RNAs using microarrays, and identified significant differential expression (p < 0.05, q < 0.05, ≥1.5 fold) between control cultures versus nicotine-, acetamiprid-, or imidacloprid-exposed cultures in 34, 48, and 67 genes, respectively. Common to all exposed groups were nine genes essential for neurodevelopment, suggesting that chronic neonicotinoid exposure alters the transcriptome of the developing mammalian brain in a similar way to nicotine exposure. Our results highlight the need for further careful investigations into the effects of neonicotinoids in the developing mammalian brain. PMID:27782041

  2. Sex allocation theory reveals a hidden cost of neonicotinoid exposure in a parasitoid wasp

    PubMed Central

    Whitehorn, Penelope R.; Cook, Nicola; Blackburn, Charlotte V.; Gill, Sophie M.; Green, Jade; Shuker, David M.

    2015-01-01

    Sex allocation theory has proved to be one the most successful theories in evolutionary ecology. However, its role in more applied aspects of ecology has been limited. Here we show how sex allocation theory helps uncover an otherwise hidden cost of neonicotinoid exposure in the parasitoid wasp Nasonia vitripennis. Female N. vitripennis allocate the sex of their offspring in line with Local Mate Competition (LMC) theory. Neonicotinoids are an economically important class of insecticides, but their deployment remains controversial, with evidence linking them to the decline of beneficial species. We demonstrate for the first time to our knowledge, that neonicotinoids disrupt the crucial reproductive behaviour of facultative sex allocation at sub-lethal, field-relevant doses in N. vitripennis. The quantitative predictions we can make from LMC theory show that females exposed to neonicotinoids are less able to allocate sex optimally and that this failure imposes a significant fitness cost. Our work highlights that understanding the ecological consequences of neonicotinoid deployment requires not just measures of mortality or even fecundity reduction among non-target species, but also measures that capture broader fitness costs, in this case offspring sex allocation. Our work also highlights new avenues for exploring how females obtain information when allocating sex under LMC. PMID:25925105

  3. Atomic Force Microscopy in Microbiology: New Structural and Functional Insights into the Microbial Cell Surface

    PubMed Central

    2014-01-01

    ABSTRACT Microbial cells sense and respond to their environment using their surface constituents. Therefore, understanding the assembly and biophysical properties of cell surface molecules is an important research topic. With its ability to observe living microbial cells at nanometer resolution and to manipulate single-cell surface molecules, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Here, we survey major breakthroughs made in cell surface microbiology using AFM techniques, emphasizing the most recent structural and functional insights. PMID:25053785

  4. Insight into DEG/ENaC Channel Gating from Genetics and Structure

    PubMed Central

    Eastwood, Amy L.; Goodman, Miriam B.

    2014-01-01

    The founding members of the superfamily of DEG/ENaC ion channel proteins are C. elegans proteins that form mechanosensitive channels in touch and pain receptors. For more than a decade, the research community has used mutagenesis to identify motifs that regulate gating. This review integrates insight derived from unbiased in vivo mutagenesis screens with recent crystal structures to develop new models for activation of mechanically-gated DEGs. PMID:23026751

  5. Crystal structures from the Plasmodium peroxiredoxins: new insights into oligomerization and product binding

    PubMed Central

    2012-01-01

    Background Plasmodium falciparum is the protozoan parasite primarily responsible for more than one million malarial deaths, annually, and is developing resistance to current therapies. Throughout its lifespan, the parasite is subjected to oxidative attack, so Plasmodium antioxidant defences are essential for its survival and are targets for disease control. Results To further understand the molecular aspects of the Plasmodium redox system, we solved 4 structures of Plasmodium peroxiredoxins (Prx). Our study has confirmed PvTrx-Px1 to be a hydrogen peroxide (H2O2)-sensitive peroxiredoxin. We have identified and characterized the novel toroid octameric oligomer of PyTrx-Px1, which may be attributed to the interplay of several factors including: (1) the orientation of the conserved surface/buried arginine of the NNLA(I/L)GRS-loop; and (2) the C-terminal tail positioning (also associated with the aforementioned conserved loop) which facilitates the intermolecular hydrogen bond between dimers (in an A-C fashion). In addition, a notable feature of the disulfide bonds in some of the Prx crystal structures is discussed. Finally, insight into the latter stages of the peroxiredoxin reaction coordinate is gained. Our structure of PyPrx6 is not only in the sulfinic acid (RSO2H) form, but it is also with glycerol bound in a way (not previously observed) indicative of product binding. Conclusions The structural characterization of Plasmodium peroxiredoxins provided herein provides insight into their oligomerization and product binding which may facilitate the targeting of these antioxidant defences. Although the structural basis for the octameric oligomerization is further understood, the results yield more questions about the biological implications of the peroxiredoxin oligomerization, as multiple toroid configurations are now known. The crystal structure depicting the product bound active site gives insight into the overoxidation of the active site and allows further

  6. Structural Insights into Intermediate Steps in the Sir2 Deacetylation Reaction

    SciTech Connect

    Hawse, William F.; Hoff, Kevin G.; Fatkins, David G.; Daines, Alison; Zubkova, Olga V.; Schramm, Vern L.; Zheng, Weiping; Wolberger, Cynthia

    2010-07-22

    Sirtuin enzymes comprise a unique class of NAD{sup +}-dependent protein deacetylases. Although structures of many sirtuin complexes have been determined, structural resolution of intermediate chemical steps are needed to understand the deacetylation mechanism. We report crystal structures of the bacterial sirtuin, Sir2Tm, in complex with an S-alkylamidate intermediate, analogous to the naturally occurring O-alkylamidate intermediate, and a Sir2Tm ternary complex containing a dissociated NAD{sup +} analog and acetylated peptide. The structures and biochemical studies reveal critical roles for the invariant active site histidine in positioning the reaction intermediate, and for a conserved phenylalanine residue in shielding reaction intermediates from base exchange with nicotinamide. The new structural and biochemical studies provide key mechanistic insight into intermediate steps of the Sir2 deacetylation reaction.

  7. Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (Hemiptera: Aleyrodidae).

    PubMed

    Gorman, Kevin; Devine, Gregor; Bennison, Jude; Coussons, Peter; Punchard, Neville; Denholm, Ian

    2007-06-01

    Susceptibilities of UK and mainland European samples of Trialeurodes vaporariorum (Westwood) to the neonicotinoid insecticide imidacloprid were investigated over a 7 year period. All 24 strains collected between 1997 and 2003 showed similar baseline levels of susceptibility to that of a known susceptible laboratory strain when exposed to a diagnostic concentration (128 mg L(-1)) of formulated imidacloprid. Two samples collected during 2004, one from the UK and one from The Netherlands, demonstrated reduced susceptibility at this concentration. Using dose-response assays, the presence of resistant individuals was disclosed in both these strains; some individuals were unaffected at doses high enough to induce phytotoxic effects. This report represents the first confirmed cases of neonicotinoid resistance inducing control failures in T. vaporariorum, and highlights a need for careful vigilance to sustain the effectiveness of imidacloprid and related neonicotinoid insecticides.

  8. Increasing neonicotinoid use and the declining butterfly fauna of lowland California.

    PubMed

    Forister, Matthew L; Cousens, Bruce; Harrison, Joshua G; Anderson, Kayce; Thorne, James H; Waetjen, Dave; Nice, Chris C; De Parsia, Matthew; Hladik, Michelle L; Meese, Robert; van Vliet, Heidi; Shapiro, Arthur M

    2016-08-01

    The butterfly fauna of lowland Northern California has exhibited a marked decline in recent years that previous studies have attributed in part to altered climatic conditions and changes in land use. Here, we ask if a shift in insecticide use towards neonicotinoids is associated with butterfly declines at four sites in the region that have been monitored for four decades. A negative association between butterfly populations and increasing neonicotinoid application is detectable while controlling for land use and other factors, and appears to be more severe for smaller-bodied species. These results suggest that neonicotinoids could influence non-target insect populations occurring in proximity to application locations, and highlights the need for mechanistic work to complement long-term observational data. PMID:27531159

  9. Increasing neonicotinoid use and the declining butterfly fauna of lowland California

    USGS Publications Warehouse

    Forister, Matthew L.; Cousens, Bruce; Harrison, Joshua G.; Anderson, Kayce; Thorne, James H.; Waetjen, Dave; Nice, Chris C.; De Parsia, Matthew; Hladik, Michelle L.; Meese, Robert; van Vliet, Heidi; Shapiro, Arthur M.

    2016-01-01

    The butterfly fauna of lowland Northern California has exhibited a marked decline in recent years that previous studies have attributed in part to altered climatic conditions and changes in land use. Here, we ask if a shift in insecticide use towards neonicotinoids is associated with butterfly declines at four sites in the region that have been monitored for four decades. A negative association between butterfly populations and increasing neonicotinoid application is detectable while controlling for land use and other factors, and appears to be more severe for smaller-bodied species. These results suggest that neonicotinoids could influence non-target insect populations occurring in proximity to application locations, and highlights the need for mechanistic work to complement long-term observational data.

  10. Biodegradation of neonicotinoid insecticide, imidacloprid by restriction enzyme mediated integration (REMI) generated Trichoderma mutants.

    PubMed

    He, Xiangfeng; Wubie, Abebe Jenberie; Diao, Qingyun; Li, Wei; Xue, Fei; Guo, Zhanbo; Zhou, Ting; Xu, Shufa

    2014-10-01

    REMI (restriction enzyme-mediated integration) technique was employed to construct Trichoderma atroviride strain T23 mutants with degrading capability of neonicotinoid insecticide, imidacloprid. The plasmid pBluescript II KS-hph used for integration in REMI mutants was confirmed by PCR and Southern hybridization. Among 153 transformants, 57% of them have showed higher neonicotinoid insecticide, imidacloprid, degradation ability than the wild strain T23 (p<0.01). More specifically, seven single-copied T. atroviride T23 transformants have confirmed a 30% higher degradation rate than their parent isolate. Among all transformed mutants, a 95% imidacloprid degradation rate was identified as the highest. This study, thus, provided an effective approach for improving neonicotinoid insecticide-degrading capability using REMI transformed T. atroviride mutants.

  11. Structural classification of proteins and structural genomics: new insights into protein folding and evolution

    PubMed Central

    Andreeva, Antonina; Murzin, Alexey G.

    2010-01-01

    During the past decade, the Protein Structure Initiative (PSI) centres have become major contributors of new families, superfamilies and folds to the Structural Classification of Proteins (SCOP) database. The PSI results have increased the diversity of protein structural space and accelerated our understanding of it. This review article surveys a selection of protein structures determined by the Joint Center for Structural Genomics (JCSG). It presents previously undescribed β-sheet architectures such as the double barrel and spiral β-roll and discusses new examples of unusual topologies and peculiar structural features observed in proteins characterized by the JCSG and other Structural Genomics centres. PMID:20944210

  12. Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures.

    PubMed

    Bar Sadan, Maya; Houben, Lothar; Enyashin, Andrey N; Seifert, Gotthard; Tenne, Reshef

    2008-10-14

    The characterization of nanostructures down to the atomic scale is essential to understand some physical properties. Such a characterization is possible today using direct imaging methods such as aberration-corrected high-resolution transmission electron microscopy (HRTEM), when iteratively backed by advanced modeling produced by theoretical structure calculations and image calculations. Aberration-corrected HRTEM is therefore extremely useful for investigating low-dimensional structures, such as inorganic fullerene-like particles and inorganic nanotubes. The atomic arrangement in these nanostructures can lead to new insights into the growth mechanism or physical properties, where imminent commercial applications are unfolding. This article will focus on two structures that are symmetric and reproducible. The first structure that will be dealt with is the smallest stable symmetric closed-cage structure in the inorganic system, a MoS(2) nanooctahedron. It is investigated by means of aberration-corrected microscopy which allowed validating the suggested DFTB-MD model. It will be shown that structures diverging from the energetically most stable structures are present in the laser ablated soot and that the alignment of the different shells is parallel, unlike the bulk material where the alignment is antiparallel. These findings correspond well with the high-energy synthetic route and they provide more insight into the growth mechanism. The second structure studied is WS(2) nanotubes, which have already been shown to have a unique structure with very desirable mechanical properties. The joint HRTEM study combined with modeling reveals new information regarding the chirality of the different shells and provides a better understanding of their growth mechanism.

  13. Neonicotinoid insecticides inhibit cholinergic neurotransmission in a molluscan (Lymnaea stagnalis) nervous system.

    PubMed

    Vehovszky, Á; Farkas, A; Ács, A; Stoliar, O; Székács, A; Mörtl, M; Győri, J

    2015-10-01

    Neonicotinoids are highly potent and selective systemic insecticides, but their widespread use also has a growing impact on non-target animals and contaminates the environment, including surface waters. We tested the neonicotinoid insecticides commercially available in Hungary (acetamiprid, Mospilan; imidacloprid, Kohinor; thiamethoxam, Actara; clothianidin, Apacs; thiacloprid, Calypso) on cholinergic synapses that exist between the VD4 and RPeD1 neurons in the central nervous system of the pond snail Lymnaea stagnalis. In the concentration range used (0.01-1 mg/ml), neither chemical acted as an acetylcholine (ACh) agonist; instead, both displayed antagonist activity, inhibiting the cholinergic excitatory components of the VD4-RPeD1 connection. Thiacloprid (0.01 mg/ml) blocked almost 90% of excitatory postsynaptic potentials (EPSPs), while the less effective thiamethoxam (0.1 mg/ml) reduced the synaptic responses by about 15%. The ACh-evoked membrane responses of the RPeD1 neuron were similarly inhibited by the neonicotinoids, confirming that the same ACh receptor (AChR) target was involved. We conclude that neonicotinoids act on nicotinergic acetylcholine receptors (nAChRs) in the snail CNS. This has been established previously in the insect CNS; however, our data indicate differences in the background mechanism or the nAChR binding site in the snail. Here, we provide the first results concerning neonicotinoid-related toxic effects on the neuronal connections in the molluscan nervous system. Aquatic animals, including molluscs, are at direct risk while facing contaminated surface waters, and snails may provide a suitable model for further studies of the behavioral/neuronal consequences of intoxication by neonicotinoids. PMID:26340121

  14. Structural insights into the assembly and regulation of distinct viral capsid complexes

    PubMed Central

    Sarker, Subir; Terrón, María C.; Khandokar, Yogesh; Aragão, David; Hardy, Joshua M.; Radjainia, Mazdak; Jiménez-Zaragoza, Manuel; de Pablo, Pedro J.; Coulibaly, Fasséli; Luque, Daniel; Raidal, Shane R.; Forwood, Jade K.

    2016-01-01

    The assembly and regulation of viral capsid proteins into highly ordered macromolecular complexes is essential for viral replication. Here, we utilize crystal structures of the capsid protein from the smallest and simplest known viruses capable of autonomously replicating in animal cells, circoviruses, to establish structural and mechanistic insights into capsid morphogenesis and regulation. The beak and feather disease virus, like many circoviruses, encode only two genes: a capsid protein and a replication initiation protein. The capsid protein forms distinct macromolecular assemblies during replication and here we elucidate these structures at high resolution, showing that these complexes reverse the exposure of the N-terminal arginine rich domain responsible for DNA binding and nuclear localization. We show that assembly of these complexes is regulated by single-stranded DNA (ssDNA), and provide a structural basis of capsid assembly around single-stranded DNA, highlighting novel binding interfaces distinct from the highly positively charged N-terminal ARM domain. PMID:27698405

  15. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation

    PubMed Central

    Lawrence, Sara L.; Feil, Susanne C.; Morton, Craig J.; Farrand, Allison J.; Mulhern, Terrence D.; Gorman, Michael A.; Wade, Kristin R.; Tweten, Rodney K.; Parker, Michael W.

    2015-01-01

    Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world’s leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface. PMID:26403197

  16. Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations

    PubMed Central

    Zhai, Liting; Feng, Lingling; Xia, Lin; Yin, Huiyong; Xiang, Song

    2016-01-01

    Glycogen is a branched glucose polymer and serves as an important energy store. Its debranching is a critical step in its mobilization. In animals and fungi, the 170 kDa glycogen debranching enzyme (GDE) catalyses this reaction. GDE deficiencies in humans are associated with severe diseases collectively termed glycogen storage disease type III (GSDIII). We report crystal structures of GDE and its complex with oligosaccharides, and structure-guided mutagenesis and biochemical studies to assess the structural observations. These studies reveal that distinct domains in GDE catalyse sequential reactions in glycogen debranching, the mechanism of their catalysis and highly specific substrate recognition. The unique tertiary structure of GDE provides additional contacts to glycogen besides its active sites, and our biochemical experiments indicate that they mediate its recruitment to glycogen and regulate its activity. Combining the understanding of the GDE catalysis and functional characterizations of its disease-causing mutations provides molecular insights into GSDIII. PMID:27088557

  17. Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations.

    PubMed

    Zhai, Liting; Feng, Lingling; Xia, Lin; Yin, Huiyong; Xiang, Song

    2016-04-18

    Glycogen is a branched glucose polymer and serves as an important energy store. Its debranching is a critical step in its mobilization. In animals and fungi, the 170 kDa glycogen debranching enzyme (GDE) catalyses this reaction. GDE deficiencies in humans are associated with severe diseases collectively termed glycogen storage disease type III (GSDIII). We report crystal structures of GDE and its complex with oligosaccharides, and structure-guided mutagenesis and biochemical studies to assess the structural observations. These studies reveal that distinct domains in GDE catalyse sequential reactions in glycogen debranching, the mechanism of their catalysis and highly specific substrate recognition. The unique tertiary structure of GDE provides additional contacts to glycogen besides its active sites, and our biochemical experiments indicate that they mediate its recruitment to glycogen and regulate its activity. Combining the understanding of the GDE catalysis and functional characterizations of its disease-causing mutations provides molecular insights into GSDIII.

  18. Structure of the Hantavirus Nucleoprotein Provides Insights into the Mechanism of RNA Encapsidation.

    PubMed

    Olal, Daniel; Daumke, Oliver

    2016-03-01

    Hantaviruses are etiological agents of life-threatening hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome. The nucleoprotein (N) of hantavirus is essential for viral transcription and replication, thus representing an attractive target for therapeutic intervention. We have determined the crystal structure of hantavirus N to 3.2 Å resolution. The structure reveals a two-lobed, mostly α-helical structure that is distantly related to that of orthobunyavirus Ns. A basic RNA binding pocket is located at the intersection between the two lobes. We provide evidence that oligomerization is mediated by amino- and C-terminal arms that bind to the adjacent monomers. Based on these findings, we suggest a model for the oligomeric ribonucleoprotein (RNP) complex. Our structure provides mechanistic insights into RNA encapsidation in the genus Hantavirus and constitutes a template for drug discovery efforts aimed at combating hantavirus infections. PMID:26923588

  19. Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels.

    PubMed

    Kasuya, Go; Fujiwara, Yuichiro; Takemoto, Mizuki; Dohmae, Naoshi; Nakada-Nakura, Yoshiko; Ishitani, Ryuichiro; Hattori, Motoyuki; Nureki, Osamu

    2016-02-01

    P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn(2+) ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn(2+) potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg(2+). Overall, our work provides structural insights into the divalent cation modulations of P2X receptors. PMID:26804916

  20. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation.

    PubMed

    Lawrence, Sara L; Feil, Susanne C; Morton, Craig J; Farrand, Allison J; Mulhern, Terrence D; Gorman, Michael A; Wade, Kristin R; Tweten, Rodney K; Parker, Michael W

    2015-01-01

    Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world's leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface. PMID:26403197

  1. Photodegradation of neonicotinoid insecticides in water by semiconductor oxides.

    PubMed

    Fenoll, José; Garrido, Isabel; Hellín, Pilar; Flores, Pilar; Navarro, Simón

    2015-10-01

    The photocatalytic degradation of three neonicotinoid insecticides (NIs), thiamethoxam (TH), imidacloprid (IM) and acetamiprid (AC), in pure water has been studied using zinc oxide (ZnO) and titanium dioxide (TiO2) as photocatalysts under natural sunlight and artificial light irradiation. Photocatalytic experiments showed that the addition of these chalcogenide oxides in tandem with the electron acceptor (Na2S2O8) strongly enhances the degradation rate of these compounds in comparison with those carried out with ZnO and TiO2 alone and photolytic tests. Comparison of catalysts showed that ZnO is the most efficient for the removal of such insecticides in optimal conditions and at constant volumetric rate of photon absorption. Thus, the complete disappearance of all the studied compounds was achieved after 10 and 30 min of artificial light irradiation, in the ZnO/Na2S2O8 and TiO2/Na2S2O8 systems, respectively. The highest degradation rate was noticed for IM, while the lowest rate constant was obtained for AC under artificial light irradiation. In addition, solar irradiation was more efficient compared to artificial light for the removal of these insecticides from water. The main photocatalytic intermediates detected during the degradation of NIs were identified. PMID:26002372

  2. Photodegradation of neonicotinoid insecticides in water by semiconductor oxides.

    PubMed

    Fenoll, José; Garrido, Isabel; Hellín, Pilar; Flores, Pilar; Navarro, Simón

    2015-10-01

    The photocatalytic degradation of three neonicotinoid insecticides (NIs), thiamethoxam (TH), imidacloprid (IM) and acetamiprid (AC), in pure water has been studied using zinc oxide (ZnO) and titanium dioxide (TiO2) as photocatalysts under natural sunlight and artificial light irradiation. Photocatalytic experiments showed that the addition of these chalcogenide oxides in tandem with the electron acceptor (Na2S2O8) strongly enhances the degradation rate of these compounds in comparison with those carried out with ZnO and TiO2 alone and photolytic tests. Comparison of catalysts showed that ZnO is the most efficient for the removal of such insecticides in optimal conditions and at constant volumetric rate of photon absorption. Thus, the complete disappearance of all the studied compounds was achieved after 10 and 30 min of artificial light irradiation, in the ZnO/Na2S2O8 and TiO2/Na2S2O8 systems, respectively. The highest degradation rate was noticed for IM, while the lowest rate constant was obtained for AC under artificial light irradiation. In addition, solar irradiation was more efficient compared to artificial light for the removal of these insecticides from water. The main photocatalytic intermediates detected during the degradation of NIs were identified.

  3. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees

    NASA Astrophysics Data System (ADS)

    Stanley, Dara A.; Garratt, Michael P. D.; Wickens, Jennifer B.; Wickens, Victoria J.; Potts, Simon G.; Raine, Nigel E.

    2015-12-01

    Recent concern over global pollinator declines has led to considerable research on the effects of pesticides on bees. Although pesticides are typically not encountered at lethal levels in the field, there is growing evidence indicating that exposure to field-realistic levels can have sublethal effects on bees, affecting their foraging behaviour, homing ability and reproductive success. Bees are essential for the pollination of a wide variety of crops and the majority of wild flowering plants, but until now research on pesticide effects has been limited to direct effects on bees themselves and not on the pollination services they provide. Here we show the first evidence to our knowledge that pesticide exposure can reduce the pollination services bumblebees deliver to apples, a crop of global economic importance. Bumblebee colonies exposed to a neonicotinoid pesticide provided lower visitation rates to apple trees and collected pollen less often. Most importantly, these pesticide-exposed colonies produced apples containing fewer seeds, demonstrating a reduced delivery of pollination services. Our results also indicate that reduced pollination service delivery is not due to pesticide-induced changes in individual bee behaviour, but most likely due to effects at the colony level. These findings show that pesticide exposure can impair the ability of bees to provide pollination services, with important implications for both the sustained delivery of stable crop yields and the functioning of natural ecosystems.

  4. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees.

    PubMed

    Stanley, Dara A; Garratt, Michael P D; Wickens, Jennifer B; Wickens, Victoria J; Potts, Simon G; Raine, Nigel E

    2015-12-24

    Recent concern over global pollinator declines has led to considerable research on the effects of pesticides on bees. Although pesticides are typically not encountered at lethal levels in the field, there is growing evidence indicating that exposure to field-realistic levels can have sublethal effects on bees, affecting their foraging behaviour, homing ability and reproductive success. Bees are essential for the pollination of a wide variety of crops and the majority of wild flowering plants, but until now research on pesticide effects has been limited to direct effects on bees themselves and not on the pollination services they provide. Here we show the first evidence to our knowledge that pesticide exposure can reduce the pollination services bumblebees deliver to apples, a crop of global economic importance. Bumblebee colonies exposed to a neonicotinoid pesticide provided lower visitation rates to apple trees and collected pollen less often. Most importantly, these pesticide-exposed colonies produced apples containing fewer seeds, demonstrating a reduced delivery of pollination services. Our results also indicate that reduced pollination service delivery is not due to pesticide-induced changes in individual bee behaviour, but most likely due to effects at the colony level. These findings show that pesticide exposure can impair the ability of bees to provide pollination services, with important implications for both the sustained delivery of stable crop yields and the functioning of natural ecosystems.

  5. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees

    PubMed Central

    Stanley, Dara A.; Garratt, Michael P.D.; Wickens, Jennifer B.; Wickens, Victoria J.; Potts, Simon G.; Raine, Nigel E.

    2015-01-01

    Recent concern over global pollinator declines has led to considerable research on the effects of pesticides on bees1-5. Although pesticides are typically not encountered at lethal levels in the field, there is growing evidence indicating that exposure to field-realistic levels can have sub-lethal effects on bees affecting their foraging behaviour1,6,7, homing ability8,9 and reproductive success2,5. Bees are essential for the pollination of a wide variety of crops and the majority of wild flowering plants10-12, but until now research on pesticide impacts has been limited to direct effects on bees themselves and not on the pollination services they provide. Here we show the first evidence that pesticide exposure can reduce the pollination services bumblebees deliver to apples, a crop of global economic importance. Colonies exposed to a neonicotinoid pesticide provided lower visitation rates to apple trees and collected pollen less often. Most importantly these pesticide exposed colonies produced apples containing fewer seeds demonstrating a reduced delivery of pollination services. Our results also suggest reduced pollination service delivery is not due to pesticide-induced changes in individual bee behaviour but most likely due to impacts at the colony level. These findings show that pesticide exposure can impair the ability of bees to provide pollination services, with important implications for both the sustained delivery of stable crop yields and the function of natural ecosystems. PMID:26580009

  6. Biochemical and Structural Insights into the Aminotransferase CrmG in Caerulomycin Biosynthesis.

    PubMed

    Zhu, Yiguang; Xu, Jinxin; Mei, Xiangui; Feng, Zhan; Zhang, Liping; Zhang, Qingbo; Zhang, Guangtao; Zhu, Weiming; Liu, Jinsong; Zhang, Changsheng

    2016-04-15

    Caerulomycin A (CRM A 1) belongs to a family of natural products containing a 2,2'-bipyridyl ring core structure and is currently under development as a potent novel immunosuppressive agent. Herein, we report the functional characterization, kinetic analysis, substrate specificity, and structure insights of an aminotransferase CrmG in 1 biosynthesis. The aminotransferase CrmG was confirmed to catalyze a key transamination reaction to convert an aldehyde group to an amino group in the 1 biosynthetic pathway, preferring l-glutamate and l-glutamine as the amino donor substrates. The crystal structures of CrmG in complex with the cofactor 5'-pyridoxal phosphate (PLP) or 5'-pyridoxamine phosphate (PMP) or the acceptor substrate were determined to adopt a canonical fold-type I of PLP-dependent enzymes with a unique small additional domain. The structure guided site-directed mutagenesis identified key amino acid residues for substrate binding and catalytic activities, thus providing insights into the transamination mechanism of CrmG.

  7. Structural and kinetic insights into the mechanism of 5-hydroxyisourate hydrolase from Klebsiella pneumoniae

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2011-08-01

    The crystal structure of 5-hydroxyisourate hydrolase from K. pneumoniae and the steady-state kinetic parameters of the native enzyme as well as several mutants provide insights into the catalytic mechanism of this enzyme and the possible roles of the active-site residues. The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined. KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.

  8. Structural Mapping of the Tunnunik Impact Structure, NWT, Canada: Insights in to Central Uplift Formation

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Francis, R.; Hansen, J.; Marion, C. L.; Pickersgill, A. E.; Tornabene, L. L.

    2013-08-01

    We report on structural mapping of the newly discovered Tunnunik impact structure, a 28 km diameter structure in the Canadian Arctic. The central uplift is exposed in a 2 km long canyon and features thrust-faulted blocks and outwards dipping strata.

  9. Structural studies of Pseudomonas and Chromobacterium ω-aminotransferases provide insights into their differing substrate specificity

    SciTech Connect

    Sayer, Christopher; Isupov, Michail N.; Westlake, Aaron; Littlechild, Jennifer A.

    2013-04-01

    The X-ray structures of two ω-aminotransferases from P. aeruginosa and C. violaceum in complex with an inhibitor offer the first detailed insight into the structural basis of the substrate specificity of these industrially important enzymes. The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity and use the same amino acceptor, pyruvate; however, the Pseudomonas enzyme shows activity towards the amino donor β-alanine, whilst the Chromobacterium enzyme does not. Both enzymes show activity towards S-α-methylbenzylamine (MBA), with the Chromobacterium enzyme having a broader substrate range. The crystal structure of the P. aeruginosa enzyme has been solved in the holo form and with the inhibitor gabaculine bound. The C. violaceum enzyme has been solved in the apo and holo forms and with gabaculine bound. The structures of the holo forms of both enzymes are quite similar. There is little conformational difference observed between the inhibitor complex and the holoenzyme for the P. aeruginosa aminotransferase. In comparison, the crystal structure of the C. violaceum gabaculine complex shows significant structural rearrangements from the structures of both the apo and holo forms of the enzyme. It appears that the different rigidity of the protein scaffold contributes to the substrate specificity observed for the two ω-aminotransferases.

  10. Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast

    PubMed Central

    Skelly, Daniel A.; Merrihew, Gennifer E.; Riffle, Michael; Connelly, Caitlin F.; Kerr, Emily O.; Johansson, Marnie; Jaschob, Daniel; Graczyk, Beth; Shulman, Nicholas J.; Wakefield, Jon; Cooper, Sara J.; Fields, Stanley; Noble, William S.; Muller, Eric G.D.; Davis, Trisha N.; Dunham, Maitreya J.; MacCoss, Michael J.; Akey, Joshua M.

    2013-01-01

    To better understand the quantitative characteristics and structure of phenotypic diversity, we measured over 14,000 transcript, protein, metabolite, and morphological traits in 22 genetically diverse strains of Saccharomyces cerevisiae. More than 50% of all measured traits varied significantly across strains [false discovery rate (FDR) = 5%]. The structure of phenotypic correlations is complex, with 85% of all traits significantly correlated with at least one other phenotype (median = 6, maximum = 328). We show how high-dimensional molecular phenomics data sets can be leveraged to accurately predict phenotypic variation between strains, often with greater precision than afforded by DNA sequence information alone. These results provide new insights into the spectrum and structure of phenotypic diversity and the characteristics influencing the ability to accurately predict phenotypes. PMID:23720455

  11. Structural Insights into Substrate Binding of Brown Spider Venom Class II Phospholipases D.

    PubMed

    Coronado, M A; Ullah, A; da Silva, L S; Chaves-Moreira, D; Vuitika, L; Chaim, O M; Veiga, S S; Chahine, J; Murakami, M T; Arni, R K

    2015-01-01

    Phospholipases D (PLDs), the major dermonecrotic factors from brown spider venoms, trigger a range of biological reactions both in vitro and in vivo. Despite their clinical relevance in loxoscelism, structural data is restricted to the apo-form of these enzymes, which has been instrumental in understanding the functional differences between the class I and II spider PLDs. The crystal structures of the native class II PLD from Loxosceles intermedia complexed with myo-inositol 1-phosphate and the inactive mutant H12A complexed with fatty acids indicate the existence of a strong ligand-dependent conformation change of the highly conserved aromatic residues, Tyr 223 and Trp225 indicating their roles in substrate binding. These results provided insights into the structural determinants for substrate recognition and binding by class II PLDs.

  12. Structure, dynamics, and function of the monooxygenase P450 BM-3: insights from computer simulations studies

    NASA Astrophysics Data System (ADS)

    Roccatano, Danilo

    2015-07-01

    The monooxygenase P450 BM-3 is a NADPH-dependent fatty acid hydroxylase enzyme isolated from soil bacterium Bacillus megaterium. As a pivotal member of cytochrome P450 superfamily, it has been intensely studied for the comprehension of structure-dynamics-function relationships in this class of enzymes. In addition, due to its peculiar properties, it is also a promising enzyme for biochemical and biomedical applications. However, despite the efforts, the full understanding of the enzyme structure and dynamics is not yet achieved. Computational studies, particularly molecular dynamics (MD) simulations, have importantly contributed to this endeavor by providing new insights at an atomic level regarding the correlations between structure, dynamics, and function of the protein. This topical review summarizes computational studies based on MD simulations of the cytochrome P450 BM-3 and gives an outlook on future directions.

  13. Structural Insights into the Stability and Flexibility of Unusual Erythroid Spectrin Repeats

    SciTech Connect

    Kusunoki, H.; Macdonald, R.I.; Mondragon, A.

    2010-03-08

    Erythroid spectrin, a major component of the cytoskeletal network of the red cell which contributes to both the stability and the elasticity of the red cell membrane, is composed of two subunits, {alpha} and {beta}, each formed by 16-20 tandem repeats. The properties of the repeats and their relative arrangement are thought to be key determinants of spectrin flexibility. Here we report a 2.4 {angstrom} resolution crystal structure of human erythroid {beta}-spectrin repeats 8 and 9. This two-repeat fragment is unusual as it exhibits low stability of folding and one of its repeats lacks two tryptophans highly conserved among spectrin repeats. Two key factors responsible for the lower stability and, possibly, its flexibility, are revealed by the structure. A third novel feature of the structure is the relative orientation of the two repeats, which increases the range of possible conformations and provides new insights into atomic models of spectrin flexibility.

  14. Structural and kinetic insights into the mechanism of 5-hydroxyisourate hydrolase from Klebsiella pneumoniae

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2011-07-19

    The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined. KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.

  15. The βc receptor family - Structural insights and their functional implications.

    PubMed

    Broughton, Sophie E; Nero, Tracy L; Dhagat, Urmi; Kan, Winnie L; Hercus, Timothy R; Tvorogov, Denis; Lopez, Angel F; Parker, Michael W

    2015-08-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5 are members of a small family of cytokines that share a beta receptor subunit (βc). These cytokines regulate the growth, differentiation, migration and effector function activities of many hematopoietic cells in bone marrow, blood and sites of inflammation. Excessive or aberrant signaling can result in chronic inflammatory conditions and myeloid leukemias. The crystal structures of the GM-CSF ternary complex, the IL-5 binary complex and the very recent IL-3 receptor alpha subunit build upon decades of structure-function studies, giving new insights into cytokine-receptor specificity and signal transduction. Selective modulation of receptor function is now a real possibility and the structures of the βc receptor family are being used to discover novel and disease-specific therapeutics. PMID:25982846

  16. Chemical Probes Allow Structural Insight into the Condensation Reaction of Nonribosomal Peptide Synthetases.

    PubMed

    Bloudoff, Kristjan; Alonzo, Diego A; Schmeing, T Martin

    2016-03-17

    Nonribosomal peptide synthetases (NRPSs) synthesize a vast variety of small molecules, including antibiotics, antitumors, and immunosuppressants. The NRPS condensation (C) domain catalyzes amide bond formation, the central chemical step in nonribosomal peptide synthesis. The catalytic mechanism and substrate determinants of the reaction are under debate. We developed chemical probes to structurally study the NRPS condensation reaction. These substrate analogs become covalently tethered to a cysteine introduced near the active site, to mimic covalent substrate delivery by carrier domains. They are competent substrates in the condensation reaction and behave similarly to native substrates. Co-crystal structures show C domain-substrate interactions, and suggest that the catalytic histidine's principle role is to position the α-amino group for nucleophilic attack. Structural insight provided by these co-complexes also allowed us to alter the substrate specificity profile of the reaction with a single point mutation.

  17. Three dimensional structural insight of laser drilled orifices in osmotic pump tablets.

    PubMed

    Wu, Li; Wang, Lebing; Wang, Shuxia; Xiao, Tiqiao; Chen, Min; Shao, Qun; York, Peter; Singh, Vikaramjeet; Yin, Xianzhen; Gu, Jingkai; Zhang, Jiwen

    2016-10-10

    The orifice drilled in the membrane as a channel for drug delivery is the key functional part of the osmotic pumps for a controlled drug release system. Reported conventional microscopic evaluations of these orifices have been limited to measurement of two-dimensional cross-section diameters. This study was aimed at establishing a novel method to measure quantitatively the three-dimensional architectures of orifices based on synchrotron radiation X-ray microcomputed tomography (SR-μCT). Quantitative analysis of architectures extracted from captopril osmotic pumps drilled by a range of operating parameters indicated that laser power correlated with the cross section area, volume, surface area and depth of the orifices, while scanning speed of laser beam showed inverse relationships with the above structure characters. The synchrotron radiation based Fourier transform infrared microspectroscopy mapping showed that there was no apparent chemical change in the surrounding area of the orifice compared with the normal membrane region. Thus SR-μCT was successfully applied to marketed felodipine osmotic pumps for architectural evaluation of the orifices. In conclusion, the first three-dimensional structural insight of orifices in osmotic pump tablets by SR-μCT and structural reconstruction for the architectures has provided deeper insight into improving the design of advanced osmotic pumps for controlled drug release. PMID:27562708

  18. The core structure of Mars as expected to be seen by InSight's VBB seismometer

    NASA Astrophysics Data System (ADS)

    Hempel, Stefanie; Garcia, Raphael; Wieczorek, Mark; Murdoch, Naomi

    2016-04-01

    The question of the Martian core concerns our basic understanding of the planet's thermal evolution, dynamo models for the past and present, the composition of the Martian mantle, especially in regards to its iron content and prevalent phase transitions, which in turn constrain possible regimes of mantle convection. So far the (outer) core radius of Mars is uncertain to about 250 kilometers (Sohl et al., 2005), and evidence neither supports nor falsifies the existence of an inner core (Defraigne et al., 2003). We apply our extensions of the ray tracing toolbox TauP (Crotwell et al., 1999) to compute amplitude loss, ellipticity, crustal and topography corrections in combination with existing models of seismic activity on Mars (Golombek, 1992, Knapmeyer et al., 2006), crustal thickness models (Wieczorek, 2007) and structure models (e.g. Okal and Anderson, 1978, Zharkov and Gudkova, 2000, Rivoldini et al., 2011). In preparation for NASA's discovery mission InSight, we simulate the detected relative travel-time curves at a single seismic station in Elysium Planitia for several models of Martian structure, seismicity, environmental and instrumental noise. We discuss possibilities and difficulties of considering the effects of Martian ellipticity and topography up to degree 8 and 30, respectively. Furthermore, we demonstrate the effect of low velocity layers, as well as the relevance of modeling the effects of ellipticity and crustal thickness during the interpretation of seismic data acquired by InSight's SEIS instrument on Mars, especially concerning seismic phases which provide direct evidence on the core structure of Mars.

  19. Splitsville: structural and functional insights into the dynamic bacterial Z ring.

    PubMed

    Haeusser, Daniel P; Margolin, William

    2016-04-01

    Bacteria must divide to increase in number and colonize their niche. Binary fission is the most widespread means of bacterial cell division, but even this relatively simple mechanism has many variations on a theme. In most bacteria, the tubulin homologue FtsZ assembles into a ring structure, termed the Z ring, at the site of cytokinesis and recruits additional proteins to form a large protein machine - the divisome - that spans the membrane. In this Review, we discuss current insights into the regulation of the assembly of the Z ring and how the divisome drives membrane invagination and septal cell wall growth while flexibly responding to various cellular inputs. PMID:27040757

  20. Crystal structure of the Mycobacterium tuberculosis dUTPase: insights into the catalytic mechanism.

    PubMed

    Chan, Sum; Segelke, Brent; Lekin, Timothy; Krupka, Heike; Cho, Uhn Soo; Kim, Min-Young; So, Minyoung; Kim, Chang-Yub; Naranjo, Cleo M; Rogers, Yvonne C; Park, Min S; Waldo, Geoffrey S; Pashkov, Inna; Cascio, Duilio; Perry, Jeanne L; Sawaya, Michael R

    2004-08-01

    The structure of Mycobacterium tuberculosis dUTP nucleotidohydrolase (dUTPase) has been determined at 1.3 Angstrom resolution in complex with magnesium ion and the non-hydrolyzable substrate analog, alpha,beta-imido dUTP. dUTPase is an enzyme essential for depleting potentially toxic concentrations of dUTP in the cell. Given the importance of its biological role, it has been proposed that inhibiting M.tuberculosis dUTPase might be an effective means to treat tuberculosis infection in humans. The crystal structure presented here offers some insight into the potential for designing a specific inhibitor of the M.tuberculosis dUTPase enzyme. The structure also offers new insights into the mechanism of dUTP hydrolysis by providing an accurate representation of the enzyme-substrate complex in which both the metal ion and dUTP analog are included. The structure suggests that inclusion of a magnesium ion is important for stabilizing the position of the alpha-phosphorus for an in-line nucleophilic attack. In the absence of magnesium, the alpha-phosphate of dUTP can have either of the two positions which differ by 4.5 Angstrom. A transiently ordered C-terminal loop further assists catalysis by shielding the general base, Asp83, from solvent thus elevating its pK(a) so that it might in turn activate a tightly bound water molecule for nucleophilic attack. The metal ion coordinates alpha, beta, and gamma phosphate groups with tridentate geometry identical with that observed in the crystal structure of DNA polymerase beta complexed with magnesium and dNTP analog, revealing some common features in catalytic mechanism.

  1. Insights into eukaryotic primer synthesis from structures of the p48 subunit of human DNA primase

    PubMed Central

    Vaithiyalingam, Sivaraja; Arnett, Diana R.; Aggarwal, Amit; Eichman, Brandt F.; Fanning, Ellen; Chazin, Walter J.

    2013-01-01

    DNA replication in all organisms requires polymerases to synthesize copies of the genome. DNA polymerases are unable to function on a bare template and require a primer. Primases are crucial RNA polymerases that perform the initial de novo synthesis, generating the first 8–10 nucleotides of the primer. Although structures of archaeal and bacterial primases have provided insights into general priming mechanisms, these proteins are not well conserved with heterodimeric (p48/p58) primases in eukaryotes. Here, we present X-ray crystal structures of the catalytic engine of a eukaryotic primase, which is contained in the p48 subunit. The structures of p48 reveal eukaryotic primases maintain the conserved catalytic prim fold domain, but with a unique sub-domain not found in the archaeal and bacterial primases. Calorimetry experiments reveal Mn2+ but not Mg2+ significantly enhances the binding of nucleotide to primase, which correlates with in vitro higher catalytic efficiency. The structure of p48 with bound UTP and Mn2+ provides insights into the mechanism of nucleotide synthesis by primase. Substitution of conserved residues involved in either metal or nucleotide binding altered nucleotide binding affinities, and yeast strains containing the corresponding Pri1p substitutions were not viable. Our results revealed two residues (S160 and H166) in direct contact with the nucleotide that were previously unrecognized as critical to the human primase active site. Comparing p48 structures to those of similar polymerases in different states of action suggests changes that would be required to attain a catalytically competent conformation capable of initiating dinucleotide synthesis. PMID:24239947

  2. Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA

    SciTech Connect

    Sidhu, Navdeep S.; Schreiber, Kathrin; Pröpper, Kevin; Becker, Stefan; Usón, Isabel; Sheldrick, George M.; Gärtner, Jutta; Krätzner, Ralph Steinfeld, Robert

    2014-05-01

    Mucopolysaccharidosis IIIA is a fatal neurodegenerative disease that typically manifests itself in childhood and is caused by mutations in the gene for the lysosomal enzyme sulfamidase. The first structure of this enzyme is presented, which provides insight into the molecular basis of disease-causing mutations, and the enzymatic mechanism is proposed. Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However, the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2 Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder.

  3. Alternatives to neonicotinoid insecticides for pest control: case studies in agriculture and forestry.

    PubMed

    Furlan, Lorenzo; Kreutzweiser, David

    2015-01-01

    Neonicotinoid insecticides are widely used for control of insect pests around the world and are especially pervasive in agricultural pest management. There is a growing body of evidence indicating that the broad-scale and prophylactic uses of neonicotinoids pose serious risks of harm to beneficial organisms and their ecological function. This provides the impetus for exploring alternatives to neonicotinoid insecticides for controlling insect pests. We draw from examples of alternative pest control options in Italian maize production and Canadian forestry to illustrate the principles of applying alternatives to neonicotinoids under an integrated pest management (IPM) strategy. An IPM approach considers all relevant and available information to make informed management decisions, providing pest control options based on actual need. We explore the benefits and challenges of several options for management of three insect pests in maize crops and an invasive insect pest in forests, including diversifying crop rotations, altering the timing of planting, tillage and irrigation, using less sensitive crops in infested areas, applying biological control agents, and turning to alternative reduced risk insecticides. Continued research into alternatives is warranted, but equally pressing is the need for information transfer and training for farmers and pest managers and the need for policies and regulations to encourage the adoption of IPM strategies and their alternative pest control options.

  4. Neonicotinoid Residues in Wildflowers, a Potential Route of Chronic Exposure for Bees.

    PubMed

    Botías, Cristina; David, Arthur; Horwood, Julia; Abdul-Sada, Alaa; Nicholls, Elizabeth; Hill, Elizabeth; Goulson, Dave

    2015-11-01

    In recent years, an intense debate about the environmental risks posed by neonicotinoids, a group of widely used, neurotoxic insecticides, has been joined. When these systemic compounds are applied to seeds, low concentrations are subsequently found in the nectar and pollen of the crop, which are then collected and consumed by bees. Here we demonstrate that the current focus on exposure to pesticides via the crop overlooks an important factor: throughout spring and summer, mixtures of neonicotinoids are also found in the pollen and nectar of wildflowers growing in arable field margins, at concentrations that are sometimes even higher than those found in the crop. Indeed, the large majority (97%) of neonicotinoids brought back in pollen to honey bee hives in arable landscapes was from wildflowers, not crops. Both previous and ongoing field studies have been based on the premise that exposure to neonicotinoids would occur only during the blooming period of flowering crops and that it may be diluted by bees also foraging on untreated wildflowers. Here, we show that exposure is likely to be higher and more prolonged than currently recognized because of widespread contamination of wild plants growing near treated crops. PMID:26439915

  5. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees

    PubMed Central

    Moffat, Christopher; Buckland, Stephen T.; Samson, Andrew J.; McArthur, Robin; Chamosa Pino, Victor; Bollan, Karen A.; Huang, Jeffrey T.-J.; Connolly, Christopher N.

    2016-01-01

    There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species. PMID:27124107

  6. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees.

    PubMed

    Moffat, Christopher; Buckland, Stephen T; Samson, Andrew J; McArthur, Robin; Chamosa Pino, Victor; Bollan, Karen A; Huang, Jeffrey T-J; Connolly, Christopher N

    2016-01-01

    There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species. PMID:27124107

  7. Neonicotinoid Residues in Wildflowers, a Potential Route of Chronic Exposure for Bees.

    PubMed

    Botías, Cristina; David, Arthur; Horwood, Julia; Abdul-Sada, Alaa; Nicholls, Elizabeth; Hill, Elizabeth; Goulson, Dave

    2015-11-01

    In recent years, an intense debate about the environmental risks posed by neonicotinoids, a group of widely used, neurotoxic insecticides, has been joined. When these systemic compounds are applied to seeds, low concentrations are subsequently found in the nectar and pollen of the crop, which are then collected and consumed by bees. Here we demonstrate that the current focus on exposure to pesticides via the crop overlooks an important factor: throughout spring and summer, mixtures of neonicotinoids are also found in the pollen and nectar of wildflowers growing in arable field margins, at concentrations that are sometimes even higher than those found in the crop. Indeed, the large majority (97%) of neonicotinoids brought back in pollen to honey bee hives in arable landscapes was from wildflowers, not crops. Both previous and ongoing field studies have been based on the premise that exposure to neonicotinoids would occur only during the blooming period of flowering crops and that it may be diluted by bees also foraging on untreated wildflowers. Here, we show that exposure is likely to be higher and more prolonged than currently recognized because of widespread contamination of wild plants growing near treated crops.

  8. A LABORATORY BIOASSAY FOR MONITORING RESISTANCE IN TARNISHED PLANT BUG POPULATIONS TO NEONICOTINOID INSECTICIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A laboratory bioassay was developed for testing tarnished plant bug populations for resistance development to the neonicotinoid insecticides imidacloprid and thiamethoxam. The bioassay allows for the determination of LC50 values by feeding known doses of the insecticides to adult tarnished plant bu...

  9. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.).

    PubMed

    Brandt, Annely; Gorenflo, Anna; Siede, Reinhold; Meixner, Marina; Büchler, Ralph

    2016-03-01

    A strong immune defense is vital for honey bee health and colony survival. This defense can be weakened by environmental factors that may render honey bees more vulnerable to parasites and pathogens. Honey bees are frequently exposed to neonicotinoid pesticides, which are being discussed as one of the stress factors that may lead to colony failure. We investigated the sublethal effects of the neonicotinoids thiacloprid, imidacloprid, and clothianidin on individual immunity, by studying three major aspects of immunocompetence in worker bees: total hemocyte number, encapsulation response, and antimicrobial activity of the hemolymph. In laboratory experiments, we found a strong impact of all three neonicotinoids. Thiacloprid (24h oral exposure, 200 μg/l or 2000 μg/l) and imidacloprid (1 μg/l or 10 μg/l) reduced hemocyte density, encapsulation response, and antimicrobial activity even at field realistic concentrations. Clothianidin had an effect on these immune parameters only at higher than field realistic concentrations (50-200 μg/l). These results suggest that neonicotinoids affect the individual immunocompetence of honey bees, possibly leading to an impaired disease resistance capacity.

  10. Neonicotinoid insecticide interact with honeybee odorant-binding protein: Implication for olfactory dysfunction.

    PubMed

    Li, Hongliang; Wu, Fan; Zhao, Lei; Tan, Jing; Jiang, Hongtao; Hu, Fuliang

    2015-11-01

    The decline of bee population has caused great concern in recent years. A noticeable factor points to the neonicotinoid insecticides, which remain in the nectar and pollen of plants and impair the olfactory cognition of foraging bees. However, it remains elusive that if and how neonicotinoid insecticides interact with the olfactory system of bees. Herein, we studied the binding interaction between neonicotinoid imidacloprid and ASP2, one odorant-binding protein in eastern bees, Apis cerana, by multispectroscopic methods. The results indicate that imidacloprid significantly quenched the intrinsic fluorescence of ASP2 as the static quenching mode, and expanded the conformation of ASP2 measured by the circular dichroism (CD) spectra. The acting force is mainly driven by hydrophobic force based on thermodynamic analysis. Docking analysis predicts a formation of a hydrogen bond, while the corresponding site-directed mutagenesis indicated that the hydrogen bond is not main force here. Moreover, imidacloprid with a sublethal dose (0.8ng/bee) clearly decreased the binding affinity of ASP2 to a floral volatile, β-ionone, which had been identified to strongly bind with the wild ASP2 before. This study may benefit to evaluate the effect of neonicotinoid insecticides on the olfactory cognitive behavior of bees involved in the crops pollination.

  11. Effects of Neonicotinoids and Crop Rotation for Managing Wireworms in Wheat Crops.

    PubMed

    Esser, Aaron D; Milosavljević, Ivan; Crowder, David W

    2015-08-01

    Soil-dwelling insects are severe pests in many agroecosystems. These pests have cryptic life cycles, making sampling difficult and damage hard to anticipate. The management of soil insects is therefore often based on preventative insecticides applied at planting or cultural practices. Wireworms, the subterranean larvae of click beetles (Coleoptera: Elateridae), have re-emerged as problematic pests in cereal crops in the Pacific Northwestern United States. Here, we evaluated two management strategies for wireworms in long-term field experiments: 1) treating spring wheat seed with the neonicotinoid thiamethoxam and 2) replacing continuous spring wheat with a summer fallow and winter wheat rotation. Separate experiments were conducted for two wireworm species--Limonius californicus (Mannerheim) and Limonius infuscatus (Motschulsky). In the experiment with L. californicus, spring wheat yields and economic returns increased by 24-30% with neonicotinoid treatments. In contrast, in the experiment with L. infuscatus, spring wheat yields and economic returns did not increase with neonicotinoids despite an 80% reduction in wireworms. Thus, the usefulness of seed-applied neonicotinoids differed based on the wireworm species present. In experiments with both species, we detected significantly fewer wireworms with a no-till summer fallow and winter wheat rotation compared with continuous spring wheat. This suggests that switching from continuous spring wheat to a winter wheat and summer fallow rotation may aid in wireworm management. More generally, our results show that integrated management of soil-dwelling pests such as wireworms may require both preventative insecticide treatments and cultural practices. PMID:26470320

  12. Effects of Neonicotinoids and Crop Rotation for Managing Wireworms in Wheat Crops.

    PubMed

    Esser, Aaron D; Milosavljević, Ivan; Crowder, David W

    2015-08-01

    Soil-dwelling insects are severe pests in many agroecosystems. These pests have cryptic life cycles, making sampling difficult and damage hard to anticipate. The management of soil insects is therefore often based on preventative insecticides applied at planting or cultural practices. Wireworms, the subterranean larvae of click beetles (Coleoptera: Elateridae), have re-emerged as problematic pests in cereal crops in the Pacific Northwestern United States. Here, we evaluated two management strategies for wireworms in long-term field experiments: 1) treating spring wheat seed with the neonicotinoid thiamethoxam and 2) replacing continuous spring wheat with a summer fallow and winter wheat rotation. Separate experiments were conducted for two wireworm species--Limonius californicus (Mannerheim) and Limonius infuscatus (Motschulsky). In the experiment with L. californicus, spring wheat yields and economic returns increased by 24-30% with neonicotinoid treatments. In contrast, in the experiment with L. infuscatus, spring wheat yields and economic returns did not increase with neonicotinoids despite an 80% reduction in wireworms. Thus, the usefulness of seed-applied neonicotinoids differed based on the wireworm species present. In experiments with both species, we detected significantly fewer wireworms with a no-till summer fallow and winter wheat rotation compared with continuous spring wheat. This suggests that switching from continuous spring wheat to a winter wheat and summer fallow rotation may aid in wireworm management. More generally, our results show that integrated management of soil-dwelling pests such as wireworms may require both preventative insecticide treatments and cultural practices.

  13. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.).

    PubMed

    Brandt, Annely; Gorenflo, Anna; Siede, Reinhold; Meixner, Marina; Büchler, Ralph

    2016-03-01

    A strong immune defense is vital for honey bee health and colony survival. This defense can be weakened by environmental factors that may render honey bees more vulnerable to parasites and pathogens. Honey bees are frequently exposed to neonicotinoid pesticides, which are being discussed as one of the stress factors that may lead to colony failure. We investigated the sublethal effects of the neonicotinoids thiacloprid, imidacloprid, and clothianidin on individual immunity, by studying three major aspects of immunocompetence in worker bees: total hemocyte number, encapsulation response, and antimicrobial activity of the hemolymph. In laboratory experiments, we found a strong impact of all three neonicotinoids. Thiacloprid (24h oral exposure, 200 μg/l or 2000 μg/l) and imidacloprid (1 μg/l or 10 μg/l) reduced hemocyte density, encapsulation response, and antimicrobial activity even at field realistic concentrations. Clothianidin had an effect on these immune parameters only at higher than field realistic concentrations (50-200 μg/l). These results suggest that neonicotinoids affect the individual immunocompetence of honey bees, possibly leading to an impaired disease resistance capacity. PMID:26776096

  14. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris)

    PubMed Central

    Moffat, Christopher; Pacheco, Joao Goncalves; Sharp, Sheila; Samson, Andrew J.; Bollan, Karen A.; Huang, Jeffrey; Buckland, Stephen T.; Connolly, Christopher N.

    2015-01-01

    The global decline in the abundance and diversity of insect pollinators could result from habitat loss, disease, and pesticide exposure. The contribution of the neonicotinoid insecticides (e.g., clothianidin and imidacloprid) to this decline is controversial, and key to understanding their risk is whether the astonishingly low levels found in the nectar and pollen of plants is sufficient to deliver neuroactive levels to their site of action: the bee brain. Here we show that bumblebees (Bombus terrestris audax) fed field levels [10 nM, 2.1 ppb (w/w)] of neonicotinoid accumulate between 4 and 10 nM in their brains within 3 days. Acute (minutes) exposure of cultured neurons to 10 nM clothianidin, but not imidacloprid, causes a nicotinic acetylcholine receptor-dependent rapid mitochondrial depolarization. However, a chronic (2 days) exposure to 1 nM imidacloprid leads to a receptor-dependent increased sensitivity to a normally innocuous level of acetylcholine, which now also causes rapid mitochondrial depolarization in neurons. Finally, colonies exposed to this level of imidacloprid show deficits in colony growth and nest condition compared with untreated colonies. These findings provide a mechanistic explanation for the poor navigation and foraging observed in neonicotinoid treated bumblebee colonies.—Moffat, C., Pacheco, J. G., Sharp, S., Samson, A. J., Bollan, K. A., Huang, J., Buckland, S. T., Connolly, C. N. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris). PMID:25634958

  15. Reproductive parameters of Tetranychus urticae (Acari: Tetranychidae) affected by neonicotinoid insecticides.

    PubMed

    Barati, Reihaneh; Hejazi, Mir Jalil

    2015-08-01

    Two-spotted spider mite is a major pest of many agricultural and ornamental crops worldwide. Some reports have indicated that application of neonicotinoid insecticides may lead to increased fecundity of this pest. If this is found to be true, the use of these pesticides may cause an outbreak of spider mite populations. Sublethal effects of three neonicotinoids, namely thiacloprid, acetamiprid and thiamethoxam were studied on T. urticae adults at field recommended doses. The experiments were carried out using bean leaf pieces in plastic Petri dishes. The adult mites were treated using two methods: (1) drench application and (2) spraying of leaves with Potter Spray Tower. Our results indicated that all neonicotinoids tested increased T. urticae population. In both treatment methods, acetamiprid treated mites had the highest intrinsic rate of population increase (rm) and finite rate of population increase (λ); and the lowest mean generation time (T) and doubling time among the treatments. If similar results are obtained from greenhouse and field trials, the use of these insecticides requires necessary precautions such as avoiding repeated use of neonicotinoid insecticide for controlling insect pests. PMID:25912952

  16. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees

    NASA Astrophysics Data System (ADS)

    Moffat, Christopher; Buckland, Stephen T.; Samson, Andrew J.; McArthur, Robin; Chamosa Pino, Victor; Bollan, Karen A.; Huang, Jeffrey T.-J.; Connolly, Christopher N.

    2016-04-01

    There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species.

  17. Compatibility of Two Systematic Neonicotinoids, Imidacloprid and Thiamethoxam with various Natural Enemies of Agricultural Pests.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two systemic neonicotinoids, imidacloprid and thiamethoxam, are widely used for residual control of a number of insect pests in cotton, vegetables, and citrus. We evaluated their impact on six species of beneficial arthropods including four parasitoid species, Aphytis melinus Gonatocerus ashmeadi, ...

  18. Neonicotinoid insecticide interact with honeybee odorant-binding protein: Implication for olfactory dysfunction.

    PubMed

    Li, Hongliang; Wu, Fan; Zhao, Lei; Tan, Jing; Jiang, Hongtao; Hu, Fuliang

    2015-11-01

    The decline of bee population has caused great concern in recent years. A noticeable factor points to the neonicotinoid insecticides, which remain in the nectar and pollen of plants and impair the olfactory cognition of foraging bees. However, it remains elusive that if and how neonicotinoid insecticides interact with the olfactory system of bees. Herein, we studied the binding interaction between neonicotinoid imidacloprid and ASP2, one odorant-binding protein in eastern bees, Apis cerana, by multispectroscopic methods. The results indicate that imidacloprid significantly quenched the intrinsic fluorescence of ASP2 as the static quenching mode, and expanded the conformation of ASP2 measured by the circular dichroism (CD) spectra. The acting force is mainly driven by hydrophobic force based on thermodynamic analysis. Docking analysis predicts a formation of a hydrogen bond, while the corresponding site-directed mutagenesis indicated that the hydrogen bond is not main force here. Moreover, imidacloprid with a sublethal dose (0.8ng/bee) clearly decreased the binding affinity of ASP2 to a floral volatile, β-ionone, which had been identified to strongly bind with the wild ASP2 before. This study may benefit to evaluate the effect of neonicotinoid insecticides on the olfactory cognitive behavior of bees involved in the crops pollination. PMID:26318218

  19. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA.

    PubMed

    Hladik, Michelle L; Kolpin, Dana W; Kuivila, Kathryn M

    2014-10-01

    Neonicotinoid insecticides are of environmental concern, but little is known about their occurrence in surface water. An area of intense corn and soybean production in the Midwestern United States was chosen to study this issue because of the high agricultural use of neonicotinoids via both seed treatments and other forms of application. Water samples were collected from nine stream sites during the 2013 growing season. The results for the 79 water samples documented similar patterns among sites for both frequency of detection and concentration (maximum:median) with clothianidin (75%, 257 ng/L:8.2 ng/L) > thiamethoxam (47%, 185 ng/L:<2 ng/L) > imidacloprid (23%, 42.7 ng/L: <2 ng/L). Neonicotinoids were detected at all nine sites sampled even though the basin areas spanned four orders of magnitude. Temporal patterns in concentrations reveal pulses of neonicotinoids associated with rainfall events during crop planting, suggesting seed treatments as their likely source.

  20. Telomerase and telomere-associated proteins: structural insights into mechanism and evolution.

    PubMed

    Lewis, Karen A; Wuttke, Deborah S

    2012-01-11

    Recent advances in our structural understanding of telomerase and telomere-associated proteins have contributed significantly to elucidating the molecular mechanisms of telomere maintenance. The structures of telomerase TERT domains have provided valuable insights into how experimentally identified conserved motifs contribute to the telomerase reverse transcriptase reaction. Additionally, structures of telomere-associated proteins in a variety of organisms have revealed that, across evolution, telomere-maintenance mechanisms employ common structural elements. For example, the single-stranded 3' overhang of telomeric DNA is specifically and tightly bound by an OB-fold in nearly all species, including ciliates (TEBP and Pot1a), fission yeast (SpPot1), budding yeast (Cdc13), and humans (hPOT1). Structures of the yeast Cdc13, Stn1, and Ten1 proteins demonstrated that telomere maintenance is regulated by a complex that bears significant similarity to the RPA heterotrimer. Similarly, proteins that specifically bind double-stranded telomeric DNA in divergent species use homeodomains to execute their functions (human TRF1 and TRF2 and budding yeast ScRap1). Likewise, the conserved protein Rap1, which is found in budding yeast, fission yeast, and humans, contains a structural motif that is known to be critical for protein-protein interaction. In addition to revealing the common underlying themes of telomere maintenance, structures have also elucidated the specific mechanisms by which many of these proteins function, including identifying a telomere-specific domain in Stn1 and how the human TRF proteins avoid heterodimerization. In this review, we summarize the high-resolution structures of telomerase and telomere-associated proteins and discuss the emergent common structural themes among these proteins. We also address how these high-resolution structures complement biochemical and cellular studies to enhance our understanding of telomere maintenance and function.

  1. Structural and Functional Insights into Small, Glutamine-Rich, Tetratricopeptide Repeat Protein Alpha

    PubMed Central

    Roberts, Joanna D.; Thapaliya, Arjun; Martínez-Lumbreras, Santiago; Krysztofinska, Ewelina M.; Isaacson, Rivka L.

    2015-01-01

    The small glutamine-rich, tetratricopeptide repeat-containing protein alpha (SGTA) is an emerging player in the quality control of secretory and membrane proteins mislocalized to the cytosol, with established roles in tail-anchored (TA) membrane protein biogenesis. SGTA consists of three structural domains with individual functions, an N-terminal dimerization domain that assists protein sorting pathways, a central tetratricopeptide repeat (TPR) domain that mediates interactions with heat-shock proteins, proteasomal, and hormonal receptors, and viral proteins, and a C-terminal glutamine rich region that binds hydrophobic substrates. SGTA has been linked to viral lifecycles and hormone receptor signaling, with implications in the pathogenesis of various disease states. Thus far, a range of biophysical techniques have been employed to characterize SGTA structure in some detail, and to investigate its interactions with binding partners in different biological contexts. A complete description of SGTA structure, together with further investigation into its function as a co-chaperone involved quality control, could provide us with useful insights into its role in maintaining cellular proteostasis, and broaden our understanding of mechanisms underlying associated pathologies. This review describes how some structural features of SGTA have been elucidated, and what this has uncovered about its cellular functions. A brief background on the structure and function of SGTA is given, highlighting its importance to biomedicine and related fields. The current level of knowledge and what remains to be understood about the structure and function of SGTA is summarized, discussing the potential direction of future research. PMID:26734616

  2. Structural insights into conformational switching in the copper metalloregulator CsoR from Streptomyces lividans.

    PubMed

    Porto, Tatiana V; Hough, Michael A; Worrall, Jonathan A R

    2015-09-01

    Copper-sensitive operon repressors (CsoRs) act to sense cuprous ions and bind them with a high affinity under copper stress in many bacteria. The binding of copper(I) leads to a conformational change in their homotetramer structure, causing disassembly of the operator DNA-CsoR complex and evoking a transcriptional response. Atomic-level structural insight into the conformational switching mechanism between the apo and metal-bound states is lacking. Here, a new X-ray crystal structure of the CsoR from Streptomyces lividans is reported and compared with a previously reported S. lividans CsoR X-ray structure crystallized under different conditions. Based on evidence from this new X-ray structure, it is revealed that the conformational switching between states centres on a concertina effect at the C-terminal end of each α2 helix in the homotetramer. This drives the Cys104 side chain, a copper(I)-ligating residue, into a position enabling copper(I) coordination and as a result disrupts the α2-helix geometry, leading to a compacting and twisting of the homotetramer structure. Strikingly, the conformational switching induces a redistribution of electrostatic surface potential on the tetrameric DNA-binding face, which in the copper(I)-bound state would no longer favour interaction with the mode of operator DNA binding.

  3. Molecular structure of amyloid fibrils: insights from solid-state NMR.

    PubMed

    Tycko, Robert

    2006-02-01

    Solid-state nuclear magnetic resonance (NMR) measurements have made major contributions to our understanding of the molecular structures of amyloid fibrils, including fibrils formed by the beta-amyloid peptide associated with Alzheimer's disease, by proteins associated with fungal prions, and by a variety of other polypeptides. Because solid-state NMR techniques can be used to determine interatomic distances (both intramolecular and intermolecular), place constraints on backbone and side-chain torsion angles, and identify tertiary and quaternary contacts, full molecular models for amyloid fibrils can be developed from solid-state NMR data, especially when supplemented by lower-resolution structural constraints from electron microscopy and other sources. In addition, solid-state NMR data can be used as experimental tests of various proposals and hypotheses regarding the mechanisms of amyloid formation, the nature of intermediate structures, and the common structural features within amyloid fibrils. This review introduces the basic experimental and conceptual principles behind solid-state NMR methods that are applicable to amyloid fibrils, reviews the information about amyloid structures that has been obtained to date with these methods, and discusses how solid-state NMR data provide insights into the molecular interactions that stabilize amyloid structures, the generic propensity of polypeptide chains to form amyloid fibrils, and a number of related issues that are of current interest in the amyloid field.

  4. Structural Insight into Host Recognition by Aggregative Adherence Fimbriae of Enteroaggregative Escherichia coli

    PubMed Central

    Garnett, James A.; Lee, Wei-chao; Cota, Ernesto; Marchant, Jan; Roy, Saumendra; Tuittila, Minna; Liu, Bing; Inman, Keith G.; Ruiz-Perez, Fernando; Mandomando, Inacio; Nataro, James P.; Zavialov, Anton V.; Matthews, Steve

    2014-01-01

    Enteroaggregative Escherichia coli (EAEC) is a leading cause of acute and persistent diarrhea worldwide. A recently emerged Shiga-toxin-producing strain of EAEC resulted in significant mortality and morbidity due to progressive development of hemolytic-uremic syndrome. The attachment of EAEC to the human intestinal mucosa is mediated by aggregative adherence fimbria (AAF). Using X-ray crystallography and NMR structures, we present new atomic resolution insight into the structure of AAF variant I from the strain that caused the deadly outbreak in Germany in 2011, and AAF variant II from archetype strain 042, and propose a mechanism for AAF-mediated adhesion and biofilm formation. Our work shows that major subunits of AAF assemble into linear polymers by donor strand complementation where a single minor subunit is inserted at the tip of the polymer by accepting the donor strand from the terminal major subunit. Whereas the minor subunits of AAF have a distinct conserved structure, AAF major subunits display large structural differences, affecting the overall pilus architecture. These structures suggest a mechanism for AAF-mediated adhesion and biofilm formation. Binding experiments using wild type and mutant subunits (NMR and SPR) and bacteria (ELISA) revealed that despite the structural differences AAF recognize a common receptor, fibronectin, by employing clusters of basic residues at the junction between subunits in the pilus. We show that AAF-fibronectin attachment is based primarily on electrostatic interactions, a mechanism not reported previously for bacterial adhesion to biotic surfaces. PMID:25232738

  5. Structural insights into recognition of acetylated histone ligands by the BRPF1 bromodomain

    PubMed Central

    Lubula, Mulu Y.; Eckenroth, Brian E.; Carlson, Samuel; Poplawski, Amanda; Chruszcz, Maksymilian; Glass, Karen C.

    2014-01-01

    BRPF1 is part of the MOZ HAT complex and contains a unique combination of domains typically found in chromatin-associated factors, which include PHD fingers, a bromodomain and a PWWP domain. Bromodomains are conserved structural motifs generally known to recognize acetylated histones, and the BRPF1 bromodomain preferentially selects for H2AK5ac, H4K12ac and H3K14ac. We solved the X-ray crystal structures of the BRPF1 bromodomain in complex with the H2AK5ac and H4K12ac histone peptides. Site-directed mutagenesis on residues in the BRPF1 bromodomain-binding pocket was carried out to investigate the contribution of specific amino acids on ligand binding. Our results provide critical insights into the molecular mechanism of ligand binding by the BRPF1 bromodomain, and reveal that ordered water molecules are an essential component driving ligand recognition. PMID:25281266

  6. Crystal Structures of Human and Staphylococcus aureus Pyruvate Carboxylase and Molecular Insights into the Carboxyltransfer Reaction

    SciTech Connect

    Xiang,S.; Tong, L.

    2008-01-01

    Pyruvate carboxylase (PC) catalyzes the biotin-dependent production of oxaloacetate and has important roles in gluconeogenesis, lipogenesis, insulin secretion and other cellular processes. PC contains the biotin carboxylase (BC), carboxyltransferase (CT) and biotin-carboxyl carrier protein (BCCP) domains. We report here the crystal structures at 2.8-Angstroms resolution of full-length PC from Staphylococcus aureus and the C-terminal region (missing only the BC domain) of human PC. A conserved tetrameric association is observed for both enzymes, and our structural and mutagenesis studies reveal a previously uncharacterized domain, the PC tetramerization (PT) domain, which is important for oligomerization. A BCCP domain is located in the active site of the CT domain, providing the first molecular insights into how biotin participates in the carboxyltransfer reaction. There are dramatic differences in domain positions in the monomer and the organization of the tetramer between these enzymes and the PC from Rhizobium etli.

  7. Structural insights on two hypothetical secretion chaperones from Xanthomonas axonopodis pv. citri.

    PubMed

    Fattori, Juliana; Prando, Alessandra; Assis, Leandro H P; Aparicio, Ricardo; Tasic, Ljubica

    2011-06-01

    Several Gram-negative bacterial pathogens have developed type III secretion systems (T3SSs) to deliver virulence proteins directly into eukaryotic cells in a process essential for many diseases. The type III secretion processes require customized chaperones with high specificity for binding partners, thus providing the secretion to occur. Due to the very low sequence similarities among secretion chaperones, annotation and discrimination of a great majority of them is extremely difficult and a task with low scores even if genes are encountered that codify for small (<20 kDa) proteins with low pI and a tendency to dimerise. Concerning about this, herein, we present structural features on two hypothetical T3SSs chaperones belonging to plant pathogen Xanthomonas axonopodis pv. citri and suggest how low resolution models based on Small Angle X-ray Scattering patterns can provide new structural insights that could be very helpful in their analysis and posterior classification. PMID:21626158

  8. Structural insights into the unique inhibitory mechanism of the silkworm protease inhibitor serpin18

    PubMed Central

    Guo, Peng-Chao; Dong, Zhaoming; Zhao, Ping; Zhang, Yan; He, Huawei; Tan, Xiang; Zhang, Weiwei; Xia, Qingyou

    2015-01-01

    Serpins generally serve as inhibitors that utilize a mobile reactive center loop (RCL) as bait to trap protease targets. Here, we present the crystal structure of serpin18 from Bombyx mori at 1.65 Å resolution, which has a very short and stable RCL. Activity analysis showed that the inhibitory target of serpin18 is a cysteine protease rather than a serine protease. Notably, this inhibitiory reaction results from the formation of an intermediate complex, which then follows for the digestion of protease and inhibitor into small fragments. This activity differs from previously reported modes of inhibition for serpins. Our findings have thus provided novel structural insights into the unique inhibitory mechanism of serpin18. Furthermore, one physiological target of serpin18, fibroinase, was identified, which enables us to better define the potential role for serpin18 in regulating fibroinase activity during B. mori development. PMID:26148664

  9. New insights into structural determinants of prion protein folding and stability.

    PubMed

    Benetti, Federico; Legname, Giuseppe

    2015-01-01

    Prions are the etiological agent of fatal neurodegenerative diseases called prion diseases or transmissible spongiform encephalopathies. These maladies can be sporadic, genetic or infectious disorders. Prions are due to post-translational modifications of the cellular prion protein leading to the formation of a β-sheet enriched conformer with altered biochemical properties. The molecular events causing prion formation in sporadic prion diseases are still elusive. Recently, we published a research elucidating the contribution of major structural determinants and environmental factors in prion protein folding and stability. Our study highlighted the crucial role of octarepeats in stabilizing prion protein; the presence of a highly enthalpically stable intermediate state in prion-susceptible species; and the role of disulfide bridge in preserving native fold thus avoiding the misfolding to a β-sheet enriched isoform. Taking advantage from these findings, in this work we present new insights into structural determinants of prion protein folding and stability.

  10. Protein Fibrillar Nanopolymers: Molecular-Level Insights into Their Structural, Physical and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Trusova, Valeriya M.

    2015-09-01

    Amyloid fibrils represent a generic class of mechanically strong and stable biomaterials with extremely advantageous properties. Although amyloids were initially associated only with severe neurological disorders, the role of these structures nowadays is shifting from health debilitating to highly beneficial both in biomedical and technological aspects. Intensive involvement of fibrillar assemblies into the wide range of pathogenic and functional processes strongly necessitate the molecular level characterization of the structural, physical and elastic features of protein nanofibrils. In the present contribution, we made an attempt to highlight the up-to-date progress in the understanding of amyloid properties from the polymer physics standpoint. The fundamental insights into protein fibril behavior are essential not only for development of therapeutic strategies to combat the protein misfolding disorders but also for rational and precise design of novel biodegradable protein-based nanopolymers.

  11. Biochemical and Structural Insights into Doublecortin-like Kinase Domain 1.

    PubMed

    Patel, Onisha; Dai, Weiwen; Mentzel, Mareike; Griffin, Michael D W; Serindoux, Juliette; Gay, Yoann; Fischer, Stefanie; Sterle, Shoukat; Kropp, Ashleigh; Burns, Christopher J; Ernst, Matthias; Buchert, Michael; Lucet, Isabelle S

    2016-09-01

    Doublecortin-like kinase 1 (DCLK1) is a serine/threonine kinase that belongs to the family of microtubule-associated proteins. Originally identified for its role in neurogenesis, DCLK1 has recently been shown to regulate biological processes outside of the CNS. DCLK1 is among the 15 most common putative driver genes for gastric cancers and is highly mutated across various other human cancers. However, our present understanding of how DCLK1 dysfunction leads to tumorigenesis is limited. Here, we provide evidence that DCLK1 kinase activity negatively regulates microtubule polymerization. We present the crystal structure of the DCLK1 kinase domain at 1.7 Å resolution, providing detailed insight into the ATP-binding site that will serve as a framework for future drug design. This structure also allowed for the mapping of cancer-causing mutations within the kinase domain, suggesting that a loss of kinase function may contribute to tumorigenesis. PMID:27545623

  12. Aldose reductase catalysis and crystallography. Insights from recent advances in enzyme structure and function.

    PubMed

    Petrash, J M; Tarle, I; Wilson, D K; Quiocho, F A

    1994-08-01

    Enhanced metabolism of glucose via the polyol pathway may play an important role in the pathogenesis of diabetic retinopathy, neuropathy, and nephropathy. Aldose reductase catalyzes the NADPH-dependent conversion of glucose to sorbitol, the first step in the polyol pathway. Interruption of the polyol pathway by inhibition of aldose reductase holds considerable promise as a therapeutic measure to prevent or delay the onset and severity of these late complications of diabetes. Dramatic advances in our understanding of the molecular biology, enzymology, and three-dimensional structure of aldose reductase have occurred in recent years, providing new and challenging insights into the enzyme's catalytic mechanism. Recent developments in structure determination of aldose reductase and the implications for evaluation and development of aldose reductase inhibitors are summarized. PMID:8039602

  13. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction.

    PubMed

    Casino, Patricia; Rubio, Vicente; Marina, Alberto

    2009-10-16

    The chief mechanism used by bacteria for sensing their environment is based on two conserved proteins: a sensor histidine kinase (HK) and an effector response regulator (RR). The signal transduction process involves highly conserved domains of both proteins that mediate autokinase, phosphotransfer, and phosphatase activities whose output is a finely tuned RR phosphorylation level. Here, we report the structure of the complex between the entire cytoplasmic portion of Thermotoga maritima class I HK853 and its cognate, RR468, as well as the structure of the isolated RR468, both free and BeF(3)(-) bound. Our results provide insight into partner specificity in two-component systems, recognition of the phosphorylation state of each partner, and the catalytic mechanism of the phosphatase reaction. Biochemical analysis shows that the HK853-catalyzed autokinase reaction proceeds by a cis autophosphorylation mechanism within the HK subunit. The results suggest a model for the signal transduction mechanism in two-component systems.

  14. Structural insight into the TRIAP1/PRELI-like domain family of mitochondrial phospholipid transfer complexes

    PubMed Central

    Miliara, Xeni; Garnett, James A; Tatsuta, Takashi; Abid Ali, Ferdos; Baldie, Heather; Pérez-Dorado, Inmaculada; Simpson, Peter; Yague, Ernesto; Langer, Thomas; Matthews, Stephen

    2015-01-01

    The composition of the mitochondrial membrane is important for its architecture and proper function. Mitochondria depend on a tightly regulated supply of phospholipid via intra-mitochondrial synthesis and by direct import from the endoplasmic reticulum. The Ups1/PRELI-like family together with its mitochondrial chaperones (TRIAP1/Mdm35) represent a unique heterodimeric lipid transfer system that is evolutionary conserved from yeast to man. Work presented here provides new atomic resolution insight into the function of a human member of this system. Crystal structures of free TRIAP1 and the TRIAP1–SLMO1 complex reveal how the PRELI domain is chaperoned during import into the intermembrane mitochondrial space. The structural resemblance of PRELI-like domain of SLMO1 with that of mammalian phoshatidylinositol transfer proteins (PITPs) suggest that they share similar lipid transfer mechanisms, in which access to a buried phospholipid-binding cavity is regulated by conformationally adaptable loops. PMID:26071602

  15. Experimental Insights into the Origin of Defect-Structured Hibonites Found in Meteorites

    NASA Technical Reports Server (NTRS)

    Han. J.; Keller, L. P.; Danielson, L. R.

    2016-01-01

    Hibonite (CaAl12O19) is a primary, highly refractory phase occurring in many Ca-Al-rich inclusions (CAIs). Previous microstructural studies of hibonite in CAIs and their Wark-Lovering (WL) rims showed the presence of numerous stacking defects in hibonites. These defects are interpreted as the modification of the stacking sequences of spinel and Ca-containing blocks within the ideal hexagonal hibonite structure due to the presence of wider spinel blocks [3], as shown by experimental studies of reaction-sintered compounds in the CaO-Al2O3 system. We performed a series of experiments in the CaO-Al2O3-MgO system in order to provide additional in-sights into the formation processes and conditions of defect-structured hibonites found in meteorites.

  16. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review.

    PubMed

    Morrissey, Christy A; Mineau, Pierre; Devries, James H; Sanchez-Bayo, Francisco; Liess, Matthias; Cavallaro, Michael C; Liber, Karsten

    2015-01-01

    Neonicotinoids, broad-spectrum systemic insecticides, are the fastest growing class of insecticides worldwide and are now registered for use on hundreds of field crops in over 120 different countries. The environmental profile of this class of pesticides indicate that they are persistent, have high leaching and runoff potential, and are highly toxic to a wide range of invertebrates. Therefore, neonicotinoids represent a significant risk to surface waters and the diverse aquatic and terrestrial fauna that these ecosystems support. This review synthesizes the current state of knowledge on the reported concentrations of neonicotinoids in surface waters from 29 studies in 9 countries world-wide in tandem with published data on their acute and chronic toxicity to 49 species of aquatic insects and crustaceans spanning 12 invertebrate orders. Strong evidence exists that water-borne neonicotinoid exposures are frequent, long-term and at levels (geometric means=0.13μg/L (averages) and 0.63μg/L (maxima)) which commonly exceed several existing water quality guidelines. Imidacloprid is by far the most widely studied neonicotinoid (66% of the 214 toxicity tests reviewed) with differences in sensitivity among aquatic invertebrate species ranging several orders of magnitude; other neonicotinoids display analogous modes of action and similar toxicities, although comparative data are limited. Of the species evaluated, insects belonging to the orders Ephemeroptera, Trichoptera and Diptera appear to be the most sensitive, while those of Crustacea (although not universally so) are less sensitive. In particular, the standard test species Daphnia magna appears to be very tolerant, with 24-96hour LC50 values exceeding 100,000μg/L (geometric mean>44,000μg/L), which is at least 2-3 orders of magnitude higher than the geometric mean of all other invertebrate species tested. Overall, neonicotinoids can exert adverse effects on survival, growth, emergence, mobility, and behavior of many

  17. Structural insights into the dual-targeting mechanism of Nutlin-3

    SciTech Connect

    Shin, Jae-Sun; Ha, Ji-Hyang; He, Fahu; Muto, Yutaka; Ryu, Kyoung-Seok; Yoon, Ho Sup; Kang, Sunghyun; Park, Sung Goo; Park, Byoung Chul; Choi, Sang-Un; Chi, Seung-Wook

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Universal binding of Nutlin-3 with diverse anti-apoptotic Bcl-2 family proteins. Black-Right-Pointing-Pointer Nutlin-3 binds to the BH3 peptide-binding grooves of Bcl-2 family proteins. Black-Right-Pointing-Pointer A conserved Bcl-X{sub L} binding mechanism of the Nutlin-3 and BH3-mimetic compounds. Black-Right-Pointing-Pointer A molecular basis for the transcription-independent apoptosis by Nutlin-3. Black-Right-Pointing-Pointer Structural insights into the dual-targeting mechanism of Nutlin-3. -- Abstract: Multi-targeting therapy is an emerging strategy of drug discovery to improve therapeutic efficacy, safety and resistance profiles. In this study, we monitored the binding of a potent MDM2 inhibitor Nutlin-3 with anti-apoptotic Bcl-2 family proteins using NMR spectroscopy. Our results showed the universal binding of Nutlin-3 with diverse anti-apoptotic Bcl-2 family proteins. Taken together with the binding data for Nutlin-3 analogs, the structural model of the Bcl-X{sub L}/Nutlin-3 complex showed that the binding mode of Nutlin-3 resembles that of the Bcl-X{sub L}/Bcl-2 inhibitors, suggesting the molecular mechanism of transcription-independent mitochondrial apoptosis by Nutlin-3. Finally, our structural comparison provides structural insights into the dual-targeting mechanism of how Nutlin-3 can bind to two different target proteins, MDM2 and anti-apoptotic Bcl-2 family proteins in a similar manner.

  18. Monitoring changes in Bemisia tabaci (Hemiptera: Aleyrodidae) susceptibility to neonicotinoid insecticides in Arizona and California.

    PubMed

    Castle, S J; Prabhaker, N

    2013-06-01

    Bemisia tabaci (Gennadius) biotype B is a highly prolific and polyphagous whitefly that established in much of North America during the 1980s. Neonicotinoid insecticides have been fundamental in regaining control over outbreak populations of B. tabaci, but resistance threatens their sustainability. Susceptibility of B. tabaci in the southwestern United States to four neonicotinoid insecticides varied considerably across populations within each year over a 3 yr period. Using a variability ratio of highest LC50 to lowest LC50 in field-collected whitefly adults from Arizona and California, the ranges of LC50(s) across all tests within compounds were highest to imidacloprid and lowest to thiamethoxam. Patterns of susceptibility were similar among all four neonicotinoid insecticides, but the greater variability in responses to imidacloprid and significantly higher LC50(s) attained indicated higher resistance levels to imidacloprid in all field populations. Further evidence of differential toxicities of neonicotinoids was observed in multiple tests of dinotefuran against imidacloprid-resistant lab strains that yielded significant differences in the LC50(s) of dinotefuran and imidacloprid in simultaneous bioassays. To test the possibility that resistance expression in field-collected insects was sometimes masked by stressful conditions, field strains cultured in a greenhouse without insecticide exposure produced significantly higher LC50(s) to all neonicotinoids compared with LC50(s) attained directly from the field. In harsh climates such as the American southwest, resistance expression in field-collected test insects may be strongly influenced by environmental stresses such as high temperatures, overcrowding, and declining host plant quality.

  19. Neonicotinoid-contaminated puddles of water represent a risk of intoxication for honey bees.

    PubMed

    Samson-Robert, Olivier; Labrie, Geneviève; Chagnon, Madeleine; Fournier, Valérie

    2014-01-01

    In recent years, populations of honey bees and other pollinators have been reported to be in decline worldwide. A number of stressors have been identified as potential contributing factors, including the extensive prophylactic use of neonicotinoid insecticides, which are highly toxic to bees, in agriculture. While multiple routes of exposure to these systemic insecticides have been documented for honey bees, contamination from puddle water has not been investigated. In this study, we used a multi-residue method based on LC-MS/MS to analyze samples of puddle water taken in the field during the planting of treated corn and one month later. If honey bees were to collect and drink water from these puddles, our results showed that they would be exposed to various agricultural pesticides. All water samples collected from corn fields were contaminated with at least one neonicotinoid compound, although most contained more than one systemic insecticide. Concentrations of neonicotinoids were higher in early spring, indicating that emission and drifting of contaminated dust during sowing raises contamination levels of puddles. Although the overall average acute risk of drinking water from puddles was relatively low, concentrations of neonicotinoids ranged from 0.01 to 63 µg/L and were sufficient to potentially elicit a wide array of sublethal effects in individuals and colony alike. Our results also suggest that risk assessment of honey bee water resources underestimates the foragers' exposure and consequently miscalculates the risk. In fact, our data shows that honey bees and native pollinators are facing unprecedented cumulative exposure to these insecticides from combined residues in pollen, nectar and water. These findings not only document the impact of this route of exposure for honey bees, they also have implications for the cultivation of a wide variety of crops for which the extensive use of neonicotinoids is currently promoted.

  20. Neonicotinoid-Contaminated Puddles of Water Represent a Risk of Intoxication for Honey Bees

    PubMed Central

    Samson-Robert, Olivier; Labrie, Geneviève; Chagnon, Madeleine; Fournier, Valérie

    2014-01-01

    In recent years, populations of honey bees and other pollinators have been reported to be in decline worldwide. A number of stressors have been identified as potential contributing factors, including the extensive prophylactic use of neonicotinoid insecticides, which are highly toxic to bees, in agriculture. While multiple routes of exposure to these systemic insecticides have been documented for honey bees, contamination from puddle water has not been investigated. In this study, we used a multi-residue method based on LC-MS/MS to analyze samples of puddle water taken in the field during the planting of treated corn and one month later. If honey bees were to collect and drink water from these puddles, our results showed that they would be exposed to various agricultural pesticides. All water samples collected from corn fields were contaminated with at least one neonicotinoid compound, although most contained more than one systemic insecticide. Concentrations of neonicotinoids were higher in early spring, indicating that emission and drifting of contaminated dust during sowing raises contamination levels of puddles. Although the overall average acute risk of drinking water from puddles was relatively low, concentrations of neonicotinoids ranged from 0.01 to 63 µg/L and were sufficient to potentially elicit a wide array of sublethal effects in individuals and colony alike. Our results also suggest that risk assessment of honey bee water resources underestimates the foragers' exposure and consequently miscalculates the risk. In fact, our data shows that honey bees and native pollinators are facing unprecedented cumulative exposure to these insecticides from combined residues in pollen, nectar and water. These findings not only document the impact of this route of exposure for honey bees, they also have implications for the cultivation of a wide variety of crops for which the extensive use of neonicotinoids is currently promoted. PMID:25438051

  1. Neonicotinoid-contaminated puddles of water represent a risk of intoxication for honey bees.

    PubMed

    Samson-Robert, Olivier; Labrie, Geneviève; Chagnon, Madeleine; Fournier, Valérie

    2014-01-01

    In recent years, populations of honey bees and other pollinators have been reported to be in decline worldwide. A number of stressors have been identified as potential contributing factors, including the extensive prophylactic use of neonicotinoid insecticides, which are highly toxic to bees, in agriculture. While multiple routes of exposure to these systemic insecticides have been documented for honey bees, contamination from puddle water has not been investigated. In this study, we used a multi-residue method based on LC-MS/MS to analyze samples of puddle water taken in the field during the planting of treated corn and one month later. If honey bees were to collect and drink water from these puddles, our results showed that they would be exposed to various agricultural pesticides. All water samples collected from corn fields were contaminated with at least one neonicotinoid compound, although most contained more than one systemic insecticide. Concentrations of neonicotinoids were higher in early spring, indicating that emission and drifting of contaminated dust during sowing raises contamination levels of puddles. Although the overall average acute risk of drinking water from puddles was relatively low, concentrations of neonicotinoids ranged from 0.01 to 63 µg/L and were sufficient to potentially elicit a wide array of sublethal effects in individuals and colony alike. Our results also suggest that risk assessment of honey bee water resources underestimates the foragers' exposure and consequently miscalculates the risk. In fact, our data shows that honey bees and native pollinators are facing unprecedented cumulative exposure to these insecticides from combined residues in pollen, nectar and water. These findings not only document the impact of this route of exposure for honey bees, they also have implications for the cultivation of a wide variety of crops for which the extensive use of neonicotinoids is currently promoted. PMID:25438051

  2. Insect nicotinic receptor interactions in vivo with neonicotinoid, organophosphorus, and methylcarbamate insecticides and a synergist

    PubMed Central

    Shao, Xusheng; Xia, Shanshan; Durkin, Kathleen A.; Casida, John E.

    2013-01-01

    The nicotinic acetylcholine (ACh) receptor (nAChR) is the principal insecticide target. Nearly half of the insecticides by number and world market value are neonicotinoids acting as nAChR agonists or organophosphorus (OP) and methylcarbamate (MC) acetylcholinesterase (AChE) inhibitors. There was no previous evidence for in vivo interactions of the nAChR agonists and AChE inhibitors. The nitromethyleneimidazole (NMI) analog of imidacloprid, a highly potent neonicotinoid, was used here as a radioligand, uniquely allowing for direct measurements of house fly (Musca domestica) head nAChR in vivo interactions with various nicotinic agents. Nine neonicotinoids inhibited house fly brain nAChR [3H]NMI binding in vivo, corresponding to their in vitro potency and the poisoning signs or toxicity they produced in intrathoracically treated house flies. Interestingly, nine topically applied OP or MC insecticides or analogs also gave similar results relative to in vivo nAChR binding inhibition and toxicity, but now also correlating with in vivo brain AChE inhibition, indicating that ACh is the ultimate OP- or MC-induced nAChR active agent. These findings on [3H]NMI binding in house fly brain membranes validate the nAChR in vivo target for the neonicotinoids, OPs and MCs. As an exception, the remarkably potent OP neonicotinoid synergist, O-propyl O-(2-propynyl) phenylphosphonate, inhibited nAChR in vivo without the corresponding AChE inhibition, possibly via a reactive ketene metabolite reacting with a critical nucleophile in the cytochrome P450 active site and the nAChR NMI binding site. PMID:24108354

  3. Structural Insight into the Dioxygenation of Nitroarene Compounds: the Crystal Structure of Nitrobenzene Dioxygenase

    SciTech Connect

    Friemann, Rosmarie; Ivkovic-Jensen, Maja M.; Lessner, Daniel J.; Yu, Chi-Li; Gibson, David T.; Parales, Rebecca E.; Eklund, Hans; Ramaswamy, S.

    2010-07-19

    Nitroaromatic compounds are used extensively in many industrial processes and have been released into the environment where they are considered environmental pollutants. Nitroaromatic compounds, in general, are resistant to oxidative attack due to the electron-withdrawing nature of the nitro groups and the stability of the benzene ring. However, the bacterium Comamonas sp. strain JS765 can grow with nitrobenzene as a sole source of carbon, nitrogen and energy. Biodegradation is initiated by the nitrobenzene dioxygenase (NBDO) system. We have determined the structure of NBDO, which has a hetero-hexameric structure similar to that of several other Rieske non-heme iron dioxygenases. The catalytic subunit contains a Rieske iron-sulfur center and an active-site mononuclear iron atom. The structures of complexes with substrates nitrobenzene and 3-nitrotoluene reveal the structural basis for its activity with nitroarenes. The substrate pocket contains an asparagine residue that forms a hydrogen bond to the nitro-group of the substrate, and orients the substrate in relation to the active-site mononuclear iron atom, positioning the molecule for oxidation at the nitro-substituted carbon.

  4. Structural insights into 5‧ flap DNA unwinding and incision by the human FAN1 dimer

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Xue, Xiaoyu; Longerich, Simonne; Sung, Patrick; Xiong, Yong

    2014-12-01

    Human FANCD2-associated nuclease 1 (FAN1) is a DNA structure-specific nuclease involved in the processing of DNA interstrand crosslinks (ICLs). FAN1 maintains genomic stability and prevents tissue decline in multiple organs, yet it confers ICL-induced anti-cancer drug resistance in several cancer subtypes. Here we report three crystal structures of human FAN1 in complex with a 5‧ flap DNA substrate, showing that two FAN1 molecules form a head-to-tail dimer to locate the lesion, orient the DNA and unwind a 5‧ flap for subsequent incision. Biochemical experiments further validate our model for FAN1 action, as structure-informed mutations that disrupt protein dimerization, substrate orientation or flap unwinding impair the structure-specific nuclease activity. Our work elucidates essential aspects of FAN1-DNA lesion recognition and a unique mechanism of incision. These structural insights shed light on the cellular mechanisms underlying organ degeneration protection and cancer drug resistance mediated by FAN1.

  5. Crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana provides insights into its product specificity.

    PubMed

    Zhang, Weiwei; Wang, Wenhe; Liu, Zihe; Xie, Yongchao; Wang, Hao; Mu, Yajuan; Huang, Yao; Feng, Yue

    2016-09-16

    Specifier proteins are important components of the glucosinolate-myrosinase system, which mediate plant defense against herbivory and pathogen attacks. Upon tissue disruption, glucosinolates are hydrolyzed to instable aglucones by myrosinases, and then aglucones will rearrange to form defensive isothiocyanates. Specifier proteins can redirect this reaction to form other products, such as simple nitriles, epithionitriles and organic thiocyanates instead of isothiocyanates based on the side chain structure of glucosinolate and the type of the specifier proteins. Nevertheless, the molecular mechanism underlying the different product spectrums of various specifier proteins was not fully understood. Here in this study, we solved the crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana (AtESP) at 2.3 Å resolution. Structural comparisons with the previously solved structure of thiocyanate forming protein, TFP from Thlaspi arvense (TaTFP) reveal that AtESP shows a dimerization pattern different from TaTFP. Moreover, AtESP harbors a slightly larger active site pocket than TaTFP and several residues around the active site are different between the two proteins, which might account for the different product spectrums of the two proteins. Together, our structural study provides important insights into the molecular mechanisms of specifier proteins and shed light on the basis of their different product spectrums. PMID:27498030

  6. Cortical Structural Connectivity Alterations in Primary Insomnia: Insights from MRI-Based Morphometric Correlation Analysis.

    PubMed

    Zhao, Lu; Wang, Enfeng; Zhang, Xiaoqi; Karama, Sherif; Khundrakpam, Budhachandra; Zhang, Hongju; Guan, Min; Wang, Meiyun; Cheng, Jingliang; Shi, Dapeng; Evans, Alan C; Li, Yongli

    2015-01-01

    The etiology and maintenance of insomnia are proposed to be associated with increased cognitive and physiological arousal caused by acute stressors and associated cognitive rumination. A core feature of such hyperarousal theory of insomnia involves increased sensory processing that interferes with the onset and maintenance of sleep. In this work, we collected structural magnetic resonance imaging data from 35 patients with primary insomnia and 35 normal sleepers and applied structural covariance analysis to investigate whether insomnia is associated with disruptions in structural brain networks centered at the sensory regions (primary visual, primary auditory, and olfactory cortex). As expected, insomnia patients showed increased structural covariance in cortical thickness between sensory and motor regions. We also observed trends of increased covariance between sensory regions and the default-mode network, and the salience network regions, and trends of decreased covariance between sensory regions and the frontoparietal working memory network regions, in insomnia patients. The observed changes in structural covariance tended to correlated with poor sleep quality. Our findings support previous functional neuroimaging studies and provide novel insights into variations in brain network configuration that may be involved in the pathophysiology of insomnia.

  7. Combining 3D structure with glycan array data provides insight into the origin of glycan specificity.

    PubMed

    Grant, Oliver C; Tessier, Matthew B; Meche, Lawrence; Mahal, Lara K; Foley, Bethany L; Woods, Robert J

    2016-07-01

    Defining how a glycan-binding protein (GBP) specifically selects its cognate glycan from among the ensemble of glycans within the cellular glycome is an area of intense study. Powerful insight into recognition mechanisms can be gained from 3D structures of GBPs complexed to glycans; however, such structures remain difficult to obtain experimentally. Here an automated 3D structure generation technique, called computational carbohydrate grafting, is combined with the wealth of specificity information available from glycan array screening. Integration of the array data with modeling and crystallography allows generation of putative co-complex structures that can be objectively assessed and iteratively altered until a high level of agreement with experiment is achieved. Given an accurate model of the co-complexes, grafting is also able to discern which binding determinants are active when multiple potential determinants are present within a glycan. In some cases, induced fit in the protein or glycan was necessary to explain the observed specificity, while in other examples a revised definition of the minimal binding determinants was required. When applied to a collection of 10 GBP-glycan complexes, for which crystallographic and array data have been reported, grafting provided a structural rationalization for the binding specificity of >90% of 1223 arrayed glycans. A webtool that enables researchers to perform computational carbohydrate grafting is available at www.glycam.org/gr (accessed 03 March 2016).

  8. Combining 3D structure with glycan array data provides insight into the origin of glycan specificity.

    PubMed

    Grant, Oliver C; Tessier, Matthew B; Meche, Lawrence; Mahal, Lara K; Foley, Bethany L; Woods, Robert J

    2016-07-01

    Defining how a glycan-binding protein (GBP) specifically selects its cognate glycan from among the ensemble of glycans within the cellular glycome is an area of intense study. Powerful insight into recognition mechanisms can be gained from 3D structures of GBPs complexed to glycans; however, such structures remain difficult to obtain experimentally. Here an automated 3D structure generation technique, called computational carbohydrate grafting, is combined with the wealth of specificity information available from glycan array screening. Integration of the array data with modeling and crystallography allows generation of putative co-complex structures that can be objectively assessed and iteratively altered until a high level of agreement with experiment is achieved. Given an accurate model of the co-complexes, grafting is also able to discern which binding determinants are active when multiple potential determinants are present within a glycan. In some cases, induced fit in the protein or glycan was necessary to explain the observed specificity, while in other examples a revised definition of the minimal binding determinants was required. When applied to a collection of 10 GBP-glycan complexes, for which crystallographic and array data have been reported, grafting provided a structural rationalization for the binding specificity of >90% of 1223 arrayed glycans. A webtool that enables researchers to perform computational carbohydrate grafting is available at www.glycam.org/gr (accessed 03 March 2016). PMID:26911287

  9. Cortical Structural Connectivity Alterations in Primary Insomnia: Insights from MRI-Based Morphometric Correlation Analysis

    PubMed Central

    Zhao, Lu; Wang, Enfeng; Zhang, Xiaoqi; Karama, Sherif; Khundrakpam, Budhachandra; Zhang, Hongju; Guan, Min; Wang, Meiyun; Cheng, Jingliang; Shi, Dapeng; Evans, Alan C.; Li, Yongli

    2015-01-01

    The etiology and maintenance of insomnia are proposed to be associated with increased cognitive and physiological arousal caused by acute stressors and associated cognitive rumination. A core feature of such hyperarousal theory of insomnia involves increased sensory processing that interferes with the onset and maintenance of sleep. In this work, we collected structural magnetic resonance imaging data from 35 patients with primary insomnia and 35 normal sleepers and applied structural covariance analysis to investigate whether insomnia is associated with disruptions in structural brain networks centered at the sensory regions (primary visual, primary auditory, and olfactory cortex). As expected, insomnia patients showed increased structural covariance in cortical thickness between sensory and motor regions. We also observed trends of increased covariance between sensory regions and the default-mode network, and the salience network regions, and trends of decreased covariance between sensory regions and the frontoparietal working memory network regions, in insomnia patients. The observed changes in structural covariance tended to correlated with poor sleep quality. Our findings support previous functional neuroimaging studies and provide novel insights into variations in brain network configuration that may be involved in the pathophysiology of insomnia. PMID:26539528

  10. Cortical Structural Connectivity Alterations in Primary Insomnia: Insights from MRI-Based Morphometric Correlation Analysis.

    PubMed

    Zhao, Lu; Wang, Enfeng; Zhang, Xiaoqi; Karama, Sherif; Khundrakpam, Budhachandra; Zhang, Hongju; Guan, Min; Wang, Meiyun; Cheng, Jingliang; Shi, Dapeng; Evans, Alan C; Li, Yongli

    2015-01-01

    The etiology and maintenance of insomnia are proposed to be associated with increased cognitive and physiological arousal caused by acute stressors and associated cognitive rumination. A core feature of such hyperarousal theory of insomnia involves increased sensory processing that interferes with the onset and maintenance of sleep. In this work, we collected structural magnetic resonance imaging data from 35 patients with primary insomnia and 35 normal sleepers and applied structural covariance analysis to investigate whether insomnia is associated with disruptions in structural brain networks centered at the sensory regions (primary visual, primary auditory, and olfactory cortex). As expected, insomnia patients showed increased structural covariance in cortical thickness between sensory and motor regions. We also observed trends of increased covariance between sensory regions and the default-mode network, and the salience network regions, and trends of decreased covariance between sensory regions and the frontoparietal working memory network regions, in insomnia patients. The observed changes in structural covariance tended to correlated with poor sleep quality. Our findings support previous functional neuroimaging studies and provide novel insights into variations in brain network configuration that may be involved in the pathophysiology of insomnia. PMID:26539528

  11. Insights into the Mechanism of Type I Dehydroquinate Dehydratases from Structures of Reaction Intermediates

    SciTech Connect

    Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla; Duban, Mark-Eugene; Caffrey, Michael; Anderson, Wayne F.; Lavie, Arnon

    2012-02-27

    The biosynthetic shikimate pathway consists of seven enzymes that catalyze sequential reactions to generate chorismate, a critical branch point in the synthesis of the aromatic amino acids. The third enzyme in the pathway, dehydroquinate dehydratase (DHQD), catalyzes the dehydration of 3-dehydroquinate to 3-dehydroshikimate. We present three crystal structures of the type I DHQD from the intestinal pathogens Clostridium difficile and Salmonella enterica. Structures of the enzyme with substrate and covalent pre- and post-dehydration reaction intermediates provide snapshots of successive steps along the type I DHQD-catalyzed reaction coordinate. These structures reveal that the position of the substrate within the active site does not appreciably change upon Schiff base formation. The intermediate state structures reveal a reaction state-dependent behavior of His-143 in which the residue adopts a conformation proximal to the site of catalytic dehydration only when the leaving group is present. We speculate that His-143 is likely to assume differing catalytic roles in each of its observed conformations. One conformation of His-143 positions the residue for the formation/hydrolysis of the covalent Schiff base intermediates, whereas the other conformation positions the residue for a role in the catalytic dehydration event. The fact that the shikimate pathway is absent from humans makes the enzymes of the pathway potential targets for the development of non-toxic antimicrobials. The structures and mechanistic insight presented here may inform the design of type I DHQD enzyme inhibitors.

  12. Structural insights into the reaction mechanism of S-adenosyl-L-homocysteine hydrolase

    PubMed Central

    Kusakabe, Yoshio; Ishihara, Masaaki; Umeda, Tomonobu; Kuroda, Daisuke; Nakanishi, Masayuki; Kitade, Yukio; Gouda, Hiroaki; Nakamura, Kazuo T.; Tanaka, Nobutada

    2015-01-01

    S-adenosyl-L-homocysteine hydrolase (SAH hydrolase or SAHH) is a highly conserved enzyme that catalyses the reversible hydrolysis of SAH to L-homocysteine (HCY) and adenosine (ADO). High-resolution crystal structures have been reported for bacterial and plant SAHHs, but not mammalian SAHHs. Here, we report the first high-resolution crystal structure of mammalian SAHH (mouse SAHH) in complex with a reaction product (ADO) and with two reaction intermediate analogues—3’-keto-aristeromycin (3KA) and noraristeromycin (NRN)—at resolutions of 1.55, 1.55, and 1.65 Å. Each of the three structures constitutes a structural snapshot of one of the last three steps of the five-step process of SAH hydrolysis by SAHH. In the NRN complex, a water molecule, which is an essential substrate for ADO formation, is structurally identified for the first time as the candidate donor in a Michael addition by SAHH to the 3’-keto-4’,5’-didehydroadenosine reaction intermediate. The presence of the water molecule is consistent with the reaction mechanism proposed by Palmer & Abeles in 1979. These results provide insights into the reaction mechanism of the SAHH enzyme. PMID:26573329

  13. An Insight into the Pharmacophores of Phosphodiesterase-5 Inhibitors from Synthetic and Crystal Structural Studies

    SciTech Connect

    Chen,G.; Wang, H.; Robinson, H.; Cai, J.; Wan, Y.; Ke, H.

    2008-01-01

    Selective inhibitors of cyclic nucleotide phosphodiesterase-5 (PDE5) have been used as drugs for treatment of male erectile dysfunction and pulmonary hypertension. An insight into the pharmacophores of PDE5 inhibitors is essential for development of second generation of PDE5 inhibitors, but has not been completely illustrated. Here we report the synthesis of a new class of the sildenafil derivatives and a crystal structure of the PDE5 catalytic domain in complex with 5-(2-ethoxy-5-(sulfamoyl)-3-thienyl)-1-methyl-3-propyl-1, 6-dihydro-7H-pyrazolo[4, 3-d]pyrimidin-7-one (12). Inhibitor 12 induces conformational change of the H-loop (residues 660-683), which is different from any of the known PDE5 structures. The pyrazolopyrimidinone groups of 12 and sildenafil are well superimposed, but their sulfonamide groups show a positional difference of as much as 1.5 Angstroms . The structure-activity analysis suggests that a small hydrophobic pocket and the H-loop of PDE5 are important for the inhibitor affinity, in addition to two common elements for binding of almost all the PDE inhibitors: the stack against the phenylalanine and the hydrogen bond with the invariant glutamine. However, the PDE5-12 structure does not provide a full explanation to affinity changes of the inhibitors. Thus alternatives such as conformational change of the M-loop are open and further structural study is required.

  14. Structural Insights into the Anti-HIV Activity of the Oscillatoria agardhii Agglutinin Homolog Lectin Family*

    PubMed Central

    Koharudin, Leonardus M. I.; Kollipara, Sireesha; Aiken, Christopher; Gronenborn, Angela M.

    2012-01-01

    Oscillatoria agardhii agglutinin homolog (OAAH) proteins belong to a recently discovered lectin family. All members contain a sequence repeat of ∼66 amino acids, with the number of repeats varying among different family members. Apart from data for the founding member OAA, neither three-dimensional structures, information about carbohydrate binding specificities, nor antiviral activity data have been available up to now for any other members of the OAAH family. To elucidate the structural basis for the antiviral mechanism of OAAHs, we determined the crystal structures of Pseudomonas fluorescens and Myxococcus xanthus lectins. Both proteins exhibit the same fold, resembling the founding family member, OAA, with minor differences in loop conformations. Carbohydrate binding studies by NMR and x-ray structures of glycan-lectin complexes reveal that the number of sugar binding sites corresponds to the number of sequence repeats in each protein. As for OAA, tight and specific binding to α3,α6-mannopentaose was observed. All the OAAH proteins described here exhibit potent anti-HIV activity at comparable levels. Altogether, our results provide structural details of the protein-carbohydrate interaction for this novel lectin family and insights into the molecular basis of their HIV inactivation properties. PMID:22865886

  15. Human Bocavirus Capsid Structure: Insights into the Structural Repertoire of the Parvoviridae▿

    PubMed Central

    Gurda, Brittney L.; Parent, Kristin N.; Bladek, Heather; Sinkovits, Robert S.; DiMattia, Michael A.; Rence, Chelsea; Castro, Alejandro; McKenna, Robert; Olson, Norm; Brown, Kevin; Baker, Timothy S.; Agbandje-McKenna, Mavis

    2010-01-01

    Human bocavirus (HBoV) was recently discovered and classified in the Bocavirus genus (family Parvoviridae, subfamily Parvovirinae) on the basis of genomic similarity to bovine parvovirus and canine minute virus. HBoV has been implicated in respiratory tract infections and gastroenteric disease in children worldwide, yet despite numerous epidemiological reports, there has been limited biochemical and molecular characterization of the virus. Reported here is the three-dimensional structure of recombinant HBoV capsids, assembled from viral protein 2 (VP2), at 7.9-Å resolution as determined by cryo-electron microscopy and image reconstruction. A pseudo-atomic model of HBoV VP2 was derived from sequence alignment analysis and knowledge of the crystal structure of human parvovirus B19 (genus Erythrovirus). Comparison of the HBoV capsid structure to that of parvoviruses from five separate genera demonstrates strong conservation of a β-barrel core domain and an α-helix, from which emanate several loops of various lengths and conformations, yielding a unique surface topology that differs from the three already described for this family. The highly conserved core is consistent with observations for other single-stranded DNA viruses, and variable surface loops have been shown to confer the host-specific tropism and the diverse antigenic properties of this family. PMID:20375175

  16. Crystal structures of Ophiostoma piceae sterol esterase: structural insights into activation mechanism and product release.

    PubMed

    Gutiérrez-Fernández, Javier; Vaquero, María Eugenia; Prieto, Alicia; Barriuso, Jorge; Martínez, María Jesús; Hermoso, Juan A

    2014-09-01

    Sterol esterases are able to efficiently hydrolyze both sterol esters and triglycerides and to carry out synthesis reactions in the presence of organic solvents. Their high versatility makes them excellent candidates for biotechnological purposes. Sterol esterase from fungus Ophiostoma piceae (OPE) belongs to the family abH03.01 of the Candida rugosa lipase-like proteins. Crystal structures of OPE were solved in this study for the closed and open conformations. Enzyme activation involves a large displacement of the conserved lid, structural rearrangements of loop α16-α17, and formation of a dimer with a large opening. Three PEG molecules are placed in the active site, mimicking chains of the triglyceride substrate, demonstrating the position of the oxyanion hole and the three pockets that accommodate the sn-1, sn-2 and sn-3 fatty acids chains. One of them is an internal tunnel, connecting the active center with the outer surface of the enzyme 30 Å far from the catalytic Ser220. Based on our structural and biochemical results we propose a mechanism by which a great variety of different substrates can be hydrolyzed in OPE paving the way for the construction of new variants to improve the catalytic properties of these enzymes and their biotechnological applications. PMID:25108239

  17. Crystal structures of Ophiostoma piceae sterol esterase: structural insights into activation mechanism and product release.

    PubMed

    Gutiérrez-Fernández, Javier; Vaquero, María Eugenia; Prieto, Alicia; Barriuso, Jorge; Martínez, María Jesús; Hermoso, Juan A

    2014-09-01

    Sterol esterases are able to efficiently hydrolyze both sterol esters and triglycerides and to carry out synthesis reactions in the presence of organic solvents. Their high versatility makes them excellent candidates for biotechnological purposes. Sterol esterase from fungus Ophiostoma piceae (OPE) belongs to the family abH03.01 of the Candida rugosa lipase-like proteins. Crystal structures of OPE were solved in this study for the closed and open conformations. Enzyme activation involves a large displacement of the conserved lid, structural rearrangements of loop α16-α17, and formation of a dimer with a large opening. Three PEG molecules are placed in the active site, mimicking chains of the triglyceride substrate, demonstrating the position of the oxyanion hole and the three pockets that accommodate the sn-1, sn-2 and sn-3 fatty acids chains. One of them is an internal tunnel, connecting the active center with the outer surface of the enzyme 30 Å far from the catalytic Ser220. Based on our structural and biochemical results we propose a mechanism by which a great variety of different substrates can be hydrolyzed in OPE paving the way for the construction of new variants to improve the catalytic properties of these enzymes and their biotechnological applications.

  18. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps.

    PubMed

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Fries, Ingemar; Bommarco, Riccardo

    2015-01-01

    It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines.

  19. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps

    PubMed Central

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G.; Fries, Ingemar; Bommarco, Riccardo

    2015-01-01

    It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines. PMID:26313444

  20. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps.

    PubMed

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Fries, Ingemar; Bommarco, Riccardo

    2015-01-01

    It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines. PMID:26313444

  1. Insights into the aggregation/deposition and structure of a polydopamine film.

    PubMed

    Ding, Yonghui; Weng, Lu-Tao; Yang, Meng; Yang, Zhilu; Lu, Xiong; Huang, Nan; Leng, Yang

    2014-10-21

    Surface-adherent polydopamine (PDA) films as multifunctional coatings can be easily deposited onto a wide range of materials through dopamine self-polymerization. However, a lack of in-depth understanding of PDA aggregation and deposition processes and definite structure elucidation of PDA make it challenging to tailor the surface characteristic and functionality of the PDA films. Herein, we demonstrate that the surface characteristics of the PDA films can be readily tuned by controlling the competitive interplay between PDA aggregation in solution and deposition on the substrate. Moreover, a structural investigation of the PDA films using analytical tools such as X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) allows us to propose a new structure model for the PDA building block. The (DHI)2/PCA trimer complex, which consists of two 5,6-dihydroxyindole (DHI) units and one pyrrolecarboxylic acid (PCA) moiety, is definitely identified as a primary building block of PDA, and its formation is steered by covalent interactions in the initial stages of polymerization. In latter stages, the (DHI)2/PCA trimer complexes are further linked primarily through noncovalent interactions to build up the supramolecular structure of PDA. This study provides new insights into the mechanisms of PDA buildup. PMID:25262750

  2. Crystal structure of Manduca sexta prophenoloxidase provides insights into the mechanism of type 3 copper enzymes

    PubMed Central

    Li, Yongchao; Wang, Yang; Jiang, Haobo; Deng, Junpeng

    2009-01-01

    Arthropod phenoloxidase (PO) generates quinones and other toxic compounds to sequester and kill pathogens during innate immune responses. It is also involved in wound healing and other physiological processes. Insect PO is activated from its inactive precursor, prophenoloxidase (PPO), by specific proteolysis via a serine protease cascade. Here, we report the crystal structure of PPO from a lepidopteran insect at a resolution of 1.97 Å, which is the initial structure for a PPO from the type 3 copper protein family. Manduca sexta PPO is a heterodimer consisting of 2 homologous polypeptide chains, PPO1 and PPO2. The active site of each subunit contains a canonical type 3 di-nuclear copper center, with each copper ion coordinated with 3 structurally conserved histidines. The acidic residue Glu-395 located at the active site of PPO2 may serve as a general base for deprotonation of monophenolic substrates, which is key to the ortho-hydroxylase activity of PO. The structure provides unique insights into the mechanism by which type 3 copper proteins differ in their enzymatic activities, albeit sharing a common active center. A drastic change in electrostatic surface induced on cleavage at Arg-51 allows us to propose a model for localized PPO activation in insects. PMID:19805072

  3. Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA.

    PubMed

    Sidhu, Navdeep S; Schreiber, Kathrin; Pröpper, Kevin; Becker, Stefan; Usón, Isabel; Sheldrick, George M; Gärtner, Jutta; Krätzner, Ralph; Steinfeld, Robert

    2014-05-01

    Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However, the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2 Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder.

  4. Structure of human POFUT2: insights into thrombospondin type 1 repeat fold and O-fucosylation

    PubMed Central

    Chen, Chun-I; Keusch, Jeremy J; Klein, Dominique; Hess, Daniel; Hofsteenge, Jan; Gut, Heinz

    2012-01-01

    Protein O-fucosylation is a post-translational modification found on serine/threonine residues of thrombospondin type 1 repeats (TSR). The fucose transfer is catalysed by the enzyme protein O-fucosyltransferase 2 (POFUT2) and >40 human proteins contain the TSR consensus sequence for POFUT2-dependent fucosylation. To better understand O-fucosylation on TSR, we carried out a structural and functional analysis of human POFUT2 and its TSR substrate. Crystal structures of POFUT2 reveal a variation of the classical GT-B fold and identify sugar donor and TSR acceptor binding sites. Structural findings are correlated with steady-state kinetic measurements of wild-type and mutant POFUT2 and TSR and give insight into the catalytic mechanism and substrate specificity. By using an artificial mini-TSR substrate, we show that specificity is not primarily encoded in the TSR protein sequence but rather in the unusual 3D structure of a small part of the TSR. Our findings uncover that recognition of distinct conserved 3D fold motifs can be used as a mechanism to achieve substrate specificity by enzymes modifying completely folded proteins of very wide sequence diversity and biological function. PMID:22588082

  5. Structural insight into nucleotide recognition by human death-associated protein kinase

    SciTech Connect

    McNamara, Laurie K.; Watterson, D.M.; Brunzelle, Joseph S.

    2009-06-01

    Death-associated protein kinase (DAPK) is a member of the Ca{sup 2+}/calmodulin-regulated family of serine/threonine protein kinases. The role of the kinase activity of DAPK in eukaryotic cell apoptosis and the ability of bioavailable DAPK inhibitors to rescue neuronal death after brain injury have made it a drug-discovery target for neurodegenerative disorders. In order to understand the recognition of nucleotides by DAPK and to gain insight into DAPK catalysis, the crystal structure of human DAPK was solved in complex with ADP and Mg{sup 2+} at 1.85 {angstrom} resolution. ADP is a product of the kinase reaction and product release is considered to be the rate-limiting step of protein kinase catalytic cycles. The structure of DAPK-ADP-Mg{sup 2+} was compared with a newly determined DAPK-AMP-PNP-Mg{sup 2+} structure and the previously determined apo DAPK structure (PDB code 1 jks). The comparison shows that nucleotide-induced changes are localized to the glycine-rich loop region of DAPK.

  6. Structure of the Taz2 domain of p300: insights into ligand binding

    SciTech Connect

    Miller, Maria; Dauter, Zbigniew; Cherry, Scott; Tropea, Joseph E.; Wlodawer, Alexander

    2010-01-12

    CBP and its paralog p300 are histone acetyl transferases that regulate gene expression by interacting with multiple transcription factors via specialized domains. The structure of a segment of human p300 protein (residues 1723-1836) corresponding to the extended zinc-binding Taz2 domain has been investigated. The crystal structure was solved by the SAD approach utilizing the anomalous diffraction signal of the bound Zn ions. The structure comprises an atypical helical bundle stabilized by three Zn ions and closely resembles the solution structures determined previously for shorter peptides. Residues 1813-1834 from the current construct form a helical extension of the C-terminal helix and make extensive crystal-contact interactions with the peptide-binding site of Taz2, providing additional insights into the mechanism of the recognition of diverse transactivation domains (TADs) by Taz2. On the basis of these results and molecular modeling, a hypothetical model of the binding of phosphorylated p53 TAD1 to Taz2 has been proposed.

  7. Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA

    PubMed Central

    Sidhu, Navdeep S.; Schreiber, Kathrin; Pröpper, Kevin; Becker, Stefan; Usón, Isabel; Sheldrick, George M.; Gärtner, Jutta; Krätzner, Ralph; Steinfeld, Robert

    2014-01-01

    Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However, the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2 Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder. PMID:24816101

  8. Structural insight into the mechanisms of enveloped virus tethering by tetherin

    SciTech Connect

    Yang, Haitao; Wang, Jimin; Jia, Xiaofei; McNatt, Matthew W.; Zang, Trinity; Pan, Baocheng; Meng, Wuyi; Wang, Hong-Wei; Bieniasz, Paul D.; Xiong, Yong

    2010-11-10

    Tetherin/BST2 is a type-II membrane protein that inhibits the release of a range of enveloped viruses, including HIV-1. Here we report three crystal structures of human tetherin, including the full-length ectodomain, a triple cysteine mutant and an ectodomain truncation. These structures show that tetherin forms a continuous alpha helix encompassing almost the entire ectodomain. Tetherin helices dimerize into parallel coiled coils via interactions throughout the C-terminal portion of the ectodomain. A comparison of the multiple structures of the tetherin dimer reveals inherent constrained flexibility at two hinges positioned at residues A88 and G109. In the crystals, two tetherin ectodomain dimers associate into a tetramer by forming an antiparallel four-helix bundle at their N termini. However, mutagenesis studies suggest that the tetrametric form of tetherin, although potentially contributing to, is not essential for its antiviral activity. Nonetheless, the structural and chemical properties of the N terminus of the ectodomain are important for optimal tethering function. This study provides detailed insight into the mechanisms by which this broad-spectrum antiviral restriction factor can function.

  9. New insights into the structural roles of nebulin in skeletal muscle.

    PubMed

    Ottenheijm, Coen A C; Granzier, Henk

    2010-01-01

    One important feature of muscle structure and function that has remained relatively obscure is the mechanism that regulates thin filament length. Filament length is an important aspect of muscle function as force production is proportional to the amount of overlap between thick and thin filaments. Recent advances, due in part to the generation of nebulin KO models, reveal that nebulin plays an important role in the regulation of thin filament length. Another structural feature of skeletal muscle that is not well understood is the mechanism involved in maintaining the regular lateral alignment of adjacent sarcomeres, that is, myofibrillar connectivity. Recent studies indicate that nebulin is part of a protein complex that mechanically links adjacent myofibrils. Thus, novel structural roles of nebulin in skeletal muscle involve the regulation of thin filament length and maintaining myofibrillar connectivity. When these functions of nebulin are absent, muscle weakness ensues, as is the case in patients with nemaline myopathy with mutations in nebulin. Here we review these new insights in the role of nebulin in skeletal muscle structure. PMID:20589077

  10. New Insights into the Structure of Multimetallic Nanoparticles and their Advanced Characterization

    NASA Astrophysics Data System (ADS)

    Khanal, Subarna; Bhattarai, Nabraj; Velázquez-Salazar, Jesus; Guisbiers, Gregory; Jose-Yacaman, Miguel

    2015-03-01

    Noble multimetallic nanoparticles have led to exciting progress in a versatile array of applications. For the purpose of better tailoring of nanoparticles activities and understanding the correlation between their structures and properties, control over the composition, shape, size and architecture of bimetallic and multimetallic nanomaterials plays an important role on revealing their new or enhanced functions for potentials application. Advance electron microscopy techniques were used to provide atomic scale insights into the structure-properties of different materials: Pt-Pd, Au-Au3Cu, Cu-Pt, AgPd-Pt and AuCu/Pt nanoparticles. These multimetallic nanoparticles have raised interest for their various applications in fuel cells, ethanol and methanol oxidation reactions, hydrogen storage, and so on. The nanostructures were analyzed by transmission electron microscopy (TEM) and by aberration-corrected scanning transmission electron microscopy (Cs-corrected STEM), in combination with high angle annular dark field (HAADF), bright field (BF), energy dispersive X-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) detectors. These techniques allowed us to probe the structure at the atomic level of the nanoparticles revealing new structural information and elemental composition of the nanoparticles.

  11. Unveiling the molecular mechanism of brassinosteroids: Insights from structure-based molecular modeling studies.

    PubMed

    Lei, Beilei; Liu, Jiyuan; Yao, Xiaojun

    2015-12-01

    Brassinosteroid (BR) phytohormones play indispensable roles in plant growth and development. Brassinolide (BL) and 24-epibrassinolide (24-epiBL) are the most active ones among the BRs reported thus far. Unfortunately, the extremely low natural content and intricate synthesis process limit their popularization in agricultural production. Earlier reports to discover alternative compounds have resulted in molecules with nearly same scaffold structure and without diversity in chemical space. In the present study, receptors structure based BRs regulation mechanism was analyzed. First, we examined the detailed binding interactions and their dynamic stability between BL and its receptor BRI1 and co-receptor BAK1. Then, the binding modes and binding free energies for 24-epiBL and a series of representative BRs binding with BRI1 and BRI1-BAK1 were carried out by molecular docking, energy minimization and MM-PBSA free energy calculation. The obtained binding structures and energetic results provided vital insights into the structural factors affecting the activity from both receptors and BRs aspects. Subsequently, the obtained knowledge will serve as valuable guidance to build pharmacophore models for rational screening of new scaffold alternative BRs.

  12. Crystal structure of Manduca sexta prophenoloxidase provides insights into the mechanism of type 3 copper enzymes

    SciTech Connect

    Li, Yongchao; Wang, Yang; Jiang, Haobo; Deng, Junpeng

    2010-02-22

    Arthropod phenoloxidase (PO) generates quinones and other toxic compounds to sequester and kill pathogens during innate immune responses. It is also involved in wound healing and other physiological processes. Insect PO is activated from its inactive precursor, prophenoloxidase (PPO), by specific proteolysis via a serine protease cascade. Here, we report the crystal structure of PPO from a lepidopteran insect at a resolution of 1.97 {angstrom}, which is the initial structure for a PPO from the type 3 copper protein family. Manduca sexta PPO is a heterodimer consisting of 2 homologous polypeptide chains, PPO1 and PPO2. The active site of each subunit contains a canonical type 3 di-nuclear copper center, with each copper ion coordinated with 3 structurally conserved histidines. The acidic residue Glu-395 located at the active site of PPO2 may serve as a general base for deprotonation of monophenolic substrates, which is key to the ortho-hydroxylase activity of PO. The structure provides unique insights into the mechanism by which type 3 copper proteins differ in their enzymatic activities, albeit sharing a common active center. A drastic change in electrostatic surface induced on cleavage at Arg-51 allows us to propose a model for localized PPO activation in insects.

  13. Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects.

    PubMed

    Botías, Cristina; David, Arthur; Hill, Elizabeth M; Goulson, Dave

    2016-10-01

    Neonicotinoid insecticides are commonly-used as seed treatments on flowering crops such as oilseed rape. Their persistence and solubility in water increase the chances of environmental contamination via surface-runoff or drainage into areas adjacent to the crops. However, their uptake and fate into non-target vegetation remains poorly understood. In this study, we analysed samples of foliage collected from neonicotinoid seed-treated oilseed rape plants and also compared the levels of neonicotinoid residues in foliage (range: 1.4-11ng/g) with the levels found in pollen collected from the same plants (range: 1.4-22ng/g). We then analysed residue levels in foliage from non-target plants growing in the crop field margins (range: ≤0.02-106ng/g). Finally, in order to assess the possible risk posed by the peak levels of neonicotinoids that we detected in foliage for farmland phytophagous and predatory insects, we compared the maximum concentrations found against the LC50 values reported in the literature for a set of relevant insect species. Our results suggest that neonicotinoid seed-dressings lead to widespread contamination of the foliage of field margin plants with mixtures of neonicotinoid residues, where levels are very variable and discontinuous, but sometimes overlap with lethal concentrations reported for some insect species. Understanding the distribution of pesticides in the environment and their potential effects on biological communities is crucial to properly assess current agricultural management and schemes with biodiversity conservation aims in farmland.

  14. Neonicotinoids impact bumblebee colony fitness in the field; a reanalysis of the UK's Food & Environment Research Agency 2012 experiment.

    PubMed

    Goulson, Dave

    2015-01-01

    The causes of bee declines remain hotly debated, particularly the contribution of neonicotinoid insecticides. In 2013 the UK's Food & Environment Research Agency made public a study of the impacts of exposure of bumblebee colonies to neonicotinoids. The study concluded that there was no clear relationship between colony performance and pesticide exposure, and the study was subsequently cited by the UK government in a policy paper in support of their vote against a proposed moratorium on some uses of neonicotinoids. Here I present a simple re-analysis of this data set. It demonstrates that these data in fact do show a negative relationship between both colony growth and queen production and the levels of neonicotinoids in the food stores collected by the bees. Indeed, this is the first study describing substantial negative impacts of neonicotinoids on colony performance of any bee species with free-flying bees in a field realistic situation where pesticide exposure is provided only as part of normal farming practices. It strongly suggests that wild bumblebee colonies in farmland can be expected to be adversely affected by exposure to neonicotinoids.

  15. Lipid-free Apolipoprotein A-I Structure: Insights into HDL Formation and Atherosclerosis Development.

    PubMed

    Mei, Xiaohu; Atkinson, David

    2015-07-01

    Apolipoprotein A-I is the major protein in high-density lipoprotein (HDL) and plays an important role during the process of reverse cholesterol transport (RCT). Knowledge of the high-resolution structure of full-length apoA-I is vital for a molecular understanding of the function of HDL at the various steps of the RCT pathway. Due to the flexible nature of apoA-I and aggregation properties, the structure of full-length lipid-free apoA-I has evaded description for over three decades. Sequence analysis of apoA-I suggested that the amphipathic α-helix is the structural motif of exchangeable apolipoprotein, and NMR, X-ray and MD simulation studies have confirmed this. Different laboratories have used different methods to probe the secondary structure distribution and organization of both the lipid-free and lipid-bound apoA-I structure. Mutation analysis, synthetic peptide models, surface chemistry and crystal structures have converged on the lipid-free apoA-I domain structure and function: the N-terminal domain [1-184] forms a helix bundle while the C-terminal domain [185-243] mostly lacks defined structure and is responsible for initiating lipid-binding, aggregation and is also involved in cholesterol efflux. The first 43 residues of apoA-I are essential to stabilize the lipid-free structure. In addition, the crystal structure of C-terminally truncated apoA-I suggests a monomer-dimer conversation mechanism mediated through helix 5 reorganization and dimerization during the formation of HDL. Based on previous research, we have proposed a structural model for full-length monomeric apoA-I in solution and updated the HDL formation mechanism through three states. Mapping the known natural mutations on the full-length monomeric apoA-I model provides insight into atherosclerosis development through disruption of the N-terminal helix bundle or deletion of the C-terminal lipid-binding domain.

  16. Structure of the vacuolar H+-ATPase rotary motor reveals new mechanistic insights.

    PubMed

    Rawson, Shaun; Phillips, Clair; Huss, Markus; Tiburcy, Felix; Wieczorek, Helmut; Trinick, John; Harrison, Michael A; Muench, Stephen P

    2015-03-01

    Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases. PMID:25661654

  17. Insights from the DNA databases: approaches to the phylogenetic structure of Acanthamoeba.

    PubMed

    Fuerst, Paul A

    2014-11-01

    Species of Acanthamoeba have been traditionally described using morphology (primarily cyst structure), or cytology of nuclear division (used by Pussard and Pons, 1977). Twenty-plus putative species were proposed based on such criteria. Morphology, however, is often plastic, dependent upon culture conditions. DNA sequences of the nuclear small subunit (18S) rRNA that can be used for the study of the phylogeny of Acanthamoeba have increased from a single sequence in 1986 to more than 1800 in 2013. Some of the patterns of the sequence data for Acanthamoeba are reviewed, and some of the insights that this data illuminates are illustrated. In particular, the data suggest the existence of 20 or more genotypic types, a number not dissimilar to the number of named species of Acanthamoeba. However, molecular studies make clear that the relationship between phylogenetic relatedness and species names as we know them for Acanthamoeba is tenuous at best.

  18. Using Numerical Simulations to Gain Insight into the Structure of Super-bubbles

    NASA Astrophysics Data System (ADS)

    Komljenovic, P. T.; Basu, S.; Johnstone, D.

    Recent high resolution observations of Galactic superbubbles have motivated us to re-examine several classes of superbubble models. We compare three classes of hydrodynamic models (the Kompaneets approximation, the thin shell model, and numerical simulations) in order to understand the structure of superbubbles and to gain insight into observations. In particular, we apply models to the W4 superbubble, which has been observed in the Pilot project of the arcminute resolution Canadian Galactic Plane Survey (Normandeau et al. 1996). Magnetohydrodynamic simulations are also performed and point the way to a fuller understanding of the W4 superbubble. We suggest that the highly collimated bubble and apparent lack of a Rayleigh-Taylor instability in the superbubble shell can be explained by the presence of a magnetic field.

  19. Crystal Structure of Human Senescence Marker Protein 30: Insights Linking Structural, Enzymatic, and Physiological Functions

    SciTech Connect

    Chakraborti, Subhendu; Bahnson, Brian J.

    2010-05-25

    Human senescence marker protein 30 (SMP30), which functions enzymatically as a lactonase, hydrolyzes various carbohydrate lactones. The penultimate step in vitamin-C biosynthesis is catalyzed by this enzyme in nonprimate mammals. It has also been implicated as an organophosphate hydrolase, with the ability to hydrolyze diisopropyl phosphofluoridate and other nerve agents. SMP30 was originally identified as an aging marker protein, whose expression decreased androgen independently in aging cells. SMP30 is also referred to as regucalcin and has been suggested to have functions in calcium homeostasis. The crystal structure of the human enzyme has been solved from X-ray diffraction data collected to a resolution of 1.4 {angstrom}. The protein has a 6-bladed {beta}-propeller fold, and it contains a single metal ion. Crystal structures have been solved with the metal site bound with either a Ca{sup 2+} or a Zn{sup 2+} atom. The catalytic role of the metal ion has been confirmed by mutagenesis of the metal coordinating residues. Kinetic studies using the substrate gluconolactone showed a k{sub cat} preference of divalent cations in the order Zn{sup 2+} > Mn{sup 2+} > Ca{sup 2+} > Mg{sup 2+}. Notably, the Ca{sup 2+} had a significantly higher value of K{sub d} compared to those of the other metal ions tested (566, 82, 7, and 0.6 {micro}m for Ca{sup 2+}, Mg{sup 2+}, Zn{sup 2+}, and Mn{sup 2+}, respectively), suggesting that the Ca{sup 2+}-bound form may be physiologically relevant for stressed cells with an elevated free calcium level.

  20. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.

    PubMed

    Stockand, James D; Staruschenko, Alexander; Pochynyuk, Oleh; Booth, Rachell E; Silverthorn, Dee U

    2008-09-01

    The epithelial Na(+) channel/degenerin (ENaC/DEG) protein family includes a diverse group of ion channels, including nonvoltage-gated Na(+) channels of epithelia and neurons, and the acid-sensing ion channel 1 (ASIC1). In mammalian epithelia, ENaC helps regulate Na(+) and associated water transport, making it a critical determinant of systemic blood pressure and pulmonary mucosal fluidity. In the nervous system, ENaC/DEG proteins are related to sensory transduction. While the importance and physiological function of these ion channels are established, less is known about their structure. One hallmark of the ENaC/DEG channel family is that each channel subunit has only two transmembrane domains connected by an exceedingly large extracellular loop. This subunit structure was recently confirmed when Jasti and colleagues determined the crystal structure of chicken ASIC1, a neuronal acid-sensing ENaC/DEG channel. By mapping ENaC to the structural coordinates of cASIC1, as we do here, we hope to provide insight toward ENaC structure. ENaC, like ASIC1, appears to be a trimeric channel containing 1alpha, 1beta, and 1gamma subunit. Heterotrimeric ENaC and monomeric ENaC subunits within the trimer possibly contain many of the major secondary, tertiary, and quaternary features identified in cASIC1 with a few subtle but critical differences. These differences are expected to have profound effects on channel behavior. In particular, they may contribute to ENaC insensitivity to acid and to its constitutive activity in the absence of time- and ligand-dependent inactivation. Experiments resulting from this comparison of cASIC1 and ENaC may help clarify unresolved issues related to ENaC architecture, and may help identify secondary structures and residues critical to ENaC function.

  1. Structural Insights into High Density Lipoprotein: Old Models and New Facts

    PubMed Central

    Gogonea, Valentin

    2016-01-01

    The physiological link between circulating high density lipoprotein (HDL) levels and cardiovascular disease is well-documented, albeit its intricacies are not well-understood. An improved appreciation of HDL function and overall role in vascular health and disease requires at its foundation a better understanding of the lipoprotein's molecular structure, its formation, and its process of maturation through interactions with various plasma enzymes and cell receptors that intervene along the pathway of reverse cholesterol transport. This review focuses on summarizing recent developments in the field of lipid free apoA-I and HDL structure, with emphasis on new insights revealed by newly published nascent and spherical HDL models constructed by combining low resolution structures obtained from small angle neutron scattering (SANS) with contrast variation and geometrical constraints derived from hydrogen–deuterium exchange (HDX), crosslinking mass spectrometry, electron microscopy, Förster resonance energy transfer, and electron spin resonance. Recently published low resolution structures of nascent and spherical HDL obtained from SANS with contrast variation and isotopic labeling of apolipoprotein A-I (apoA-I) will be critically reviewed and discussed in terms of how they accommodate existing biophysical structural data from alternative approaches. The new low resolution structures revealed and also provided some answers to long standing questions concerning lipid organization and particle maturation of lipoproteins. The review will discuss the merits of newly proposed SANS based all atom models for nascent and spherical HDL, and compare them with accepted models. Finally, naturally occurring and bioengineered mutations in apoA-I, and their impact on HDL phenotype, are reviewed and discuss together with new therapeutics employed for restoring HDL function. PMID:26793109

  2. Computation Sheds Insight into Iron Porphyrin Carbenes' Electronic Structure, Formation, and N-H Insertion Reactivity.

    PubMed

    Sharon, Dina A; Mallick, Dibyendu; Wang, Binju; Shaik, Sason

    2016-08-01

    Iron porphyrin carbenes constitute a new frontier of species with considerable synthetic potential. Exquisitely engineered myoglobin and cytochrome P450 enzymes can generate these complexes and facilitate the transformations they mediate. The current work harnesses density functional theoretical methods to provide insight into the electronic structure, formation, and N-H insertion reactivity of an iron porphyrin carbene, [Fe(Por)(SCH3)(CHCO2Et)](-), a model of a complex believed to exist in an experimentally studied artificial metalloenzyme. The ground state electronic structure of the terminal form of this complex is an open-shell singlet, with two antiferromagnetically coupled electrons residing on the iron center and carbene ligand. As we shall reveal, the bonding properties of [Fe(Por)(SCH3)(CHCO2Et)](-) are remarkably analogous to those of ferric heme superoxide complexes. The carbene forms by dinitrogen loss from ethyl diazoacetate. This reaction occurs preferentially through an open-shell singlet transition state: iron donates electron density to weaken the C-N bond undergoing cleavage. Once formed, the iron porphyrin carbene accomplishes N-H insertion via nucleophilic attack. The resulting ylide then rearranges, using an internal carbonyl base, to form an enol that leads to the product. The findings rationalize experimentally observed reactivity trends reported in artificial metalloenzymes employing iron porphyrin carbenes. Furthermore, these results suggest a possible expansion of enzymatic substrate scope, to include aliphatic amines. Thus, this work, among the first several computational explorations of these species, contributes insights and predictions to the surging interest in iron porphyrin carbenes and their synthetic potential. PMID:27347808

  3. Computation Sheds Insight into Iron Porphyrin Carbenes' Electronic Structure, Formation, and N-H Insertion Reactivity.

    PubMed

    Sharon, Dina A; Mallick, Dibyendu; Wang, Binju; Shaik, Sason

    2016-08-01

    Iron porphyrin carbenes constitute a new frontier of species with considerable synthetic potential. Exquisitely engineered myoglobin and cytochrome P450 enzymes can generate these complexes and facilitate the transformations they mediate. The current work harnesses density functional theoretical methods to provide insight into the electronic structure, formation, and N-H insertion reactivity of an iron porphyrin carbene, [Fe(Por)(SCH3)(CHCO2Et)](-), a model of a complex believed to exist in an experimentally studied artificial metalloenzyme. The ground state electronic structure of the terminal form of this complex is an open-shell singlet, with two antiferromagnetically coupled electrons residing on the iron center and carbene ligand. As we shall reveal, the bonding properties of [Fe(Por)(SCH3)(CHCO2Et)](-) are remarkably analogous to those of ferric heme superoxide complexes. The carbene forms by dinitrogen loss from ethyl diazoacetate. This reaction occurs preferentially through an open-shell singlet transition state: iron donates electron density to weaken the C-N bond undergoing cleavage. Once formed, the iron porphyrin carbene accomplishes N-H insertion via nucleophilic attack. The resulting ylide then rearranges, using an internal carbonyl base, to form an enol that leads to the product. The findings rationalize experimentally observed reactivity trends reported in artificial metalloenzymes employing iron porphyrin carbenes. Furthermore, these results suggest a possible expansion of enzymatic substrate scope, to include aliphatic amines. Thus, this work, among the first several computational explorations of these species, contributes insights and predictions to the surging interest in iron porphyrin carbenes and their synthetic potential.

  4. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS.

    PubMed

    Kuznetsova, Ekaterina; Nocek, Boguslaw; Brown, Greg; Makarova, Kira S; Flick, Robert; Wolf, Yuri I; Khusnutdinova, Anna; Evdokimova, Elena; Jin, Ke; Tan, Kemin; Hanson, Andrew D; Hasnain, Ghulam; Zallot, Rémi; de Crécy-Lagard, Valérie; Babu, Mohan; Savchenko, Alexei; Joachimiak, Andrzej; Edwards, Aled M; Koonin, Eugene V; Yakunin, Alexander F

    2015-07-24

    The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members. PMID:26071590

  5. Structural insights into human Kif7, a kinesin involved in Hedgehog signalling

    SciTech Connect

    Klejnot, Marta Kozielski, Frank

    2012-02-01

    The human Kif7 motor domain structure provides insights into a kinesin of medical significance. Kif7, a member of the kinesin 4 superfamily, is implicated in a variety of diseases including Joubert, hydrolethalus and acrocallosal syndromes. It is also involved in primary cilium formation and the Hedgehog signalling pathway and may play a role in cancer. Its activity is crucial for embryonic development. Kif7 and Kif27, a closely related kinesin in the same subfamily, are orthologues of the Drosophila melano@@gaster kinesin-like protein Costal-2 (Cos2). In vertebrates, they work together to fulfil the role of the single Cos2 gene in Drosophila. Here, the high-resolution structure of the human Kif7 motor domain is reported and is compared with that of conventional kinesin, the founding member of the kinesin superfamily. These data are a first step towards structural characterization of a kinesin-4 family member and of this interesting molecular motor of medical significance.

  6. Structural Insights into SraP-Mediated Staphylococcus aureus Adhesion to Host Cells

    PubMed Central

    Zhang, Juan; Wang, Lei; Bai, Xiao-Hui; Zhang, Shi-Jie; Ren, Yan-Min; Li, Na; Zhang, Yong-Hui; Zhang, Zhiyong; Gong, Qingguo; Mei, Yide; Xue, Ting; Zhang, Jing-Ren; Chen, Yuxing; Zhou, Cong-Zhao

    2014-01-01

    Staphylococcus aureus, a Gram-positive bacterium causes a number of devastating human diseases, such as infective endocarditis, osteomyelitis, septic arthritis and sepsis. S. aureus SraP, a surface-exposed serine-rich repeat glycoprotein (SRRP), is required for the pathogenesis of human infective endocarditis via its ligand-binding region (BR) adhering to human platelets. It remains unclear how SraP interacts with human host. Here we report the 2.05 Å crystal structure of the BR of SraP, revealing an extended rod-like architecture of four discrete modules. The N-terminal legume lectin-like module specifically binds to N-acetylneuraminic acid. The second module adopts a β-grasp fold similar to Ig-binding proteins, whereas the last two tandem repetitive modules resemble eukaryotic cadherins but differ in calcium coordination pattern. Under the conditions tested, small-angle X-ray scattering and molecular dynamic simulation indicated that the three C-terminal modules function as a relatively rigid stem to extend the N-terminal lectin module outwards. Structure-guided mutagenesis analyses, in addition to a recently identified trisaccharide ligand of SraP, enabled us to elucidate that SraP binding to sialylated receptors promotes S. aureus adhesion to and invasion into host epithelial cells. Our findings have thus provided novel structural and functional insights into the SraP-mediated host-pathogen interaction of S. aureus. PMID:24901708

  7. Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase

    PubMed Central

    Klein, Tobias; Vajpai, Navratna; Phillips, Jonathan J.; Davies, Gareth; Holdgate, Geoffrey A.; Phillips, Chris; Tucker, Julie A.; Norman, Richard A.; Scott, Andrew D.; Higazi, Daniel R.; Lowe, David; Thompson, Gary S.; Breeze, Alexander L.

    2015-01-01

    Protein tyrosine kinases differ widely in their propensity to undergo rearrangements of the N-terminal Asp–Phe–Gly (DFG) motif of the activation loop, with some, including FGFR1 kinase, appearing refractory to this so-called ‘DFG flip'. Recent inhibitor-bound structures have unexpectedly revealed FGFR1 for the first time in a ‘DFG-out' state. Here we use conformationally selective inhibitors as chemical probes for interrogation of the structural and dynamic features that appear to govern the DFG flip in FGFR1. Our detailed structural and biophysical insights identify contributions from altered dynamics in distal elements, including the αH helix, towards the outstanding stability of the DFG-out complex with the inhibitor ponatinib. We conclude that the αC-β4 loop and ‘molecular brake' regions together impose a high energy barrier for this conformational rearrangement, and that this may have significance for maintaining autoinhibition in the non-phosphorylated basal state of FGFR1. PMID:26203596

  8. The Parkinson Disease gene SNCA: Evolutionary and structural insights with pathological implication

    PubMed Central

    Siddiqui, Irum Javaid; Pervaiz, Nashaiman; Abbasi, Amir Ali

    2016-01-01

    After Alzheimer, Parkinson’s disease (PD) is the second most common neurodegenerative disorder. Alpha synuclein (SNCA) is deemed as a major component of Lewy bodies, a neuropathological feature of PD. Five point mutations in SNCA have been reported so far, responsible for autosomal dominant PD. This study aims to decipher evolutionary and structural insights of SNCA by revealing its sequence and structural evolutionary patterns among sarcopterygians and its paralogous counterparts (SNCB and SNCG). Rate analysis detected strong purifying selection on entire synuclein family. Structural dynamics divulges that during the course of sarcopterygian evolutionary history, the region encompassed 32 to 58 of N-terminal domain of SNCA has acquired its critical functional significance through the epistatic influence of the lineage specific substitutions. In sum, these findings provide an evidence that the region from 32 to 58 of N-terminal lipid binding alpha helix domain of SNCA is the most critical region, not only from the evolutionary perspective but also for the stability and the proper conformation of the protein as well as crucial for the disease pathogenesis, harboring critical interaction sites. PMID:27080380

  9. Molecular and evolutionary insights into the structural organization of cation chloride cotransporters

    PubMed Central

    Hartmann, Anna-Maria; Nothwang, Hans Gerd

    2015-01-01

    Cation chloride cotransporters (CCC) play an essential role for neuronal chloride homeostasis. K+-Cl− cotransporter (KCC2), is the principal Cl−-extruder, whereas Na+-K+-Cl− cotransporter (NKCC1), is the major Cl−-uptake mechanism in many neurons. As a consequence, the action of the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine strongly depend on the activity of these two transporters. Knowledge of the mechanisms involved in ion transport and regulation is thus of great importance to better understand normal and disturbed brain function. Although no overall 3-dimensional crystal structures are yet available, recent molecular and phylogenetic studies and modeling have provided new and exciting insights into structure-function relationships of CCC. Here, we will summarize our current knowledge of the gross structural organization of the proteins, their functional domains, ion binding and translocation sites, and the established role of individual amino acids (aa). A major focus will be laid on the delineation of shared and distinct organizational principles between KCC2 and NKCC1. Exploiting the richness of recently generated genome data across the tree of life, we will also explore the molecular evolution of these features. PMID:25653592

  10. Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy

    PubMed Central

    Rahmeh, Rita; Damian, Marjorie; Cottet, Martin; Orcel, Hélène; Mendre, Christiane; Durroux, Thierry; Sharma, K. Shivaji; Durand, Grégory; Pucci, Bernard; Trinquet, Eric; Zwier, Jurriaan M.; Deupi, Xavier; Bron, Patrick; Banères, Jean-Louis; Mouillac, Bernard; Granier, Sébastien

    2012-01-01

    G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters, representing the largest group of therapeutic targets. Recent studies show that some GPCRs signal through both G protein and arrestin pathways in a ligand-specific manner. Ligands that direct signaling through a specific pathway are known as biased ligands. The arginine-vasopressin type 2 receptor (V2R), a prototypical peptide-activated GPCR, is an ideal model system to investigate the structural basis of biased signaling. Although the native hormone arginine-vasopressin leads to activation of both the stimulatory G protein (Gs) for the adenylyl cyclase and arrestin pathways, synthetic ligands exhibit highly biased signaling through either Gs alone or arrestin alone. We used purified V2R stabilized in neutral amphipols and developed fluorescence-based assays to investigate the structural basis of biased signaling for the V2R. Our studies demonstrate that the Gs-biased agonist stabilizes a conformation that is distinct from that stabilized by the arrestin-biased agonists. This study provides unique insights into the structural mechanisms of GPCR activation by biased ligands that may be relevant to the design of pathway-biased drugs. PMID:22493271

  11. Structural insights into aberrant cortical morphometry and network organization in psychogenic erectile dysfunction.

    PubMed

    Zhao, Lu; Guan, Min; Zhang, Xiangsheng; Karama, Sherif; Khundrakpam, Budhachandra; Wang, Meiyun; Dong, Minghao; Qin, Wei; Tian, Jie; Evans, Alan C; Shi, Dapeng

    2015-11-01

    Functional neuroimaging studies have revealed abnormal brain dynamics of male sexual arousal (SA) in psychogenic erectile dysfunction (pED). However, the neuroanatomical correlates of pED are still unclear. In this work, we obtained cortical thickness (CTh) measurements from structural magnetic resonance images of 40 pED patients and 39 healthy control subjects. Abnormalities in CTh related to pED were explored using a scale space search based brain morphometric analysis. Organizations of brain structural covariance networks were analyzed as well. Compared with healthy men, pED patients showed significantly decreased CTh in widespread cortical regions, most of which were previously reported to show abnormal dynamics of male SA in pED, such as the medial prefrontal, orbitofrontal, cingulate, inferotemporal, and insular cortices. CTh reductions in these areas were found to be significantly correlated with male sexual functioning degradation. Moreover, pED patients showed decreased interregional CTh correlations from the right lateral orbitofrontal cortex to the right supramarginal gyrus and the left angular cortex, implying disassociations between the cognitive, motivational, and inhibitory networks of male SA in pED. This work provides structural insights on the complex phenomenon of psychogenic sexual dysfunction in men, and suggests a specific vulnerability factor, possibly as an extra "organic" factor, that may play an important role in pED.

  12. Crystal structures of enterovirus 71 (EV71) recombinant virus particles provide insights into vaccine design.

    PubMed

    Lyu, Ke; Wang, Guang-Chuan; He, Ya-Ling; Han, Jian-Feng; Ye, Qing; Qin, Cheng-Feng; Chen, Rong

    2015-02-01

    Hand-foot-and-mouth disease (HFMD) remains a major health concern in the Asia-Pacific regions, and its major causative agents include human enterovirus 71 (EV71) and coxsackievirus A16. A desirable vaccine against HFMD would be multivalent and able to elicit protective responses against multiple HFMD causative agents. Previously, we have demonstrated that a thermostable recombinant EV71 vaccine candidate can be produced by the insertion of a foreign peptide into the BC loop of VP1 without affecting viral replication. Here we present crystal structures of two different naturally occurring empty particles, one from a clinical C4 strain EV71 and the other from its recombinant virus containing an insertion in the VP1 BC loop. Crystal structure analysis demonstrated that the inserted foreign peptide is well exposed on the particle surface without significant structural changes in the capsid. Importantly, such insertions do not seem to affect the virus uncoating process as illustrated by the conformational similarity between an uncoating intermediate of another recombinant virus and that of EV71. Especially, at least 18 residues from the N terminus of VP1 are transiently externalized. Altogether, our study provides insights into vaccine development against HFMD.

  13. Structural insights into human heme oxygenase-1 inhibition by potent and selective azole-based compounds

    PubMed Central

    Rahman, Mona N.; Vukomanovic, Dragic; Vlahakis, Jason Z.; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao

    2013-01-01

    The development of heme oxygenase (HO) inhibitors, especially those that are isozyme-selective, promises powerful pharmacological tools to elucidate the regulatory characteristics of the HO system. It is already known that HO has cytoprotective properties and may play a role in several disease states, making it an enticing therapeutic target. Traditionally, the metalloporphyrins have been used as competitive HO inhibitors owing to their structural similarity with the substrate, heme. However, given heme's important role in several other proteins (e.g. cytochromes P450, nitric oxide synthase), non-selectivity is an unfortunate side-effect. Reports that azalanstat and other non-porphyrin molecules inhibited HO led to a multi-faceted effort to develop novel compounds as potent, selective inhibitors of HO. This resulted in the creation of non-competitive inhibitors with selectivity for HO, including a subset with isozyme selectivity for HO-1. Using X-ray crystallography, the structures of several complexes of HO-1 with novel inhibitors have been elucidated, which provided insightful information regarding the salient features required for inhibitor binding. This included the structural basis for non-competitive inhibition, flexibility and adaptability of the inhibitor binding pocket, and multiple, potential interaction subsites, all of which can be exploited in future drug-design strategies. PMID:23097500

  14. Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase

    NASA Astrophysics Data System (ADS)

    Klein, Tobias; Vajpai, Navratna; Phillips, Jonathan J.; Davies, Gareth; Holdgate, Geoffrey A.; Phillips, Chris; Tucker, Julie A.; Norman, Richard A.; Scott, Andrew D.; Higazi, Daniel R.; Lowe, David; Thompson, Gary S.; Breeze, Alexander L.

    2015-07-01

    Protein tyrosine kinases differ widely in their propensity to undergo rearrangements of the N-terminal Asp-Phe-Gly (DFG) motif of the activation loop, with some, including FGFR1 kinase, appearing refractory to this so-called `DFG flip'. Recent inhibitor-bound structures have unexpectedly revealed FGFR1 for the first time in a `DFG-out' state. Here we use conformationally selective inhibitors as chemical probes for interrogation of the structural and dynamic features that appear to govern the DFG flip in FGFR1. Our detailed structural and biophysical insights identify contributions from altered dynamics in distal elements, including the αH helix, towards the outstanding stability of the DFG-out complex with the inhibitor ponatinib. We conclude that the αC-β4 loop and `molecular brake' regions together impose a high energy barrier for this conformational rearrangement, and that this may have significance for maintaining autoinhibition in the non-phosphorylated basal state of FGFR1.

  15. Structural Insights into the Conformation and Oligomerization of E2~Ubiquitin Conjugates

    PubMed Central

    Page, Richard C.; Pruneda, Jonathan N.; Amick, Joseph; Klevit, Rachel E.; Misra, Saurav

    2012-01-01

    Post-translational modification of proteins by ubiquitin (Ub) regulates a host of cellular processes including protein quality control, DNA repair, endocytosis and cellular signaling. In the ubiquitination cascade, a thioester-linked conjugate between the Ub C-terminus and the active site cysteine of a ubiquitin-conjugating enzyme (E2) is formed. The E2~Ub conjugate interacts with a ubiquitin ligase (E3) to transfer Ub to a lysine residue on a target protein. The flexibly-linked E2~Ub conjugates have been shown to form a range of structures in solution. In addition, select E2~Ub conjugates oligomerize through a noncovalent “backside” interaction between Ub and E2 components of different conjugates. Additional studies are needed to bridge the gap between the dynamic monomeric conjugates, E2~Ub oligomers and the mechanisms of ubiquitination. We present a new 2.35 Å crystal structure of an oligomeric UbcH5c~Ub conjugate. The conjugate forms a staggered linear oligomer that differs substantially from the “infinite spiral” helical arrangement of the sole previously reported structure of an oligomeric conjugate. Our structure also differs in intra-conjugate conformation from other structurally characterized conjugates. Despite these differences, we find that the backside interaction mode is conserved in different conjugate oligomers and is independent of intra-conjugate relative E2/Ub orientations. We delineate a common intra-conjugate E2-binding surface on Ub. In addition, we demonstrate that an E3 ligase CHIP (carboxyl terminus of Hsp70 interacting protein) interacts directly with UbcH5c~Ub oligomers, not only with conjugate monomers. These results provide insights into the conformational diversity of E2~Ub conjugates and conjugate oligomers, and into their compatibility and interactions with E3 ligases, which have important consequences for the ubiquitination process. PMID:22551455

  16. Structural insight into nucleotide recognition by human death-associated protein kinase

    SciTech Connect

    McNamara, Laurie K.; Watterson, D. Martin; Brunzelle, Joseph S.

    2009-03-01

    The crystal structures of DAPK–ADP–Mg{sup 2+} and DAPK–AMP-PNP–Mg{sup 2+} complexes were determined at 1.85 and 2.00 Å resolution, respectively. Comparison of the two nucleotide-bound states with apo DAPK revealed localized changes in the glycine-rich loop region that were indicative of a transition from a more open state to a more closed state on binding of the nucleotide substrate and to an intermediate state with the bound nucleotide product. Death-associated protein kinase (DAPK) is a member of the Ca{sup 2+}/calmodulin-regulated family of serine/threonine protein kinases. The role of the kinase activity of DAPK in eukaryotic cell apoptosis and the ability of bioavailable DAPK inhibitors to rescue neuronal death after brain injury have made it a drug-discovery target for neurodegenerative disorders. In order to understand the recognition of nucleotides by DAPK and to gain insight into DAPK catalysis, the crystal structure of human DAPK was solved in complex with ADP and Mg{sup 2+} at 1.85 Å resolution. ADP is a product of the kinase reaction and product release is considered to be the rate-limiting step of protein kinase catalytic cycles. The structure of DAPK–ADP–Mg{sup 2+} was compared with a newly determined DAPK–AMP-PNP–Mg{sup 2+} structure and the previously determined apo DAPK structure (PDB code http://scripts.iucr.org/cgi-bin/cr.cgi?rm). The comparison shows that nucleotide-induced changes are localized to the glycine-rich loop region of DAPK.

  17. X-Ray Structure Reveals a New Class and Provides Insight into Evolution of Alkaline Phosphatases

    PubMed Central

    Bihani, Subhash C.; Das, Amit; Nilgiriwala, Kayzad S.; Prashar, Vishal; Pirocchi, Michel; Apte, Shree Kumar; Ferrer, Jean-Luc; Hosur, Madhusoodan V.

    2011-01-01

    The alkaline phosphatase (AP) is a bi-metalloenzyme of potential applications in biotechnology and bioremediation, in which phosphate monoesters are nonspecifically hydrolysed under alkaline conditions to yield inorganic phosphate. The hydrolysis occurs through an enzyme intermediate in which the catalytic residue is phosphorylated. The reaction, which also requires a third metal ion, is proposed to proceed through a mechanism of in-line displacement involving a trigonal bipyramidal transition state. Stabilizing the transition state by bidentate hydrogen bonding has been suggested to be the reason for conservation of an arginine residue in the active site. We report here the first crystal structure of alkaline phosphatase purified from the bacterium Sphingomonas. sp. Strain BSAR-1 (SPAP). The crystal structure reveals many differences from other APs: 1) the catalytic residue is a threonine instead of serine, 2) there is no third metal ion binding pocket, and 3) the arginine residue forming bidentate hydrogen bonding is deleted in SPAP. A lysine and an aspargine residue, recruited together for the first time into the active site, bind the substrate phosphoryl group in a manner not observed before in any other AP. These and other structural features suggest that SPAP represents a new class of APs. Because of its direct contact with the substrate phosphoryl group, the lysine residue is proposed to play a significant role in catalysis. The structure is consistent with a mechanism of in-line displacement via a trigonal bipyramidal transition state. The structure provides important insights into evolutionary relationships between members of AP superfamily. PMID:21829507

  18. Atomic resolution structure of pseudoazurin from the methylotrophic denitrifying bacterium Hyphomicrobium denitrificans: structural insights into its spectroscopic properties.

    PubMed

    Hira, Daisuke; Nojiri, Masaki; Suzuki, Shinnichiro

    2009-01-01

    The crystal structure of native pseudoazurin (HdPAz) from the methylotrophic denitrifying bacterium Hyphomicrobium denitrificans has been determined at a resolution of 1.18 A. After refinement with SHELX employing anisotropic displacement parameters and riding H atoms, R(work) and R(free) were 0.135 and 0.169, respectively. Visualization of the anisotropic displacement parameters as thermal ellipsoids provided insight into the atomic motion within the perturbed type 1 Cu site. The asymmetric unit includes three HdPAz molecules which are tightly packed by head-to-head cupredoxin dimer formation. The shape of the Cu-atom ellipsoid implies significant vibrational motion diagonal to the equatorial xy plane defined by the three ligands (two His and one Cys). The geometric parameters of the type 1 Cu site in the HdPAz structure differ unambiguously from those of other pseudoazurins. It is demonstrated that their structural aspects are consistent with the unique visible absorption spectrum. PMID:19153470

  19. New insights of an old defense system: structure, function, and clinical relevance of the complement system.

    PubMed

    Ehrnthaller, Christian; Ignatius, Anita; Gebhard, Florian; Huber-Lang, Markus

    2011-01-01

    The complement system was discovered a century ago as a potent defense cascade of innate immunity. After its first description, continuous experimental and clinical research was performed, and three canonical pathways of activation were established. Upon activation by traumatic or surgical tissue damage, complement reveals beneficial functions of pathogen and danger defense by sensing and clearing injured cells. However, the latest research efforts have provided a more distinct insight into the complement system and its clinical subsequences. Complement has been shown to play a significant role in the pathogenesis of various inflammatory processes such as sepsis, multiorgan dysfunction, ischemia/reperfusion, cardiovascular diseases and many others. The three well-known activation pathways of the complement system have been challenged by newer findings that demonstrate direct production of central complement effectors (for example, C5a) by serine proteases of the coagulation cascade. In particular, thrombin is capable of producing C5a, which not only plays a decisive role on pathogens and infected/damaged tissues, but also acts systemically. In the case of uncontrolled complement activation, "friendly fire" is generated, resulting in the destruction of healthy host tissue. Therefore, the traditional research that focuses on a mainly positive-acting cascade has now shifted to the negative effects and how tissue damage originated by the activation of the complement can be contained. In a translational approach including structure-function relations of this ancient defense system, this review provides new insights of complement-mediated clinical relevant diseases and the development of complement modulation strategies and current research aspects.

  20. Structure of Ostertagia ostertagi ASP-1: insights into disulfide-mediated cyclization and dimerization.

    PubMed

    Borloo, Jimmy; Geldhof, Peter; Peelaers, Iris; Van Meulder, Frederik; Ameloot, Paul; Callewaert, Nico; Vercruysse, Jozef; Claerebout, Edwin; Strelkov, Sergei V; Weeks, Stephen D

    2013-04-01

    The cysteine-rich secretory/antigen 5/pathogenesis-related 1 (CAP) protein superfamily is composed of a functionally diverse group of members that are found in both eukaryotes and prokaryotes. The excretome/secretome of numerous helminths (parasitic nematodes) contains abundant amounts of CAP members termed activation-associated secreted proteins (ASPs). Although ASPs are necessary for the parasitic life cycle in the host, the current lack of structural and functional information limits both understanding of their actual role in host-parasite interactions and the development of new routes in controlling parasitic infections and diseases. Alleviating this knowledge gap, a 1.85 Å resolution structure of recombinantly produced Oo-ASP-1 from Ostertagia ostertagi, which is one of the most prevalent gastrointestinal parasites in cattle worldwide, was solved. Overall, Oo-ASP-1 displays the common hallmark architecture shared by all CAP-superfamily members, including the N-terminal CAP and C-terminal cysteine-rich domains, but it also reveals a number of highly peculiar features. In agreement with studies of the natively produced protein, the crystal structure shows that Oo-ASP-1 forms a stable dimer that has been found to be primarily maintained via an intermolecular disulfide bridge, hence the small interaction surface of only 306.8 Å(2). Moreover, unlike any other ASP described to date, an additional intramolecular disulfide bridge links the N- and C-termini of each monomer, thereby yielding a quasi-cyclic molecule. Taken together, the insights presented here form an initial step towards a better understanding of the actual biological role(s) that this ASP plays in host-parasite interactions. The structure is also essential to help to define the key regions of the protein suitable for development of ASP-based vaccines, which would enable the current issues surrounding anthelmintic resistance in the treatment of parasitic infections and diseases to be circumvented.

  1. Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.

    PubMed

    Dror, Adi; Kanteev, Margarita; Kagan, Irit; Gihaz, Shalev; Shahar, Anat; Fishman, Ayelet

    2015-11-01

    Enzymatic production of biodiesel by transesterification of triglycerides and alcohol, catalyzed by lipases, offers an environmentally friendly and efficient alternative to the chemically catalyzed process while using low-grade feedstocks. Methanol is utilized frequently as the alcohol in the reaction due to its reactivity and low cost. However, one of the major drawbacks of the enzymatic system is the presence of high methanol concentrations which leads to methanol-induced unfolding and inactivation of the biocatalyst. Therefore, a methanol-stable lipase is of great interest for the biodiesel industry. In this study, protein engineering was applied to substitute charged surface residues with hydrophobic ones to enhance the stability in methanol of a lipase from Geobacillus stearothermophilus T6. We identified a methanol-stable variant, R374W, and combined it with a variant found previously, H86Y/A269T. The triple mutant, H86Y/A269T/R374W, had a half-life value at 70 % methanol of 324 min which reflects an 87-fold enhanced stability compared to the wild type together with elevated thermostability in buffer and in 50 % methanol. This variant also exhibited an improved biodiesel yield from waste chicken oil compared to commercial Lipolase 100L® and Novozyme® CALB. Crystal structures of the wild type and the methanol-stable variants provided insights regarding structure-stability correlations. The most prominent features were the extensive formation of new hydrogen bonds between surface residues directly or mediated by structural water molecules and the stabilization of Zn and Ca binding sites. Mutation sites were also characterized by lower B-factor values calculated from the X-ray structures indicating improved rigidity.

  2. Structural insights into selective agonist actions of tamoxifen on human Estrogen Receptor alpha

    PubMed Central

    Chakraborty, Sandipan; Biswas, P. K.

    2014-01-01

    Tamoxifen, an anti-estrogenic ligand in breast tissues and being used as a first-line treatment in ER-positive breast cancers, is found to develop resistance followed by resumption of growth of the tumor in about 30% of cases. Whether tamoxifen starts assisting in proliferation in such cases or there exists any ligand-independent pathways to transcription is not fully understood; also, no ERα mutants have been detected so far which could lead to tamoxifen resistance. Performing in-silico conformational analysis of ERα ligand binding domain, in the absence and presence of selective agonist (Diethylstilbestrol; DES), antagonist (Faslodex; ICI), and SERM (4-hydroxy tamoxifen; 4-OHT) ligands, we elucidated ligand-responsive structural modulations of ERα-LBD dimer in their agonist and antagonist complexes and address the issue of “tamoxifen resistance”. We found DES and ICI to stabilize the dimer in their agonist and antagonist conformations, respectively. The ERα-LBD dimer without the presence of any bound ligand also leads to a stable structure in agonist conformation. However, the binding of 4-OHT to antagonist structure is found to lead to a flexible conformation allowing the protein visiting conformations populated by agonists as are evident from principal component analysis and radius of gyration plots. Further, the relaxed conformations of the 4-OHT bound protein is found to exhibit a diminished size of the co-repressor binding pocket at LBD, thus signaling a partial blockage of the co-repressor binding motif. Thus, the ability of 4-OHT bound ERα-LBD to assume flexible conformations visited by agonists and reduced co-repressor binding surface at LBD provide crucial structural insights into tamoxifen-resistance complementing our existing understanding. PMID:25060147

  3. Alpine fold and thrust structures: insight from the Säntis area (Switzerland)

    NASA Astrophysics Data System (ADS)

    Sala, P.; Pfiffner, O. A.; Frehner, M.

    2012-04-01

    The Säntis area offers one of the most spectacular insights into the fold-and-thrust belt of the Helvetics nappes. The nearly perfect outcrop conditions, combined with the exemplary intersection of formation boundaries with topography, make it a natural laboratory for structural geology. Since the pioneering work of Heim (1905) at the beginning of 20th century, the area was mapped in detail (Eugster et al., 1982) and investigated in terms of deformation mechanisms (e.g. Groshong et al., 1984), structural evolution and fold-thrust interaction (Funk et al. 2000, Pfiffner 1982, 1993 & 2011). The proposed restorations are mostly 2 dimensional palinspastic reconstructions, either in map or in cross sectional view. The main goal of this research is to better understand the geometrical relationships between folding and thrust faulting, investigating for example fault-propagation folds and analyzing the lateral changes of folds and thrust structures along strike. A three-dimensional model of the area is built using 3D MOVE, combining cross-sections from Pfiffner (2000 & 2011), the geological map 1:25.000 by Eugster et al (1982) and a digital elevation model (DEM) with a regular grid of 20X20 m. Seven main horizons are reconstructed, corresponding to the base of the Palfris Shale, Öhrli and Betlis Limestones, the Helvetic Kieselkalk, Schrattenkalk and Garschella Fm and the Seewen Limestone. The main structural elements in the Säntis area, such as the Säntis Thrust or the Sax-Schwende Fault, were also implemented in the model. The 3-D model obtained highlights the shape of the main anticline-syncline pairs (e.g. Altmann-Wildseeli, Schafberg-Moor, Roslenfirst-Mutschen, Gulmen etc…); such fold trains vary in amplitude and wavelength. The model also shows clearly the lateral extension and the trends of the principal faults. A restoration of the horizons is presented and discussed.

  4. Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.

    PubMed

    Dror, Adi; Kanteev, Margarita; Kagan, Irit; Gihaz, Shalev; Shahar, Anat; Fishman, Ayelet

    2015-11-01

    Enzymatic production of biodiesel by transesterification of triglycerides and alcohol, catalyzed by lipases, offers an environmentally friendly and efficient alternative to the chemically catalyzed process while using low-grade feedstocks. Methanol is utilized frequently as the alcohol in the reaction due to its reactivity and low cost. However, one of the major drawbacks of the enzymatic system is the presence of high methanol concentrations which leads to methanol-induced unfolding and inactivation of the biocatalyst. Therefore, a methanol-stable lipase is of great interest for the biodiesel industry. In this study, protein engineering was applied to substitute charged surface residues with hydrophobic ones to enhance the stability in methanol of a lipase from Geobacillus stearothermophilus T6. We identified a methanol-stable variant, R374W, and combined it with a variant found previously, H86Y/A269T. The triple mutant, H86Y/A269T/R374W, had a half-life value at 70 % methanol of 324 min which reflects an 87-fold enhanced stability compared to the wild type together with elevated thermostability in buffer and in 50 % methanol. This variant also exhibited an improved biodiesel yield from waste chicken oil compared to commercial Lipolase 100L® and Novozyme® CALB. Crystal structures of the wild type and the methanol-stable variants provided insights regarding structure-stability correlations. The most prominent features were the extensive formation of new hydrogen bonds between surface residues directly or mediated by structural water molecules and the stabilization of Zn and Ca binding sites. Mutation sites were also characterized by lower B-factor values calculated from the X-ray structures indicating improved rigidity. PMID:26026940

  5. Crystal structures of nitric oxide reductases provide key insights into functional conversion of respiratory enzymes.

    PubMed

    Tosha, Takehiko; Shiro, Yoshitsugu

    2013-03-01

    Respiration is an essential biological process to get bioenergy, ATP, for all kingdoms of life. Cytochrome c oxidase (COX) plays central role in aerobic respiration, catalyzing the reduction of O(2) coupled with pumping proton across the biological membrane. Nitric oxide reductase (NOR) involved in anaerobic nitrate respiration is suggested to be evolutionary related to COX and share the same progenitor with COX, on the basis of the amino acid sequence homology. Contrary to COX, NOR catalyzes the reduction of nitric oxide and shows no proton pumping ability. Thus, the respiratory enzyme acquires (or loses) proton pumping ability in addition to the conversion of the catalytic property along with the environmental change on earth. Recently, we solved the structures of two types of NORs, which provides novel insights into the functional conversion of the respiratory enzymes. In this review, we focus on the structural similarities and differences between COXs and NORs and discuss possible mechanism for the functional conversion of these enzymes during molecular evolution.

  6. Insights into Mucopolysaccharidosis I from the structure and action of α-L-Iduronidase

    PubMed Central

    Bie, Haiying; Yin, Jiang; He, Xu; Kermode, Allison R.; Goddard-Borger, Ethan D.; Withers, Stephen G.; James, Michael N. G.

    2016-01-01

    Mucopolysaccharidosis type I (MPS I), caused by mutations in the gene encoding α-L-iduronidase (IDUA), is one of approximately 70 genetic disorders collectively known as the lysosomal storage diseases. To gain insight into the basis for MPS I, we have crystallized human IDUA produced in an Arabidopsis thaliana cgl mutant. IDUA consists of a TIM barrel domain containing the catalytic site, a β-sandwich domain and a fibronectin-like domain. Structures of IDUA bound to induronate analogues illustrate the Michaelis complex and reveal a 2,5B conformation in the glycosyl-enzyme intermediate, that suggest a retaining double displacement reaction employing the nucleophilic Glu299 and the general acid/base Glu182. Surprisingly, the N-glycan attached to Asn372 interacts with iduronate analogues in the active site and is required for enzymatic activity. Finally, these IDUA structures and biochemical analysis of the disease-relevant Pro533Arg mutation have enabled us to correlate the effects of mutations in IDUA to clinical phenotypes. PMID:24036510

  7. Base pairing and structural insights into the 5-formylcytosine in RNA duplex.

    PubMed

    Wang, Rui; Luo, Zhipu; He, Kaizhang; Delaney, Michael O; Chen, Doris; Sheng, Jia

    2016-06-01

    5-Formylcytidine (f(5)C), a previously discovered natural nucleotide in the mitochondrial tRNA of many species including human, has been recently detected as the oxidative product of 5-methylcytidine (m(5)C) through 5-hydroxymethylcytidine (hm(5)C) in total RNA of mammalian cells. The discovery indicated that these cytosine derivatives in RNA might also play important epigenetic roles similar as in DNA, which has been intensively investigated in the past few years. In this paper, we studied the base pairing specificity of f(5)C in different RNA duplex contexts. We found that the 5-formyl group could increase duplex thermal stability and enhance base pairing specificity. We present three high-resolution crystal structures of an octamer RNA duplex [5'-GUA(f(5)C)GUAC-3']2 that have been solved under three crystallization conditions with different buffers and pH values. Our results showed that the 5-formyl group is located in the same plane as the cytosine base and forms an intra-residue hydrogen bond with the amino group in the N4 position. In addition, this modification increases the base stacking between the f(5)C and the neighboring bases while not causing significant global and local structure perturbations. This work provides insights into the effects of 5-formylcytosine on RNA duplex. PMID:27079978

  8. Structural insights into the inhibition mechanism of bacterial toxin LsoA by bacteriophage antitoxin Dmd.

    PubMed

    Wan, Hua; Otsuka, Yuichi; Gao, Zeng-Qiang; Wei, Yong; Chen, Zhen; Masuda, Michiaki; Yonesaki, Tetsuro; Zhang, Heng; Dong, Yu-Hui

    2016-09-01

    Bacteria have obtained a variety of resistance mechanisms including toxin-antitoxin (TA) systems against bacteriophages (phages), whereas phages have also evolved to overcome bacterial anti-phage mechanisms. Dmd from T4 phage can suppress the toxicities of homologous toxins LsoA and RnlA from Escherichia coli, representing the first example of a phage antitoxin against multiple bacterial toxins in known TA systems. Here, the crystal structure of LsoA-Dmd complex showed Dmd is inserted into the deep groove between the N-terminal repeated domain (NRD) and the Dmd-binding domain (DBD) of LsoA. The NRD shifts significantly from a 'closed' to an 'open' conformation upon Dmd binding. Site-directed mutagenesis of Dmd revealed the conserved residues (W31 and N40) are necessary for LsoA binding and the toxicity suppression as determined by pull-down and cell toxicity assays. Further mutagenesis identified the conserved Dmd-binding residues (R243, E246 and R305) of LsoA are vital for its toxicity, and suggested Dmd and LsoB may possess different inhibitory mechanisms against LsoA toxicity. Our structure-function studies demonstrate Dmd can recognize LsoA and inhibit its toxicity by occupying the active site possibly via substrate mimicry. These findings have provided unique insights into the defense and counter-defense mechanisms between bacteria and phages in their co-evolution. PMID:27169810

  9. Structure of promoter-bound TFIID and insight into human PIC assembly

    PubMed Central

    Louder, Robert K.; He, Yuan; López-Blanco, José Ramón; Fang, Jie; Chacón, Pablo; Nogales, Eva

    2016-01-01

    The general transcription factor IID (TFIID) plays a central role in the initiation of RNA polymerase II-dependent transcription by nucleating pre-initiation complex (PIC) assembly at the core promoter. TFIID comprises the TATA-binding protein (TBP) and 13 TBP-associated factors (TAF1-13), which specifically interact with a variety of core promoter DNA sequences. Here we present the structure of human TFIID in complex with TFIIA and core promoter DNA, determined by single-particle cryo-electron microscopy (cryo-EM) at sub-nanometer resolution. All core promoter elements are contacted by subunits of TFIID, with TAF1 and TAF2 mediating major interactions with the downstream promoter. TFIIA bridges the TBP-TATA complex with lobe B of TFIID. We also present the cryo-EM reconstruction of a fully-assembled human TAF-less PIC. Superposition of common elements between the two structures provides novel insights into the general role of TFIID in promoter recognition, PIC assembly, and transcription initiation. PMID:27007846

  10. Structural Insights into the Affinity of Cel7A Carbohydrate-binding Module for Lignin*

    PubMed Central

    Strobel, Kathryn L.; Pfeiffer, Katherine A.; Blanch, Harvey W.; Clark, Douglas S.

    2015-01-01

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs. PMID:26209638

  11. Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners

    PubMed Central

    Kim, Jun Hoe; Hong, Seung Beom; Lee, Jae Keun; Han, Sisu; Roh, Kyung-Hye; Lee, Kyung-Eun; Kim, Yoon Ki; Choi, Eui-Ju; Song, Hyun Kyu

    2014-01-01

    Autophagy is a bulky catabolic process that responds to nutrient homeostasis and extracellular stress signals and is a conserved mechanism in all eukaryotes. When autophagy is induced, cellular components are sequestered within an autophagosome and finally degraded by subsequent fusion with a lysosome. During this process, the ATG12–ATG5 conjugate requires 2 different binding partners, ATG16L1 for autophagosome elongation and TECPR1 for lysosomal fusion. In our current study, we describe the crystal structures of human ATG5 in complex with an N-terminal domain of ATG16L1 as well as an internal AIR domain of TECPR1. Both binding partners exhibit a similar α-helical structure containing a conserved binding motif termed AFIM. Furthermore, we characterize the critical role of the C-terminal unstructured region of the AIR domain of TECPR1. These findings are further confirmed by biochemical and cell biological analyses. These results provide new insights into the molecular details of the autophagosome maturation process, from its elongation to its fusion with a lysosome. PMID:25951193

  12. Structure of a Bimodular Botulinum Neurotoxin Complex Provides Insights into Its Oral Toxicity

    PubMed Central

    Jin, Lei; Le, Thi Tuc Nghi; Cheng, Luisa W.; Strotmeier, Jasmin; Kruel, Anna Magdalena; Yao, Guorui; Perry, Kay; Rummel, Andreas; Jin, Rongsheng

    2013-01-01

    Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the fatal disease botulism, a flaccid paralysis of the muscle. BoNTs are released together with several auxiliary proteins as progenitor toxin complexes (PTCs) to become highly potent oral poisons. Here, we report the structure of a ∼760 kDa 14-subunit large PTC of serotype A (L-PTC/A) and reveal insight into its absorption mechanism. Using a combination of X-ray crystallography, electron microscopy, and functional studies, we found that L-PTC/A consists of two structurally and functionally independent sub-complexes. A hetero-dimeric 290 kDa complex protects BoNT, while a hetero-dodecameric 470 kDa complex facilitates its absorption in the harsh environment of the gastrointestinal tract. BoNT absorption is mediated by nine glycan-binding sites on the dodecameric sub-complex that forms multivalent interactions with carbohydrate receptors on intestinal epithelial cells. We identified monosaccharides that blocked oral BoNT intoxication in mice, which suggests a new strategy for the development of preventive countermeasures for BoNTs based on carbohydrate receptor mimicry. PMID:24130488

  13. Structures of CD6 and Its Ligand CD166 Give Insight into Their Interaction

    PubMed Central

    Chappell, Paul E.; Garner, Lee I.; Yan, Jun; Metcalfe, Clive; Hatherley, Deborah; Johnson, Steven; Robinson, Carol V.; Lea, Susan M.; Brown, Marion H.

    2015-01-01

    Summary CD6 is a transmembrane protein with an extracellular region containing three scavenger receptor cysteine rich (SRCR) domains. The membrane proximal domain of CD6 binds the N-terminal immunoglobulin superfamily (IgSF) domain of another cell surface receptor, CD166, which also engages in homophilic interactions. CD6 expression is mainly restricted to T cells, and the interaction between CD6 and CD166 regulates T-cell activation. We have solved the X-ray crystal structures of the three SRCR domains of CD6 and two N-terminal domains of CD166. This first structure of consecutive SRCR domains reveals a nonlinear organization. We characterized the binding sites on CD6 and CD166 and showed that a SNP in CD6 causes glycosylation that hinders the CD6/CD166 interaction. Native mass spectrometry analysis showed that there is competition between the heterophilic and homophilic interactions. These data give insight into how interactions of consecutive SRCR domains are perturbed by SNPs and potential therapeutic reagents. PMID:26146185

  14. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin.

    PubMed

    Strobel, Kathryn L; Pfeiffer, Katherine A; Blanch, Harvey W; Clark, Douglas S

    2015-09-11

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs. PMID:26209638

  15. Human acid sphingomyelinase structures provide insight to molecular basis of Niemann–Pick disease

    PubMed Central

    Zhou, Yan-Feng; Metcalf, Matthew C.; Garman, Scott C.; Edmunds, Tim; Qiu, Huawei; Wei, Ronnie R.

    2016-01-01

    Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and phosphocholine, essential components of myelin in neurons. Genetic alterations in ASM lead to ASM deficiency (ASMD) and have been linked to Niemann–Pick disease types A and B. Olipudase alfa, a recombinant form of human ASM, is being developed as enzyme replacement therapy to treat the non-neurological manifestations of ASMD. Here we present the human ASM holoenzyme and product bound structures encompassing all of the functional domains. The catalytic domain has a metallophosphatase fold, and two zinc ions and one reaction product phosphocholine are identified in a histidine-rich active site. The structures reveal the underlying catalytic mechanism, in which two zinc ions activate a water molecule for nucleophilic attack of the phosphodiester bond. Docking of sphingomyelin provides a model that allows insight into the selectivity of the enzyme and how the ASM domains collaborate to complete hydrolysis. Mapping of known mutations provides a basic understanding on correlations between enzyme dysfunction and phenotypes observed in ASMD patients. PMID:27725636

  16. Insights into the solar light driven thermocatalytic oxidation of VOCs over tunnel structured manganese oxides.

    PubMed

    Zheng, Yali; Wang, Wenzhong; Jiang, Dong; Zhang, Ling; Li, Xiaoman; Wang, Zhong

    2016-07-21

    Different tunnel structured manganese oxides (1*1, 2*2, and 3*3) have been synthesized via a facile hydrothermal strategy. The three catalysts exhibit high photothermal performance, resulting in a considerable increase of temperature above the light-off temperature for VOC oxidation. On this point, aerobic oxidation reactions of propane and propylene under simulated sunlight and infrared light irradiation were selected as probe reactions to explore their light driven thermocatalytic activity. Furthermore, the light-off curves of the manganese oxides for propane and propylene were carefully investigated, which clearly explained the possibility of combining both the efficient photothermal effect and excellent thermocatalytic activity of the manganese oxides. Results show that the catalytic effects follow the order of 1*1 < 3*3 < 2*2. 2*2 exhibited the best catalytic properties due to better low-temperature reducibility, suitable tunnel structure and the presence of more Mn(4+). This work suggests new applications for traditional catalysts with intense photoabsorption and provides insights into the overall utilization of solar energy. PMID:27333408

  17. Base pairing and structural insights into the 5-formylcytosine in RNA duplex

    PubMed Central

    Wang, Rui; Luo, Zhipu; He, Kaizhang; Delaney, Michael O.; Chen, Doris; Sheng, Jia

    2016-01-01

    5-Formylcytidine (f5C), a previously discovered natural nucleotide in the mitochondrial tRNA of many species including human, has been recently detected as the oxidative product of 5-methylcytidine (m5C) through 5-hydroxymethylcytidine (hm5C) in total RNA of mammalian cells. The discovery indicated that these cytosine derivatives in RNA might also play important epigenetic roles similar as in DNA, which has been intensively investigated in the past few years. In this paper, we studied the base pairing specificity of f5C in different RNA duplex contexts. We found that the 5-formyl group could increase duplex thermal stability and enhance base pairing specificity. We present three high-resolution crystal structures of an octamer RNA duplex [5′-GUA(f5C)GUAC-3′]2 that have been solved under three crystallization conditions with different buffers and pH values. Our results showed that the 5-formyl group is located in the same plane as the cytosine base and forms an intra-residue hydrogen bond with the amino group in the N4 position. In addition, this modification increases the base stacking between the f5C and the neighboring bases while not causing significant global and local structure perturbations. This work provides insights into the effects of 5-formylcytosine on RNA duplex. PMID:27079978

  18. Structural insights into gene repression by the orphan nuclear receptor SHP.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; He, Yuanzheng; Zechner, Christoph; Suino-Powell, Kelly M; Kliewer, Steven A; Melcher, Karsten; Mangelsdorf, David J; Xu, H Eric

    2014-01-14

    Small heterodimer partner (SHP) is an orphan nuclear receptor that functions as a transcriptional repressor to regulate bile acid and cholesterol homeostasis. Although the precise mechanism whereby SHP represses transcription is not known, E1A-like inhibitor of differentiation (EID1) was isolated as a SHP-interacting protein and implicated in SHP repression. Here we present the crystal structure of SHP in complex with EID1, which reveals an unexpected EID1-binding site on SHP. Unlike the classical cofactor-binding site near the C-terminal helix H12, the EID1-binding site is located at the N terminus of the receptor, where EID1 mimics helix H1 of the nuclear receptor ligand-binding domain. The residues composing the SHP-EID1 interface are highly conserved. Their mutation diminishes SHP-EID1 interactions and affects SHP repressor activity. Together, these results provide important structural insights into SHP cofactor recruitment and repressor function and reveal a conserved protein interface that is likely to have broad implications for transcriptional repression by orphan nuclear receptors.

  19. Structural insights into HetR-PatS interaction involved in cyanobacterial pattern formation.

    PubMed

    Hu, Hai-Xi; Jiang, Yong-Liang; Zhao, Meng-Xi; Cai, Kun; Liu, Sanling; Wen, Bin; Lv, Pei; Zhang, Yonghui; Peng, Junhui; Zhong, Hui; Yu, Hong-Mei; Ren, Yan-Min; Zhang, Zhiyong; Tian, Changlin; Wu, Qingfa; Oliveberg, Mikael; Zhang, Cheng-Cai; Chen, Yuxing; Zhou, Cong-Zhao

    2015-01-01

    The one-dimensional pattern of heterocyst in the model cyanobacterium Anabaena sp. PCC 7120 is coordinated by the transcription factor HetR and PatS peptide. Here we report the complex structures of HetR binding to DNA, and its hood domain (HetRHood) binding to a PatS-derived hexapeptide (PatS6) at 2.80 and 2.10 Å, respectively. The intertwined HetR dimer possesses a couple of novel HTH motifs, each of which consists of two canonical α-helices in the DNA-binding domain and an auxiliary α-helix from the flap domain of the neighboring subunit. Two PatS6 peptides bind to the lateral clefts of HetRHood, and trigger significant conformational changes of the flap domain, resulting in dissociation of the auxiliary α-helix and eventually release of HetR from the DNA major grove. These findings provide the structural insights into a prokaryotic example of Turing model. PMID:26576507

  20. Structural insights into HetR−PatS interaction involved in cyanobacterial pattern formation

    PubMed Central

    Hu, Hai-Xi; Jiang, Yong-Liang; Zhao, Meng-Xi; Cai, Kun; Liu, Sanling; Wen, Bin; Lv, Pei; Zhang, Yonghui; Peng, Junhui; Zhong, Hui; Yu, Hong-Mei; Ren, Yan-Min; Zhang, Zhiyong; Tian, Changlin; Wu, Qingfa; Oliveberg, Mikael; Zhang, Cheng-Cai; Chen, Yuxing; Zhou, Cong-Zhao

    2015-01-01

    The one-dimensional pattern of heterocyst in the model cyanobacterium Anabaena sp. PCC 7120 is coordinated by the transcription factor HetR and PatS peptide. Here we report the complex structures of HetR binding to DNA, and its hood domain (HetRHood) binding to a PatS-derived hexapeptide (PatS6) at 2.80 and 2.10 Å, respectively. The intertwined HetR dimer possesses a couple of novel HTH motifs, each of which consists of two canonical α-helices in the DNA-binding domain and an auxiliary α-helix from the flap domain of the neighboring subunit. Two PatS6 peptides bind to the lateral clefts of HetRHood, and trigger significant conformational changes of the flap domain, resulting in dissociation of the auxiliary α-helix and eventually release of HetR from the DNA major grove. These findings provide the structural insights into a prokaryotic example of Turing model. PMID:26576507

  1. Insights into the structure of mixed CO2/CH4 in gas hydrates

    DOE PAGES

    Everett, S. Michelle; Rawn, Claudia J.; Chakoumakos, Bryan C.; Keffer, David J.; Huq, Ashfia; Phelps, Tommy J.

    2015-05-12

    The exchange of carbon dioxide for methane in natural gas hydrates is an attractive approach to harvesting CH4 for energy production while simultaneously sequestering CO2. In addition to the energy and environmental implications, the solid solution of clathrate hydrate (CH4)1-x(CO2)x·5.75H2O provides a model system to study how the distinct bonding and shapes of CH4 and CO2 influence the structure and properties of the compound. In this paper, high-resolution neutron diffraction was used to examine mixed CO2/CH4 gas hydrates. CO2-rich hydrates had smaller lattice parameters, which were attributed to the higher affinity of the CO2 molecule interacting with H2O molecules thatmore » form the surrounding cages, and resulted in a reduction in the unit-cell volume. Experimental nuclear scattering densities illustrate how the cage occupants and energy landscape change with composition. Finally, these results provide important insights on the impact and mechanisms for the structure of mixed CH4/CO2 gas hydrate.« less

  2. Insights into the mechanism of X-ray induced structural perturbation of macromolecules

    NASA Astrophysics Data System (ADS)

    Sutton, Kristin A.

    This dissertation focuses on the structural changes induced by X-rays during macromolecular crystallographic data collection. This damage cannot be prevented and often leads to degradation in the data quality, which can affect the resulting structure and thus the biological interpretation. The aim of this research was to understand the radiation chemistry of the damage process. This includes the protein components most susceptible to damage, the disulfide bond and metal atoms. By providing some insight into the mechanism for disulfide bond cleavage and the role the active site metal and its surrounding environment plays in the extent of the damage that occurs we have proposed an initial, generalized model for radiation damage. The results indicate that this multi-track process is due to the overlap of two one-electron reductions or two one-electron oxidations. A reaction scheme for the most susceptible residues (cystine, cysteine, methionine, aspartate, glutamate and tyrosine) is provided with experimental evidence of the predicted damage from crystallographic data collected on lysozyme and xylose isomerase.

  3. Structural insights into the dynamic process of β2-adrenergic receptor signaling

    PubMed Central

    Manglik, Aashish; Kim, Tae Hun; Masureel, Matthieu; Altenbach, Christian; Yang, Zhongyu; Hilger, Daniel; Lerch, Michael T.; Kobilka, Tong Sun; Thian, Foon Sun; Hubbell, Wayne L.; Prosser, R. Scott; Kobilka, Brian K.

    2015-01-01

    SUMMARY G protein-coupled receptors (GPCRs) transduce signals from the extracellular environment to intracellular proteins. To gain structural insight into the regulation of receptor cytoplasmic conformations by extracellular ligands during signaling, we examine the structural dynamics of the cytoplasmic domain of the β2-adrenergic receptor (β2AR) using 19F-fluorine NMR and double electron-electron resonance spectroscopy. These studies show that unliganded and inverse-agonist-bound β2AR exists predominantly in two inactive conformations that exchange within hundreds of microseconds. Although agonists shift the equilibrium towards a conformation capable of engaging cytoplasmic G proteins, they do so incompletely, resulting in increased conformational heterogeneity and the coexistence of inactive, intermediate and active states. Complete transition to the active conformation requires subsequent interaction with a G-protein or an intracellular G protein mimetic. These studies demonstrate a loose allosteric coupling of the agonist-binding site and G protein-coupling interface that may generally be responsible for the complex signaling behavior observed for many GPCRs. PMID:25981665

  4. Unraveling the heater: new insights into the structure of the alternative oxidase.

    PubMed

    Moore, Anthony L; Shiba, Tomoo; Young, Luke; Harada, Shigeharu; Kita, Kiyoshi; Ito, Kikukatsu

    2013-01-01

    The alternative oxidase is a membrane-bound ubiquinol oxidase found in the majority of plants as well as many fungi and protists, including pathogenic organisms such as Trypanosoma brucei. It catalyzes a cyanide- and antimycin-A-resistant oxidation of ubiquinol and the reduction of oxygen to water, short-circuiting the mitochondrial electron-transport chain prior to proton translocation by complexes III and IV, thereby dramatically reducing ATP formation. In plants, it plays a key role in cellular metabolism, thermogenesis, and energy homeostasis and is generally considered to be a major stress-induced protein. We describe recent advances in our understanding of this protein's structure following the recent successful crystallization of the alternative oxidase from T. brucei. We focus on the nature of the active site and ubiquinol-binding channels and propose a mechanism for the reduction of oxygen to water based on these structural insights. We also consider the regulation of activity at the posttranslational and retrograde levels and highlight challenges for future research.

  5. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin.

    PubMed

    Strobel, Kathryn L; Pfeiffer, Katherine A; Blanch, Harvey W; Clark, Douglas S

    2015-09-11

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs.

  6. Structural Insights into Drug Processing by Human Carboxylesterase 1: Tamoxifen, Mevastatin, and Inhibition by Benzil

    SciTech Connect

    Fleming, Christopher D.; Bencharit, Sompop; Edwards, Carol C.; Hyatt, Janice L.; Tsurkan, Lyudmila; Bai, Feng; Fraga, Charles; Morton, Christopher L.; Howard-Williams, Escher L.; Potter, Philip M.; Redinbo, Matthew R.

    2010-07-19

    Human carboxylesterase 1 (hCE1) exhibits broad substrate specificity and is involved in xenobiotic processing and endobiotic metabolism. We present and analyze crystal structures of hCE1 in complexes with the cholesterol-lowering drug mevastatin, the breast cancer drug tamoxifen, the fatty acyl ethyl ester (FAEE) analogue ethyl acetate, and the novel hCE1 inhibitor benzil. We find that mevastatin does not appear to be a substrate for hCE1, and instead acts as a partially non-competitive inhibitor of the enzyme. Similarly, we show that tamoxifen is a low micromolar, partially non-competitive inhibitor of hCE1. Further, we describe the structural basis for the inhibition of hCE1 by the nanomolar-affinity dione benzil, which acts by forming both covalent and non-covalent complexes with the enzyme. Our results provide detailed insights into the catalytic and non-catalytic processing of small molecules by hCE1, and suggest that the efficacy of clinical drugs may be modulated by targeted hCE1 inhibitors.

  7. Structural Insights into Bunyavirus Replication and Its Regulation by the vRNA Promoter.

    PubMed

    Gerlach, Piotr; Malet, Hélène; Cusack, Stephen; Reguera, Juan

    2015-06-01

    Segmented negative-strand RNA virus (sNSV) polymerases transcribe and replicate the viral RNA (vRNA) within a ribonucleoprotein particle (RNP). We present cryo-EM and X-ray structures of, respectively, apo- and vRNA bound La Crosse orthobunyavirus (LACV) polymerase that give atomic-resolution insight into how such RNPs perform RNA synthesis. The complementary 3' and 5' vRNA extremities are sequence specifically bound in separate sites on the polymerase. The 5' end binds as a stem-loop, allosterically structuring functionally important polymerase active site loops. Identification of distinct template and product exit tunnels allows proposal of a detailed model for template-directed replication with minimal disruption to the circularised RNP. The similar overall architecture and vRNA binding of monomeric LACV to heterotrimeric influenza polymerase, despite high sequence divergence, suggests that all sNSV polymerases have a common evolutionary origin and mechanism of RNA synthesis. These results will aid development of replication inhibitors of diverse, serious human pathogenic viruses.

  8. Structural insights into gene repression by the orphan nuclear receptor SHP

    PubMed Central

    Zhi, Xiaoyong; Zhou, X. Edward; He, Yuanzheng; Zechner, Christoph; Suino-Powell, Kelly M.; Kliewer, Steven A.; Melcher, Karsten; Mangelsdorf, David J.; Xu, H. Eric

    2014-01-01

    Small heterodimer partner (SHP) is an orphan nuclear receptor that functions as a transcriptional repressor to regulate bile acid and cholesterol homeostasis. Although the precise mechanism whereby SHP represses transcription is not known, E1A-like inhibitor of differentiation (EID1) was isolated as a SHP-interacting protein and implicated in SHP repression. Here we present the crystal structure of SHP in complex with EID1, which reveals an unexpected EID1-binding site on SHP. Unlike the classical cofactor-binding site near the C-terminal helix H12, the EID1-binding site is located at the N terminus of the receptor, where EID1 mimics helix H1 of the nuclear receptor ligand-binding domain. The residues composing the SHP–EID1 interface are highly conserved. Their mutation diminishes SHP–EID1 interactions and affects SHP repressor activity. Together, these results provide important structural insights into SHP cofactor recruitment and repressor function and reveal a conserved protein interface that is likely to have broad implications for transcriptional repression by orphan nuclear receptors. PMID:24379397

  9. Structural Insights into Bunyavirus Replication and Its Regulation by the vRNA Promoter

    PubMed Central

    Gerlach, Piotr; Malet, Hélène; Cusack, Stephen; Reguera, Juan

    2015-01-01

    Summary Segmented negative-strand RNA virus (sNSV) polymerases transcribe and replicate the viral RNA (vRNA) within a ribonucleoprotein particle (RNP). We present cryo-EM and X-ray structures of, respectively, apo- and vRNA bound La Crosse orthobunyavirus (LACV) polymerase that give atomic-resolution insight into how such RNPs perform RNA synthesis. The complementary 3′ and 5′ vRNA extremities are sequence specifically bound in separate sites on the polymerase. The 5′ end binds as a stem-loop, allosterically structuring functionally important polymerase active site loops. Identification of distinct template and product exit tunnels allows proposal of a detailed model for template-directed replication with minimal disruption to the circularised RNP. The similar overall architecture and vRNA binding of monomeric LACV to heterotrimeric influenza polymerase, despite high sequence divergence, suggests that all sNSV polymerases have a common evolutionary origin and mechanism of RNA synthesis. These results will aid development of replication inhibitors of diverse, serious human pathogenic viruses. PMID:26004069

  10. Crystal Structures of the Histidine Acid Phosphatase from Francisella tularensis Provide Insight into Substrate Recognition

    SciTech Connect

    Singh, Harkewal; Felts, Richard L.; Schuermann, Jonathan P.; Reilly, Thomas J.; Tanner, John J.

    2009-12-01

    Histidine acid phosphatases catalyze the transfer of a phosphoryl group from phosphomonoesters to water at acidic pH using an active-site histidine. The histidine acid phosphatase from the category A pathogen Francisella tularensis (FtHAP) has been implicated in intramacrophage survival and virulence, motivating interest in understanding the structure and mechanism of this enzyme. Here, we report a structure-based study of ligand recognition by FtHAP. The 1.70-{angstrom}-resolution structure of FtHAP complexed with the competitive inhibitor L(+)-tartrate was solved using single-wavelength anomalous diffraction phasing. Structures of the ligand-free enzyme and the complex with inorganic phosphate were determined at resolutions of 1.85 and 1.70 {angstrom}, respectively. The structure of the Asp261Ala mutant enzyme complexed with the substrate 3'-AMP was determined at 1.50 {angstrom} resolution to gain insight into substrate recognition. FtHAP exhibits a two-domain fold similar to that of human prostatic acid phosphatase, consisting of an {alpha}/{beta} core domain and a smaller domain that caps the core domain. The structures show that the core domain supplies the phosphoryl binding site, catalytic histidine (His17), and an aspartic acid residue (Asp261) that protonates the leaving group, while the cap domain contributes residues that enforce substrate preference. FtHAP and human prostatic acid phosphatase differ in the orientation of the crucial first helix of the cap domain, implying differences in the substrate preferences of the two enzymes. 3'-AMP binds in one end of a 15-{angstrom}-long tunnel, with the adenine clamped between Phe23 and Tyr135, and the ribose 2'-hydroxyl interacting with Gln132. The importance of the clamp is confirmed with site-directed mutagenesis; mutation of Phe23 and Tyr135 individually to Ala increases K{sub m} by factors of 7 and 10, respectively. The structural data are consistent with a role for FtHAP in scavenging phosphate from small

  11. Structural Insight into How Bacteria Prevent Interference between Multiple Divergent Type IV Secretion Systems

    PubMed Central

    Phan, Isabelle Q. H.; Scheib, Holger; Subramanian, Sandhya; Edwards, Thomas E.; Lehman, Stephanie S.; Piitulainen, Hanna; Sayeedur Rahman, M.; Rennoll-Bankert, Kristen E.; Staker, Bart L.; Taira, Suvi; Stacy, Robin; Myler, Peter J.; Azad, Abdu F.

    2015-01-01

    ABSTRACT Prokaryotes use type IV secretion systems (T4SSs) to translocate substrates (e.g., nucleoprotein, DNA, and protein) and/or elaborate surface structures (i.e., pili or adhesins). Bacterial genomes may encode multiple T4SSs, e.g., there are three functionally divergent T4SSs in some Bartonella species (vir, vbh, and trw). In a unique case, most rickettsial species encode a T4SS (rvh) enriched with gene duplication. Within single genomes, the evolutionary and functional implications of cross-system interchangeability of analogous T4SS protein components remains poorly understood. To lend insight into cross-system interchangeability, we analyzed the VirB8 family of T4SS channel proteins. Crystal structures of three VirB8 and two TrwG Bartonella proteins revealed highly conserved C-terminal periplasmic domain folds and dimerization interfaces, despite tremendous sequence divergence. This implies remarkable structural constraints for VirB8 components in the assembly of a functional T4SS. VirB8/TrwG heterodimers, determined via bacterial two-hybrid assays and molecular modeling, indicate that differential expression of trw and vir systems is the likely barrier to VirB8-TrwG interchangeability. We also determined the crystal structure of Rickettsia typhi RvhB8-II and modeled its coexpressed divergent paralog RvhB8-I. Remarkably, while RvhB8-I dimerizes and is structurally similar to other VirB8 proteins, the RvhB8-II dimer interface deviates substantially from other VirB8 structures, potentially preventing RvhB8-I/RvhB8-II heterodimerization. For the rvh T4SS, the evolution of divergent VirB8 paralogs implies a functional diversification that is unknown in other T4SSs. Collectively, our data identify two different constraints (spatiotemporal for Bartonella trw and vir T4SSs and structural for rvh T4SSs) that mediate the functionality of multiple divergent T4SSs within a single bacterium. PMID:26646013

  12. Structures of rat cytosolic PEPCK: insight into the mechanism of phosphorylation and decarboxylation of oxaloacetic acid.

    PubMed

    Sullivan, Sarah M; Holyoak, Todd

    2007-09-01

    The structures of the rat cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK) reported in the PEPCK-Mn2+, -Mn2+-oxaloacetic acid (OAA), -Mn2+-OAA-Mn2+-guanosine-5'-diphosphate (GDP), and -Mn2+-Mn2+-guanosine-5'-tri-phosphate (GTP) complexes provide insight into the mechanism of phosphoryl transfer and decarboxylation mediated by this enzyme. OAA is observed to bind in a number of different orientations coordinating directly to the active site metal. The Mn2+-OAA and Mn2+-OAA-Mn2+GDP structures illustrate inner-sphere coordination of OAA to the manganese ion through the displacement of two of the three water molecules coordinated to the metal in the holo-enzyme by the C3 and C4 carbonyl oxygens. In the PEPCK-Mn2+-OAA complex, an alternate bound conformation of OAA is present. In this conformation, in addition to the previous interactions, the C1 carboxylate is directly coordinated to the active site Mn2+, displacing all of the waters coordinated to the metal in the holo-enzyme. In the PEPCK-Mn2+-GTP structure, the same water molecule displaced by the C1 carboxylate of OAA is displaced by one of the gamma-phosphate oxygens of the triphosphate nucleotide. The structures are consistent with a mechanism of direct in-line phosphoryl transfer, supported by the observed stereochemistry of the reaction. In the catalytically competent binding mode, the C1 carboxylate of OAA is sandwiched between R87 and R405 in an environment that would serve to facilitate decarboxylation. In the reverse reaction, these two arginines would form the CO2 binding site. Comparison of the Mn2+-OAA-Mn2+GDP and Mn2+-Mn2+GTP structures illustrates a marked difference in the bound conformations of the nucleotide substrates in which the GTP nucleotide is bound in a high-energy state resulting from the eclipsing of all three of the phosphoryl groups along the triphosphate chain. This contrasts a previously determined structure of PEPCK in complex with a triphosphate nucleotide analogue in

  13. Honey Bees' Behavior Is Impaired by Chronic Exposure to the Neonicotinoid Thiacloprid in the Field.

    PubMed

    Tison, Léa; Hahn, Marie-Luise; Holtz, Sophie; Rößner, Alexander; Greggers, Uwe; Bischoff, Gabriela; Menzel, Randolf

    2016-07-01

    The decline of pollinators worldwide is of growing concern and has been related to the use of plant-protecting chemicals. Most studies have focused on three neonicotinoid insecticides (clothianidin, imidacloprid, and thiamethoxam) currently subject to a moratorium in the EU. Here, we focus on thiacloprid, a widely used cyano-substituted neonicotinoid thought to be less toxic to honey bees and of which use has increased in the last years. Honey bees (Apis mellifera carnica) were exposed chronically to thiacloprid in the field for several weeks at a sublethal concentration. Foraging behavior, homing success, navigation performance, and social communication were impaired, and thiacloprid residue levels increased both in the foragers and the nest mates over time. The effects observed in the field were not due to a repellent taste of the substance. For the first time, we present the necessary data for the risk evaluation of thiacloprid taken up chronically by honey bees in field conditions. PMID:27268938

  14. Population variation in and selection for resistance to pyrethroid-neonicotinoid insecticides in the bed bug.

    PubMed

    Gordon, Jennifer R; Goodman, Mark H; Potter, Michael F; Haynes, Kenneth F

    2014-01-01

    Pyrethroid resistance in bed bugs, Cimex lectularius, has prompted a change to combination products that include a pyrethroid and a neonicotinoid. Ten populations of bed bugs were challenged with two combination products (Temprid SC and Transport GHP). Susceptibility of these populations varied, with the correlated response of the two products indicating cross resistance. We imposed selection on three populations using label rate Temprid, and then reared progeny from unselected and selected strains. All selected strains were significantly less susceptible to Temprid SC than unselected strains. Temprid selected strains were also less susceptible to Transport. The pyrethroid component of Temprid showed a significantly higher LD50 in selected strains, but susceptibility to the neonicotinoid remained unchanged. Taken together these results indicate resistance to combination insecticides is present in field populations at levels that should be of concern, and that short-term selection affecting existing variance in susceptibility can quickly increase resistance.

  15. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators.

    PubMed

    Godfray, H Charles J; Blacquière, Tjeerd; Field, Linda M; Hails, Rosemary S; Petrokofsky, Gillian; Potts, Simon G; Raine, Nigel E; Vanbergen, Adam J; McLean, Angela R

    2014-07-01

    There is evidence that in Europe and North America many species of pollinators are in decline, both in abundance and distribution. Although there is a long list of potential causes of this decline, there is concern that neonicotinoid insecticides, in particular through their use as seed treatments are, at least in part, responsible. This paper describes a project that set out to summarize the natural science evidence base relevant to neonicotinoid insecticides and insect pollinators in as policy-neutral terms as possible. A series of evidence statements are listed and categorized according to the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material.

  16. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites.

    PubMed

    Simon-Delso, N; Amaral-Rogers, V; Belzunces, L P; Bonmatin, J M; Chagnon, M; Downs, C; Furlan, L; Gibbons, D W; Giorio, C; Girolami, V; Goulson, D; Kreutzweiser, D P; Krupke, C H; Liess, M; Long, E; McField, M; Mineau, P; Mitchell, E A D; Morrissey, C A; Noome, D A; Pisa, L; Settele, J; Stark, J D; Tapparo, A; Van Dyck, H; Van Praagh, J; Van der Sluijs, J P; Whitehorn, P R; Wiemers, M

    2015-01-01

    Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time-depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In

  17. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators

    PubMed Central

    Godfray, H. Charles J.; Blacquière, Tjeerd; Field, Linda M.; Hails, Rosemary S.; Petrokofsky, Gillian; Potts, Simon G.; Raine, Nigel E.; Vanbergen, Adam J.; McLean, Angela R.

    2014-01-01

    There is evidence that in Europe and North America many species of pollinators are in decline, both in abundance and distribution. Although there is a long list of potential causes of this decline, there is concern that neonicotinoid insecticides, in particular through their use as seed treatments are, at least in part, responsible. This paper describes a project that set out to summarize the natural science evidence base relevant to neonicotinoid insecticides and insect pollinators in as policy-neutral terms as possible. A series of evidence statements are listed and categorized according to the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material. PMID:24850927

  18. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites.

    PubMed

    Simon-Delso, N; Amaral-Rogers, V; Belzunces, L P; Bonmatin, J M; Chagnon, M; Downs, C; Furlan, L; Gibbons, D W; Giorio, C; Girolami, V; Goulson, D; Kreutzweiser, D P; Krupke, C H; Liess, M; Long, E; McField, M; Mineau, P; Mitchell, E A D; Morrissey, C A; Noome, D A; Pisa, L; Settele, J; Stark, J D; Tapparo, A; Van Dyck, H; Van Praagh, J; Van der Sluijs, J P; Whitehorn, P R; Wiemers, M

    2015-01-01

    Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time-depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In

  19. Population variation in and selection for resistance to pyrethroid-neonicotinoid insecticides in the bed bug.

    PubMed

    Gordon, Jennifer R; Goodman, Mark H; Potter, Michael F; Haynes, Kenneth F

    2014-01-01

    Pyrethroid resistance in bed bugs, Cimex lectularius, has prompted a change to combination products that include a pyrethroid and a neonicotinoid. Ten populations of bed bugs were challenged with two combination products (Temprid SC and Transport GHP). Susceptibility of these populations varied, with the correlated response of the two products indicating cross resistance. We imposed selection on three populations using label rate Temprid, and then reared progeny from unselected and selected strains. All selected strains were significantly less susceptible to Temprid SC than unselected strains. Temprid selected strains were also less susceptible to Transport. The pyrethroid component of Temprid showed a significantly higher LD50 in selected strains, but susceptibility to the neonicotinoid remained unchanged. Taken together these results indicate resistance to combination insecticides is present in field populations at levels that should be of concern, and that short-term selection affecting existing variance in susceptibility can quickly increase resistance. PMID:24452337

  20. Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris).

    PubMed

    Laycock, Ian; Lenthall, Kate M; Barratt, Andrew T; Cresswell, James E

    2012-10-01

    Bumble bees are important pollinators whose populations have declined over recent years, raising widespread concern. One conspicuous threat to bumble bees is their unintended exposure to trace residues of systemic neonicotinoid pesticides, such as imidacloprid, which are ingested when bees forage on the nectar and pollen of treated crops. However, the demographic consequences for bumble bees of exposure to dietary neonicotinoids have yet to be fully established. To determine whether environmentally realistic levels of imidacloprid are capable of making a demographic impact on bumble bees, we exposed queenless microcolonies of worker bumble bees, Bombus terrestris, to a range of dosages of dietary imidacloprid between zero and 125 μg L(-1) and examined the effects on ovary development and fecundity. Microcolonies showed a dose-dependent decline in fecundity, with environmentally realistic dosages in the range of 1 μg L(-1) capable of reducing brood production by one third. In contrast, ovary development was unimpaired by dietary imidacloprid except at the highest dosage. Imidacloprid reduced feeding on both syrup and pollen but, after controlling statistically for dosage, microcolonies that consumed more syrup and pollen produced more brood. We therefore speculate that the detrimental effects of imidacloprid on fecundity emerge principally from nutrient limitation imposed by the failure of individuals to feed. Our findings raise concern about the impact of neonicotinoids on wild bumble bee populations. However, we recognize that to fully evaluate impacts on wild colonies it will be necessary to establish the effect of dietary neonicotinoids on the fecundity of bumble bee queens.

  1. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees.

    PubMed

    Di Prisco, Gennaro; Cavaliere, Valeria; Annoscia, Desiderato; Varricchio, Paola; Caprio, Emilio; Nazzi, Francesco; Gargiulo, Giuseppe; Pennacchio, Francesco

    2013-11-12

    Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture.

  2. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees.

    PubMed

    Di Prisco, Gennaro; Cavaliere, Valeria; Annoscia, Desiderato; Varricchio, Paola; Caprio, Emilio; Nazzi, Francesco; Gargiulo, Giuseppe; Pennacchio, Francesco

    2013-11-12

    Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture. PMID:24145453

  3. Neonicotinoid Insecticides Alter Induced Defenses and Increase Susceptibility to Spider Mites in Distantly Related Crop Plants

    PubMed Central

    Szczepaniec, Adrianna; Raupp, Michael J.; Parker, Roy D.; Kerns, David; Eubanks, Micky D.

    2013-01-01

    Background Chemical suppression of arthropod herbivores is the most common approach to plant protection. Insecticides, however, can cause unintended, adverse consequences for non-target organisms. Previous studies focused on the effects of pesticides on target and non-target pests, predatory arthropods, and concomitant ecological disruptions. Little research, however, has focused on the direct effects of insecticides on plants. Here we demonstrate that applications of neonicotinoid insecticides, one of the most important insecticide classes worldwide, suppress expression of important plant defense genes, alter levels of phytohormones involved in plant defense, and decrease plant resistance to unsusceptible herbivores, spider mites Tetranychus urticae (Acari: Tetranychidae), in multiple, distantly related crop plants. Methodology/Principal Findings Using cotton (Gossypium hirsutum), corn (Zea mays) and tomato (Solanum lycopersicum) plants, we show that transcription of phenylalanine amonia lyase, coenzyme A ligase, trypsin protease inhibitor and chitinase are suppressed and concentrations of the phytohormone OPDA and salicylic acid were altered by neonicotinoid insecticides. Consequently, the population growth of spider mites increased from 30% to over 100% on neonicotinoid-treated plants in the greenhouse and by nearly 200% in the field experiment. Conclusions/Significance Our findings are important because applications of neonicotinoid insecticides have been associated with outbreaks of spider mites in several unrelated plant species. More importantly, this is the first study to document insecticide-mediated disruption of plant defenses and link it to increased population growth of a non-target herbivore. This study adds to growing evidence that bioactive agrochemicals can have unanticipated ecological effects and suggests that the direct effects of insecticides on plant defenses should be considered when the ecological costs of insecticides are evaluated. PMID

  4. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees

    PubMed Central

    Di Prisco, Gennaro; Cavaliere, Valeria; Annoscia, Desiderato; Varricchio, Paola; Caprio, Emilio; Nazzi, Francesco; Gargiulo, Giuseppe; Pennacchio, Francesco

    2013-01-01

    Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture. PMID:24145453

  5. Structural insights into tail-anchored protein binding and membrane insertion by Get3.

    PubMed

    Bozkurt, Gunes; Stjepanovic, Goran; Vilardi, Fabio; Amlacher, Stefan; Wild, Klemens; Bange, Gert; Favaloro, Vincenzo; Rippe, Karsten; Hurt, Ed; Dobberstein, Bernhard; Sinning, Irmgard

    2009-12-15

    Tail-anchored (TA) membrane proteins are involved in a variety of important cellular functions, including membrane fusion, protein translocation, and apoptosis. The ATPase Get3 (Asna1, TRC40) was identified recently as the endoplasmic reticulum targeting factor of TA proteins. Get3 consists of an ATPase and alpha-helical subdomain enriched in methionine and glycine residues. We present structural and biochemical analyses of Get3 alone as well as in complex with a TA protein, ribosome-associated membrane protein 4 (Ramp4). The ATPase domains form an extensive dimer interface that encloses 2 nucleotides in a head-to-head orientation and a zinc ion. Amide proton exchange mass spectrometry shows that the alpha-helical subdomain of Get3 displays considerable flexibility in solution and maps the TA protein-binding site to the alpha-helical subdomain. The non-hydrolyzable ATP analogue AMPPNP-Mg(2+)- and ADP-Mg(2+)-bound crystal structures representing the pre- and posthydrolysis states are both in a closed form. In the absence of a TA protein cargo, ATP hydrolysis does not seem to be possible. Comparison with the ADP.AlF(4)(-)-bound structure representing the transition state (Mateja A, et al. (2009) Nature 461:361-366) indicates how the presence of a TA protein is communicated to the ATP-binding site. In vitro membrane insertion studies show that recombinant Get3 inserts Ramp4 in a nucleotide- and receptor-dependent manner. Although ATP hydrolysis is not required for Ramp4 insertion per se, it seems to be required for efficient insertion. We postulate that ATP hydrolysis is needed to release Get3 from its receptor. Taken together, our results provide mechanistic insights into posttranslational targeting of TA membrane proteins by Get3. PMID:19948960

  6. Structural Insights into the MMACHC-MMADHC Protein Complex Involved in Vitamin B12 Trafficking*

    PubMed Central

    Froese, D. Sean; Kopec, Jolanta; Fitzpatrick, Fiona; Schuller, Marion; McCorvie, Thomas J.; Chalk, Rod; Plessl, Tanja; Fettelschoss, Victoria; Fowler, Brian; Baumgartner, Matthias R.; Yue, Wyatt W.

    2015-01-01

    Conversion of vitamin B12 (cobalamin, Cbl) into the cofactor forms methyl-Cbl (MeCbl) and adenosyl-Cbl (AdoCbl) is required for the function of two crucial enzymes, mitochondrial methylmalonyl-CoA mutase and cytosolic methionine synthase, respectively. The intracellular proteins MMACHC and MMADHC play important roles in processing and targeting the Cbl cofactor to its destination enzymes, and recent evidence suggests that they may interact while performing these essential trafficking functions. To better understand the molecular basis of this interaction, we have mapped the crucial protein regions required, indicate that Cbl is likely processed by MMACHC prior to interaction with MMADHC, and identify patient mutations on both proteins that interfere with complex formation, via different mechanisms. We further report the crystal structure of the MMADHC C-terminal region at 2.2 Å resolution, revealing a modified nitroreductase fold with surprising homology to MMACHC despite their poor sequence conservation. Because MMADHC demonstrates no known enzymatic activity, we propose it as the first protein known to repurpose the nitroreductase fold solely for protein-protein interaction. Using small angle x-ray scattering, we reveal the MMACHC-MMADHC complex as a 1:1 heterodimer and provide a structural model of this interaction, where the interaction region overlaps with the MMACHC-Cbl binding site. Together, our findings provide novel structural evidence and mechanistic insight into an essential biological process, whereby an intracellular “trafficking chaperone” highly specific for a trace element cofactor functions via protein-protein interaction, which is disrupted by inherited disease mutations. PMID:26483544

  7. Structural and Mechanistic Insights into the Tropism of Epstein-Barr Virus

    PubMed Central

    Möhl, Britta S.; Chen, Jia; Sathiyamoorthy, Karthik; Jardetzky, Theodore S.; Longnecker, Richard

    2016-01-01

    Epstein-Barr virus (EBV) is the prototypical γ-herpesvirus and an obligate human pathogen that infects mainly epithelial cells and B cells, which can result in malignancies. EBV infects these target cells by fusing with the viral and cellular lipid bilayer membranes using multiple viral factors and host receptor(s) thus exhibiting a unique complexity in its entry machinery. To enter epithelial cells, EBV requires minimally the conserved core fusion machinery comprised of the glycoproteins gH/gL acting as the receptor-binding complex and gB as the fusogen. EBV can enter B cells using gp42, which binds tightly to gH/gL and interacts with host HLA class II, activating fusion. Previously, we published the individual crystal structures of EBV entry factors, such as gH/gL and gp42, the EBV/host receptor complex, gp42/HLA-DR1, and the fusion protein EBV gB in a postfusion conformation, which allowed us to identify structural determinants and regions critical for receptor-binding and membrane fusion. Recently, we reported different low resolution models of the EBV B cell entry triggering complex (gHgL/gp42/HLA class II) in “open” and “closed” states based on negative-stain single particle electron microscopy, which provide further mechanistic insights. This review summarizes the current knowledge of these key players in EBV entry and how their structures impact receptor-binding and the triggering of gB-mediated fusion. PMID:27094060

  8. Crystal Structures of the Tetratricopeptide Repeat Domains of Kinesin Light Chains: Insight into Cargo Recognition Mechanisms

    SciTech Connect

    Zhu, Haizhong; Lee, Han Youl; Tong, Yufeng; Hong, Bum-Soo; Kim, Kyung-Phil; Shen, Yang; Lim, Kyung Jik; Mackenzie, Farrell; Tempel, Wolfram; Park, Hee-Won

    2012-10-23

    Kinesin-1 transports various cargos along the axon by interacting with the cargos through its light chain subunit. Kinesin light chains (KLC) utilize its tetratricopeptide repeat (TPR) domain to interact with over 10 different cargos. Despite a high sequence identity between their TPR domains (87%), KLC1 and KLC2 isoforms exhibit differential binding properties towards some cargos. We determined the structures of human KLC1 and KLC2 tetratricopeptide repeat (TPR) domains using X-ray crystallography and investigated the different mechanisms by which KLCs interact with their cargos. Using isothermal titration calorimetry, we attributed the specific interaction between KLC1 and JNK-interacting protein 1 (JIP1) cargo to residue N343 in the fourth TRP repeat. Structurally, the N343 residue is adjacent to other asparagines and lysines, creating a positively charged polar patch within the groove of the TPR domain. Whereas, KLC2 with the corresponding residue S328 did not interact with JIP1. Based on these finding, we propose that N343 of KLC1 can form 'a carboxylate clamp' with its neighboring asparagine to interact with JIP1, similar to that of HSP70/HSP90 organizing protein-1's (HOP1) interaction with heat shock proteins. For the binding of cargos shared by KLC1 and KLC2, we propose a different site located within the groove but not involving N343. We further propose a third binding site on KLC1 which involves a stretch of polar residues along the inter-TPR loops that may form a network of hydrogen bonds to JIP3 and JIP4. Together, these results provide structural insights into possible mechanisms of interaction between KLC TPR domains and various cargo proteins.

  9. Structural insights into inhibition of lipid I production in bacterial cell wall synthesis.

    PubMed

    Chung, Ben C; Mashalidis, Ellene H; Tanino, Tetsuya; Kim, Mijung; Matsuda, Akira; Hong, Jiyong; Ichikawa, Satoshi; Lee, Seok-Yong

    2016-05-26

    Antibiotic-resistant bacterial infection is a serious threat to public health. Peptidoglycan biosynthesis is a well-established target for antibiotic development. MraY (phospho-MurNAc-pentapeptide translocase) catalyses the first and an essential membrane step of peptidoglycan biosynthesis. It is considered a very promising target for the development of new antibiotics, as many naturally occurring nucleoside inhibitors with antibacterial activity target this enzyme. However, antibiotics targeting MraY have not been developed for clinical use, mainly owing to a lack of structural insight into inhibition of this enzyme. Here we present the crystal structure of MraY from Aquifex aeolicus (MraYAA) in complex with its naturally occurring inhibitor, muraymycin D2 (MD2). We show that after binding MD2, MraYAA undergoes remarkably large conformational rearrangements near the active site, which lead to the formation of a nucleoside-binding pocket and a peptide-binding site. MD2 binds the nucleoside-binding pocket like a two-pronged plug inserting into a socket. Further interactions it makes in the adjacent peptide-binding site anchor MD2 to and enhance its affinity for MraYAA. Surprisingly, MD2 does not interact with three acidic residues or the Mg(2+) cofactor required for catalysis, suggesting that MD2 binds to MraYAA in a manner that overlaps with, but is distinct from, its natural substrate, UDP-MurNAc-pentapeptide. We have determined the principles of MD2 binding to MraYAA, including how it avoids the need for pyrophosphate and sugar moieties, which are essential features for substrate binding. The conformational plasticity of MraY could be the reason that it is the target of many structurally distinct inhibitors. These findings can inform the design of new inhibitors targeting MraY as well as its paralogues, WecA and TarO. PMID:27088606

  10. RBR E3 ubiquitin ligases: new structures, new insights, new questions

    PubMed Central

    Spratt, Donald E.; Walden, Helen; Shaw, Gary S.

    2014-01-01

    The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology. PMID:24576094

  11. RBR E3 ubiquitin ligases: new structures, new insights, new questions.

    PubMed

    Spratt, Donald E; Walden, Helen; Shaw, Gary S

    2014-03-15

    The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.

  12. Structural insights into inhibition of Lipid I production in bacterial cell wall synthesis

    PubMed Central

    Tanino, Tetsuya; Kim, Mijung; Matsuda, Akira; Hong, Jiyong; Ichikawa, Satoshi; Lee, Seok-Yong

    2016-01-01

    Summary Antibiotic-resistant bacterial infection is a serious threat to public health. Peptidoglycan biosynthesis is a well-established target for antibiotic development. MraY (phospho-MurNAc-pentapeptide translocase) catalyzes the first and an essential membrane step of peptidoglycan biosynthesis. It is considered a very promising target for the development of new antibiotics, as many naturally occuring nucleoside inhibitors with antibacterial activity target this enzyme1-4. However, antibiotics targeting MraY have not been developed for clinical use mainly due to a lack of structural insight into inhibition of this enzyme. Here we present the crystal structure of MraY from Aquifex aeolicus (MraYAA) in complex with its naturally occurring inhibitor, muraymycin D2 (MD2). Upon binding MD2, MraYAA undergoes remarkably large conformational rearrangements near the active site, which lead to the formation of a nucleoside-binding pocket and a peptide-binding site. MD2 binds the nucleoside-binding pocket like a two-pronged plug inserting into a socket. Additional interactions it makes in the adjacent peptide-binding site anchor MD2 to and enhance its affinity for MraYAA. Surprisingly, MD2 does not interact with three acidic residues or the Mg2+ cofactor required for catalysis, suggesting that MD2 binds to MraYAA in a manner that overlaps with, but is distinct from its natural substrate, UDP-MurNAc-pentapeptide. We have deciphered the chemical logic of MD2 binding to MraYAA, including how it avoids the need for pyrophosphate and sugar moieties, which are essential features for substrate binding. The conformational plasticity of MraY could be the reason that it is the target of many structurally distinct inhibitors. These findings can inform the design of new inhibitors targeting MraY as well as its paralogs, WecA and TarO. PMID:27088606

  13. Structural Insights Into Amino Acid Binding and Gene Control by a Lysine Riboswitch

    SciTech Connect

    Serganov, A.; Huang, L; Patel, D

    2008-01-01

    In bacteria, the intracellular concentration of several amino acids is controlled by riboswitches1, 2, 3, 4. One of the important regulatory circuits involves lysine-specific riboswitches, which direct the biosynthesis and transport of lysine and precursors common for lysine and other amino acids. To understand the molecular basis of amino acid recognition by riboswitches, here we present the crystal structure of the 174-nucleotide sensing domain of the Thermotoga maritima lysine riboswitch in the lysine-bound (1.9 A) and free (3.1 A) states. The riboswitch features an unusual and intricate architecture, involving three-helical and two-helical bundles connected by a compact five-helical junction and stabilized by various long-range tertiary interactions. Lysine interacts with the junctional core of the riboswitch and is specifically recognized through shape-complementarity within the elongated binding pocket and through several direct and K+-mediated hydrogen bonds to its charged ends. Our structural and biochemical studies indicate preformation of the riboswitch scaffold and identify conformational changes associated with the formation of a stable lysine-bound state, which prevents alternative folding of the riboswitch and facilitates formation of downstream regulatory elements. We have also determined several structures of the riboswitch bound to different lysine analogues5, including antibiotics, in an effort to understand the ligand-binding capabilities of the lysine riboswitch and understand the nature of antibiotic resistance. Our results provide insights into a mechanism of lysine-riboswitch-dependent gene control at the molecular level, thereby contributing to continuing efforts at exploration of the pharmaceutical and biotechnological potential of riboswitches.

  14. Liver δ-aminolevulinate dehydratase activity is inhibited by neonicotinoids and restored by antioxidant agents.

    PubMed

    Sauer, Elisa; Moro, Angela M; Brucker, Natália; Nascimento, Sabrina; Gauer, Bruna; Fracasso, Rafael; Gioda, Adriana; Beck, Ruy; Moreira, José C F; Eifler-Lima, Vera Lucia; Garcia, Solange Cristina

    2014-11-01

    Neonicotinoids represent the most used class of insecticides worldwide, and their precursor, imidacloprid, is the most widely marketed. The aim of this study was to evaluate the effect of imidacloprid on the activity of hepatic δ-aminolevulinate dehydratase (δ-ALA-D), protective effect of potential antioxidants against this potential effect and presence of chemical elements in the constitution of this pesticide. We observed that δ-ALA-D activity was significantly inhibited by imidacloprid at all concentrations tested in a dose-dependent manner. The IC50 value was obtained and used to evaluate the restoration of the enzymatic activity. δ-ALA-D inhibition was completely restored by addition of dithiotreitol (DTT) and partly by ZnCl2, demonstrating that the inhibition occurs by oxidation of thiol groups and by displacement of the Zn (II), which can be explained by the presence of chemical elements found in the constitution of pesticides. Reduced glutathione (GSH) had the best antioxidant effect against to δ-ALA-D inhibition caused by imidacloprid, followed by curcumin and resveratrol. It is well known that inhibition of the enzyme δ-ALA-D may result in accumulation of its neurotoxic substrate (δ-ALA), in this line, our results suggest that further studies are needed to investigate the possible neurotoxicity induced by neonicotinoids and the involvement of antioxidants in cases of poisoning by neonicotinoids. PMID:25402564

  15. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris).

    PubMed

    Moffat, Christopher; Pacheco, Joao Goncalves; Sharp, Sheila; Samson, Andrew J; Bollan, Karen A; Huang, Jeffrey; Buckland, Stephen T; Connolly, Christopher N

    2015-05-01

    The global decline in the abundance and diversity of insect pollinators could result from habitat loss, disease, and pesticide exposure. The contribution of the neonicotinoid insecticides (e.g., clothianidin and imidacloprid) to this decline is controversial, and key to understanding their risk is whether the astonishingly low levels found in the nectar and pollen of plants is sufficient to deliver neuroactive levels to their site of action: the bee brain. Here we show that bumblebees (Bombus terrestris audax) fed field levels [10 nM, 2.1 ppb (w/w)] of neonicotinoid accumulate between 4 and 10 nM in their brains within 3 days. Acute (minutes) exposure of cultured neurons to 10 nM clothianidin, but not imidacloprid, causes a nicotinic acetylcholine receptor-dependent rapid mitochondrial depolarization. However, a chronic (2 days) exposure to 1 nM imidacloprid leads to a receptor-dependent increased sensitivity to a normally innocuous level of acetylcholine, which now also causes rapid mitochondrial depolarization in neurons. Finally, colonies exposed to this level of imidacloprid show deficits in colony growth and nest condition compared with untreated colonies. These findings provide a mechanistic explanation for the poor navigation and foraging observed in neonicotinoid treated bumblebee colonies.

  16. A simultaneous extraction method for organophosphate, pyrethroid, and neonicotinoid insecticides in aqueous samples.

    PubMed

    de Perre, Chloé; Whiting, Sara A; Lydy, Michael J

    2015-05-01

    A method was developed for the extraction and analysis of 2 organophosphate, 8 pyrethroid, and 5 neonicotinoid insecticides from the same water sample. A salted liquid-liquid extraction (LLE) was optimized with a solid-phase extraction (SPE) step that separated the organophosphates (OPs) and pyrethroids from the neonicotinoids. Factors that were optimized included volume of solvent and amount of salt used in the LLE, homogenization time for the LLE, and type and volume of eluting solvent used for the SPE. The OPs and pyrethroids were quantified using gas chromatography-mass spectrometry, and the neonicotinoids were quantified using liquid chromatography-diode array detector. Results showed that the optimized method was accurate, precise, reproducible, and robust; recoveries in river water spiked with 100 ng L(-1) of each of the insecticides were all between 86 and 114 % with RSDs between 2 and 8 %. The method was also sensitive with method detection limits ranging from 0.1 to 27.2 ng L(-1) depending on compounds and matrices. The optimized method was thus appropriate for the simultaneous extraction of 15 widely applied insecticides from three different classes and was shown to provide valuable information on their environmental fate from field-collected aqueous samples.

  17. Effects of aldicarb and neonicotinoid seed treatments on twospotted spider mite on cotton.

    PubMed

    Smith, J F; Catchot, A L; Musser, F R; Gore, J

    2013-04-01

    Twelve field experiments and one laboratory experiment were conducted to determine the effects of furrow applied aldicarb and seed treatments of thiamethoxam, imidacloprid, Avicta (thiamethoxam + abamectin), Aeris (imidacloprid + thiodicarb), and acephate on twospotted spider mite, Tetranychus urticae Koch, on cotton, Cossypium hirsutum L. For the field experiments, data were pooled across all experiments for analysis. Aeris, thiamethoxam, and imidacloprid treatments resulted in twospotted spider mite densities greater than those in the untreated check, aldicarb, and acephate treatments. However, cotton treated with Avicta (thiamethoxam + abamectin) had 34% fewer mites than other neonicotinoid seed treatments when infestations occurred near cotyledon stage. Untreated check and aldicarb treatments had the lowest mite densities. Only aldicarb reduced mite densities below that in the untreated check. In a laboratory trial, the fecundity of twospotted spider mite was measured. While neonicotinoid seed treatments increased mite densities in the field, they did not increase fecundity in the laboratory experiment. Foliar applied thiamethoxam slightly elevated average fecundity in the laboratory experiment. Increased use of neonicotinoid seed treatments instead of furrow applied aldicarb is likely at least partly responsible for recent increased twospotted spider mite infestations in seedling cotton across the mid-south.

  18. Compatibility of two systemic neonicotinoids, imidacloprid and thiamethoxam, with various natural enemies of agricultural pests.

    PubMed

    Prabhaker, Nilima; Castle, Steven J; Naranjo, Steven E; Toscano, Nick C; Morse, Joseph G

    2011-06-01

    Two systemic neonicotinoids, imidacloprid and thiamethoxam, are widely used for residual control of several insect pests in cotton (Gossypium spp.), vegetables, and citrus (Citrus spp.). We evaluated their impact on six species of beneficial arthropods, including four parasitoid species--Aphytis melinus Debach, Gonatocerus ashmeadi Girault, Eretmocerus eremicus Rose & Zolnerowich, and Encarsia formosa Gahan--and two generalist predators--Geocoris punctipes (Say) and Orius insidiosus (Say)--in the laboratory by using a systemic uptake bioassay. Exposure to systemically treated leaves of both neonicotinoids had negative effects on adult survival in all four parasitoids, with higher potency against A. melinus as indicated by a low LC50. Mortality was also high for G. ashmeadi, E. eremicus, and E. formosa after exposure to both compounds but only after 48 h posttreatment. The two predators G. punctipes and O. insidiosus were variably susceptible to imidacloprid and thiamethoxam after 96-h exposure. However, toxicity to these predators may be related to their feeding on foliage and not just contact with surface residues. Our laboratory results contradict suggestions of little impact of these systemic neonicotinoids on parasitoids or predators but field studies will be needed to better quantify the levels of such impacts under natural conditions.

  19. Liver δ-Aminolevulinate Dehydratase Activity is Inhibited by Neonicotinoids and Restored by Antioxidant Agents

    PubMed Central

    Sauer, Elisa; Moro, Angela M.; Brucker, Natália; Nascimento, Sabrina; Gauer, Bruna; Fracasso, Rafael; Gioda, Adriana; Beck, Ruy; Moreira, José C. F.; Eifler-Lima, Vera Lucia; Garcia, Solange Cristina

    2014-01-01

    Neonicotinoids represent the most used class of insecticides worldwide, and their precursor, imidacloprid, is the most widely marketed. The aim of this study was to evaluate the effect of imidacloprid on the activity of hepatic δ-aminolevulinate dehydratase (δ-ALA-D), protective effect of potential antioxidants against this potential effect and presence of chemical elements in the constitution of this pesticide. We observed that δ-ALA-D activity was significantly inhibited by imidacloprid at all concentrations tested in a dose-dependent manner. The IC50 value was obtained and used to evaluate the restoration of the enzymatic activity. δ-ALA-D inhibition was completely restored by addition of dithiotreitol (DTT) and partly by ZnCl2, demonstrating that the inhibition occurs by oxidation of thiol groups and by displacement of the Zn (II), which can be explained by the presence of chemical elements found in the constitution of pesticides. Reduced glutathione (GSH) had the best antioxidant effect against to δ-ALA-D inhibition caused by imidacloprid, followed by curcumin and resveratrol. It is well known that inhibition of the enzyme δ-ALA-D may result in accumulation of its neurotoxic substrate (δ-ALA), in this line, our results suggest that further studies are needed to investigate the possible neurotoxicity induced by neonicotinoids and the involvement of antioxidants in cases of poisoning by neonicotinoids. PMID:25402564

  20. Structural Insights into HIV-1 Vif-APOBEC3F Interaction

    PubMed Central

    Nakashima, Masaaki; Ode, Hirotaka; Kawamura, Takashi; Kitamura, Shingo; Naganawa, Yuriko; Awazu, Hiroaki; Tsuzuki, Shinya; Matsuoka, Kazuhiro; Nemoto, Michiko; Hachiya, Atsuko; Sugiura, Wataru; Yokomaku, Yoshiyuki; Watanabe, Nobuhisa

    2015-01-01

    ABSTRACT The HIV-1 Vif protein inactivates the cellular antiviral cytidine deaminase APOBEC3F (A3F) in virus-infected cells by specifically targeting it for proteasomal degradation. Several studies identified Vif sequence motifs involved in A3F interaction, whereas a Vif-binding A3F interface was proposed based on our analysis of highly similar APOBEC3C (A3C). However, the structural mechanism of specific Vif-A3F recognition is still poorly understood. Here we report structural features of interaction interfaces for both HIV-1 Vif and A3F molecules. Alanine-scanning analysis of Vif revealed that six residues located within the conserved Vif F1-, F2-, and F3-box motifs are essential for both A3C and A3F degradation, and an additional four residues are uniquely required for A3F degradation. Modeling of the Vif structure on an HIV-1 Vif crystal structure revealed that three discontinuous flexible loops of Vif F1-, F2-, and F3-box motifs sterically cluster to form a flexible A3F interaction interface, which represents hydrophobic and positively charged surfaces. We found that the basic Vif interface patch (R17, E171, and R173) involved in the interactions with A3C and A3F differs. Furthermore, our crystal structure determination and extensive mutational analysis of the A3F C-terminal domain demonstrated that the A3F interface includes a unique acidic stretch (L291, A292, R293, and E324) crucial for Vif interaction, suggesting additional electrostatic complementarity to the Vif interface compared with the A3C interface. Taken together, these findings provide structural insights into the A3F-Vif interaction mechanism, which will provide an important basis for development of novel anti-HIV-1 drugs using cellular cytidine deaminases. IMPORTANCE HIV-1 Vif targets cellular antiviral APOBEC3F (A3F) enzyme for degradation. However, the details on the structural mechanism for specific A3F recognition remain unclear. This study reports structural features of interaction

  1. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera

    PubMed Central

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee’s locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case

  2. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

    PubMed

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of

  3. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases

    PubMed Central

    Ji, Yurui; Mao, Guannan; Wang, Yingying; Bartlam, Mark

    2013-01-01

    Environmental microbes utilize four degradation pathways for the oxidation of n-alkanes. Although the enzymes degrading n-alkanes in different microbes may vary, enzymes functioning in the first step in the aerobic degradation of alkanes all belong to the alkane hydroxylases. Alkane hydroxylases are a class of enzymes that insert oxygen atoms derived from molecular oxygen into different sites of the alkane terminus (or termini) depending on the type of enzymes. In this review, we summarize the different types of alkane hydroxylases, their degrading steps, and compare typical enzymes from various classes with regard to their three-dimensional structures, in order to provide insights into how the enzymes mediate their different roles in the degradation of n-alkanes and what determines their different substrate ranges. Through the above analyzes, the degrading mechanisms of enzymes can be elucidated and molecular biological methods can be utilized to expand their catalytic roles in the petrochemical industry or in bioremediation of oil-contaminated environments. PMID:23519435

  4. Structural insight into the mutual recognition and regulation between Suppressor of Fused and Gli/Ci

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Fu, Lin; Qi, Xiaolong; Zhang, Zhenyi; Xia, Yuanxin; Jia, Jianhang; Jiang, Jin; Zhao, Yun; Wu, Geng

    2013-11-01

    Hedgehog (Hh) signalling regulates embryonic development and adult tissue homoeostasis. Mutations of its pathway components including Suppressor of Fused (Sufu) and Gli/Ci predispose to cancers and congenital anomalies. The Sufu-Gli protein complex occupies a central position in the vertebrate Hh signalling pathway, especially in mammals. Here structures of full-length human and Drosophila Sufu, the human Sufu-Gli complex, along with normal mode analysis and FRET measurement results, reveal that Sufu alternates between ‘open’ and ‘closed’ conformations. The ‘closed’ form of Sufu is stabilized by Gli binding and inhibited by Hh treatment, whereas the ‘open’ state of Sufu is promoted by Gli-dissociation and Hh signalling. Mutations of critical interface residues disrupt the Sufu-Gli complex and prevent Sufu from repressing Gli-mediated transcription, tethering Gli in the cytoplasm and protecting Gli from the 26S proteasome-mediated degradation. Our study thus provides mechanistic insight into the mutual recognition and regulation between Sufu and Gli/Ci.

  5. Structure of the Vacuolar H+-ATPase Rotary Motor Reveals New Mechanistic Insights

    PubMed Central

    Rawson, Shaun; Phillips, Clair; Huss, Markus; Tiburcy, Felix; Wieczorek, Helmut; Trinick, John; Harrison, Michael A.; Muench, Stephen P.

    2015-01-01

    Summary Vacuolar H+-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases. PMID:25661654

  6. Structural insights into the functions of the FANCM-FAAP24 complex in DNA repair.

    PubMed

    Yang, Hui; Zhang, Tianlong; Tao, Ye; Wang, Fang; Tong, Liang; Ding, Jianping

    2013-12-01

    Fanconi anemia (FA) is a genetically heterogeneous disorder associated with deficiencies in the FA complementation group network. FA complementation group M (FANCM) and FA-associated protein 24 kDa (FAAP24) form a stable complex to anchor the FA core complex to chromatin in repairing DNA interstrand crosslinks. Here, we report the first crystal structure of the C-terminal segment of FANCM in complex with FAAP24. The C-terminal segment of FANCM and FAAP24 both consist of a nuclease domain at the N-terminus and a tandem helix-hairpin-helix (HhH)2 domain at the C-terminus. The FANCM-FAAP24 complex exhibits a similar architecture as that of ApXPF. However, the variations of several key residues and the electrostatic property at the active-site region render a catalytically inactive nuclease domain of FANCM, accounting for the lack of nuclease activity. We also show that the first HhH motif of FAAP24 is a potential binding site for DNA, which plays a critical role in targeting FANCM-FAAP24 to chromatin. These results reveal the mechanistic insights into the functions of FANCM-FAAP24 in DNA repair. PMID:24003026

  7. Composition of the mitochondrial electron transport chain in acanthamoeba castellanii: structural and evolutionary insights.

    PubMed

    Gawryluk, Ryan M R; Chisholm, Kenneth A; Pinto, Devanand M; Gray, Michael W

    2012-11-01

    The mitochondrion, derived in evolution from an α-proteobacterial progenitor, plays a key metabolic role in eukaryotes. Mitochondria house the electron transport chain (ETC) that couples oxidation of organic substrates and electron transfer to proton pumping and synthesis of ATP. The ETC comprises several multiprotein enzyme complexes, all of which have counterparts in bacteria. However, mitochondrial ETC assemblies from animals, plants and fungi are generally more complex than their bacterial counterparts, with a number of 'supernumerary' subunits appearing early in eukaryotic evolution. Little is known, however, about the ETC of unicellular eukaryotes (protists), which are key to understanding the evolution of mitochondria and the ETC. We present an analysis of the ETC proteome from Acanthamoeba castellanii, an ecologically, medically and evolutionarily important member of Amoebozoa (sister to Opisthokonta). Data obtained from tandem mass spectrometric (MS/MS) analyses of purified mitochondria as well as ETC complexes isolated via blue native polyacrylamide gel electrophoresis are combined with the results of bioinformatic queries of sequence databases. Our bioinformatic analyses have identified most of the ETC subunits found in other eukaryotes, confirming and extending previous observations. The assignment of proteins as ETC subunits by MS/MS provides important insights into the primary structures of ETC proteins and makes possible, through the use of sensitive profile-based similarity searches, the identification of novel constituents of the ETC along with the annotation of highly divergent but phylogenetically conserved ETC subunits.

  8. Mechanistic Insights from Structural Analyses of Ran-GTPase-Driven Nuclear Export of Proteins and RNAs.

    PubMed

    Matsuura, Yoshiyuki

    2016-05-22

    Understanding how macromolecules are rapidly exchanged between the nucleus and the cytoplasm through nuclear pore complexes is a fundamental problem in biology. Exportins are Ran-GTPase-dependent nuclear transport factors that belong to the karyopherin-β family and mediate nuclear export of a plethora of proteins and RNAs, except for bulk mRNA nuclear export. Exportins bind cargo macromolecules in a Ran-GTP-dependent manner in the nucleus, forming exportin-cargo-Ran-GTP complexes (nuclear export complexes). Transient weak interactions between exportins and nucleoporins containing characteristic FG (phenylalanine-glycine) repeat motifs facilitate nuclear pore complex passage of nuclear export complexes. In the cytoplasm, nuclear export complexes are disassembled, thereby releasing the cargo. GTP hydrolysis by Ran promoted in the cytoplasm makes the disassembly reaction virtually irreversible and provides thermodynamic driving force for the overall export reaction. In the past decade, X-ray crystallography of some of the exportins in various functional states coupled with functional analyses, single-particle electron microscopy, molecular dynamics simulations, and small-angle solution X-ray scattering has provided rich insights into the mechanism of cargo binding and release and also begins to elucidate how exportins interact with the FG repeat motifs. The knowledge gained from structural analyses of nuclear export is being translated into development of clinically useful inhibitors of nuclear export to treat human diseases such as cancer and influenza.

  9. Structural insight of glitazone for hepato-toxicity: Resolving mystery by PASS.

    PubMed

    Patel, Harun; Sonawane, Yogesh; Jagtap, Rakesh; Dhangar, Kiran; Thapliyal, Neeta; Surana, Sanjay; Noolvi, Malleshappa; Shaikh, Mahamadhanif S; Rane, Rajesh A; Karpoormath, Rajshekhar

    2015-05-01

    Troglitazone causes severe hepatic injury in certain individuals and multiple mechanisms related to hepato-toxicity has been reported creating confusion. In the present study, the mechanism for the hepatic injury of glitazones was investigated by PASS. The results suggest that chromane containing glitazones are apoptic agonist (activating p53 by intrinsic pathway leading to the apoptosis) and those which do not contain the chromane are devoid of this. In case of hepato-toxicity by non-chromane glitazone and their metabolite such as M-3, RM-3, rosiglitazone and pioglitazone; PASS suggest that these chemicals are not apoptic agonist but they are the substrate for CYP enzyme (Phase-I Oxidative Enzyme) and Phase-II conjugating enzymes; interfering with bile acid metabolism rendering bile acid more toxic (cholestasis). This unmetabolised bile salt further initiates the process apoptosis via intrinsic and extrinsic pathway leading to the apoptosis. Immunoblot analysis further confirm our hypothesis that troglitazone (chromane containing glitazone), but not rosiglitazone and pioglitazone (non-chromane containing glitazone) increased the levels of p53 in a time-dependent manner. Hence our prediction related to the mechanism of hepato-toxicity by apoptosis and structural insight of glitazone can be helpful in improving the drug profile of this category.

  10. Structural Insights into the Role of Architectural Proteins in DNA Looping Deduced from Computer Simulations

    PubMed Central

    Olson, Wilma K.; Grosner, Michael A.; Czapla, Luke; Swigon, David

    2013-01-01

    Bacterial gene expression is regulated by DNA elements that often lie far apart along the genomic sequence but come close together during genetic processing. The intervening residues form loops, which are organized by the binding of various proteins. For example, the Escherichia coli Lac repressor protein binds DNA operators, separated by 92 or 401 base pairs, and suppresses the formation of gene products involved in the metabolism of lactose. The system also includes several highly abundant architectural proteins, such as the histone-like (heat unstable) HU protein, which severely deform the double helix upon binding. In order to gain a better understanding of how the naturally stiff DNA double helix forms the short loops detected in vivo, we have developed new computational methods to study the effects of various non-specifically binding proteins on the three-dimensional configurational properties of DNA sequences. This article surveys the approach that we use to generate ensembles of spatially constrained protein-decorated DNA structures (minicircles and Lac repressor-mediated loops) and presents some of the insights gained from the correspondence between computation and experiment about the potential contributions of architectural and regulatory proteins to DNA looping and gene expression. PMID:23514154

  11. The effect of application method on the temporal and spatial distribution of neonicotinoid insecticides in greenhouse zinnia and impact on aphid populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse trials were designed to evaluate the effect the application technique would have on temporal and spatial movement of neonicotinoid insecticides imidacloprid and thiamethoxam through plant tissue. Mature Zinnia elegans plants were treated by either a soil drench of neonicotinoid insectici...

  12. Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function

    SciTech Connect

    Sun, Jingchuan; Li, Huilin; Fernandez-Cid, Alejandra; Riera, Alberto; Tognetti, Sivia; Yuan, Zuanning; Stillman, Bruce; Speck, Christian

    2014-10-15

    Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2–7 (minichromosome maintenance proteins 2–7) double hexamer. During S phase, each Mcm2–7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC–Cdc6 function to recruit a single Cdt1–Mcm2–7 heptamer to replication origins prior to Cdt1 release and ORC–Cdc6–Mcm2–7 complex formation, but how the second Mcm2–7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC–Cdc6–Mcm2–7 complex and an ORC–Cdc6–Mcm2–7–Mcm2–7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2–7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2–7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.

  13. Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function

    DOE PAGES

    Sun, Jingchuan; Li, Huilin; Fernandez-Cid, Alejandra; Riera, Alberto; Tognetti, Sivia; Yuan, Zuanning; Stillman, Bruce; Speck, Christian

    2014-10-15

    Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2–7 (minichromosome maintenance proteins 2–7) double hexamer. During S phase, each Mcm2–7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC–Cdc6 function to recruit a single Cdt1–Mcm2–7 heptamer to replication origins prior to Cdt1 release and ORC–Cdc6–Mcm2–7 complex formation, but how the second Mcm2–7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC–Cdc6–Mcm2–7 complex andmore » an ORC–Cdc6–Mcm2–7–Mcm2–7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2–7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2–7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.« less

  14. An in silico structural insights into Plasmodium LytB protein and its inhibition.

    PubMed

    Bhuyan, Rajabrata; Nandy, Suman Kumar; Seal, Alpana

    2015-01-01

    In most of the pathogenic organisms including Plasmodium falciparum, isoprenoids are synthesized via MEP (MethylErythritol 4-Phosphate) pathway. LytB is the last enzyme of this pathway which catalyzes the conversion of (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HMBPP) into the two isoprenoid precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Since the MEP pathway is not used by humans, it represents an attractive target for the development of new anti-malarial compounds or inhibitors. Here a systematic in silico study has been conducted to get an insight into the structure of Plasmodium lytB as well as its affinities towards different inhibitors. We used comparative modeling technique to predict the three-dimensional (3D) structure of Plasmodium LytB taking Escherichia coli LytB protein (PDB ID: 3KE8) as template and the model was subsequently refined through molecular dynamics (MD) simulation. A large ligand data-set containing diphospate group was subjected for virtual screening against the target using GOLD 5.2 program. Considering the mode of binding and affinities, 17 leads were selected on basis of binding energies in comparison to its substrate HMBPP (Gold.Chemscore.DG: -20.9734 kcal/mol). Among them, five were discarded because of their inhibitory activity towards other human enzymes. The rest 12 potential leads carry all the properties of any "drug like" molecule and the knowledge of Plasmodium LytB-inhibitory mechanism which can provide valuable support for the anti-malarial-inhibitor design in future.

  15. Insight into structural phase transitions from the decoupled anharmonic mode approximation

    NASA Astrophysics Data System (ADS)

    Adams, Donat J.; Passerone, Daniele

    2016-08-01

    We develop a formalism (decoupled anharmonic mode approximation, DAMA) that allows calculation of the vibrational free energy using density functional theory even for materials which exhibit negative curvature of the potential energy surface with respect to atomic displacements. We investigate vibrational modes beyond the harmonic approximation and approximate the potential energy surface with the superposition of the accurate potential along each normal mode. We show that the free energy can stabilize crystal structures at finite temperatures which appear dynamically unstable at T  =  0. The DAMA formalism is computationally fast because it avoids statistical sampling through molecular dynamics calculations, and is in principle completely ab initio. It is free of statistical uncertainties and independent of model parameters, but can give insight into the mechanism of a structural phase transition. We apply the formalism to the perovskite cryolite, and investigate the temperature-driven phase transition from the P21/n to the Immm space group. We calculate a phase transition temperature between 710 and 950 K, in fair agreement with the experimental value of 885 K. This can be related to the underestimation of the interaction of the vibrational states. We also calculate the main axes of the thermal ellipsoid and can explain the experimentally observed increase of its volume for the fluorine by 200-300% throughout the phase transition. Our calculations suggest the appearance of tunneling states in the high temperature phase. The convergence of the vibrational DOS and of the critical temperature with respect of reciprocal space sampling is investigated using the polarizable-ion model.

  16. Coronary Wall Structural Changes in Patients With Kawasaki Disease: New Insights From Optical Coherence Tomography (OCT)

    PubMed Central

    Dionne, Audrey; Ibrahim, Ragui; Gebhard, Catherine; Bakloul, Mohamed; Selly, Jean-Bernard; Leye, Mohamed; Déry, Julie; Lapierre, Chantale; Girard, Patrice; Fournier, Anne; Dahdah, Nagib

    2015-01-01

    Background Coronary artery aneurysms (CAA) are serious complications of Kawasaki disease (KD). Optical coherence tomography (OCT) is a high-resolution intracoronary imaging modality that characterizes coronary artery wall structure. The purpose of this work was to describe CAA wall sequelae after KD. Methods and Results KD patients scheduled for routine coronary angiography underwent OCT imaging between March 2013 and August 2014. Subjects’ clinical courses, echocardiography, and coronary angiography examinations were reviewed retrospectively. OCT was performed in 18 patients aged 12.4±5.5 years, 9.0±5.1 years following onset of KD. Of those, 14 patients (77.7%) had a history of CAA (7 with giant CAA and 7 with regressed CAA at time of OCT). Intracoronary nitroglycerin was given to all patients (88.4±45.5 μg/m2). Mean radiation dose was 10.9±5.2 mGy/kg. One patient suffered from a transitory uneventful vasospasm at the site of a regressed CAA; otherwise no major procedural complications occurred. The most frequent abnormality observed on OCT was intimal hyperplasia (15 patients, 83.3%) seen at both aneurysmal sites and angiographically normal segments amounting to 390.8±166.0 μm for affected segments compared to 61.7±17 μm for unaffected segments (P<0.001). Disappearance of the media, and presence of fibrosis, calcifications, macrophage accumulation, neovascularization, and white thrombi were seen in 72.2%, 77.8%, 27.8%, 44.4%, and 33.3% of patients. Conclusions In this study, OCT proved safe and insightful in the setting of KD, with the potential to add diagnostic value in the assessment of coronary abnormalities in KD. The depicted coronary structural changes correspond to histological findings previously described in KD. PMID:25991013

  17. Insight into structural phase transitions from the decoupled anharmonic mode approximation.

    PubMed

    Adams, Donat J; Passerone, Daniele

    2016-08-01

    We develop a formalism (decoupled anharmonic mode approximation, DAMA) that allows calculation of the vibrational free energy using density functional theory even for materials which exhibit negative curvature of the potential energy surface with respect to atomic displacements. We investigate vibrational modes beyond the harmonic approximation and approximate the potential energy surface with the superposition of the accurate potential along each normal mode. We show that the free energy can stabilize crystal structures at finite temperatures which appear dynamically unstable at T  =  0. The DAMA formalism is computationally fast because it avoids statistical sampling through molecular dynamics calculations, and is in principle completely ab initio. It is free of statistical uncertainties and independent of model parameters, but can give insight into the mechanism of a structural phase transition. We apply the formalism to the perovskite cryolite, and investigate the temperature-driven phase transition from the P21/n to the Immm space group. We calculate a phase transition temperature between 710 and 950 K, in fair agreement with the experimental value of 885 K. This can be related to the underestimation of the interaction of the vibrational states. We also calculate the main axes of the thermal ellipsoid and can explain the experimentally observed increase of its volume for the fluorine by 200-300% throughout the phase transition. Our calculations suggest the appearance of tunneling states in the high temperature phase. The convergence of the vibrational DOS and of the critical temperature with respect of reciprocal space sampling is investigated using the polarizable-ion model. PMID:27269514

  18. Dispersing perylene diimide/SWCNT hybrids: structural insights at the molecular level and fabricating advanced materials.

    PubMed

    Tsarfati, Yael; Strauss, Volker; Kuhri, Susanne; Krieg, Elisha; Weissman, Haim; Shimoni, Eyal; Baram, Jonathan; Guldi, Dirk M; Rybtchinski, Boris

    2015-06-17

    The unique properties of carbon nanotubes (CNT) are advantageous for emerging applications. Yet, the CNT insolubility hampers their potential. Approaches based on covalent and noncovalent methodologies have been tested to realize stable dispersions of CNTs. Noncovalent approaches are of particular interest as they preserve the CNT's structures and properties. We report on hybrids, in which perylene diimide (PDI) amphiphiles are noncovalently immobilized onto single wall carbon nanotubes (SWCNT). The resulting hybrids were dispersed and exfoliated both in water and organic solvents in the presence of two different PDI derivatives, PP2b and PP3a. The dispersions were investigated using cryogenic transmission electron microscopy (cryo-TEM), providing unique structural insights into the exfoliation. A helical arrangement of PP2b assemblies on SWCNTs dominates in aqueous dispersions, while a single layer of PP2b and PP3a was found on SWCNTs in organic dispersions. The dispersions were probed by steady-state and time-resolved spectroscopies, revealing appreciable charge redistribution in the ground state, and an efficient electron transfer from SWCNTs to PDIs in the excited state. We also fabricated hybrid materials from the PP2b/SWCNT dispersions. A supramolecular membrane was prepared from aqueous dispersions and used for size-selective separation of gold nanoparticles. Hybrid buckypaper films were prepared from the organic dispersions. In the latter, high conductivity results from enhanced electronic communication and favorable morphology within the hybrid material. Our findings shed light onto SWCNT/dispersant molecular interactions, and introduce a versatile approach toward universal solution processing of SWCNT-based materials. PMID:25977989

  19. Insight into structural phase transitions from the decoupled anharmonic mode approximation

    NASA Astrophysics Data System (ADS)

    Adams, Donat J.; Passerone, Daniele

    2016-08-01

    We develop a formalism (decoupled anharmonic mode approximation, DAMA) that allows calculation of the vibrational free energy using density functional theory even for materials which exhibit negative curvature of the potential energy surface with respect to atomic displacements. We investigate vibrational modes beyond the harmonic approximation and approximate the potential energy surface with the superposition of the accurate potential along each normal mode. We show that the free energy can stabilize crystal structures at finite temperatures which appear dynamically unstable at T  =  0. The DAMA formalism is computationally fast because it avoids statistical sampling through molecular dynamics calculations, and is in principle completely ab initio. It is free of statistical uncertainties and independent of model parameters, but can give insight into the mechanism of a structural phase transition. We apply the formalism to the perovskite cryolite, and investigate the temperature-driven phase transition from the P21/n to the Immm space group. We calculate a phase transition temperature between 710 and 950 K, in fair agreement with the experimental value of 885 K. This can be related to the underestimation of the interaction of the vibrational states. We also calculate the main axes of the thermal ellipsoid and can explain the experimentally observed increase of its volume for the fluorine by 200–300% throughout the phase transition. Our calculations suggest the appearance of tunneling states in the high temperature phase. The convergence of the vibrational DOS and of the critical temperature with respect of reciprocal space sampling is investigated using the polarizable-ion model.

  20. Clinical implications of recent insights into the structural biology of beta2 adrenoceptors.

    PubMed

    Amezcua-Gutierrez, Marcos Antonio; Cipres-Flores, Fabiola Jimena; Trujillo-Ferrara, Jose Guadalupe; Soriano-Ursua, Marvin Antonio

    2012-09-01

    Analysis of the crystal structure of beta-2 adrenoceptors (β2ARs) is providing new insights into the functioning of this receptor and perhaps of G-protein coupled receptors (GPCRs) as a whole. This class of receptors represents the target of at least a third of the drugs on the market and plays an essential role in the study of therapetic drug-response. Among GPCRs, the β2AR is the best understood in terms of function, expression and activation. Regarding the interaction of β2ARs with a specific ligand, polymorphisms, conformational changes and stereoselectivity are important factors. Agonist affinity for β2ARs is influenced by the polymorphisms of these receptors, which in some cases appear to affect susceptibility to disorders. Conformational changes that take place upon the approach of a given ligand, as well as the stereoselectivity of this class of receptors can modify the intrinsic activity of β2ARs (and certainly of other receptors as well). Hence, a deepening understanding of these factors can provide new data on affinity and specifically the key residues involved in recognition of β2AR agonists. The deepening the understanding of the factors involved in ligand affinity for β2ARs will assist in the development of β2AR agonists that are more selective and potent, and that have longer term action. Not only are β2AR agonists employed as therapeutic agents, but also in diagnosis. Currently, the main clinical application of targeting human β2ARs is to treat asthma with bronchodilators. However, they are also used to treat other maladies in their acute or chronic forms, including heart conditions, metabolic disorders and muscle wasting. This review shows the scope and the possible future clinical implications of data from structures of β2ARs.

  1. Subsurface architecture of a strike-slip collapse structure: insights from Ilopango caldera, El Salvador

    NASA Astrophysics Data System (ADS)

    Saxby, Jennifer; Gottsmann, Joachim; Cashman, Katherine; Gutierrez, Eduardo

    2016-04-01

    While most calderas are created by roof collapse along ring-like faults into an emptying magma reservoir during a large and violent explosive eruption, an additional condition for caldera formation may be tectonically induced extensional stresses. Here we provide geophysical insights into the shallow sub-volcanic plumbing system of a collapse caldera in a major strike-slip tectonic setting by inverting Bouguer gravity data from the Ilopango caldera in El Salvador. Despite a long history of catastrophic eruptions with the most recent in 500 A.D., the internal architecture of the caldera has not been investigated, although studies of the most recent eruption have not identified the ring faults commonly associated with caldera collapse. The gravity data show that low-density material aligned along the principal stress orientations of the El Salvador Fault Zone (ESFZ) forms a pronounced gravity low beneath the caldera. Extending to around 6 km depth, the low density structure likely maps a complex stacked shallow plumbing system composed of magmatic and fractured hydrothermal reservoirs. A substantial volume of the plumbing system must be composed of a vapour phase to explain the modeled negative density contrasts. We use these constraints to map the possible multi-phase parameter space contributing to the subsurface architecture of the caldera and propose that the local extension along the complex ESFZ controls accumulation, ascent and eruption of magma at Ilopango. The data further suggest that future eruptions at Ilopango could be facilitated by rapid rise of magma along conjugate fault damage zones through a mechanically weak crust under tension. This may explain the absence of clear ring fault structures at the caldera.

  2. Honeybees Produce Millimolar Concentrations of Non-Neuronal Acetylcholine for Breeding: Possible Adverse Effects of Neonicotinoids.

    PubMed

    Wessler, Ignaz; Gärtner, Hedwig-Annabel; Michel-Schmidt, Rosmarie; Brochhausen, Christoph; Schmitz, Luise; Anspach, Laura; Grünewald, Bernd; Kirkpatrick, Charles James

    2016-01-01

    The worldwide use of neonicotinoid pesticides has caused concern on account of their involvement in the decline of bee populations, which are key pollinators in most ecosystems. Here we describe a role of non-neuronal acetylcholine (ACh) for breeding of Apis mellifera carnica and a so far unknown effect of neonicotinoids on non-target insects. Royal jelly or larval food are produced by the hypopharyngeal gland of nursing bees and contain unusually high ACh concentrations (4-8 mM). ACh is extremely well conserved in royal jelly or brood food because of the acidic pH of 4.0. This condition protects ACh from degradation thus ensuring delivery of intact ACh to larvae. Raising the pH to ≥5.5 and applying cholinesterase reduced the content of ACh substantially (by 75-90%) in larval food. When this manipulated brood was tested in artificial larval breeding experiments, the survival rate was higher with food supplemented by 100% with ACh (6 mM) than with food not supplemented with ACh. ACh release from the hypopharyngeal gland and its content in brood food declined by 80%, when honeybee colonies were exposed for 4 weeks to high concentrations of the neonicotinoids clothianidin (100 parts per billion [ppb]) or thiacloprid (8,800 ppb). Under these conditions the secretory cells of the gland were markedly damaged and brood development was severely compromised. Even field-relevant low concentrations of thiacloprid (200 ppb) or clothianidin (1 and 10 ppb) reduced ACh level in the brood food and showed initial adverse effects on brood development. Our findings indicate a hitherto unknown target of neonicotinoids to induce adverse effects on non-neuronal ACh which should be considered when re-assessing the environmental risks of these compounds. To our knowledge this is a new biological mechanism, and we suggest that, in addition to their well documented neurotoxic effects, neonicotinoids may contribute to honeybee colony losses consecutive to a reduction of the ACh content in

  3. Honeybees Produce Millimolar Concentrations of Non-Neuronal Acetylcholine for Breeding: Possible Adverse Effects of Neonicotinoids

    PubMed Central

    Wessler, Ignaz; Gärtner, Hedwig-Annabel; Michel-Schmidt, Rosmarie; Brochhausen, Christoph; Schmitz, Luise; Anspach, Laura; Grünewald, Bernd; Kirkpatrick, Charles James

    2016-01-01

    The worldwide use of neonicotinoid pesticides has caused concern on account of their involvement in the decline of bee populations, which are key pollinators in most ecosystems. Here we describe a role of non-neuronal acetylcholine (ACh) for breeding of Apis mellifera carnica and a so far unknown effect of neonicotinoids on non-target insects. Royal jelly or larval food are produced by the hypopharyngeal gland of nursing bees and contain unusually high ACh concentrations (4–8 mM). ACh is extremely well conserved in royal jelly or brood food because of the acidic pH of 4.0. This condition protects ACh from degradation thus ensuring delivery of intact ACh to larvae. Raising the pH to ≥5.5 and applying cholinesterase reduced the content of ACh substantially (by 75–90%) in larval food. When this manipulated brood was tested in artificial larval breeding experiments, the survival rate was higher with food supplemented by 100% with ACh (6 mM) than with food not supplemented with ACh. ACh release from the hypopharyngeal gland and its content in brood food declined by 80%, when honeybee colonies were exposed for 4 weeks to high concentrations of the neonicotinoids clothianidin (100 parts per billion [ppb]) or thiacloprid (8,800 ppb). Under these conditions the secretory cells of the gland were markedly damaged and brood development was severely compromised. Even field-relevant low concentrations of thiacloprid (200 ppb) or clothianidin (1 and 10 ppb) reduced ACh level in the brood food and showed initial adverse effects on brood development. Our findings indicate a hitherto unknown target of neonicotinoids to induce adverse effects on non-neuronal ACh which should be considered when re-assessing the environmental risks of these compounds. To our knowledge this is a new biological mechanism, and we suggest that, in addition to their well documented neurotoxic effects, neonicotinoids may contribute to honeybee colony losses consecutive to a reduction of the ACh content

  4. Honeybees Produce Millimolar Concentrations of Non-Neuronal Acetylcholine for Breeding: Possible Adverse Effects of Neonicotinoids.

    PubMed

    Wessler, Ignaz; Gärtner, Hedwig-Annabel; Michel-Schmidt, Rosmarie; Brochhausen, Christoph; Schmitz, Luise; Anspach, Laura; Grünewald, Bernd; Kirkpatrick, Charles James

    2016-01-01

    The worldwide use of neonicotinoid pesticides has caused concern on account of their involvement in the decline of bee populations, which are key pollinators in most ecosystems. Here we describe a role of non-neuronal acetylcholine (ACh) for breeding of Apis mellifera carnica and a so far unknown effect of neonicotinoids on non-target insects. Royal jelly or larval food are produced by the hypopharyngeal gland of nursing bees and contain unusually high ACh concentrations (4-8 mM). ACh is extremely well conserved in royal jelly or brood food because of the acidic pH of 4.0. This condition protects ACh from degradation thus ensuring delivery of intact ACh to larvae. Raising the pH to ≥5.5 and applying cholinesterase reduced the content of ACh substantially (by 75-90%) in larval food. When this manipulated brood was tested in artificial larval breeding experiments, the survival rate was higher with food supplemented by 100% with ACh (6 mM) than with food not supplemented with ACh. ACh release from the hypopharyngeal gland and its content in brood food declined by 80%, when honeybee colonies were exposed for 4 weeks to high concentrations of the neonicotinoids clothianidin (100 parts per billion [ppb]) or thiacloprid (8,800 ppb). Under these conditions the secretory cells of the gland were markedly damaged and brood development was severely compromised. Even field-relevant low concentrations of thiacloprid (200 ppb) or clothianidin (1 and 10 ppb) reduced ACh level in the brood food and showed initial adverse effects on brood development. Our findings indicate a hitherto unknown target of neonicotinoids to induce adverse effects on non-neuronal ACh which should be considered when re-assessing the environmental risks of these compounds. To our knowledge this is a new biological mechanism, and we suggest that, in addition to their well documented neurotoxic effects, neonicotinoids may contribute to honeybee colony losses consecutive to a reduction of the ACh content in

  5. Insights into Silicate and Oxide Melt Structure from Amorphous, Non-Glass-Forming Materials

    NASA Astrophysics Data System (ADS)

    Stebbins, J. F.

    2015-12-01

    Many silicate and oxide liquids of interest in the Earth sciences and in technology cannot readily be quenched to glasses, either because of low silica contents (and hence low viscosity at the melting point and accompanying liquid 'fragility') or because of liquid-liquid unmixing at high temperature. Although in-situ, high temperature structural tools have been in use for decades and are rapidly developing, many methods are still most informative for glass samples quenched to ambient pressure and temperature, e.g. high-resolution solid-state NMR. Amorphous oxides, including alumina and silicate compositions, have widespread technological applications. These are generally deposited by a variety of high-energy sputtering methods, as films of thicknesses of 10's to 100's of nm. Using Al-27, Si-29, and O-17 NMR, we have recently shown that for such films, very similar short-range structure is seen in materials made by very different kinetic pathways, such as sol-gel synthesis vs. ion-beam sputtering. This path-independent structure suggests that these materials pass through transient equilibrium states during their formation, probably that of deeply supercooled liquids just above glass transition temperatures. In the HfO2-SiO2 and ZrO2-SiO2 systems, for example, samples have well-resolved O-17 NMR spectra, allowing quantitation of O sites with only Hf(Zr) neighbors (so-called "free" oxide ions), with mixed Hf(Zr) and Si neighbors, and Si only. The observed oxygen speciation agrees well with a simple thermodynamic model of one of the most fundamental equilibria in silicate systems, namely the reaction of bridging (Si-O-Si) and "free" (e.g. OHf3 and OHf4) oxide ions to produce "non-bridging" oxygens (e.g. Si-OHf2). This new approach to sampling such structural equilibria in compositions far outside the range of normal glass-forming liquids may provide new insights into more geological compositions as well, as well as in more general models of silicate melt chemistry.

  6. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development.

    PubMed

    Wu-Smart, Judy; Spivak, Marla

    2016-01-01

    Many factors can negatively affect honey bee (Apis mellifera L.) health including the pervasive use of systemic neonicotinoid insecticides. Through direct consumption of contaminated nectar and pollen from treated plants, neonicotinoids can affect foraging, learning, and memory in worker bees. Less well studied are the potential effects of neonicotinoids on queen bees, which may be exposed indirectly through trophallaxis, or food-sharing. To assess effects on queen productivity, small colonies of different sizes (1500, 3000, and 7000 bees) were fed imidacloprid (0, 10, 20, 50, and 100 ppb) in syrup for three weeks. We found adverse effects of imidacloprid on queens (egg-laying and locomotor activity), worker bees (foraging and hygienic activities), and colony development (brood production and pollen stores) in all treated colonies. Some effects were less evident as colony size increased, suggesting that larger colony populations may act as a buffer to pesticide exposure. This study is the first to show adverse effects of imidacloprid on queen bee fecundity and behavior and improves our understanding of how neonicotinoids may impair short-term colony functioning. These data indicate that risk-mitigation efforts should focus on reducing neonicotinoid exposure in the early spring when colonies are smallest and queens are most vulnerable to exposure. PMID:27562025

  7. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development

    PubMed Central

    Wu-Smart, Judy; Spivak, Marla

    2016-01-01

    Many factors can negatively affect honey bee (Apis mellifera L.) health including the pervasive use of systemic neonicotinoid insecticides. Through direct consumption of contaminated nectar and pollen from treated plants, neonicotinoids can affect foraging, learning, and memory in worker bees. Less well studied are the potential effects of neonicotinoids on queen bees, which may be exposed indirectly through trophallaxis, or food-sharing. To assess effects on queen productivity, small colonies of different sizes (1500, 3000, and 7000 bees) were fed imidacloprid (0, 10, 20, 50, and 100 ppb) in syrup for three weeks. We found adverse effects of imidacloprid on queens (egg-laying and locomotor activity), worker bees (foraging and hygienic activities), and colony development (brood production and pollen stores) in all treated colonies. Some effects were less evident as colony size increased, suggesting that larger colony populations may act as a buffer to pesticide exposure. This study is the first to show adverse effects of imidacloprid on queen bee fecundity and behavior and improves our understanding of how neonicotinoids may impair short-term colony functioning. These data indicate that risk-mitigation efforts should focus on reducing neonicotinoid exposure in the early spring when colonies are smallest and queens are most vulnerable to exposure. PMID:27562025

  8. A survey of neonicotinoid use and potential exposure to northern bobwhite (Colinus virginianus) and scaled quail (Callipepla squamata) in the Rolling Plains of Texas and Oklahoma.

    PubMed

    Turaga, Uday; Peper, Steven T; Dunham, Nicholas R; Kumar, Naveen; Kistler, Whitney; Almas, Sadia; Presley, Steven M; Kendall, Ronald J

    2016-06-01

    Northern bobwhite (quail) (Colinus virginianus) and scaled quail (Callipepla squamata) populations have declined dramatically in the Rolling Plains ecoregion of Texas and Oklahoma (USA). There is rising concern about potential toxicity of neonicotinoids to birds. To investigate this concern, the authors examined crops of 81 northern bobwhite and 17 scaled quail to determine the presence or absence of seeds treated with 3 neonicotinoids (clothianidin, imidacloprid, and thiamethoxam). No treated seeds were found in the 98 crops examined. Liver samples from all 98 quail were collected and analyzed for neonicotinoid residues. Analysis revealed very low concentrations of neonicotinoids within the quail liver samples. The results suggest there is little to no risk of direct toxicity to quail from neonicotinoids. Environ Toxicol Chem 2016;35:1511-1515. © 2015 SETAC.

  9. Multi Length Scale Imaging of Flocculated Estuarine Sediments; Insights into their Complex 3D Structure

    NASA Astrophysics Data System (ADS)

    Wheatland, Jonathan; Bushby, Andy; Droppo, Ian; Carr, Simon; Spencer, Kate

    2015-04-01

    Suspended estuarine sediments form flocs that are compositionally complex, fragile and irregularly shaped. The fate and transport of suspended particulate matter (SPM) is determined by the size, shape, density, porosity and stability of these flocs and prediction of SPM transport requires accurate measurements of these three-dimensional (3D) physical properties. However, the multi-scaled nature of flocs in addition to their fragility makes their characterisation in 3D problematic. Correlative microscopy is a strategy involving the spatial registration of information collected at different scales using several imaging modalities. Previously, conventional optical microscopy (COM) and transmission electron microscopy (TEM) have enabled 2-dimensional (2D) floc characterisation at the gross (> 1 µm) and sub-micron scales respectively. Whilst this has proven insightful there remains a critical spatial and dimensional gap preventing the accurate measurement of geometric properties and an understanding of how structures at different scales are related. Within life sciences volumetric imaging techniques such as 3D micro-computed tomography (3D µCT) and focused ion beam scanning electron microscopy [FIB-SEM (or FIB-tomography)] have been combined to characterise materials at the centimetre to micron scale. Combining these techniques with TEM enables an advanced correlative study, allowing material properties across multiple spatial and dimensional scales to be visualised. The aims of this study are; 1) to formulate an advanced correlative imaging strategy combining 3D µCT, FIB-tomography and TEM; 2) to acquire 3D datasets; 3) to produce a model allowing their co-visualisation; 4) to interpret 3D floc structure. To reduce the chance of structural alterations during analysis samples were first 'fixed' in 2.5% glutaraldehyde/2% formaldehyde before being embedding in Durcupan resin. Intermediate steps were implemented to improve contrast and remove pore water, achieved by the

  10. How oblique extension and structural inheritance control rift segment linkage: Insights from 4D analogue models

    NASA Astrophysics Data System (ADS)

    Zwaan, Frank; Schreurs, Guido

    2016-04-01

    the extension direction. This occurs when rifts are laterally sufficiently far apart and local effects probably overrule the far-field stresses. Our CT- and PIV-analyses will reveal this surprising effect in more detail. The influence of rift-connecting seeds (model series 1) on rift interaction is limited. Only when they are oriented some 30° or more oblique to the extension direction, can they be activated. In most of these cases oblique-slip fault zones (transfer zones) form along the rift-connecting weak zone, linking the rift segments. Transfer zone structures depend on the angle between the seed orientation and extension direction: the higher the angle, the wider the fault zone. However, these observations are only valid under dextral oblique extension conditions; none of our rift-connecting weak zones (connecting right-stepping rift segments) are activated when sinistral oblique extension is applied. Still our models show how structural inheritance can control the orientation and structuration of transfer zones between rift segments that later on might evolve into oceanic transform faults. REFERENCE Zwaan, F., Schreurs, G., Naliboff, J., Buiter, S.J.H. (in revision) Insights into the effects of oblique extension on continental rift interaction from 3D analogue and numerical models.

  11. The InSight VBB Seismometer: From Signal and Noise to Internal Structure.

    NASA Astrophysics Data System (ADS)

    Lognonne, P.; Banerdt, W. B.; Giardini, D.; Christensen, U.; Mimoun, D.; de Raucourt, S.; Spiga, A.; Garcia, R.; Mocquet, A.; Panning, M.; Beucler, E.; Boschi, L.; Goetz, W.; Pike, T.; Johnson, C.; Weber, R.; Wieczorek, M.; Larmat, K.; Kobayashi, N.; Tromp, J.

    2012-04-01

    The InSight Mission is one of three NASA down-selected projects in competition for the 2010 Discovery AO. The goal of SEIS (a very-broad-band (VBB) seismometer), the mission's core instrument, is to determine the interior structure and seismic activity of the planet. If selected by NASA in mid 2012, the mission will be launched in 2016 and will operate on the Martian surface during two earth years after landing. We present modeling of both seismic amplitudes and seismic noise, in the later case by advance modeling of the interaction of the atmosphere with the Martian ground or seismic waves modeling fully taken into account the expected 3D structure of the crust, and use the later estimations to determine the detection threshold of the VBB seismometer. Both quakes and impacts are considered, and in the later case, impacts data and associated seismic responses of the Apollo seismic experiment are used to better model the seismic efficiency of the impacts and the associated source functions. For quakes, amplitudes of the core phases are estimated and discussed, as well as the dependence of signal amplitudes to attenuation and the associated importance of broad band seismology. As only one seismic station is available, structure in-version will be performed using: - Secondary seismic data which do not depend on the event location: e.g., free oscillation frequencies for the largest quakes constraining the interior down to 200 km and receiver functions constraining the crust-mantle discontinuity below the landing site ; - Seismic impact data from impacts post-located by a Mars orbiter; - Seismic data associated with events with more than 3 different wave arrival time determinations (for Vs in-version with constant Vp/Vs) or more than 4 (for full Vp, Vs inversions). We estimate that about 35 events will be detected with both P and S waves ( and for most R1-Lg surface waves) and about 10 with P, S and R1/R2/R3 surface waves and core phases (e.g., PcP, ScP) with high

  12. X-ray Raman Scattering at Extreme Conditions: Insights to Local Structure, Oxidation and Spin state

    NASA Astrophysics Data System (ADS)

    Wilke, M.; Sternemann, C.; Sahle, C.; Spiekermann, G.; Nyrow, A.; Weis, C.; Cerantola, V.; Schmidt, C.; Yavas, H.

    2015-12-01

    In the last decades, X-ray spectroscopic techniques using very intense synchrotron radiation (SR) have become indispensable tools for studying geomaterials. Due to the rather low absorption of hard X-rays, SR opens up the possibility to perform measurements in high-pressure, high temperature cells. The range of elements accessible by X-ray absorption spectroscopy (XAFS) techniques in these cells is limited by the absorption of X-rays due to the sample environment, i.e. the diamond windows. The indirect measurement of XAFS spectra by inelastic X-ray Raman scattering (XRS) provides a workaround to access absorption edges at low energies (e.g. low Z elements). Therefore, XRS enables measurements that are similar to electron energy loss spectroscopy but offer to measure at in-situ conditions and not just in vacuum. Measurements of the O K-edge of H2O from ambient to supercritical PT-conditions (up to 600°C @ 134 MPa; 400°C @ 371 MPa) were used to trace structural changes of the hydrogen-bonded network, which controls many physical and chemical properties of H2O [1]. The Fe M3,2-edge measured by XRS were used to characterize the oxidation state and local structure in crystalline compounds and glasses [2]. Furthermore, the M3,2 yields detailed insight to the crystal-field splitting and electronic spin state. In a reconnaissance study, the pressure-induced high-spin to low-spin transition of Fe in FeS between 6 and 8 GPa was measured. By multiplet calculations of the spectra for octahedral Fe2+, a difference in crystal field splitting between the two states of ca. 1.7 eV was estimated [3]. Finally, we successfully assessed the electronic structure of Fe in siderite by measurements of M and L-edge up to 50 GPa, covering the spin transition between 40 and 45 GPa. [1] Sahle et al. (2013) PNAS, doi: 10.1073/pnas.1220301110.. [2] Nyrow et al. (2014) Contrib Mineral Petrol 167, 1012. [3] Nyrow et al. (2014) Appl Phys Lett 104, 262408.

  13. CYANOMETHANIMINE ISOMERS IN COLD INTERSTELLAR CLOUDS: INSIGHTS FROM ELECTRONIC STRUCTURE AND KINETIC CALCULATIONS

    SciTech Connect

    Vazart, Fanny; Latouche, Camille; Skouteris, Dimitrios; Barone, Vincenzo; Balucani, Nadia

    2015-09-10

    New insights into the formation of interstellar cyanomethanimine, a species of great relevance in prebiotic chemistry, are provided by electronic structure and kinetic calculations for the reaction CN + CH{sub 2} = NH. This reaction is a facile formation route of Z,E-C-cyanomethanimine, even under the extreme conditions of density and temperature typical of cold interstellar clouds. E-C-cyanomethanimine has been recently identified in Sgr B2(N) in the Green Bank Telescope (GBT) PRIMOS survey by P. Zaleski et al. and no efficient formation routes have been envisaged so far. The rate coefficient expression for the reaction channel leading to the observed isomer E-C-cyanomethanimine is 3.15 × 10-10 × (T/300){sup 0.152} × e{sup (−0.0948/T)}. According to the present study, the more stable Z-C-cyanomethanimine isomer is formed with a slightly larger yield (4.59 × 10{sup −10} × (T/300){sup 0.153} × e{sup (−0.0871/T)}. As the detection of E-isomer is favored due to its larger dipole moment, the missing detection of the Z-isomer can be due to the sensitivity limit of the GBT PRIMOS survey and the detection of the Z-isomer should be attempted with more sensitive instrumentation. The CN + CH{sub 2} = NH reaction can also play a role in the chemistry of the upper atmosphere of Titan where the cyanomethanimine products can contribute to the buildup of the observed nitrogen-rich organic aerosols that cover the moon.

  14. Electric Field Effects on the Intermolecular Interactions in Water Whiskers: Insight from Structures, Energetics, and Properties

    SciTech Connect

    Bai, Yang; He, Hui-Min; Li, Ying; Zhou, Zhong-Jun; Wang, Jia-Jun; Wu, Di; Chen, Wei; Gu, Feng-Long; Sumpter, Bobby G.; Huang, Jingsong

    2015-02-19

    Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field, the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H2O)2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.

  15. Electric Field Effects on the Intermolecular Interactions in Water Whiskers: Insight from Structures, Energetics, and Properties

    DOE PAGES

    Bai, Yang; He, Hui-Min; Li, Ying; Zhou, Zhong-Jun; Wang, Jia-Jun; Wu, Di; Chen, Wei; Gu, Feng-Long; Sumpter, Bobby G.; Huang, Jingsong

    2015-02-19

    Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field,more » the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H2O)2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.« less

  16. Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects.

    PubMed

    Botías, Cristina; David, Arthur; Hill, Elizabeth M; Goulson, Dave

    2016-10-01

    Neonicotinoid insecticides are commonly-used as seed treatments on flowering crops such as oilseed rape. Their persistence and solubility in water increase the chances of environmental contamination via surface-runoff or drainage into areas adjacent to the crops. However, their uptake and fate into non-target vegetation remains poorly understood. In this study, we analysed samples of foliage collected from neonicotinoid seed-treated oilseed rape plants and also compared the levels of neonicotinoid residues in foliage (range: 1.4-11ng/g) with the levels found in pollen collected from the same plants (range: 1.4-22ng/g). We then analysed residue levels in foliage from non-target plants growing in the crop field margins (range: ≤0.02-106ng/g). Finally, in order to assess the possible risk posed by the peak levels of neonicotinoids that we detected in foliage for farmland phytophagous and predatory insects, we compared the maximum concentrations found against the LC50 values reported in the literature for a set of relevant insect species. Our results suggest that neonicotinoid seed-dressings lead to widespread contamination of the foliage of field margin plants with mixtures of neonicotinoid residues, where levels are very variable and discontinuous, but sometimes overlap with lethal concentrations reported for some insect species. Understanding the distribution of pesticides in the environment and their potential effects on biological communities is crucial to properly assess current agricultural management and schemes with biodiversity conservation aims in farmland. PMID:27220104

  17. SnoRNAs from the filamentous fungus Neurospora crassa: structural, functional and evolutionary insights

    PubMed Central

    2009-01-01

    Background SnoRNAs represent an excellent model for studying the structural and functional evolution of small non-coding RNAs involved in the post-transcriptional modification machinery for rRNAs and snRNAs in eukaryotic cells. Identification of snoRNAs from Neurospora crassa, an important model organism playing key roles in the development of modern genetics, biochemistry and molecular biology will provide insights into the evolution of snoRNA genes in the fungus kingdom. Results Fifty five box C/D snoRNAs were identified and predicted to guide 71 2'-O-methylated sites including four sites on snRNAs and three sites on tRNAs. Additionally, twenty box H/ACA snoRNAs, which potentially guide 17 pseudouridylations on rRNAs, were also identified. Although not exhaustive, the study provides the first comprehensive list of two major families of snoRNAs from the filamentous fungus N. crassa. The independently transcribed strategy dominates in the expression of box H/ACA snoRNA genes, whereas most of the box C/D snoRNA genes are intron-encoded. This shows that different genomic organizations and expression modes have been adopted by the two major classes of snoRNA genes in N. crassa . Remarkably, five gene clusters represent an outstanding organization of box C/D snoRNA genes, which are well conserved among yeasts and multicellular fungi, implying their functional importance for the fungus cells. Interestingly, alternative splicing events were found in the expression of two polycistronic snoRNA gene hosts that resemble the UHG-like genes in mammals. Phylogenetic analysis further revealed that the extensive separation and recombination of two functional elements of snoRNA genes has occurred during fungus evolution. Conclusion This is the first genome-wide analysis of the filamentous fungus N. crassa snoRNAs that aids in understanding the differences between unicellular fungi and multicellular fungi. As compared with two yeasts, a more complex pattern of methylation guided by

  18. Outward growth of Tibetan Plateau: Insights from joint inversion of lithosphere structure

    NASA Astrophysics Data System (ADS)

    Song, X.; Li, J.; Bao, X.; Zhu, L.

    2014-12-01

    Models for the growth of the Tibetan plateau have been a subject of great debate for decades. Here we add to the debate with new insights from an advanced imaging of the lithosphere structure of the western China. To resolve the ambiguity of model parameters and to improve resolution in seismic imaging, a combination of different data sets that have sensitivities to different parameters is required. We've recently developed joint-inversion methods involving Pn travel times, receiver functions, and surface wave dispersion measurements and applied them systematically to seismic stations in western China to obtain improved 3D P and S lithosphere models. Our models show significantly higher Vp/Vs ratios in northern Himalaya Block and southern Qiangtang Block than in the Lhasa Block. Mid-crustal low velocity zone (LVZ) is observed under much of the Tibetan Plateau. However, it is much more pronounced under the outer regions of the plateau (the Himalaya and Qiangtang Blocks) than under its interior (the Lhasa Block). The location of pronounced mid-crustal LVZ correlates (anti-correlates) with the distribution of seismicity in the plateau; the low seismicity areas have more pronounced LVZs and greater Vp/Vs values and the high seismic areas have less pronounced LVZs and smaller Vp/Vs values. The observations support the existence of a proto-Tibetan Plateau core and the outward growth of the margins at a later stage after the India-Eurasian collision (Wang C.S. et al., PNAS, 2008). The proto-plateau is more rigid and can sustain stress to cause brittle failure of earthquakes while the materials at the margins are weaker and can be subject to plastic deformation with much less seismicity. In this model, the proto-plateau core acts as an efficient medium for the stress transfer from the collision front to the margins for the outward growth of the plateau. The crust and mantle lithosphere act as a coherent unit as indicated by the consistent pattern of seismic anomalies with

  19. Determination of neonicotinoid insecticides in environmental samples by micellar electrokinetic chromatography using solid-phase treatments.

    PubMed

    Ettiene, Gretty; Bauza, Roberto; Plata, María R; Contento, Ana M; Ríos, Angel

    2012-10-01

    A sensitive and reliable method based on MEKC has been developed and validated for trace determination of neonicotinoid insecticides (thiamethoxam, acetamiprid, and imidacloprid) and the metabolite 6-chloronicotinic acid in water and soil matrices. Optimum separation of the neonicotinoid insecticides was obtained on a 58 cm long capillary (75 μm id) using as the running electrolyte 40 mM SDS, 5 mM borate (pH 10.4), and 5% (v/v) methanol at a temperature of 25°C, a voltage of 25 kV and with hydrodynamic injection (10 s). The analysis time was less than 7 min. Prior to MEKC determination, the samples were purified and enriched by carrying out extraction-preconcentration steps. For aqueous samples, off-line SPE with a sorptive material such as Strata-X (polymeric hydrophobic sorbent) and octadecylsilane (C₁₈) was carried out to clean up and preconcentrate the insecticides. However, for soil samples, matrix solid-phase dispersion (MSPD) was applied with C₁₈ used as the dispersant. Good linearity, accuracy, and precision were obtained and the detection limits were in the range between 0.01 and 0.07 μg mL⁻¹ for river water and 0.17 and 0.37 μg g⁻¹ for soil samples. Recovery levels reached greater than 92% for all of the assayed neonicotinoids in river water samples with Strata-X. In soil matrices, the best recoveries (63-99%) were obtained with MSPD. PMID:22997021

  20. Evaluation of leaching potential of three systemic neonicotinoid insecticides in vineyard soil.

    PubMed

    Kurwadkar, Sudarshan; Wheat, Remington; McGahan, Donald G; Mitchell, Forrest

    2014-12-01

    Dinotefuran (DNT), imidacloprid (IMD), and thiamethoxam (THM) are commonly used neonicotinoid insecticides in a variety of agriculture operations. Although these insecticides help growers control pest infestation, the residual environmental occurrence of insecticides may cause unintended adverse ecological consequences to non-target species. In this study, the leaching behavior of DNT, IMD, and THM was investigated in soils collected from an active AgriLife Research Extension Center (AREC) vineyard. A series of column experiments were conducted to evaluate the leaching potential of insecticides under two experimental scenarios: a) individual pulse mode, and b) mixed pulse mode. In both scenarios, the breakthrough pattern of the insecticides in the mostly acidic to neutral vineyard soil clearly demonstrates medium to high leachability. Of the three insecticides studied for leaching, DNT has exhibited high leaching potential and exited the column with fewer pore volumes, whereas IMD was retained for longer, indicating lower leachability. Relative differences in leaching behavior of neonicotinoids could be attributed to their solubility with the leaching pattern IMDneonicotinoid insecticides based on the leachability indices such as groundwater ubiquity score, relative leaching potential, and partitioning between different environmental matrices through a fugacity-based equilibrium criterion model clearly indicates that DNT may pose a greater threat to aquatic resources compared to IMD and THM.

  1. Evaluation of leaching potential of three systemic neonicotinoid insecticides in vineyard soil

    NASA Astrophysics Data System (ADS)

    Kurwadkar, Sudarshan; Wheat, Remington; McGahan, Donald G.; Mitchell, Forrest

    2014-12-01

    Dinotefuran (DNT), imidacloprid (IMD), and thiamethoxam (THM) are commonly used neonicotinoid insecticides in a variety of agriculture operations. Although these insecticides help growers control pest infestation, the residual environmental occurrence of insecticides may cause unintended adverse ecological consequences to non-target species. In this study, the leaching behavior of DNT, IMD, and THM was investigated in soils collected from an active AgriLife Research Extension Center (AREC) vineyard. A series of column experiments were conducted to evaluate the leaching potential of insecticides under two experimental scenarios: a) individual pulse mode, and b) mixed pulse mode. In both scenarios, the breakthrough pattern of the insecticides in the mostly acidic to neutral vineyard soil clearly demonstrates medium to high leachability. Of the three insecticides studied for leaching, DNT has exhibited high leaching potential and exited the column with fewer pore volumes, whereas IMD was retained for longer, indicating lower leachability. Relative differences in leaching behavior of neonicotinoids could be attributed to their solubility with the leaching pattern IMD < THM < DNT showing strong correlation with increasing aqueous solubility 610 mg/L < 4100 mg/L < 39,830 mg/L. Triplicate column study experiments were conducted to evaluate the consistency of the breakthrough pattern of these insecticides. The repeatability of the breakthrough curves shows that both DNT and IMD are reproducible between runs, whereas, THM shows some inconsistency. Leaching behavior of neonicotinoid insecticides based on the leachability indices such as groundwater ubiquity score, relative leaching potential, and partitioning between different environmental matrices through a fugacity-based equilibrium criterion model clearly indicates that DNT may pose a greater threat to aquatic resources compared to IMD and THM.

  2. Adulticidal & larvicidal efficacy of three neonicotinoids against insecticide susceptible & resistant mosquito strains

    PubMed Central

    Uragayala, Sreehari; Verma, Vaishali; Natarajan, Elamathi; Velamuri, Poonam Sharma; Kamaraju, Raghavendra

    2015-01-01

    Background & objectives: Due to ever growing insecticide resistance in mosquitoes to commonly used insecticides in many parts of the globe, there is always a need for introduction of new insecticides for the control of resistant vector mosquitoes. In this study, larvicidal and adulticidal efficacies of three neonicotinoids (imidacloprid, thiacloprid and thiamethoxam) were tested against resistant and susceptible populations of Anopheles stephensi Liston 1901, Aedes (Stegomyia) aegypti Linnaeus, and Culex quinquefasciatus Say (Diptera: Culicidae). Methods: Laboratory-reared mosquito species were used. Insecticide susceptibility tests were done using standard WHO procedures and using diagnostic dosages of insecticide test papers and larvicides. Adulticidal efficacy of candidate insecticides was assessed using topical application method and larval bioassays were conducted using standard WHO procedure. Results: The results of topical application on 3-5 day old female mosquitoes indicated that resistant strain of An. stephensi registered lower LC50 values than the susceptible strain. Among the three insecticides tested, thiacloprid was found more effective than the other two insecticides. Culex quinquefasciatus registered lowest LC50 for imidacloprid than the other two mosquito species tested. In larval bioassays, the LC50 values registered for imidacloprid were in the order of Cx. quinquefasciatus neonicotinoids tested, and the possibility of using neonicotinoids for the control of resistant mosquitoes

  3. Crystal structure of Anoxybacillus α-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass.

    PubMed

    Chai, Kian Piaw; Othman, Noor Farhan Binti; Teh, Aik-Hong; Ho, Kok Lian; Chan, Kok-Gan; Shamsir, Mohd Shahir; Goh, Kian Mau; Ng, Chyan Leong

    2016-01-01

    A new subfamily of glycosyl hydrolase family GH13 was recently proposed for α-amylases from Anoxybacillus species (ASKA and ADTA), Geobacillus thermoleovorans (GTA, Pizzo, and GtamyII), Bacillus aquimaris (BaqA), and 95 other putative protein homologues. To understand this new GH13 subfamily, we report crystal structures of truncated ASKA (TASKA). ASKA is a thermostable enzyme capable of producing high levels of maltose. Unlike GTA, biochemical analysis showed that Ca(2+) ion supplementation enhances the catalytic activities of ASKA and TASKA. The crystal structures reveal the presence of four Ca(2+) ion binding sites, with three of these binding sites are highly conserved among Anoxybacillus α-amylases. This work provides structural insights into this new GH13 subfamily both in the apo form and in complex with maltose. Furthermore, structural comparison of TASKA and GTA provides an overview of the conformational changes accompanying maltose binding at each subsite. PMID:26975884

  4. Crystal structure of Anoxybacillus α-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass

    PubMed Central

    Chai, Kian Piaw; Othman, Noor Farhan Binti; Teh, Aik-Hong; Ho, Kok Lian; Chan, Kok-Gan; Shamsir, Mohd Shahir; Goh, Kian Mau; Ng, Chyan Leong

    2016-01-01

    A new subfamily of glycosyl hydrolase family GH13 was recently proposed for α-amylases from Anoxybacillus species (ASKA and ADTA), Geobacillus thermoleovorans (GTA, Pizzo, and GtamyII), Bacillus aquimaris (BaqA), and 95 other putative protein homologues. To understand this new GH13 subfamily, we report crystal structures of truncated ASKA (TASKA). ASKA is a thermostable enzyme capable of producing high levels of maltose. Unlike GTA, biochemical analysis showed that Ca2+ ion supplementation enhances the catalytic activities of ASKA and TASKA. The crystal structures reveal the presence of four Ca2+ ion binding sites, with three of these binding sites are highly conserved among Anoxybacillus α-amylases. This work provides structural insights into this new GH13 subfamily both in the apo form and in complex with maltose. Furthermore, structural comparison of TASKA and GTA provides an overview of the conformational changes accompanying maltose binding at each subsite. PMID:26975884

  5. Low doses of neonicotinoid pesticides in food rewards impair short-term olfactory memory in foraging-age honeybees.

    PubMed

    Wright, Geraldine A; Softley, Samantha; Earnshaw, Helen

    2015-10-19

    Neonicotinoids are often applied as systemic seed treatments to crops and have reported negative impact on pollinators when they appear in floral nectar and pollen. Recently, we found that bees in a two-choice assay prefer to consume solutions containing field-relevant doses of the neonicotinoid pesticides, imidacloprid (IMD) and thiamethoxam (TMX), to sucrose alone. This suggests that neonicotinoids enhance the rewarding properties of sucrose and that low, acute doses could improve learning and memory in bees. To test this, we trained foraging-age honeybees to learn to associate floral scent with a reward containing nectar-relevant concentrations of IMD and TMX and tested their short (STM) and long-term (LTM) olfactory memories. Contrary to our predictions, we found that none of the solutions enhanced the rate of olfactory learning and some of them impaired it. In particular, the effect of 10 nM IMD was observed by the second conditioning trial and persisted 24 h later. In most other groups, exposure to IMD and TMX affected STM but not LTM. Our data show that negative impacts of low doses of IMD and TMX do not require long-term exposure and suggest that impacts of neonicotinoids on olfaction are greater than their effects on rewarding memories.

  6. Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees.

    PubMed

    Laycock, Ian; Cotterell, Katie C; O'Shea-Wheller, Thomas A; Cresswell, James E

    2014-02-01

    Neonicotinoid pesticides are currently implicated in the decline of wild bee populations. Bumble bees, Bombus spp., are important wild pollinators that are detrimentally affected by ingestion of neonicotinoid residues. To date, imidacloprid has been the major focus of study into the effects of neonicotinoids on bumble bee health, but wild populations are increasingly exposed to alternative neonicotinoids such as thiamethoxam. To investigate whether environmentally realistic levels of thiamethoxam affect bumble bee performance over a realistic exposure period, we exposed queenless microcolonies of Bombus terrestris L. workers to a wide range of dosages up to 98 μgkg(-1) in dietary syrup for 17 days. Results showed that bumble bee workers survived fewer days when presented with syrup dosed at 98 μg thiamethoxamkg(-1), while production of brood (eggs and larvae) and consumption of syrup and pollen in microcolonies were significantly reduced by thiamethoxam only at the two highest concentrations (39, 98 μgkg(-1)). In contrast, we found no detectable effect of thiamethoxam at levels typically found in the nectars of treated crops (between 1 and 11 μgkg(-1)). By comparison with published data, we demonstrate that during an exposure to field-realistic concentrations lasting approximately two weeks, brood production in worker bumble bees is more sensitive to imidacloprid than thiamethoxam. We speculate that differential sensitivity arises because imidacloprid produces a stronger repression of feeding in bumble bees than thiamethoxam, which imposes a greater nutrient limitation on production of brood.

  7. Repression and recuperation of brood production in Bombus terrestris bumble bees exposed to a pulse of the neonicotinoid pesticide imidacloprid.

    PubMed

    Laycock, Ian; Cresswell, James E

    2013-01-01

    Currently, there is concern about declining bee populations and some blame the residues of neonicotinoid pesticides in the nectar and pollen of treated crops. Bumble bees are important wild pollinators that are widely exposed to dietary neonicotinoids by foraging in agricultural environments. In the laboratory, we tested the effect of a pulsed exposure (14 days 'on dose' followed by 14 days 'off dose') to a common neonicotinoid, imidacloprid, on the amount of brood (number of eggs and larvae) produced by Bombus terrestris L. bumble bees in small, standardised experimental colonies (a queen and four adult workers). During the initial 'on dose' period we observed a dose-dependent repression of brood production in colonies, with productivity decreasing as dosage increased up to 98 µg kg(-1) dietary imidacloprid. During the following 'off dose' period, colonies showed a dose-dependent recuperation such that total brood production during the 28-day pulsed exposure was not correlated with imidacloprid up to 98 µg kg(-1). Our findings raise further concern about the threat to wild bumble bees from neonicotinoids, but they also indicate some resilience to a pulsed exposure, such as that arising from the transient bloom of a treated mass-flowering crop.

  8. Low doses of neonicotinoid pesticides in food rewards impair short-term olfactory memory in foraging-age honeybees.

    PubMed

    Wright, Geraldine A; Softley, Samantha; Earnshaw, Helen

    2015-01-01

    Neonicotinoids are often applied as systemic seed treatments to crops and have reported negative impact on pollinators when they appear in floral nectar and pollen. Recently, we found that bees in a two-choice assay prefer to consume solutions containing field-relevant doses of the neonicotinoid pesticides, imidacloprid (IMD) and thiamethoxam (TMX), to sucrose alone. This suggests that neonicotinoids enhance the rewarding properties of sucrose and that low, acute doses could improve learning and memory in bees. To test this, we trained foraging-age honeybees to learn to associate floral scent with a reward containing nectar-relevant concentrations of IMD and TMX and tested their short (STM) and long-term (LTM) olfactory memories. Contrary to our predictions, we found that none of the solutions enhanced the rate of olfactory learning and some of them impaired it. In particular, the effect of 10 nM IMD was observed by the second conditioning trial and persisted 24 h later. In most other groups, exposure to IMD and TMX affected STM but not LTM. Our data show that negative impacts of low doses of IMD and TMX do not require long-term exposure and suggest that impacts of neonicotinoids on olfaction are greater than their effects on rewarding memories. PMID:26477973

  9. Low doses of neonicotinoid pesticides in food rewards impair short-term olfactory memory in foraging-age honeybees

    PubMed Central

    Wright, Geraldine A.; Softley, Samantha; Earnshaw, Helen

    2015-01-01

    Neonicotinoids are often applied as systemic seed treatments to crops and have reported negative impact on pollinators when they appear in floral nectar and pollen. Recently, we found that bees in a two-choice assay prefer to consume solutions containing field-relevant doses of the neonicotinoid pesticides, imidacloprid (IMD) and thiamethoxam (TMX), to sucrose alone. This suggests that neonicotinoids enhance the rewarding properties of sucrose and that low, acute doses could improve learning and memory in bees. To test this, we trained foraging-age honeybees to learn to associate floral scent with a reward containing nectar-relevant concentrations of IMD and TMX and tested their short (STM) and long-term (LTM) olfactory memories. Contrary to our predictions, we found that none of the solutions enhanced the rate of olfactory learning and some of them impaired it. In particular, the effect of 10 nM IMD was observed by the second conditioning trial and persisted 24 h later. In most other groups, exposure to IMD and TMX affected STM but not LTM. Our data show that negative impacts of low doses of IMD and TMX do not require long-term exposure and suggest that impacts of neonicotinoids on olfaction are greater than their effects on rewarding memories. PMID:26477973

  10. Assessment of the environmental exposure of honeybees to particulate matter containing neonicotinoid insecticides coming from corn coated seeds.

    PubMed

    Tapparo, Andrea; Marton, Daniele; Giorio, Chiara; Zanella, Alessandro; Soldà, Lidia; Marzaro, Matteo; Vivan, Linda; Girolami, Vincenzo

    2012-03-01

    Since seed coating with neonicotinoid insecticides was introduced in the late 1990s, European beekeepers have reported severe colony losses in the period of corn sowing (spring). As a consequence, seed-coating neonicotinoid insecticides that are used worldwide on corn crops have been blamed for honeybee decline. In view of the currently increasing crop production, and also of corn as a renewable energy source, the correct use of these insecticides within sustainable agriculture is a cause of concern. In this paper, a probable--but so far underestimated--route of environmental exposure of honeybees to and intoxication with neonicotinoid insecticides, namely, the atmospheric emission of particulate matter containing the insecticide by drilling machines, has been quantitatively studied. Using optimized analytical procedures, quantitative measurements of both the emitted particulate and the consequent direct contamination of single bees approaching the drilling machine during the foraging activity have been determined. Experimental results show that the environmental release of particles containing neonicotinoids can produce high exposure levels for bees, with lethal effects compatible with colony losses phenomena observed by beekeepers.

  11. Repression and Recuperation of Brood Production in Bombus terrestris Bumble Bees Exposed to a Pulse of the Neonicotinoid Pesticide Imidacloprid

    PubMed Central

    Laycock, Ian; Cresswell, James E.

    2013-01-01

    Currently, there is concern about declining bee populations and some blame the residues of neonicotinoid pesticides in the nectar and pollen of treated crops. Bumble bees are important wild pollinators that are widely exposed to dietary neonicotinoids by foraging in agricultural environments. In the laboratory, we tested the effect of a pulsed exposure (14 days ‘on dose’ followed by 14 days ‘off dose’) to a common neonicotinoid, imidacloprid, on the amount of brood (number of eggs and larvae) produced by Bombus terrestris L. bumble bees in small, standardised experimental colonies (a queen and four adult workers). During the initial ‘on dose’ period we observed a dose-dependent repression of brood production in colonies, with productivity decreasing as dosage increased up to 98 µg kg−1 dietary imidacloprid. During the following ‘off dose’ period, colonies showed a dose-dependent recuperation such that total brood production during the 28-day pulsed exposure was not correlated with imidacloprid up to 98 µg kg−1. Our findings raise further concern about the threat to wild bumble bees from neonicotinoids, but they also indicate some resilience to a pulsed exposure, such as that arising from the transient bloom of a treated mass-flowering crop. PMID:24224015

  12. Scrutinizing the Noninnocence of Quinone Ligands in Ruthenium Complexes: Insights from Structural, Electronic, Energy, and Effective Oxidation State Analyses.

    PubMed

    Skara, Gabriella; Gimferrer, Marti; De Proft, Frank; Salvador, Pedro; Pinter, Balazs

    2016-03-01

    The most relevant manifestations of ligand noninnocence of quinone and bipyridine derivatives are thoroughly scrutinized and discussed through an extensive and systematic set of octahedral ruthenium complexes, [(en)2RuL](z), in four oxidation states (z = +3, +2, +1, and 0). The characteristic structural deformation of ligands upon coordination/noninnocence is put into context with the underlying electronic structure of the complexes and its change upon reduction. In addition, by means of decomposing the corresponding reductions into electron transfer and structural relaxation subprocesses, the energetic contribution of these structural deformations to the redox energetics is revealed. The change of molecular electron density upon metal- and ligand-centered reductions is also visualized and shown to provide novel insights into the corresponding redox processes. Moreover, the charge distribution of the π-subspace is straightforwardly examined and used as indicator of ligand noninnocence in the distinct oxidation states of the complexes. The aromatization/dearomatization processes of ligand backbones are also monitored using magnetic (NICS) and electronic (PDI) indicators of aromaticity, and the consequences to noninnocent behavior are discussed. Finally, the recently developed effective oxidation state (EOS) analysis is utilized, on the one hand, to test its applicability for complexes containing noninnocent ligands, and, on the other hand, to provide new insights into the magnitude of state mixings in the investigated complexes. The effect of ligand substitution, nature of donor atom, ligand frame modification on these manifestations, and measures is discussed in an intuitive and pedagogical manner. PMID:26866981

  13. Structural Insights into Solid-to-Solid Phase Transition and Modulated Crystal Formation in Octyl-β-d-Galactoside Crystals.

    PubMed

    Ogawa, Shigesaburo; Ozaki, Yukihiro; Takahashi, Isao

    2016-09-19

    Despite the significance of synthetic monotailed β-linked galactolipids, for a detailed understanding of natural galactolipids, many aspects of these β-linked galactolipids' crystal structures such as temperature-dependence and hydration characteristics remain inadequately understood. In this manuscript, we demonstrated detailed insight of crystal characteristics of one of the simplest monotailed galactolipids, octyl-β-d-galactoside (MOβ-Gal), using thermal analyses, Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD) measurements and grazing-incidence wide-angle X-ray diffraction (GI-WAXD) analysis. As a result, it was revealed that the MOβ-Gal anhydrous crystal showed a continuous structural change from the high-symmetry structure to low-symmetry crystal lattice via the strengthened hydrogen bonding interaction as the temperature decreased. In addition, the hemihydrate crystal was found to be in the modulated "ribbon phase". These insights strongly suggest that β-linked galactolipids possess intrinsic characteristics necessary to form a modulated structure even in the crystal state and demonstrate the importance of the presence of tiny amounts of water as cushioning media for preventing order parameter evolution.

  14. New Structural Insights into the Genome and Minor Capsid Proteins of BK Polyomavirus using Cryo-Electron Microscopy.

    PubMed

    Hurdiss, Daniel L; Morgan, Ethan L; Thompson, Rebecca F; Prescott, Emma L; Panou, Margarita M; Macdonald, Andrew; Ranson, Neil A

    2016-04-01

    BK polyomavirus is the causative agent of several diseases in transplant patients and the immunosuppressed. In order to better understand the structure and life cycle of BK, we produced infectious virions and VP1-only virus-like particles in cell culture, and determined their three-dimensional structures using cryo-electron microscopy (EM) and single-particle image processing. The resulting 7.6-Å resolution structure of BK and 9.1-Å resolution of the virus-like particles are the highest-resolution cryo-EM structures of any polyomavirus. These structures confirm that the architecture of the major structural protein components of these human polyomaviruses are similar to previous structures from other hosts, but give new insight into the location and role of the enigmatic minor structural proteins, VP2 and VP3. We also observe two shells of electron density, which we attribute to a structurally ordered part of the viral genome, and discrete contacts between this density and both VP1 and the minor capsid proteins.

  15. Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry.

    PubMed

    Taira, Kumiko; Fujioka, Kazutoshi; Aoyama, Yoshiko

    2013-01-01

    Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human

  16. Qualitative Profiling and Quantification of Neonicotinoid Metabolites in Human Urine by Liquid Chromatography Coupled with Mass Spectrometry

    PubMed Central

    Taira, Kumiko; Fujioka, Kazutoshi; Aoyama, Yoshiko

    2013-01-01

    Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human

  17. Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry.

    PubMed

    Taira, Kumiko; Fujioka, Kazutoshi; Aoyama, Yoshiko

    2013-01-01

    Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human

  18. The neonicotinoid imidacloprid impairs honey bee aversive learning of simulated predation.

    PubMed

    Zhang, Erica; Nieh, James C

    2015-10-01

    Neonicotinoid insecticides can impair bee learning and memory--cognitive features that play a key role in colony fitness because they facilitate foraging. For example, the commonly used neonicotinoid imidacloprid reduces honey bee olfactory learning. However, no studies have previously determined whether imidacloprid can impair aversive associative learning, although such learning should enhance bee survival by allowing bees to avoid dangerous foraging sites. To mimic attempted predation of foragers, we developed an electro-mechanical predator that consistently attacked foragers with a pinching bite at a fixed force and elicited aversive olfactory learning in a sting extension response (SER) assay. We show that chronic exposure to a sublethal concentration of imidacloprid (25.6 µg l(-1)=20.8 ppb) over 4 days (mean of 1.5 µg per bee day(-1)), significantly impaired aversive short-term learning and memory retention. Imidacloprid treatment reduced short-term learning by 87% and memory retention by 85% in comparison with control bees. Imidacloprid therefore impairs the ability of honey bees to associate a naturalistic predation stimulus--biting--with floral odor compounds. Such learning should enhance bee survival, suggesting that xenobiotics could alter more complex ecological interactions such as predator-prey relationships. PMID:26347552

  19. Effect of insecticide management history on emergence phenology and neonicotinoid resistance in Leptinotarsa decemlineata (Coleoptera: Chrysomelidae).

    PubMed

    Huseth, A S; Groves, R L

    2013-12-01

    Emergence phenology and fitness attributes of several Colorado potato beetle, Leptinotarsa decemlineata (Say), populations were measured under field and greenhouse conditions. Anecdotal observations by producers and pest managers in many locations of the upper Midwest increasingly suggested that select populations of Colorado potato beetle were emerging over a longer period in the spring and were less sensitive to systemic neonicotinoids in cultivated potato. These changes in emergence phenology may be related to changes in systemic insecticide concentration over time. Specifically, a prolonged period of adult emergence in the spring increases the potential of low-dose chronic exposure to systemic neonicotinoid insecticides in potato. In 2010 and 2011, our objectives were twofold: 1) establish a common garden experiment to compare the emergence phenology of Colorado potato beetle populations uniquely managed with variable insecticide inputs, and 2) measure postdormancy fitness of emerged adult beetles from among these selected populations. Cumulative adult emergence was modeled with logistic regression. Results from this study found no clear evidence for direct relationships between phenology and management history or resistance. Differences in reproductive capacity, sex ratio, and body size were apparent in some instances. However, these results did not uniformly correspond to one specific form of potato pest management tested here. In this study, long-term reliance on systemic insecticides for Colorado potato beetle control did not serve as a strong predictor for variable life history for selected populations in Wisconsin. PMID:24498751

  20. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide.

    PubMed

    Démares, Fabien J; Crous, Kendall L; Pirk, Christian W W; Nicolson, Susan W; Human, Hannelie

    2016-01-01

    Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera). Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed. PMID:27272274

  1. Leaching of the Neonicotinoids Thiamethoxam and Imidacloprid from Sugar Beet Seed Dressings to Subsurface Tile Drains.

    PubMed

    Wettstein, Felix E; Kasteel, Roy; Garcia Delgado, Maria F; Hanke, Irene; Huntscha, Sebastian; Balmer, Marianne E; Poiger, Thomas; Bucheli, Thomas D

    2016-08-24

    Pesticide transport from seed dressings toward subsurface tile drains is still poorly understood. We monitored the neonicotinoid insecticides imidacloprid and thiamethoxam from sugar beet seed dressings in flow-proportional drainage water samples, together with spray applications of bromide and the herbicide S-metolachlor in spring and the fungicides epoxiconazole and kresoxim-methyl in summer. Event-driven, high first concentration maxima up to 2830 and 1290 ng/L for thiamethoxam and imidacloprid, respectively, were followed by an extended period of tailing and suggested preferential flow. Nevertheless, mass recoveries declined in agreement with the degradation and sorption properties collated in the groundwater ubiquity score, following the order bromide (4.9%), thiamethoxam (1.2%), imidacloprid (0.48%), kresoxim-methyl acid (0.17%), S-metolachlor (0.032%), epoxiconazole (0.013%), and kresoxim-methyl (0.003%), and indicated increased leaching from seed dressings compared to spray applications. Measured concentrations and mass recoveries indicate that subsurface tile drains contribute to surface water contamination with neonicotinoids from seed dressings. PMID:27529118

  2. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status.

    PubMed

    Mogren, Christina L; Lundgren, Jonathan G

    2016-01-01

    Worldwide pollinator declines are attributed to a number of factors, including pesticide exposures. Neonicotinoid insecticides specifically have been detected in surface waters, non-target vegetation, and bee products, but the risks posed by environmental exposures are still not well understood. Pollinator strips were tested for clothianidin contamination in plant tissues, and the risks to honey bees assessed. An enzyme-linked immunosorbent assay (ELISA) quantified clothianidin in leaf, nectar, honey, and bee bread at organic and seed-treated farms. Total glycogen, lipids, and protein from honey bee workers were quantified. The proportion of plants testing positive for clothianidin were the same between treatments. Leaf tissue and honey had similar concentrations of clothianidin between organic and seed-treated farms. Honey (mean±SE: 6.61 ± 0.88 ppb clothianidin per hive) had seven times greater concentrations than nectar collected by bees (0.94 ± 0.09 ppb). Bee bread collected from organic sites (25.8 ± 3.0 ppb) had significantly less clothianidin than those at seed treated locations (41.6 ± 2.9 ppb). Increasing concentrations of clothianidin in bee bread were correlated with decreased glycogen, lipid, and protein in workers. This study shows that small, isolated areas set aside for conservation do not provide spatial or temporal relief from neonicotinoid exposures in agricultural regions where their use is largely prophylactic. PMID:27412495

  3. Comparison of the dissipation behaviour of three neonicotinoid insecticides in tea.

    PubMed

    Hou, Ru-Yan; Hu, Jin-Feng; Qian, Xiao-San; Su, Ting; Wang, Xiao-Hui; Zhao, Xiu-Xia; Wan, Xiao-Chun

    2013-01-01

    The dissipation behaviour of three neonicotinoids - thiamethoxam, imidacloprid and acetamiprid - was compared in tea shoots, in Chinese green and black tea, and after tea infusion in hot water. The simple and rapid analytical procedures for the quantification of these three residues in these matrices were developed using HPLC with ultraviolet (UV) detection. Degradation rates in tea shoots of neonicotinoids applied in either recommended or double dosages followed first-order kinetics, with half-lives of 1.62 or 1.58 days for thiamethoxam, of 2.45 or 2.67 days for imidacloprid, and of 3.24 or 3.85 days for acetamiprid, respectively. Through harvest and processing the residue retentions for thiamethoxam, imidacloprid and acetamiprid were 85.0%, 84.1% and 70.6% of the initial dosages in green tea, and 77.1%, 52.4% and 57.4% in black tea. These three residues all showed high transfer rates through green or black tea brewing of 80.5% or 81.6% for thiamethoxam, of 63.1% or 62.2% for imidacloprid, and of 78.3% or 80.6% for acetamiprid. Waiting periods between the last application and harvest of at least 12, 17 and 20 days were suggested for thiamethoxam, imidacloprid and acetamiprid, respectively, after application at their recommend dosages to ensure levels below a maximum residue limit (MRL) of 0.05 mg kg(-1). PMID:23906092

  4. [Simultaneous determination of 6 neonicotinoid residues in soil using DLLME-HPLC and UV].

    PubMed

    Sun, Bao-li; Shan, Hong; Li, Yan-hua; Zeng, Ya-ling; Shen, Xiu-li; Tong, Cheng-feng

    2013-09-01

    A simple, cheap and rugged method was developed for simultaneous deter mination of 6 neonicotinoid residues in soil, including imidacloprid, acetamiprid, thiamethoxam, thiacloprid, clothianidin and nitenpyram. The soil sample was produced by dispersive liquid-liquid micro-extraction (DLLME) after extracted by the mixed solution of acetonitrile and CH2Cl2 (2:1, phi). The analytes were separated by HPLC with Alltima C18 column (4.6 mm x 250 mm, 5 microm) and detected by PDA at 260 nm. External standard method was used for quantification. The results showed that good linearity was obtained with correlation coefficients between 0.9982 and 0.9999 in the range of 0.5-200 microg x L(-1). The limits of detection (LODs) were in the range between 0.0005 and 0.003 microg x mL(-1) (S/N = 3). The method was validated with five soil samples spiked at three fortification levels (0.05, 0.1, 1.0 mg x kg(-1)) and recoveries were in the range of 55.3%-95.6% with RSD of 1.4%-7.0%. The effect of clean-up was evaluated by UV spectra and demonstrated that the method established is effective. In conclusion, this method is competent for the simultaneous analysis of 6 neonicotinoid residues in soil. PMID:24369670

  5. Capillary electrophoresis-mass spectrometry as a new approach to analyze neonicotinoid insecticides.

    PubMed

    Sánchez-Hernández, Laura; Hernández-Domínguez, Deamelys; Bernal, José; Neusüß, Christian; Martín, María T; Bernal, José L

    2014-09-12

    This paper represents the first report of a capillary electrophoresis (CE) method compatible with mass spectrometry (MS) detection for simultaneously analyzing seven neonicotinoid insecticides (acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam). Different variables affecting CE separation (buffer concentration, pH, applied voltage and injection time) and MS detection (electrospray parameters) were studied. Low limits of detection (LOD) and quantification (LOQ) were achieved for all analytes, ranging from 1.0 to 2.3μg/L, and from 3.5 to 7.2μg/L, respectively. In addition, the proposed method showed itself to be linear in the range from LOQ to 1000μg/L and to be precise, as the relative standard deviations of the migration times were lower than 4% in all cases. Finally, the proposed CE-MS method was applied to assess the efficacy of a beeswax cleaning treatment with oxalic acid to remove residues of three of the most commonly used neonicotinoids (clothianidin, imidacloprid and thiamethoxam), use of which has recently been restricted by the European Union. PMID:25085817

  6. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status

    PubMed Central

    Mogren, Christina L.; Lundgren, Jonathan G.

    2016-01-01

    Worldwide pollinator declines are attributed to a number of factors, including pesticide exposures. Neonicotinoid insecticides specifically have been detected in surface waters, non-target vegetation, and bee products, but the risks posed by environmental exposures are still not well understood. Pollinator strips were tested for clothianidin contamination in plant tissues, and the risks to honey bees assessed. An enzyme-linked immunosorbent assay (ELISA) quantified clothianidin in leaf, nectar, honey, and bee bread at organic and seed-treated farms. Total glycogen, lipids, and protein from honey bee workers were quantified. The proportion of plants testing positive for clothianidin were the same between treatments. Leaf tissue and honey had similar concentrations of clothianidin between organic and seed-treated farms. Honey (mean±SE: 6.61 ± 0.88 ppb clothianidin per hive) had seven times greater concentrations than nectar collected by bees (0.94 ± 0.09 ppb). Bee bread collected from organic sites (25.8 ± 3.0 ppb) had significantly less clothianidin than those at seed treated locations (41.6 ± 2.9 ppb). Increasing concentrations of clothianidin in bee bread were correlated with decreased glycogen, lipid, and protein in workers. This study shows that small, isolated areas set aside for conservation do not provide spatial or temporal relief from neonicotinoid exposures in agricultural regions where their use is largely prophylactic. PMID:27412495

  7. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees.

    PubMed

    Piiroinen, Saija; Goulson, Dave

    2016-04-13

    Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasite Nosema ceranae slightly impaired learning in honeybees, but no interactive effects were observed. Nosema did not infect bumblebees (3% infection success). Nevertheless, Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees. PMID:27053744

  8. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide.

    PubMed

    Démares, Fabien J; Crous, Kendall L; Pirk, Christian W W; Nicolson, Susan W; Human, Hannelie

    2016-01-01

    Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera). Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed.

  9. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status.

    PubMed

    Mogren, Christina L; Lundgren, Jonathan G

    2016-07-14

    Worldwide pollinator declines are attributed to a number of factors, including pesticide exposures. Neonicotinoid insecticides specifically have been detected in surface waters, non-target vegetation, and bee products, but the risks posed by environmental exposures are still not well understood. Pollinator strips were tested for clothianidin contamination in plant tissues, and the risks to honey bees assessed. An enzyme-linked immunosorbent assay (ELISA) quantified clothianidin in leaf, nectar, honey, and bee bread at organic and seed-treated farms. Total glycogen, lipids, and protein from honey bee workers were quantified. The proportion of plants testing positive for clothianidin were the same between treatments. Leaf tissue and honey had similar concentrations of clothianidin between organic and seed-treated farms. Honey (mean±SE: 6.61 ± 0.88 ppb clothianidin per hive) had seven times greater concentrations than nectar collected by bees (0.94 ± 0.09 ppb). Bee bread collected from organic sites (25.8 ± 3.0 ppb) had significantly less clothianidin than those at seed treated locations (41.6 ± 2.9 ppb). Increasing concentrations of clothianidin in bee bread were correlated with decreased glycogen, lipid, and protein in workers. This study shows that small, isolated areas set aside for conservation do not provide spatial or temporal relief from neonicotinoid exposures in agricultural regions where their use is largely prophylactic.

  10. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide

    PubMed Central

    Démares, Fabien J.; Crous, Kendall L.; Pirk, Christian W. W.; Nicolson, Susan W.; Human, Hannelie

    2016-01-01

    Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera). Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed. PMID:27272274

  11. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees.

    PubMed

    Piiroinen, Saija; Goulson, Dave

    2016-04-13

    Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasite Nosema ceranae slightly impaired learning in honeybees, but no interactive effects were observed. Nosema did not infect bumblebees (3% infection success). Nevertheless, Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees.

  12. Leaching of the Neonicotinoids Thiamethoxam and Imidacloprid from Sugar Beet Seed Dressings to Subsurface Tile Drains.

    PubMed

    Wettstein, Felix E; Kasteel, Roy; Garcia Delgado, Maria F; Hanke, Irene; Huntscha, Sebastian; Balmer, Marianne E; Poiger, Thomas; Bucheli, Thomas D

    2016-08-24

    Pesticide transport from seed dressings toward subsurface tile drains is still poorly understood. We monitored the neonicotinoid insecticides imidacloprid and thiamethoxam from sugar beet seed dressings in flow-proportional drainage water samples, together with spray applications of bromide and the herbicide S-metolachlor in spring and the fungicides epoxiconazole and kresoxim-methyl in summer. Event-driven, high first concentration maxima up to 2830 and 1290 ng/L for thiamethoxam and imidacloprid, respectively, were followed by an extended period of tailing and suggested preferential flow. Nevertheless, mass recoveries declined in agreement with the degradation and sorption properties collated in the groundwater ubiquity score, following the order bromide (4.9%), thiamethoxam (1.2%), imidacloprid (0.48%), kresoxim-methyl acid (0.17%), S-metolachlor (0.032%), epoxiconazole (0.013%), and kresoxim-methyl (0.003%), and indicated increased leaching from seed dressings compared to spray applications. Measured concentrations and mass recoveries indicate that subsurface tile drains contribute to surface water contamination with neonicotinoids from seed dressings.

  13. Effect of insecticide management history on emergence phenology and neonicotinoid resistance in Leptinotarsa decemlineata (Coleoptera: Chrysomelidae).

    PubMed

    Huseth, A S; Groves, R L

    2013-12-01

    Emergence phenology and fitness attributes of several Colorado potato beetle, Leptinotarsa decemlineata (Say), populations were measured under field and greenhouse conditions. Anecdotal observations by producers and pest managers in many locations of the upper Midwest increasingly suggested that select populations of Colorado potato beetle were emerging over a longer period in the spring and were less sensitive to systemic neonicotinoids in cultivated potato. These changes in emergence phenology may be related to changes in systemic insecticide concentration over time. Specifically, a prolonged period of adult emergence in the spring increases the potential of low-dose chronic exposure to systemic neonicotinoid insecticides in potato. In 2010 and 2011, our objectives were twofold: 1) establish a common garden experiment to compare the emergence phenology of Colorado potato beetle populations uniquely managed with variable insecticide inputs, and 2) measure postdormancy fitness of emerged adult beetles from among these selected populations. Cumulative adult emergence was modeled with logistic regression. Results from this study found no clear evidence for direct relationships between phenology and management history or resistance. Differences in reproductive capacity, sex ratio, and body size were apparent in some instances. However, these results did not uniformly correspond to one specific form of potato pest management tested here. In this study, long-term reliance on systemic insecticides for Colorado potato beetle control did not serve as a strong predictor for variable life history for selected populations in Wisconsin.

  14. Acute and chronic toxicity of neonicotinoids to nymphs of a mayfly species and some notes on seasonal differences.

    PubMed

    Van den Brink, Paul J; Van Smeden, Jasper M; Bekele, Robel S; Dierick, Wiebe; De Gelder, Daphne M; Noteboom, Maarten; Roessink, Ivo

    2016-01-01

    Mayfly nymphs are among the most sensitive taxa to neonicotinoids. The present study presents the acute and chronic toxicity of 3 neonicotinoids (imidacloprid, thiacloprid, and thiamethoxam) to a mayfly species (Cloeon dipterum) and some notes on the seasonality of the toxicity of imidacloprid to C. dipterum and 5 other invertebrate species. Imidacloprid and thiamethoxam showed equal acute and chronic toxicity to a winter generation of C. dipterum, whereas thiacloprid was approximately twice as toxic. The acute and chronic toxicity of imidacloprid was much higher for the C. dipterum summer generation than for the winter one. The acute toxicity differs by a factor of 20 for the 96-h 50% effective concentration (EC50) and by a factor of 5.4 for the chronic 28-d EC50. Temperature had only a slight effect on the sensitivity of C. dipterum to imidacloprid because we only found a factor of 1.7 difference in the 96-h EC50 between tests performed at 10 °C and 18 °C. The difference in sensitivity between summer and overwintering generations was also found for 3 other insect species. The results indicate that if the use and environmental fate of the 3 neonicotinoids are comparable, replacing imidacloprid by another neonicotinoid might not reduce the environmental impact on the mayfly nymph C. dipterum. The results also show the importance of reporting which generation is tested because sensitivity values of insects in the summer might be underestimated by the experiments performed with neonicotinoids and an overwintering population.

  15. Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid

    SciTech Connect

    Messing, Simon A.J.; Gabelli, Sandra B.; Echeverria, Ignacia; Vogel, Jonathan T.; Guan, Jiahn Chou; Tan, Bao Cai; Klee, Harry J.; McCarty, Donald R.; Amzel, L. Mario

    2011-09-06

    The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.