Ugrenović, Sladjana; Jovanović, Ivan; Vasović, Ljiljana; Kundalić, Braca; Čukuranović, Rade; Stefanović, Vladisav
2016-06-01
Myelinated nerve fibers suffer from different degrees of atrophy with age. The success of subsequent regeneration varies. The aim of this research was to analyze myelinated fibers of the human sciatic nerve during the aging process. Morphometric analysis was performed on 17 cases with an age range from 9 to 93 years. The outer and inner diameter of 100 randomly selected nerve fibers was measured in each of the cases evaluated, and the g-ratio (axonal diameter/outer diameter of the whole nerve fiber) of each was calculated. Scatter plots of the diameters and g-ratios of the analyzed fibers were then analyzed. Nerve fibers of each case were classified into three groups according to the g-ratio values: group I (g-ratio lower than 0.6), group II (g-ratio from 0.6 to 0.7) and group III (g-ratio higher than 0.7). Afterwards, nerve fibers of group II were further classified into small and large subgroups. The percentages of each group of nerve fibers were computed for each case and these values were used for correlational and bivariate linear regression analysis. The percentage of myelinated nerve fibers with large diameter and optimal g-ratio of the sciatic nerve declines significantly with age. This is accompanied by a simultaneous significant increase in the percentage of small myelinated fibers with g-ratio values close to 1 that occupy the upper left quadrant of the scatter plot. It can be concluded that aging of the sciatic nerve is associated with significant atrophy of large myelinated fibers. Additionally, a significant increase in regenerated nerve fibers with thinner myelin sheath is observed with age, which, together with the large myelinated fiber atrophy, might be the cause of the age-related decline in conduction velocity. A better understanding of the changes in aging peripheral nerves might improve interpretation of their pathological changes, as well as comprehension of their regeneration in individuals of different age.
Corneal subbasal nerve fiber regeneration in myopic patients after laser in situ keratomileusis★
Deng, Shijing; Wang, Mengmeng; Zhang, Fengju; Sun, Xuguang; Hou, Wenbo; Guo, Ning
2012-01-01
A total of 26 myopic patients (52 eyes) underwent laser in situ keratomileusis. In vivo confocal microscopy revealed that most of the regenerated corneal subbasal nerve fibers in the corneal flap originated from the stump of corneal subbasal nerve fibers outside the ablation zone and extended towards the center of the cornea in all patients. Meanwhile, new fibers were also found to directly regenerate from deep in the stroma in some cases. Approximately 94% of regenerated corneal subbasal nerve fibers (73/78 eyes) regrew vertically into the peripheral central 6-mm circle area 1 month after surgery, 78% (28/36 eyes) grew into the central 3–6 mm area at 2 months, and 23% into the central 3-mm circle area at 3 months. In addition, there was no significant difference in corneal subbasal nerve fiber regenerative capacity between the basic fibroblast growth factor group and the 20% (v/v) deproteinized extract of calf blood group. The majority of corneal subbasal nerve fiber regeneration occurred from the stump of corneal subbasal nerve fibers outside the corneal flap, and the remaining growth occurred deep within the stroma. PMID:25657693
[Morphologic studies of the protective role of catechin on kanamycin otoneurotoxicity in SD rats].
Liu, Guo-hui; Xie, Ding-hua; Wu, Wei-jing
2002-12-28
To determine the protection of catechin on aminoglycoside antibiotics otoneurotoxicity in SD rats, and observe the morphologic changes of cochlear efferent nerve terminals and outer hair cells after the injection of kanamycin and the feeding of catechin by the stomach tube. Thirty-eight SD rats were randomly assigned into three experimental groups (KM-treated, catechin-treated, KM and catechin in combination) and one control group. The KM-treated group was given kanamycin in a dose of 500 mg.(kg.d)-1 for 14 days. The catechin-treated group was given catechin once by the stomach tube in a dose of 400 mg.(kg.d)-1. Two kinds of medicine were simultaneously given in the KM+ catechin group. Transmission electron microscopy was utilized to observe the subcellular structure of efferent nerve fibers and outer hair cells. The densities of efferent nerve fibers and terminals were examined and the numbers of efferent nerve fibers and terminals were numerated by the surface preparation using modified histochemical staining for acetylcholinesterase (AchE). The damage in the group protected by catechin was relieved compared with the unprotected group. No damage was found in the catechin-treated alone group and controls. The densities and numbers of efferent nerve fibers and terminals were obviously fewer in the unprotected group than in the protected group and controls(P < 0.05). There was no significant difference in the numbers of efferent nerve fibers and terminals of the group protected by catechin compared with the controls and the catechin-treated group (P > 0.05). Catechin significantly protects MOC efferent nerves in kanamycin otoneurotoxicity.
Autologous transplantation with fewer fibers repairs large peripheral nerve defects
Deng, Jiu-xu; Zhang, Dian-yin; Li, Ming; Weng, Jian; Kou, Yu-hui; Zhang, Pei-xun; Han, Na; Chen, Bo; Yin, Xiao-feng; Jiang, Bao-guo
2017-01-01
Peripheral nerve injury is a serious disease and its repair is challenging. A cable-style autologous graft is the gold standard for repairing long peripheral nerve defects; however, ensuring that the minimum number of transplanted nerve attains maximum therapeutic effect remains poorly understood. In this study, a rat model of common peroneal nerve defect was established by resecting a 10-mm long right common peroneal nerve. Rats receiving transplantation of the common peroneal nerve in situ were designated as the in situ graft group. Ipsilateral sural nerves (10–30 mm long) were resected to establish the one sural nerve graft group, two sural nerves cable-style nerve graft group and three sural nerves cable-style nerve graft group. Each bundle of the peroneal nerve was 10 mm long. To reduce the barrier effect due to invasion by surrounding tissue and connective-tissue overgrowth between neural stumps, small gap sleeve suture was used in both proximal and distal terminals to allow repair of the injured common peroneal nerve. At three months postoperatively, recovery of nerve function and morphology was observed using osmium tetroxide staining and functional detection. The results showed that the number of regenerated nerve fibers, common peroneal nerve function index, motor nerve conduction velocity, recovery of myodynamia, and wet weight ratios of tibialis anterior muscle were not significantly different among the one sural nerve graft group, two sural nerves cable-style nerve graft group, and three sural nerves cable-style nerve graft group. These data suggest that the repair effect achieved using one sural nerve graft with a lower number of nerve fibers is the same as that achieved using the two sural nerves cable-style nerve graft and three sural nerves cable-style nerve graft. This indicates that according to the ‘multiple amplification’ phenomenon, one small nerve graft can provide a good therapeutic effect for a large peripheral nerve defect. PMID:29323049
Arikan, Murat; Togral, Guray; Hasturk, Askin Esen; Horasanli, Bahriye; Helvacioglu, Fatma; Dagdeviren, Atilla; Tekindal, Mustafa Agah; Parpucu, Murat
2016-01-01
To analyze the therapeutic effects of long-term alpha lipoic acid (A-LA) and vitamin B12 use via histomorphometric methods and electron microscopy in the transected sciatic nerves of rats. Forty rats were randomized into five groups (n=8/group). In group I, 1 cm segment of sciatic nerve was resected without any other intervention. In group II (sham), following right sciatic nerve transection, primary epineurial anastomosis was performed by placing the edges of the nerve end-to-end. In group III (saline), after right sciatic nerve transection, the ends of the nerves were brought together and closed after application of intraperitoneal physiologic saline. In group IV, 2 mg/kg of alpha lipoic acid and in group V, 2 mg/kg of vitamin B12 was administered intraperitoneally before surgical intervention. Histomorphometric and electron microscopic analyses revealed that vitamin B12 did not prevent structural changes, abnormal myelination and g-ratio deviations regarding the functional aspects of the sciatic nerve. Alpha lipoic acid was more effective in restructuring the histomorphometric and structural aspects of the nerve with more myelinated fibers with optimal values (0.55-0.68) than vitamin B12 groups, in which the number of myelinated nerve fibers significantly decreased at optimal intervals (0.55-0.68). A-LA administration following peripheral nerve transection injury is more effective in promoting nerve healing regarding the structural aspects of the sciatic nerve compared to vitamin B12 and also myelination of nerve fibers by increasing g-values.
Mohammadi, Rahim; Anousheh, Dana; Alaei, Mohammad-Hazhir; Nikpasand, Amin; Rostami, Hawdam; Shahrooz, Rasoul
2018-04-01
To determine the effects of bone marrow derived mast cells (BMMCs) on functional recovery of transected sciatic nerve in animal model of cat. A 20-mm sciatic nerve defect was bridged using a silicone nerve guide filled with BMMCs in BMMC group. In Sham-surgery group (SHAM), the sciatic nerve was only exposed and manipulated. In control group (SILOCONE) the gap was repaired with a silicone nerve guide and both ends were sealed using sterile Vaseline to avoid leakage and the nerve guide was filled with 100 μL of phosphate-buffered saline alone. In cell treated group ([SILOCONE/BMMC) the nerve guide was filled with 100 μL BMMCs (2× 106 cells/100 μL). The regenerated nerve fibers were studied, biomechanically, histologically and immunohiscochemically 6 months later. Biomechanical studies confirmed faster recovery of regenerated axons in BMMCs transplanted animals compared to control group ( p <0.05). Morphometric indices of the regenerated fibers showed that the number and diameter of the myelinated fibers were significantly higher in BMMCs transplanted animals than in control group ( p <0.05). In immunohistochemistry, location of reactions to S-100 in BMMCs transplanted animals was clearly more positive than that in control group. BMMCs xenotransplantation could be considered as a readily accessible source of cells that could improve recovery of transected sciatic nerve.
Motor unit and muscle fiber type grouping after peripheral nerve injury in the rat.
Gordon, Tessa; de Zepetnek, Joanne E Totosy
2016-11-01
Muscle unit (MU) fibers innervated by one motoneuron and corresponding muscle fiber types are normally distributed in a mosaic. We asked whether, 4-8months after common peroneal nerve transection and random surgical alignment of nerve stumps in rat tibialis anterior muscles 1) reinnervated MU muscle and muscle fiber type clumping is invariant and 2) slow and fast motoneurons regenerate their nerve fibers within original endoneurial pathways. MU contractile forces were recorded in vivo, the MUs classified into types according to their contractile speed and fatigability, and one MU subjected to alternate exhaustive stimulation-recovery cycles to deplete glycogen for histochemical MU fiber recognition and enumeration, and muscle fiber typing. MU muscle fibers occupied defined territories whose size increased with MU force and muscle fiber numbers in normal and reinnervated muscles. The reinnervated MU muscle fiber territories were significantly smaller, the fibers clumped within 1-3 groups in 90% of the MUs, and each fiber lying adjacent to another significantly more frequently. Most reinnervated slow muscle fibers were normally located in the deep muscle compartment but substantial numbers were located abnormally in the superficial compartment. Our findings that well reinnervated muscle fibers clump in small muscles contrast with our earlier findings of clumping in large muscles only when reinnervated MU numbers were significantly reduced. We conclude that fiber type clumping is predictive of muscle reinnervation in small but not large muscles. In the latter muscles, clumping is more indicative of sprouting after partial nerve injuries than of muscle reinnervation after complete nerve injuries. Copyright © 2016 Elsevier Inc. All rights reserved.
Akçam, H T; Capraz, I Y; Aktas, Z; Batur Caglayan, H Z; Ozhan Oktar, S; Hasanreisoglu, M; Irkec, C
2014-01-01
Purpose To compare both retinal nerve fiber layer thickness and orbital color Doppler ultrasonography parameters in patients with multiple sclerosis (MS) versus healthy controls. Methods This is an observational case–control study. Forty eyes from MS patients and twenty eyes from healthy volunteers were examined. Eyes were classified into three groups as group 1, eyes from MS patients with previous optic neuritis (n=20); group 2, eyes from MS patients without previous optic neuritis (n=20); and group 3, eyes from healthy controls (n=20). Following complete ophthalmologic examination and retinal nerve fiber layer thickness measurement for each group, blood flow velocities of posterior ciliary arteries, central retinal artery, ophthalmic artery, and superior ophthalmic vein were measured. Pourcelot index (resistive index), an indicator of peripheral vascular resistance, was also calculated. The statistical assessment was performed with the assistance of Pearson's Chi-square test, Mann–Whitney U-test, Kruskal–Wallis test, and Spearman's correlation test. Results The studied eyes exposed similar values in terms of intraocular pressure and central corneal thickness, implying no evidence in favor of glaucoma. All nerve fiber layer thickness values, except superior nasal quadrants, in group 1 were found to be significantly thinner than groups 2 and 3. Blood flow velocity and mean resistivity index parameters were similar in all the groups. Conclusions In MS patients, especially with previous optic neuritis, diminished retinal nerve fiber layer thickness was observed. Contrary to several studies in the current literature, no evidence supporting potential vascular origin of ocular involvement in MS was found. PMID:25081285
Dereci, Selim; Koca, Tuğba; Akçam, Mustafa; Türkyilmaz, Kemal
2015-07-01
We investigated the peripapillary retinal nerve fiber layer thickness with optical coherence tomography in epileptic children receiving valproic acid monotherapy. The study was conducted on children aged 8-16 years who were undergoing valproic acid monotherapy for epilepsy. The study group comprised a total of 40 children who met the inclusion criteria and 40 healthy age- and sex-matched children as a control group. Children with at least a 1-year history of epilepsy and taking 10-40 mg/kg/day treatment were included in the study. Peripapillary retinal nerve fiber layer thickness measurements were performed using Cirrus HD optical coherence tomography. All children and parents were informed about the study and informed consent was obtained from the parents of all the participants. The study group included 21 girls and 19 boys with a mean age of 10.6 ± 2.3 years. According to the results of optical coherence tomography measurements, the mean peripapillary retinal nerve fiber layer thickness was 91.6 ± 9.7 in the patient group and 95.5 ± 7.4 μm in the control group (P < 0.05). The superior peripapillary retinal nerve fiber layer thickness was 112.0 ± 13.2 in the patient group and 120.0 ± 14.7 μm in the control group (P < 0.02). According to the results of both measurements, the peripapillary retinal nerve fiber layer thickness was significantly lower in the patient group. Neither color vision loss nor visual field examination abnormality could be documented. According to the optical coherence tomography measurements, the average and superior peripapillary retinal nerve fiber layer thicknesses were thinner in patients with epilepsy who were receiving valproic acid monotherapy compared with healthy children. This situation can lead to undesirable results in terms of eye health. New studies are needed to investigate whether these findings are the result of epilepsy or can be attributed to valproic acid and whether there are adverse effects of valproic acid later in life. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhang, Lili; Wang, Haibo; Fan, Zhaomin; Han, Yuechen; Xu, Lei; Zhang, Haiyan
2011-01-01
To study the changes in facial nerve function, morphology and neurotrophic factor III (NT-3) expression following three types of facial nerve injury. Changes in facial nerve function (in terms of blink reflex (BF), vibrissae movement (VM) and position of nasal tip) were assessed in 45 rats in response to three types of facial nerve injury: partial section of the extratemporal segment (group one), partial section of the facial canal segment (group two) and complete transection of the facial canal segment lesion (group three). All facial nerves specimen were then cut into two parts at the site of the lesion after being taken from the lesion site on 1st, 7th, 21st post-surgery-days (PSD). Changes of morphology and NT-3 expression were evaluated using the improved trichrome stain and immunohistochemistry techniques ,respectively. Changes in facial nerve function: In group 1, all animals had no blink reflex (BF) and weak vibrissae movement (VM) at the 1st PSD; The blink reflex in 80% of the rats recovered partly and the vibrissae movement in 40% of the rats returned to normal at the 7th PSD; The facial nerve function in 600 of the rats was almost normal at the 21st PSD. In group 2, all left facial nerve paralyzed at the 1st PSD; The blink reflex partly recovered in 40% of the rats and the vibrissae movement was weak in 80% of the rats at the 7th PSD; 8000 of the rats'BF were almost normal and 40% of the rats' VM completely recovered at the 21st PSD. In group 3, The recovery couldn't happen at anytime. Changes in morphology: In group 1, the size of nerve fiber differed in facial canal segment and some of myelin sheath and axons degenerated at the 7th PSD; The fibres' degeneration turned into regeneration at the 21st PSD; In group 2, the morphologic changes in this group were familiar with the group 1 while the degenerated fibers were more and dispersed in transection at the 7th PSD; Regeneration of nerve fibers happened at the 21st PSD. In group 3, most of the fibers crumbled at the 7th PSD and no regeneration was seen at the 21st PSD. Changes in NT-3: Positive staining of NT-3 was largely observed in axons at the 7th PSD, although little NT-3 was seen in the normal fibers. Facial palsy of the rats in group 2 was more extensive than that in group 1 and their function partly recovers at the 21st PSD. The fibres' degeneration occurs not only dispersed throughout the injury site but also occurred throught the length of the nerve. NT-3 immunoreactivity increased in activated fibers after partial transection.
Alterations of sympathetic nerve fibers in avascular necrosis of femoral head.
Li, Deqiang; Liu, Peilai; Zhang, Yuankai; Li, Ming
2015-01-01
Avascular necrosis of the femoral head (ANFH) was mainly due to alterations of bone vascularity. And noradrenaline (NA), as the neurotransmitter of the sympathetic nervous system (SNS), leads to the vasoconstriction by activating its α-Receptor. This study was to explore the nerve fiber density of the femoral head in the rabbit model of ANFH. Twenty New Zealand white rabbits were used in this study. The rabbit model of ANFH was established by the injection of methylprednisolone acetate. The nerve fiber density and distribution in the femoral head was determined using an Olympus BH2 microscope. Significant fewer sympathetic nerve fibers was found in the ANFH intertrochanteric bone samples (P = 0.036) with osteonecrosis. The number of sympathetic nerve fibers was compared between the two groups. And less sympathetic nerve fibers were found in later stage ANFH samples in comparison with those of early stages. ANFH might be preceded by an inflammatory reaction, and an inflammatory response might lead to arthritic changes in tissue samples, which in turn reduces the number of sympathetic nerve fibers.
Shchudlo, Nathalia; Varsegova, Tatyana; Stupina, Tatyana; Shchudlo, Michael; Saifutdinov, Marat; Yemanov, Andrey
2017-09-18
To determine peculiarities of tissue responses to manual and automated Ilizarov bone distraction in nerves and articular cartilage. Twenty-nine dogs were divided in two experimental groups: Group M - leg lengthening with manual distraction (1 mm/d in 4 steps), Group A - automated distraction (1 mm/d in 60 steps) and intact group. Animals were euthanized at the end of distraction, at 30 th day of fixation in apparatus and 30 d after the fixator removal. M-responses in gastrocnemius and tibialis anterior muscles were recorded, numerical histology of peroneal and tibialis nerves and knee cartilage semi-thin sections, scanning electron microscopy and X-ray electron probe microanalysis were performed. Better restoration of M-response amplitudes in leg muscles was noted in A-group. Fibrosis of epineurium with adipocytes loss in peroneal nerve, subperineurial edema and fibrosis of endoneurium in some fascicles of both nerves were noted only in M-group, shares of nerve fibers with atrophic and degenerative changes were bigger in M-group than in A-group. At the end of experiment morphometric parameters of nerve fibers in peroneal nerve were comparable with intact nerve only in A-group. Quantitative parameters of articular cartilage (thickness, volumetric densities of chondrocytes, percentages of isogenic clusters and empty cellular lacunas, contents of sulfur and calcium) were badly changed in M-group and less changed in A-group. Automated Ilizarov distraction is more safe method of orthopedic leg lengthening than manual distraction in points of nervous fibers survival and articular cartilage arthrotic changes.
Shchudlo, Nathalia; Varsegova, Tatyana; Stupina, Tatyana; Shchudlo, Michael; Saifutdinov, Marat; Yemanov, Andrey
2017-01-01
AIM To determine peculiarities of tissue responses to manual and automated Ilizarov bone distraction in nerves and articular cartilage. METHODS Twenty-nine dogs were divided in two experimental groups: Group M - leg lengthening with manual distraction (1 mm/d in 4 steps), Group A - automated distraction (1 mm/d in 60 steps) and intact group. Animals were euthanized at the end of distraction, at 30th day of fixation in apparatus and 30 d after the fixator removal. M-responses in gastrocnemius and tibialis anterior muscles were recorded, numerical histology of peroneal and tibialis nerves and knee cartilage semi-thin sections, scanning electron microscopy and X-ray electron probe microanalysis were performed. RESULTS Better restoration of M-response amplitudes in leg muscles was noted in A-group. Fibrosis of epineurium with adipocytes loss in peroneal nerve, subperineurial edema and fibrosis of endoneurium in some fascicles of both nerves were noted only in M-group, shares of nerve fibers with atrophic and degenerative changes were bigger in M-group than in A-group. At the end of experiment morphometric parameters of nerve fibers in peroneal nerve were comparable with intact nerve only in A-group. Quantitative parameters of articular cartilage (thickness, volumetric densities of chondrocytes, percentages of isogenic clusters and empty cellular lacunas, contents of sulfur and calcium) were badly changed in M-group and less changed in A-group. CONCLUSION Automated Ilizarov distraction is more safe method of orthopedic leg lengthening than manual distraction in points of nervous fibers survival and articular cartilage arthrotic changes. PMID:28979852
Cornea nerve fiber quantification and construction of phenotypes in patients with fibromyalgia
Oudejans, Linda; He, Xuan; Niesters, Marieke; Dahan, Albert; Brines, Michael; van Velzen, Monique
2016-01-01
Cornea confocal microscopy (CCM) is a novel non-invasive method to detect small nerve fiber pathology. CCM generally correlates with outcomes of skin biopsies in patients with small fiber pathology. The aim of this study was to quantify the morphology of small nerve fibers of the cornea of patients with fibromyalgia in terms of density, length and branching and further phenotype these patients using standardized quantitative sensory testing (QST). Small fiber pathology was detected in the cornea of 51% of patients: nerve fiber length was significantly decreased in 44% of patients compared to age- and sex-matched reference values; nerve fiber density and branching were significantly decreased in 10% and 28% of patients. The combination of the CCM parameters and sensory tests for central sensitization, (cold pain threshold, mechanical pain threshold, mechanical pain sensitivity, allodynia and/or windup), yielded four phenotypes of fibromyalgia patients in a subgroup analysis: one group with normal cornea morphology without and with signs of central sensitization, and a group with abnormal cornea morphology parameters without and with signs of central sensitization. In conclusion, half of the tested fibromyalgia population demonstrates signs of small fiber pathology as measured by CCM. The four distinct phenotypes suggest possible differences in disease mechanisms and may require different treatment approaches. PMID:27006259
Dienogest reduces proliferation, NGF expression and nerve fiber density in human adenomyosis.
Takeuchi, Arisa; Koga, Kaori; Miyashita, Mariko; Makabe, Tomoko; Sue, Fusako; Harada, Miyuki; Hirata, Tetsuya; Hirota, Yasushi; Fujii, Tomoyuki; Osuga, Yutaka
2016-12-01
To evaluate the in vivo effect of dienogest on proliferation, apoptosis, aromatase expression, vascular density, nerve growth factor (NGF) expression and nerve fiber density in human adenomyosis tissue. Twelve women who underwent hysterectomy for adenomyosis were enrolled. Six patients received dienogest treatment prior to hysterectomy (dienogest group), and age-matched six patients who had not received any hormonal treatment for ≥3 months before surgery (control group). Cell proliferation, vascular and nerve fiber density in adenomyosis tissue were evaluated by staining for Ki67, von Willebrand factor and PGP9.5, respectively. Apoptosis was detected using the TUNEL assay. The expression aromatase and NGF were evaluated by staining for corresponding antibodies. The proportion of Ki67 positive epithelial cells was significantly lower in samples from dienogest-treated patients in comparison with controls (p<0.05). The density of blood vessels in adenomyosis was marginally lower in the dienogest group in comparison with controls but statistical significance was not reached (p=0.07). The intensity of NGF expression and the density of nerve fibers were significantly lower in the dienogest group compared with controls (p<0.05 for both). This study demonstrates that adenomyosis, taken from patients treated with dienogest, shows remarkable histological features, such as reductions in proliferation, NGF expression and nerve fiber density. These findings indicate the impact of dienogest on local histological events, and explains its therapeutic effect on adenomyosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Diniz, Lúcio Ricardo Leite; Portella, Viviane Gomes; da Silva Alves, Kerly Shamira; Araújo, Pâmella Cristina da Costa; de Albuquerque Júnior, Ricardo Luiz Cavalcanti; Cavalcante de Albuquerque, Aline Alice; Coelho-de-Souza, Andrelina Noronha; Leal-Cardoso, José Henrique
2018-01-01
Nonspecific and delayed diagnosis of neurologic damage contributes to the development of neuropathies in patients with severe sepsis. The present study assessed the electrophysiologic parameters related to the excitability and conductibility of sciatic and vagus nerves during early stages of sepsis. Twenty-four hours after sepsis induced by cecal ligation and puncture (CLP) model, sciatic and vagus nerves of septic (CLP group) and control (sham group) rats were removed, and selected electric stimulations were applied to measure the parameters of the first and second components of the compound action potential. The first component originated from fibers with motor and sensory functions (Types A α and A β fibers) with a large conduction velocity (70-120 m/s), and the second component originated from fibers (Type A γ ) with sensorial function. To evaluate the presence of sensorial alterations, the sensitivity to non-noxious mechanical stimuli was measured by using the von Frey test. Hematoxylin and eosin staining of the nerves was performed. We observed an increase of rheobase followed by a decrease in the first component amplitude and a higher paw withdrawal threshold in response to the application of von Frey filaments in sciatic nerves from the CLP group compared to the sham group. Differently, a decrease in rheobase and an increase in the first component amplitude of vagal C fibers from CLP group were registered. No significant morphologic alteration was observed. Our data showed that the electrophysiologic alterations in peripheral nerves vary with the fiber type and might be identified in the first 24 h of sepsis, before clinical signs of neuromuscular disorders.
Value of a novel PGA-collagen tube on recurrent laryngeal nerve regeneration in a rat model.
Suzuki, Hiroshi; Araki, Koji; Matsui, Toshiyasu; Tomifuji, Masayuki; Yamashita, Taku; Kobayashi, Yasushi; Shiotani, Akihiro
2016-07-01
Nerbridge (Toyobo Co., Ltd., Osaka, Japan) is a novel polyglycolic acid (PGA) tube that is filled with collagen fibers and that facilitates nerve fiber expansion and blood vessel growth. It is biocompatible and commercially available, with governmental approval for practical use in Japan. We hypothesized that the PGA-collagen tube would promote regeneration of the recurrent laryngeal nerve (RLN). This hypothesis was examined in a rat axotomy model of the RLN. Prospective animal study. The axotomy model was established by transection of the left RLN in adult Sprague-Dawley rats. The cut ends of the nerve were bridged using Nerbridge (Toyobo Co., Ltd.) with a 1-mm gap (tube-treatment group) or direct sutures (sutured-control group). Left vocal fold mobility, nerve conduction velocity, morphology, and histology were assessed after 15 weeks. Fifteen weeks after treatment, nerve fiber connections were observed macroscopically in both groups, and more clear myelinated fibers and better prevention of laryngeal muscle atrophy were observed in the tube-treatment group compared with the sutured-control group. However, vocal fold movement recovery was not observed in either group, and the conduction velocity of the RLN did not differ between the two groups. Better nerve regeneration was observed in the tube-treatment group. The combination therapy with molecular or gene therapy might be an effective strategy to improve vocal fold movement. The PGA-collagen tube has the potential to promote regeneration of the RLN and to be a scaffold for drug administration in these combination therapies. N/A. Laryngoscope, 126:E233-E239, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Spontaneous laryngeal reinnervation following chronic recurrent laryngeal nerve injury.
Kupfer, Robbi A; Old, Matthew O; Oh, Sang Su; Feldman, Eva L; Hogikyan, Norman D
2013-09-01
To enhance understanding of spontaneous laryngeal muscle reinnervation following severe recurrent laryngeal nerve injury by testing the hypotheses that 1) nerve fibers responsible for thyroarytenoid muscle reinnervation can originate from multiple sources and 2) superior laryngeal nerve is a source of reinnervation. Prospective, controlled, animal model. A combination of retrograde neuronal labeling techniques, immunohistochemistry, electromyography, and sequential observations of vocal fold mobility were employed in rat model of chronic recurrent laryngeal nerve injury. The current study details an initial set of experiments in sham surgical and denervated group animals and a subsequent set of experiments in a denervated group. At 3 months after recurrent laryngeal nerve resection, retrograde brainstem neuronal labeling identified cells in the characteristic superior laryngeal nerve cell body location as well as cells in a novel caudal location. Regrowth of neuron fibers across the site of previous recurrent laryngeal nerve resection was seen in 87% of examined animals in the denervated group. Electromyographic data support innervation by both the superior and recurrent laryngeal nerves following chronic recurrent laryngeal nerve injury. Following chronic recurrent laryngeal nerve injury in the rat, laryngeal innervation is demonstrated through the superior laryngeal nerve from cells both within and outside of the normal cluster of cells that supply the superior laryngeal nerve. The recurrent laryngeal nerve regenerates across a surgically created gap, but functional significance of regenerated nerve fibers is unclear. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Memari, Elham; Hosseinian, Mohammad-Ali; Mirkheshti, Ali; Arhami-Dolatabadi, Ali; Mirabotalebi, Mojtaba; Khandaghy, Mohsen; Daneshbod, Yahya; Alizadeh, Leila; Shirian, Sadegh
2016-11-01
Injection of a variety of drugs such as local anesthetics (LAs) for peripheral nerve block has been shown to cause damage to peripheral nerves. Bupivacaine is a local anesthetic widely used in surgical procedures. The aim of this study was to evaluate the neurotoxicity of LAs including Bupivacaine and dexmedetomidine (DEX)-Bupivacaine on sciatic nerve tissue at histopathological level. In addition, we investigated whether perineural administration of DEX can attenuate Bupivacaine-induced neurotoxicity. Twenty adult Sprague Dawley rats received unilateral sciatic nerve blocks with either 0.2ml of 0.5% bupivacaine (n=8) or 0.5% bupivacaine plus 0.005% DEX (n=8) or normal saline (0.9%, as control group) (n=4) in the left hind extremity. Sciatic nerves were harvested at 14days post-injection and analyzed for nerve damage using ultrastructure and histopathologic analysis. Histopathology of sciatic nerve at day 14 post-injection showed a variable degree of neuronal injury associated with perineural inflammation in each treatment group and was classified as none or mild, intermediate or severe. Administration of both LAs resulted in a significant decrease in the total number of myelinated fibers per nerve (95% CI for group difference: Bupivacaine, P=0.001, DEX-Bupivacaine, P=0.036) compared to the saline control group. Animals that received these perineural local anesthetics (LAs) injections showed increased severity of injury compared to the control group. Animals in the DEX-Bupivacaine group had higher perineural inflammation and nerve damage than those of the saline control group and less than those of the Bupivacaine group at day 14 post-injection. Quantitatively, average total nerve fiber per nerve and average myelinated nerve fiber density in the injured region of the Bupivacaine-treated group was less than that of the DEX-Bupivacaine-treated group. LAs injection into the nerve causes peripheral nerve damage and remains an important clinical danger. Bupivacaine is associated with considerable histopathological changes, including edema of the perineurium and myelin degeneration with Wallerian degeneration, when injected perineurally. Perineural DEX added to a clinical concentration of bupivacaine attenuates the Bupivacaine-induced injuries. Copyright © 2016 Elsevier GmbH. All rights reserved.
Diniz, Lúcio Ricardo Leite; Portella, Viviane Gomes; da Silva Alves, Kerly Shamira; Araújo, Pâmella Cristina da Costa; de Albuquerque Júnior, Ricardo Luiz Cavalcanti; Cavalcante de Albuquerque, Aline Alice; Coelho-de-Souza, Andrelina Noronha; Leal-Cardoso, José Henrique
2018-01-01
Background Nonspecific and delayed diagnosis of neurologic damage contributes to the development of neuropathies in patients with severe sepsis. The present study assessed the electrophysiologic parameters related to the excitability and conductibility of sciatic and vagus nerves during early stages of sepsis. Materials and methods Twenty-four hours after sepsis induced by cecal ligation and puncture (CLP) model, sciatic and vagus nerves of septic (CLP group) and control (sham group) rats were removed, and selected electric stimulations were applied to measure the parameters of the first and second components of the compound action potential. The first component originated from fibers with motor and sensory functions (Types Aα and Aβ fibers) with a large conduction velocity (70–120 m/s), and the second component originated from fibers (Type Aγ) with sensorial function. To evaluate the presence of sensorial alterations, the sensitivity to non-noxious mechanical stimuli was measured by using the von Frey test. Hematoxylin and eosin staining of the nerves was performed. Results We observed an increase of rheobase followed by a decrease in the first component amplitude and a higher paw withdrawal threshold in response to the application of von Frey filaments in sciatic nerves from the CLP group compared to the sham group. Differently, a decrease in rheobase and an increase in the first component amplitude of vagal C fibers from CLP group were registered. No significant morphologic alteration was observed. Conclusion Our data showed that the electrophysiologic alterations in peripheral nerves vary with the fiber type and might be identified in the first 24 h of sepsis, before clinical signs of neuromuscular disorders. PMID:29731661
Yamasaki, M; Shimizu, T; Miyake, M; Miyamoto, Y; Waki, H; Katsuda, S I; Oishi, H; Nagayama, T; Katahira, K; Wago, H; Okochi, T; Kaneko, M; Matsumoto, S; Mukai, C; Nagaoka, S; Izumi, T; Yanagawa, K; Uemura, M; O-ishi, H
1998-11-01
To study development of the aortic nerve baroreflex under conditions of microgravity, we examined the cross section of the left aortic nerve (LAN), which is the afferent of the baroreflex, in the neonate rats aged 25 days raised in microgravity on the space shuttle Columbia (flight:FLT group) for 16 days. In this paper, we report a part of the result obtained from the data of the myelinated fibers of LAN analyzed with an electron microscope. Two kind of ground control groups were compared to the FLT group; one was asynchronous ground control (AGC) group where the rats were housed in the same cage as that on the shuttle, and the other was vivarium(VIV) group where the rats were housed in a commercial cage. The LANs in each group were extirpated the from rats perfused with a fixative and embedded for histological analysis. We observed the transverse sections of LAN and took pictures of several areas (magnified to x 2K to x 200K). No irregular myelination was found in all fibers of FLT group when they were compared with two control groups. The thickness of myelin of the maximally myelinated fibers were 0.55 +/- 0.17 micrometer in FLT(n=5), 0.45 +/- 0.10 micrometer in AGC(n=5), and O.47 +/- 0.06 micrometer meter in VIV(n=5). There was no significant difference among three groups (unpared t-test). The results suggest that there is no effect of space environment on the myelin formation of each nerve fiber in the aortic nerve.
Immunohistochemical study of dental pulp applied with 4-META/MMA-TBB adhesive resin after pulpotomy.
Nakamura, M; Inoue, T; Shimono, M
2000-08-01
The purpose of this study was to investigate nerve regeneration and proliferative activity in amputated pulp tissue after the application of 4-META/MMA-TBB adhesive resin (4-META resin). Calcium hydroxide was used as a control material. At 3 days, fibroblast-like cells were positive for proliferating cell nuclear antigen (PCNA) in both 4-META resin- and calcium hydroxide-treated groups and were located mainly within 0.5 mm from the cut surface. Only a few fragmented neurofilament protein (NFP)-positive nerve fibers were observed in this area. At 7 and 14 days, the number of PCNA-positive cells had gradually decreased and regenerated NFP-positive nerve fibers were observed close to the cut surface of the pulp in both groups. At 21 days in the experimental group, several PCNA-positive cells were still found in the area 0.5 mm from the cut surface, and NFP-positive nerve fibers were detected about 0.15-;0.2 mm from the cut surface. In contrast, a dentin bridge was produced under the necrotic layer at 21 days in the control group. PCNA-positive cells were not found underneath the dentin bridge, but NFP-positive nerve fibers had regenerated close to it. These results suggest that although cell differentiation and nerve regeneration are delayed, wound healing occurred even after the application of 4-META resin to exposed pulp surface the same as calcium hydroxide application. Copyright 2000 John Wiley & Sons, Inc.
de Fraga, Rogerio; Palma, Paulo; Dambros, Miriam; Riccetto, Cassio L Z; Mandarim-de-Lacerda, Carlos; Miyaoka, Ricardo
2009-05-01
The authors quantified the nerve fibers in the bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old). Group 1: remained intact; Group 2: underwent bilateral ovariectomy, and after 30 days was started on subcutaneous sesame oil replacement (0.2 ml per day) for 90 days; Group 3: sham-operated, and after 30 days was started on subcutaneous sesame oil replacement (0.2 ml per day) for 90 days; Group 4: bilateral ovariectomy, and after 30 days was started on subcutaneous injection of 17β-estradiol (10 μg/kg body weight) for 90 days. S-100 was used to stain nerves myelinized fibers on paraffin rat bladder sections. The G-50 grid system was used to quantitatively analyze the fibers. Long-term estrogen deprivation caused significant changes in bladder innervations, which can be characterized by a decreased number of nerve fibers by 65% (p < 0.001).
Retinotopic and temporal organization of the optic nerve and tracts in the adult goldfish.
Bunt, S M
1982-04-10
In order to investigate the role of the different factors controlling the pathways and termination sites of growing axons, selected optic fibers were traced from the eye to the tectum in adult goldfish either by filling them with HRP, or by severing a group of fibers and tracing their degeneration in 2 micrometers plastic sections stained with toluidine blue. Some fish received more than one lesion and others received both lesions and HRP applications. Two major rearrangements of the optic fibers were identified, one at the exit from the eye, the other within the optic tracts. Near the eye the optic fibers appear to be guided by the conformation of the underlying tissue planes that they encounter. The most recently added fibers, from the peripheral retina, grow over the vitread surface of the older fibers toward the blood vessel in the center of the optic nerve head. Behind the eye the fibers follow this blood vessel until it leaves the side of the optic nerve, and the fibers from peripheral retina are left as a single group on the ventral edge of the optic nerve cross section. As a consequence of this pattern of fiber growth the fibers form an orderly temporal sequence in the optic nerve, with the oldest fibers from the central retina on one side of the nerve and the youngest from peripheral retina on the other. In addition, the fibers are ordered topographically at right angles to this central-to-peripheral axis, with fibers from ventral retina on each edge of the nerve, dorsal fibers in the center, and nasal and temporal fibers in between. This arrangement of the optic fibers continues with only a little loss of precision up to the optic tracts. A more radical fiber rearrangement, seemingly incompatible with the fibers simply following tissue planes occurs within the optic tracts. Each newly arriving set of fibers grows over the surface of the optic tracts so that the older fibers come to lie deepest in the tracts. This segregation of fibers of different ages ensures that the rearrangement is limited to each layer of fibers. The abrupt reorganization of the fibers occurs as the tracts split around the nucleus rotundus to form the brachia of the optic tracts. The fibers are then arranged with temporal fibers nearest the nucleus rotundus and nasal fibers on the opposite edges of the brachia. From this point the fibers grow out over the tectal surface to their termination sites with only minimal rearrangements. Therefore the optic fiber rearrangements show evidence of several different sorts of constraints acting on the fibers at separate points in the optic pathway, each contributing to the final orderly arrangement of the fibers on the optic tectum.
Un, M Kerem; Kaghazchi, Hamed
2018-01-01
When a signal is initiated in the nerve, it is transmitted along each nerve fiber via an action potential (called single fiber action potential (SFAP)) which travels with a velocity that is related with the diameter of the fiber. The additive superposition of SFAPs constitutes the compound action potential (CAP) of the nerve. The fiber diameter distribution (FDD) in the nerve can be computed from the CAP data by solving an inverse problem. This is usually achieved by dividing the fibers into a finite number of diameter groups and solve a corresponding linear system to optimize FDD. However, number of fibers in a nerve can be measured sometimes in thousands and it is possible to assume a continuous distribution for the fiber diameters which leads to a gradient optimization problem. In this paper, we have evaluated this continuous approach to the solution of the inverse problem. We have utilized an analytical function for SFAP and an assumed a polynomial form for FDD. The inverse problem involves the optimization of polynomial coefficients to obtain the best estimate for the FDD. We have observed that an eighth order polynomial for FDD can capture both unimodal and bimodal fiber distributions present in vivo, even in case of noisy CAP data. The assumed FDD distribution regularizes the ill-conditioned inverse problem and produces good results.
Higashino, Kosaku; Matsuura, Tetsuya; Suganuma, Katsuyoshi; Yukata, Kiminori; Nishisho, Toshihiko; Yasui, Natsuo
2013-05-20
Spinal cord transection and peripheral nerve transection cause muscle atrophy and muscle fiber type conversion. It is still unknown how spinal cord transection and peripheral nerve transection each affect the differentiation of muscle fiber type conversion mechanism and muscle atrophy. The aim of our study was to evaluate the difference of muscle weight change, muscle fiber type conversion, and Peroxisome proliferator-activated receptor-γ coactivatior-1α (PGC-1α) expression brought about by spinal cord transection and by peripheral nerve transection. Twenty-four Wistar rats underwent surgery, the control rats underwent a laminectomy; the spinal cord injury group underwent a spinal cord transection; the denervation group underwent a sciatic nerve transection. The rats were harvested of the soleus muscle and the TA muscle at 0 week, 1 week and 2 weeks after surgery. Histological examination was assessed using hematoxylin and eosin (H&E) staining and immunofluorescent staing. Western blot was performed with 3 groups. Both sciatic nerve transection and spinal cord transection caused muscle atrophy with the effect being more severe after sciatic nerve transection. Spinal cord transection caused a reduction in the expression of both sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection produced an increase in expression of sMHC protein and PGC-1α protein in the soleus muscle. The results of the expression of PGC-1α were expected in other words muscle atrophy after sciatic nerve transection is less than after spinal cord transection, however muscle atrophy after sciatic nerve transection was more severe than after spinal cord transection. In the conclusion, spinal cord transection diminished the expression of sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection enhanced the expression of sMHC protein and PGC-1α protein in the soleus muscle.
Sousa, Fausto Fernandes de Almeida; Ribeiro, Thaís Lopes; Fazan, Valéria Paula Sassoli; Barbieri, Claudio Henrique
2013-01-01
OBJECTIVE: To investigate the influence of low intensity laser irradiation on the regeneration of the fibular nerve of rats after crush injury. METHODS: Twenty-five rats were used, divided into three groups: 1) intact nerve, no treatment; 2) crushed nerve, no treatment; 3) crush injury, laser irradiation applied on the medullary region corresponding to the roots of the sciatic nerve and subsequently on the course of the damaged nerve. Laser irradiation was carried out for 14 consecutive days. RESULTS: Animals were evaluated by functional gait analysis with the peroneal functional index and by histomorphometric analysis using the total number of myelinated nerve fibers and their density, total number of Schwann cells, total number of blood vessels and the occupied area, minimum diameter of the fiber diameter and G-quotient. CONCLUSION: According to the statistical analysis there was no significant difference among groups and the authors conclude that low intensity laser irradiation has little or no influence on nerve regeneration and functional recovery. Laboratory investigation. PMID:24453650
Collateral development and spinal motor reorganization after nerve injury and repair
Yu, Youlai; Zhang, Peixun; Han, Na; Kou, Yuhui; Yin, Xiaofeng; Jiang, Baoguo
2016-01-01
Functional recovery is often unsatisfactory after severe extended nerve defects or proximal nerve trunks injuries repaired by traditional repair methods, as the long regeneration distance for the regenerated axons to reinnervate their original target end-organs. The proximal nerve stump can regenerate with many collaterals that reinnervate the distal stump after peripheral nerve injury, it may be possible to use nearby fewer nerve fibers to repair more nerve fibers at the distal end to shorten the regenerating distance. In this study, the proximal peroneal nerve was used to repair both the distal peroneal and tibial nerve. The number and location of motor neurons in spinal cord as well as functional and morphological recovery were assessed at 2 months, 4 months and 8 months after nerve repair, respectively. Projections from the intact peroneal and tibial nerves were also studied in normal animals. The changes of motor neurons were assessed using the retrograde neurotracers FG and DiI to backlabel motor neurons that regenerate axons into two different pathways. To evaluate the functional recovery, the muscle forces and sciatic function index were examined. The muscles and myelinated axons were assessed using electrophysiology and histology. The results showed that all labeled motor neurons after nerve repair were always confined within the normal peroneal nerve pool and nearly all the distribution of motor neurons labeled via distal different nerves was disorganized as compared to normal group. However, there was a significant decline in the number of double labeled motor neurons and an obvious improvement with respect to the functional and morphological recovery between 2 and 8 months. In addition, the tibial/peroneal motor neuron number ratio at different times was 2.11±0.05, 2.13±0.08, 2.09±0.12, respectively, and was close to normal group (2.21±0.09). Quantitative analysis showed no significant morphological differences between myelinated nerve fibers regenerated along the two distal nerves except for the number of nerve fibers, which was higher in the tibial nerve. The ratio of distal regenerated axon numbers to proximal donor nerve axon numbers was about 3.95±0.10, 4.06±0.19 and 3.87±0.23, respectively. This study demonstrated that fewer nerve fibers can regenerate a large number of collaterals which successfully repopulate both distal nerves and lead to the partial recovery of lost functions. It may provide a new method to repair severe extended nerve defects or proximal nerve trunks injuries. PMID:27508011
Bulc, Michał; Gonkowski, Sławomir; Całka, Jarosław
2015-11-01
In the present study, the effect of streptozotocin-induced diabetes on the cocaine- and amphetamine-regulated transcript-like immunoreactive (CART-LI) enteric nervous structures was investigated within the porcine stomach. To induce diabetes, the pigs were administered intravenously streptozotocin at a dose of 150 mg/kg of body weight. A significant decrease of the number of CART-LI perikarya was observed in the myenteric plexus of the gastric antrum, corpus, and pylorus in the experimental group. In contrast, submucous plexus was devoid of CART-positive neuronal cells both in control and experimental animals. In the control group, the highest densities of CART-LI nerve fibers were observed in the circular muscle layer of antrum and slightly less nerve fibers were present in the muscle layer of corpus and pylorus. In turn, submucous layer of all studied stomach regions revealed relatively smaller number of CART-positive nerve fibers. Diabetes caused statistically significant decrease in the expression of CART-LI nerve fibers only in the antrum circular muscle layer. Also, no changes in the CART-like immunoreactivity in the intraganglionic nerve fibers were observed. The obtained results suggest that acute hyperglycemia produced significant reduction of the CART expression in enteric perikarya throughout entire stomach as well as decrease of density the CART-LI fibers in circular muscle layer of the antrum. Additionally, we suggest that CART might be involved in the regulation of stomach function especially in the gastric motility.
Ramírez, Manuel; Martínez-Martínez, Laura-Aline; Hernández-Quintela, Everardo; Velazco-Casapía, Jorge; Vargas, Angélica; Martínez-Lavín, Manuel
2015-10-01
A consistent line of investigation suggests that fibromyalgia is a neuropathic pain syndrome. This outlook has been recently reinforced by several controlled studies that describe decreased small nerve fiber density in skin biopsies of patients with fibromyalgia. The cornea receives the densest small fiber innervation of the body. Corneal confocal bio-microscopy is a new noninvasive method to evaluate small nerve fiber morphology. Our objective was to assess corneal small nerve fiber morphology in patients with fibromyalgia, and to associate corneal nerve microscopic features with neuropathic pain descriptors and other fibromyalgia symptoms. We studied 17 female patients with fibromyalgia and 17 age-matched healthy control subjects. All the participants completed different questionnaires regarding the symptoms of fibromyalgia, including a neuropathic pain survey. A central corneal thickness scan was obtained with a confocal microscope. Nerve measurements were made by a single ophthalmologist without knowledge of the clinical diagnosis. Stromal nerve thickness was defined as the mean value between the widest and the narrowest portion of each analyzed stromal nerve. Corneal sub-basal plexus nerve density was also assessed. Patients with fibromyalgia had stromal nerve thickness of 5.0 ± 1.0 µm (mean ± standard deviation) significantly different from that of control's values (6.1 ± 1.3) p = 0.01. Patients also had decreased sub-basal plexus nerve density per square millimeter (85 ± 29) vs. 107 ± 26 of controls p = 0.02. When controls and patients were grouped together, there was an association between stromal nerve slenderness and neuropathic pain descriptors (Fisher's exact test p = 0.007). Women suffering from fibromyalgia have thinner corneal stromal nerves and diminished sub-basal plexus nerve density when compared to healthy controls. Nerve scarcity is associated with neuropathic pain descriptors. Small fiber neuropathy may play a role in the pathogenesis of fibromyalgia pain. Corneal confocal microscopy could become a useful test in the study of patients with fibromyalgia. Copyright © 2015. Published by Elsevier Inc.
Farahpour, Mohammad Reza; Ghayour, Sina Jangkhahe
2014-12-01
The repair of peripheral nerve injuries is still one of the most challenging tasks and concerns in neurosurgery, plastic and orthopedic surgery. Effect of acetyl-L-carnitine (ALC) loaded chitosan conduit as an in situ delivery system of ALC in bridging the defects was studied using a rat sciatic nerve regeneration model. A 10-mm sciatic nerve defect was bridged using a chitosan conduit (CHIT/ALC) filled with 10 μL ALC (100 ng/mL). In control group (CHIT), the conduit was filled with the same volume of the phosphate buffered solution. The regenerated fibers were studied 4, 8, 12 and 16 weeks after surgery. The functional and electrophysiological studies confirmed faster recovery of the regenerated axons in ALC treated than control group (P < 0.05). The mean ratios of gastrocnemius muscles weight were measured. There was statistically significant difference between the muscle weight ratios of CHIT/ALC and CHIT groups (P<0.05). Morphometric indices of regenerated fibers showed number and diameter of the myelinated fibers in CHIT/ALC were significantly higher than in control group. In immuohistochemistry, the location of reactions to S-100 in CHIT/ALC was clearly more positive than CHIT group. ALC when loaded in a chitosan conduit resulted in improvement of functional recovery and quantitative morphometric indices of sciatic nerve. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Nerve Regeneration in Conditions of HSV-Infection and an Antiviral Drug Influence.
Gumenyuk, Alla; Rybalko, Svetlana; Ryzha, Alona; Savosko, Sergey; Labudzynskyi, Dmytro; Levchuk, Natalia; Chaikovsky, Yuri
2018-05-05
Herpes simplex virus type I (HSV-I) is a latent neuroinfection which can cause focal brain lesion. The role of HSV-infection in nerve regeneration has not been studied so far. The aim of the work was to study sciatic nerve regeneration in the presence of HSV-infection and the influence of an antiviral drug. BALB/c line mice were divided into five groups. Group 1 animals were infected with HSV-I. After resolution of neuroinfection manifestations the sciatic nerve of these animals was crushed. Group 2 mice were administered acyclovir following the same procedures. Groups 3-5 mice served as controls. Thirty days after the operation distal nerve stumps and m.gastrocnemius were studied morphologically and biochemically. Ultrastructural organization of the sciatic nerve in control animals remained intact. Morphometric parameters of the nerves from the experimental groups have not reach control values. However, in the group 1 diameter of nerve fibers was significantly smaller than in the group 2. Both nerve regeneration and m.gastrocnemius reinnervation were confirmed. The muscle hypotrophy was found in groups 1, 2, and 3 (the muscle fibers diameter decreased). Metabolic changes in the muscles of the infected animals (groups 1 and 2) were more pronounced than in control groups 3 and 4. The levels of TBA-active products, conjugated dienes, carbonyl and SH-groups were reduced in m.gastrocnemius of the experimental groups, however no significant difference associated with acyclovir administration was found. HSV-infection is not limited to the local neurodegenerative changes in the CNS but affects regeneration of the injured sciatic nerve. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Kowtharapu, B S; Winter, K; Marfurt, C; Allgeier, S; Köhler, B; Hovakimyan, M; Stahnke, T; Wree, A; Stachs, O; Guthoff, R F
2017-03-01
PurposeThis study was designed to compare and contrast quantitative data of the human corneal sub-basal nerve plexus (SBP) evaluated by two different methods: in vivo confocal microscopy (IVCM), and immunohistochemical staining of ex vivo donor corneas.MethodsSeven parameters of the SBP in large-scale IVCM mosaicking images from healthy subjects were compared with the identical parameters in ex vivo donor corneas stained by β-III-tubulin immunohistochemistry. Corneal nerve fiber length (CNFL), corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), average weighted corneal nerve fiber tortuosity (CNFTo), corneal nerve connection points (CNCP), average corneal nerve single-fiber length (CNSFL), and average weighted corneal nerve fiber thickness (CNFTh) were calculated using a dedicated, published algorithm and compared.ResultsOur experiments showed significantly higher values for CNFL (50.2 vs 21.4 mm/mm 2 ), CNFD (1358.8 vs 277.3 nerve fibers/mm 2 ), CNBD (847.6 vs 163.5 branches/mm 2 ), CNFTo (0.095 vs 0.081 μm -1 ), and CNCP (49.4 vs 21.6 connections/mm 2 ) in histologically staining specimens compared with IVCM images. In contrast, CNSFL values were higher in IVCM images than in histological specimens (32.1 vs 74.1 μm). No significant difference was observed in CNFTh (2.22 vs 2.20 μm) between the two groups.ConclusionsThe results of this study have shown that IVCM has an inherently lower resolution compared with ex vivo immunohistochemical staining of the corneal SBP and that this limitation leads to a systematic underestimation of several SBP parameters. Despite this shortcoming, IVCM is a vital clinical tool for in vivo characterization, quantitative clinical imaging, and evaluation of the human corneal SBP.
Chronic migraine is associated with reduced corneal nerve fiber density and symptoms of dry eye.
Kinard, Krista I; Smith, A Gordon; Singleton, J Robinson; Lessard, Margaret K; Katz, Bradley J; Warner, Judith E A; Crum, Alison V; Mifflin, Mark D; Brennan, Kevin C; Digre, Kathleen B
2015-04-01
We used in vivo corneal confocal microscopy to investigate structural differences in the sub-basal corneal nerve plexus in chronic migraine patients and a normal population. We used a validated questionnaire and tests of lacrimal function to determine the prevalence of dry eye in the same group of chronic migraine patients. Activation of the trigeminal system is involved in migraine. Corneal nociceptive sensation is mediated by trigeminal axons that synapse in the gasserian ganglion and the brainstem, and serve nociceptive, protective, and trophic functions. Noninvasive imaging of the corneal sub-basal nerve plexus is possible with in vivo corneal confocal microscopy. For this case-control study, we recruited chronic migraine patients and compared them with a sex- and age-similar group of control subjects. Patients with peripheral neuropathy, a disease known to be associated with a peripheral neuropathy, or prior corneal or intraocular surgery were excluded. Participants underwent in vivo corneal confocal microscopy using a Heidelberg Retinal Tomography III confocal microscope with a Rostock Cornea Module. Nerve fiber length, nerve branch density, nerve fiber density, and tortuosity coefficient were measured using established methodologies. Migraine participants underwent testing of basal tear production with proparacaine, corneal sensitivity assessment with a cotton-tip applicator, measurement of tear break-up time, and completion of a validated dry eye questionnaire. A total of 19 chronic migraine patients and 30 control participants completed the study. There were no significant differences in age or sex. Nerve fiber density was significantly lower in migraine patients compared with controls (48.4 ± 23.5 vs. 71.0 ± 15.0 fibers/mm2 , P < .001). Nerve fiber length was decreased in the chronic migraine group compared with the control group, but this difference was not statistically significant (21.5 ± 11.8 vs. 26.8 ± 5.9 mm/mm2, P < .084). Nerve branch density was similar in the two groups (114.0 ± 92.4 vs. 118.1 ± 55.9 branches/mm2 , P < .864). Tortuosity coefficient and log tortuosity coefficient also were similar in the chronic migraine and control groups. All migraine subjects had symptoms consistent with a diagnosis of dry eye syndrome. We found that in the sample used in this study, the presence of structural changes in nociceptive corneal axons lends further support to the hypothesis that the trigeminal system plays a critical role in the pathogenesis of migraine. In vivo corneal confocal microscopy holds promise as a biomarker for future migraine research as well as for studies examining alterations of corneal innervation. Dry eye symptoms appear to be extremely prevalent in this population. The interrelationships between migraine, corneal nerve architecture, and dry eye will be the subject of future investigations. © 2015 American Headache Society.
Barras, Florian M; Kuntzer, Thierry; Zurn, Anne D; Pasche, Philippe
2009-05-01
Facial nerve regeneration is limited in some clinical situations: in long grafts, by aged patients, and when the delay between nerve lesion and repair is prolonged. This deficient regeneration is due to the limited number of regenerating nerve fibers, their immaturity and the unresponsiveness of Schwann cells after a long period of denervation. This study proposes to apply glial cell line-derived neurotrophic factor (GDNF) on facial nerve grafts via nerve guidance channels to improve the regeneration. Two situations were evaluated: immediate and delayed grafts (repair 7 months after the lesion). Each group contained three subgroups: a) graft without channel, b) graft with a channel without neurotrophic factor; and c) graft with a GDNF-releasing channel. A functional analysis was performed with clinical observation of facial nerve function, and nerve conduction study at 6 weeks. Histological analysis was performed with the count of number of myelinated fibers within the graft, and distally to the graft. Central evaluation was assessed with Fluoro-Ruby retrograde labeling and Nissl staining. This study showed that GDNF allowed an increase in the number and the maturation of nerve fibers, as well as the number of retrogradely labeled neurons in delayed anastomoses. On the contrary, after immediate repair, the regenerated nerves in the presence of GDNF showed inferior results compared to the other groups. GDNF is a potent neurotrophic factor to improve facial nerve regeneration in grafts performed several months after the nerve lesion. However, GDNF should not be used for immediate repair, as it possibly inhibits the nerve regeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Lihua; Center of Molecular Medicine, School of Medicine, Hubei University of Arts and Sciences, Xiangyang 441053; Gan, Li
Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were appliedmore » to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide conduits in the field of nerve tissue engineering. - Highlights: • A novel nerve conduit was constructed and applied to repair nerve defect in rats. • Transparent hollow cellulose/soy protein isolate tube was used as conduit matrix. • Pyrroloquinoline quinine was adsorbed into the hollow tube as nerve growth factor. • Schwann cells were cultured into the hollow tube as seed cells. • The new nerve conduit could repair and reconstruct the peripheral nerve defects.« less
ROLE OF TIMING IN ASSESSMENT OF NERVE REGENERATION
BRENNER, MICHAEL J.; MORADZADEH, ARASH; MYCKATYN, TERENCE M.; TUNG, THOMAS H. H.; MENDEZ, ALLEN B.; HUNTER, DANIEL A.; MACKINNON, SUSAN E.
2014-01-01
Small animal models are indispensable for research on nerve injury and reconstruction, but their superlative regenerative potential may confound experimental interpretation. This study investigated time-dependent neuroregenerative phenomena in rodents. Forty-six Lewis rats were randomized to three nerve allograft groups treated with 2 mg/(kg day) tacrolimus; 5 mg/(kg day) Cyclosporine A; or placebo injection. Nerves were subjected to histomorphometric and walking track analysis at serial time points. Tacrolimus increased fiber density, percent neural tissue, and nerve fiber count and accelerated functional recovery at 40 days, but these differences were undetectable by 70 days. Serial walking track analysis showed a similar pattern of recovery. A ‘blow-through’ effect is observed in rodents whereby an advancing nerve front overcomes an experimental defect given sufficient time, rendering experimental groups indistinguishable at late time points. Selection of validated time points and corroboration in higher animal models are essential prerequisites for the clinical application of basic research on nerve regeneration. PMID:18381659
Recurrent laryngeal nerve alterations in developing spontaneously hypertensive rats.
da Silva, Greice Anne Rodrigues; Mendes, Vania Alice de Aguiar; Genari, Adriana Borges; Castania, Jaci Ayrton; Salgado, Hélio Cesar; Fazan, Valéria Paula Sassoli
2016-01-01
It is well known that the recurrent laryngeal nerve not only innervates the larynx but also contains baroreceptor fibers, as demonstrated by physiological studies. Because hypertension has a negative impact on both peripheral nerve morphology and the baroreflex, we investigated the recurrent laryngeal nerve morphological alterations related to the development of hypertension. We compared morphological and morphometric aspects of different segments of the recurrent laryngeal nerve in male and female spontaneously hypertensive rats in different ages: 5, 8, and 20 weeks (n = 6 per group). Blood pressure and heart rate were recorded in anesthetized animals, followed by removal of the right and left recurrent laryngeal nerves for epoxy resin embedding and light microscopy analysis. Computer software was used for morphometric analysis. The blood pressure was significantly higher in 20-week-old animals compared to those at 5 weeks. Body weight increased significantly with age, as did the nerve fascicles. For the myelinated fibers and respective axons, there was a reduction of fiber size, more evident on the axon, associated with a reduction of the small myelinated fibers percentage in animals with high blood pressure. Also, 20-week-old animals showed a significant reduction of the blood vessel percentage of occupancy compared to younger ages. No differences were observed between genders. Hypertension development impaired axon growth, affecting mainly the small myelinated fibers. Males and females were affected equally. The alterations of the endoneural blood vessels probably played an important role on the small fibers alterations. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Martins Lima, Êmyle; Teixeira Goes, Bruno; Zugaib Cavalcanti, João; Vannier-Santos, Marcos André; Martinez, Ana Maria Blanco; Baptista, Abrahão Fontes
2014-01-01
We investigated the effect of two frequencies of transcutaneous electrical nerve stimulation (TENS) applied immediately after lesion on peripheral nerve regeneration after a mouse sciatic crush injury. The animals were anesthetized and subjected to crushing of the right sciatic nerve and then separated into three groups: nontreated, Low-TENS (4 Hz), and High-TENS (100 Hz). The animals of Low- and High-TENS groups were stimulated for 2 h immediately after the surgical procedure, while the nontreated group was only positioned for the same period. After five weeks the animals were euthanized, and the nerves dissected bilaterally for histological and histomorphometric analysis. Histological assessment by light and electron microscopy showed that High-TENS and nontreated nerves had a similar profile, with extensive signs of degeneration. Conversely, Low-TENS led to increased regeneration, displaying histological aspects similar to control nerves. High-TENS also led to decreased density of fibers in the range of 6–12 μm diameter and decreased fiber diameter and myelin area in the range of 0–2 μm diameter. These findings suggest that High-TENS applied just after a peripheral nerve crush may be deleterious for regeneration, whereas Low-TENS may increase nerve regeneration capacity. PMID:25147807
Peretti, Ana Luiza; Antunes, Juliana Sobral; Lovison, Keli; Kunz, Regina Inês; Castor, Lidyane Regina Gomes; Brancalhão, Rose Meire Costa; Bertolini, Gladson Ricardo Flor; Ribeiro, Lucinéia de Fátima Chasko
2017-01-01
ABSTRACT Objective To evaluate the action of vanillin (Vanilla planifolia) on the morphology of tibialis anterior and soleus muscles after peripheral nerve injury. Methods Wistar rats were divided into four groups, with seven animals each: Control Group, Vanillin Group, Injury Group, and Injury + Vanillin Group. The Injury Group and the Injury + Vanillin Group animals were submitted to nerve injury by compression of the sciatic nerve; the Vanillin Group and Injury + Vanillin Group, were treated daily with oral doses of vanillin (150mg/kg) from the 3rd to the 21st day after induction of nerve injury. At the end of the experiment, the tibialis anterior and soleus muscles were dissected and processed for light microscopy and submitted to morphological analysis. Results The nerve compression promoted morphological changes, typical of denervation, and the treatment with vanillin was responsible for different responses in the studied muscles. For the tibialis anterior, there was an increase in the number of satellite cells, central nuclei and fiber atrophy, as well as fascicular disorganization. In the soleus, only increased vascularization was observed, with no exacerbation of the morphological alterations in the fibers. Conclusion The treatment with vanillin promoted increase in intramuscular vascularization for the muscles studied, with pro-inflammatory potential for tibialis anterior, but not for soleus muscle. PMID:28767917
Reduction in Retinal Nerve Fiber Layer Thickness in Young Adults with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Emberti Gialloreti, Leonardo; Pardini, Matteo; Benassi, Francesca; Marciano, Sara; Amore, Mario; Mutolo, Maria Giulia; Porfirio, Maria Cristina; Curatolo, Paolo
2014-01-01
Recent years have seen an increase in the use of retinal nerve fiber layer (RNFL) evaluation as an easy-to-use, reproducible, proxy-measure of brain structural abnormalities. Here, we evaluated RNFL thickness in a group of subjects with high functioning autism (HFA) or with Asperger Syndrome (AS) to its potential as a tool to study autism…
Shin, Il-Hwan; Lee, Woo-Hyuk; Lee, Jong-Joo; Jo, Young-Joon; Kim, Jung-Yeul
2018-02-01
To determine the repeatability of measuring the thickness of the central macula, retinal nerve fiber layer, and ganglion cell-inner plexiform layer (GC-IPL) using spectral domain optical coherence tomography (Cirrus HD-OCT) in eyes with age-related macular degeneration. One hundred and thirty-four eyes were included. The measurement repeatability was assessed by an experienced examiner who performed two consecutive measurements using a 512 × 128 macular cube scan and a 200 × 200 optic disk cube scan. To assess changes in macular morphology in patients with age-related macular degeneration, the patients were divided into the following three groups according to the central macular thickness (CMT): A group, CMT < 200 μm; B group, 200 μm ≤ CMT < 300 μm; and C group, CMT > 300 μm. Measurement repeatability was assessed using test-retest variability, a coefficient of variation, and an intraclass correlation coefficient. The mean measurement repeatability for the central macular, retinal nerve fiber layer, and GC-IPL thickness was high in the B group. The mean measurement repeatability for both the central macula and retinal nerve fiber layer thickness was high in the A and C groups, but was lower for the GC-IPL thickness. The measurement repeatability for GC-IPL thickness was high in the B group, but low in the A group and in the C group. The automated measurement repeatability for GC-IPL thickness was significantly lower in patients with age-related macular degeneration with out of normal CMT range. The effect of changes in macular morphology should be considered when analyzing GC-IPL thicknesses in a variety of ocular diseases.
Giannessi, Elisabetta; Coli, Alessandra; Stornelli, Maria Rita; Miragliotta, Vincenzo; Pirone, Andrea; Lenzi, Carla; Burchielli, Silvia; Vozzi, Giovanni; De Maria, Carmelo; Giorgetti, Margherita
2014-11-01
The aim of this study was to investigate the ability of suturable platelet-rich plasma (PRP) membrane to promote peripheral nerve regeneration after neurotmesis and neurorraphy. A total of 36 rats were used: 32 animals underwent surgery and were split in two groups. An interim sacrifice was performed at 6 weeks postsurgery and final sacrifice at 12 weeks; four animals did not sustain nerve injury and served as control. Clinical, electromyographic (EMG), gross, and histological changes were assessed. The EMG signal was evaluated for its amplitude and frequency spectrum. Number of regenerating fibers, their diameter, and myelin thickness were histologically analyzed. Both EMG parameters showed a significant (p < 0.05) effect of treatment at 6 and 12 weeks postsurgery. At 6 weeks, the fiber density was statistically different between treated and untreated animals with a higher observed density in treated nerves. No difference in fiber density was observed at 12 weeks postsurgery. The distribution of fiber diameters showed an effect at 12 weeks when only the sections of the nerves sutured with PRP showed fibers with diameters greater than 6 µm. Our data show that the application of a PRP fibrin membrane around the neurorraphy improves the nerve regeneration process in a rat sciatic nerve model. The use of PRP as a suturable membrane could perform an action not only as a source of bioactive proteins but also as a nerve guide to hold the scar reaction and thus improve axonal regeneration. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobar, Antonio S.; Ocampo, Arcelia F. M.; Hernandez, Maria G. H.
2010-05-31
The purpose of this study was to evaluate the compound nerve action potential amplitude and latency measured to determine the degree of myelination and the number of fibers stimulated in a model of stimulated frog sciatic nerve laser at 810 nm as perioperative treatment after injury. It used 30 bullfrogs (Rana catesbeiana) to obtain 60 sciatic nerves forming four groups, groups 1 and 2 worked with nerves in vitro, were dissected in humid chambers for placing isolated organ, was recorded on compound nerve action potential, the second group laser was applied at 24, 48, 72, 96 and 120 hours andmore » at the same time were placed in 10% formalin. Groups 3 and 4 are worked in vivo localizing the nerve and causing damage through compression, occurred over the compound nerve action potential to assess the degree of myelination and the number of fibers stimulated, the group 4 was applied to 810 nm laser (500 Hz, 10 J, 200 mW) after injury, after 48 hours, three frogs were sacrificed by introducing the nerves in 10% formalin. The latency recorded by stimulating the sciatic nerve of frog to 0.5 mA and 100 ms in groups 1 and 2 show significant differences (p<0.001 and p<000) as in the amplitude (p<000 and p<000). Groups 3 and 4, which was stimulated at 100 mA and 100 ms latency showed no statistically significant difference (p>000), as to the extent, if any statistically significant difference. (p<0.001 and p<0.000). The laser produces a favorable response in the treatment of paresthesia (post-traumatic neuropathy).« less
NASA Astrophysics Data System (ADS)
Escobar, Antonio S.; Ocampo, Arcelia F. M.; Hernández, María G. H.; Jasso, José L. C.; Lira, Maricela O. F.; Flores, Mariana A.; Balderrama, Vicente L.
2010-05-01
The purpose of this study was to evaluate the compound nerve action potential amplitude and latency measured to determine the degree of myelination and the number of fibers stimulated in a model of stimulated frog sciatic nerve laser at 810 nm as perioperative treatment after injury. It used 30 bullfrogs (Rana catesbeiana) to obtain 60 sciatic nerves forming four groups, groups 1 and 2 worked with nerves in vitro, were dissected in humid chambers for placing isolated organ, was recorded on compound nerve action potential, the second group laser was applied at 24, 48, 72, 96 and 120 hours and at the same time were placed in 10% formalin. Groups 3 and 4 are worked in vivo localizing the nerve and causing damage through compression, occurred over the compound nerve action potential to assess the degree of myelination and the number of fibers stimulated, the group 4 was applied to 810 nm laser (500 Hz, 10 J, 200 mW) after injury, after 48 hours, three frogs were sacrificed by introducing the nerves in 10% formalin. The latency recorded by stimulating the sciatic nerve of frog to 0.5 mA and 100 ms in groups 1 and 2 show significant differences (p<0.001 and p<000) as in the amplitude (p<000 and p<000). Groups 3 and 4, which was stimulated at 100 mA and 100 ms latency showed no statistically significant difference (p>000), as to the extent, if any statistically significant difference. (p<0.001 and p<0.000). The laser produces a favorable response in the treatment of paresthesia (post-traumatic neuropathy).
Krause Neto, Walter; Silva, Wellington de Assis; Ciena, Adriano P.; de Souza, Romeu R.; Anaruma, Carlos A.; Gama, Eliane F.
2017-01-01
The present study aimed to analyze the morphology of the peripheral nerve, postsynaptic compartment, skeletal muscles and weight-bearing capacity of Wistar rats at specific ages. Twenty rats were divided into groups: 10 months-old (ADULT) and 24 months-old (OLD). After euthanasia, we prepared and analyzed the tibial nerve using transmission electron microscopy and the soleus and plantaris muscles for cytofluorescence and histochemistry. For the comparison of the results between groups we used dependent and independent Student's t-test with level of significance set at p ≤ 0.05. For the tibial nerve, the OLD group presented the following alterations compared to the ADULT group: larger area and diameter of both myelinated fibers and axons, smaller area occupied by myelinated and unmyelinated axons, lower numerical density of myelinated fibers, and fewer myelinated fibers with normal morphology. Both aged soleus and plantaris end-plate showed greater total perimeter, stained perimeter, total area and stained area compared to ADULT group (p < 0.05). Yet, aged soleus end-plate presented greater dispersion than ADULT samples (p < 0.05). For the morphology of soleus and plantaris muscles, density of the interstitial volume was greater in the OLD group (p < 0.05). No statistical difference was found between groups in the weight-bearing tests. The results of the present study demonstrated that the aging process induces changes in the peripheral nerve and postsynaptic compartment without any change in skeletal muscles and ability to carry load in Wistar rats. PMID:29326543
Askar, Ibrahím; Sabuncuoglu, Bízden Tavíl
2002-01-01
Neurorraphy, conventional nerve grafting technique, and artificial nerve conduits are not enough for repair in severe injuries of peripheral nerves, especially when there is separation of motor nerve from muscle tissue. In these nerve injuries, reinnervation is indicated for neurotization. The distal end of a peripheral nerve is divided into fascicles and implanted into the aneural zone of target muscle tissue. It is not known how deeply fascicles should be implanted into muscle tissue. A comparative study of superficial and deep implantation of separated motor nerve into muscle tissue is presented in the gastrocnemius muscle of rabbits. In this experimental study, 30 white New Zealand rabbits were used and divided into 3 groups of 10 rabbits each. In the first group (controls, group I), only surgical exposure of the gastrocnemius muscle and motor nerve (tibial nerve) was done without any injury to nerves. In the superficial implantation group (group II), tibial nerves were separated and divided into their own fascicles. These fascicles were implanted superficially into the lateral head of gastrocnemius muscle-aneural zone. In the deep implantation group (group III), the tibial nerves were separated and divided into their own fascicles. These fascicles were implanted around the center of the muscle mass, into the lateral head of the gastrocnemius muscle-aneural zone. Six months later, histopathological changes and functional recovery of the gastrocnemius muscle were investigated. Both experimental groups had less muscular weight than in the control group. It was found that functional recovery was achieved in both experimental groups, and was better in the superficial implantation group than the deep implantation group. EMG recordings revealed that polyphasic and late potentials were frequently seen in both experimental groups. Degeneration and regeneration of myofibrils were observed in both experimental groups. New motor end-plates were formed in a scattered manner in both experimental groups. However, they were more dense in the superficial implantation group than the deep implantation group. It was concluded that superficial implantation has a more powerful contractile capacity than that of deep implantation. We believe that this might arise from the high activity of glycolytic enzymes in peripheral muscle fibers of gastrocnemius muscle, decrease in insufficient intramuscular guidance apparatus, and intramuscular microneuroma formation at the insufficient neuromuscular junction since the motor nerve had less route to muscle fibers. Copyright 2002 Wiley-Liss, Inc.
Jia, Xiaotian; Chen, Chao; Yang, Jianyun; Yu, Cong
2018-06-01
The phrenic nerve being transferred to the posterior division of the lower trunk with end-to-end neurorrhaphy is reported to be effective in restoring the function of digit extension in literature. However, the phrenic nerve is extremely important in respiration. We designed an animal experiment to discover whether the phrenic nerve being transferred to the posterior division of the lower trunk with end-to-side neurotization was feasible and provided the theoretical basis. A sum of 36 Sprague-Dawley rats was randomly assigned to one of two groups. In Group A, the phrenic nerve was transferred to the posterior division of the lower trunk with end-to-side neurotization. In Group B, the posterior division of the lower trunk was directly sutured. The results of behavioral assessment, electrophysiology, histology and nerve fiber count and muscle weight at 12 weeks postoperatively were recorded. In Group A, none of the rats experienced tachypnea. The motion of slight toe extension was observed. The results of electrophysiology, histology and nerve fiber count and muscle weight in Group A were not as well as those of Group B, but gradually improved with time. The phrenic nerve being transferred to the posterior division of lower trunk with end-to-side neurotization can partially restore the function of toe extension in a rat model. Whether the function of digit extension can be restored by the phrenic nerve with end-to-side neurotization in humans still needs more practice in clinic.
The effect of methylprednisolone on facial nerve paralysis with different etiologies.
Yildirim, Mehmet Akif; Karlidag, Turgut; Akpolat, Nusret; Kaygusuz, Irfan; Keles, Erol; Yalcin, Sinasi; Akyigit, Abdulvahap
2015-05-01
The objective of this study was to evaluate the effectiveness of methylprednisolone (MP) in models of facial nerve paralysis obtained by nerve section, compression, or inoculation with herpes simplex virus (HSV). Experimental controlled animal study. Tertiary referral center. A total of 30 female New Zealand rabbits weighing 1200-3000 g were used for the study. They were randomly assigned to one of 6 groups of 5 animals each. A nerve section injury was realized in Groups 1a (section and MP) and 1b (section, control) rabbits. A compression-type injury was inflicted to rabbits in Groups 2a (compression and MP) and 2b (compression, control). As for animals in Groups 3a (Type 1 HSV and MP) and 3b (Type 1 HSV, controls), facial nerve paralysis resulting from viral infection was obtained. Animals in the 3 treatment groups, designated with the letter "a", were administered MP, 1 mg/kg/d, whereas those in control groups "b" received 1 mL normal saline, both during 3 weeks. All subjects were followed up for 2 months. At the end of this period, all animals had the buccal branch of the facial nerve excised on the operated side. Semi-thin sections of these specimens were evaluated under light microscopy for the following: perineural fibrosis, increase in collagen fibers, myelin degeneration, axonal degeneration, Schwann cell proliferation, and edema. No significant difference was observed (P > 0.05) between the MP treatment group and the control group with regard to perineural fibrosis, increase in collagen fibers, myelin degeneration, axonal degeneration, edema, or Schwann cell proliferation. In the group with a compressive lesion (Group 2), controls were no different from MP-treated animals as to perineural fibrosis, increase in collagen fibers, or Schwann cell proliferation, whereas axonal degeneration, myelin degeneration, and edema were significantly higher (P < 0.05) in the control group. When comparing the treatment and control groups among the animals inoculated with Type 1 HSV, no significant difference was found with regard to perineural fibrosis, axonal degeneration, myelin degeneration, or Schwann cell proliferation. The only statistically significant advantage of the treatment group was in edema formation (P < 0.05). As a result of the evaluation of MP efficacy in different models of facial nerve palsy, we may say that this drug was without effect on nerve healing in paralysis due to nerve section and that it only reduced nervous edema in paralysis induced by Type 1 HSV, whereas it had positive effects on healing in the type of paralysis caused by nerve compression.
Wang, Wei; Itoh, Soichiro; Konno, Katsumi; Kikkawa, Takeshi; Ichinose, Shizuko; Sakai, Katsuyoshi; Ohkuma, Tsuneo; Watabe, Kazuhiko
2009-12-15
We have constructed a chitosan nonwoven nanofiber mesh tube consisting of oriented fibers by the electrospinning method. The efficacy of oriented nanofibers on Schwann cell alignment and positive effect of this tube on peripheral nerve regeneration were confirmed. The physical properties of the chitosan nanofiber mesh sheets prepared by electrospinning with or without fiber orientation were characterized. Then, immortalized Schwann cells were cultured on these sheets. Furthermore, the chitosan nanofiber mesh tubes with or without orientation, and bilayered chitosan mesh tube with an inner layer of oriented nanofibers and an outer layer of randomized nanofibers were bridgegrafted into rat sciatic nerve defect. As a result of fiber orientation, the tensile strength along the axis of the sheet increased. Because Schwann cells aligned along the nanofibers, oriented fibrous sheets could exhibit a Schwann cell column. Functional recovery and electrophysiological recovery occurred in time in the oriented group as well as in the bilayered group, and approximately matched those in the isograft. Furthermore, histological analysis revealed that the sprouting of myelinated axons occurred vigorously followed by axonal maturation in the isograft, oriented, and bilayered group in the order. The oriented chitosan nanofiber mesh tube may be a promising substitute for autogenous nerve graft.
African Descent and Glaucoma Evaluation Study (ADAGES)
Girkin, Christopher A.; Sample, Pamela A.; Liebmann, Jeffrey M.; Jain, Sonia; Bowd, Christopher; Becerra, Lida M.; Medeiros, Felipe A.; Racette, Lyne; Dirkes, Keri A.; Weinreb, Robert N.; Zangwill, Linda M.
2010-01-01
Objective To define differences in optic disc, retinal nerve fiber layer, and macular structure between healthy participants of African (AD) and European descent (ED) using quantitative imaging techniques in the African Descent and Glaucoma Evaluation Study (ADAGES). Methods Reliable images were obtained using stereoscopic photography, confocal scanning laser ophthalmoscopy (Heidelberg retina tomography [HRT]), and optical coherence tomography (OCT) for 648 healthy subjects in ADAGES. Findings were compared and adjusted for age, optic disc area, and reference plane height where appropriate. Results The AD participants had significantly greater optic disc area on HRT (2.06 mm2; P<.001) and OCT (2.47 mm2; P<.001) and a deeper HRT cup depth than the ED group (P<.001). Retinal nerve fiber layer thickness was greater in the AD group except within the temporal region, where it was significantly thinner. Central macular thickness and volume were less in the AD group. Conclusions Most of the variations in optic nerve morphologic characteristics between the AD and ED groups are due to differences in disc area. However, differences remain in HRT cup depth, OCT macular thickness and volume, and OCT retinal nerve fiber layer thickness independent of these variables. These differences should be considered in the determination of disease status. PMID:20457974
Maturana, Luiz G; Pierucci, Amauri; Simões, Gustavo F; Vidigal, Mateus; Duek, Eliana A R; Vidal, Benedicto C; Oliveira, Alexandre L R
2013-01-01
The purpose of this study was to investigate the influence of implanting collagen with a supramolecular organization on peripheral nerve regeneration, using the sciatic nerve tubulization technique. For this purpose, adult female Sprague Dawley rats were divided into five groups: (1) TP – sciatic nerve repaired with empty polyethylene tubular prothesis (n = 10), (2) TPCL – nerve repair with empty polycaprolactone (PCL) tubing (n = 8), (3) TPCLF – repair with PCL tubing filled with an implant of collagen with a supramolecular organization (n = 10), (4) AG – animals that received a peripheral nerve autograft (n = 8), and (5) Normal nerves (n = 8). The results were assessed by quantification of the regenerated fibers, nerve morphometry, and transmission electron microscopy, 60 days after surgery. Immunohistochemistry and polarization microscopy were also used to analyze the regenerated nerve structure and cellular elements. The results showed that the AG group presented a larger number of regenerated axons. However, the TPCL and TPCLF groups presented more compact regenerated fibers with a morphometric profile closer to normal, both at the tube midpoint and 2 mm distal to the prosthesis. These findings were reinforced by polarization microscopy, which indicated a better collagen/axons suprastructural organization in the TPCLF derived samples. In addition, the immunohistochemical results obtained using the antibody anti-p75NTR as a Schwann cell reactivity marker demonstrated that the Schwann cells were more reactive during the regenerative process in the TPCLF group as compared to the TPCL group and the normal sciatic nerve. Altogether, the results of this study indicated that the implant of collagen with a supramolecular organization positively influenced and stimulated the regeneration process through the nerve gap, resulting in the formation of a better morphologically arranged tissue. PMID:24381812
Türedi, Sibel; Yuluğ, Esin; Alver, Ahmet; Bodur, Akin; İnce, İmran
2018-04-01
The present study evaluated the neuroprotective and antioxidant effects of quercetin in a rat model of sciatic nerve crush injury using histopathological, morphometric and biochemical methods. A total of 48 male Sprague Dawley rats, aged 10-12 weeks old were randomly divided into eight groups, consisting of two sham groups (S-7, S-28), three quercetin-treated groups (Q-7, Q-28; 200 mg/kg/7 days), trauma (T-7, T-28; 1 min sciatic nerve crush injury) and three trauma+quercetin groups (T+Q-7, T+Q-28; trauma+quercetin 200 mg/kg/7 days). Rats were sacrificed on day 7 or 28. Oxidant-antioxidant biochemical parameters in nerve tissues from all groups were analyzed using histopathological staining with toluidine blue and Masson's trichrome. DNA fragmentations were identified using terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling in cells from each tissue sample. Degeneration of the axons and myelin sheath, the breakdown of the concentric lamellar structure of the myelin sheath and axonal swelling were observed in groups T-7 and T-28. Myelin sheath thicknesses, nerve fiber diameters and the number of myelinated nerve fibers decreased, while the apoptotic index (AI) increased in the T-7 and T-28 groups. However, it was observed that nerve regeneration began in the T+Q-7 and T+Q-28 groups compared with the sham groups, together with the healing of cellular damage and axonal structure and a decrease in the AI. Malondialdehyde and superoxide dismutase activity did not differ significantly between the T-7 and S-7 groups. However, catalase activity significantly decreased in the T-28 group when compared with the sham 7 day group. Tissue malondialdehyde levels significantly increased, while serum catalase activity increased in the T+Q-7 group compared with the T-7 group. These results suggest that quercetin has beneficial effects on nerve regeneration and may shorten the healing period in crush-type sciatic nerve injuries.
García-Bella, Javier; Martínez de la Casa, José M; Talavero González, Paula; Fernández-Vigo, José I; Valcarce Rial, Laura; García-Feijóo, Julián
2018-01-01
To establish the changes produced after implantation of a trifocal intraocular lens (IOL) on retinal nerve fiber layer measurements performed with Fourier-domain optical coherence tomography (OCT). This prospective study included 100 eyes of 50 patients with bilateral cataract in surgical range, no other associated ocular involvement, refractive errors between +5 and -5 spherical diopters, and less than 1.5 D of corneal astigmatism. The eyes were operated by phacoemulsification with implantation of 2 different trifocal IOLs (FineVision and AT LISA tri 839MP) in randomized equal groups. Cirrus OCT and Spectralis OCT were performed before surgery and 3 months later. Both analyzed the thickness of the nerve fiber layer and thickness divided by quadrants (6 in case of Spectralis and 4 in case of Cirrus HD). The mean age of patients was 67.5 ± 5.8 years. The global nerve fiber layer thickness measured with Spectralis OCT was 96.77 μm before surgery and 99.55 μm after. With Cirrus OCT, the global thickness was 85.29 μm before surgery and 89.77 μm after. Statistically significant differences in global thickness measurements between preimplantation and postimplantation of the IOL were found with both OCT in the 2 groups. Statistically significant differences were also found in temporal and superior quadrants. The implantation of a diffractive trifocal IOL alters the results of the optic nerve fiber layer on Fourier-domain OCT in these patients, which should be taken into account in the posterior study of these patients.
Kanamori, Akiyasu; Nakamura, Makoto; Matsui, Noriko; Nagai, Azusa; Nakanishi, Yoriko; Kusuhara, Sentaro; Yamada, Yuko; Negi, Akira
2004-12-01
To analyze retinal nerve fiber layer (RNFL) thickness in eyes with band atrophy by use of optical coherence tomography (OCT) and to evaluate the ability of OCT to detect this characteristic pattern of RNFL loss. Cross-sectional, retrospective study. Thirty-four eyes of 18 patients with bitemporal hemianopia caused by optic chiasm compression by chiasmal tumors were studied. All eyes were divided into 3 groups according to visual field loss grading after Goldmann perimetry. Retinal nerve fiber layer thickness measurements with OCT. Retinal nerve fiber layer thickness around the optic disc was measured by OCT (3.4-mm diameter circle). Calculation of the changes in OCT parameters, including the horizontal (nasal + temporal quadrant RNFL thickness) and vertical values (superior + inferior quadrant RNFL thickness) was based on data from 160 normal eyes. Comparison between the 3 visual field grading groups was done with the analysis of variance test. The receiver operating characteristic (ROC) curve for the horizontal and vertical value were calculated, and the areas under the curve (AUC) were compared. Retinal nerve fiber layer thickness in eyes with band atrophy decreased in all OCT parameters. The reduction rate in average and temporal RNFL thickness and horizontal value was correlated with visual field grading. The AUC of horizontal value was 0.970+/-0.011, which was significantly different from AUC of vertical value (0.903+/-0.022). The degree of RNFL thickness reduction correlated with that of visual field defects. Optical coherence tomography was able to identify the characteristic pattern of RNFL loss in these eyes.
Sensitivities of single nerve fibers in the hamster chorda tympani to mixtures of taste stimuli
1980-01-01
Responses of three groups of neural fibers from the chorda tympani of the hamster to binary mixtures of taste stimuli applied to the tongue were analyzed. The groups displayed different sensitivities to six chemicals at concentrations that had approximately equal effects on the whole nerve. Sucrose-best fibers responded strongly only to sucrose and D-phenylalanine. NaCl-best and HCl-best fibers, responded to four electrolytes: equally to CaCl2 and nearly equally to HCl, but the former responded more to NaCl, and the latter responded more to NH4Cl. The groups of fibers dealt differently with binary mixtures. Sucrose- best fibers responded to a mixture of sucrose and D-phenylalanine as if one of the chemicals had been appropriately increased in concentration, but they responded to a mixture of either one and an electrolyte as if the concentration of sucrose or D-phenylalanine had been reduced. NaCl- best fibers responded to a mixture as if it were a "mixture" of two appropriate concentrations of one chemical, or somewhat less. But, responses of HCl-best fibers to mixtures were greater than that, approaching a sum of responses to components. These results explain effects on the whole nerve, suggest that the sensitivity of a mammalian taste receptor to one chemical can be affected by a second, which may or may not be a stimulus for that receptor, and suggest that some effects of taste mixtures in humans may be the result of peripheral processes. PMID:7190997
Takayama, Kohei; Ooto, Sotaro; Hangai, Masanori; Ueda-Arakawa, Naoko; Yoshida, Sachiko; Akagi, Tadamichi; Ikeda, Hanako Ohashi; Nonaka, Atsushi; Hanebuchi, Masaaki; Inoue, Takashi; Yoshimura, Nagahisa
2013-05-01
To detect pathologic changes in retinal nerve fiber bundles in glaucomatous eyes seen on images obtained by adaptive optics (AO) scanning laser ophthalmoscopy (AO SLO). Prospective cross-sectional study. Twenty-eight eyes of 28 patients with open-angle glaucoma and 21 normal eyes of 21 volunteer subjects underwent a full ophthalmologic examination, visual field testing using a Humphrey Field Analyzer, fundus photography, red-free SLO imaging, spectral-domain optical coherence tomography, and imaging with an original prototype AO SLO system. The AO SLO images showed many hyperreflective bundles suggesting nerve fiber bundles. In glaucomatous eyes, the nerve fiber bundles were narrower than in normal eyes, and the nerve fiber layer thickness was correlated with the nerve fiber bundle widths on AO SLO (P < .001). In the nerve fiber layer defect area on fundus photography, the nerve fiber bundles on AO SLO were narrower compared with those in normal eyes (P < .001). At 60 degrees on the inferior temporal side of the optic disc, the nerve fiber bundle width was significantly lower, even in areas without nerve fiber layer defect, in eyes with glaucomatous eyes compared with normal eyes (P = .026). The mean deviations of each cluster in visual field testing were correlated with the corresponding nerve fiber bundle widths (P = .017). AO SLO images showed reduced nerve fiber bundle widths both in clinically normal and abnormal areas of glaucomatous eyes, and these abnormalities were associated with visual field defects, suggesting that AO SLO may be useful for detecting early nerve fiber bundle abnormalities associated with loss of visual function. Copyright © 2013 Elsevier Inc. All rights reserved.
Sericin and swimming on histomorphometric parameters of denervated plantar muscle in Wistar rats.
Santana, André Junior; Debastiani, Jean Carlos; Buratti, Pâmela; Peretti, Ana Luiza; Kunz, Regina Inês; Brancalhão, Rose Meire Costa; Ribeiro, Lucinéia de Fátima Chasko; Torrejais, Márcia Miranda; Bertolini, Gladson Ricardo Flor
2018-01-01
Objective To analyze the combined effects of the silk protein sericin and swimming exercise on histomorphometry of the plantar muscle in Wistar rats. Methods Forty adult rats were randomly allocated into 5 groups comprising 8 animals each, as follows: Control, Injury, Sericin, Swim, and Swim plus Sericin. Three days after crushing of the sciatic nerve the rats in the Swim and Swim plus Sericin Groups were submitted to swimming exercise for 21 days. Rats were then euthanized and the plantar muscle harvested and processed. Results Cross-sectional area, peripheral nuclei and muscle fiber counts, nucleus/fiber ratio and smallest muscle fiber width did not differ significantly between groups. Morphological analysis revealed hypertrophic fibers in the Swim Group and evident muscle damage in the Swim plus Sericin and Injury Groups. The percentage of intramuscular collagen was apparently maintained in the Swim Group compared to remaining groups. Conclusion Combined treatment with sericin and swimming exercise did not improve muscle properties. However, physical exercise alone was effective in maintaining intramuscular connective tissue and preventing progression of deleterious effects of peripheral nerve injury.
Anatomical feasibility of vagus nerve esophageal branch transfer to the phrenic nerve☆
Wang, Ce; Liu, Jun; Yuan, Wen; Zhou, Xuhui; Wang, Xinwei; Xu, Peng; Chen, Jian; Wu, Guoxin; Shi, Sheng
2012-01-01
This study measured the vagus and phrenic nerves from 12 adult cadavers. We found that the width and thickness of the vagus and phrenic nerves were different in the chest. The distance from the point of the vagus nerve and phrenic nerve on the plane of the inferior border of portal pulmonary arteries (T point) was approximately 7 cm to the diaphragm and was approximately 10 cm to the clavicle level. The number of motor fibers in the vagus nerves was 1 716 ± 362, and the number of nerve fibers was 4 473 ± 653. The number of motor fibers in the phrenic nerves ranged from 3 078 ± 684 to 4 794 ± 638, and the number of nerve fibers ranged from 3 437 ± 642 to 5 071 ± 723. No significant difference was found in the total number of nerve fibers. The results suggest that width, thickness, and total number of nerve fibers are similar between the vagus and phrenic nerves, but the number of motor fibers is different between them. PMID:25745467
Survey of Nerve Fiber Layer Thickness in Anisometropic and Strabismic Amblyopia.
Soltani Moghaddam, Reza; Medghalchi, Abdolreza; Alizadeh, Yousef
2017-01-01
. To investigate the effect of anisometropic and strabismic amblyopia on the nerve fiber layer thickness. This cross-sectional study was done on 54 amblyopic subjects, equally in both strabismic and anisometropic groups. The thickness otonerve fiber layer measured in superior, inferior, nasal, temporal quadrants and as a whole in both eyes of both groups. The means of thickness were compared in amblyopic and sound eyes. In strabismus group, the average nerve fiber layer thickness of the sound eye , in superior, inferior, nasal and temporal quadrants and as a whole were 113.23±14, 117.37±25, 68.96±6, 69.55±14 and 93.40±8 microns respectively. In amblyopic eyes of the same group, these measurements were 103.11±18, 67.74±11, and 69.59±16 and 89.59±12 microns in superior, inferior, nasal, temporal quadrants and as whole respectively. In anisometropic groups, the sound eye measurements were as 130.96±22, 129.07±29, 80.62±12, and 83.88±20 and 107.7±13 microns in superior, inferior, nasal and temporal quadrants and as a whole orderly. In amblyopic eyes of this group the mean thicknesses were 115.63±29, 133.15±25, 78.8±15, 80.2±16 and 109.17±21 microns in superior, inferior, nasal, temporal quadrants and as a whole respectively. Statistically, there were no significant differences between amblyopic and sound eyes (P>0.5). Our study did not support any significant change in a nerve fiber layer thickness of amblyopic patients; however, decreased thickness in superior and nasal quadrants of strabismic amblyopia and except inferior quadrant and as a whole. These measurements may be a clue for management and prognosis of amblyopia in old age.
Wlaszczuk, Adam; Marcol, Wiesław; Kucharska, Magdalena; Wawro, Dariusz; Palen, Piotr; Lewin-Kowalik, Joanna
2016-11-01
The influence of different kinds of nerve guidance conduits on regeneration of totally transected rat sciatic nerves through a 7-mm gap was examined. Five different types of conduits made of chitosan and poly(D,L-lactide-co-glycolide) (PLGA) were constructed and tested in vivo. We divided 50 animals into equal groups of 10, with a different type of conduit implanted in each group: chitosan sponge core with an average molecular mass of polymer (Mv) of 287 kDa with 7 channels in a PLGA sleeve, chitosan sponge core with an Mv of 423 kDa with 7 channels in a PLGA sleeve, chitosan sponge core (Mv, 423 kDa) with 13 channels in a PLGA sleeve, chitosan multifilament yarn in a PLGA sleeve, and a PLGA sleeve only. Seven weeks after the operation, we examined the distance covered by regenerating nerve fibers, growing of nerves into the conduit's core, and intensity and type of inflammatory reaction in the conduit, as well as autotomy behavior (reflecting neuropathic pain intensity) in the animals. Two types of conduits were allowing nerve outgrowth through the gap with minor autotomy and minor inflammatory reactions. These were the conduits with chitosan multifilament yarn in a PLGA sleeve and the conduits with 13-channel microcrystalline chitosan sponge in a PLGA sleeve. The type of chitosan used to build the nerve guidance conduit influences the intensity and character of inflammatory reaction present during nerve regeneration, which in turn affects the distance crossed by regenerating nerve fibers, growing of the nerve fibers into the conduit's core, and the intensity of autotomy in the animals. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
On the nature of the afferent fibers of oculomotor nerve.
Manni, E; Draicchio, F; Pettorossi, V E; Carobi, C; Grassi, S; Bortolami, R; Lucchi, M L
1989-03-01
The oculogyric nerves contain afferent fibers originating from the ophthalmic territory, the somata of which are located in the ipsilateral semilunar ganglion. These primary sensory neurons project to the Subnucleus Gelatinosus of the Nucleus Caudalis Trigemini, where they make presynaptic contact with the central endings of the primary trigeminal afferents running in the fifth cranial nerve. After complete section of the trigeminal root, the antidromic volleys elicited in the trunk of the third cranial nerve by stimulating SG of NCT consisted of two waves belonging to the A delta and C groups. The area of both components of the antidromic volleys decreased both after bradykinin and hystamine injection into the corresponding cutaneous region and after thermic stimulation of the ipsilateral trigeminal ophthalmic territory. The reduction of such potentials can be explained in terms of collision between the antidromic volleys and those elicited orthodromically by chemical and thermic stimulation. Also, capsaicin applied on the nerve induced an immediate increase, followed by a long lasting decrease, of orthodromic evoked response area. These findings bring further support to the nociceptive nature of the afferent fibers running into the oculomotor nerve.
Trophic specificity of the gustatory fibers upon taste bud regeneration.
State, F A; Hamed, M S; El-Hashash, M K; Gaber, O M
1982-01-01
24 adult dogs were classified into six groups; in 2 animals of each group the lingual nerve was transected distal to the point of entry of the chorda tympani and its proximal end was sutured to the distal end of the glossopharyngeal nerve. In the other 2 animals transtympanic chorda tympani neurectomy was performed before suturing the lingual and glossopharyngeal nerves. Invasion of the papillae by regenerating fibers from the 8th postoperative week onwards was followed by reappearance of taste buds only in lingual glossopharyngeal anastomosis with intact chorda tympani. The difference in number of taste buds, size and number of constituent cells between the two operative procedures was statistically significant from the 8th week onwards. The significance of these findings was discussed.
Chen, Yan; Li, Dong; Zhang, Zhe; Takushige, Natsuko; Kong, Bei-Hua; Wang, Guo-Yun
2015-01-01
Endometriosis is a common, benign, oestrogen-dependent, chronic gynaecological disorder associated with pelvic pain and infertility. Some researchers have identified nerve fibers in endometriotic lesions in women with endometriosis. Mesenchymal stem cells (MSCs) have attracted interest for their possible use for both cell and gene therapies because of their capacity for self-renewal and multipotentiality of differentiation. We investigated how human umbilical cord-MSCs (hUC-MSCs) could affect nerve fibers density in endometriosis. In this experimental study, hUC-MSCs were isolated from fresh human umbilical cord, characterized by flow cytometry, and then transplanted into surgically induced endometriosis in a rat model. Ectopic endometrial implants were collected four weeks later. The specimens were sectioned and stained immunohistochemically with antibodies against neurofilament (NF), nerve growth factor (NGF), NGF receptor p75 (NGFRp75), tyrosine kinase receptor-A (Trk-A), calcitonin gene-related peptide (CGRP) and substance P (SP) to compare the presence of different types of nerve fibers between the treatment group with the transplantation of hUC-MSCs and the control group without the transplantation of hUC-MSCs. There were significantly less nerve fibers stained with specific markers we used in the treatment group than in the control group (p<0.05). MSC from human umbilical cord reduced nerve fiber density in the treatment group with the transplantation of hUC-MSCs.
Reflex effects on components of synchronized renal sympathetic nerve activity.
DiBona, G F; Jones, S Y
1998-09-01
The effects of peripheral thermal receptor stimulation (tail in hot water, n = 8, anesthetized) and cardiac baroreceptor stimulation (volume loading, n = 8, conscious) on components of synchronized renal sympathetic nerve activity (RSNA) were examined in rats. The peak height and peak frequency of synchronized RSNA were determined. The renal sympathoexcitatory response to peripheral thermal receptor stimulation was associated with an increase in the peak height. The renal sympathoinhibitory response to cardiac baroreceptor stimulation was associated with a decrease in the peak height. Although heart rate was significantly increased with peripheral thermal receptor stimulation and significantly decreased with cardiac baroreceptor stimulation, peak frequency was unchanged. As peak height reflects the number of active fibers, reflex increases and decreases in synchronized RSNA are mediated by parallel increases and decreases in the number of active renal nerve fibers rather than changes in the centrally based rhythm or peak frequency. The increase in the number of active renal nerve fibers produced by peripheral thermal receptor stimulation reflects the engagement of a unique group of silent renal sympathetic nerve fibers with a characteristic response pattern to stimulation of arterial baroreceptors, peripheral and central chemoreceptors, and peripheral thermal receptors.
Khan, Adnan; Akhtar, Naveed; Kamran, Saadat; Ponirakis, Georgios; Petropoulos, Ioannis N; Tunio, Nahel A; Dargham, Soha R; Imam, Yahia; Sartaj, Faheem; Parray, Aijaz; Bourke, Paula; Khan, Rabia; Santos, Mark; Joseph, Sujatha; Shuaib, Ashfaq; Malik, Rayaz A
2017-11-01
Corneal confocal microscopy can identify corneal nerve damage in patients with peripheral and central neurodegeneration. However, the use of corneal confocal microscopy in patients presenting with acute ischemic stroke is unknown. One hundred thirty patients (57 without diabetes mellitus [normal glucose tolerance], 32 with impaired glucose tolerance, and 41 with type 2 diabetes mellitus) admitted with acute ischemic stroke, and 28 age-matched healthy control participants underwent corneal confocal microscopy to quantify corneal nerve fiber density, corneal nerve branch density, and corneal nerve fiber length. There was a significant reduction in corneal nerve fiber density, corneal nerve branch density, and corneal nerve fiber length in stroke patients with normal glucose tolerance ( P <0.001, P <0.001, P <0.001), impaired glucose tolerance ( P =0.004, P <0.001, P =0.002), and type 2 diabetes mellitus ( P <0.001, P <0.001, P <0.001) compared with controls. HbA1c and triglycerides correlated with corneal nerve fiber density ( r =-0.187, P =0.03; r =-0.229 P =0.01), corneal nerve fiber length ( r =-0.228, P =0.009; r =-0.285; P =0.001), and corneal nerve branch density ( r =-0.187, P =0.033; r =-0.229, P =0.01). Multiple linear regression showed no independent associations between corneal nerve fiber density, corneal nerve branch density, and corneal nerve fiber length and relevant risk factors for stroke. Corneal confocal microscopy is a rapid noninvasive ophthalmic imaging technique that identifies corneal nerve fiber loss in patients with acute ischemic stroke. © 2017 American Heart Association, Inc.
Simões, Gustavo F; Benitez, Suzana U; Oliveira, Alexandre L R
2014-01-01
Background G-CSF has been shown to decrease inflammatory processes and to act positively on the process of peripheral nerve regeneration during the course of muscular dystrophy. Aims The aims of this study were to investigate the effects of treatment of G-CSF during sciatic nerve regeneration and histological analysis in the soleus muscle in MDX mice. Methods Six-week-old male MDX mice underwent left sciatic nerve crush and were G-CSF treated at 7 days prior to and 21 days after crush. Ten and twenty-one days after surgery, the mice were euthanized, and the sciatic nerves were processed for immunohistochemistry (anti-p75NTR and anti-neurofilament) and transmission electron microscopy. The soleus muscles were dissected out and processed for H&E staining and subsequent morphologic analysis. Motor function analyses were performed at 7 days prior to and 21 days after sciatic crush using the CatWalk system and the sciatic nerve index. Results Both groups treated with G-CSF showed increased p75NTR and neurofilament expression after sciatic crush. G-CSF treatment decreased the number of degenerated and regenerated muscle fibers, thereby increasing the number of normal muscle fibers. Conclusions The reduction in p75NTR and neurofilament indicates a decreased regenerative capacity in MDX mice following a lesion to a peripheral nerve. The reduction in motor function in the crushed group compared with the control groups may reflect the cycles of muscle degeneration/regeneration that occur postnatally. Thus, G-CSF treatment increases motor function in MDX mice. Nevertheless, the decrease in baseline motor function in these mice is not reversed completely by G-CSF. PMID:25328849
Retinal and Optic Nerve Degeneration in Patients with Multiple Sclerosis Followed up for 5 Years.
Garcia-Martin, Elena; Ara, Jose R; Martin, Jesus; Almarcegui, Carmen; Dolz, Isabel; Vilades, Elisa; Gil-Arribas, Laura; Fernandez, Francisco J; Polo, Vicente; Larrosa, Jose M; Pablo, Luis E; Satue, Maria
2017-05-01
To quantify retinal nerve fiber layer (RNFL) changes in patients with multiple sclerosis (MS) and healthy controls with a 5-year follow-up and to analyze correlations between disability progression and RNFL degeneration. Observational and longitudinal study. One hundred patients with relapsing-remitting MS and 50 healthy controls. All participants underwent a complete ophthalmic and electrophysiologic exploration and were re-evaluated annually for 5 years. Visual acuity (Snellen chart), color vision (Ishihara pseudoisochromatic plates), visual field examination, optical coherence tomography (OCT), scanning laser polarimetry (SLP), and visual evoked potentials. Expanded Disability Status Scale (EDSS) scores, disease duration, treatments, prior optic neuritis episodes, and quality of life (QOL; based on the 54-item Multiple Sclerosis Quality of Life Scale score). Optical coherence tomography (OCT) revealed changes in all RNFL thicknesses in both groups. In the MS group, changes were detected in average thickness and in the mean deviation using the GDx-VCC nerve fiber analyzer (Laser Diagnostic Technologies, San Diego, CA) and in the P100 latency of visual evoked potentials; no changes were detected in visual acuity, color vision, or visual fields. Optical coherence tomography showed greater differences in the inferior and temporal RNFL thicknesses in both groups. In MS patients only, OCT revealed a moderate correlation between the increase in EDSS and temporal and superior RNFL thinning. Temporal RNFL thinning based on OCT results was correlated moderately with decreased QOL. Multiple sclerosis patients exhibit a progressive axonal loss in the optic nerve fiber layer. Retinal nerve fiber layer thinning based on OCT results is a useful marker for assessing MS progression and correlates with increased disability and reduced QOL. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Cense, B; Chen, T C; de Boer, J F
2006-01-01
Thinning of the retinal nerve fiber layer and changes in retinal nerve fiber layer birefringence may both precede clinically detectable glaucomatous vision loss. We present in vivo thickness and depth-resolved birefringence measurements of the human retinal nerve fiber layer (RNFL) by use of polarization-sensitive optical coherence tomography (PS-OCT). Using a fiber-based PS-OCT setup real-time images of the human retina in vivo were recorded, co-registered with retinal video images of the location of PS-OCT scans. PS-OCT scans around the optic nerve head (ONH) of two healthy young volunteers were made using 10 concentric circles of increasing radius. Both the mean retinal nerve fiber layer thickness and mean retinal nerve fiber birefringence for each of 48 sectors on a circle were determined. The retinal nerve fiber layer thickness and birefringence varied as a function of sector around the ONH. Measured double pass phase retardation per unit depth values around the ONH range between 0.10 and 0.35 degrees/microm. The retinal nerve fiber layer becomes thinner with increasing distance from the ONH. In contrast, the birefringence does not vary significantly with increasing distance from the ONH.
Frahm, Ken Steffen; Hennings, Kristian; Vera-Portocarrero, Louis; Wacnik, Paul W; Mørch, Carsten Dahl
2016-04-01
Low back pain is one of the indications for using peripheral nerve field stimulation (PNFS). However, the effect of PNFS varies between patients; several stimulation parameters have not been investigated in depth, such as orientation of the nerve fiber in relation to the electrode. While placing the electrode parallel to the nerve fiber may give lower activation thresholds, anodal blocking may occur when the propagating action potential passes an anode. A finite element model was used to simulate the extracellular potential during PNFS. This was combined with an active cable model of Aβ and Aδ nerve fibers. It was investigated how the angle between the nerve fiber and electrode affected the nerve activation and whether anodal blocking could occur. Finally, the area of paresthesia was estimated and compared with any concomitant Aδ fiber activation. The lowest threshold was found when nerve and electrode were in parallel, and that anodal blocking did not appear to occur during PNFS. The activation of Aβ fibers was within therapeutic range (<10V) of PNFS; however, within this range, Aδ fiber activation also may occur. The combined area of activated Aβ fibers (paresthesia) was at least two times larger than Aδ fibers for similar stimulation intensities. No evidence of anodal blocking was observed in this PNFS model. The thresholds were lowest when the nerves and electrodes were parallel; thus, it may be relevant to investigate the overall position of the target nerve fibers prior to electrode placement. © 2015 International Neuromodulation Society.
Lleó-Pérez, A; Ortuño-Soto, A; Rahhal, M S; Martínez-Soriano, F; Sanchis-Gimeno, J A
2004-01-01
To evaluate quantitatively the intraobserver reproducibility of measurements of the retinal nerve fiber layer (RNFL) in healthy subjects and an ocular hypertensive population using two nerve fiber analyzers. Sixty eyes of normal (n=30) and ocular hypertensive subjects (n=30) were consecutively recruited for this study and underwent a complete ophthalmologic examination and achromatic automated perimetry. RNFL were measured using scanning laser polarimeter (GDx-VCC) and optical coherence tomography (OCT Model 3000). Reproducibility of the RNFL measurements obtained with both nerve fiber analyzers were compared using the coefficient of variation. In both groups the authors found fair correlations between the two methods in all ratio and thickness parameters. The mean coefficient of variation for measurement of the variables ranged from 2.24% to 13.12% for GDx-VCC, and from 5.01% to 9.24% for OCT Model 3000. The authors could not detect any significant differences between healthy and ocular hypertensive eyes, although in normal eyes the correlations improved slightly. Nevertheless, the test-retest correlation was slightly better for GDx-VCC than for OCT Model 3000 (5.55% and 7.11%, respectively). Retinal mapping software of both nerve fiber analyzers allows reproducible measurement of RNFL in both healthy subjects and ocular hypertensive eyes, and shows fair correlations and good intraobserver reproducibility. However, in our study, GDx showed a better test-retest correlation.
Archibald, S J; Krarup, C; Shefner, J; Li, S T; Madison, R D
1991-04-22
When a peripheral nerve is severed and left untreated, the most likely result is the formation of an endbulb neuroma; this tangled mass of disorganized nerve fibers blocks functional recovery following nerve injury. Although there are several different approaches for promoting nerve repair, which have been greatly refined over recent years, the clinical results of peripheral nerve repair remain very disappointing. In this paper we compare the results of a collagen nerve guide conduit to the more standard clinical procedure of nerve autografting to promote repair of transected peripheral nerves in rats and nonhuman primates. In rats, we tested recovery from sciatic nerve transection and repair by 1) direct microsurgical suture, 2) 4 mm autograft, or 3) entubulation repair with collagen-based nerve guide conduits. Evoked muscle action potentials (MAP) were recorded from the gastrocnemius muscle at 4 and 12 weeks following sciatic nerve transection. At 4 weeks the repair group of direct suture demonstrated a significantly greater MAP, compared to the other surgical repair groups. However, at 12 weeks all four surgical repair groups displayed similar levels of recovery of the motor response. In six adult male Macaca fascicularis monkeys the median nerve was transected 2 cm above the wrist and repaired by either a 4 mm nerve autograft or a collagen-based nerve guide conduit leaving a 4 mm gap between nerve ends. Serial studies of motor and sensory fibers were performed by recording the evoked MAP from the abductor pollicis brevis muscle (APB) and the sensory action potential (SAP) evoked by stimulation of digital nerves (digit II), respectively, up to 760 days following surgery. Evoked muscle responses returned to normal baseline levels in all cases. Statistical analysis of the motor responses, as judged by the slope of the recovery curves, indicated a significantly more rapid rate of recovery for the nerve guide repair group. The final level of recovery of the MAP amplitudes was not significantly different between the groups. In contrast, the SAP amplitude only recovered to the low normal range and there were no statistically significant differences between the two groups in terms of sensory recovery rates. The rodent and primate studies suggest that in terms of recovery of physiological responses from target muscle and sensory nerves, entubulation repair of peripheral nerves with a collagen-based nerve guide conduit over a short nerve gap (4 mm) is as effective as a standard nerve autograft.(ABSTRACT TRUNCATED AT 400 WORDS)
Buchaim, Daniela Vieira; Rodrigues, Antonio de Castro; Buchaim, Rogerio Leone; Barraviera, Benedito; Junior, Rui Seabra Ferreira; Junior, Geraldo Marco Rosa; Bueno, Cleuber Rodrigo de Souza; Roque, Domingos Donizeti; Dias, Daniel Ventura; Dare, Leticia Rossi; Andreo, Jesus Carlos
2016-07-01
This study aimed to evaluate the effects of low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve with two surgical techniques: end-to-end epineural suture and coaptation with heterologous fibrin sealant. Forty-two male Wistar rats were randomly divided into five groups: control group (CG) in which the buccal branch of the facial nerve was collected without injury; (2) experimental group with suture (EGS) and experimental group with fibrin (EGF): The buccal branch of the facial nerve was transected on both sides of the face. End-to-end suture was performed on the right side and fibrin sealant on the left side; (3) Experimental group with suture and laser (EGSL) and experimental group with fibrin and laser (EGFL). All animals underwent the same surgical procedures in the EGS and EGF groups, in combination with the application of LLLT (wavelength of 830 nm, 30 mW optical power output of potency, and energy density of 6 J/cm(2)). The animals of the five groups were euthanized at 5 weeks post-surgery and 10 weeks post-surgery. Axonal sprouting was observed in the distal stump of the facial nerve in all experimental groups. The observed morphology was similar to the fibers of the control group, with a predominance of myelinated fibers. In the final period of the experiment, the EGSL presented the closest results to the CG, in all variables measured, except in the axon area. Both surgical techniques analyzed were effective in the treatment of peripheral nerve injuries, where the use of fibrin sealant allowed the manipulation of the nerve stumps without trauma. LLLT exhibited satisfactory results on facial nerve regeneration, being therefore a useful technique to stimulate axonal regeneration process.
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Chee, Oliver; Black, Samuel; Cutler, Lynn
1991-01-01
Cupric ion-ferricyanide labeling methods and related ferrocyanide-stained tissues were used to locate the characterize, at the ultrastructural level, presumptive impulse initiation zones in the three types of vestibular macular nerve fibers. Large-diameter, M-type vestibular nerve fibers terminate in a calyx at the heminode, and labeling is coextensive with the base of the calyx. Intermediate, M/U-type nerve fibers have short, unmyelinated preterminal segments that sometimes bifurcate intamacularly, and small-diameter, U-type nerve fibers have long, unmyelinated preterminal axons and up to three branches. Preterminals of these nerve fibers display ultrastructural heterogeneity that is correlated with labeling patterns for sodium channels and/or associated polyanionic sites. They have a nodelike ultrastructure and label heavily from near the heminode to the base of the macula. Their intramacular branches, less organized ultrastructurally, label only slightly. Results indicate that vestibular nerve fibers have one impulse initiation zone, located near the heminode, that varies in length according to nerve fiber type. Structural heterogeneity may favor impulse conduction in the central direction, and length of the impulse initiation zone could influence nerve discharge patterns.
Conversion of muscle fiber types in regenerating chicken muscles following cross-reinnervation.
Kikuchi, T; Akiba, T; Ashmore, C R
1986-01-01
Slow-tonic anterior latissimus dorsi (ALD) and fast-twitch posterior latissimus dorsi (PLD) muscles of 7 to 10-day-old White Leghorn chickens were crushed and allowed to be reinnervated by their own nerve, or crushed and transplanted to the other side and allowed to be reinnervated by the nerve of the side to which they were transplanted. Following transplantation, changes in the weight of the muscle, fiber-type composition and innervation pattern during regeneration were investigated. Normal growth rate of PLD was about twice that of ALD. Regenerating PLD, however, atrophied rapidly after crushing and denervation whether innervated by its own nerve or the other nerve type, whereas ALD reinnervated by its own nerve showed marked hypertrophy. PLD fibers transformed rapidly to fast-twitch alpha or slow-tonic (ST) fibers when they were reinnervated by PLD or ALD nerve, respectively. When ALD fibers were reinnervated by their own nerve, they differentiated into ST fibers that were surrounded by smaller immature fibers. ALD fibers were, however, resistant to complete control by fast-twitch PLD nerve and contained a large number of slow fibers (ST and beta) long after transplantation. Slow fibers in regenerates were initially multiply innervated, but later transformed into fast-twitch alpha fibers that were focally innervated. The mode of differentiation and innervation pattern of different muscle fiber types in regenerating muscles are discussed.
Hierarchical models for epidermal nerve fiber data.
Andersson, Claes; Rajala, Tuomas; Särkkä, Aila
2018-02-10
While epidermal nerve fiber (ENF) data have been used to study the effects of small fiber neuropathies through the density and the spatial patterns of the ENFs, little research has been focused on the effects on the individual nerve fibers. Studying the individual nerve fibers might give a better understanding of the effects of the neuropathy on the growth process of the individual ENFs. In this study, data from 32 healthy volunteers and 20 diabetic subjects, obtained from suction induced skin blister biopsies, are analyzed by comparing statistics for the nerve fibers as a whole and for the segments that a nerve fiber is composed of. Moreover, it is evaluated whether this type of data can be used to detect diabetic neuropathy, by using hierarchical models to perform unsupervised classification of the subjects. It is found that using the information about the individual nerve fibers in combination with the ENF counts yields a considerable improvement as compared to using the ENF counts only. Copyright © 2017 John Wiley & Sons, Ltd.
Reinisch, Christina M; Tschachler, Erwin
2012-03-01
The skin constitutes the largest sensorial organ. Its nervous system consists of different types of afferent nerve fibers which spread out immediately beneath the skin surface to sense temperature, touch and pain. Our aim was to investigate the dimension and topographic relationship of the different nerve fibers of the subepidermal nerve plexus in human hairy skin and to analyze numbers and marker expression of terminal Schwann cells. Nerve fibers and Schwann cells were investigated on dermal sheet preparations and thick sections of skin from various body regions of 10 individuals. The dimension of subepidermal nerve fibers varied between different body sites with highest values in chest skin (100 ± 18 mm/mm(2)) and lowest in posterior forearm skin (53 ± 10 mm/mm(2)). The majority of fibers (85.79%) were unmyelinated, thus representing C-fibers, of which 7.84% were peptidergic. Neurofilament-positive fibers (A-fibers) accounted for 14.21% and fibers positive for both neurofilament and myelin (Aβ-fibers) for only 0.18%. The number of Schwann cells varied in accordance with nerve fiber length from 453 ± 108 on chest skin to 184 ± 58/mm(2) in skin of the posterior forearm. Terminal Schwann cells showed a marker profile comparable to Schwann cells in peripheral nerves with the notable exception of expression of NGFr, NCAM, L1CAM and CD146 on myelinating Schwann cells in the dermis but not in peripheral nerves. Our data show that terminal Schwann cells constitute a substantial cell population within the papillary dermis and that both nerve fiber length and Schwann cell numbers vary considerably between different body sites. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Holló, Gábor
2016-12-01
Myelinated retinal nerve fibers (MRNF) represent an asymptomatic developmental anomaly in which myelin sheaths extend to a group of retinal nerve fibers along their intraocular portion. The additional volume of the myelin sheaths causes displacement of the axons toward the vitreous body. We investigated the effect of localized MRNF on peripapillary vessel density measurement results using optical coherence tomography (OCT) angiography. Peripapillary angioflow density measurements (PAFD, % of the analyzed retinal area) were made with the AngioVue OCT (Optovue Inc., Fremont, USA). In both cases, the predominant position of MRNF was inferonasal to the disk. Vessel density was clearly greater in the area of the MRNF than in the surrounding retina in the optic nerve head (ONH) level, but it was lower than in the surrounding retina in the retinal nerve fiber layer (RNFL) level. In the ONH level, PAFD was higher in the MRNF area than in the spatially corresponding superonasal area (Case 1: 64.6 vs. 57.6 %; Case 2: 65.8 vs. 56.3 %). In contrast, in the RNFL level, PAFD was lower in the MRNF area than in the corresponding superonasal area (Case 1: 60.1 vs. 65.4 %; Case 2: 46.5 vs. 58.5 %). Our cases show that the effect of MRNF on OCT angiography vessel density is different in the different measurement layers. Clinicians may separate decreased vessel density caused by anterior RNFL displacement in MRNF areas from that caused by nerve fiber damage in optic neuropathies by evaluating PAFD in both the ONH and RNFL levels.
High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog
NASA Astrophysics Data System (ADS)
Yoo, Paul B.; Lubock, Nathan B.; Hincapie, Juan G.; Ruble, Stephen B.; Hamann, Jason J.; Grill, Warren M.
2013-04-01
Objective. Not fully understanding the type of axons activated during vagus nerve stimulation (VNS) is one of several factors that limit the clinical efficacy of VNS therapies. The main goal of this study was to characterize the electrical recruitment of both myelinated and unmyelinated fibers within the cervical vagus nerve. Approach. In anesthetized dogs, recording nerve cuff electrodes were implanted on the vagus nerve following surgical excision of the epineurium. Both the vagal electroneurogram (ENG) and laryngeal muscle activity were recorded in response to stimulation of the right vagus nerve. Main results. Desheathing the nerve significantly increased the signal-to-noise ratio of the ENG by 1.2 to 9.9 dB, depending on the nerve fiber type. Repeated VNS following nerve transection or neuromuscular block (1) enabled the characterization of A-fibers, two sub-types of B-fibers, and unmyelinated C-fibers, (2) confirmed the absence of stimulation-evoked reflex compound nerve action potentials in both the ipsilateral and contralateral vagus nerves, and (3) provided evidence of stimulus spillover into muscle tissue surrounding the stimulating electrode. Significance. Given the anatomical similarities between the canine and human vagus nerves, the results of this study provide a template for better understanding the nerve fiber recruitment patterns associated with VNS therapies.
Hui, Lian; Wei, Hong-Quan; Li, Xiao-Tian; Guan, Chao; Ren, Zhong
2005-02-01
To study apoptosis and expression of apoptosis-related proteins in experimental different denervated guinea-pig facial muscle. An experimental model was established with guinea pigs by compressing the facial nerve 30 second (reinnervated group) and resecting the facial nerve (denervated group). TUNEL method and immunohistochemical technique (SABC) were applied to detect the apoptosis and expression of apoptosis-related proteins bcl-2 and bax from 1st to 8th week after operation. Experimentally denervated facial muscle revealed consistently increase of DNA fragmentation, average from(34.4 +/- 4.6)% to (38.2 +/- 10.6)%, from 1st week to 8th week after operation; Reinnervated facial muscle showed a temporal increase of DNA fragmentation, and then the muscle fiber nuclei revealed decreased DNA fragmentation along with the function of facial nerve recovered, latterly normal, average from (32.0 +/- 8.03)% to (5.6 +/- 3.5)%, from 1st week to 8th week after operation. In denervated group, bcl-2 and bax were expressed strongly; in reinnervated group, bcl-2 expressed consistently, but bax disappeared latterly along with the function of facial nerve recovered. Expression of DNA fragmentation and apoptosis-related proteins in denervated muscle are general reaction to denervation. bcl-2 can prevent early apoptotic muscle fiber to survival until reinnervation. It is concluded that proteins control apoptosis may give information for possible therapeutic interventions to reduce the rate of muscle fiber death in denervated atrophy in absence of effective primary treatment.
Corneal and Retinal Neuronal Degeneration in Early Stages of Diabetic Retinopathy.
Srinivasan, Sangeetha; Dehghani, Cirous; Pritchard, Nicola; Edwards, Katie; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan
2017-12-01
To examine the neuronal structural integrity of cornea and retina as markers for neuronal degeneration in nonproliferative diabetic retinopathy (NPDR). Participants were recruited from the broader Brisbane community, Queensland, Australia. Two hundred forty-one participants (187 with diabetes and 54 nondiabetic controls) were examined. Diabetic retinopathy (DR) was graded according to the Early Treatment Diabetic Retinopathy Study (ETDRS) scale. Corneal nerve fiber length (CNFL), corneal nerve branch density (CNBD), corneal nerve fiber tortuosity (CNFT), full retinal thickness, retinal nerve fiber layer (RNFL), ganglion cell complex (GCC), focal (FLV) and global loss volumes (GLV), hemoglobin A1c (HbA1c), nephropathy, neuropathy, and cardiovascular measures were examined. The central zone (P = 0.174), parafoveal thickness (P = 0.090), perifovea (P = 0.592), RNFL (P = 0.866), GCC (P = 0.798), and GCC GLV (P = 0.338) did not differ significantly between the groups. In comparison to the control group, those with very mild NPDR and those with mild NPDR had significantly higher focal loss in GCC volume (P = 0.036). CNFL was significantly lower in those with mild NPDR (P = 0.004) in comparison to the control group and those with no DR. The CNBD (P = 0.094) and CNFT (P = 0.458) did not differ between the groups. Both corneal and retinal neuronal degeneration may occur in early stages of diabetic retinopathy. Further studies are required to examine these potential markers for neuronal degeneration in the absence of clinical signs of DR.
Response of feline intradental nerve fibers to tooth cutting by Er:YAG laser.
Chaiyavej, S; Yamamoto, H; Takeda, A; Suda, H
2000-01-01
The aim of this study was to investigate the response of intradental A- and C-fibers during tooth cutting by Er:YAG laser. Bipolar electrical stimulation was applied to the cat's canine to identify functional single nerve fibers of the inferior alveolar nerve. The tip of the canine tooth was cut in 0.5-mm steps until the pulp was exposed. Teeth were alternately cut by using Er:YAG laser (50 mJ, 5 pps) and micromotor under water cooling. The nerve response recorded from the single nerve fibers during laser cutting was compared with that during micromotor cutting. All 26 A-fibers responded to laser cutting with high frequency of nerve firings. The nerve firing rate was significantly higher during laser cutting compared with that during micromotor cutting of superficial dentin (Chi(2) test, P < 0.05) but was not significantly different at deep dentin (P > or = 0. 05). Nine of 11 C-fibers responded to laser cutting when the deep dentin was cut. Among those nine nerve fibers, three also showed a low frequency response to laser cutting of the superficial dentin. During the tooth cutting, Er:YAG laser was more effective in activating intradental A-fibers compared with micromotor and also caused the activation of intradental C-fibers. Copyright 2000 Wiley-Liss, Inc.
Azizi, Asghar; Azizi, Saeed; Heshmatian, Behnam; Amini, Keyvan
2014-01-01
Effects of vitamin E and pyrroloquinoline quinone on peripheral nerve regeneration were studied using a rat sciatic nerve transection model. Ninety male healthy White Wistar rats were divided into three experimental groups (n = 15), randomly: Sham-operation (SHAM), transected control (TC), chitosan conduit (Chit) and three treatment groups (Vit E, PQQ and PQQ + Vit E). In SHAM group after anesthesia, left sciatic nerve was exposed through a gluteal muscle incision and after homeostasis muscle was sutured. In Chit group left sciatic nerve was exposed the same way and transected proximal to tibio-peroneal bifurcation leaving a 10-mm gap. Proximal and distal stumps were each inserted into a chitosan tube. In treatment groups the tube was implanted the same way and filled with Vit E, PQQ and PQQ + Vit E. Each group was subdivided into three subgroups of six animals each and were studied 4, 8, 12 weeks after surgery. Functional and electrophysiological studies, and gastrocnemius muscle mass measurement confirmed faster and better recovery of regenerated axons in Vit E + PQQ combination compared to Vit E or PQQ solely (P < 0.05). Morphometric indices of regenerated fibers showed number and diameter of the myelinated fibers in PQQ + Vit E was significantly higher than in other treatment groups. In immunohistochemistry, location of reactions to S-100 in PQQ + Vit E was clearly more positive than in other treatment groups. Response to PQQ + Vit E treatment demonstrates that it influences and improves functional recovery of peripheral nerve regeneration. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Gray, W P; Keohane, C; Kirwan, W O
1997-10-01
The motor nerve transplantation (MNT) technique is used to transfer an intact nerve into a denervated muscle by harvesting a neurovascular pedicle of muscle containing motor endplates from the motor endplate zone of a donor muscle and implanting it into a denervated muscle. Thirty-six adult New Zealand White rabbits underwent reinnervation of the left long peroneal (LP) muscle (fast twitch) with a motor nerve graft from the soleus muscle (slow twitch). The right LP muscle served as a control. Reinnervation was assessed using microstimulatory single-fiber electromyography (SFEMG), alterations in muscle fiber typing and grouping, and isometric response curves. Neurofilament antibody was used for axon staining. The neurofilament studies provided direct evidence of nerve growth from the motor nerve graft into the adjacent denervated muscle. Median motor endplate jitter was 13 microsec preoperatively, and 26 microsec at 2 months, 29.5 microsec at 4 months, and 14 microsec at 6 months postoperatively (p < 0.001). Isometric tetanic tension studies showed a progressive functional recovery in the reinnervated muscle over 6 months. There was no histological evidence of aberrant reinnervation from any source outside the nerve pedicle. Isometric twitch responses and adenosine triphosphatase studies confirmed the conversion of the reinnervated LP muscle to a slow-type muscle. Acetylcholinesterase studies confirmed the presence of functioning motor endplates beneath the insertion of the motor nerve graft. It is concluded that the MNT technique achieves motor reinnervation by growth of new nerve fibers across the pedicle graft into the recipient muscle.
Dahan, Albert; Dunne, Ann; Swartjes, Maarten; Proto, Paolo L; Heij, Lara; Vogels, Oscar; van Velzen, Monique; Sarton, Elise; Niesters, Marieke; Tannemaat, Martijn R; Cerami, Anthony; Brines, Michael
2013-11-08
Small nerve fiber loss and damage (SNFLD) is a frequent complication of sarcoidosis that is associated with autonomic dysfunction and sensory abnormalities, including pain syndromes that severely degrade the quality of life. SNFLD is hypothesized to arise from the effects of immune dysregulation, an essential feature of sarcoidosis, on the peripheral and central nervous systems. Current therapy of sarcoidosis-associated SNFLD consists primarily of immune suppression and symptomatic treatment; however, this treatment is typically unsatisfactory. ARA 290 is a small peptide engineered to activate the innate repair receptor that antagonizes inflammatory processes and stimulates tissue repair. Here we show in a blinded, placebo-controlled trial that 28 d of daily subcutaneous administration of ARA 290 in a group of patients with documented SNFLD significantly improves neuropathic symptoms. In addition to improved patient-reported symptom-based outcomes, ARA 290 administration was also associated with a significant increase in corneal small nerve fiber density, changes in cutaneous temperature sensitivity, and an increased exercise capacity as assessed by the 6-minute walk test. On the basis of these results and of prior studies, ARA 290 is a potential disease-modifying agent for treatment of sarcoidosis-associated SNFLD.
Dahan, Albert; Dunne, Ann; Swartjes, Maarten; Proto, Paolo L; Heij, Lara; Vogels, Oscar; van Velzen, Monique; Sarton, Elise; Niesters, Marieke; Tannemaat, Martijn R; Cerami, Anthony; Brines, Michael
2013-01-01
Small nerve fiber loss and damage (SNFLD) is a frequent complication of sarcoidosis that is associated with autonomic dysfunction and sensory abnormalities, including pain syndromes that severely degrade the quality of life. SNFLD is hypothesized to arise from the effects of immune dysregulation, an essential feature of sarcoidosis, on the peripheral and central nervous systems. Current therapy of sarcoidosis-associated SNFLD consists primarily of immune suppression and symptomatic treatment; however, this treatment is typically unsatisfactory. ARA 290 is a small peptide engineered to activate the innate repair receptor that antagonizes inflammatory processes and stimulates tissue repair. Here we show in a blinded, placebo-controlled trial that 28 d of daily subcutaneous administration of ARA 290 in a group of patients with documented SNFLD significantly improves neuropathic symptoms. In addition to improved patient-reported symptom-based outcomes, ARA 290 administration was also associated with a significant increase in corneal small nerve fiber density, changes in cutaneous temperature sensitivity, and an increased exercise capacity as assessed by the 6-minute walk test. On the basis of these results and of prior studies, ARA 290 is a potential disease-modifying agent for treatment of sarcoidosis-associated SNFLD. PMID:24136731
The effect of aloe vera on ischemia--Reperfusion injury of sciatic nerve in rats.
Guven, Mustafa; Gölge, Umut Hatay; Aslan, Esra; Sehitoglu, Muserref Hilal; Aras, Adem Bozkurt; Akman, Tarik; Cosar, Murat
2016-04-01
Aloe vera is compound which has strong antioxidant and anti-inflammatory effects. We investigated the neuroprotective role of aloe vera treatment in rats with experimental sciatic nerve ischemia/reperfusion injury. Twenty-eight male Wistar Albino rats were divided equally into 4 groups. Groups; Control group (no surgical procedure or medication), sciatic nerve ischemia/reperfusion group, sciatic nerve ischemia/reperfusion+aloe vera group and sciatic nerve ischemia/reperfusion+methylprednisolone group. Ischemia was performed by clamping the infrarenal abdominal aorta. 24 hours after ischemia, all animals were sacrificed. Sciatic nerve tissues were also examined histopathologically and biochemically. Ischemic fiber degeneration significantly decreased in the pre-treated with aloe vera and treated with methylprednisolone groups, especially in the pre-treated with aloe vera group, compared to the sciatic nerve ischemia/reperfusion group (p<0.05). A significant decrease in MDA, an increase in NRF1 level and SOD activity were observed in the groups which obtained from the AV and MP groups when compared to the sciatic nerve ischemia/reperfusion group. When all results were analysed it was seen that the aloe vera group was not statistically different compared to the MP group (p>0.05). Aloe vera is effective neuroprotective against sciatic nerve ischemia/reperfusion injury via antioxidant and anti-inflammatory properties. Also aloe vera was found to be as effective as MP. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Yoshimoto, Marcelo; Watanabe, Il-sei; Martins, Marília T; Salles, Marcos B; Ten Eyck, Gary R; Coelho, Paulo G
2009-01-01
The present study assessed damage to the inferior alveolar nerve (IAN) following nerve lateralization and implant placement surgery through optical and transmission electron microscopy (TEM). IAN lateralization was performed in 16 adult female rabbits (Oryctolagus cuniculus). During the nerve lateralization procedure, one implant was placed through the mandibular canal, and the IAN was replaced in direct contact with the implant. The implant was placed in the right mandible, and the left side was used as a control (no surgical procedure). After 8 weeks, the animals were sacrificed and samples were prepared for optical and TEM analysis of IAN structural damage. Histomorphometric analysis was performed to determine the number and cross-sectional dimensions of nerve fascicles and myelin sheath thickness between experimental and control groups. The different parameters were compared by one-way analysis of variance at the 95% significance level. Alterations in the perineural and endoneural regions of the IAN, with higher degrees of vascularization, were observed in the experimental group. TEM showed that the majority of the myelinated nerve fibers were not affected in the experimental samples. No significant variation in the number of fascicles was observed, significantly larger fascicle height and width were observed in the control group, and significantly thicker myelin sheaths were observed in the experimental samples. IAN lateralization resulted in substantial degrees of tissue disorganization at the microstructural level because of the presence of edema. However, at the ultrastructural level, small amounts of fiber degeneration were observed.
Kee, Changwon; Cho, Changhwan
2003-06-01
The authors investigated the correlation between visual field defects detected by automated perimetry and the thickness of the retinal nerve fiber layer measured with optical coherence tomography, and examined whether there is a decrease in retinal nerve fiber layer thickness in the apparently normal hemifield of glaucomatous eyes. Forty-one patients with glaucoma and 41 normal control subjects were included in this study. Statistical correlations between the sum of the total deviation of 37 stimuli of each hemifield and the ratio of decrease in retinal nerve fiber layer thickness were evaluated. The statistical difference between the retinal nerve fiber layer thickness of the apparently normal hemifield in glaucomatous eyes and that of the corresponding hemifield in normal subjects was also evaluated. There was a statistically significant correlation in the sum of the total deviation and retinal nerve fiber layer thickness decrease ratio (superior hemifield, P = 0.001; inferior hemifield, P = 0.003). There was no significant decrease in retinal nerve fiber layer thickness in the area that corresponded to the normal visual field in the hemifield defect with respect to the horizontal meridian in glaucomatous eyes (superior side, P = 0.148; inferior side, P = 0.341). Optical coherence tomography was capable of demonstrating and measuring retinal nerve fiber layer abnormalities. No changes in the retinal nerve fiber layer thickness of the apparently normal hemifield were observed in glaucomatous eyes.
1990-01-01
Receptive fields and responsiveness of single fibers of the glossopharyngeal (IXth) nerve were investigated using electrical, gustatory (NaCl, quinine HCl, acetic acid, water, sucrose, and CaCl2), thermal, and mechanical stimulation of the single fungiform papillae distributed on the dorsal tongue surface in frogs. 172 single fibers were isolated. 58% of these fibers (99/172) were responsive to at least one of the gustatory stimuli (taste fibers), and the remaining 42% (73/172) were responsive only to touch (touch fibers). The number of papillae innervated by a single fiber (receptive field) was between 1 and 17 for taste fibers and between 1 and 10 for touch fibers. The mean receptive field of taste fibers (X = 6.6, n = 99) was significantly larger than that of touch fibers (X = 3.6, n = 73) (two-tailed t test, P less than 0.001). In experiments with natural stimulation of single fungiform papillae, it was found that every branch of a single fiber has a similar responsiveness. Taste fibers were classified into 14 types (Type N, Q, A, NA, NCa, NCaA, NCaW, NCaAW, NCaWS, NQ, NQA, NQAS, NQWarm, Multiple) on the basis of their responses to gustatory and thermal stimuli. The time course of the response in taste fibers was found to be characteristic of their types. For example, the fibers belonging to Type NQA showed phasic responses, those in Type NCa showed tonic responses, etc. These results indicate that there are several groups of fibers in the frog IXth nerve and that every branch of an individual fiber has a similar responsiveness to the parent fiber. PMID:2374001
Adenosine triphosphatase activity of cutaneous nerve fibers.
Idé, C; Saito, T
1980-02-01
The histochemical study of Mg++-activated adenosine triphosphatase (Mg++-ATPase) activity was carried out on the peripheral nerves of mouse digital skin by light and electron microscopy. Under the light microscope, the ATPase activity was clearly demonstrated on the nerve fibers as a fine network in the subepidermal regions. Under the electron microscope, the reaction product of enzyme activity was located in the interspace between axolemma and the surrounding Schwann cells of the unmyelinated nerve fibers. No reaction product was observed in the space between the axolemma and the Schwann cells associated with myelinated nerve fibers. Demonstrable activity was absent at the nodes of Ranvier as well as on the para- and internodal regions of these myelinated axons. The part of the axolemma lacking a Schwann cell sheath failed to show a reaction product. The perineural epithelial cells surrounding the nerve fibers displayed reaction product in the caveolae. These results suggest a functional difference in the axon-Schwann interface of myelinated as compared to unmyelinated nerve fibers. The function of the perineural epithelial cell would be expected to be a regulatory one in transferring materials across the epithelium to keep the proper humoral environment around nerve fibers.
Influence of oculomotor nerve afferents on central endings of primary trigeminal fibers.
Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E; Draicchio, F
1987-12-01
Painful fibers running in the third nerve and originating from the ophthalmic trigeminal area send their central projections at level of substantia gelatinosa of nucleus caudalis trigemini. The central endings of these fibers form axoaxonic synapses with trigeminal fibers entering the brain stem through the trigeminal root. The effect of electrical stimulation of the third nerve central stump on the central endings of trigeminal afferent fibers consists in an increased excitability, possibly resulting in a presynaptic inhibition. This inhibitory influence is due to both direct and indirect connections of the third nerve afferent fibers with the trigeminal ones.
Scanning laser polarimetry retinal nerve fiber layer thickness measurements after LASIK.
Zangwill, Linda M; Abunto, Teresa; Bowd, Christopher; Angeles, Raymund; Schanzlin, David J; Weinreb, Robert N
2005-02-01
To compare retinal nerve fiber layer (RNFL) thickness measurements before and after LASIK. Cohort study. Twenty participants undergoing LASIK and 14 normal controls. Retinal nerve fiber layer thickness was measured before LASIK and approximately 3 months after surgery in one eye each of 20 patients using a scanning laser polarimeter (GDx Nerve Fiber Analyzer) with fixed corneal compensation (FCC), one with variable corneal compensation (GDx VCC), and optical coherence tomography (OCT). Fourteen normal controls also were tested at baseline and approximately 3 months later. Retinal nerve fiber layer thicknesses measured with the GDx FCC, GDx VCC, and OCT. At baseline, mean (95% confidence interval [CI]) RNFL thicknesses for the GDx FCC, GDx VCC, and OCT were 78.1 microm (72.2-83.9), 54.3 microm (52.7-56.0), and 96.8 microm (93.2-100.5), respectively. In both LASIK and control groups, there were no significant changes between baseline and follow-up examinations in GDx VCC and OCT RNFL thickness measurements globally or in the superior and inferior quadrants (mean change, <5 microm for each instrument). In the control group, there also was no significant change in GDx FCC measurements between baseline and follow-up. In LASIK patients, significant reductions were observed in GDx FCC RNFL measurements. Average absolute values of the mean (95% CI) change in thickness were 12.4 microm (7.7-17.2), 15.3 microm (9.6-20.9), and 12.9 microm (7.6-18.1) for GDx FCC RNFL measurements superiorly, inferiorly, and globally, respectively (all Ps < or = 0.001). LASIK does not seem to change RNFL thickness. Reduction in GDx FCC RNFL thickness measurements after LASIK is a measurement artifact and is most likely due to erroneous compensation for corneal birefringence. With scanning laser polarimetry, it is mandatory to compensate individually for change in corneal birefringence after LASIK to ensure accurate RNFL assessment.
Electrocochleographic analysis of the suppression of tinnitus by electrical promontory stimulation.
Watanabe, K; Okawara, D; Baba, S; Yagi, T
1997-01-01
To investigate the origin, and evaluate the mechanism by which tinnitus is suppressed we performed electrical promontory stimulation (EPS) in 56 patients with tinnitus, and measured the compound action potential (CAP) using electrocochleography before and after EPS. In the group of patients in whom tinnitus was suppressed, the CAP amplitudes increased significantly, whereas the latencies showed no remarkable change. In the group of patients in whom tinnitus was not suppressed, both the CAP amplitudes and latencies exhibited no significant change. These data indicate that the effect on the cochlear nerve plays an important role in the suppression of tinnitus by EPS. The CAP reflects the number of the auditory nerve fibers which discharge synchronously. It is speculated that an increase of the CAP amplitudes is caused by synchronizing discharges of the auditory nerve fibers, and that the mechanism by which EPS suppresses tinnitus may be related to synchronizing these discharges.
Corneal confocal microscopy detects small fiber neuropathy in CMT1A patients
Tavakoli, Mitra; Marshall, Andy; Banka, Siddharth; Petropoulos, Ioannis N; Fadavi, Hassan; Kingston, Helen; Malik, Rayaz A
2012-01-01
Although unmyelinated nerve fibers are affected in CMT1A, they have not been studied in detail due to the invasive nature of the techniques needed to study them. We established alterations in C-fiber bundles of the cornea in patients with CMT1A using non-invasive corneal confocal microscopy (CCM). Twelve patients with CMT1A and twelve healthy control subjects underwent assessment of neuropathic symptoms and deficits, electrophysiology, quantitative sensory testing, corneal sensitivity and corneal confocal microscopy. Corneal sensitivity, corneal nerve fiber density, corneal nerve branch density, corneal nerve fiber length and corneal nerve fiber tortuosity were significantly reduced in CMT1A patients compared to controls. There was a significant correlation between corneal sensation and CCM parameters with the severity of painful neuropathic symptoms, cold and warm thresholds and median nerve CMAP amplitude. CCM demonstrates significant damage to C-fiber bundles, which relates to some measures of neuropathy in CMT1A patients. PMID:22996176
Yoshida, Shinya; Matsuzaki, Taro; Kamijo, Akio; Araki, Yoshitaka; Sakamoto, Makoto; Moriyama, Shigenori; Hoso, Masahiro
2013-01-01
[Purpose] This study was performed to investigate the histological changes that occur in the periphery of the sciatic nerve in rats undergoing knee immobilization. [Subjects and Methods] 29 male 9-week-old Wistar rats were divided randomly into a control group (C group, n = 7) and an immobilized group (I group, n = 22). The animals in the I group had the left knee joint immobilized in maximal flexion with plaster casts for two weeks. After the experimental period, we obtained cross-sections of tissues from the center of the left thigh, and the periphery of the sciatic nerve was observed under an optical microscope after hematoxylin-eosin staining. [Results] In contrast to the rats of C group, the rats in I group showed adherence between the bundle of nerve fibers and perineurium, as well as thickening of the perineurium. These histological changes were statistically significant. [Conclusions] Immobilization of the knee joints of rats resulted in characteristic histological changes in the connective tissue around the sciatic nerve. PMID:24259816
Szlavik, Robert B
2016-02-01
The characterization of peripheral nerve fiber distributions, in terms of diameter or velocity, is of clinical significance because information associated with these distributions can be utilized in the differential diagnosis of peripheral neuropathies. Electro-diagnostic techniques can be applied to the investigation of peripheral neuropathies and can yield valuable diagnostic information while being minimally invasive. Nerve conduction velocity studies are single parameter tests that yield no detailed information regarding the characteristics of the population of nerve fibers that contribute to the compound-evoked potential. Decomposition of the compound-evoked potential, such that the velocity or diameter distribution of the contributing nerve fibers may be determined, is necessary if information regarding the population of contributing nerve fibers is to be ascertained from the electro-diagnostic study. In this work, a perturbation-based decomposition of compound-evoked potentials is proposed that facilitates determination of the fiber diameter distribution associated with the compound-evoked potential. The decomposition is based on representing the single fiber-evoked potential, associated with each diameter class, as being perturbed by contributions, of varying degree, from all the other diameter class single fiber-evoked potentials. The resultant estimator of the contributing nerve fiber diameter distribution is valid for relatively large separations in diameter classes. It is also useful in situations where the separation between diameter classes is small and the concomitant single fiber-evoked potentials are not orthogonal.
Transfer of obturator nerve for femoral nerve injury: an experiment study in rats.
Meng, Depeng; Zhou, Jun; Lin, Yaofa; Xie, Zheng; Chen, Huihao; Yu, Ronghua; Lin, Haodong; Hou, Chunlin
2018-07-01
Quadriceps palsy is mainly caused by proximal lesions in the femoral nerve. The obturator nerve has been previously used to repair the femoral nerve, although only a few reports have described the procedure, and the outcomes have varied. In the present study, we aimed to confirm the feasibility and effectiveness of this treatment in a rodent model using the randomized control method. Sixty Sprague-Dawley rats were randomized into two groups: the experimental group, wherein rats underwent femoral neurectomy and obturator nerve transfer to the femoral nerve motor branch; and the control group, wherein rats underwent femoral neurectomy without nerve transfer. Functional outcomes were measured using the BBB score, muscle mass, and histological assessment. At 12 and 16 weeks postoperatively, the rats in the experimental group exhibited recovery to a stronger stretch force of the knee and higher BBB score, as compared to the control group (p < 0.05). The muscle mass and myofiber cross-sectional area of the quadriceps were heavier and larger than those in the control group (p < 0.05). A regenerated nerve with myelinated and unmyelinated fibers was observed in the experimental group. No significant differences were observed between groups at 8 weeks postoperatively (p > 0.05). Obturator nerve transfer for repairing femoral nerve injury was feasible and effective in a rat model, and can hence be considered as an option for the treatment of femoral nerve injury.
Zaitouna, Mazen; Alsaid, Bayan; Diallo, Djibril; Benoit, Gérard; Bessede, Thomas
2013-01-01
Nerve fibers contributing to the superior hypogastric plexus (SHP) and the hypogastric nerves (HN) are currently considered to comprise an adrenergic part of the autonomic nervous system located between vertebrae (T1 and L2), with cholinergic aspects originating from the second to fourth sacral spinal segments (S2, S3 and S4). The aim of this study was to identify the origin and the nature of the nerve fibers within the SHP and the HN, especially the cholinergic fibers, using computer-assisted anatomic dissection (CAAD). Serial histological sections were performed at the level of the lumbar spine and pelvis in five human fetuses between 14 and 30 weeks of gestation. Sections were treated with histological staining [hematoxylin-eosin (HE) and Masson's trichrome (TriM)] and with immunohistochemical methods to detect nerve fibers (anti-S100), adrenergic fibers (anti-TH), cholinergic fibers (anti-VAChT) and nitrergic fibers (anti-nNOS). The sections were then digitalized using a high-resolution scanner and the 3D images were reconstructed using winsurf software. These experiments revealed the coexistence of adrenergic and cholinergic fibers within the SHP and the HNs. One-third of these cholinergic fibers were nitrergic fibers [anti-VACHT (+)/anti-NOS (+)] and potentially pro-erectile, while the others were non-nitrergic [anti-VACHT (+)/anti-NOS (−)]. We found these cholinergic fibers arose from the lumbar nerve roots. This study described the nature of the SHP nerve fibers which gives a better understanding of the urinary and sexual dysfunctions after surgical injuries. PMID:23668336
D'Andrea, Vito; Panarese, Alessandra; Taurone, Samanta; Coppola, Luigi; Cavallotti, Carlo; Artico, Marco
2015-09-01
The lymphatic vessels have been studied in different organs from a morphological to a clinical point of view. Nevertheless, the knowledge of the catecholaminergic control of the lymphatic circulation is still incomplete. The aim of this work is to study the presence and distribution of the catecholaminergic and NPY-ergic nerve fibers in the whole wall of the human mesenteric lymphatic vessels in order to obtain knowledge about their morphology and functional significance. The following experimental procedures were performed: 1) drawing of tissue containing lymphatic vessels; 2) cutting of tissue; 3) staining of tissue; 4) staining of nerve fibers; 5) histofluorescence microscopy for the staining of catecholaminergic nerve fibers; 6) staining of neuropeptide Y like-immune reactivity; 7) biochemical assay of proteins; 8) measurement of noradrenaline; 9) quantitative analysis of images; 10) statistical analysis of data. Numerous nerve fibers run in the wall of lymphatic vessels. Many of them are catecholaminergic in nature. Some nerve fibers are NPY-positive. The biochemical results on noradrenaline amounts are in agreement with morphological results on catecholaminergic nerve fibers. Moreover, the morphometric results, obtained by the quantitative analysis of images and the subsequent statistical analysis of data, confirm all our morphological and biochemical data. The knowledge of the physiological or pathological mechanism regulating the functions of the lymphatic system is incomplete. Nevertheless the catecholaminergic nerve fibers of the human mesenteric lymphatic vessels come from the adrenergic periarterial plexuses of the mesenterial arterial bed. NPY-ergic nerve fibers may modulate the microcirculatory mesenterial bed in different pathological conditions.
Villain, Max A; Greenfield, David S
2003-01-01
To assess reproducibility of quadrantic and clock hour sectors of retinal nerve fiber layer thickness in normal eyes using optical coherence tomography. Normal eyes of healthy volunteers meeting eligibility criteria were imaged by two inexperienced operators. Six 360 degrees circular scans with a diameter of 3.4 mm centered on the optic disc were obtained during each scanning session, and a baseline image was formed using 3 high-quality images defined by the software. Images were obtained on three different days within a 4-week period. Variance and coefficient of variation (CV) were calculated for quadrantic and retinal nerve fiber layer clock hour sectors obtained from the baseline image. Five normal eyes were scanned. Intraoperator reproducibility was high. The mean (+/- SD) CV for total retinal nerve fiber layer thickness was 5.3 +/- 3.82% and 4.33 +/- 3.7% for operators 1 and 2, respectively. Interoperator reproducibility was good with statistically similar variance for all quadrantic and clock hour retinal nerve fiber layer parameters (P = .42 to .99). The nasal retinal nerve fiber layer was the most variable sector for both operators (mean CV: 10.42% and 7.83% for operators 1 and 2, respectively). Differences in mean total, nasal, temporal, and superior retinal nerve fiber layer thickness were not statistically significant between operators for all eyes; however, for inferior retinal nerve fiber layer thickness, there was a significant (P = .0007) difference between operators in one eye. Peripapillary retinal nerve fiber layer thickness assessments using optical coherence tomography have good intraoperator and interoperator reproducibility. Inexperienced operators can generate useful measurement data with acceptable levels of variance.
Shulman, S; Shorer, R; Wollman, J; Dotan, G; Paran, D
2017-11-01
Background Cognitive impairment is frequent in systemic lupus erythematosus. Atrophy of the corpus callosum and hippocampus have been reported in patients with systemic lupus erythematosus, and diffusion tensor imaging studies have shown impaired white matter integrity, suggesting that white matter damage in systemic lupus erythematosus may underlie the cognitive impairment as well as other neuropsychiatric systemic lupus erythematosus manifestations. Retinal nerve fiber layer thickness, as assessed by optical coherence tomography, has been suggested as a biomarker for white matter damage in neurologic disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Retinal nerve fiber layer thinning may occur early, even in patients with mild clinical symptoms. Aim The objective of this study was to assess the association of retinal nerve fiber layer thickness, as a biomarker of white matter damage in systemic lupus erythematosus patients, with neuropsychiatric systemic lupus erythematosus manifestations, including cognitive impairment. Methods Twenty-one consecutive patients with systemic lupus erythematosus underwent neuropsychological testing using a validated computerized battery of tests as well as the Rey-Auditory verbal learning test. All 21 patients, as well as 11 healthy, age matched controls, underwent optical coherence tomography testing to assess retinal nerve fiber layer thickness. Correlations between retinal nerve fiber layer thickness and results in eight cognitive domains assessed by the computerized battery of tests as well as the Rey-Auditory verbal learning test were assessed in patients with systemic lupus erythematosus, with and without neuropsychiatric systemic lupus erythematosus, and compared to retinal nerve fiber layer thickness in healthy controls. Results No statistically significant correlation was found between retinal nerve fiber layer thickness in patients with systemic lupus erythematosus as compared to healthy controls. When evaluating by subgroups, no correlation was found between patients with or without neuropsychiatric systemic lupus erythematosus or cognitive impairment and retinal nerve fiber layer thickness. Conclusion Retinal nerve fiber layer thickness of systemic lupus erythematosus patients was not found to be statistically different compared to controls. Within systemic lupus erythematosus patients there was no correlation between retinal nerve fiber layer thickness and cognitive impairment or other neuropsychiatric systemic lupus erythematosus manifestations.
Nerve Fiber Flux Analysis Using Wide-Field Swept-Source Optical Coherence Tomography.
Tan, Ou; Liu, Liang; Liu, Li; Huang, David
2018-02-01
To devise a method to quantify nerve fibers over their arcuate courses over an extended peripapillary area using optical coherence tomography (OCT). Participants were imaged with 8 × 8-mm volumetric OCT scans centered at the optic disc. A new quantity, nerve fiber flux (NFF), represents the cross-sectional area transected perpendicular to the nerve fibers. The peripapillary area was divided into 64 tracks with equal flux. An iterative algorithm traced the trajectory of the tracks assuming that the relative distribution of the NFF was conserved with compensation for fiber connections to ganglion cells on the macular side. Average trajectory was averaged from normal eyes and use to calculate the NFF maps for glaucomatous eyes. The NFF maps were divided into eight sectors that correspond to visual field regions. There were 24 healthy and 10 glaucomatous eyes enrolled. The algorithm converged on similar patterns of NFL tracks for all healthy eyes. In glaucomatous eyes, NFF correlated with visual field sensitivity in the arcuate sectors (Spearman ρ = 0.53-0.62). Focal nerve fiber loss in glaucomatous eyes appeared as uniform tracks of NFF defects that followed the expected arcuate fiber trajectory. Using an algorithm based on the conservation of flux, we derived nerve fiber trajectories in the peripapillary area. The NFF map is useful for the visualization of focal defects and quantification of sector nerve fiber loss from wide-area volumetric OCT scans. NFF provides a cumulative measure of volumetric loss along nerve fiber tracks and could improve the detection of focal glaucoma damage.
Hua, Zanmei; Fang, Qiuyun; Sha, Xiangyin; Yang, Ruiming; Hong, Zuopeng
2015-03-01
Glaucoma is an eye disease that can lead to irreversible optic nerve damage and cause blindness. Optical coherence tomography (OCT) allows an early diagnosis of glaucoma by the measurements of the retinal nerve fiber and optic disc parameters. A retrospective study was designed to analyze the effects of the measurement of the retinal nerve fiber layer (RNFL) thickness and the optic disc tomography by spectral-domain OCT on the early diagnosis of suspected glaucoma and primary open angle glaucoma (POAG). This was a clinical case-control study. The RNFL thickness around the optic disc and optic disk tomographic parameters of the control (n = 51, 98 eyes), suspected glaucoma (n = 81, 146 eyes), and POAG groups (n = 55, 106 eyes) were measured by OCT. The parameters included superior, inferior, nasal and temporal mean RNFL thickness, disc area (DA), cup area (CA), rim area (RA), disc volume (DV), cup volume (CV), rim volume (RV), cup/disc area ratio (CA/DA), rim/disc area ratio (RA/DA), cup/disc volume ratio (CV/DV) and rim/disc volume ratio (RV/DV). Superior, nasal, and mean RNFL parameters, DA, CA,RA, DV, CV, CA/DA, RA/DA, CV/DV and RV/DV significantly differed among three groups by single-factorial ANOVA. Inferior and temporal RNFL thickness significantly differed between the control and POAG groups. No significant difference was observed in RV among three groups. In the POAG group, the maximum area under the ROC curve (AROC) of mean RNFL thickness was 0.845. The maximum AROC of optic disk parameters was RA/DA (0.998), followed by CA/DA (0.997). The AROC of CA, RA, CV, and DV were all > 0.900. OCT may serve as a useful diagnostic modality in distinguishing suspected glaucoma from POAG.
Kluding, Patricia M.; Pasnoor, Mamatha; Singh, Rupali; Jernigan, Stephen; Farmer, Kevin; Rucker, Jason; Sharma, Neena; Wright, Douglas E.
2012-01-01
Although exercise can significantly reduce the prevalence and severity of diabetic complications, no studies have evaluated the impact of exercise on nerve function in people with diagnosed diabetic peripheral neuropathy (DPN). The purpose of this pilot study was to examine feasibility and effectiveness of a supervised, moderately intense aerobic and resistance exercise program in people with DPN. We hypothesize that the exercise intervention can improve neuropathic symptoms, nerve function, and cutaneous innervation. Methods A pre-test post-test design was to assess change in outcome measures following participation in a 10-week aerobic and strengthening exercise program. Seventeen subjects with diagnosed DPN (8 males/9 females; age 58.4±5.98; duration of diabetes 12.4±12.2 years) completed the study. Outcome measures included pain measures (visual analog scale), Michigan Neuropathy Screening Instrument (MNSI) questionnaire of neuropathic symptoms, nerve function measures, and intraepidermal nerve fiber (IENF) density and branching in distal and proximal lower extremity skin biopsies. Results Significant reductions in pain (−18.1±35.5 mm on a 100 mm scale, p=0.05), neuropathic symptoms (−1.24±1.8 on MNSI, p=0.01), and increased intraepidermal nerve fiber branching (+0.11±0.15 branch nodes/fiber, p=−.008) from a proximal skin biopsy were noted following the intervention. Conclusions This is the first study to describe improvements in neuropathic and cutaneous nerve fiber branching following supervised exercise in people with diabetic peripheral neuropathy. These findings are particularly promising given the short duration of the intervention, but need to be validated by comparison with a control group in future studies. PMID:22717465
Kluding, Patricia M; Pasnoor, Mamatha; Singh, Rupali; Jernigan, Stephen; Farmer, Kevin; Rucker, Jason; Sharma, Neena K; Wright, Douglas E
2012-01-01
Although exercise can significantly reduce the prevalence and severity of diabetic complications, no studies have evaluated the impact of exercise on nerve function in people with diagnosed diabetic peripheral neuropathy (DPN). The purpose of this pilot study was to examine feasibility and effectiveness of a supervised, moderately intense aerobic and resistance exercise program in people with DPN. We hypothesized that the exercise intervention can improve neuropathic symptoms, nerve function, and cutaneous innervation. A pre-test post-test design was used to assess change in outcome measures following participation in a 10-week aerobic and strengthening exercise program. Seventeen subjects with diagnosed DPN (8 males/9 females; age 58.4±5.98; duration of diabetes 12.4±12.2 years) completed the study. Outcome measures included pain measures (visual analog scale), Michigan Neuropathy Screening Instrument (MNSI) questionnaire of neuropathic symptoms, nerve function measures, and intraepidermal nerve fiber (IENF) density and branching in distal and proximal lower extremity skin biopsies. Significant reductions in pain (-18.1±35.5 mm on a 100 mm scale, P=.05), neuropathic symptoms (-1.24±1.8 on MNSI, P=.01), and increased intraepidermal nerve fiber branching (+0.11±0.15 branch nodes/fiber, P=.008) from a proximal skin biopsy were noted following the intervention. This is the first study to describe improvements in neuropathic and cutaneous nerve fiber branching following supervised exercise in people with diabetic peripheral neuropathy. These findings are particularly promising given the short duration of the intervention, but need to be validated by comparison with a control group in future studies. Copyright © 2012 Elsevier Inc. All rights reserved.
Li, Ting; Ma, Yuanyuan; Zhang, Hong; Yan, Ping; Huo, Lili; Hu, Yongyan; Chen, Xi; Li, Ting; Zhang, Miao; Liu, Zhaohui
2017-01-01
Background . Our previous Gräfenberg spot findings confirmed that the distal-third areas of the anterior vaginal wall bore a significantly greater number of nerves and sexual hormone may have certain degree of influence on these significant differences. However, the role of estrogen in vaginal innervations remains controversial. Methods . To investigate whether hormonal-neural interactions occur in the vagina, sixty rats were randomly divided into six groups: Sham-operated, ovariectomy, and 4 treatment groups. After 2 weeks of treatment, vaginal biopsies were prepared with hematoxylin and eosin and PGP9.5 using immunohistochemistry. Results . The density of small nerve fibers was significantly higher in the distal-half areas of intact vaginal walls than the proximal-half areas ( P = 0.001). In contrast, the overall PGP 9.5-ir fiber innervation density was significantly decreased in the OVX rats subjected to surgical menopause. Sustained estrogen administration for 2 weeks resulted in nerve fiber proliferation, with values reaching normal levels in the low-dose estradiol valerate group. Conclusion . Our findings indicate that systemic hormonal therapy with low-dose estradiol valerate is effective and safe for treating deficient vaginal innervation caused by low level of estrogen activity in menopausal women and may aid studies to identify an optimal estradiol dose to provide relief from vaginal discomfort.
Pre-implanted Sensory Nerve Could Enhance the Neurotization in Tissue-Engineered Bone Graft.
Wu, Yan; Jing, Da; Ouyang, Hongwei; Li, Liang; Zhai, Mingming; Li, Yan; Bi, Long; Guoxian, Pei
2015-08-01
In our previous study, it was found that implanting the sensory nerve tract into the tissue-engineered bone to repair large bone defects can significantly result in better osteogenesis effect than tissue-engineered bone graft (TEBG) alone. To study the behavior of the preimplanted sensory nerve in the TEBG, the TEBG was constructed by seeding bone mesenchymal stem cells into β-tricalcium phosphate scaffold with (treatment group) or without (blank group) implantation of the sensory nerve. The expression of calcitonin gene-related peptide (CGRP), which helps in the healing of bone defect in the treatment group was significantly higher than the blank group at 4, 8, and 12 weeks. The expression of growth-associated protein 43 (GAP43), which might be expressed during nerve healing in the treatment group, was significantly higher than the blank group at 4 and 8 weeks. The nerve tracts of the preimplanted sensory nerve were found in the scaffold by the nerve tracing technique. The implanted sensory nerve tracts grew into the pores of scaffolds much earlier than the vascular. The implanted sensory nerve tracts traced by Dil could be observed at 4 weeks, but at the same time, no vascular was observed. In conclusion, the TEBG could be benefited from the preimplanted sensory nerve through the healing behavior of the sensory nerve. The sensory nerve fibers could grow into the pores of the TEBG rapidly, and increase the expression of CGRP, which is helpful in regulating the bone formation and the blood flow.
Effect of high doses of 2-CdA on Schwann cells of mouse peripheral nerve.
Djaldetti, R; Hart, J; Alexandrova, S; Cohen, S; Beilin, B; Djaldetti, M; Bessler, H
1996-07-01
The present study was undertaken to examine the effect of 2-CdA (Leustatin) on the Schwann cells of myelinated and unmyelinated fibers of peripheral mouse nerve. Two groups of mice were injected intravenously for seven days with 2-CdA: one group received daily doses of 1 mg/kg and the other 0.5 mg/kg. Both doses exceeded those accepted in clinical practice. Mice injected with saline served as controls. The sciatic nerve was then dissected and examined with a transmission electron microscope. The Schwann cells of both the myelinated and unmyelinated nerve fibers of the animals receiving the higher doses of 2-CdA showed nuclear and nucleolus damage, loss of heterochromatin, vacuolization and disorganization of the myelin sheaths. The mesaxons and the axons were also damaged. The Schwann cells of the animals treated with the lower doses appeared undamaged. The results indicate that in contrast to other anticancer drugs known to produce peripheral neuropathy, 2-CdA may cause damage to the Schwann cells only at doses exceeding the therapeutic ones.
Sun, Fei; Zhou, Ke; Mi, Wen-Juan; Qiu, Jian-Hua
2011-07-20
The purpose of this study was to investigate the effects of a decellularized artery allograft containing autologous adipose-derived stem cells (ADSCs) on an 8-mm facial nerve branch lesion in a rat model. At 8 weeks postoperatively, functional evaluation of unilateral vibrissae movements, morphological analysis of regenerated nerve segments and retrograde labeling of facial motoneurons were all analyzed. Better regenerative outcomes associated with functional improvement, great axonal growth, and improved target reinnervation were achieved in the artery-ADSCs group (2), whereas the cut nerves sutured with artery conduits alone (group 1) achieved inferior restoration. Furthermore, transected nerves repaired with nerve autografts (group 3) resulted in significant recovery of whisking, maturation of myelinated fibers and increased number of labeled facial neurons, and the latter two parameters were significantly different from those of group 2. Collectively, though our combined use of a decellularized artery allograft with autologous ADSCs achieved regenerative outcomes inferior to a nerve autograft, it certainly showed a beneficial effect on promoting nerve regeneration and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Botchkarev, V A; Eichmüller, S; Peters, E M; Pietsch, P; Johansson, O; Maurer, M; Paus, R
1997-04-01
Close contacts between mast cells (MC) and nerve fibers have previously been demonstrated in normal and inflamed skin by light and electron microscopy. A key step for any study in MC-nerve interactions in situ is to simultaneously visualize both communication partners, preferably with the option of double labelling the nerve fibers. For this purpose, we developed the following triple-staining technique. After paraformaldehyde-picric acid perfusion fixation, cryostat sections of back skin from C57BL/6 mice were incubated with a primary rat monoclonal antibody to substance P (SP), followed by incubation with a secondary goat-anti-rat TRITC-conjugated IgG. A rabbit antiserum to CGRP was then applied, followed by a secondary goat-anti-rabbit FITC-conjugated IgG. MCs were visualized by incubation with AMCA-labelled avidin, or (for a more convenient quantification of close MC-nerve fiber contacts) with a mixture of TRITC- and FITC-labelled avidins. Using this simple, novel covisualization method, we were able to show that MC-nerve associations in mouse skin are, contrary to previous suggestions, highly selective for nerve fiber types, and that these interactions are regulated in a hair cycle-dependent manner: in telogen and early anagen skin, MCs preferentially contacted CGRP-immunoreactive (IR) or SP/CGRP-IR double-labelled nerve fibers. Compared with telogen values, there was a significant increase in the number of close contacts between MCs and tyrosine hydroxylase-IR fibers during late anagen, and between MCs and peptide histidine-methionine-IR and choline acetyl transferase-IR fibers during catagen.
Retinal nerve fiber layer changes after LASIK evaluated with optical coherence tomography.
Dementyev, Dmitriy D; Kourenkov, Vyacheslav V; Rodin, Alexander S; Fadeykina, Tatyana L; Diaz Martines, Tatyana E
2005-01-01
To determine whether the increase in intraocular pressure (IOP) during LASIK suction can induce a decrease in retinal nerve fiber layer thickness assessed by optical coherence tomography (OCT). Nineteen patients (38 eyes) were enrolled in the study. Intraocular pressure was normal at all pre- and postoperative examinations. Retinal nerve fiber layer thickness was measured using OCT-3 Stratus prior to and 1 week and 3 months after LASIK. Laser in situ keratomileusis was performed using the Bausch & Lomb Hansatome microkeratome and the NIDEK EC-5000 excimer laser. Optical coherence tomography mean retinal nerve fiber layer thickness values before and after LASIK were compared using the Student paired t test. Mean patient age was 27.8 years (range: 18 to 33 years). Mean preoperative spherical equivalent refractive error was -4.9 diopters (D) (range: -2.0 to -8.5 D). Mean time of microkeratome suction was 30 seconds (range: 20 to 50 seconds). Preoperatively, the mean retinal nerve fiber layer thickness obtained by OCT was 104.2+/-9.0 microm; at 1 week postoperatively the mean thickness was 101.9+/-6.9 microm, and 106.7+/-6.1 microm at 3 months postoperatively. Mean retinal nerve fiber layer thicknesses obtained by OCT were not significantly different between preoperative and 1 week and 3 months after LASIK (P > or = .05). Laser in situ keratomileusis performed on young myopic patients does not have a significant effect on retinal nerve fiber layer thickness determined by OCT. Further studies are required to reveal the risk of possible optic nerve or retinal nerve fiber layer damage by elevated IOP during LASIK.
Bacle, Guillaume; Gregoire, Jean-Marc; Patat, Frédéric; Clavert, Philippe; de Pinieux, Gonzague; Laulan, Jacky; Lakhal, Walid; Favard, Luc
2017-02-01
Despite their functional importance, the infraspinatus (ISP) and teres minor (TM) muscles have been little investigated. This study aimed to describe the macroscopic morphology, innervation, and inter-relations of the ISP and TM muscles. Forty fresh cadaver dissections and histologic analysis were performed. Three groups of specimens were distinguished according to the rotator cuff tendon status: (1) intact rotator cuff; (2) supraspinatus tendon tears with intact ISP tendon; and (3) both supraspinatus and ISP tendons torn. Muscle fiber organization and muscle and tendon length were recorded. ISP and TM innervation and fiber structure were studied. ISP muscles were composed of three groups of fiber organized in two planes: two superficial groups, with mean pennation angles of, respectively, 27° ± 4° and 23° ± 3° with respect to the axis of the central tendon of the underlying group. TMs were thick fusiform muscles showing a parallel organization; 26 specimens (67 %) had aponeuroses isolating the TM, with a mean length of 5.2 ± 2.7 cm. Rotator cuff lesions were associated with relatively greater ISP tendon than muscle length. Innervation of the ISP muscle comprised 2-4 main branches from the suprascapular nerve and that of the TM 1 branch from the axillary nerve. ISP muscle body morphology derives from three groups of fibers in two planes. The TM has a parallel organization. Several nerve branches innervate the ISP muscle, whereas only one supplies the TM. The limits between the two muscles bodies consist of an aponeurotic fascia in two-thirds of cases.
Sciatic nerve regeneration in rats subjected to ketogenic diet.
Liśkiewicz, Arkadiusz; Właszczuk, Adam; Gendosz, Daria; Larysz-Brysz, Magdalena; Kapustka, Bartosz; Łączyński, Mariusz; Lewin-Kowalik, Joanna; Jędrzejowska-Szypułka, Halina
2016-01-01
Ketogenic diet (KD) is a high-fat-content diet with insufficiency of carbohydrates that induces ketogenesis. Besides its anticonvulsant properties, many studies have shown its neuroprotective effect in central nervous system, but its influence on peripheral nervous system has not been studied yet. We examined the influence of KD on regeneration of peripheral nerves in adult rats. Fifty one rats were divided into three experimental (n = 15) and one control (n = 6) groups. Right sciatic nerve was crushed and animals were kept on standard (ST group) or ketogenic diet, the latter was introduced 3 weeks before (KDB group) or on the day of surgery (KDA group). Functional (CatWalk) tests were performed once a week, and morphometric (fiber density, axon diameter, and myelin thickness) analysis of the nerves was made after 6 weeks. Body weight and blood ketone bodies level were estimated at the beginning and the end of experiment. Functional analysis showed no differences between groups. Morphometric evaluation showed most similarities to the healthy (uncrushed) nerves in KDB group. Nerves in ST group differed mostly from all other groups. Ketone bodies were elevated in both KD groups, while post-surgery animals' body weight was lower as compared to ST group. Regeneration of sciatic nerves was improved in KD - preconditioned rats. These results suggest a neuroprotective effect of KD on peripheral nerves.
Distribution of CGRP and TRPV2 in Human Paranasal Sinuses.
Sato, Tadasu; Sasahara, Nobuyuki; Kanda, Noriyuki; Sasaki, Yu; Yamaguma, Yu; Kokubun, Souichi; Yajima, Takehiro; Ichikawa, Hiroyuki
2017-01-01
Immunohistochemistry for protein gene product 9.5 (PGP 9.5), calcitonin gene-related peptide (CGRP) and the transient receptor potential cation channel subfamily V member 2 (TRPV2) was performed on human paranasal sinuses. It was found that in the paranasal sinuses, mucous membranes contain PGP 9.5-immunoreactive (PGP 9.5-IR) nerve fibers. Such nerve fibers terminated around large blood vessels as fine varicosities. Isolated PGP 9.5-IR nerve fibers were scattered beneath the epithelium. Glandular tissues were also innervated by PGP 9.5-IR nerve fibers. These fibers were numerous in the maxillary and ethmoid sinuses, and relatively rare in the frontal and sphenoid sinuses. CGRP-IR nerve fibers were common in the maxillary sinus whereas TRPV2-IR nerve fibers were abundant in the ethmoid sinus. They were located around large blood vessels in the lamina propria. Many subepithelial nerve fibers contained TRPV2 immunoreactivity in the ethmoid sinus. CGRP- and TRPV2-IR nerve fibers were very infrequent in the frontal and sphenoid sinuses. In the human trigeminal ganglion (TG), sensory neurons contained CGRP or TRPV2 immunoreactivity. CGRP-IR TG neurons were more common than TRPV2-IR TG neurons. CGRP-IR TG neurons were of various cell body sizes, whereas TRPV2-IR TG neurons were mostly medium-to-large. In addition, human spinal and principal trigeminal sensory nuclei contained abundant CGRP- and TRPV2-IR varicosities. This study indicates that CGRP- and TRPV2-containing TG neurons probably innervate the paranasal sinus mucosae, and project into spinal and principal trigeminal sensory nuclei. © 2016 S. Karger AG, Basel.
St John Smith, Ewan; Purfürst, Bettina; Grigoryan, Tamara; Park, Thomas J; Bennett, Nigel C; Lewin, Gary R
2012-08-15
In mammalian peripheral nerves, unmyelinated C-fibers usually outnumber myelinated A-fibers. By using transmission electron microscopy, we recently showed that the saphenous nerve of the naked mole-rat (Heterocephalus glaber) has a C-fiber deficit manifested as a substantially lower C:A-fiber ratio compared with other mammals. Here we determined the uniqueness of this C-fiber deficit by performing a quantitative anatomical analysis of several peripheral nerves in five further members of the Bathyergidae mole-rat family: silvery (Heliophobius argenteocinereus), giant (Fukomys mechowii), Damaraland (Fukomys damarensis), Mashona (Fukomys darlingi), and Natal (Cryptomys hottentotus natalensis) mole-rats. In the largely cutaneous saphenous and sural nerves, the naked mole-rat had the lowest C:A-fiber ratio (∼1.5:1 compared with ∼3:1), whereas, in nerves innervating both skin and muscle (common peroneal and tibial) or just muscle (lateral/medial gastrocnemius), this pattern was mostly absent. We asked whether lack of hair follicles alone accounts for the C-fiber paucity by using as a model a mouse that loses virtually all its hair as a consequence of conditional deletion of the β-catenin gene in the skin. These β-catenin loss-of function mice (β-cat LOF mice) displayed only a mild decrease in C:A-fiber ratio compared with wild-type mice (4.42 compared with 3.81). We suggest that the selective cutaneous C-fiber deficit in the cutaneous nerves of naked mole-rats is unlikely to be due primarily to lack of skin hair follicles. Possible mechanisms contributing to this unique peripheral nerve anatomy are discussed. Copyright © 2012 Wiley Periodicals, Inc.
Smith, Ewan S; Purfürst, Bettina; Grigoryan, Tamara; Park, Thomas J; Bennett, Nigel C; Lewin, Gary R
2012-01-01
In mammalian peripheral nerves, unmyelinated C-fibers usually outnumber myelinated A-fibers. By using transmission electron microscopy, we recently showed that the saphenous nerve of the naked mole-rat (Heterocephalus glaber) has a C-fiber deficit manifested as a substantially lower C:A-fiber ratio compared with other mammals. Here we determined the uniqueness of this C-fiber deficit by performing a quantitative anatomical analysis of several peripheral nerves in five further members of the Bathyergidae mole-rat family: silvery (Heliophobius argenteocinereus), giant (Fukomys mechowii), Damaraland (Fukomys damarensis), Mashona (Fukomys darlingi), and Natal (Cryptomys hottentotus natalensis) mole-rats. In the largely cutaneous saphenous and sural nerves, the naked mole-rat had the lowest C:A-fiber ratio (∼1.5:1 compared with ∼3:1), whereas, in nerves innervating both skin and muscle (common peroneal and tibial) or just muscle (lateral/medial gastrocnemius), this pattern was mostly absent. We asked whether lack of hair follicles alone accounts for the C-fiber paucity by using as a model a mouse that loses virtually all its hair as a consequence of conditional deletion of the β-catenin gene in the skin. These β-catenin loss-of function mice (β-cat LOF mice) displayed only a mild decrease in C:A-fiber ratio compared with wild-type mice (4.42 compared with 3.81). We suggest that the selective cutaneous C-fiber deficit in the cutaneous nerves of naked mole-rats is unlikely to be due primarily to lack of skin hair follicles. Possible mechanisms contributing to this unique peripheral nerve anatomy are discussed. J. Comp. Neurol. 520:2785–2803, 2012. © 2012 Wiley Periodicals, Inc. PMID:22528859
Lee, Ming-Chan; El-Sakka, Ahmed I; Graziottin, Tulio M; Ho, Hao-Chung; Lin, Ching-Shwun; Lue, Tom F
2002-02-01
We tested the hypothesis that intracavernous injection of vascular endothelial growth factor (VEGF) can restore erectile function in a rat model of traumatic arteriogenic erectile dysfunction. Exploration of bilateral internal iliac arteries was performed in 50, 3-month-old male rats. A total of 44 rats underwent bilateral ligation of the internal iliac arteries and 6 that underwent exploration only served as the sham operated group. Minutes later intracavernous injection of phosphate buffered saline (PBS) plus bovine serum albumin in 16 rats, 2 microg. VEGF plus PBS plus BSA in 12 and 4 microg. VEGF plus PBS plus BSA in 16 was performed. At weeks 1, 2 and 6 about a third of the rats in each group underwent electrostimulation of the cavernous nerves to assess erectile function and were then sacrificed. Penile tissues were collected for histochemical and electron microscopy examinations. No impairment of erectile function was noted in sham operated rats. Immediately after arterial ligation all rats showed little or no erectile response to neurostimulation. In PBS treated rats modest recovery of erectile function was noted at week 6. Significant recovery of erectile function was noted in VEGF treated rats at weeks 1 and 2 in the 4 microg. group only and at week 6 in the 2 and 4 microg. groups. Neuronal nitric oxide synthase staining showed a reduction in neuronal nitric oxide synthase positive nerve fibers in the dorsal or intracavernous nerves at week 1. Moderate recovery of neuronal nitric oxide synthase positive nerve fibers was noted in the 2 and 4microg. VEGF treated groups but not in the PBS treated group. Electron microscopy revealed no pathological change in sham operated rats. In dorsal nerves the atrophy of myelinated and nonmyelinated nerve fibers was noted in ligated plus PBS treated rats. Partial recovery was observed in VEGF treated rats. Scattered atrophic smooth muscle cells were seen in PBS and occasionally in VEGF treated rats but not in the sham operated group. The most dramatic findings in VEGF treated rats were hypertrophy and hyperplasia of the endothelial cells, especially those lining the small capillaries. Ligation of bilateral internal iliac arteries produced a reliable animal model of traumatic arteriogenic erectile dysfunction. Intracavernous injection of VEGF minutes after arterial ligation facilitated the recovery of erectile function.
Mu-opiate receptor and Beta-endorphin expression in nerve endings and keratinocytes in human skin.
Bigliardi-Qi, M; Sumanovski, L T; Büchner, S; Rufli, T; Bigliardi, P L
2004-01-01
We have previously shown that human epidermal keratinocytes express a functionally active micro-opiate receptor, which adds a new dimension to the recently developed research in neuroimmunodermatology and neurogenic inflammation in skin diseases. Human keratinocytes specifically bind and also produce beta-endorphin, the endogenous micro-opiate receptor ligand. Using confocal imaging microscopy, we could now demonstrate that micro-opiate receptors are not only expressed in keratinocytes, but also on unmyelinated peripheral nerve fibers in the dermis and epidermis. Some of the peripheral nerve fibers also express the ligand beta-endorphin. The keratinocytes positive for beta-endorphin staining are clustered around the terminal ends of the unmyelinated nerve fibers. Therefore the opiate receptor system seems to be crucial in the direct communication between nerves and skin. The keratinocytes can influence the unmyelinated nerve fibers in the epidermis directly via secreting beta-endorphin. On the other hand, nerve fibers can also secrete beta-endorphin and influence the migration, differentiation and probably also the cytokine production pattern of keratinocytes.
Immunohistochemical demonstration of enkephalin-containing nerve fibers in guinea pig and rat lungs.
Shimosegawa, T; Foda, H D; Said, S I
1989-08-01
Met-enkephalin (Met-Enk) and Leu-enkephalin (Leu-Enk), the opioid peptides originally isolated from the brain, are believed to act as inhibitory neuromodulators at various synaptic sites. In this immunohistochemical study, we have investigated the localization and distribution of Met- and Leu-Enk immunoreactivities in airways and pulmonary vessels of guinea pigs and rats. Immunoreactivities to both peptides were found in nerve fibers and nerve terminals distributed mainly to the trachea and major bronchi, and were especially prevalent in the smooth muscle layer, in the lamina propria, and around tracheal and bronchial glands, but not in the epithelium. Few immunoreactive nerve fibers were detected in smaller bronchi, bronchioles, and alveoli. Enkephalin-immunoreactive nerve fibers were also localized in the walls of pulmonary and bronchial vessels. Within airway microganglia, immunoreactivity was observed in a few nerve terminals, but not in ganglion cell bodies. Met- and Leu-Enk immunoreactive nerve fibers showed similar distribution patterns, though minor differences were noted between the two species: Enk-immunoreactive nerve fibers in the smooth muscle layer were more abundant in guinea pigs than in rats, whereas those in mucous glands were richer in rats than in guinea pigs. These results document the presence of Met- and Leu-Enk immunoreactivity in nerve fibers supplying guinea pig and rat airways and pulmonary vessels, and provide a morphologic basis for the view that enkephalins are likely neurotransmitters or neuromodulators in the lung.
Luís, Ana L; Rodrigues, Jorge M; Geuna, Stefano; Amado, Sandra; Shirosaki, Yuki; Lee, Jennifer M; Fregnan, Federica; Lopes, Maria A; Veloso, Antonio P; Ferreira, Antonio J; Santos, Jose D; Armada-Da-silva, Paulo A S; Varejão, Artur S P; Maurício, Ana Colette
2008-06-01
Poly(lactic-co-glycolic acid) (PLGA) nerve tube guides, made of a novel proportion (90:10) of the two polymers, poly(L-lactide): poly(glycolide) and covered with a neural cell line differentiated in vitro, were tested in vivo for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve. Before in vivo testing, the PLGA 90:10 tubes were tested in vitro for water uptake and mass loss and compared with collagen sheets. The water uptake of the PLGA tubes was lower, and the mass loss was more rapid and higher than those of the collagen sheets when immersed in phosphate-buffered saline (PBS) solution. The pH values of immersing PBS did not change after soaking the collagen sheets and showed to be around 7.4. On the other hand, the pH values of PBS after soaking PLGA tubes decreased gradually during 10 days reaching values around 3.5. For the in vivo testing, 22 Sasco Sprague adult rats were divided into four groups--group 1: gap not reconstructed; group 2: gap reconstructed using an autologous nerve graft; group 3: gap reconstructed with PLGA 90:10 tube guides; group 4: gap reconstructed with PLGA 90:10 tube guides covered with neural cells differentiated in vitro. Motor and sensory functional recovery was evaluated throughout a healing period of 20 weeks using sciatic functional index, static sciatic index, extensor postural thrust, withdrawal reflex latency, and ankle kinematics. Stereological analysis was carried out on regenerated nerve fibers. Both motor and sensory functions improved significantly in the three experimental nerve repair groups, although the rate and extent of recovery was significantly higher in the group where the gap was reconstructed using the autologous graft. The presence of neural cells covering the inside of the PLGA tube guides did not make any difference in the functional recovery. By contrast, morphometric analysis showed that the introduction of N1E-115 cells inside PLGA 90:10 tube guides led to a significant lower number and size of regenerated nerve fibers, suggesting thus that this approach is not adequate for promoting peripheral nerve repair. Further studies are warranted to assess the role of other cellular systems as a foreseeable therapeutic strategy in peripheral nerve regeneration.
Age-related ultrastructural and monoamine oxidase changes in the rat optic nerve.
Taurone, S; Ripandelli, G; Minni, A; Lattanzi, R; Miglietta, S; Pepe, N; Fumagalli, L; Micera, A; Pastore, F S; Artico, M
2016-01-01
The aim of this paper is to study the morphology and the distribution of the monoamine oxidase enzymatic system in the optic nerve of 4 month-old Wistar (young) and 28 month-old Wistar (old) rats. The optic nerve was harvested from 20 young and old rats. The segment of optic nerve was divided longitudinally into two pieces, each 0.1 mm in length. The first piece was used for transmission electron microscopy. The second piece was stained with histochemical reaction for monoamine oxidase. The agerelated changes in the optic nerve of rats include micro-anatomical details, ultrastructure and monoamine oxidase histochemical staining. A strong decrease of the thin nerve fibers and a swelling of the thick ones can be observed in optic nerve fibers of old rats. Increased monoamine oxidase histochemical staining of the optic nerve of aged rats is well demonstrated. The increase of meningeal shealth and the decrease of thin nerve fibers of the optic nerve in old rats are well documented. Morphological, ultrastructural and histochemical changes observed in optic nerve fibers of the old rats show a close relation with aging.
Lim, Michele C; Tanimoto, Suzana A; Furlani, Bruno A; Lum, Brent; Pinto, Luciano M; Eliason, David; Prata, Tiago S; Brandt, James D; Morse, Lawrence S; Park, Susanna S; Melo, Luiz A S
2009-07-01
To determine if panretinal photocoagulation (PRP) alters retinal nerve fiber layer (RNFL) thickness and optic nerve appearance. Patients with diabetes who did and did not undergo PRP and nondiabetic control subjects were enrolled in a prospective study. Participants underwent optical coherence tomography of the peripapillary retina and optic nerve. Stereoscopic optic nerve photographs were graded in a masked fashion. Ninety-four eyes of 48 healthy individuals, 89 eyes of 55 diabetic patients who did not undergo PRP, and 37 eyes of 24 subjects with diabetes who underwent PRP were included in this study. Eyes that had been treated with PRP had thinner peripapillary RNFL compared with the other groups; this was statistically significantly different in the inferior (P = .004) and nasal (P = .003) regions. Optic nerve cupping did not increase with severity of disease classification, but the proportion of optic nerves graded as suspicious for glaucoma or as having nonglaucomatous optic neuropathy did (P = .008). These grading categories were associated with thinner RNFL measurements. Diabetic eyes that have been treated with PRP have thinner RNFL than nondiabetic eyes. Optic nerves in eyes treated with PRP are more likely to be graded as abnormal, but their appearance is not necessarily glaucomatous and may be related to thinning of the RNFL.
Isaacs, Jonathan; Feher, Joseph; Shall, Mary; Vota, Scott; Fox, Michael A; Mallu, Satya; Razavi, Ashkon; Friebe, Ilvy; Shah, Sagar; Spita, Nathalie
2013-10-01
Suboptimal recovery following repair of major peripheral nerves has been partially attributed to denervation atrophy. Administration of anabolic steroids in conjunction with neurotization may improve functional recovery of chronically denervated muscle. The purpose of this study was to evaluate the effect of the administration of nandrolone on muscle recovery following prolonged denervation in a rat model. Eight groups of female Sprague-Dawley rats (15 rats per group, 120 in all) were divided into 3- or 6-month denervated hind limb and sham surgery groups and, then, nandrolone treatment groups and sham treatment groups. Evaluation of treatment effects included nerve conduction, force of contraction, comparative morphology, histology (of muscle fibers), protein electrophoresis (for muscle fiber grouping), and immunohistochemical evaluation. Although a positive trend was noted, neither reinnervated nor normal muscle showed a statistically significant increase in peak muscle force following nandrolone treatment. Indirect measures, including muscle mass (weight and diameter), muscle cell size, muscle fiber type, and satellite cell counts, all failed to support significant anabolic effect. There does not seem to be a functional benefit from nandrolone treatment following reinnervation of either mild or moderately atrophic muscle (related to prolonged denervation) in a rodent model.
Alnawaiseh, Maged; Hömberg, Lisann; Eter, Nicole; Prokosch, Verena
2017-01-01
To compare the structure-function relationships between retinal nerve fiber layer thickness (RNFLT) and visual field defects measured either by standard automated perimetry (SAP) or by Pulsar perimetry (PP). 263 eyes of 143 patients were prospectively included. Depending on the RNFLT, patients were assigned to the glaucoma group (group A: RNFL score 3-6) or the control group (group B: RNFL score 0-2). Structure-function relationships between RNFLT and mean sensitivity (MS) measured by SAP and PP were analyzed. Throughout the entire group, the MS assessed by PP and SAP correlated significantly with RNFLT in all sectors. In the glaucoma group, there was no significant difference between the correlations RNFL-SAP and RNFL-PP, whereas a significant difference was found in the control group. In the control group, the correlation between structure and function based on the PP data was significantly stronger than that based on SAP.
Combination of edaravone and neural stem cell transplantation repairs injured spinal cord in rats.
Song, Y Y; Peng, C G; Ye, X B
2015-12-29
This study sought to observe the effect of the combination of edaravone and neural stem cell (NSC) transplantation on the repair of complete spinal cord transection in rats. Eighty adult female Sprague-Dawley (SD) rats were used to establish the injury model of complete spinal cord transection at T9. Animals were divided randomly into four groups (N = 20 each): control, edaravone, transplantation, and edaravone + transplantation. The recovery of spinal function was evaluated with the Basso, Beattie, Bresnahan (BBB) rating scale on days 1, 3, and 7 each week after the surgery. After 8 weeks, the BBB scores of the control, edaravone, transplantation, and combination groups were 4.21 ± 0.11, 8.46 ± 0.1, 8.54 ± 0.13, and 11.21 ± 0.14, respectively. At 8 weeks after surgery, the spinal cord was collected; the survival and transportation of transplanted cells were observed with PKH-26 labeling, and the regeneration and distribution of spinal nerve fibers with fluorescent-gold (FG) retrograde tracing. Five rats died due to the injury. PKH-26-labeled NSCs had migrated into the spinal cord. A few intact nerve fibers and pyramidal neurons passed the injured area in the transplantation and combination groups. The numbers of PKH-26-labeled cells and FG-labeled nerve fibers were in the order: combination group > edaravone group and transplantation group > control group (P < 0.05 for each). Thus, edaravone can enhance the survival and differentiation of NSCs in injured areas; edaravone with NSC transplantation can improve the effectiveness of spinal cord injury repair in rats.
Tepelus, Tudor C; Chiu, Gloria B; Huang, Jianyan; Huang, Ping; Sadda, SriniVas R; Irvine, John; Lee, Olivia L
2017-09-01
To evaluate corneal innervation and inflammatory cell infiltration using in vivo confocal microscopy (IVCM) and to correlate these findings with subjective symptoms of dry eye, as measured by the Ocular Surface Disease Index (OSDI) in patients with non-Sjögren's (NSDE) and Sjögren's syndrome dry eyes (SSDE). Central corneal images were prospectively captured from 10 age-matched healthy control eyes, 24 eyes with clinically diagnosed NSDE and 44 eyes with clinically diagnosed SSDE, using IVCM (HRT III RCM). Density, tortuosity and reflectivity of corneal nerves, presence of inflammatory dendritic cells (DCs) and OSDI scores were evaluated. Images obtained by IVCM from 78 eyes were analyzed. The density of nerve fibers was 1562 ± 996 μm/frame in the SSDE group, 2150 ± 1015 μm/frame in the NSDE group and 2725 ± 687 μm/frame in the control group (P < 0.05, ANOVA). In comparison to the control group, the density of nerve fibers was decreased in the SSDE (P < 0.001) and the NSDE groups (P = 0.06), with increased nerve tortuosity and decreased reflectivity in both groups (both P < 0.05). The density of DCs was 71.65 ± 72.54 cells/mm 2 in the SSDE group, 40.33 ± 31.63 cells/mm 2 in the NSDE group and 27.53 ± 5.58 cells/mm 2 in the control group (P < 0.05, ANOVA). In comparison to the control group, the density of DCs was increased in the SSDE (P < 0.001) and the NSDE groups (P = 0.07). Significant correlations were found between the nerve density and DC density (r = -0.57, P < 0.001), between the nerve density and OSDI scores (r = -0.91, P < 0.001) and between the nerve reflectivity and OSDI scores (r = -0.75, P < 0.001). The corneas of eyes affected with NSDE and SSDE are characterized by alterations in corneal innervation and infiltration of inflammatory DCs. Corneal nerve density and reflectivity are correlated with severity of subjective dry eye symptoms, as measured by OSDI score.
Li, Yun; Xu, Wen; Cheng, Li-Yu
2017-09-01
Medialization thyroplasty or injection laryngoplasty for unilateral vocal fold paralysis cannot restore mobility of the vocal fold. Recent studies have shown that transplantation of mesenchymal stem cells is effective in the repair of nerve injuries. This study investigated whether adipose-derived stem cell transplantation could repair recurrent laryngeal nerve injury. Rat models of recurrent laryngeal nerve injury were established by crushing with micro forceps. Adipose-derived mesenchymal stem cells (ADSCs; 8 × 10 5 ) or differentiated Schwann-like adipose-derived mesenchymal stem cells (dADSCs; 8 × 10 5 ) or extracellular matrix were injected at the site of injury. At 2, 4 and 6 weeks post-surgery, a higher density of myelinated nerve fiber, thicker myelin sheath, improved vocal fold movement, better recovery of nerve conduction capacity and reduced thyroarytenoid muscle atrophy were found in ADSCs and dADSCs groups compared with the extracellular matrix group. The effects were more pronounced in the ADSCs group than in the dADSCs group. These experimental results indicated that ADSCs transplantation could be an early interventional strategy to promote regeneration after recurrent laryngeal nerve injury.
Rui, Jing; Xu, Ya-Li; Zhao, Xin; Li, Ji-Feng; Gu, Yu-Dong; Lao, Jie
2018-05-01
Exogenous discharge can positively promote nerve repair. We, therefore, hypothesized that endogenous discharges may have similar effects. The phrenic nerve and intercostal nerve, controlled by the respiratory center, can emit regular nerve impulses; therefore these endogenous automatically discharging nerves might promote nerve regeneration. Action potential discharge patterns were examined in the diaphragm, external intercostal and latissimus dorsi muscles of rats. The phrenic and intercostal nerves showed rhythmic clusters of discharge, which were consistent with breathing frequency. From the first to the third intercostal nerves, spontaneous discharge amplitude was gradually increased. There was no obvious rhythmic discharge in the thoracodorsal nerve. Four animal groups were performed in rats as the musculocutaneous nerve cut and repaired was bland control. The other three groups were followed by a side-to-side anastomosis with the phrenic nerve, intercostal nerve and thoracodorsal nerve. Compound muscle action potentials in the biceps muscle innervated by the musculocutaneous nerve were recorded with electrodes. The tetanic forces of ipsilateral and contralateral biceps muscles were detected by a force displacement transducer. Wet muscle weight recovery rate was measured and pathological changes were observed using hematoxylin-eosin staining. The number of nerve fibers was observed using toluidine blue staining and changes in nerve ultrastructure were observed using transmission electron microscopy. The compound muscle action potential amplitude was significantly higher at 1 month after surgery in phrenic and intercostal nerve groups compared with the thoracodorsal nerve and blank control groups. The recovery rate of tetanic tension and wet weight of the right biceps were significantly lower at 2 months after surgery in the phrenic nerve, intercostal nerve, and thoracodorsal nerve groups compared with the negative control group. The number of myelinated axons distal to the coaptation site of the musculocutaneous nerve at 1 month after surgery was significantly higher in phrenic and intercostal nerve groups than in thoracodorsal nerve and negative control groups. These results indicate that endogenous autonomic discharge from phrenic and intercostal nerves can promote nerve regeneration in early stages after brachial plexus injury.
Jing, Guojie; Yao, Xiaoteng; Li, Yiyi; Xie, Yituan; Li, Wang#x2019;an; Liu, Kejun; Jing, Yingchao; Li, Baisheng; Lv, Yifan; Ma, Baoxin
2014-01-01
Fractional anisotropy values in diffusion tensor imaging can quantitatively reflect the consistency of nerve fibers after brain damage, where higher values generally indicate less damage to nerve fibers. Therefore, we hypothesized that diffusion tensor imaging could be used to evaluate the effect of mild hypothermia on diffuse axonal injury. A total of 102 patients with diffuse axonal injury were randomly divided into two groups: normothermic and mild hypothermic treatment groups. Patient's modified Rankin scale scores 2 months after mild hypothermia were significantly lower than those for the normothermia group. The difference in average fractional anisotropy value for each region of interest before and after mild hypothermia was 1.32-1.36 times higher than the value in the normothermia group. Quantitative assessment of diffusion tensor imaging indicates that mild hypothermia therapy may be beneficial for patients with diffuse axonal injury. PMID:25206800
Statistical physics approach to quantifying differences in myelinated nerve fibers
Comin, César H.; Santos, João R.; Corradini, Dario; Morrison, Will; Curme, Chester; Rosene, Douglas L.; Gabrielli, Andrea; da F. Costa, Luciano; Stanley, H. Eugene
2014-01-01
We present a new method to quantify differences in myelinated nerve fibers. These differences range from morphologic characteristics of individual fibers to differences in macroscopic properties of collections of fibers. Our method uses statistical physics tools to improve on traditional measures, such as fiber size and packing density. As a case study, we analyze cross–sectional electron micrographs from the fornix of young and old rhesus monkeys using a semi-automatic detection algorithm to identify and characterize myelinated axons. We then apply a feature selection approach to identify the features that best distinguish between the young and old age groups, achieving a maximum accuracy of 94% when assigning samples to their age groups. This analysis shows that the best discrimination is obtained using the combination of two features: the fraction of occupied axon area and the effective local density. The latter is a modified calculation of axon density, which reflects how closely axons are packed. Our feature analysis approach can be applied to characterize differences that result from biological processes such as aging, damage from trauma or disease or developmental differences, as well as differences between anatomical regions such as the fornix and the cingulum bundle or corpus callosum. PMID:24676146
Statistical physics approach to quantifying differences in myelinated nerve fibers
NASA Astrophysics Data System (ADS)
Comin, César H.; Santos, João R.; Corradini, Dario; Morrison, Will; Curme, Chester; Rosene, Douglas L.; Gabrielli, Andrea; da F. Costa, Luciano; Stanley, H. Eugene
2014-03-01
We present a new method to quantify differences in myelinated nerve fibers. These differences range from morphologic characteristics of individual fibers to differences in macroscopic properties of collections of fibers. Our method uses statistical physics tools to improve on traditional measures, such as fiber size and packing density. As a case study, we analyze cross-sectional electron micrographs from the fornix of young and old rhesus monkeys using a semi-automatic detection algorithm to identify and characterize myelinated axons. We then apply a feature selection approach to identify the features that best distinguish between the young and old age groups, achieving a maximum accuracy of 94% when assigning samples to their age groups. This analysis shows that the best discrimination is obtained using the combination of two features: the fraction of occupied axon area and the effective local density. The latter is a modified calculation of axon density, which reflects how closely axons are packed. Our feature analysis approach can be applied to characterize differences that result from biological processes such as aging, damage from trauma or disease or developmental differences, as well as differences between anatomical regions such as the fornix and the cingulum bundle or corpus callosum.
Functional and structural microanatomy of the fetal sciatic nerve.
Creze, Maud; Zaitouna, Mazen; Krystel, Nyangoh Timoh; Diallo, Djibril; Lebacle, Cédric; Bellin, Marie-France; Ducreux, Denis; Benoit, Gérard; Bessede, Thomas
2017-10-01
The ultrastructure of a nerve has implications for surgical nerve repair. The aim of our study was to characterize the fascicular versus fibrillar anatomy and the autonomic versus somatic nature of the fetal sciatic nerve (SN). Immunohistochemistry for vesicular acetylcholine transporter, tyrosine hydroxylase, and peripheral myelin protein 22 was performed to identify cholinergic, adrenergic, and somatic axons, respectively, in the human fetal SN. Two-dimensional (2D) analysis and 3D reconstructions were performed. The fetal SN is composed of one-third stromal tissue and two-thirds neural tissue. Autonomic fibers are predominant over somatic fibers within the neural tissue. The distribution of somatic fibers is initially random, but then become topographically organized after intra- and interfascicular rearrangements have occurred within the nerve. The fetal model presents limitations but enables illustration of the nature of the nerve fibers and the 3D fascicular anatomy of the SN. Muscle Nerve 56: 787-796, 2017. © 2017 Wiley Periodicals, Inc.
Central projections of the lateral line and eighth nerves in the bowfin, Amia calva.
McCormick, C A
1981-03-20
The first-order connections of the anterior and posterior lateral line nerves and of the eighth nerve were determined in the bowfin, Amia calva, using experimental degeneration and anterograde HRP transport techniques. The termination sites of these nerves define a dorsal lateralis cell column and a ventral octavus cell column. The anterior and posterior lateralis nerves distribute ipsilaterally to two medullary nuclei-nucleus medialis and nucleus caudalis. Nucleus medialis comprises the rostral two-thirds of the lateralis column and contains large, Purkinje-like cells dorsally and polygonal, granule, and fusiform cells ventrally. Nucleus caudalis is located posterior to nucleus medialis and consists of small, granule cells. Anterior lateralis fibers terminate ventrally to ventromedially in both nucleus medialis and nucleus caudalis. Posterior lateralis fibers terminate dorsally to dorsolaterally within these two nuclei. A sparse anterior lateralis input may also be present on the dendrites of one of the nuclei within the octavus cell column, nucleus magnocellularis. In contrast, the anterior and posterior rami of the eighth nerve each terminate within four medullary nuclei which comprise the octavus cell column: the anterior, magnocellular, descending, and posterior octavus nuclei. An eighth nerve projection to the medial reticular formation is also present. Some fibers of the lateralis and eighth nerves terminate within the ipsilateral eminentia granularis of the cerebellum. Lateralis fibers distribute to approximately the lateral half of this structure with posterior lateral line fibers terminating laterally and anterior lateral line fibers terminating medially. Eighth nerve fibers distribute to the medial half of the eminentia granularis.
2010-01-01
Background Although the injury to the peripheral nervous system is a common clinical problem, understanding of the role of melatonin in nerve degeneration and regeneration is incomplete. Methods The current study investigated the effects of neonatal pinealectomy on the sciatic nerve microarchitecture in the chicken. The chickens were divided into two equal groups: unpinealectomized controls and pinealectomized chickens. At the end of the study, biochemical examination of 10 sciatic nerve samples from both groups was performed and a quantitative stereological evaluation of 10 animals in each group was performed. The results were compared using Mann-Whitney test. Results In this study, the results of axon number and thickness of the myelin sheath of a nerve fiber in newly hatched pinealectomy group were higher than those in control group. Similarly, surgical pinealectomy group had significantly larger axonal cross-sectional area than the control group (p < 0.05). In addition, the average hydroxyproline content of the nerve tissue in neonatal pinealectomy group was higher than those found in control group. Our results suggest that melatonin may play a role on the morphologic features of the peripheral nerve tissue and that melatonin deficiency might be a pathophysiological mechanism in some degenerative diseases of peripheral nerves. The changes demonstrated by quantitative morphometric methods and biochemical analysis has been interpreted as a reflection of the effects of melatonin upon nerve tissue. Conclusion In the light of these results from present animal study, changes in sciatic nerve morphometry may be indicative of neuroprotective feature of melatonin, but this suggestion need to be validated in the human setting. PMID:20409336
[Myelinated nerve fibers coexisted with epiretinal membrane in macula--case report].
Swiech-Zubilewicz, Anna; Bieliński, Paweł; Dolar-Szczasny, Joanna; Zarnowski, Tomasz
2012-01-01
We describe a case of peripapillary myelinated retinal nerve fibers complicated by epiretinal membrane in region of macula. 72 years old man was refered to our Clinic with suspicion of retinal detachment of right eye. Visual acuity of right eye was based to 0.05, in left eye was 0.5. IOP was normal in both eyes. In biomcroscopic evaluation the slight cortical cataract was observed in both eyes. Stereoscopic evaluation of right eye revealed the presence of massive peripapillary myelinated retinal nerve fibers and epiretinal membrane in the macula. In the left eye the less intense peripapillary myelinated retinal nerve fibers were noticed as well and the macular region was unchanged. With the use of OCT examination of the retina the presence of epiretinal membrane in the right eye was confirmed. OCT in the fellow eye presented an undisturbed foveal profile without any epiretinal abnormalities. Myelinated retinal nerve fibers can be complicated by epiretinal membrane. Probably the presence of macular pathologies depends on the extensions of nerve fibers. OCT examination is very helpful to give a proper diagnosis.
Vision and the dimensions of nerve fibers.
Wade, Nicholas J
2005-12-01
Vision provided the obvious source of determining the dimensions of nerve fibers when suitable achromatic microscopes were directed at neural tissue in the 1830s. The earlier microscopes of Hooke and Leeuwenhoek were unable to resolve such small structures adequately. However, it was not Hooke's microscope that led to an estimate of the dimensions of nerve fibers, but his experiments on the limits of visual resolution; he determined that a separation of one minute of arc was the minimum that could normally be seen. Descartes had earlier speculated that the retina consisted of the ends of fibers of the optic nerve, and that their size defined the limits of what could be seen. Estimates of the diameters of nerve fibers were made on the basis of human visual acuity by Porterfield in 1738; he calculated the diameters of nerve fibers in the retina as one 7,200th part of an inch (0.0035 mm), based on the resolution of one minute as the minimum visible. In the same year, Jurin questioned the reliability of such estimates because of variations in visual resolution with different stimuli.
Knight, O'Rese J; Girkin, Christopher A; Budenz, Donald L; Durbin, Mary K; Feuer, William J
2012-03-01
To determine the effect of race, demographic, and ocular variables on optic nerve head and retinal nerve fiber layer (RNFL) thickness measurements using spectral-domain optical coherence tomography. In a cross-sectional observational study, 284 normal subjects aged 18 to 84 years were evaluated at 7 sites using Cirrus HD-OCT. Disc area, rim area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and average, temporal, superior, nasal, and inferior RNFL thicknesses were calculated. The main outcome measures were associations between Cirrus HD-OCT optic nerve head and RNFL measurements and age, sex, and race. The 284 subjects self-identified as being of European (122), Chinese (63), African (51), or Hispanic (35) descent. After adjusting for the effect of age, there was a statistically significant difference among racial groups for all optic nerve head and RNFL parameters (all P ≤ .005) except rim area (P = .22). Rim area, average cup-disc ratio, vertical cup-disc ratio, and cup volume were moderately associated with disc area (r(2) = 0.15, 0.33, 0.33, and 0.37, respectively). After a linear adjustment for disc area, there was no statistically significant difference among racial groups for any optic nerve head parameter. Individuals of European descent had thinner RNFL measurements except in the temporal quadrant. There are racial differences in optic disc area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and RNFL thickness as measured by Cirrus HD-OCT. These differences should be considered when using Cirrus HD-OCT to assess for glaucomatous damage in differing population groups.
Knight, O’Rese J.; Girkin, Christopher A.; Budenz, Donald L.; Durbin, Mary K.; Feuer, William J.
2017-01-01
Objective To determine the effect of race, demographic, and ocular variables on optic nerve head and retinal nerve fiber layer (RNFL) thickness measurements using spectral-domain optical coherence tomography. Methods In a cross-sectional observational study, 284 normal subjects aged 18 to 84 years were evaluated at 7 sites using Cirrus HD-OCT. Disc area, rim area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and average, temporal, superior, nasal, and inferior RNFL thicknesses were calculated. The main outcome measures were associations between Cirrus HD-OCT optic nerve head and RNFL measurements and age, sex, and race. Results The 284 subjects self-identified as being of European (122), Chinese (63), African (51), or Hispanic (35) descent. After adjusting for the effect of age, there was a statistically significant difference among racial groups for all optic nerve head and RNFL parameters (all P≤.005) except rim area (P=.22). Rim area, average cup-disc ratio, vertical cup-disc ratio, and cup volume were moderately associated with disc area (r2=0.15, 0.33, 0.33, and 0.37, respectively). After a linear adjustment for disc area, there was no statistically significant difference among racial groups for any optic nerve head parameter. Individuals of European descent had thinner RNFL measurements except in the temporal quadrant. Conclusions There are racial differences in optic disc area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and RNFL thickness as measured by Cirrus HD-OCT. These differences should be considered when using Cirrus HD-OCT to assess for glaucomatous damage in differing population groups. PMID:22411660
Zellmer, Erik R; MacEwan, Matthew R; Moran, Daniel W
2018-04-01
Regenerated peripheral nervous tissue possesses different morphometric properties compared to undisrupted nerve. It is poorly understood how these morphometric differences alter the response of the regenerated nerve to electrical stimulation. In this work, we use computational modeling to explore the electrophysiological response of regenerated and undisrupted nerve axons to electrical stimulation delivered by macro-sieve electrodes (MSEs). A 3D finite element model of a peripheral nerve segment populated with mammalian myelinated axons and implanted with a macro-sieve electrode has been developed. Fiber diameters and morphometric characteristics representative of undisrupted or regenerated peripheral nervous tissue were assigned to core conductor models to simulate the two tissue types. Simulations were carried out to quantify differences in thresholds and chronaxie between undisrupted and regenerated fiber populations. The model was also used to determine the influence of axonal caliber on recruitment thresholds for the two tissue types. Model accuracy was assessed through comparisons with in vivo recruitment data from chronically implanted MSEs. Recruitment thresholds of individual regenerated fibers with diameters >2 µm were found to be lower compared to same caliber undisrupted fibers at electrode to fiber distances of less than about 90-140 µm but roughly equal or higher for larger distances. Caliber redistributions observed in regenerated nerve resulted in an overall increase in average recruitment thresholds and chronaxie during whole nerve stimulation. Modeling results also suggest that large diameter undisrupted fibers located close to a longitudinally restricted current source such as the MSE have higher average recruitment thresholds compared to small diameter fibers. In contrast, large diameter regenerated nerve fibers located in close proximity of MSE sites have, on average, lower recruitment thresholds compared to small fibers. Utilizing regenerated fiber morphometry and caliber distributions resulted in accurate predictions of in vivo recruitment data. Our work uses computational modeling to show how morphometric differences between regenerated and undisrupted tissue results in recruitment threshold discrepancies, quantifies these differences, and illustrates how large undisrupted nerve fibers close to longitudinally restricted current sources have higher recruitment thresholds compared to adjacently positioned smaller fibers while the opposite is true for large regenerated fibers.
NASA Astrophysics Data System (ADS)
Zellmer, Erik R.; MacEwan, Matthew R.; Moran, Daniel W.
2018-04-01
Objective. Regenerated peripheral nervous tissue possesses different morphometric properties compared to undisrupted nerve. It is poorly understood how these morphometric differences alter the response of the regenerated nerve to electrical stimulation. In this work, we use computational modeling to explore the electrophysiological response of regenerated and undisrupted nerve axons to electrical stimulation delivered by macro-sieve electrodes (MSEs). Approach. A 3D finite element model of a peripheral nerve segment populated with mammalian myelinated axons and implanted with a macro-sieve electrode has been developed. Fiber diameters and morphometric characteristics representative of undisrupted or regenerated peripheral nervous tissue were assigned to core conductor models to simulate the two tissue types. Simulations were carried out to quantify differences in thresholds and chronaxie between undisrupted and regenerated fiber populations. The model was also used to determine the influence of axonal caliber on recruitment thresholds for the two tissue types. Model accuracy was assessed through comparisons with in vivo recruitment data from chronically implanted MSEs. Main results. Recruitment thresholds of individual regenerated fibers with diameters >2 µm were found to be lower compared to same caliber undisrupted fibers at electrode to fiber distances of less than about 90-140 µm but roughly equal or higher for larger distances. Caliber redistributions observed in regenerated nerve resulted in an overall increase in average recruitment thresholds and chronaxie during whole nerve stimulation. Modeling results also suggest that large diameter undisrupted fibers located close to a longitudinally restricted current source such as the MSE have higher average recruitment thresholds compared to small diameter fibers. In contrast, large diameter regenerated nerve fibers located in close proximity of MSE sites have, on average, lower recruitment thresholds compared to small fibers. Utilizing regenerated fiber morphometry and caliber distributions resulted in accurate predictions of in vivo recruitment data. Significance. Our work uses computational modeling to show how morphometric differences between regenerated and undisrupted tissue results in recruitment threshold discrepancies, quantifies these differences, and illustrates how large undisrupted nerve fibers close to longitudinally restricted current sources have higher recruitment thresholds compared to adjacently positioned smaller fibers while the opposite is true for large regenerated fibers.
Physiological and pharmacologic aspects of peripheral nerve blocks
Vadhanan, Prasanna; Tripaty, Debendra Kumar; Adinarayanan, S.
2015-01-01
A successful peripheral nerve block not only involves a proper technique, but also a thorough knowledge and understanding of the physiology of nerve conduction and pharmacology of local anesthetics (LAs). This article focuses on what happens after the block. Pharmacodynamics of LAs, underlying mechanisms of clinically observable phenomena such as differential blockade, tachyphylaxis, C fiber resistance, tonic and phasic blockade and effect of volume and concentration of LAs. Judicious use of additives along with LAs in peripheral nerve blocks can prolong analgesia. An entirely new group of drugs-neurotoxins has shown potential as local anesthetics. Various methods are available now to prolong the duration of peripheral nerve blocks. PMID:26330722
Abdellatif, Mona K; Fouad, Mohamed M
2018-03-01
To investigate the factors in migraine that have the highest significance on retinal and choroidal layers' thickness. Ninety patients with migraine and 40 age-matched healthy participants were enrolled in this observational, cross-sectional study. After full ophthalmological examination, spectral domain-optical coherence tomography was done for all patients measuring the thickness of ganglion cell layer and retinal nerve fiber layer. Enhanced depth imaging technique was used to measure the choroidal thickness. There was significant thinning in the superior and inferior ganglion cell layers, all retinal nerve fiber layer quadrants, and all choroidal quadrants (except for the central subfield) in migraineurs compared to controls. The duration of migraine was significantly correlated with ganglion cell layer, retinal nerve fiber layer, and all choroidal quadrants, while the severity of migraine was significantly correlated with ganglion cell layer and retinal nerve fiber layer only. Multiregression analysis showed that the duration of migraine is the most important determinant factor of the superior retinal nerve fiber layer quadrant (β = -0.375, p = 0.001) and in all the choroidal quadrants (β = -0.531, -0.692, -0.503, -0.461, -0.564, respectively, p < 0.001), while severity is the most important determinant factor of inferior, nasal, and temporal retinal nerve fiber layer quadrants (β = -0.256, -0.335, -0.308; p = 0.036, 0.005, 0.009, respectively) and the inferior ganglion cell layer hemisphere (β = -0.377 and p = 0.001). Ganglion cell layer, retinal nerve fiber layer, and choroidal thickness are significantly thinner in patients with migraine. The severity of migraine has more significant influence in the thinning of ganglion cell layer and retinal nerve fiber layer, while the duration of the disease affected the choroidal thickness more.
Peptide therapy with pentadecapeptide BPC 157 in traumatic nerve injury.
Gjurasin, Miroslav; Miklic, Pavle; Zupancic, Bozidar; Perovic, Darko; Zarkovic, Kamelija; Brcic, Luka; Kolenc, Danijela; Radic, Bozo; Seiwerth, Sven; Sikiric, Predrag
2010-02-25
We focused on the healing of rat transected sciatic nerve and improvement made by stable gastric pentadecapeptide BPC 157 (10 microg, 10ng/kg) applied shortly after injury (i) intraperitoneally/intragastrically/locally, at the site of anastomosis, or after (ii) non-anastomozed nerve tubing (7 mm nerve segment resected) directly into the tube. Improvement was shown clinically (autotomy), microscopically/morphometrically and functionally (EMG, one or two months post-injury, walking recovery (sciatic functional index (SFI)) at weekly intervals). BPC 157-rats exhibited faster axonal regeneration: histomorphometrically (improved presentation of neural fascicles, homogeneous regeneration pattern, increased density and size of regenerative fibers, existence of epineural and perineural regeneration, uniform target orientation of regenerative fibers, and higher proportion of neural vs. connective tissue, all fascicles in each nerve showed increased diameter of myelinated fibers, thickness of myelin sheet, number of myelinated fibers per area and myelinated fibers as a percentage of the nerve transected area and the increased blood vessels presentation), electrophysiologically (increased motor action potentials), functionally (improved SFI), the autotomy absent. Thus, BPC 157 markedly improved rat sciatic nerve healing. Copyright 2009 Elsevier B.V. All rights reserved.
The Changing Sensory and Sympathetic Innervation of the Young, Adult and Aging Mouse Femur.
Chartier, Stephane R; Mitchell, Stefanie A T; Majuta, Lisa A; Mantyh, Patrick W
2018-02-10
Although bone is continually being remodeled and ultimately declines with aging, little is known whether similar changes occur in the sensory and sympathetic nerve fibers that innervate bone. Here, immunohistochemistry and confocal microscopy were used to examine changes in the sensory and sympathetic nerve fibers that innervate the young (10 days post-partum), adult (3 months) and aging (24 months) C57Bl/6 mouse femur. In all three ages examined, the periosteum was the most densely innervated bone compartment. With aging, the total number of sensory and sympathetic nerve fibers clearly declines as the cambium layer of the periosteum dramatically thins. Yet even in the aging femur, there remains a dense sensory and sympathetic innervation of the periosteum. In cortical bone, sensory and sympathetic nerve fibers are largely confined to vascularized Haversian canals and while there is no significant decline in the density of sensory fibers, there was a 75% reduction in sympathetic nerve fibers in the aging vs. adult cortical bone. In contrast, in the bone marrow the overall density/unit area of both sensory and sympathetic nerve fibers appeared to remain largely unchanged across the lifespan. The preferential preservation of sensory nerve fibers suggests that even as bone itself undergoes a marked decline with age, the nociceptors that detect injury and signal skeletal pain remain relatively intact. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Boric, Matija; Skopljanac, Ivan; Ferhatovic, Lejla; Jelicic Kadic, Antonia; Banozic, Adriana; Puljak, Livia
2013-11-01
To examine the mechanisms contributing to pain genesis in diabetic neuropathy, we investigated epidermal thickness and number of intraepidermal nerve fibers in rat foot pad of the animal model of diabetes type 1 and type 2 in relation to pain-related behavior. Male Sprague-Dawley rats were used. Diabetes type 1 was induced with intraperitoneal injection of streptozotocin (STZ) and diabetes type 2 was induced with a combination of STZ and high-fat diet. Control group for diabetes type 1 was fed with regular laboratory chow, while control group for diabetes type 2 received high-fat diet. Body weights and blood glucose levels were monitored to confirm induction of diabetes. Pain-related behavior was analyzed using thermal (hot, cold) and mechanical stimuli (von Frey fibers, number of hyperalgesic responses). Two months after induction of diabetes, glabrous skin samples from plantar surface of the both hind paws were collected. Epidermal thickness was evaluated with hematoxylin and eosin staining. Intraepidermal nerve fibers quantification was performed after staining skin with polyclonal antiserum against protein gene product 9.5. We found that induction of diabetes type 1 and type 2 causes significant epidermal thinning and loss of intraepidermal nerve fibers in a rat model, and both changes were more pronounced in diabetes type 1 model. Significant increase of pain-related behavior two months after induction of diabetes was observed only in a model of diabetes type 1. In conclusion, animal models of diabetes type 1 and diabetes type 2 could be used in pharmacological studies, where cutaneous changes could be used as outcome measures for predegenerative markers of neuropathies. Copyright © 2013 Elsevier B.V. All rights reserved.
Muscular innervation of the proximal duodenum of the guinea pig.
Iino, S
2000-10-01
We investigated the muscular structure and innervation of the gastroduodenal junction in the guinea pig. In the gastroduodenal junction, the innermost layer of the circular muscle contained numerous nerve fibers and terminals. Since this nerve network continued onto the deep muscular plexus (DMP) of the duodenum, we surmised that the numerous nerve fibers in the gastroduodenal junction were specialized DMP in the most proximal part of the duodenum. The innermost layer containing many nerve fibers was about 1,000 microm in length and 100 microm in thickness in the proximal duodenum. This layer contained numerous connective tissue fibers composed of collagen and elastic fibers. Five to 30 smooth muscle cells lay in contact with each other and were surrounded by fine connective tissue. The nerve fibers in the proximal duodenum contained nerve terminals immunoreactive for choline acetyltransferase, dynorphin, enkephalin, galanin, gastrin-releasing peptide, nitric oxide synthase, substance P, and vasoactive intestinal polypeptide. Adrenergic fibers which contained tyrosine hydroxylase immunoreactivity were rare in the proximal duodenum. In the innermost layer of the proximal duodenum, there were numerous c-Kit immunopositive cells that were in contact with nerve terminals. This study allowed us to clarify the specific architecture of the most proximal portion of the duodenum. The functional significance of the proximal duodenum in relation to the electrical connection and neural cooperation of the musculature between the antrum and the duodenum is also discussed.
Szalai, Eszter; Deák, Eszter; Módis, László; Németh, Gábor; Berta, András; Nagy, Annamária; Felszeghy, Eniko; Káposzta, Rita; Malik, Rayaz A; Csutak, Adrienne
2016-03-01
The aim of this study was to quantify epithelial, stromal, and endothelial cell density, and subbasal nerve morphology in young patients with type 1 diabetes mellitus with and without diabetic retinopathy. A total of 28 young patients (mean age, 22.86 ± 9.05 years) with type 1 diabetes, with (n = 18) and without (n = 10) retinopathy, and 17 age-matched healthy control subjects (mean age, 26.53 ± 2.43 years) underwent corneal confocal microscopy (CCM). We found significantly lower epithelial (P < 0.0001) and endothelial (P = 0.001) cell densities and higher keratocyte cell density (P = 0.024) in patients with type 1 diabetes compared to controls. Significantly lower corneal nerve fiber density (P = 0.004), nerve branch density (P = 0.004), total nerve branch density (P = 0.04), and nerve fiber length (P = 0.001), and greater nerve fiber width (P = 0.04) were observed in patients with type 1 diabetes compared to control subjects. Significantly lower epithelial (P < 0.001) and endothelial (P = 0.02) cell densities, nerve branch density (P = 0.02), and nerve fiber length (P = 0.04), and significantly higher keratocyte cell density (P = 0.02) were found in patients with type 1 diabetes without retinopathy compared to control subjects. Corneal confocal microscopy identifies corneal cellular and small nerve fiber pathology in young patients with type 1 diabetes without retinopathy, which increases in severity in those with retinopathy. Corneal confocal microscopy appears to have considerable use as an imaging biomarker for early subclinical pathology in young patients with type 1 diabetes mellitus.
Barczyński, Marcin; Stopa, Małgorzata; Konturek, Aleksander; Nowak, Wojciech
2016-03-01
Few small studies reported that motor fibers are located exclusively in the anterior branch of the bifid recurrent laryngeal nerve (RLN). The aim of this study was to investigate the location of the motor fibers to the intrinsic muscles of the larynx among the bifid RLNs, and assess the prevalence of RLN injury with respect to nerve branching in a pragmatic trial. This was a prospective cohort study of 1250 patients who underwent total thyroidectomy with intraoperative neural monitoring. The primary outcome was the position of the motor fibers in the bifid nerves. Adduction of the vocal folds was detected by the endotracheal tube electromyography and abduction by finger palpation of muscle contraction in the posterior cricoarytenoid. The secondary outcomes were the prevalence of the RLN branching and the prevalence of RLN injury in bifid versus non-bifid nerves. The bifid RLNs were identified in 613/2500 (24.5%) nerves at risk, including 92 (7.4%) patients with bilateral bifurcations. The motor fibers were present exclusively in the anterior branch in 605/613 (98.7%) bifid nerves, and in both the RLN branches in 8/613 (1.3%) bifid nerves. Prevalence of RLN injury was 5.2 versus 1.6% for the bifid versus non-bifid nerves (p < 0.001), odds ratio 2.98 (95% confidence interval 1.79-4.95; p < 0.001). The motor fibers of the RLN are located in the anterior extralaryngeal branch in the vast majority of but not in all patients. In rare cases, the motor fibers for adduction or abduction are located in the posterior branch of the RLN. As the bifid nerves are more prone to injury than non-branched nerves, meticulous dissection is recommended to assure preservation of all the branches of the RLN during thyroidectomy.
Turner, Michael J; Kawada, Toru; Shimizu, Shuji; Sugimachi, Masaru
2014-06-13
This study aims to identify the contribution of myelinated (A-fiber) and unmyelinated (C-fiber) baroreceptor central pathways to the baroreflex control of sympathetic nerve activity and arterial pressure. Two binary white noise stimulation protocols were used to electrically stimulate the aortic depressor nerve and activate reflex responses from either A-fiber (3 V, 20-100 Hz) or C-fiber (20 V, 0-10 Hz) baroreceptor in anesthetized Sprague-Dawley rats (n=10). Transfer function analysis was performed between stimulation and sympathetic nerve activity (central arc), sympathetic nerve activity and arterial pressure (peripheral arc), and stimulation and arterial pressure (Stim-AP arc). The central arc transfer function from nerve stimulation to splanchnic sympathetic nerve activity displayed derivative characteristics for both stimulation protocols. However, the modeled steady-state gain (0.28 ± 0.04 vs. 4.01 ± 0.2%·Hz(-1), P<0.001) and coherence at 0.01 Hz (0.44 ± 0.05 vs. 0.81 ± 0.03, P<0.05) were significantly lower for A-fiber stimulation compared with C-fiber stimulation. The slope of the dynamic gain was higher for A-fiber stimulation (14.82 ± 1.02 vs. 7.21 ± 0.79 dB·decade(-1), P<0.001). The steady-state gain of the Stim-AP arc was also significantly lower for A-fiber stimulation compared with C-fiber stimulation (0.23 ± 0.05 vs. 3.05 ± 0.31 mmHg·Hz(-1), P<0.001). These data indicate that the A-fiber central pathway contributes to high frequency arterial pressure regulation and the C-fiber central pathway provides more sustained changes in sympathetic nerve activity and arterial pressure. A sustained reduction in arterial pressure from electrical stimulation of arterial baroreceptor afferents is likely mediated through the C-fiber central pathway. Copyright © 2014 Elsevier Inc. All rights reserved.
Su, Chun-Kuei; Chiang, Chia-Hsun; Lee, Chia-Ming; Fan, Yu-Pei; Ho, Chiu-Ming; Shyu, Liang-Yu
2013-01-01
Sympathetic nerves conveying central commands to regulate visceral functions often display activities in synchronous bursts. To understand how individual fibers fire synchronously, we establish “oligofiber recording techniques” to record “several” nerve fiber activities simultaneously, using in vitro splanchnic sympathetic nerve–thoracic spinal cord preparations of neonatal rats as experimental models. While distinct spike potentials were easily recorded from collagenase-dissociated sympathetic fibers, a problem arising from synchronous nerve discharges is a higher incidence of complex waveforms resulted from spike overlapping. Because commercial softwares do not provide an explicit solution for spike overlapping, a series of custom-made LabVIEW programs incorporated with MATLAB scripts was therefore written for spike sorting. Spikes were represented as data points after waveform feature extraction and automatically grouped by k-means clustering followed by principal component analysis (PCA) to verify their waveform homogeneity. For dissimilar waveforms with exceeding Hotelling's T2 distances from the cluster centroids, a unique data-based subtraction algorithm (SA) was used to determine if they were the complex waveforms resulted from superimposing a spike pattern close to the cluster centroid with the other signals that could be observed in original recordings. In comparisons with commercial software, higher accuracy was achieved by analyses using our algorithms for the synthetic data that contained synchronous spiking and complex waveforms. Moreover, both T2-selected and SA-retrieved spikes were combined as unit activities. Quantitative analyses were performed to evaluate if unit activities truly originated from single fibers. We conclude that applications of our programs can help to resolve synchronous sympathetic nerve discharges (SND). PMID:24198782
Cutaneous somatic and autonomic nerve TDP-43 deposition in amyotrophic lateral sclerosis.
Ren, Yuting; Liu, Wenxiu; Li, Yifan; Sun, Bo; Li, Yanran; Yang, Fei; Wang, Hongfen; Li, Mao; Cui, Fang; Huang, Xusheng
2018-05-26
To evaluate the involvement of the sensory and autonomic nervous system in amyotrophic lateral sclerosis (ALS) and to determine whether TDP-43/pTDP-43 deposits in skin nerve fibers signify a valuable biomarker for ALS. Eighteen patients with ALS and 18 age- and sex-matched control subjects underwent physical examinations, in addition to donating skin biopsies from the distal leg. The density of epidermal, Meissner's corpuscle (MC), sudomotor, and pilomotor nerve fibers were measured. Confocal microscopy was used to determine the cutaneous somatic and autonomic nerve fiber density and TDP-43/pTDP-43 deposition. Intraepidermal nerve fiber density (IENFD) was reduced in individuals with ALS (P < 0.001). MC density (MCD) (P = 0.001), sweat gland nerve fiber density (SGNFD) (P < 0.001), and pilomotor nerve fiber density (PNFD) (P < 0.001) were all reduced in ALS patients. The SGNFD correlated with the small-fiber neuropathy Symptoms Inventory Questionnaire (SFN-SIQ), VAS and age. The SFN-SIQ was higher in ALS with sensory symptoms than without sensory symptoms (P = 0.000). Furthermore, the SFN-SIQ was higher in ALS with autonomic symptoms than without autonomic symptoms (P = 0.002). SFN-SIQ was higher in ALS patients that were pTDP-43 positive than pTDP-43 negative (P = 0.04), respectively. We established in the peripheral nervous system that higher SFN-SIQ and VAS was involved in ALS, indicating the loss of SGNF. The deposition of TDP-43/pTDP-43 in ALS nerve fibers may indicate an important role in the underlying pathogenesis of ALS. This observation might be used as a potential biomarker for diagnosing ALS.
BREAST CANCER-INDUCED BONE REMODELING, SKELETAL PAIN AND SPROUTING OF SENSORY NERVE FIBERS
Bloom, Aaron P.; Jimenez-Andrade, Juan M.; Taylor, Reid N.; Castañeda-Corral, Gabriela; Kaczmarska, Magdalena J.; Freeman, Katie T.; Coughlin, Kathleen A.; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.
2011-01-01
Breast cancer metastasis to bone is frequently accompanied by pain. What remains unclear is why this pain tends to become more severe and difficult to control with disease progression. Here we test the hypothesis that with disease progression sensory nerve fibers that innervate the breast cancer bearing bone undergo a pathological sprouting and reorganization, which in other non-malignant pathologies has been shown to generate and maintain chronic pain. Injection of human breast cancer cells (MDA-MB-231-BO) into the femoral intramedullary space of female athymic nude mice induces sprouting of calcitonin gene-related peptide (CGRP+) sensory nerve fibers. Nearly all CGRP+ nerve fibers that undergo sprouting also co-express tropomyosin receptor kinase A (TrkA+) and growth associated protein-43 (GAP43+). This ectopic sprouting occurs in periosteal sensory nerve fibers that are in close proximity to breast cancer cells, tumor-associated stromal cells and remodeled cortical bone. Therapeutic treatment with an antibody that sequesters nerve growth factor (NGF), administered when the pain and bone remodeling were first observed, blocks this ectopic sprouting and attenuates cancer pain. The present data suggest that the breast cancer cells and tumor-associated stromal cells express and release NGF, which drives bone pain and the pathological reorganization of nearby CGRP+ / TrkA+ / GAP43+ sensory nerve fibers. PMID:21497141
Reconstruction of the Abdominal Vagus Nerve Using Sural Nerve Grafts in Canine Models
Luo, Fen; Wang, Zhiming; Wang, Yin
2013-01-01
Background Recently, vagus nerve preservation or reconstruction of vagus has received increasing attention. The present study aimed to investigate the feasibility of reconstructing the severed vagal trunk using an autologous sural nerve graft. Methods Ten adult Beagle dogs were randomly assigned to two groups of five, the nerve grafting group (TG) and the vagal resection group (VG). The gastric secretion and emptying functions in both groups were assessed using Hollander insulin and acetaminophen tests before surgery and three months after surgery. All dogs underwent laparotomy under general anesthesia. In TG group, latency and conduction velocity of the action potential in a vagal trunk were measured, and then nerves of 4 cm long were cut from the abdominal anterior and posterior vagal trunks. Two segments of autologous sural nerve were collected for performing end-to-end anastomoses with the cut ends of vagal trunk (8–0 nylon suture, 3 sutures for each anastomosis). Dogs in VG group only underwent partial resections of the anterior and posterior vagal trunks. Laparotomy was performed in dogs of TG group, and latency and conduction velocity of the action potential in their vagal trunks were measured. The grafted nerve segment was removed, and stained with anti-neurofilament protein and toluidine blue. Results Latency of the action potential in the vagal trunk was longer after surgery than before surgery in TG group, while the conduction velocity was lower after surgery. The gastric secretion and emptying functions were weaker after surgery in dogs of both groups, but in TG group they were significantly better than in VG group. Anti-neurofilament protein staining and toluidine blue staining showed there were nerve fibers crossing the anastomosis of the vagus and sural nerves in dogs of TG group. Conclusion Reconstruction of the vagus nerve using the sural nerve is technically feasible. PMID:23555604
NASA Astrophysics Data System (ADS)
Yamanari, Masahiro; Miura, Masahiro; Makita, Shuichi; Yatagai, Toyohiko; Yasuno, Yoshiaki
2007-02-01
Birefringence of retinal nerve fiber layer is measured by polarization-sensitive spectral domain optical coherence tomography using the B-scan-oriented polarization modulation method. Birefringence of the optical fiber and the cornea is compensated by Jones matrix based analysis. Three-dimensional phase retardation map around the optic nerve head and en-face phase retardation map of the retinal nerve fiber layer are shown. Unlike scanning laser polarimetry, our system can measure the phase retardation quantitatively without using bow-tie pattern of the birefringence in the macular region, which enables diagnosis of glaucoma even if the patients have macular disease.
Thermally Drawn Fibers as Nerve Guidance Scaffolds
Koppes, Ryan A.; Park, Seongjun; Hood, Tiffany; Jia, Xiaoting; Poorheravi, Negin Abdolrahim; Achyuta, Anilkumar Harapanahalli; Fink, Yoel; Anikeeva, Polina
2016-01-01
Synthetic neural scaffolds hold promise to eventually replace nerve autografts for tissue repair following peripheral nerve injury. Despite substantial evidence for the influence of scaffold geometry and dimensions on the rate of axonal growth, systematic evaluation of these parameters remains a challenge due to limitations in materials processing. We have employed fiber drawing to engineer a wide spectrum of polymer-based neural scaffolds with varied geometries and core sizes. Using isolated whole dorsal root ganglia as an in vitro model system we have identified key features enhancing nerve growth within these fiber scaffolds. Our approach enabled straightforward integration of microscopic topography at the scale of nerve fascicles within the scaffold cores, which led to accelerated Schwann cell migration, as well as neurite growth and alignment. Our findings indicate that fiber drawing provides a scalable and versatile strategy for producing nerve guidance channels capable of controlling direction and accelerating the rate of axonal growth. PMID:26717246
Regeneration of the eighth cranial nerve in the bullfrog, Rana catesbeiana.
Newman, A; Honrubia, V
1992-01-01
The present study was done in order to document the ability of the eighth cranial nerve of the bullfrog (Rana catesbeiana) to regenerate, the anatomic characteristics of the regenerated fibers, and the specificity of projections from individual endorgan branches of the nerve. The eighth cranial nerve was sharply transected between the ganglion cells and the brain stem in 40 healthy bullfrogs and allowed to regenerate. Anatomic studies were performed in these animals a minimum of 3 months postoperatively. Horseradish peroxidase was used to label the whole vestibular nerve or its individual endorgan branches. Labeled regenerated fibers could be identified crossing the site of the nerve section and projecting centrally to the vestibular nuclei in a pattern similar to that of normal frogs. Labeling of individual branches showed that regenerated fibers innervated the same specific areas found in normal frogs. Unlike normal animals, both thick and thin fibers projected to the medial nucleus.
Sensory and motor neuropathy in a Border Collie.
Harkin, Kenneth R; Cash, Walter C; Shelton, G Diane
2005-10-15
A 5-month-old female Border Collie was evaluated because of progressive hind limb ataxia. The predominant clinical findings suggested a sensory neuropathy. Sensory nerve conduction velocity was absent in the tibial, common peroneal, and radial nerves and was decreased in the ulnar nerve; motor nerve conduction velocity was decreased in the tibial, common peroneal, and ulnar nerves. Histologic examination of nerve biopsy specimens revealed considerable nerve fiber depletion; some tissue sections had myelin ovoids, foamy macrophages, and axonal degeneration in remaining fibers. Marked depletion of most myelinated fibers within the peroneal nerve (a mixed sensory and motor nerve) supported the electrodiagnostic findings indicative of sensorimotor neuropathy. Progressive deterioration in motor function occurred over the following 19 months until the dog was euthanatized. A hereditary link was not established, but a littermate was similarly affected. The hereditary characteristic of this disease requires further investigation.
Tavakoli, Mitra; Mitu-Pretorian, Maria; Petropoulos, Ioannis N.; Fadavi, Hassan; Asghar, Omar; Alam, Uazman; Ponirakis, Georgios; Jeziorska, Maria; Marshall, Andy; Efron, Nathan; Boulton, Andrew J.; Augustine, Titus; Malik, Rayaz A.
2013-01-01
Diabetic neuropathy is associated with increased morbidity and mortality. To date, limited data in subjects with impaired glucose tolerance and diabetes demonstrate nerve fiber repair after intervention. This may reflect a lack of efficacy of the interventions but may also reflect difficulty of the tests currently deployed to adequately assess nerve fiber repair, particularly in short-term studies. Corneal confocal microscopy (CCM) represents a novel noninvasive means to quantify nerve fiber damage and repair. Fifteen type 1 diabetic patients undergoing simultaneous pancreas–kidney transplantation (SPK) underwent detailed assessment of neurologic deficits, quantitative sensory testing (QST), electrophysiology, skin biopsy, corneal sensitivity, and CCM at baseline and at 6 and 12 months after successful SPK. At baseline, diabetic patients had a significant neuropathy compared with control subjects. After successful SPK there was no significant change in neurologic impairment, neurophysiology, QST, corneal sensitivity, and intraepidermal nerve fiber density (IENFD). However, CCM demonstrated significant improvements in corneal nerve fiber density, branch density, and length at 12 months. Normalization of glycemia after SPK shows no significant improvement in neuropathy assessed by the neurologic deficits, QST, electrophysiology, and IENFD. However, CCM shows a significant improvement in nerve morphology, providing a novel noninvasive means to establish early nerve repair that is missed by currently advocated assessment techniques. PMID:23002037
Gao, Kai-Ming; Lao, Jie; Guan, Wen-Jie; Hu, Jing-Jing
2018-01-01
If a partial contralateral C 7 nerve is transferred to a recipient injured nerve, results are not satisfactory. However, if an entire contralateral C 7 nerve is used to repair two nerves, both recipient nerves show good recovery. These findings seem contradictory, as the above two methods use the same donor nerve, only the cutting method of the contralateral C 7 nerve is different. To verify whether this can actually result in different repair effects, we divided rats with right total brachial plexus injury into three groups. In the entire root group, the entire contralateral C 7 root was transected and transferred to the median nerve of the affected limb. In the posterior division group, only the posterior division of the contralateral C 7 root was transected and transferred to the median nerve. In the entire root + posterior division group, the entire contralateral C 7 root was transected but only the posterior division was transferred to the median nerve. After neurectomy, the median nerve was repaired on the affected side in the three groups. At 8, 12, and 16 weeks postoperatively, electrophysiological examination showed that maximum amplitude, latency, muscle tetanic contraction force, and muscle fiber cross-sectional area of the flexor digitorum superficialis muscle were significantly better in the entire root and entire root + posterior division groups than in the posterior division group. No significant difference was found between the entire root and entire root + posterior division groups. Counts of myelinated axons in the median nerve were greater in the entire root group than in the entire root + posterior division group, which were greater than the posterior division group. We conclude that for the same recipient nerve, harvesting of the entire contralateral C 7 root achieved significantly better recovery than partial harvesting, even if only part of the entire root was used for transfer. This result indicates that the entire root should be used as a donor when transferring contralateral C 7 nerve.
Gao, Kai-ming; Lao, Jie; Guan, Wen-jie; Hu, Jing-jing
2018-01-01
If a partial contralateral C7 nerve is transferred to a recipient injured nerve, results are not satisfactory. However, if an entire contralateral C7 nerve is used to repair two nerves, both recipient nerves show good recovery. These findings seem contradictory, as the above two methods use the same donor nerve, only the cutting method of the contralateral C7 nerve is different. To verify whether this can actually result in different repair effects, we divided rats with right total brachial plexus injury into three groups. In the entire root group, the entire contralateral C7 root was transected and transferred to the median nerve of the affected limb. In the posterior division group, only the posterior division of the contralateral C7 root was transected and transferred to the median nerve. In the entire root + posterior division group, the entire contralateral C7 root was transected but only the posterior division was transferred to the median nerve. After neurectomy, the median nerve was repaired on the affected side in the three groups. At 8, 12, and 16 weeks postoperatively, electrophysiological examination showed that maximum amplitude, latency, muscle tetanic contraction force, and muscle fiber cross-sectional area of the flexor digitorum superficialis muscle were significantly better in the entire root and entire root + posterior division groups than in the posterior division group. No significant difference was found between the entire root and entire root + posterior division groups. Counts of myelinated axons in the median nerve were greater in the entire root group than in the entire root + posterior division group, which were greater than the posterior division group. We conclude that for the same recipient nerve, harvesting of the entire contralateral C7 root achieved significantly better recovery than partial harvesting, even if only part of the entire root was used for transfer. This result indicates that the entire root should be used as a donor when transferring contralateral C7 nerve. PMID:29451212
Sensation, mechanoreceptor, and nerve fiber function after nerve regeneration.
Krarup, Christian; Rosén, Birgitta; Boeckstyns, Michel; Ibsen Sørensen, Allan; Lundborg, Göran; Moldovan, Mihai; Archibald, Simon J
2017-12-01
Sensation is essential for recovery after peripheral nerve injury. However, the relationship between sensory modalities and function of regenerated fibers is uncertain. We have investigated the relationships between touch threshold, tactile gnosis, and mechanoreceptor and sensory fiber function after nerve regeneration. Twenty-one median or ulnar nerve lesions were repaired by a collagen nerve conduit or direct suture. Quantitative sensory hand function and sensory conduction studies by near-nerve technique, including tactile stimulation of mechanoreceptors, were followed for 2 years, and results were compared to noninjured hands. At both repair methods, touch thresholds at the finger tips recovered to 81 ± 3% and tactile gnosis only to 20 ± 4% (p < 0.001) of control. The sensory nerve action potentials (SNAPs) remained dispersed and areas recovered to 23 ± 2% and the amplitudes only to 7 ± 1% (P < 0.001). The areas of SNAPs after tactile stimulation recovered to 61 ± 11% and remained slowed. Touch sensation correlated with SNAP areas (p < 0.005) and was negatively related to the prolongation of tactile latencies (p < 0.01); tactile gnosis was not related to electrophysiological parameters. The recovered function of regenerated peripheral nerve fibers and reinnervated mechanoreceptors may differentially influence recovery of sensory modalities. Touch was affected by the number and function of regenerated fibers and mechanoreceptors. In contrast, tactile gnosis depends on the input and plasticity of the central nervous system (CNS), which may explain the absence of a direct relation between electrophysiological parameters and poor recovery. Dispersed maturation of sensory nerve fibers with desynchronized inputs to the CNS also contributes to the poor recovery of tactile gnosis. Ann Neurol 2017. Ann Neurol 2017;82:940-950. © 2017 American Neurological Association.
Kambiz, S; Brakkee, E M; Duraku, L S; Hovius, S E R; Ruigrok, T J H; Walbeehm, E T
2015-05-01
Mirror-image pain is a phenomenon in which unprovoked pain is detected on the uninjured contralateral side after unilateral nerve injury. Although it has been implicated that enhanced production of nerve growth factor (NGF) in the contralateral dorsal root ganglion is important in the development of mirror-image pain, it is not known if this is related to enhanced expression of nociceptive fibers in the contralateral skin. Mechanical and thermal sensitivity in the contralateral hind paw was measured at four different time points (5, 10, 20 and 30weeks) after transection and immediate end-to-end reconstruction of the sciatic nerve in rats. These findings were compared to the density of epidermal (peptidergic and non-peptidergic) nerve fibers on the contralateral hind paw. Mechanical hypersensitivity of the contralateral hind paw was observed at 10weeks PO, a time point in which both subgroups of epidermal nerve fibers reached control values. Thermal hypersensitivity was observed with simultaneous increase in the density of epidermal peptidergic nerve fibers of the contralateral hind paw at 20weeks PO. Both thermal sensitivity and the density of epidermal nerve fibers returned to control values 30weeks PO. We conclude that changes in skin innervation and sensitivity are present on the uninjured corresponding side in a transient pain model. Therefore, the contralateral side cannot serve as control. Moreover, the current study confirms the involvement of the peripheral nervous system in the development of mirror-image pain. Copyright © 2015 Elsevier Inc. All rights reserved.
A polarization measurement method for the quantification of retardation in optic nerve fiber layer
NASA Astrophysics Data System (ADS)
Fukuma, Yasufumi; Okazaki, Yoshio; Shioiri, Takashi; Iida, Yukio; Kikuta, Hisao; Ohnuma, Kazuhiko
2008-02-01
The thickness measurement of the optic nerve fiber layer is one of the most important evaluations for carrying out glaucoma diagnosis. Because the optic nerve fiber layer has birefringence, the thickness can be measured by illuminating eye optics with circular polarized light and analyzing the elliptical rate of the detected polarized light reflected from the optic nerve fiber layer. In this method, the scattering light from the background and the retardation caused by the cornea disturbs the precise measurement. If the Stokes vector expressing the whole state of polarization can be detected, we can eliminate numerically the influence of the background scattering and of the retardation caused by the cornea. Because the retardation process of the eye optics can be represented by a numerical equation using the retardation matrix of each component and also the nonpolarized background scattering light, it can be calculated by using the Stokes vector. We applied a polarization analysis system that can detect the Stokes vector onto the fundus camera. The polarization analysis system is constructed with a CCD area image sensor, a linear polarizing plate, a micro phase plate array, and a circularly polarized light illumination unit. With this simply constructed system, we can calculate the retardation caused only by the optic nerve fiber layer and it can predict the thickness of the optic nerve fiber layer. We report the method and the results graphically showing the retardation of the optic nerve fiber layer without the retardation of the cornea.
Complex regional pain syndrome type I (RSD): pathology of skeletal muscle and peripheral nerve.
van der Laan, L; ter Laak, H J; Gabreëls-Festen, A; Gabreëls, F; Goris, R J
1998-07-01
Reflex sympathetic dystrophy (RSD) (recently reclassified as complex regional pain syndrome type I) is a syndrome occurring in extremities and, when chronic, results in severe disability and untractable pain. RSD may be accompanied by neurologic symptoms even when there is no previous neurologic lesion. There is no consensus as to the pathogenic mechanism involved in RSD. To gain insight into the pathophysiology of RSD, we studied histopathology of skeletal muscle and peripheral nerve from patients with chronic RSD in a lower extremity. In eight patients with chronic RSD, an above-the-knee amputation was performed because of a nonfunctional limb. Specimens of sural nerves, tibial nerves, common peroneal nerves, gastrocnemius muscles, and soleus muscles were obtained from the amputated legs and analyzed by light and electron microscopy. In all patients, the affected leg showed similar neurologic symptoms such as spontaneous pain, hyperpathy, allodynia, paresis, and anesthesia dolorosa. The nerves showed no consistent abnormalities of myelinated fibers. In four patients, the C-fibers showed electron microscopic pathology. In all patients, the gastrocnemius and soleus muscle specimens showed a decrease of type I fibers, an increase of lipofuscin pigment, atrophic fibers, and severely thickened basal membrane layers of the capillaries. In chronic RSD, efferent nerve fibers were histologically unaffected; from afferent fibers, only C-fibers showed histopathologic abnormalities. Skeletal muscle showed a variety of histopathologic findings, which are similar to the histologic abnormalities found in muscles of patients with diabetes.
Response properties of the refractory auditory nerve fiber.
Miller, C A; Abbas, P J; Robinson, B K
2001-09-01
The refractory characteristics of auditory nerve fibers limit their ability to accurately encode temporal information. Therefore, they are relevant to the design of cochlear prostheses. It is also possible that the refractory property could be exploited by prosthetic devices to improve information transfer, as refractoriness may enhance the nerve's stochastic properties. Furthermore, refractory data are needed for the development of accurate computational models of auditory nerve fibers. We applied a two-pulse forward-masking paradigm to a feline model of the human auditory nerve to assess refractory properties of single fibers. Each fiber was driven to refractoriness by a single (masker) current pulse delivered intracochlearly. Properties of firing efficiency, latency, jitter, spike amplitude, and relative spread (a measure of dynamic range and stochasticity) were examined by exciting fibers with a second (probe) pulse and systematically varying the masker-probe interval (MPI). Responses to monophasic cathodic current pulses were analyzed. We estimated the mean absolute refractory period to be about 330 micros and the mean recovery time constant to be about 410 micros. A significant proportion of fibers (13 of 34) responded to the probe pulse with MPIs as short as 500 micros. Spike amplitude decreased with decreasing MPI, a finding relevant to the development of computational nerve-fiber models, interpretation of gross evoked potentials, and models of more central neural processing. A small mean decrement in spike jitter was noted at small MPI values. Some trends (such as spike latency-vs-MPI) varied across fibers, suggesting that sites of excitation varied across fibers. Relative spread was found to increase with decreasing MPI values, providing direct evidence that stochastic properties of fibers are altered under conditions of refractoriness.
Hömberg, Lisann; Eter, Nicole
2017-01-01
Purpose To compare the structure-function relationships between retinal nerve fiber layer thickness (RNFLT) and visual field defects measured either by standard automated perimetry (SAP) or by Pulsar perimetry (PP). Materials and Methods 263 eyes of 143 patients were prospectively included. Depending on the RNFLT, patients were assigned to the glaucoma group (group A: RNFL score 3–6) or the control group (group B: RNFL score 0–2). Structure-function relationships between RNFLT and mean sensitivity (MS) measured by SAP and PP were analyzed. Results Throughout the entire group, the MS assessed by PP and SAP correlated significantly with RNFLT in all sectors. In the glaucoma group, there was no significant difference between the correlations RNFL-SAP and RNFL-PP, whereas a significant difference was found in the control group. Conclusions In the control group, the correlation between structure and function based on the PP data was significantly stronger than that based on SAP. PMID:29119021
Implantable electrode for recording nerve signals in awake animals
NASA Technical Reports Server (NTRS)
Ninomiya, I.; Yonezawa, Y.; Wilson, M. F.
1976-01-01
An implantable electrode assembly consisting of collagen and metallic electrodes was constructed to measure simultaneously neural signals from the intact nerve and bioelectrical noises in awake animals. Mechanical artifacts, due to bodily movement, were negligibly small. The impedance of the collagen electrodes, measured in awake cats 6-7 days after implantation surgery, ranged from 39.8-11.5 k ohms at a frequency range of 20-5 kHz. Aortic nerve activity and renal nerve activity, measured in awake conditions using the collagen electrode, showed grouped activity synchronous with the cardiac cycle. Results indicate that most of the renal nerve activity was from postganglionic sympathetic fibers and was inhibited by the baroceptor reflex in the same cardiac cycle.
Bach, M; Hoffmann, M B
2018-06-01
The data presented in this article are related to the research article entitled "Retinal conduction speed analysis reveals different origins of the P50 and N95 components of the (multifocal) pattern electroretinogram" (Bach et al., 2018) [1]. That analysis required the individual length data of the retinal nerve fibers (from ganglion cell body to optic nerve head, depending on the position of the ganglion cell body). Jansonius et al. (2009, 2012) [2,3] mathematically modeled the path morphology of the human retinal nerve fibers. We here present a working implementation with source code (for the free and open-source programming environment "R") of the Jansonius' formulas, including all errata. One file defines Jansonius et al.'s "phi" function. This function allows quantitative modelling of paths (and any measures derived from them) of the retinal nerve fibers. As a working demonstration, a second file contains a graph which plots samples of nerve fibers. The included R code runs in base R without the need of any additional packages.
High aspect ratio template and method for producing same for central and peripheral nerve repair
NASA Technical Reports Server (NTRS)
Sakamoto, Jeff S. (Inventor); Chan, Christina (Inventor); Tuszynski, Mark Henry (Inventor); Mehrotra, Sumit (Inventor); Gros, Thomas (Inventor)
2011-01-01
Millimeter to nano-scale structures manufactured using a multi-component polymer fiber matrix are disclosed. The use of dissimilar polymers allows the selective dissolution of the polymers at various stages of the manufacturing process. In one application, biocompatible matrixes may be formed with long pore length and small pore size. The manufacturing process begins with a first polymer fiber arranged in a matrix formed by a second polymer fiber. End caps may be attached to provide structural support and the polymer fiber matrix selectively dissolved away leaving only the long polymer fibers. These may be exposed to another product, such as a biocompatible gel to form a biocompatible matrix. The polymer fibers may then be selectively dissolved leaving only a biocompatible gel scaffold with the pores formed by the dissolved polymer fibers. The scaffolds may be used in, among other applications, the repair of central and peripheral nerves. Scaffolds for the repair of peripheral nerves may include a reservoir for the sustained release of nerve growth factor. The scaffolds may also include a multifunctional polyelectrolyte layer for the sustained release of nerve growth factor and enhance biocompatibility.
Horn, Folkert K; Mardin, Christian Y; Laemmer, Robert; Baleanu, Delia; Juenemann, Anselm M; Kruse, Friedrich E; Tornow, Ralf P
2009-05-01
To study the correlation between local perimetric field defects and glaucoma-induced thickness reduction of the nerve layer measured in the peripapillary area with scanning laser polarimetry (SLP) and spectral domain optical coherence tomography (SOCT) and to compare the results with those of a theoretical model. The thickness of the retinal nerve fiber layer was determined in 32 sectors (11.25 degrees each) by using SLP with variable cornea compensation (GDxVCC; Laser Diagnostics, San Diego, CA) and the newly introduced high-resolution SOCT (Spectralis; Heidelberg Engineering, Heidelberg, Germany). Eighty-eight healthy subjects served as control subjects, to determine the thickness deviation in patients with glaucoma. The relationship between glaucomatous nerve fiber reduction and visual field losses was calculated in six nerve fiber bundle-related areas. Sixty-four patients at different stages of open-angle glaucoma and 26 patients with ocular hypertension underwent perimetry (Octopus G1; Haag-Streit, Köniz, Switzerland) and measurements with the two morphometric techniques. Sector-shaped analyses between local perimetric losses and reduction of the retinal nerve fiber layer thickness showed a significant association for corresponding areas except for the central visual field in SLP. Correlation coefficients were highest in the area of the nasal inferior visual field (SOCT, -0.81; SLP, -0.57). A linear model describes the association between structural and functional damage. Localized perimetric defects can be explained by reduced nerve fiber layer thickness. The data indicate that the present SOCT is useful for determining the functional-structural relationship in peripapillary areas and that association between perimetric defects and corresponding nerve fiber losses is stronger for SOCT than for the present SLP. (ClinicalTrials.gov number, NCT00494923.).
Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis
Díaz-Balzac, Carlos A.; Lázaro-Peña, María I.; Vázquez-Figueroa, Lionel D.; Díaz-Balzac, Roberto J.; García-Arrarás, José E.
2016-01-01
The Echinodermata comprise an interesting branch in the phylogenetic tree of deuterostomes. Their radial symmetry which is reflected in their nervous system anatomy makes them a target of interest in the study of nervous system evolution. Until recently, the study of the echinoderm nervous system has been hindered by a shortage of neuronal markers. However, in recent years several markers of neuronal and fiber subpopulations have been described. These have been used to identify subpopulations of neurons and fibers, but an integrative study of the anatomical relationship of these subpopulations is wanting. We have now used eight commercial antibodies, together with three antibodies produced by our group to provide a comprehensive and integrated description and new details of the echinoderm neuroanatomy using the holothurian Holothuria glaberrima (Selenka, 1867) as our model system. Immunoreactivity of the markers used showed: (1) specific labeling patterns by markers in the radial nerve cords, which suggest the presence of specific nerve tracts in holothurians. (2) Nerves directly innervate most muscle fibers in the longitudinal muscles. (3) Similar to other deuterostomes (mainly vertebrates), their enteric nervous system is composed of a large and diverse repertoire of neurons and fiber phenotypes. Our results provide a first blueprint of the anatomical organization of cells and fibers that form the holothurian neural circuitry, and highlight the fact that the echinoderm nervous system shows unexpected diversity in cell and fiber types and their distribution in both central and peripheral nervous components. PMID:26987052
Recovery of C-fiber-induced extravasation following peripheral nerve injury in the rat.
Bester, H; Allchorne, A J; Woolf, C J
1998-12-01
Peripheral nerve injury leads to substantial alterations in injured sensory neurons. These include cell death, phenotypic modifications, and regeneration. Primary sensory neurons have recently been shown not to die until a time beyond 4 months following a nerve crush or ligation and this loss is, moreover, limited to cells with unmyelinated axons, the C-fibers. The late loss of C-fibers may be due to a lack of target reinnervation during the regenerative phase. In order to investigate this, we have used a particular peripheral function, unique to C-fibers, as a measure of peripheral reinnervation: an increase in capillary permeability on antidromic activation of C-fibers, i.e., neurogenic extravasation. This was investigated in rats that had received a nerve crush injury 1 to 50 weeks earlier. Some recovery of the capacity of C-fibers to generate extravasation was detected at 8-10 weeks, which increased further at 12-14 weeks, and then plateaued at this level with no further recovery at 30 or 50 weeks. In intact and damaged sciatic nerves, A beta-fibers never induced extravasation. These findings are compatible with the hypothesis that those C-fibers which make it back to their peripheral targets do not subsequently die and those that do not, may die. Copyright 1998 Academic Press.
Kucukevcilioglu, Murat; Ayyildiz, Onder; Aykas, Seckin; Gokce, Gokcen; Koylu, Mehmet Talay; Ozgonul, Cem; Ozge, Gokhan; Mumcuoglu, Tarkan; Yumusak, Erhan
2017-02-01
To investigate retinal nerve fiber layer thickness (RNFL-T) and peripapillary choroidal thickness (PC-T) in non-glaucomatous optic atrophy (OA) patients in comparison with unaffected and control eyes, furthermore, to compare thickness profiles with unilateral pseudoexfoliative advanced glaucoma. Thirty-three eyes with OA (Group A), 33 unaffected fellow eyes (Group B), 25 right eyes of 25 control subjects (Group C), and 15 eyes with advanced glaucoma (Group D) were enrolled. RNFL-T was measured in six regions by spectral-domain optical coherence tomography. Enhanced depth imaging optical coherence tomography was obtained to evaluate PC-T in corresponding regions. RNFL-T was significantly lower in Group A than in Groups B and C globally and at all peripapillary regions (all p < 0.001). P-CT in Group A was significantly lower globally (p = 0.03) and in three regions (temporal, p = 0.001; temporal-superior, p = 0.01; and nasal-inferior, p = 0.037) versus Group C. However, it was significantly thinner than in Group B in all regions (temporal, p = 0.02; temporal-superior, p = 0.013; nasal-superior, p = 0.044; nasal, p = 0.02; nasal-inferior, p < 0.001; and temporal-inferior, p < 0.001) and globally (p < 0.001). In Group A RNFL-T (thicker superiorly and inferiorly; thinner temporally and nasally) and PC-T (superior > temporal > nasal > inferior) profiles were almost identical to that in unaffected fellow eyes and control eyes. However, Group D showed different patterns with less regional differences in RNFL-T, and the greatest value of PC-T in nasal quadrant. Besides retinal nerve fiber layer thinning, non-glaucomatous OA is associated with choroidal thinning. The RNFL-T and PC-T profiles in advanced glaucoma eyes differed from the common patterns seen among OA eyes, unaffected fellow eyes, and control eyes.
Changes in rabbit corneal innervation induced by the topical application of benzalkonium chloride.
Chen, Wensheng; Zhang, Zhenhao; Hu, Jiaoyue; Xie, Hui; Pan, Juxin; Dong, Nuo; Liu, Zuguo
2013-12-01
To investigate the effect of benzalkonium chloride (BAK) on corneal nerves. Fifty-four adult New Zealand Albino rabbits were randomly divided into 3 groups. BAK at concentrations of 0.005%, 0.01%, or 0.02% was applied once daily to 1 eye of each rabbit for 9 days. The contralateral untreated eyes were used as controls. Corneal mechanical sensitivity, aqueous tear production, tear break-up time (BUT), fluorescein, and Rose Bengal staining scores were compared with those of control values on days 3, 6, and 9. Corneal whole mounts were immunostained with a specific antitubulin βIII antibody to label nerve fibers. Epithelial superficial nerve terminal, subbasal, and stromal nerve fiber densities were quantified. The structure of the central cornea was examined by means of in vivo confocal microscopy on day 9. The topical application of BAK resulted in lower corneal sensitivity and higher Rose Bengal staining scores on day 3, whereas there were no significant changes in the BUT, Schirmer, and corneal fluorescein scores. Decreased nerve densities in superficial and subbasal layers were observed in BAK-treated eyes on days 3 and 6, respectively. The eyes treated with 0.02% BAK exhibited significantly reduced Schirmer scores, BUT, and stromal nerve fiber density, and increased fluorescein staining scores on day 9. Corneal superficial epithelial cell size was significantly larger in all BAK-treated eyes compared with that in control eyes. The topical application of BAK can quickly cause corneal hypoesthesia without tear deficiency. Changes in corneal innervation significantly correlate with BAK-induced ocular surface changes.
Renal hemodynamic effects of activation of specific renal sympathetic nerve fiber groups.
DiBona, G F; Sawin, L L
1999-02-01
To examine the effect of activation of a unique population of renal sympathetic nerve fibers on renal blood flow (RBF) dynamics, anesthetized rats were instrumented with a renal sympathetic nerve activity (RSNA) recording electrode and an electromagnetic flow probe on the ipsilateral renal artery. Peripheral thermal receptor stimulation (external heat) was used to activate a unique population of renal sympathetic nerve fibers and to increase total RSNA. Total RSNA was reflexly increased to the same degree with somatic receptor stimulation (tail compression). Arterial pressure and heart rate were increased by both stimuli. Total RSNA was increased to the same degree by both stimuli but external heat produced a greater renal vasoconstrictor response than tail compression. Whereas both stimuli increased spectral density power of RSNA at both cardiac and respiratory frequencies, modulation of RBF variability by fluctuations of RSNA was small at these frequencies, with values for the normalized transfer gain being approximately 0.1 at >0.5 Hz. During tail compression coherent oscillations of RSNA and RBF were found at 0.3-0.4 Hz with normalized transfer gain of 0.33 +/- 0.02. During external heat coherent oscillations of RSNA and RBF were found at both 0.2 and 0.3-0.4 Hz with normalized transfer gains of 0. 63 +/- 0.05 at 0.2 Hz and 0.53 +/- 0.04 to 0.36 +/- 0.02 at 0.3-0.4 Hz. Renal denervation eliminated the oscillations in RBF at both 0.2 and 0.3-0.4 Hz. These findings indicate that despite similar increases in total RSNA, external heat results in a greater renal vasoconstrictor response than tail compression due to the activation of a unique population of renal sympathetic nerve fibers with different frequency-response characteristics of the renal vasculature.
NASA Astrophysics Data System (ADS)
Hernández-Cortés, P.; Toledo-Romero, M. A.; Delgado, M.; Sánchez-González, C. E.; Martin, F.; Galindo-Moreno, P.; O'Valle, F.
2014-08-01
Objective. Attempts have been made to improve nerve conduits in peripheral nerve reconstruction. We investigated the potential therapeutic effect of a vasoactive intestinal peptide (VIP), a neuropeptide with neuroprotective, trophic and developmental regulatory actions, in peripheral nerve regeneration in a severe model of nerve injury that was repaired with nerve conduits. Approach. The sciatic nerve of each male Wistar rat was transected unilaterally at 10 mm and then repaired with Dl-lactic-ɛ-caprolactone conduits. The rats were treated locally with saline, with the VIP, with adipose-derived mesenchymal stem cells (ASCs) or with ASCs that were transduced with the VIP-expressing lentivirus. The rats with the transected nerve, with no repairs, were used as untreated controls. At 12 weeks post-surgery, we assessed their limb function by measuring the ankle stance angle and the percentage of their muscle mass reduction, and we evaluated the histopathology, immunohistochemistry and morphometry of the myelinated fibers. Main results. The rats that received a single injection of VIP-expressing ASCs showed a significant functional recovery in the ankle stance angle (p = 0.049) and a higher number of myelinated fibers in the middle and distal segments of the operated nerve versus the other groups (p = 0.046). Significance. These results suggest that utilization of a cellular substrate, plus a VIP source, is a promising method for enhancing nerve regeneration using Dl-lactic-ɛ-caprolactone conduits and that this method represents a potential useful clinical approach to repairing peripheral nerve damage.
Li, Duo-Yi; Meng, Lan; Ji, Nan; Luo, Fang
2015-01-01
Background: Pulsed radiofrequency (PRF) application to the dorsal root ganglia can reduce neuropathic pain (NP) in animal models, but the effect of PRF on damaged peripheral nerves has not been examined. We investigated the effect of PRF to the rat sciatic nerve (SN) on pain-related behavior and SN ultrastructure following chronic constriction injury (CCI). Methods: The analgesic effect was measured by hindpaw mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). Twenty rats with NP induced by ligating the common SN were then randomly divided into a PRF treatment group and a sham group. The contralateral SN served as a control. The MWT and TWL were determined again 2, 4, 6, 8, 10, 12, and 14 days after the PRF or sham treatment. On day 14, ipsilateral and contralateral common SNs were excised and examined by electron microscopy. Results: Ipsilateral MWT was significantly reduced and TWL significantly shorter compared to the contralateral side 14 days after CCI (both P = 0.000). In the PRF group, MWT was significantly higher and TWL significantly longer 14 days after the PRF treatment compared to before PRF treatment (both P = 0.000), while no such difference was observed in the sham group (P > 0.05). Electron microscopy revealed extensive demyelination and collagen fiber formation in the ipsilateral SN of sham-treated rats but sparse demyelination and some nerve fiber regrowth in the PRF treatment group. Conclusions: Hyperalgesia is relieved, and ultrastructural damage ameliorated after direct PRF treatment to the SN in the CCI rat model of NP. PMID:25673460
Frahm, Ken Steffen; Hennings, Kristian; Vera-Portocarrero, Louis; Wacnik, Paul W; Mørch, Carsten Dahl
2016-08-01
Peripheral nerve field stimulation (PNFS) is a potential treatment for chronic low-back pain. Pain relief using PNFS is dependent on activation of non-nociceptive Aβ-fibers. However, PNFS may also activate muscles, causing twitches and discomfort. In this study, we developed a mathematical model, to investigate the activation of sensory and motor nerves, as well as direct muscle fiber activation. The extracellular field was estimated using a finite element model based on the geometry of CT scanned lumbar vertebrae. The electrode was modeled as being implanted to a depth of 10-15 mm. Three implant directions were modeled; horizontally, vertically, and diagonally. Both single electrode and "between-lead" stimulation between contralateral electrodes were modeled. The extracellular field was combined with models of sensory Aβ-nerves, motor neurons and muscle fibers to estimate their activation thresholds. The model showed that sensory Aβ fibers could be activated with thresholds down to 0.563 V, and the lowest threshold for motor nerve activation was 7.19 V using between-lead stimulation with the cathode located closest to the nerves. All thresholds for direct muscle activation were above 500 V. The results suggest that direct muscle activation does not occur during PNFS, and concomitant motor and sensory nerve fiber activation are only likely to occur when using between-lead configuration. Thus, it may be relevant to investigate the location of the innervation zone of the low-back muscles prior to electrode implantation to avoid muscle activation. © 2016 International Neuromodulation Society.
Research notes : can bridges have nerves? new technology developing for 'smart' infrastructure.
DOT National Transportation Integrated Search
1998-05-21
In the nerve system, the optical fibers are the information carrier and along their length are the fiber sensors, or nerve endings, which are used to sense the environment. They can be readily incorporated into new construction or retrofitted into ex...
Morphological and neurochemical differences in peptidergic nerve fibers of the mouse vagina.
Barry, Christine M; Ji, Esther; Sharma, Harman; Beukes, Lara; Vilimas, Patricia I; DeGraaf, Yvette C; Matusica, Dusan; Haberberger, Rainer V
2017-07-01
The vagina is innervated by a complex arrangement of sensory, sympathetic, and parasympathetic nerve fibers that contain classical transmitters plus an array of neuropeptides and enzymes known to regulate diverse processes including blood flow and nociception. The neurochemical characteristics and distributions of peptide-containing nerves in the mouse vagina are unknown. This study used multiple labeling immunohistochemistry, confocal maging and analysis to investigate the presence and colocalization of the peptides vasoactive intestinal polypeptide (VIP), calcitonin-gene related peptide (CGRP), substance P (SP), neuropeptide tyrosine (NPY), and the nitric oxide synthesizing enzyme neuronal nitric oxide synthase (nNOS) in nerve fibers of the murine vaginal wall. We compared cervical and vulvar areas of the vagina in young nullipara and older multipara C57Bl/6 mice, and identified differences including that small ganglia were restricted to cervical segments, epithelial fibers were mainly present in vulvar segments and most nerve fibers were found in the lamina propria of the cervical region of the vagina, where a higher number of fibers containing immunoreactivity for VIP, CGRP, SP, or nNOS were found. Two populations of VIP-containing fibers were identified: fibers containing CGRP and fibers containing VIP but not CGRP. Differences between young and older mice were present in multiple layers of the vaginal wall, with older mice showing overall loss of innervation of epithelium of the proximal vagina and reduced proportions of VIP, CGRP, and SP containing nerve fibers in the distal epithelium. The distal vagina also showed increased vascularization and perivascular fibers containing NPY. Immunolabeling of ganglia associated with the vagina indicated the likely origin of some peptidergic fibers. Our results reveal regional differences and age- or parity-related changes in innervation of the mouse vagina, effecting the distribution of neuropeptides with diverse roles in function of the female genital tract. © 2017 Wiley Periodicals, Inc.
Lee, Haeng-Jin; Kang, Tae-Seen; Kwak, Baek-Soo; Jo, Young-Joon; Kim, Jung-Yeul
2017-08-01
To evaluate the effects of panretinal photocoagulation on spectral domain optical coherence tomography measurements in diabetic retinopathy by comparing the thicknesses of the central macula, retinal nerve fiber layer, and ganglion cell layer, we used a Cirrus HD OCT® (Carl Zeiss Meditec, Dublin, CA, USA) in normal and diabetic retinopathy cohorts. We analyzed patients who visited our retinal clinic between May 2013 and July 2014. The patients were classified into four groups: normal (Group A), diabetes without diabetic retinopathy (Group B), severe nonproliferative or proliferative diabetic retinopathy (Group C), and at least 3 years after panretinal photocoagulation treatment (Group D). The mean thicknesses of the macula, retinal nerve fiber layer, and ganglion cell layer in each group were compared by measuring a macular cube 512 × 128 scan and an optic disc cube 200 × 200 scan twice. In total, 154 patients were enrolled. The mean thickness of the central macula in groups A to D was 257.2, 256.8, 257.4, and 255.6 µm, respectively, and did not differ significantly. The mean thickness of the RNFL in group A to D was 96.8, 96.5, 97.2, and 92.8 µm, respectively, and was significantly lower in group D (decreased in the inferior, superior, and nasal sectors, but increased in the temporal). The mean thickness of the ganglion cell layer was also significantly lower in group D (A, 84.5 µm; B, 84.4 µm; C, 82.5 µm; D, 78.5 µm). The mean thicknesses of the retinal nerve fiber and ganglion cell layers were decreased significantly in eyes with diabetic eye disease treated with panretinal photocoagulation compared to normal or eyes with diabetic eye disease that had not been laser-treated. Laser treatment might have altered the thickness of the inner layer of the retina, and such changes should be considered in diabetic retinopathy patients after panretinal photocoagulation treatment.
Choi, Samjin; Choi, Hyuk Jai; Cheong, Youjin; Lim, Young-Jin; Park, Hun-Kuk
2013-01-01
This study investigated the reversible effects of pulsed radiofrequency (PRF) treatment at 42°C on the ultrastructural and biological changes in nerve and collagen fibers in the progression of neuropathic pain after rat sciatic nerve injury. Assessments of morphological changes in the extracellular matrices by atomic force microscopy and hematoxylin-eosin, Masson’s trichrome and picrosirius-red staining as well as the expressions of two fibril-forming collagens, types-I and -III, and two inflammatory cytokines, TNF-α and IL-6, were evaluated on day 30 after RF exposure. There were four groups for different RF thermal treatments: no treatment, no current, PRF, and continuous RF (CRF). An RF procedure similar to that used in human clinical trials was used in this study. The CRF treatment at 82°C led to neural and collagen damage by the permanent blockage of sensory nociceptors. The PRF treatment led to excellent performance and high expandability compared to CRF, with effects including slight damage and swelling of myelinated axons, a slightly decreased amount of collagen fibers, swelling of collagen fibril diameters, decreased immunoreactivity of collagen types-I and -III, presence of newly synthesized collagen, and recovery of inflammatory protein immunoreactivity. These evidence-based findings suggest that PRF-based pain relief is responsible for the temporary blockage of nerve signals as well as the preferential destruction of pain-related principal sensory fibers like the Aδ and C fibers. This suggestion can be supported by the interaction between the PRF-induced electromagnetic field and cell membranes; therefore, PRF treatment provides pain relief while allowing retention of some tactile sensation. PMID:24066083
Kotowski, Jacek; Wollstein, Gadi; Ishikawa, Hiroshi; Schuman, Joel S
2014-01-01
Because glaucomatous damage is irreversible early detection of structural changes in the optic nerve head and retinal nerve fiber layer is imperative for timely diagnosis of glaucoma and monitoring of its progression. Significant improvements in ocular imaging have been made in recent years. Imaging techniques such as optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy rely on different properties of light to provide objective structural assessment of the optic nerve head, retinal nerve fiber layer and macula. In this review, we discuss the capabilities of these imaging modalities pertinent for diagnosis of glaucoma and detection of progressive glaucomatous damage and provide a review of the current knowledge on the clinical performance of these technologies. Copyright © 2014 Elsevier Inc. All rights reserved.
Effects of laser therapy in peripheral nerve regeneration
Sene, Giovana Almeida Leitão; Sousa, Fausto Fernandes de Almeida; Fazan, Valéria Sassoli; Barbieri, Cláudio Henrique
2013-01-01
OBJECTIVE: The influence of dose of low power lasertherapy (AsGaAl, 830 nm) on the regeneration of the fibular nerve of rats after a crush injury was evaluated by means of the functional gait analysis and histomorphometric parameters. METHODS: Controlled crush injury of the right common fibular nerve, immediately followed by increasing doses (G1: no irradiation; G2: simulated; G3: 5 J/cm2; G4: 10 J/cm2; G5: 20 J/cm2) laser irradiation directly on the lesion site for 21 consecutive days. Functional gait analysis was carried out at weekly intervals by measuring the peroneal/fibular functional index (PFI). The animals were killed on the 21st postoperative day for removal of the fibular nerve, which was prepared for the histomorphometric analysis. RESULTS: The PFI progressively increased during the observation period in all groups, without significant differences between them (p>0.05). The transverse nerve area was significantly wider in group 2 than in groups 3 and 4, while fiber density was significantly greater in group 4 than in all remaining groups. CONCLUSION: The low power AsGaAl laser irradiation did not accelerate nerve recovery with any of the doses used. Level of Evidence I, Therapeutic Studies Investigating the Results of Treatment. PMID:24453680
Colletti, V; Fiorino, F G
1993-11-01
To facilitate identification and preservation of the auditory nerve during cerebello-pontine angle surgery, bipolar recording of cochlear nerve compound action potentials (CNAPs) was performed. Two silver wires insulated with teflon up to the exposed ends were utilized as electrodes. They were twisted together, the distance between the two tips being 1 mm or less. Rarefaction polarity clicks (31/s) ranging from the psychoacoustical threshold to 120 dB pe SPL were used as stimuli. The investigation was performed in three groups of patients. The first group consisted of 9 patients submitted to vestibular neurectomy and 4 patients operated on by microvascular decompression of the eighth nerve. The second group comprised 8 patients with acoustic tumors smaller than 2 mm and serviceable hearing. Postoperative audiometric results in the subjects in the second group were compared with those obtained in well-matched homogeneous controls consisting of patients with acoustic neuroma operated on without the aid of CNAP recording. Bipolar recording from the eighth nerve was extremely selective, a good response being obtained only when positioning the electrode on the cochlear portion of the eighth nerve. During removal of the acoustic neuroma, repeated bipolar probing of the tumor and eighth nerve facilitated the task of distinguishing the cochlear nerve from other nervous structures and from the tumor, and contributed to preserving hearing in most patients.
Fiber diameter distributions in the chinchilla's ampullary nerves
NASA Technical Reports Server (NTRS)
Hoffman, Larry F.; Honrubia, Vicente
2002-01-01
A morphometric study of the chinchilla's ampullary nerves was conducted to produce an unbiased accounting of the diameter distribution of their constituent fibers. Diameter analyses were determined from 1 microm plastic-embedded nerve sections taken at a plane immediately proximal to the sensory epithelium. We found these nerves to be composed of 2094+/-573 fibers, having diameters that ranged from 0.5 to 8 microm. The distributions of diameters were positively skewed, where approximately 75% of the fibers were found to have diameters less than 3.5 microm. An analysis of the spatial distribution of diameters within the nerve section revealed that the lateralmost areas of the nerve contained larger fractions of fibers within the smallest diameter quintiles, and the central area harbored greater proportions of the larger diameter quintiles. However, significant fractions of all quintiles were found in all areas. These data were integrated with available data of Fernandez et al. (1998) to produce diameter estimates of calyx, dimorphic, and bouton morphology subpopulations. In view of a general relationship between diameter, innervation locus, and an afferent's physiologic characteristics, these data provide the basis for developing a perspective for the in situ distribution of afferent response dynamics.
Redd, P E; Byers, M R
1994-05-01
Junctional epithelium (JE) is a rapidly proliferating tissue that connects the gum to the tooth, that provides a free surface for bidirectional movement of substances between the body and the oral cavity, and that participates in defense against bacterial infection. It is innervated by numerous sensory nerve fibers that are immunoreactive (IR) for neuropeptides such as calcitonin gene-related peptide (CGRP), and for low affinity nerve growth factor receptor (p75-NGFR). Basal epithelial cells of the JE and of adjacent sulcular epithelium also have intense p75-NGFR-IR. In the present study we removed a wedge of the free gingiva and JE from the anterior side of the maxillary first molar of adult rats, and then studied the return of nerve fibers during tissue regeneration from 1-63 days after gingivectomy. The nerve fibers entered the adjacent healing sulcular epithelium before innervating the new JE, in both cases prior to return of epithelial cell p75-NGFR-IR. The regenerating nerve fibers completely bypassed the zone of epithelial down-growth (long junctional epithelium, LJE) that was briefly present along the tooth from 1-3 weeks after injury. The LJE did not have p75-NGFR-IR and was gradually replaced by a modified thicker regenerated junctional epithelium (RJE). The RJE was attached along the injured root surface, had numerous nerves in basal layers, and it had begun to regain p75-NGFR-IR staining of basal epithelial cells by 22 d. Regenerating nerve fibers at 6-10 d had unusually weak CGRP-IR and greatly increased p75-NGFR-IR. Both nerve stains had returned to normal by 3-6 weeks. The intense p75-NGFR-IR of regenerating nerves was found on both axonal and Schwann cell membranes using electron microscopic immunocytochemistry. In both the normal and regenerating JE, nerve fibers were rare in the attachment layers next to the anterior side of the maxillary first molar, compared to well-innervated basal layers. The complete avoidance of LJE by regenerating nerve fibers and its lack of p75-NGFR-IR suggest that its functions do not require innervation and that it does not make neurotrophic growth factors.
Eltony, Sohair A; Abdelhameed, Sally Y
2017-04-01
Abnormal vision has been reported by 3% of patients treated with sildenafil citrate (Viagra). Although many men use Viagra for an extended period for treatment of erectile dysfunction, the implications of the long term-daily use of it on the retina and optic nerve are unclear. To investigate the effect of chronic daily use of sildenafil citrate in a dose equivalent to men preferred therapeutic dose on the histology of the retina and optic nerve of adult male rat. Eighteen adult male Wistar rats were equally divided into three groups. Group I: control. Group II: treated with sildenafil citrate orally (10mg/kg/day) for 8 weeks. Group III (withdrawal): treated as group II and then left for 4 weeks without treatment. Specimens from the retina and optic nerve were processed for light and electron microscopy. In sildenafil citrate treated group, the retina and optic nerve revealed vacuolations and congested blood capillaries with apoptotic endothelial and pericytic cells, and thickened basal lamina. Caspase-3 (apoptotic marker) and CD31 (endothelial marker) expression increased. Glial cells revealed morphological changes: Müller cells lost their processes, activated microglia, astrocytic clasmatodendrosis, degenerated oligodendrocytes surrounded by disintegrated myelin sheathes of the optic nerve fibers. The retina and optic nerve of the withdrawal group revealed less vacuolations and congestion, and partial recovery of the glial cells. Chronic treatment with sildenafil citrate (Viagra) caused toxic effect on the structure of the retina and optic nerve of the rat. Partial recovery was observed after drug withdrawal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rosso, Marcelie Priscila de Oliveira; Rosa Júnior, Geraldo Marco; Buchaim, Daniela Vieira; German, Iris Jasmin Santos; Pomini, Karina Torres; de Souza, Rafael Gomes; Pereira, Mizael; Favaretto Júnior, Idvaldo Aparecido; Bueno, Cleuber Rodrigo de Souza; Gonçalves, Jéssica Barbosa de Oliveira; Ferreira Júnior, Rui Seabra; Barraviera, Benedito; Andreo, Jesus Carlos; Buchaim, Rogério Leone
2017-10-01
This research evaluated the influence of Photobiomodulation Therapy (PBMT) on lesions of the facial nerve repaired with the end-to-side technique or coaptation with a new heterologous fibrin sealant. Thirty-two Wistar rats were separated into 5 groups: Control group (CG), where the buccal branch of the facial nerve was collected; Experimental Suture Group (ESG) and Experimental Fibrin Group (EFG), in which the buccal branch was end-to-side sutured to the zygomatic branch on the right side of the face or coaptated with fibrin sealant on the left side; Experimental Suture Laser Group (ESLG) and Experimental Fibrin Laser Group (EFLG), in which the same procedures were performed as the ESG and EFG, associated with PBMT (wavelength of 830nm, energy density 6.2J/cm 2 , power output 30mW, beam area of 0.116cm 2 , power density 0.26W/cm 2 , total energy per session 2.16J, cumulative dose of 34.56J). The laser was applied for 24s/site at 3 points on the skin's surface, for a total application time of 72s, performed immediately after surgery and 3 times a week for 5weeks. A statistically significant difference was observed in the fiber nerve area between the EFG and EFLG (57.49±3.13 and 62.52±3.56μm 2 , respectively). For the area of the axon, fiber diameter, axon diameter, myelin sheath area and myelin sheath thickness no statistically significant differences were found (p<0.05). The functional recovery of whisker movement occurred faster in the ESLG and EFLG, which were associated with PBMT, with results closer to the CG. Therefore, PBMT accelerated morphological and functional nerve repair in both techniques. Copyright © 2017. Published by Elsevier B.V.
Ara, Mirian; Ferreras, Antonio; Pajarin, Ana B; Calvo, Pilar; Figus, Michele; Frezzotti, Paolo
2015-01-01
To assess the intrasession repeatability and intersession reproducibility of peripapillary retinal nerve fiber layer (RNFL) thickness parameters measured by scanning laser polarimetry (SLP) with enhanced corneal compensation (ECC) in healthy and glaucomatous eyes. One randomly selected eye of 82 healthy individuals and 60 glaucoma subjects was evaluated. Three scans were acquired during the first visit to evaluate intravisit repeatability. A different operator obtained two additional scans within 2 months after the first session to determine intervisit reproducibility. The intraclass correlation coefficient (ICC), coefficient of variation (COV), and test-retest variability (TRT) were calculated for all SLP parameters in both groups. ICCs ranged from 0.920 to 0.982 for intravisit measurements and from 0.910 to 0.978 for intervisit measurements. The temporal-superior-nasal-inferior-temporal (TSNIT) average was the highest (0.967 and 0.946) in normal eyes, while nerve fiber indicator (NFI; 0.982) and inferior average (0.978) yielded the best ICC in glaucomatous eyes for intravisit and intervisit measurements, respectively. All COVs were under 10% in both groups, except NFI. TSNIT average had the lowest COV (2.43%) in either type of measurement. Intervisit TRT ranged from 6.48 to 12.84. The reproducibility of peripapillary RNFL measurements obtained with SLP-ECC was excellent, indicating that SLP-ECC is sufficiently accurate for monitoring glaucoma progression.
NON-INVASIVE EVALUATION OF NERVE CONDUCTION IN SMALL DIAMETER FIBERS IN THE RAT.
Zotova, Elena G; Arezzo, Joseph C
2013-01-01
A novel non-invasive technique was applied to measure velocity within slow conducting axons in the distal extreme of the sciatic nerve (i.e., digital nerve) in a rat model. The technique is based on the extraction of rectified multiple unit activity (MUA) from in vivo whole nerve compound responses. This method reliably identifies compound action potentials in thinly myelinated fibers conducting at a range of 9-18 m/s (Aδ axons), as well as in a subgroup of unmylinated C fibers conducting at approximately 1-2 m/s. The sensitivity of the method to C-fiber conduction was confirmed by the progressive decrement of the responses in the 1-2 m/s range over a 20-day period following the topical application of capsaicin (ANOVA p <0.03). Increasing the frequency of applied repetitive stimulation over a range of 0.75 Hz to 6.0 Hz produced slowing of conduction and a significant decrease in the magnitude of the compound C-fiber response (ANOVA p <0.01). This technique offers a unique opportunity for the non-invasive, repeatable, and quantitative assessment of velocity in the subsets of Aδ and C fibers in parallel with evaluation of fast nerve conduction.
Zhang, C; Zhang, G; Rong, W; Wang, A; Wu, C; Huo, X
2015-04-16
Injury potential, which refers to a direct current voltage between intact and injured nerve ends, is mainly caused by injury-induced Ca2+ influx. Our previous studies revealed that injury potential increased with the onset and severity of spinal cord injury (SCI), and an application of applied electric field stimulation (EFS) with the cathode distal to the lesion could delay and attenuate injury potential formation. As Ca2+ influx is also considered as a major trigger for secondary injury after SCI, we hypothesize that EFS would protect an injured spinal cord from secondary injury and consequently improve functional and pathological outcomes. In this study, rats were divided into three groups: (1) sham group, laminectomy only; (2) control group, subjected to SCI only; and (3) EFS group, received EFS immediately post-injury with the injury potential modulated to 0±0.5 mV by EFS. Functional recovery of the hind limbs was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. Results revealed that EFS-treated rats exhibited significantly better locomotor function recovery. Luxol fast blue staining was performed to assess the spared myelin area. Immunofluorescence was used to observe the number of myelinated nerve fibers. Ultrastructural analysis was performed to evaluate the size of myelinated nerve fibers. Findings showed that the EFS group rats exhibited significantly less myelin loss and had larger and more myelinated nerve fibers than the control group rats in dorsal corticospinal tract (dCST) 8 weeks after SCI. Furthermore, we found that EFS inhibited the activation of calpain and caspase-3, as well as the expression of Bax, as detected by Western blot analysis. Moreover, EFS decreased cellular apoptosis, as measured by TUNEL, within 4 weeks post-injury. Results suggest that early EFS could significantly reduce spinal cord degeneration and improve functional and historical recovery. Furthermore, these neuroprotective effects may be related to the inhibition of secondary apoptotic responses after SCI. These findings support further investigation of the future clinical application of EFS after SCI. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Neural control of renal function.
Johns, Edward J; Kopp, Ulla C; DiBona, Gerald F
2011-04-01
The kidney is innervated with efferent sympathetic nerve fibers that directly contact the vasculature, the renal tubules, and the juxtaglomerular granular cells. Via specific adrenoceptors, increased efferent renal sympathetic nerve activity decreases renal blood flow and glomerular filtration rate, increases renal tubular sodium and water reabsorption, and increases renin release. Decreased efferent renal sympathetic nerve activity produces opposite functional responses. This integrated system contributes importantly to homeostatic regulation of sodium and water balance under physiological conditions and to pathological alterations in sodium and water balance in disease. The kidney contains afferent sensory nerve fibers that are located primarily in the renal pelvic wall where they sense stretch. Stretch activation of these afferent sensory nerve fibers elicits an inhibitory renorenal reflex response wherein the contralateral kidney exhibits a compensatory natriuresis and diuresis due to diminished efferent renal sympathetic nerve activity. The renorenal reflex coordinates the excretory function of the two kidneys so as to facilitate homeostatic regulation of sodium and water balance. There is a negative feedback loop in which efferent renal sympathetic nerve activity facilitates increases in afferent renal nerve activity that in turn inhibit efferent renal sympathetic nerve activity so as to avoid excess renal sodium retention. In states of renal disease or injury, there is activation of afferent sensory nerve fibers that are excitatory, leading to increased peripheral sympathetic nerve activity, vasoconstriction, and increased arterial pressure. Proof of principle studies in essential hypertensive patients demonstrate that renal denervation produces sustained decreases in arterial pressure. © 2011 American Physiological Society. Compr Physiol 1:699-729, 2011.
Neuropeptide Y in the adult and fetal human pineal gland.
Møller, Morten; Phansuwan-Pujito, Pansiri; Badiu, Corin
2014-01-01
Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.
Neuropeptide Y in the Adult and Fetal Human Pineal Gland
Møller, Morten; Phansuwan-Pujito, Pansiri
2014-01-01
Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally. PMID:24757681
Miconazole enhances nerve regeneration and functional recovery after sciatic nerve crush injury.
Lin, Tao; Qiu, Shuai; Yan, Liwei; Zhu, Shuang; Zheng, Canbin; Zhu, Qingtang; Liu, Xiaolin
2018-05-01
Improving axonal outgrowth and remyelination is crucial for peripheral nerve regeneration. Miconazole appears to enhance remyelination in the central nervous system. In this study we assess the effect of miconazole on axonal regeneration using a sciatic nerve crush injury model in rats. Fifty Sprague-Dawley rats were divided into control and miconazole groups. Nerve regeneration and myelination were determined using histological and electrophysiological assessment. Evaluation of sensory and motor recovery was performed using the pinprick assay and sciatic functional index. The Cell Counting Kit-8 assay and Western blotting were used to assess the proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole promoted axonal regrowth, increased myelinated nerve fibers, improved sensory recovery and walking behavior, enhanced stimulated amplitude and nerve conduction velocity, and elevated proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole was beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Muscle Nerve 57: 821-828, 2018. © 2017 Wiley Periodicals, Inc.
Wang, Chunyan; Peng, Yanli; Pan, Shuling; Li, Li
2014-01-13
To explore the effect of insulin-like growth factor-1 (IGF-1) on corneal surface ultrastructure and nerve regeneration in rabbit models after laser in situ keratomileusis (LASIK). Forty-two healthy New Zealand white rabbits were divided into two groups, the IGF-1 group and the control group, and LASIK surgery was performed. The corneal surface ultrastructure was observed by transmission electron microscopy, and the nerve regeneration was evaluated by counting the newly regenerated nerves at 1 d, 1 w, 2 w, 1 m, 3 m and 6 m after surgery. Dry eye parameters, including the Schirmer I test and tear break-up time, were examined at all time points. The examination of corneal ultrastructure showed that the number of corneal epithelial microvilli in the IGF-1 group was significantly higher than that in the normal saline (NS) group except in the second postoperative week (p<0.05). The observation of corneal nerve regeneration showed that the number of regenerated nerve fibers in the IGF-1 group was higher than the control group at all time points (p<0.05). The parameters of dry eye were significantly higher in the IGF-1 group compared to the control group at all time points except at 1d and 6m after LASIK. IGF-1 can effectively accelerate the early repair of corneal surface ultrastructure and nerve regeneration after LASIK and relieve dry eye symptoms in rabbit eyes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Kass-Iliyya, Lewis; Javed, Saad; Gosal, David; Kobylecki, Christopher; Marshall, Andrew; Petropoulos, Ioannis N; Ponirakis, Georgios; Tavakoli, Mitra; Ferdousi, Maryam; Chaudhuri, Kallol Ray; Jeziorska, Maria; Malik, Rayaz A; Silverdale, Monty A
2015-12-01
Autonomic and somatic denervation is well established in Parkinson's disease (PD). (1) To determine whether corneal confocal microscopy (CCM) can non-invasively demonstrate small nerve fiber damage in PD. (2) To identify relationships between corneal nerve parameters, intraepidermal nerve fiber density (IENFD) and clinical features of PD. Twenty-six PD patients and 26 controls underwent CCM of both eyes. 24/26 PD patients and 10/26 controls underwent skin biopsies from the dorsa of both feet. PD patients underwent assessment of parasympathetic function [deep breathing heart rate variability (DB-HRV)], autonomic symptoms [scale for outcomes in Parkinson's disease - autonomic symptoms (SCOPA-AUT)], motor symptoms [UPDRS-III "ON"] and cumulative Levodopa dose. PD patients had significantly reduced corneal nerve fiber density (CNFD) with increased corneal nerve branch density (CNBD) and corneal nerve fiber length (CNFL) compared to controls. CNBD and CNFL but not CNFD correlated inversely with UPDRS-III and SCOPA-AUT. All CCM parameters correlated strongly with DB-HRV. There was no correlation between CCM parameters and disease duration, cumulative Levodopa dose or pain. IENFD was significantly reduced in PD compared to controls and correlated with CNFD and UPDRS-III. However, unlike CCM measures, IENFD correlated with disease duration and cumulative Levodopa dose but not with autonomic dysfunction. CCM identifies corneal nerve fiber pathology, which correlates with autonomic symptoms, parasympathetic deficits and motor scores in patients with PD. IENFD is also reduced and correlates with CNFD and motor symptoms but not parasympathetic deficits, indicating it detects different aspects of peripheral nerve pathology in PD. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Huang, Si-qin; Qi, Wei; Zeng, Zhi-hua; Wang, Ke-jian; Wu, Xiu-yu
2014-11-01
To investigate the effect of electroacupuncture on the expression of oligodendrocyte precursor cells in rats with compressed spinal cord injury (CSCI) and to explore the mechanism of remyelinization. Thirty-six SD rats were randomly divided into a control group and three treatment groups with 3 d, 7 d and 14 d of treatment respectively. Acupuncture was given to rats in the treatment groups through jiaji point, double zusanli (ST36), and double taixi (KI3). Electroacupuncture (continuous wave, 2 Hz/1. 5 V, 30 min) was applied for the double zusanli (ST36) and double taixi (KI3). Ethological alterations of the rats were observed with quantitative assessment of neurologic function. The ultrastructure changes of nerve fibers in white matter were determined under electronic microscope. Expressions of NG2 protein, an OPC marker, was observed by Western blot. No significant changes in neurologic function and G-ratio were observed after three days and seven days of electroacupuncture treatment (P>0. 05). However, 14 d of electroacupuncture treatment made a significant change compared to the 7 d treatment group and the control group (P<0. 05). The electronic microscope showed axons with varied degree of swollen, degenerated and lost cell organelle in axoplasm, edema in myelin sheaths, disordered, thickened and even broken layers of myelin sheaths in the rats with CSCI. The rats in the treatment groups had milder swollen axons and more compacted layers of myelin sheaths compared to their controls. Western blot showed that the expression of NG2 was increased with time and the differences among the three treatment groups were statistically significant (P<0. 05). The rats in the treatment groups also had higher expressions of NG2 than their controls at 7 d and 14 d (P<0. 05). Electroacupuncture can improve inflammation and edema in the injured nerve fibers and up regulate NG2 expression and remyelination of the injured nerve fibers in rats with CSCI.
Downie, Laura E; Naranjo Golborne, Cecilia; Chen, Merry; Ho, Ngoc; Hoac, Cam; Liyanapathirana, Dasun; Luo, Carol; Wu, Ruo Bing; Chinnery, Holly R
2018-06-01
Our aim was to compare regeneration of the sub-basal nerve plexus (SBNP) and superficial nerve terminals (SNT) following corneal epithelial injury. We also sought to compare agreement when quantifying nerve parameters using different image analysis techniques. Anesthetized, female C57BL/6 mice received central 1-mm corneal epithelial abrasions. Four-weeks post-injury, eyes were enucleated and processed for PGP9.5 to visualize the corneal nerves using wholemount immunofluorescence staining and confocal microscopy. The percentage area of the SBNP and SNT were quantified using: ImageJ automated thresholds, ImageJ manual thresholds and manual tracings in NeuronJ. Nerve sum length was quantified using NeuronJ and Imaris. Agreement between methods was considered with Bland-Altman analyses. Four-weeks post-injury, the sum length of nerve fibers in the SBNP, but not the SNT, was reduced compared with naïve eyes. In the periphery, but not central cornea, of both naïve and injured eyes, nerve fiber lengths in the SBNP and SNT were strongly correlated. For quantifying SBNP nerve axon area, all image analysis methods were highly correlated. In the SNT, there was poor correlation between manual methods and auto-thresholding, with a trend towards underestimating nerve fiber area using auto-thresholding when higher proportions of nerve fibers were present. In conclusion, four weeks after superficial corneal injury, there is differential recovery of epithelial nerve axons; SBNP sum length is reduced, however the sum length of SNTs is similar to naïve eyes. Care should be taken when selecting image analysis methods to compare nerve parameters in different depths of the corneal epithelium due to differences in background autofluorescence. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rudomin, P; Lomelí, J
2007-01-01
We have examined in the anesthetized cat the threshold changes produced by sensory and supraspinal stimuli on intraspinal collaterals of single afferents from the posterior articular nerve (PAN). Forty-eight fibers were tested in the L3 segment, in or close to Clarke's column, and 70 fibers in the L6-L7 segments within the intermediate zone. Of these, 15 pairs of L3 and L6-L7 collaterals were from the same afferent. Antidromically activated fibers had conduction velocities between 23 and 74 m/s and peripheral thresholds between 1.1 and 4.7 times the threshold of the most excitable fibers (xT), most of them below 3 xT. PAN afferents were strongly depolarized by stimulation of muscle afferents and by cutaneous afferents, as well as by stimulation of the bulbar reticular formation and the midline raphe nuclei. Stimulation of muscle nerves (posterior biceps and semitendinosus, quadriceps) produced a larger PAD (primary afferent depolarization) in the L6-L7 than in the L3 terminations. Group II were more effective than group I muscle afferents. As with group I muscle afferents, the PAD elicited in PAN afferents by stimulation of muscle nerves could be inhibited by conditioning stimulation of cutaneous afferents. Stimulation of the cutaneous sural and superficial peroneal nerves increased the threshold of few terminations (i.e., produced primary afferent hyperpolarization, PAH) and reduced the threshold of many others, particularly of those tested in the L6-L7 segments. Yet, there was a substantial number of terminals where these conditioning stimuli had minor or no effects. Autogenetic stimulation of the PAN with trains of pulses increased the intraspinal threshold in 46% and reduced the threshold in 26% of fibers tested in the L6-L7 segments (no tests were made with trains of pulses on fibers ending in L3). These observations indicate that PAN afferents have a rather small autogenetic PAD, particularly if this is compared with the effects of heterogenetic stimulation. Therefore, the depression of the PAN intraspinal fields produced by autogenetic stimulation described by Rudomin et al. (Exp Brain Res DOI 10.1007/s00221-006-0600-x, 2006) may be ascribed to other mechanisms besides a GABAa PAD. It is suggested that the small or no autogenetic PAD displayed by the examined joint afferents prevents presynaptic filtering of their synaptic actions and preserves the original information generated in the periphery. This could be important for proper adjustment of limb position.
Jimenez-Andrade, Juan M; Mantyh, William G; Bloom, Aaron P; Freeman, Katie T; Ghilardi, Joseph R; Kuskowski, Michael A; Mantyh, Patrick W
2012-05-01
As humans age there is a decline in most sensory systems including vision, hearing, taste, smell, and tactile acuity. In contrast, the frequency and severity of musculoskeletal pain generally increases with age. To determine whether the density of sensory nerve fibers that transduce skeletal pain changes with age, calcitonin gene related peptide (CGRP) and neurofilament 200 kDa (NF200) sensory nerve fibers that innervate the femur were examined in the femurs of young (4-month-old), middle-aged (13-month-old) and old (36-month-old) male F344/BNF1 rats. Whereas the bone quality showed a significant age-related decline, the density of CGRP(+) and NF200(+) nerve fibers that innervate the bone remained remarkably unchanged as did the severity of acute skeletal fracture pain. Thus, while bone mass, quality, and strength undergo a significant decline with age, the density of sensory nerve fibers that transduce noxious stimuli remain largely intact. These data may in part explain why musculoskeletal pain increases with age. Copyright © 2012 Elsevier Inc. All rights reserved.
Some Observations on the Fine Structure of the Giant Nerve Fibers of the Earthworm, Eisenia foetida
Hama, Kiyoshi
1959-01-01
Sectioned dorsal giant fibers of the earthworm Eisenia foetida have been studied with the electron microscope. The giant axon is surrounded by a Schwannian sheath in which the lamellae are arranged spirally. They can be traced from the outer surface of the Schwann cell to the axon-Schwann membranes. Irregularities in the spiral arrangement are frequently observed. Desmosome-like attachment areas occur on the giant fiber nerve sheath. These structures appear to be arranged bilaterally in columns which are oriented slightly obliquely to the long axis of the giant fiber and aligned linearly from the axon to the periphery of the sheath. At these sites they bind together apposing portions of Schwann cell membrane comprising the sheath. Longitudinal or oblique sections of the nerve sheath attachment areas are reminiscent of the Schmidt-Lantermann clefts of vertebrate peripheral nerve. Septa of the giant fibers have been examined. They are symmetrical or non-polarized and consist of the two plasma membranes of adjacent nerve units. Characteristic vesicular and tubular structures are associated with both cytoplasmic surfaces of these septa. PMID:13673048
Auditory hair cell innervational patterns in lizards.
Miller, M R; Beck, J
1988-05-22
The pattern of afferent and efferent innervation of two to four unidirectional (UHC) and two to nine bidirectional (BHC) hair cells of five different types of lizard auditory papillae was determined by reconstruction of serial TEM sections. The species studies were Crotaphytus wislizeni (iguanid), Podarcis (Lacerta) sicula and P. muralis (lacertids), Ameiva ameiva (teiid), Coleonyx variegatus (gekkonid), and Mabuya multifasciata (scincid). The main object was to determine in which species and in which hair cell types the nerve fibers were innervating only one (exclusive innervation), or two or more hair cells (nonexclusive innervation); how many nerve fibers were supplying each hair cell; how many synapses were made by the innervating fibers; and the total number of synapses on each hair cell. In the species studies, efferent innervation was limited to the UHC, and except for the iguanid, C. wislizeni, it was nonexclusive, each fiber supplying two or more hair cells. Afferent innervation varied both with the species and the hair cell types. In Crotaphytus, both the UHC and the BHC were exclusively innervated. In Podarcis and Ameiva, the UHC were innervated exclusively by some fibers but nonexclusively by others (mixed pattern). In Coleonyx, the UHC were exclusively innervated but the BHC were nonexclusively innervated. In Mabuya, both the UHC and BHC were nonexclusively innervated. The number of afferent nerve fibers and the number of afferent synapses were always larger in the UHC than in the BHC. In Ameiva, Podarcis, and Mabuya, groups of bidirectionally oriented hair cells occur in regions of cytologically distinct UHC, and in Ameiva, unidirectionally oriented hair cells occur in cytologically distinct BHC regions.
The neglected cranial nerve: nervus terminalis (cranial nerve N).
Vilensky, Joel A
2014-01-01
The nervus terminalis (NT; terminal nerve) was clearly identified as an additional cranial nerve in humans more than a century ago yet remains mostly undescribed in modern anatomy textbooks. The nerve is referred to as the nervus terminalis because in species initially examined its fibers were seen entering the brain in the region of the lamina terminalis. It has also been referred to as cranial nerve 0, but because there is no Roman symbol for zero, an N for the Latin word nulla is a better numerical designation. This nerve is very distinct in human fetuses and infants but also has been repeatedly identified in adult human brains. The NT fibers are unmyelinated and emanate from ganglia. The fibers pass through the cribriform plate medial to those of the olfactory nerve fila. The fibers end in the nasal mucosa and probably arise from autonomic/neuromodulatory as well as sensory neurons. The NT has been demonstrated to release luteinizing-releasing luteinizing hormone and is therefore thought to play a role in reproductive behavior. Based on the available evidence, the NT appears to be functional in adult humans and should be taught in medical schools and incorporated into anatomy/neuroanatomy textbooks. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.
Detection of a diabetic sural nerve from the magnetic field after electric stimulation
NASA Astrophysics Data System (ADS)
Hayami, Takehito; Iramina, Keiji; Hyodo, Akira; Chen, Xian; Sunagawa, Kenji
2009-04-01
In this study, we proposed a new diagnostic technique for diabetic neuropathy using biomagnetic measurement. Peripheral neuropathy is one of the most common complications of diabetes. To examine the injury, the skin potential around the nerve is often measured after electric stimulation. However, measuring the magnetic field may reveal precise condition of the injury. To evaluate the effect of measuring the magnetic field, a simulation study was performed. A diabetic sural nerve was simulated as a bundle of myelinated nerve fibers. Each fiber was modeled as an electric cable of Ranvier's nodes. Anatomical data were used to determine the number of nerve fibers and distribution of nerve fiber diameters. The electric potential and the magnetic field on the skin after electric stimulation were computed to the boundary element method. Biphasic time courses were obtained as the electric potential and the magnetic flux density at measurement points. In diabetic nerves, the longer interpeak latency of the electric potential wave and the shorter interpeak latency of the magnetic flux wave were obtained. Measuring both the electric potential and the magnetic flux density seemed to provide a noninvasive and objective marker for diabetic neuropathy.
Lv, Ying; Zhao, Shaozhen
2018-03-26
There are well-acknowledged clinical or pre-clinical measurements concerning diabetic peripheral neuropathy(DPN). The current gold standard for diagnosis of diabetic peripheral neuropathy is nerve conduction suitable for detecting large nerve fiber function[1] and intraepidermal nerve fiber density assessment for small fiber damage evaluation[2]. The lack of a sensitive, non-invasive, and repeatable endpoint to measure changes in small nerve fibers is a major factor holding back clinical trials for the treatment of diabetic peripheral neuropathy. As cornea is the most densely innerved tissue, assessing corneal nerves' structure and function will be promising to predict and assess the degree of DPN [3]. In the diabetic micro-environment, damaged corneal nerves lead to decreased corneal sensitivity, both of which resulting in abnormal tear function. According to this theory, the measurements of nerve structure, corneal sensitivity, tear secretion and tear components, to some extent, can reveal and assess the state of corneal neuropathy. This review focuses on summarizing the knowledge of the latest detective methods of diabetic corneal neuropathy, popular in use or possible to further in study and be applied into clinical practice. Copyright © 2018 Elsevier B.V. All rights reserved.
Huynh, Son C; Wang, Xiu Ying; Rochtchina, Elena; Mitchell, Paul
2006-09-01
To study the distribution of retinal nerve fiber layer (RNFL) thickness by ocular and demographic variables in a population-based study of young children. Population-based cross-sectional study. One thousand seven hundred sixty-five of 2238 (78.9%) eligible 6-year-old children participated in the Sydney Childhood Eye Study between 2003 and 2004. Mean age was 6.7 years (50.9% boys). Detailed examination included cycloplegic autorefraction and measurement of axial length. Retinal nerve fiber layer scans using an optical coherence tomographer were performed with a circular scan pattern of 3.4-mm diameter. Multivariate analyses were performed to examine the distribution of RNFL parameters with gender, ethnicity, axial length, and refraction. Peripapillary RNFL thickness and RNFL(estimated integral) (RNFL(EI)), which measures the total cross-sectional area of ganglion cell axons converging onto the optic nerve head. Peripapillary RNFL thickness and RNFL(EI) were normally distributed. The mean+/-standard deviation RNFL average thickness was 103.7+/-11.4 microm and RNFL(EI) was 1.05+/-0.12 mm2. Retinal nerve fiber layer thickness was least for the temporal quadrant (75.7+/-14.7 microm), followed by the nasal (81.7+/-19.6 microm), inferior (127.8+/-20.5 microm), and superior (129.5+/-20.6 microm) quadrants. Multivariate adjusted RNFL average thickness was marginally greater in boys than in girls (104.7 microm vs. 103.2 microm; P = 0.007) and in East Asian than in white children (107.7 microm vs. 102.7 microm; P<0.0001). The RNFL was thinner with greater axial length (P(trend)<0.0001) and less positive spherical equivalent refractions (P(trend) = 0.004). Retinal nerve fiber layer average thickness and RNFL(EI) followed a normal distribution. Retinal nerve fiber layer thickness varied marginally with gender, but differences were more marked between white and East Asian children. Retinal nerve fiber layer thinning was associated with increasing axial length and less positive refractions.
Muscle Degeneration Associated With Rotator Cuff Tendon Release and/or Denervation in Sheep.
Gerber, Christian; Meyer, Dominik C; Flück, Martin; Valdivieso, Paola; von Rechenberg, Brigitte; Benn, Mario C; Wieser, Karl
2017-03-01
The effect of an additional neurological injury (suprascapular nerve traction injury) to a chronically retracted rotator cuff muscle is incompletely understood and warrants clarification. To investigate the microscopic and macroscopic muscle degeneration patterns caused by tendon release and/or muscle denervation in a sheep rotator cuff model. Controlled laboratory study. Infraspinatus muscle biopsy specimens (for histological analysis) were obtained from 18 Swiss alpine sheep before and 16 weeks after release of the infraspinatus tendon (tenotomy [T] group; n = 6), transection of the suprascapular nerve (neurectomy [N] group; n = 6), or tendon release plus nerve transection (tenotomy + neurectomy [T&N] group; n = 6). Magnetic resonance imaging (MRI) and computed tomography (CT) were used to assess retraction (CT), muscle density (CT), volume (MRI T2), and fat fraction (MRI Dixon). Stiffness of the infraspinatus was measured with a spring scale. At 16 weeks postoperatively, the mean infraspinatus muscle volume had decreased significantly more after neurectomy (to 47% ± 7% of the original volume; P = .001) and tenotomy plus neurectomy (48% ± 13%; P = .005) than after tenotomy alone (78% ± 11%). Conversely, the mean amount of intramuscular fat (CT/MRI Dixon) was not significantly different in the 3 groups (T group: 50% ± 9%; N group: 40% ± 11%; T&N group: 46% ± 10%) after 16 weeks. The mean myotendinous retraction (CT) was not significantly different in the T and T&N groups (5.8 ± 1.0 cm and 6.4 ± 0.4 cm, respectively; P = .26). Stiffness was, however, most increased after additional neurectomy. In contrast to muscle changes after tendon release, denervation of the muscle led to a decrease in the pennation angle of lengthened muscle fibers, with a reduced mean cross-sectional area of pooled muscle fibers, a slow- to fast-type transformation, and an increase in the area percentage of hybrid fibers, leading to overall significantly greater atrophy of the corresponding muscle. Although it is unclear which experimental group (T or T&N) most accurately reflects the clinical scenario in a given case, these findings provide baseline information for clinical differentiation between muscle changes caused by denervation or rotator cuff tendon lesions. The findings of this study help to understand how and to which extent a neurological lesion of the supplying suprascapular nerve could influence the pattern of anatomic-physiological muscular changes after rotator cuff tendon tears.
FIBER-OPTIC BIOSENSOR FOR DIRECT DETERMINATION OF ORGANOPHOSPHATE NERVE AGENTS. (R823663)
A fiber-optic enzyme biosensor for the direct measurement of organophosphate nerve
agents was developed. The basic element of this biosensor is organophosphorus hydrolase
immobilized on a nylon membrane and attached to the common end of a bifurcated optical fiber
bundle....
Repeated blood flow restriction induces muscle fiber hypertrophy.
Sudo, Mizuki; Ando, Soichi; Kano, Yutaka
2017-02-01
We recently developed an animal model to investigate the effects of eccentric contraction (ECC) and blood flow restriction (BFR) on muscle tissue at the cellular level. This study clarified the effects of repeated BFR, ECC, and BFR combined with ECC (BFR+ECC) on muscle fiber hypertrophy. Male Wistar rats were assigned to 3 groups: BFR, ECC, and BFR+ECC. The contralateral leg in the BFR group served as a control (CONT). Muscle fiber cross-sectional area (CSA) of the tibialis anterior was determined after the respective treatments for 6 weeks. CSA was greater in the BFR+ECC group than in the CONT (P < 0.01) and ECC (P < 0.05) groups. CSA was greater in the BFR group than that in the CONT group (P < 0.05). These results suggest that repeated BFR alone as well as BFR+ECC induces muscle fiber hypertrophy at the cellular level. Muscle Nerve 55: 274-276, 2017. © 2016 Wiley Periodicals, Inc.
PATHOLOGICAL SPROUTING OF ADULT NOCICEPTORS IN CHRONIC PROSTATE CANCER-INDUCED BONE PAIN
Jimenez-Andrade, Juan M.; Bloom, Aaron P.; Stake, James I.; Mantyh, William G.; Taylor, Reid N.; Freeman, Katie T.; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.
2012-01-01
Pain frequently accompanies cancer. What remains unclear is why this pain frequently becomes more severe and difficult to control with disease progression. Here we test the hypothesis that with disease progression, sensory nerve fibers that innervate the tumor-bearing tissue undergo a pathological sprouting and reorganization, which in other non-malignant pathologies has been shown to generate and maintain chronic pain. Injection of canine prostate cancer cells into mouse bone induces a remarkable sprouting of calcitonin gene related peptide (CGRP+) and neurofilament 200 kDa (NF200+) sensory nerve fibers. Nearly all sensory nerve fibers that undergo sprouting also co-express tropomyosin receptor kinase A (TrkA+). This ectopic sprouting occurs in sensory nerve fibers that are in close proximity to colonies of prostate cancer cells, tumor-associated stromal cells and newly formed woven bone, which together form sclerotic lesions that closely mirror the osteoblastic bone lesions induced by metastatic prostate tumors in humans. Preventive treatment with an antibody that sequesters nerve growth factor (NGF), administered when the pain and bone remodeling were first observed, blocks this ectopic sprouting and attenuates cancer pain. Interestingly, RT-PCR analysis indicated that the prostate cancer cells themselves do not express detectable levels of mRNA coding for NGF. This suggests that the tumor-associated stromal cells express and release NGF, which drives the pathological reorganization of nearby TrkA+ sensory nerve fibers. Therapies that prevent this reorganization of sensory nerve fibers may provide insight into the evolving mechanisms that drive cancer pain and lead to more effective control of this chronic pain state. PMID:21048122
Gür Güngör, Sirel; Akman, Ahmet; Sarıgül Sezenöz, Almila; Tanrıaşıkı, Gülşah
2016-12-01
The presence of retinal nerve fiber layer (RNFL) split bundles was recently described in normal eyes scanned using scanning laser polarimetry and by histologic studies. Split bundles may resemble RNFL loss in healthy eyes. The aim of our study was to determine the prevalence of nerve fiber layer split bundles in healthy people. We imaged 718 eyes of 359 healthy persons with the spectral domain optical coherence tomography in this cross-sectional study. All eyes had intraocular pressure of 21 mmHg or less, normal appearance of the optic nerve head, and normal visual fields (Humphrey Field Analyzer 24-2 full threshold program). In our study, a bundle was defined as 'split' when there is localized defect not resembling a wedge defect in the RNFL deviation map with a symmetrically divided RNFL appearance on the RNFL thickness map. The classification was performed by two independent observers who used an identical set of reference examples to standardize the classification. Inter-observer consensus was reached in all cases. Bilateral superior split bundles were seen in 19 cases (5.29%) and unilateral superior split was observed in 15 cases (4.16%). In 325 cases (90.52%) there was no split bundle. Split nerve fiber layer bundles, in contrast to single nerve fiber layer bundles, are not common findings in healthy eyes. In eyes with normal optic disc appearance, especially when a superior RNFL defect is observed in RNFL deviation map, the RNLF thickness map and graphs should also be examined for split nerve fiber layer bundles.
Characterization of bulbospongiosus muscle reflexes activated by urethral distension in male rats.
Tanahashi, Masayuki; Karicheti, Venkateswarlu; Thor, Karl B; Marson, Lesley
2012-10-01
The urethrogenital reflex (UGR) is used as a surrogate model of the autonomic and somatic nerve and muscle activity that accompanies ejaculation. The UGR is evoked by distension of the urethra and activation of penile afferents. The current study compares two methods of elevating urethral intraluminal pressure in spinalized, anesthetized male Sprague-Dawley rats (n = 60). The first method, penile extension UGR, involves extracting the penis from the foreskin, so that urethral pressure rises due to a natural anatomical flexure in the penis. The second method, penile clamping UGR, involves penile extension UGR with the addition of clamping of the glans penis. Groups of animals were prepared that either received no additional treatment, surgical shams, or received bilateral nerve cuts (4 nerve cut groups): either the pudendal sensory nerve branch (SbPN), the pelvic nerves, the hypogastric nerves, or all three nerves. Penile clamping UGR was characterized by multiple bursts, monitored by electromyography (EMG) of the bulbospongiosus muscle (BSM) accompanied by elevations in urethral pressure. The penile clamping UGR activity declined across multiple trials and eventually resulted in only a single BSM burst, indicating desensitization. In contrast, the penile extension UGR, without penile clamping, evoked only a single BSM EMG burst that showed no desensitization. Thus, the UGR is composed of two BSM patterns: an initial single burst, termed urethrobulbospongiosus (UBS) reflex and a subsequent multiple bursting pattern (termed ejaculation-like response, ELR) that was only induced with penile clamping urethral occlusion. Transection of the SbPN eliminated the ELR in the penile clamping model, but the single UBS reflex remained in both the clamping and extension models. Pelvic nerve (PelN) transection increased the threshold for inducing BSM activation with both methods of occlusion but actually unmasked an ELR in the penile extension method. Hypogastric nerve (HgN) cuts did not significantly alter any parameter. Transection of all three nerves eliminated BSM activation completely. In conclusion, penile clamping occlusion recruits penile and urethral primary afferent fibers that are necessary for an ELR. Urethral distension without significant penile afferent activation recruits urethral primary afferent fibers carried in either the pelvic or pudendal nerve that are necessary for the single-burst UBS reflex.
An Assessment of Retinal Nerve Fiber Layer Thickness in Non-Diabetic Obese Children and Adolescents
Özen, Bediz; Öztürk, Hakan; Çatlı, Gönül; Dündar, Bumin
2018-01-01
Objective: Obesity affects almost all systems in the body. This includes the retinal nerve fibers which may be damaged due to a chronic inflammatory process. To determine changes in retinal nerve fiber layer (RNFL) thickness in non-diabetic children and adolescents using optical coherence tomography (OCT) and to evaluate the relationship between this change, metabolic risk factors and pubertal stage. Methods: Thirty-eight obese and 40 healthy children and adolescents aged 10-18 years were included in the study. RNFL measurements from the optic disk and all surrounding quadrants were obtained using OCT from both eyes of the individuals in the study groups. Correlations between RNFL thickness and age, auxological measurements, pubertal stage, systolic and diastolic blood pressure, homeostasis model assessment-insulin resistance (HOMA-IR) index and lipid values were investigated. Results: A general decrease was observed in RNFL thickness in obese subjects compared to the controls, the decrease being highest in the inferior quadrant, although these differences were not statistically significant (p>0.05). RNFL thickness was negatively correlated with body mass index (BMI) standard deviation score (SDS) in both groups (control group r=-0.345, p=0.029; obese group r=-0.355, p=0.022). Significant negative correlations were determined between diastolic blood pressure, HOMA-IR, low density lipoprotein cholesterol level and RNFL thickness (r=-0.366, p=0.024; r=-0.394, p=0.016; and r=-0.374, p=0.022, respectively) in the obese group, while there was no association between these parameters and RNFL thickness in the control group. Conclusion: In this cross-sectional study, no statistically significant difference in RNFL thicknesses between the obese and control groups was determined. However, RNFL thickness was found to decrease in both healthy and obese children as BMI-SDS values increased. Further prospective studies may be of benefit to determine whether the decrease in RNFL values might become more pronounced on long-term follow-up. PMID:28739552
Yang, Liu; Qu, Yuanzhen; Lu, Wen; Liu, Fengjun
2016-07-03
BACKGROUND The aim of this study was to compare the differences in macular ganglion cell complex (GCC) and peripapillary retinal nerve fiber layer (pRNFL) in child and adult patients with primary craniopharyngioma by Fourier-domain optical coherence tomography (FD-OCT) and to evaluate their significance in the diagnosis of primary craniopharyngioma. MATERIAL AND METHODS Ninety-six participants were divided into 3 groups: 32 in the child craniopharyngioma group (CCG) and 32 in the adult craniopharyngioma group (ACG) who were treated in Beijing Tiantan Hospital between November 2013 and October 2014, and 32 in the normal group (NG). All subjects were scanned by FD-OCT to map GCC and pRNFL thicknesses. Spearman correlation coefficient was used to assess the correlation between GCC and pRNFL thickness, and pRNFL thickness and optic nerve head (ONH) parameters, including horizontal cup-disc ratio (HCDR), vertical cup-disc ratio (VCDR), optic disc area (ODA), and cup area (CA), respectively. RESULTS The correlation between GCC and pRNFL thickness in the CCG was slightly stronger compared with the ACG. A significant difference in GCC thickness was observed among the CCG, ACG, and NG. Although the pRNFL thickness in both the CCG and ACG was significantly higher than that in NG, no significant difference in pRNFL thickness was detected between the 2 craniopharyngioma groups. The average, superior, and inferior pRNFL thicknesses were negatively correlated with VCDR in the CCG (in double eyes) and ACG (only in left eyes). CONCLUSIONS GCC was more sensitive than pRNFL in detecting optic nerve damage in the eyes of craniopharyngioma patients. A thinner pRNFL was especially correlated with VCDR in child craniopharyngioma patients.
Yang, Liu; Qu, Yuanzhen; Lu, Wen; Liu, Fengjun
2016-01-01
Background The aim of this study was to compare the differences in macular ganglion cell complex (GCC) and peripapillary retinal nerve fiber layer (pRNFL) in child and adult patients with primary craniopharyngioma by Fourier-domain optical coherence tomography (FD-OCT) and to evaluate their significance in the diagnosis of primary craniopharyngioma. Material/Methods Ninety-six participants were divided into 3 groups: 32 in the child craniopharyngioma group (CCG) and 32 in the adult craniopharyngioma group (ACG) who were treated in Beijing Tiantan Hospital between November 2013 and October 2014, and 32 in the normal group (NG). All subjects were scanned by FD-OCT to map GCC and pRNFL thicknesses. Spearman correlation coefficient was used to assess the correlation between GCC and pRNFL thickness, and pRNFL thickness and optic nerve head (ONH) parameters, including horizontal cup-disc ratio (HCDR), vertical cup-disc ratio (VCDR), optic disc area (ODA), and cup area (CA), respectively. Results The correlation between GCC and pRNFL thickness in the CCG was slightly stronger compared with the ACG. A significant difference in GCC thickness was observed among the CCG, ACG, and NG. Although the pRNFL thickness in both the CCG and ACG was significantly higher than that in NG, no significant difference in pRNFL thickness was detected between the 2 craniopharyngioma groups. The average, superior, and inferior pRNFL thicknesses were negatively correlated with VCDR in the CCG (in double eyes) and ACG (only in left eyes). Conclusions GCC was more sensitive than pRNFL in detecting optic nerve damage in the eyes of craniopharyngioma patients. A thinner pRNFL was especially correlated with VCDR in child craniopharyngioma patients. PMID:27372909
Liu, Lin; Zou, Jun; Huang, Hui; Yang, Jian-guo; Chen, Shao-rong
2012-05-23
To evaluate the influence of corneal astigmatism (CA) on retinal nerve fiber layer (RNFL) thickness and optic nerve head(ONH) parameters measured with spectral-domain optical coherence tomography (OCT) in high myopes patients before refractive surgery. Seventy eyes of 35 consecutive refractive surgery candidates were included in this study. The mean age of the subjects was 26.42 ± 6.95 years, the average CA was -1.17 diopters (D; SD 0.64; range -0.2 to-3.3D), All subjects in this study were WTR CA. 34 eyes were in the normal CA group with a mean CA was -0.67 ± 0.28D, 36 eyes were in the high CA group with an average CA of -1.65 ± 0.49D. All subjects underwent ophthalmic examination and imaging with the Cirrus HD OCT. No significant difference was noted in the average cup-to-disk ratio, vertical cup-to-disk ratio and cup volume (all P values > 0.05). Compared with the normal CA group, the high CA group had a larger disc area and rim area, thinner RNFL thickness in the temporal quadrant, and the superotemporal and inferotemporal peaks were farther to the temporal horizon (All P values < 0.05). There were no significant differences between the two groups in global average RNFL thickness, as well as superior, nasal and inferior quadrant RNFL thickness (all P values > 0.05). The degree of with-the-rule CA should be considered when interpreting ONH parameters and peripapillary RNFL thickness measured by the Cirrus HD OCT. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1148475676881895.
Innervation pattern of polycystic ovaries in the women.
Wojtkiewicz, Joanna; Jana, Barbara; Kozłowska, Anna; Crayton, Robert; Majewski, Mariusz; Zalecki, Michał; Baranowski, Włodzimierz; Radziszewski, Piotr
2014-11-01
The aim of the present study was to determine the changes in both the distribution pattern and density of nerve fibers containing dopamine β-hydroxylase (DβH), vesicular acetylcholine transporter (VAChT), neuronal nitric oxide synthase (nNOS), substance P (SP), calcitonin gene related peptide (CGRP), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), somatostatin (SOM), galanin (GAL) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the human polycystic ovaries. In the polycystic ovaries, when compared to the immunoreactions pattern observed in the control gonads, following changes were revealed: (1) an increase in the number of DβH-, VAChT-, VIP- or GAL-immunoreactive (IR) nerve fibers within the stroma as well as in the number of DβH-IR fibers near primordial follicles and medullar veins and venules; (2) a reduction in the number of nerve fibers containing nNOS, CGRP, SOM, PACAP within the stroma and in the numbers of CGRP-IR fibers around arteries; (3) an appearance of SP- and GAL-IR fibers around medullar and cortical arteries, arterioles, veins and venules, with except of GAL-IR fibers supplying medullar veins; and (4) the lack of nNOS-IR nerve fibers near primordial follicles and VIP-IR nerves around medullar arteries and arterioles. In conclusion, our results suggest that the changes in the innervation pattern of the polycystic ovaries in human may play an important role in the pathogenesis and/or course of this disorder. Copyright © 2014. Published by Elsevier B.V.
Molecular characteristics suggest an effector function of palisade endings in extraocular muscles.
Konakci, Kadriye Zeynep; Streicher, Johannes; Hoetzenecker, Wolfram; Blumer, Michael Josef Franz; Lukas, Julius-Robert; Blumer, Roland
2005-01-01
To analyze palisade endings in cat extraocular muscles (EOMs) and to clarify whether these EOM-specific organs are sensory or motor. Twelve cats aged between 1 and 16 years were analyzed. Whole EOM tendons were immunostained using four different combinations of triple fluorescence labeling. Triple labeling included antibodies against choline acetyltransferase (ChAT), neurofilament, synaptophysin, and alpha-bungarotoxin. Preparations were examined by confocal laser scanning microscopy. ChAT-labeled EOMs were also analyzed by immunoelectron microscopy. Three-dimensional reconstructions were made of palisade endings. Palisade endings were found in the distal and proximal myotendinous regions of cat EOMs. These endings arose from thin nerve fibers coming from the muscle and extending into the tendon. There, the nerve fibers turned back 180 degrees to divide into terminal branches around the muscle fiber tips. Terminal branches established numerous contacts with the tendon attached to the muscle fiber tip and only a few contacts with the muscle fiber. Often, nerve fibers forming palisade endings on muscle fiber tips were observed to establish multiple motor contacts on muscle fibers outside palisade endings. Three-dimensional reconstructions depicted the complex morphology of the palisade endings. All nerve fibers supplying palisade endings stained positively for ChAT and neurofilament. All nerve terminals in palisade endings were ChAT and synaptophysin positive. Only neuromuscular contacts in palisade endings were positive for alpha-bungarotoxin, as well. This study provides evidence that palisade endings in cat EOMs have effector function. The findings may be of significance for strabismus surgery because palisade endings are also found in human EOMs.
Mitigation of cisplatin-induced peripheral neuropathy by canagliflozin in rats.
Abdelsameea, Ahmed A; Kabil, Soad L
2018-06-03
Peripheral nervous system neurotoxicity is the most problematic complication of cisplatin treatment. In this study, we have addressed the possible neuroprotective effect of canagliflozin on cisplatin-induced peripheral neurotoxicity in rats. Rats were randomly allocated into the following: control (vehicle) group, received hydhroxypropyl methyl cellulose; cisplatin group, injected cisplatin 2 mg/kg intraperitoneal, twice a week for 5 consecutive weeks; canagliflozin-cisplatin of received canagliflozin, 10 mg/kg/day by gavage and cisplatin in the same schedule like cisplatin group. Thermal nociception and rotarod performance were assessed. Malondialdehyde (MDA), reduced glutathione (GSH), tumor necrosis factor-α (TNF-α), and caspase 3 were determined in serum. Hematoxylin and eosin (H&E) and immunohistochemical stained sciatic nerve sections were examined. Cisplatin induced thermal hypoalgesia and decreased rotarod performance as well as GSH serum level while increased MDA, TNF-α, and caspase-3 serum levels with atrophy and fragmentation of the nerve fibers with decreased expression of myelin basic protein. Canagliflozin prevented thermal hypoalgesia and improved rotarod performance with increment in GSH serum level while decreased MDA, TNF-α, and caspase-3 levels as well as prevented fragmentation of the nerve fibers and enhanced myelin basic protein expression in relation to cisplatin group. Canagliflozin attenuates the neurotoxic effect of cisplatin through anti-inflammatory and anti-oxidant actions as well as inhibition of apoptosis.
McVey Neufeld, K A; Perez-Burgos, A; Mao, Y K; Bienenstock, J; Kunze, W A
2015-05-01
The microbiome is essential for normal myenteric intrinsic primary afferent neuron (IPAN) excitability. These neurons control gut motility and modulate gut-brain signaling by exciting extrinsic afferent fibers innervating the enteric nervous system via an IPAN to extrinsic fiber sensory synapse. We investigated effects of germ-free (GF) status and conventionalization on extrinsic sensory fiber discharge in the mesenteric nerve bundle and IPAN electrophysiology, and compared these findings with those from specific pathogen-free (SPF) mice. As we have previously shown that the IPAN calcium-dependent slow afterhyperpolarization (sAHP) is enhanced in GF mice, we also examined the expression of the calcium-binding protein calbindin in these neurons in these different animal groups. IPAN sAHP and mesenteric nerve multiunit discharge were recorded using ex vivo jejunal gut segments from SPF, GF, or conventionalized (CONV) mice. IPANs were excited by adding 5 μM TRAM-34 to the serosal superfusate. We probed for calbindin expression using immunohistochemical techniques. SPF mice had a 21% increase in mesenteric nerve multiunit firing rate and CONV mice a 41% increase when IPANs were excited by TRAM-34. For GF mice, this increase was barely detectable (2%). TRAM-34 changed sAHP area under the curve by -77 for SPF, +3 for GF, or -54% for CONV animals. Calbindin-immunopositive neurons per myenteric ganglion were 36% in SPF, 24% in GF, and 52% in CONV animals. The intact microbiome is essential for normal intrinsic and extrinsic nerve function and gut-brain signaling. © 2015 John Wiley & Sons Ltd.
White matter is found in the deeper tissues of the brain (subcortical). It contains nerve fibers (axons), which are ... or covering called myelin. Myelin gives the white matter its color. It also protects the nerve fibers ...
Peripheral nervous system involvement in primary burning mouth syndrome--results of a pilot study.
Puhakka, A; Forssell, H; Soinila, S; Virtanen, A; Röyttä, M; Laine, M; Tenovuo, O; Teerijoki-Oksa, T; Jääskeläinen, S K
2016-05-01
The pathophysiology of primary burning mouth syndrome (BMS) has remained enigmatic, but recent studies suggest pathology within the nervous system at multiple levels. This study aimed to investigate in detail the contribution of either focal or generalized alterations within the peripheral nervous system (PNS) in the etiopathogenesis of BMS. Intraepithelial nerve fiber density (IENFD) of tongue mucosa was assessed in 10 carefully characterized BMS, and the results were compared to 19 age- and gender-matched cadaver controls, 6 with lifetime diabetes. Extensive neurophysiologic and psychophysical examinations of the trigeminal system and distal extremities were performed to profile PNS function in BMS. Patients with BMS had significantly fewer intraepithelial nerve fibers (0,27, s.e. 0,18 mm(-1); P = 0.0253) than non-diabetic controls (0,92, s.e. 0,15 mm(-1)). In the subepithelial space, the amount of nerve fibers did not differ between the groups. The majority (9/10) of patients with BMS showed neurophysiologic or psychophysical signs of a more generalized PNS dysfunction. Our results in neurophysiologically optimally characterized BMS patients confirm that pure focal small fiber neuropathy of the oral mucosa has a role in the pathophysiology of primary BMS. Furthermore, BMS may be related to a more generalized, yet subclinical peripheral neuropathy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Morphology and Neurochemistry of Rabbit Iris Innervation
He, Jiucheng; Bazan, Haydee E.P.
2016-01-01
The aim of this study was to map the entire nerve architecture and sensory neuropeptide content of the rabbit iris. Irises from New Zealand rabbits were stained with antibodies against neuronal-class βIII-tubulin, calcitonin gene-related peptide (CGRP) and substance P (SP), and whole-mount images were acquired to build a two-dimensional view of the iridal nerve architecture. After taking images in time-lapse mode, we observed thick nerves running in the iris stroma close to the anterior epithelia, forming four to five stromal nerve rings from the iris periphery to the pupillary margin and sub-branches that connected with each other, constituting the stromal nerve plexus. In the anterior side, fine divisions derivated from the stromal nerves, forming a nerve network-like structure to innervate the superficial anterior border layer, with the pupillary margin having the densest innervation. In the posterior side, the nerve bundles ran along with the pupil dilator muscle in a radial pattern. The morphology of the iris nerves on both sides changed with pupil size. To obtain the relative content of the neuropeptides in the iris, the specimens were double stained with βIII-tubulin and CGRP or SP antibodies. Relative nerve fiber densities for each fiber population were assessed quantitatively by computer-assisted analysis. On the anterior side, CGRP-positive nerve fibers constituted about 61%, while SP-positive nerves constitute about 30.5%, of the total nerve content, which was expressed as βIII tubulin-positive fibers. In addition, in the anterior stroma of the collarette region, there were non-neuronal cells that were positive for SP. On the posterior side, CGRP-positive nerve fibers were about 69% of total nerve content, while SP constituted only up to 20%. Similarly, in the trigeminal ganglia (TG), the number of CGRP-positive neurons significantly outnumbered those that were positive for SP. Also, all the SP-positive neurons were labeled with CGRP. This is the first study to provide a two-dimensional whole mount and a cross-sectional view of the entire iris nerve architecture. Considering the anatomical location, the high expression of CGRP and SP suggests that these neuropeptides may play a role in the pathogenesis of anterior uveitis, glaucoma, cataracts and chronic ocular pain. PMID:25752697
Morphology and neurochemistry of rabbit iris innervation.
He, Jiucheng; Bazan, Haydee E P
2015-06-01
The aim of this study was to map the entire nerve architecture and sensory neuropeptide content of the rabbit iris. Irises from New Zealand rabbits were stained with antibodies against neuronal-class βIII-tubulin, calcitonin gene-related peptide (CGRP) and substance P (SP), and whole-mount images were acquired to build a two-dimensional view of the iridal nerve architecture. After taking images in time-lapse mode, we observed thick nerves running in the iris stroma close to the anterior epithelia, forming four to five stromal nerve rings from the iris periphery to the pupillary margin and sub-branches that connected with each other, constituting the stromal nerve plexus. In the anterior side, fine divisions derivated from the stromal nerves, forming a nerve network-like structure to innervate the superficial anterior border layer, with the pupillary margin having the densest innervation. In the posterior side, the nerve bundles ran along with the pupil dilator muscle in a radial pattern. The morphology of the iris nerves on both sides changed with pupil size. To obtain the relative content of the neuropeptides in the iris, the specimens were double stained with βIII-tubulin and CGRP or SP antibodies. Relative nerve fiber densities for each fiber population were assessed quantitatively by computer-assisted analysis. On the anterior side, CGRP-positive nerve fibers constituted about 61%, while SP-positive nerves constitute about 30.5%, of the total nerve content, which was expressed as βIII tubulin-positive fibers. In addition, in the anterior stroma of the collarette region, there were non-neuronal cells that were positive for SP. On the posterior side, CGRP-positive nerve fibers were about 69% of total nerve content, while SP constituted only up to 20%. Similarly, in the trigeminal ganglia (TG), the number of CGRP-positive neurons significantly outnumbered those that were positive for SP. Also, all the SP-positive neurons were labeled with CGRP. This is the first study to provide a two-dimensional whole mount and a cross-sectional view of the entire iris nerve architecture. Considering the anatomical location, the high expression of CGRP and SP suggests that these neuropeptides may play a role in the pathogenesis of anterior uveitis, glaucoma, cataracts and chronic ocular pain. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pinkham, Maximilian I.; Loftus, Michael T.; Amirapu, Satya; Guild, Sarah-Jane; Quill, Gina; Woodward, William R.; Habecker, Beth A.
2017-01-01
Heart failure is characterized by the loss of sympathetic innervation to the ventricles, contributing to impaired cardiac function and arrhythmogenesis. We hypothesized that renal denervation (RDx) would reverse this loss. Male Wistar rats underwent myocardial infarction (MI) or sham surgery and progressed into heart failure for 4 wk before receiving bilateral RDx or sham RDx. After additional 3 wk, left ventricular (LV) function was assessed, and ventricular sympathetic nerve fiber density was determined via histology. Post-MI heart failure rats displayed significant reductions in ventricular sympathetic innervation and tissue norepinephrine content (nerve fiber density in the LV of MI+sham RDx hearts was 0.31 ± 0.05% vs. 1.00 ± 0.10% in sham MI+sham RDx group, P < 0.05), and RDx significantly increased ventricular sympathetic innervation (0.76 ± 0.14%, P < 0.05) and tissue norepinephrine content. MI was associated with an increase in fibrosis of the noninfarcted ventricular myocardium, which was attenuated by RDx. RDx improved LV ejection fraction and end-systolic and -diastolic areas when compared with pre-RDx levels. This is the first study to show an interaction between renal nerve activity and cardiac sympathetic nerve innervation in heart failure. Our findings show denervating the renal nerves improves cardiac sympathetic innervation and function in the post-MI failing heart. PMID:28052866
Nangia, Vinay; Jonas, Jost B; Khare, Anshu; Bhate, Karishma; Agarwal, Shubhra; Panda-Jonas, Songhomitra
2014-05-01
To determine the prevalence of myelinated retinal nerve fibers in the adult Indian population. The Central India Eye and Medical Study performed in rural Central India included 4711 participants aged 30+ years. The participants underwent a detailed ophthalmic and medical examination. Readable fundus photographs were available for 8645 eyes of 4485 (95.2%) subjects. Myelinated retinal nerve fibers were detected in 52 eyes (46 subjects) with a prevalence rate of 0.58±0.08 per 100 eyes [95% confidence interval (CI): 0.42, 0.74] and 1.03±0.15 per 100 subjects (95%CI: 0.73, 1.32). Prevalence of myelinated retinal nerve fibers was significantly associated hyperopic refractive error (p=0.008; OR: 1.31; 95%CI: 1.07, 1.59). It was not significantly associated with age (p=0.11), best corrected visual acuity (logMAR; p=0.33), intraocular pressure (p=0.09), amount of nuclear cataract (p=0.93), optic disc area (p=0.60), presence of glaucomatous optic nerve atrophy (p=0.62), and early age-related macular degeneration (p=0.53). Myelinated retinal nerve fibers are present in about 10 out of 1000 adult Indians in rural Central India, with a higher prevalence in hyperopic eyes. Prevalence of myelinated retinal nerve fibers was not associated with age, visual acuity, glaucoma and macular degeneration. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Feedback Information and Analysis for Microprocessor Controlled Muscle Stimulation.
1981-12-01
muscle into fiberous tissue (Guyton, 1976) is not inevitable. The contractile power can be preserved and fiberous build-up reduced by electrical... isometric tension, velocity of contraction and coordination of movement, all with minimally induced muscle fatigue. The work of Petrofsky and Phillips... muscle . Each muscle fiber is innervated by only a single nerve, but a single motor nerve fiber branches to as many as thousands of different muscle
Ziago, Eduardo Keiske Mastuda; Fazan, Valéria Paula Sassoli; Iyomasa, Mamie Mizusaki; Sousa, Luiz Gustavo; Yamauchi, Paula Yumi; da Silva, Eunice Aparecida; Borie, Eduardo; Fuentes, Ramón; Dias, Fernando José
2017-02-01
The objective of this study was to evaluate three energy densities of low-level laser therapy (LLLT, GaAlAs, 780 nm, 40 mW, 0.04 cm 2 ) for the treatment of lesions to peripheral nerves using the sciatic nerve of rats injured via crushing model (15 kgf, 5.2 MPa). Thirty Wistar rats (♂, 200-250 g) were divided into five groups (n = 6): C-control, not injured, and irradiated; L0-injured nerve without irradiation; L4-injured nerve irradiated with LLLT 4 J/cm 2 (0.16 J); L10-injured nerve irradiated with LLLT 10 J/cm 2 (0.4 J); and L50-injured nerve irradiated with LLLT 50 J/cm 2 (2 J). The animals were sacrificed 2 weeks after the injury via perfusion with glutaraldehyde (2.5%, 0.1 M sodium cacodylate buffer). The nerve tissue was embedded in historesin, cut (3 μm), mounted on slides, and stained (Sudan black and neutral red). The morphological and quantitative analysis (myelin and blood capillary densities) and morphometric parameters (maximum and minimum diameters of nerve fibers, axon diameter, G-ratio, myelin sheath thickness) were assessed using the ImageJ software. ANOVA (parametric) or Kruskal-Wallis (nonparametric) tests were used for the statistical analysis. Groups L0, L4, L10, and L50 exhibited diminished values of all the quantitative and morphometric parameters in comparison to the control group. The morphological, quantitative, and morphometric data revealed improvement after injury in groups L4, L10, and L50 (irradiated groups) compared to the injured-only group (L0); the best results, in general, were observed for the L10 group after 15 days of nerve injury.
Wang, Ce; Zhang, Ying; Nicholas, Tsai; Wu, Guoxin; Shi, Sheng; Bo, Yin; Wang, Xinwei; Zhou, Xuhui; Yuan, Wen
2014-01-01
High cervical spinal cord injury is associated with high morbidity and mortality. Traditional treatments carry various complications such as infection, pacemaker failure and undesirable movement. Thus, a secure surgical strategy with fewer complications analogous to physiological ventilation is still required. We hope to offer one potential method to decrease the complications and improve survival qualities of patients from the aspect of anatomy. The purpose of the study is to provide anatomic details on the accessory nerve and phrenic nerve for neurotization in patients with high spinal cord injuries. 38 cadavers (76 accessory and 76 phrenic nerves) were dissected in the study. The width, length and thickness of each accessory nerve and phrenic nerve above clavicle were measured. The distances from several landmarks on accessory nerve to the origin and the end of the phrenic nerve above clavicle were measured too. Then, the number of motor nerve fibers on different sections of the nerves was calculated using the technique of immunohistochemistry. The accessory nerves distal to its sternocleidomastoid muscular branches were 1.52 ± 0.32 mm ~1.54 ± 0.29 mm in width, 0.52 ± 0.18 mm ~ 0.56 ± 0.20mm in thickness and 9.52 ± 0.98 cm in length. And the phrenic nerves above clavicle were 1.44 ± 0.23 mm ~ 1.45 ± 0.24 mm in width, 0.47 ± 0.15 mm ~ 0.56 ± 0.25 mm in thickness and 6.48 ± 0.78 cm in length. The distance between the starting point of accessory nerve and phrenic nerve were 3.24 ± 1.17 cm, and the distance between the starting point of accessory nerve and the end of the phrenic nerve above clavicle were 8.72 ± 0.84 cm. The numbers of motor nerve fibers in accessory nerve were 1,038 ± 320~1,102 ± 216, before giving out the sternocleidomastoid muscular branches. The number of motor nerve fibers in the phrenic nerve was 911 ± 321~1,338 ± 467. The accessory nerve and the phrenic were similar in width, thickness and the number of motor nerve fibers. And the lengths of accessory nerve were long enough for neuritisation with phrenic nerve.
Buchaim, Rogerio Leone; Andreo, Jesus Carlos; Barraviera, Benedito; Ferreira Junior, Rui Seabra; Buchaim, Daniela Vieira; Rosa Junior, Geraldo Marco; de Oliveira, Alexandre Leite Rodrigues; de Castro Rodrigues, Antonio
2015-04-01
The purpose of this study was to assess whether the adhesive permits the collateral repair of axons originating from a vagus nerve to the interior of a sural nerve graft, and whether low-level laser therapy (LLLT) assists in the regeneration process. Study sample consisted of 32 rats randomly separated into three groups: Control Group (CG; n=8), from which the intact sural nerve was collected; Experimental Group (EG; n=12), in which one of the ends of the sural nerve graft was coapted to the vagus nerve using the fibrin glue; and Experimental Group Laser (EGL; n=12), in which the animals underwent the same procedures as those in EG with the addition of LLLT. Ten weeks after surgery, the animals were euthanized. Morphological analysis by means of optical and electron microscopy, and morphometry of the regenerated fibers were employed to evaluate the results. Collateral regeneration of axons was observed from the vagus nerve to the interior of the autologous graft in EG and EGL, and in CG all dimensions measured were greater and presented a significant difference in relation to EG and EGL, except for the area and thickness of the myelin sheath, that showed significant difference only in relation to the EG. The present study demonstrated that the fibrin glue makes axonal regeneration feasible and is an efficient method to recover injured peripheral nerves, and the use of low-level laser therapy enhances nerve regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lozeron, Pierre; Mantsounga, Chris S; Broqueres-You, Dong; Dohan, Anthony; Polivka, Marc; Deroide, Nicolas; Silvestre, Jean-Sébastien; Kubis, Nathalie; Lévy, Bernard I
2015-09-01
Neuropathy is the most common complication of the peripheral nervous system during the progression of diabetes. The pathophysiology is unclear but may involve microangiopathy, reduced endoneurial blood flow, and tissue ischemia. We used a mouse model of type 1 diabetes to study parallel alterations of nerves and microvessels following tissue ischemia. We designed an easily reproducible model of ischemic neuropathy induced by irreversible ligation of the femoral artery. We studied the evolution of behavioral function, epineurial and endoneurial vessel impairment, and large nerve myelinated fiber as well as small cutaneous unmyelinated fiber impairment for 1 month following the onset of ischemia. We observed a more severe hindlimb dysfunction and delayed recovery in diabetic animals. This was associated with reduced density of large arteries in the hindlimb and reduced sciatic nerve epineurial blood flow. A reduction in sciatic nerve endoneurial capillary density was also observed, associated with a reduction in small unmyelinated epidermal fiber number and large myelinated sciatic nerve fiber dysfunction. Moreover, vascular recovery was delayed, and nerve dysfunction was still present in diabetic animals at day 28. This easily reproducible model provides clear insight into the evolution over time of the impact of ischemia on nerve and microvessel homeostasis in the setting of diabetes. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Henry, M; Benlinmame, N; Belhsen, O K; Jule, Y; Mathieu, M
1995-02-01
The Phe-Met-Arg-Phe NH2 (FMRFamide)-like immunoreactivity was detected in neurons of the cerebro-pedal and visceral ganglia of the scallop Pecten maximus using immunohistochemical techniques. FMRFamide-like immunoreactivity was also found in nerve fibers localized in the connective tissue and the epithelial wall of the gonad. Electron microscopy study carried out on the gonads indicates the existence of numerous nerve fibers crossing the connective tissue; nerve terminals apposed to highly secretory cells were seen in the gonad wall. All in all, the present immunohistochemical and electron microscopic data suggest that FMRFamide might play an unusual secretagogue role in the gonad wall.
Teodori, Rosana Macher; Betini, Joice; de Oliveira, Larissa Salgado; Sobral, Luciane Lobato; Takeda, Sibele Yoko Mattozo; Montebelo, Maria Imaculada de Lima
2011-01-01
There is no consensus about the best time to start exercise after peripheral nerve injury. We evaluated the morphological and functional characteristics of the sciatic nerves of rats that began to swim immediately after crush nerve injury (CS1), those that began to swim 14 days after injury (CS14), injured rats not submitted to swimming (C), and uninjured rats submitted to swimming (S). After 30 days the number of axons in CS1 and CS14 was lower than in C (P < 0.01). The diameter of axons and nerve fibers was larger in CS1 (P < 0.01) and CS14 (P < 0.05) than in C, and myelin sheath thickness was lower in all crushed groups (P < 0.05). There was no functional difference between CS1 and CS14 (P > 0.05). Swimming exercise applied during the acute or late phase of nerve injury accelerated nerve regeneration and synaptic elimination after axonotmesis, suggesting that exercise may be initiated immediately after injury. PMID:21876821
Choi, Hyeongwon; Kim, Dong-Jin; Nam, Seungwoo; Lim, Sunki; Hwang, Jae-Sung; Park, Ki Sook; Hong, Hyun Sook; Won, Younsun; Shin, Min Kyung; Chung, Eunkyung; Son, Youngsook
2018-03-01
Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by intense pruritus and eczematous lesion. Substance P (SP) is an 11-amino-acid endogenous neuropeptide that belongs to the tachykinin family and several reports recently have supported the anti-inflammatory and tissue repairing roles of SP. In this study, we investigated whether SP can improve AD symptoms, especially the impaired skin barrier function, in 2, 4, 6-trinitrochlorobenzene (TNCB)-induced chronic dermatitis of NC/Nga mice or not. AD-like dermatitis was induced in NC/Nga mice by repeated sensitization with TNCB for 5 weeks. The experimental group designations and topical treatments were as follows: vehicle group (AD-VE); SP group (AD-SP); and SP with NK1R antagonist CP99994 (AD-SP-A) group. Histological analysis was performed to evaluate epidermal differentiation, dermal integrity, and epidermal nerve innervation in AD-like lesions. The skin barrier functions and pruritus of NC/Nga mice were evaluated by measuring transepidermal water loss (TEWL) and scratching behavior, respectively. Topical SP treatment resulted in significant down-regulation of Ki67 and the abnormal-type keratins (K) K6, K16, and K17, restoration of filaggrin and claudin-1, marked reduction of TEWL, and restoration of basement membrane and dermal collagen deposition, even under continuous sensitization of low dose TNCB. In addition, SP significantly reduced innervation of itch-evoking nerve fibers, gelatinase activity and nerve growth factor (NGF) expression in the epidermis but upregulated semaphorin-3A (Sema3A) expression in the epidermis, along with reduced scratching behavior in TNCB-treated NC/Nga mice. All of these effects were completely reversed by co-treatment with the NK1R antagonist CP99994. In cultured human keratinocytes, SP treatment reduced expression of TGF-α, but upregulated TGF-β and Sema3A. Topically administered SP can restore normal skin barrier function, reduce epidermal infiltration of itch-evoking nerve fibers in the AD-like skin lesions, and alleviate scratching behavior. Thus, SP may be proposed as a potential medication for chronic dermatitis and AD. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Ara, Mirian; Pajarin, Ana B.
2015-01-01
Objective. To assess the intrasession repeatability and intersession reproducibility of peripapillary retinal nerve fiber layer (RNFL) thickness parameters measured by scanning laser polarimetry (SLP) with enhanced corneal compensation (ECC) in healthy and glaucomatous eyes. Methods. One randomly selected eye of 82 healthy individuals and 60 glaucoma subjects was evaluated. Three scans were acquired during the first visit to evaluate intravisit repeatability. A different operator obtained two additional scans within 2 months after the first session to determine intervisit reproducibility. The intraclass correlation coefficient (ICC), coefficient of variation (COV), and test-retest variability (TRT) were calculated for all SLP parameters in both groups. Results. ICCs ranged from 0.920 to 0.982 for intravisit measurements and from 0.910 to 0.978 for intervisit measurements. The temporal-superior-nasal-inferior-temporal (TSNIT) average was the highest (0.967 and 0.946) in normal eyes, while nerve fiber indicator (NFI; 0.982) and inferior average (0.978) yielded the best ICC in glaucomatous eyes for intravisit and intervisit measurements, respectively. All COVs were under 10% in both groups, except NFI. TSNIT average had the lowest COV (2.43%) in either type of measurement. Intervisit TRT ranged from 6.48 to 12.84. Conclusions. The reproducibility of peripapillary RNFL measurements obtained with SLP-ECC was excellent, indicating that SLP-ECC is sufficiently accurate for monitoring glaucoma progression. PMID:26185762
Mrugacz, Malgorzata; Bakunowicz-Lazarczyk, Alina
2005-01-01
The aim of this study was to quantitatively assess and compare the thickness of the retinal nerve fiber layer (RNFL) in normal and glaucomatous eyes of children using the optical coherence tomograph. The mean RNFL thickness of normal eyes (n=26) was compared with that of glaucomatous eyes (n=26). The eyes were classified into diagnostic groups based on conventional ophthalmological physical examination, Humphrey 30-2 visual fields, stereoscopic optic nerve head photography, and optical coherence tomography. The mean RNFL was significantly thinner in glaucomatous eyes than in normal eyes: 95+/-26.3 and 132+/-24.5 microm, respectively. More specifically, the RNFL was significantly thinner in glaucomatous eyes than in normal eyes in the inferior quadrant: 87+/-23.5 and 122+/-24.2 microm, respectively. The mean and inferior quadrant RFNL thicknesses as measured by the optical coherence tomograph showed a statistically significant correlation with glaucoma. Optical coherence tomography may contribute to tracking of juvenile glaucoma progression. Copyright (c) 2005 S. Karger AG, Basel.
Leozappa, M.; Ciani, S.; Ferrari, T. Micelli
2011-01-01
Keratoconus associated with myelinated retinal nerve fibers is not frequent and the relationship between the two pathologies is difficult to explain, therefore studies and further investigation are required. The etiology of each condition may suggest the role of genetic factors. Follow-up is important to evaluate the progression of keratoconus and myelination. Here we describe the unusual coexistence of keratoconus and ipsilateral myelinated retinal nerve fiber layer and, for the first time, the corneal cross-linking treatment in this condition. PMID:21475609
El Beltagi, Tarek A; Bowd, Christopher; Boden, Catherine; Amini, Payam; Sample, Pamela A; Zangwill, Linda M; Weinreb, Robert N
2003-11-01
To determine the relationship between areas of glaucomatous retinal nerve fiber layer thinning identified by optical coherence tomography and areas of decreased visual field sensitivity identified by standard automated perimetry in glaucomatous eyes. Retrospective observational case series. Forty-three patients with glaucomatous optic neuropathy identified by optic disc stereo photographs and standard automated perimetry mean deviations >-8 dB were included. Participants were imaged with optical coherence tomography within 6 months of reliable standard automated perimetry testing. The location and number of optical coherence tomography clock hour retinal nerve fiber layer thickness measures outside normal limits were compared with the location and number of standard automated perimetry visual field zones outside normal limits. Further, the relationship between the deviation from normal optical coherence tomography-measured retinal nerve fiber layer thickness at each clock hour and the average pattern deviation in each visual field zone was examined by using linear regression (R(2)). The retinal nerve fiber layer areas most frequently outside normal limits were the inferior and inferior temporal regions. The least sensitive visual field zones were in the superior hemifield. Linear regression results (R(2)) showed that deviation from the normal retinal nerve fiber layer thickness at optical coherence tomography clock hour positions 6 o'clock, 7 o'clock, and 8 o'clock (inferior and inferior temporal) was best correlated with standard automated perimetry pattern deviation in visual field zones corresponding to the superior arcuate and nasal step regions (R(2) range, 0.34-0.57). These associations were much stronger than those between clock hour position 6 o'clock and the visual field zone corresponding to the inferior nasal step region (R(2) = 0.01). Localized retinal nerve fiber layer thinning, measured by optical coherence tomography, is topographically related to decreased localized standard automated perimetry sensitivity in glaucoma patients.
Mehraei, Golbarg; Gallardo, Andreu Paredes; Shinn-Cunningham, Barbara G.; Dau, Torsten
2017-01-01
In rodent models, acoustic exposure too modest to elevate hearing thresholds can nonetheless cause auditory nerve fiber deafferentation, interfering with the coding of supra-threshold sound. Low-spontaneous rate nerve fibers, important for encoding acoustic information at supra-threshold levels and in noise, are more susceptible to degeneration than high-spontaneous rate fibers. The change in auditory brainstem response (ABR) wave-V latency with noise level has been shown to be associated with auditory nerve deafferentation. Here, we measured ABR in a forward masking paradigm and evaluated wave-V latency changes with increasing masker-to-probe intervals. In the same listeners, behavioral forward masking detection thresholds were measured. We hypothesized that 1) auditory nerve fiber deafferentation increases forward masking thresholds and increases wave-V latency and 2) a preferential loss of low-SR fibers results in a faster recovery of wave-V latency as the slow contribution of these fibers is reduced. Results showed that in young audiometrically normal listeners, a larger change in wave-V latency with increasing masker-to-probe interval was related to a greater effect of a preceding masker behaviorally. Further, the amount of wave-V latency change with masker-to-probe interval was positively correlated with the rate of change in forward masking detection thresholds. Although we cannot rule out central contributions, these findings are consistent with the hypothesis that auditory nerve fiber deafferentation occurs in humans and may predict how well individuals can hear in noisy environments. PMID:28159652
Histochemical discrimination of fibers in regenerating rat infraorbital nerve
NASA Technical Reports Server (NTRS)
Wilke, R. A.; Riley, D. A.; Sanger, J. R.
1992-01-01
In rat dorsal root ganglia, histochemical staining of carbonic anhydrase (CA) and cholinesterase (CE) yields a reciprocal pattern of activity: Sensory processes are CA positive and CE negative, whereas motor processes are CA negative and CE positive. In rat infraorbital nerve (a sensory peripheral nerve), we saw extensive CA staining of nearly 100% of the myelinated axons. Although CE reactivity in myelinated axons was extremely rare, we did observe CE staining of unmyelinated autonomic fibers. Four weeks after transection of infraorbital nerves, CA-stained longitudinal sections of the proximal stump demonstrated 3 distinct morphological zones. A fraction of the viable axons retained CA activity to within 2 mm of the distal extent of the stump, and the stain is capable of resolving growth sprouts being regenerated from these fibers. Staining of unmyelinated autonomic fibers in serial sections shows that CE activity was not retained as far distally as is the CA sensory staining.
Parikh, Rajul S; Parikh, Shefali R; Kumar, Rajesh S; Prabakaran, S; Babu, J Gansesh; Thomas, Ravi
2008-07-01
To evaluate the diagnostic ability of scanning laser polarimetry (GDx variable corneal compensator [VCC]) for early glaucoma in Asian Indian eyes. Cross-sectional observational study. Two groups of patients (early glaucoma and normal) who satisfied the inclusion and exclusion criteria were included. Early glaucoma was diagnosed in presence of open angles, characteristic glaucomatous optic disc changes correlating with the visual field (VF) on automated perimetry (VF defect fulfilling at least 2 of 3 Anderson and Patella's criteria with mean deviation >or= -6 decibels). Normal subjects had visual acuity >or= 20/30 and intraocular pressure < 22 mmHg, with a normal optic disc and fields and no ocular abnormality. All patients underwent complete ophthalmic evaluation, including VF examination (24-2/30-2 Swedish interactive threshold algorithm standard program) and imaging with GDx VCC. Sensitivity, specificity, positive predictive value and negative predictive value, area under the receiving operating characteristic curve, and likelihood ratios (LRs) were calculated for various GDx VCC parameters. Seventy-four eyes (74 patients) with early glaucoma and 104 eyes (104 normal subjects) were enrolled. TSNIT Std Dev (temporal-superior-nasal-inferior-temporal standard deviation) had the best combination of sensitivity and specificity-61.3 and 95.2, respectively-followed by nerve fiber index score > 50 (sensitivity, 52.7%; specificity, 99%). Nerve fiber index score > 50 had positive and negative predictive values of 74.3% and 97.6%, respectively, for an assumed glaucoma prevalence of 5%. Nerve fiber index score > 50 had a positive LR (+LR) of 54.8 for early glaucoma. GDx VCC has moderate sensitivity, with high specificity, in the diagnosis of early glaucoma. The high +LR for the nerve fiber index score can provide valuable diagnostic information for individual patients.
Alessi Pissulin, Cristiane Neves; Henrique Fernandes, Ana Angélica; Sanchez Orellana, Alejandro Manuel; Rossi E Silva, Renata Calciolari; Michelin Matheus, Selma Maria
2017-03-01
Because of its long-lasting analgesic action, bupivacaine is an anesthetic used for peripheral nerve block and relief of postoperative pain. Muscle degeneration and neurotoxicity are its main limitations. There is strong evidence that low-level laser therapy (LLLT) assists in muscle and nerve repair. The authors evaluated the effects of a Gallium Arsenide laser (GaAs), on the regeneration of muscle fibers of the sternomastoid muscle and accessory nerve after injection of bupivacaine. In total, 30 Wistar adult rats were divided into 2 groups: control group (C: n=15) and laser group (L: n=15). The groups were subdivided by antimere, with 0.5% bupivacaine injected on the right and 0.9% sodium chloride on the left. LLLT (GaAs 904nm, 0,05W, 2.8J per point) was administered for 5 consecutive days, starting 24h after injection of the solutions. Seven days after the trial period, blood samples were collected for determination of creatine kinase (CK). The sternomastoid nerve was removed for morphological and morphometric analyses; the surface portion of the sternomastoid muscle was used for histopathological and ultrastructural analyses. Muscle CK and TNFα protein levels were measured. The anesthetic promoted myonecrosis and increased muscle CK without neurotoxic effects. The LLLT reduced myonecrosis, characterized by a decrease in muscle CK levels, inflammation, necrosis, and atrophy, as well as the number of central nuclei in the muscle fibers and the percentage of collagen. TNFα values remained constant. LLLT, at the dose used, reduced fibrosis and myonecrosis in the sternomastoid muscle triggered by bupivacaine, accelerating the muscle regeneration process. Copyright © 2017 Elsevier B.V. All rights reserved.
Pan, Feng; Mi, Jing-Yi; Zhang, Yan; Pan, Xiao-Yun; Rui, Yong-Jun
2016-06-01
The failure to accept reinnervation is considered to be one of the reasons for the poor motor functional recovery of intrinsic hand muscles (IHMs) after nerve injury. Rat could be a suitable model to be used in simulating motor function recovery of the IHMs after nerve injury as to the similarities in function and anatomy of the muscles between human and rat. However, few studies have reported the muscle fiber types composition and endplate morphologic characteristics of intrinsic forepaw muscles (IFMs) in the rat. In this study, the myosin heavy chain isoforms and acetylcholine receptors were stained by immunofluorescence to show the muscle fiber types composition and endplates on type-identified fibers of the lumbrical muscles (LMs), interosseus muscles (IMs), abductor digiti minimi (AM) and flexor pollicis brevis (FM) in rat forepaw. The majority of IFMs fibers were labeled positively for fast-switch fiber. However, the IMs were composed of only slow-switch fiber. With the exception of the IMs, the other IFMs had a part of hybrid fibers. Two-dimensional morphological characteristics of endplates on I and IIa muscle fiber had no significant differences among the IFMs. The LMs is the most suitable IFMs of rat to stimulate reinnervation of the IHMs after nerve injury. Gaining greater insight into the muscle fiber types composition and endplate morphology in the IFMs of rat may help understand the pathological and functional changes of IFMs in rat model stimulating reinnervation of IHMs after peripheral nerve injury.
High Spatial Resolution Imaging Mass Spectrometry of Human Optic Nerve Lipids and Proteins
NASA Astrophysics Data System (ADS)
Anderson, David M. G.; Spraggins, Jeffrey M.; Rose, Kristie L.; Schey, Kevin L.
2015-06-01
The human optic nerve carries signals from the retina to the visual cortex of the brain. Each optic nerve is comprised of approximately one million nerve fibers that are organized into bundles of 800-1200 fibers surrounded by connective tissue and supportive glial cells. Damage to the optic nerve contributes to a number of blinding diseases including: glaucoma, neuromyelitis optica, optic neuritis, and neurofibromatosis; however, the molecular mechanisms of optic nerve damage and death are incompletely understood. Herein we present high spatial resolution MALDI imaging mass spectrometry (IMS) analysis of lipids and proteins to define the molecular anatomy of the human optic nerve. The localization of a number of lipids was observed in discrete anatomical regions corresponding to myelinated and unmyelinated nerve regions as well as to supporting connective tissue, glial cells, and blood vessels. A protein fragment from vimentin, a known intermediate filament marker for astrocytes, was observed surrounding nerved fiber bundles in the lamina cribrosa region. S100B was also found in supporting glial cell regions in the prelaminar region, and the hemoglobin alpha subunit was observed in blood vessel areas. The molecular anatomy of the optic nerve defined by MALDI IMS provides a firm foundation to study biochemical changes in blinding human diseases.
Comparison of nerve trimming with the Er:YAG laser and steel knife
NASA Astrophysics Data System (ADS)
Josephson, G. D.; Bass, Lawrence S.; Kasabian, A. K.
1995-05-01
Best outcome in nerve repair requires precise alignment and minimization of scar at the repair interface. Surgeons attempt to create the sharpest cut surface at the nerve edge prior to approximation. Pulsed laser modalities are being investigated in several medical applications which require precise atraumatic cutting. We compared nerve trimming with the Er:YAG laser (1375 J/cm2) to conventional steel knife trimming prior to neurorrhaphy. Sprague- Dawley rats were anesthetized with ketamine and xylazine. Under operating microscope magnification the sciatic nerve was dissected and transected using one of the test techniques. In the laser group, the pulses were directed axially across the nerve using a stage which fixed laser fiber/nerve distance and orientation. Specimens were sent for scanning electron microscopy (SEM) at time zero. Epineurial repairs were performed with 10 - 0 nylon simple interrupted sutures. At intervals to 90 days, specimens were harvested and sectioned longitudinally and axially for histologic examination. Time zero SEM revealed clean cuts in both groups but individual axons were clearly visible in all laser specimens. Small pits were also visible on the cut surface of laser treated nerves. No significant differences in nerve morphology were seen during healing. Further studies to quantify axon counts, and functional outcome will be needed to assess this technique of nerve trimming. Delivery system improvements will also be required, to make the technique clinically practical.
Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses
Scheidt, Ryan E.; Kale, Sushrut; Heinz, Michael G.
2010-01-01
Auditory-nerve fibers demonstrate dynamic response properties in that they adapt to rapid changes in sound level, both at the onset and offset of a sound. These dynamic response properties affect temporal coding of stimulus modulations that are perceptually relevant for many sounds such as speech and music. Temporal dynamics have been well characterized in auditory-nerve fibers from normal-hearing animals, but little is known about the effects of sensorineural hearing loss on these dynamics. This study examined the effects of noise-induced hearing loss on the temporal dynamics in auditory-nerve fiber responses from anesthetized chinchillas. Post-stimulus time histograms were computed from responses to 50-ms tones presented at characteristic frequency and 30 dB above fiber threshold. Several response metrics related to temporal dynamics were computed from post-stimulus-time histograms and were compared between normal-hearing and noise-exposed animals. Results indicate that noise-exposed auditory-nerve fibers show significantly reduced response latency, increased onset response and percent adaptation, faster adaptation after onset, and slower recovery after offset. The decrease in response latency only occurred in noise-exposed fibers with significantly reduced frequency selectivity. These changes in temporal dynamics have important implications for temporal envelope coding in hearing-impaired ears, as well as for the design of dynamic compression algorithms for hearing aids. PMID:20696230
Gärtner, A; Pereira, T; Armada-da-Silva, Pas; Amado, S; Veloso, Ap; Amorim, I; Ribeiro, J; Santos, Jd; Bárcia, Rn; Cruz, P; Cruz, H; Luís, Al; Santos, Jm; Geuna, S; Maurício, Ac
2014-01-01
Peripheral nerves have the intrinsic capacity of self-regeneration after traumatic injury but the extent of the regeneration is often very poor. Increasing evidence demonstrates that mesenchymal stem/stromal cells (MSCs) may play an important role in tissue regeneration through the secretion of soluble trophic factors that enhance and assist in repair by paracrine activation of surrounding cells. In the present study, the therapeutic value of a population of umbilical cord tissue-derived MSCs, obtained by a proprietary method (UCX(®)), was evaluated on end-to-end rat sciatic nerve repair. Furthermore, in order to promote both, end-to-end nerve fiber contacts and MSC cell-cell interaction, as well as reduce the flush away effect of the cells after administration, a commercially available haemostatic sealant, Floseal(®), was used as vehicle. Both, functional and morphologic recoveries were evaluated along the healing period using extensor postural thrust (EPT), withdrawal reflex latency (WRL), ankle kinematics analysis, and either histological analysis or stereology, in the hyper-acute, acute and chronic phases of healing. The histological analysis of the hyper-acute and acute phase studies revealed that in the group treated with UCX(®) alone the Wallerian degeneration was improved for the subsequent process of regeneration, the fiber organization was higher, and the extent of fibrosis was lower. The chronic phase experimental groups revealed that treatment with UCX(®) induced an increased number of regenerated fibers and thickening of the myelin sheet. Kinematics analysis showed that the ankle joint angle determined for untreated animals was significantly different from any of the treated groups at the instant of initial contact (IC). At opposite toe off (OT) and heel rise (HR), differences were found between untreated animals and the groups treated with either uCx(®) alone or UCX(®) administered with Floseal(®). Overall, the UCX(®) application presented positive effects in functional and morphologic recovery, in both the acute and chronic phases of the regeneration process. Kinematics analysis has revealed positive synergistic effects brought by Floseal(®) as vehicle for MSCs.
Gärtner, A; Pereira, T; Armada-da-Silva, PAS; Amado, S; Veloso, AP; Amorim, I; Ribeiro, J; Santos, JD; Bárcia, RN; Cruz, P; Cruz, H; Luís, AL; Santos, JM; Geuna, S; Maurício, AC
2014-01-01
Peripheral nerves have the intrinsic capacity of self-regeneration after traumatic injury but the extent of the regeneration is often very poor. Increasing evidence demonstrates that mesenchymal stem/stromal cells (MSCs) may play an important role in tissue regeneration through the secretion of soluble trophic factors that enhance and assist in repair by paracrine activation of surrounding cells. In the present study, the therapeutic value of a population of umbilical cord tissue-derived MSCs, obtained by a proprietary method (UCX®), was evaluated on end-to-end rat sciatic nerve repair. Furthermore, in order to promote both, end-to-end nerve fiber contacts and MSC cell-cell interaction, as well as reduce the flush away effect of the cells after administration, a commercially available haemostatic sealant, Floseal®, was used as vehicle. Both, functional and morphologic recoveries were evaluated along the healing period using extensor postural thrust (EPT), withdrawal reflex latency (WRL), ankle kinematics analysis, and either histological analysis or stereology, in the hyper-acute, acute and chronic phases of healing. The histological analysis of the hyper-acute and acute phase studies revealed that in the group treated with UCX® alone the Wallerian degeneration was improved for the subsequent process of regeneration, the fiber organization was higher, and the extent of fibrosis was lower. The chronic phase experimental groups revealed that treatment with UCX® induced an increased number of regenerated fibers and thickening of the myelin sheet. Kinematics analysis showed that the ankle joint angle determined for untreated animals was significantly different from any of the treated groups at the instant of initial contact (IC). At opposite toe off (OT) and heel rise (HR), differences were found between untreated animals and the groups treated with either uCx® alone or UCX® administered with Floseal®. Overall, the UCX® application presented positive effects in functional and morphologic recovery, in both the acute and chronic phases of the regeneration process. Kinematics analysis has revealed positive synergistic effects brought by Floseal® as vehicle for MSCs. PMID:25075157
Stratford, J M; Larson, E D; Yang, R; Salcedo, E; Finger, T E
2017-07-01
Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT 3 receptors on the gustatory nerves. We show here, using 5-HT 3A GFP mice, that 5-HT 3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT 3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT 3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT 3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus. © 2017 Wiley Periodicals, Inc.
Tong, Ling-Ling; Ding, You-Quan; Jing, Hong-Bo; Li, Xuan-Yang; Qi, Jian-Guo
2015-05-06
Peripheral nerve functional recovery after injuries relies on both axon regeneration and remyelination. Both axon regeneration and remyelination require intimate interactions between regenerating neurons and their accompanying Schwann cells. Previous studies have shown that motor and sensory neurons are intrinsically different in their regeneration potentials. Moreover, denervated Schwann cells accompanying myelinated motor and sensory axons have distinct gene expression profiles for regeneration-associated growth factors. However, it is unknown whether differential motor and sensory functional recovery exists. If so, the particular one among axon regeneration and remyelination responsible for this difference remains unclear. Here, we aimed to establish an adult rat sciatic nerve crush model with the nonserrated microneedle holders and measured rat motor and sensory functions during regeneration. Furthermore, axon regeneration and remyelination was evaluated by morphometric analysis of electron microscopic images on the basis of nerve fiber classification. Our results showed that Aα fiber-mediated motor function was successfully recovered in both male and female rats. Aδ fiber-mediated sensory function was partially restored in male rats, but completely recovered in female littermates. For both male and female rats, the numbers of regenerated motor and sensory axons were quite comparable. However, remyelination was diverse among myelinated motor and sensory nerve fibers. In detail, Aβ and Aδ fibers incompletely remyelinated in male, but not female rats, whereas Aα fibers fully remyelinated in both sexes. Our result indicated that differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.
Enríquez-Pérez, Iris A; Galindo-Ordoñez, Karla E; Pantoja-Ortíz, Christian E; Martínez-Martínez, Arisaí; Acosta-González, Rosa I; Muñoz-Islas, Enriqueta; Jiménez-Andrade, Juan M
2017-08-10
Type-1 diabetes mellitus (T1DM) results in loss of innervation in some tissues including epidermis and retina; however, the effect on bone innervation is unknown. Likewise, T1DM results in pathological bone loss and increased risk of fracture. Thus, we quantified the density of calcitonin gene-related peptide (CGRP + ) sensory and tyrosine hydroxylase (TH + ) sympathetic nerve fibers and determined the association between the innervation density and microarchitecture of trabecular bone at the mouse femoral neck. Ten weeks-old female mice received 5 daily administrations of streptozocin (i.p. 50mg/kg) or citrate (control group). Twenty weeks later, femurs were analyzed by microCT and processed for immunohistochemistry. Confocal microscopy analysis revealed that mice with T1DM had a significant loss of both CGRP + and TH + nerve fibers in the bone marrow at the femoral neck. Likewise, microCT analysis revealed a significant decrease in the trabecular bone mineral density (tBMD), bone volume/total volume ratio (BV/TB), trabecular thickness (Tb.Th), trabecular number (Tb.N) and trabecular separation (Tb.Sp) in mice with T1DM as compared to control mice. Analysis of correlation revealed a positive and significant association between density of CGRP + or TH + nerve fibers with tBMD, BV/TV, Tb.Th and Tb.Sp, but not with trabecular number (there was a positive association only for CGRP + ) and degree of anisotropy (DA). This study suggests an interaction between sensory and sympathetic nervous system and T1DM-induced bone loss. Identification of the factors involved in the loss of CGRP + sensory and TH + sympathetic fibers and how they regulate bone loss may result in new avenues to treat T1DM-related osteoporosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Polymer Scaffolds with Preferential Parallel Grooves Enhance Nerve Regeneration
Mobasseri, Atefeh; Faroni, Alessandro; Minogue, Ben M.; Downes, Sandra; Reid, Adam J.
2015-01-01
We have modified the surface topography of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) blended films to improve cell proliferation and to guide the regeneration of peripheral nerves. Films with differing shaped grooves were made using patterned silicon templates, sloped walls (SL), V-shaped (V), and square-shaped (SQ), and compared with nongrooved surfaces with micropits. The solvent cast films were tested in vitro using adult adipose-derived stem cells differentiated to Schwann cell-like cells. Cell attachment, proliferation, and cell orientation were all improved on the grooved surfaces, with SL grooves giving the best results. We present in vivo data on Sprague-Dawley rat sciatic nerve injury with a 10-mm gap, evaluating nerve regeneration at 3 weeks across a polymer nerve conduit modified with intraluminal grooves (SL, V, and SQ) and differing wall thicknesses (70, 100, 120, and 210 μm). The SL-grooved nerve conduit showed a significant improvement over the other topographical-shaped grooves, while increasing the conduit wall thickness saw no positive effect on the biological response of the regenerating nerve. Furthermore, the preferred SL-grooved conduit (C) with 70 μm wall thickness was compared with the current clinical gold standard of autologous nerve graft (Ag) in the rat 10-mm sciatic nerve gap model. At 3 weeks postsurgery, all nerve gaps across both groups were bridged with regenerated nerve fibers. At 16 weeks, features of regenerated axons were comparable between the autograft (Ag) and conduit (C) groups. End organ assessments of muscle weight, electromyography, and skin reinnervation were also similar between the groups. The comparable experimental outcome between conduit and autograft, suggests that the PCL/PLA conduit with inner lumen microstructured grooves could be used as a potential alternative treatment for peripheral nerve repair. PMID:25435096
Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth.
Sugimura-Wakayama, Yukiko; Katagiri, Wataru; Osugi, Masashi; Kawai, Takamasa; Ogata, Kenichi; Sakaguchi, Kohei; Hibi, Hideharu
2015-11-15
Peripheral nerve regeneration across nerve gaps is often suboptimal, with poor functional recovery. Stem cell transplantation-based regenerative therapy is a promising approach for axon regeneration and functional recovery of peripheral nerve injury; however, the mechanisms remain controversial and unclear. Recent studies suggest that transplanted stem cells promote tissue regeneration through a paracrine mechanism. We investigated the effects of conditioned media derived from stem cells from human exfoliated deciduous teeth (SHED-CM) on peripheral nerve regeneration. In vitro, SHED-CM-treated Schwann cells exhibited significantly increased proliferation, migration, and the expression of neuron-, extracellular matrix (ECM)-, and angiogenesis-related genes. SHED-CM stimulated neuritogenesis of dorsal root ganglia and increased cell viability. Similarly, SHED-CM enhanced tube formation in an angiogenesis assay. In vivo, a 10-mm rat sciatic nerve gap model was bridged by silicon conduits containing SHED-CM or serum-free Dulbecco's modified Eagle's medium. Light and electron microscopy confirmed that the number of myelinated axons and axon-to-fiber ratio (G-ratio) were significantly higher in the SHED-CM group at 12 weeks after nerve transection surgery. The sciatic functional index (SFI) and gastrocnemius (target muscle) wet weight ratio demonstrated functional recovery. Increased compound muscle action potentials and increased SFI in the SHED-CM group suggested sciatic nerve reinnervation of the target muscle and improved functional recovery. We also observed reduced muscle atrophy in the SHED-CM group. Thus, SHEDs may secrete various trophic factors that enhance peripheral nerve regeneration through multiple mechanisms. SHED-CM may therefore provide a novel therapy that creates a more desirable extracellular microenvironment for peripheral nerve regeneration.
Florez, Rosangela Aló Maluza; Lang, Raquel; Veridiano, Adriano Mora; Zanini, Renato de Oliveira; Calió, Pedro Luiz; Simões, Ricardo Dos Santos; Testa, José Ricardo Gurgel
2010-01-01
The etiology of idiopathic peripheral facial palsy (IPFP) is still uncertain; however, some authors suggest the possibility of a viral infection. to analyze the ultrastructure of the facial nerve seeking viral evidences that might provide etiological data. We studied 20 patients with peripheral facial palsy (PFP), with moderate to severe FP, of both genders, between 18-60 years of age, from the Clinic of Facial Nerve Disorders. The patients were broken down into two groups - Study: eleven patients with IPFP and Control: nine patients with trauma or tumor-related PFP. The fragments were obtained from the facial nerve sheath or from fragments of its stumps - which would be discarded or sent to pathology exam during the facial nerve repair surgery. The removed tissue was fixed in 2% glutaraldehyde, and studied under Electronic Transmission Microscopy. In the study group we observed an intense repair cellular activity by increased collagen fibers, fibroblasts containing developed organelles, free of viral particles. In the control group this repair activity was not evident, but no viral particles were observed. There were no viral particles, and there were evidences of intense activity of repair or viral infection.
NEURAL ORGANIZATION OF SENSORY INFORMATIONS FOR TASTE,
TASTE , ELECTROPHYSIOLOGY), (*NERVES, *TONGUE), NERVE CELLS, NERVE IMPULSES, PHYSIOLOGY, NERVOUS SYSTEM, STIMULATION(PHYSIOLOGY), NERVE FIBERS, RATS...HAMSTERS, STIMULATION(PHYSIOLOGY), PERCEPTION, COOLING, BEHAVIOR, PSYCHOPHYSIOLOGY, TEMPERATURE, THRESHOLDS(PHYSIOLOGY), CHEMORECEPTORS , STATISTICAL ANALYSIS, JAPAN
Zaĭtseva, O V; Kuznetsova, T V; Markosova, T G
2009-01-01
Localization and peculiarities of NO-ergic elements were studied for he first time throughout the entire length of digestive tract of the marine gastropod mollusc Achatina fulica (Prosobranchia) and the terrestrial molusc Littorina littorea (Pulmonata) by using histochemical method of detection of NADPH-diaphorase (NADPHd). NO-ergic cells and fibers were revealed in all parts of the mollusc digestive tract beginning from pharynx. An intensive NADPHd activity was found in many intraepithelial cells of the open type and in their processes in intra- and subepithelial nerve plexuses, single subepithelial neurons, granular connective tissue cells, and numerous nerve fibers among muscle elements of he digestive tract wall as well as in nerves innervating the tract. NADPHd was also present in receptor cells of he oral area and in the central A. fulica ganglia participating in innervation of the digestive tract. The digestive tract NO-ergic system ofA. fulica has a more complex organization that that of L. littorea. In the A. fulica pharynx, stomach, and midgut, directly beneath epithelium, there is revealed a complex system of glomerular structures formed by thin NADPHd-positive nerve fibers coming from the side of epithelium. More superficially under the main groups of muscle elements, small agglomerations of NADPHd-positive neurons are seen, which could be considered as primitive, non-formed microganglia. Peculiarities of distribution and a possible functional role of NO-ergic elements in the digestive tract of molluscs are discussed as compared with other invertebrate and vertebrate animals.
Lepiarczyk, E; Bossowska, A; Kaleczyc, J; Majewski, M
2011-01-01
Botulinum toxin (BTX) belongs to a family of neurotoxins which strongly influence the function of autonomic neurons supplying the urinary bladder. Accordingly, BTX has been used as an effective drug in experimental therapies of a range of neurogenic bladder disorders. However, there is no detailed information dealing with the influence of BTX on the morphological and chemical properties of nerve fibres supplying the urinary bladder wall. Therefore, the present study investigated, using double-labeling immunohistochemistry, the distribution, relative frequency and chemical coding of cholinergic and noradrenergic nerve fibers supplying the wall of the urinary bladder in normal female pigs (n = 6) and in the pigs (n = 6) after intravesical BTX injections. In the pigs injected with BTX, the number of adrenergic (DbetaH-positive) nerve fibers distributed in the bladder wall (urothelium, submucosa and muscle coat) was distinctly higher while the number of cholinergic (VAChT-positive) nerve terminals was lower than that found in the control animals. Moreover, the injections of BTX resulted in some changes dealing with the chemical coding of the adrenergic nerve fibers. In contrast to the normal pigs, in BTX injected animals the number of DbetaH/NPY- or DbetaH/CGRP-positive axons was higher in the muscle coat, and some fibres distributed in the urothelium and submucosa expressed immunoreactivity to CGRP. The results obtained suggest that the therapeutic effects of BTX on the urinary bladder might be dependent on changes in the distribution and chemical coding of nerve fibers supplying this organ.
Wang, Zhi-Yong; Wang, Jian-Wei; Qin, Li-Hua; Zhang, Wei-Guang; Zhang, Pei-Xun; Jiang, Bao-Guo
2018-06-01
To investigate the efficacy of chitin biological absorbable catheters in a rat model of autologous nerve transplantation. A segment of sciatic nerve was removed to produce a sciatic nerve defect, and the sural nerve was cut from the ipsilateral leg and used as a graft to bridge the defect, with or without use of a chitin biological absorbable catheter surrounding the graft. The number and morphology of regenerating myelinated fibers, nerve conduction velocity, nerve function index, triceps surae muscle morphology, and sensory function were evaluated at 9 and 12 months after surgery. All of the above parameters were improved in rats in which the nerve graft was bridged with chitin biological absorbable catheters compared with rats without catheters. The results of this study indicate that use of chitin biological absorbable catheters to surround sural nerve grafts bridging sciatic nerve defects promotes recovery of structural, motor, and sensory function and improves muscle fiber morphology. © 2018 John Wiley & Sons Ltd.
Association of ABO blood groups and Rh factor with retinal and choroidal thickness.
Teberik, Kuddusi; Eski, Mehmet Tahir
2018-06-01
To evaluate if ABO blood group and Rh factor have an effect on retinal and choroidal thickness. This study was designed prospectively. Retinal nerve fiber layer, retinal, and choroidal thicknesses were measured with spectral-domain optical coherence tomography. Retinal and choroidal thickness measurements (one subfoveal, three temporal, and three nasal) were obtained at 500-μm intervals up to 1500 μm with the caliper system. In this study, 109 male and 151 female, 260 individuals in total were included. There were 125 subjects in group A, 29 in group B, 34 in group AB, and 72 in group O. Rh factor was positive in 194 subjects and negative in 66. There was no significant difference between the groups regarding age (p = 0.667). The groups did not show any statistical difference in retinal nerve fiber layer thickness. There was significant difference found for mean retinal thickness at temporal 1000 μm when four groups were compared (p = 0.037). No statistically significant difference was detected for the remaining retinal and choroidal sectoral regions. The groups did not statistically significantly differ concerning Rh factor (p > 0.05). Although we found a significant difference in retinal thickness in the temporal retina between group B with group A and group O, we suggest that both blood group and Rh factor have no effect on retinal and choroidal thickness.
Bräu, M E; Vogel, W; Hempelmann, G
1998-10-01
Local anesthetics suppress excitability by interfering with ion channel function. Ensheathment of peripheral nerve fibers, however, impedes diffusion of drugs to the ion channels and may influence the evaluation of local anesthetic potencies. Investigating ion channels in excised membrane patches avoids these diffusion barriers. We investigated the effect of local anesthetics with voltage-dependent Na+ and K+ channels in enzymatically dissociated sciatic nerve fibers of Xenopus laevis using the patch clamp method. The outside-out configuration was chosen to apply drugs to the external face of the membrane. Local anesthetics reversibly blocked the transient Na+ inward current, as well as the steady-state K+ outward current. Half-maximal tonic inhibiting concentrations (IC50), as obtained from concentration-effect curves for Na+ current block were: tetracaine 0.7 microM, etidocaine 18 microM, bupivacaine 27 microM, procaine 60 microM, mepivacaine 149 microM, and lidocaine 204 microM. The values for voltage-dependent K+ current block were: bupivacaine 92 microM, etidocaine 176 microM, tetracaine 946 microM, lidocaine 1118 microM, mepivacaine 2305 microM, and procaine 6302 microM. Correlation of potencies with octanol:buffer partition coefficients (logP0) revealed that ester-bound local anesthetics were more potent in blocking Na+ channels than amide drugs. Within these groups, lipophilicity governed local anesthetic potency. We conclude that local anesthetic action on peripheral nerve ion channels is mediated via lipophilic drug-channel interactions. Half-maximal blocking concentrations of commonly used local anesthetics for Na+ and K+ channel block were determined on small membrane patches of peripheral nerve fibers. Because drugs can directly diffuse to the ion channel in this model, these data result from direct interactions of the drugs with ion channels.
The visceromotor and somatic afferent nerves of the penis.
Diallo, Djibril; Zaitouna, Mazen; Alsaid, Bayan; Quillard, Jeanine; Ba, Nathalie; Allodji, Rodrigue Sètchéou; Benoit, Gérard; Bedretdinova, Dina; Bessede, Thomas
2015-05-01
Innervation of the penis supports erectile and sensory functions. This article aims to study the efferent autonomic (visceromotor) and afferent somatic (sensory) nervous systems of the penis and to investigate how these systems relate to vascular pathways. Penises obtained from five adult cadavers were studied via computer-assisted anatomic dissection (CAAD). The number of autonomic and somatic nerve fibers was compared using the Kruskal-Wallis test. Proximally, penile innervation was mainly somatic in the extra-albugineal sector and mainly autonomic in the intracavernosal sector. Distally, both sectors were almost exclusively supplied by somatic nerve fibers, except the intrapenile vascular anastomoses that accompanied both somatic and autonomic (nitrergic) fibers. From this point, the neural immunolabeling within perivascular nerve fibers was mixed (somatic labeling and autonomic labeling). Accessory afferent, extra-albugineal pathways supplied the outer layers of the penis. There is a major change in the functional type of innervation between the proximal and distal parts of the intracavernosal sector of the penis. In addition to the pelvis and the hilum of the penis, the intrapenile neurovascular routes are the third level where the efferent autonomic (visceromotor) and the afferent somatic (sensory) penile nerve fibers are close. Intrapenile neurovascular pathways define a proximal penile segment, which guarantees erectile rigidity, and a sensory distal segment. © 2015 International Society for Sexual Medicine.
Garcia-Martin, Elena; Pinilla, Isabel; Sancho, Eva; Almarcegui, Carmen; Dolz, Isabel; Rodriguez-Mena, Diego; Fuertes, Isabel; Cuenca, Nicolas
2012-09-01
To evaluate the ability of time-domain and Fourier-domain optical coherence tomographies (OCTs) to detect macular and retinal nerve fiber layer atrophies in retinitis pigmentosa (RP). To test the intrasession reproducibility using three OCT instruments (Stratus, Cirrus, and Spectralis). Eighty eyes of 80 subjects (40 RP patients and 40 healthy subjects) underwent a visual field examination, together with 3 macular scans and 3 optic disk evaluations by the same experienced examiner using 3 OCT instruments. Differences between healthy and RP eyes were compared. The relationship between measurements with each OCT instrument was evaluated. Repeatability was studied by intraclass correlation coefficients and coefficients of variation. Macular and retinal nerve fiber layer atrophies were detected in RP patients for all OCT parameters. Macular and retinal nerve fiber layer thicknesses, as determined by the different OCTs, were correlated but significantly different (P < 0.05). Reproducibility was moderately high using Stratus, good using Cirrus and Spectralis, and excellent using the Tru-track technology of Spectralis. In RP eyes, measurements showed higher variability compared with healthy eyes. Differences in thickness measurements existed between OCT instruments, despite there being a high degree of correlation. Fourier-domain OCT can be considered a valid and repeatability technique to detect retinal nerve fiber layer atrophy in RP patients.
MELANOPHORE BANDS AND AREAS DUE TO NERVE CUTTING, IN RELATION TO THE PROTRACTED ACTIVITY OF NERVES
Parker, G. H.
1941-01-01
1. When appropriate chromatic nerves are cut caudal bands, cephalic areas, and the pelvic fins of the catfish Ameiurus darken. In pale fishes all these areas will sooner or later blanch. By recutting their nerves all such blanched areas will darken again. 2. These observations show that the darkening of caudal bands, areas, and fins on cutting their nerves is not due to paralysis (Brücke), to the obstruction of central influences such as inhibition (Zoond and Eyre), nor to vasomotor disturbances (Hogben), but to activities emanating from the cut itself. 3. The chief agents concerned with the color changes in Ameiurus are three: intermedin from the pituitary gland, acetylcholine from the dispersing nerves (cholinergic fibers), and adrenalin from the concentrating nerves (adrenergic fibers). The first two darken the fish; the third blanches it. In darkening the dispersing nerves appear to initiate the process and to be followed and substantially supplemented by intermedin. 4. Caudal bands blanch by lateral invasion, cephalic areas by lateral invasion and internal disintegration, and pelvic fins by a uniform process of general loss of tint equivalent to internal disintegration. 5. Adrenalin may be carried in such an oil as olive oil and may therefore act as a lipohumor; it is soluble in water and hence may act as a hydrohumor. In lateral invasion (caudal bands, cephalic areas) it probably acts as a lipohumor and in internal disintegration (cephalic areas, pelvic fins) it probably plays the part of a hydrohumor. 6. The duration of the activity of dispersing nerves after they had been cut was tested by means of the oscillograph, by anesthetizing blocks, and by cold-blocks. The nerves of Ameiurus proved to be unsatisfactory for oscillograph tests. An anesthetizing block, magnesium sulfate, is only partly satisfactory. A cold-block, 0°C., is successful to a limited degree. 7. By means of a cold-block it can be shown that dispersing autonomic nerve fibers in Ameiurus can continue in activity for at least 6½ hours. It is not known how much longer they may remain active. So far as the duration of their activity is concerned dispersing nerve fibers in this fish are unlike other types of nerve fibers usually studied. PMID:19873231
Guthoff, Rudolf F; Wienss, Holger; Hahnel, Christian; Wree, Andreas
2005-07-01
Evaluation of a new method to visualize distribution and morphology of human corneal nerves (Adelta- and C-fibers) by means of fluorescence staining, confocal laser scanning microscopy, and 3-dimensional (3D) reconstruction. Trephinates of corneas with a diagnosis of Fuchs corneal dystrophy were sliced into layers of 200 microm thickness using a Draeger microkeratome (Storz, Germany). The anterior lamella was stained with the Life/Dead-Kit (Molecular Probes Inc.), examined by the confocal laser scanning microscope "Odyssey XL," step size between 0.5 and 1 microm, and optical sections were digitally 3D-reconstructed. Immediate staining of explanted corneas by the Life/Dead-Kit gave a complete picture of the nerves in the central human cornea. Thin nerves running parallel to the Bowman layer in the subepithelial plexus perforate the Bowman layer orthogonally through tube-like structures. Passing the Bowman layer, Adelta- and C-fibers can be clearly distinguished by fiber diameter, and, while running in the basal epithelial plexus, by their spatial arrangement. Adelta-fibers run straight and parallel to the Bowman layer underneath the basal cell layer. C-fibers, after a short run parallel to the Bowman layer, send off multiple branches penetrating epithelial cell layers orthogonally, ending blindly in invaginations of the superficial cells. In contrast to C-fibers, Adelta-fibers show characteristic bulbous formations when kinking into the basal epithelial plexus. Ex-vivo fluorescence staining of the cornea and 3D reconstructions of confocal scans provide a fast and easily reproducible tool to visualize nerves of the anterior living cornea at high resolution. This may help to clarify gross variations of nerve fiber patterns under various clinical and experimental conditions.
Van Acker, Nathalie; Ragé, Michael; Vermeirsch, Hilde; Schrijvers, Dorien; Nuydens, Rony; Byttebier, Geert; Timmers, Maarten; De Schepper, Stefanie; Streffer, Johannes; Andries, Luc; Plaghki, Léon; Cras, Patrick; Meert, Theo
2016-01-01
The in vivo cutaneous nerve regeneration model using capsaicin is applied extensively to study the regenerative mechanisms and therapeutic efficacy of disease modifying molecules for small fiber neuropathy (SFN). Since mismatches between functional and morphological nerve fiber recovery are described for this model, we aimed at determining the capability of the capsaicin model to truly mimic the morphological manifestations of SFN in diabetes. As nerve and blood vessel growth and regenerative capacities are defective in diabetes, we focused on studying the key regulator of these processes, the neuropilin-1 (NRP-1)/semaphorin pathway. This led us to the evaluation of NRP-1 receptor expression in epidermis and dermis of subjects presenting experimentally induced small fiber neuropathy, diabetic polyneuropathy and of diabetic subjects without clinical signs of small fiber neuropathy. The NRP-1 receptor was co-stained with CD31 vessel-marker using immunofluorescence and analyzed with Definiens® technology. This study indicates that capsaicin application results in significant loss of epidermal NRP-1 receptor expression, whereas diabetic subjects presenting small fiber neuropathy show full epidermal NRP-1 expression in contrast to the basal expression pattern seen in healthy controls. Capsaicin induced a decrease in dermal non-vascular NRP-1 receptor expression which did not appear in diabetic polyneuropathy. We can conclude that the capsaicin model does not mimic diabetic neuropathy related changes for cutaneous NRP-1 receptor expression. In addition, our data suggest that NRP-1 might play an important role in epidermal nerve fiber loss and/or defective regeneration and that NRP-1 receptor could change the epidermal environment to a nerve fiber repellant bed possibly through Sem3A in diabetes. PMID:27598321
Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers
Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin
2018-01-01
Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB− fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. PMID:28600222
Ullah, Imran; Park, Ju-Mi; Kang, Young-Hoon; Byun, June-Ho; Kim, Dae-Geon; Kim, Joo-Heon; Kang, Dong-Ho; Rho, Gyu-Jin; Park, Bong-Wook
2017-09-01
Human dental mesenchymal stem cells isolated from the dental follicle, pulp, and root apical papilla of extracted wisdom teeth have been known to exhibit successful and potent neurogenic differentiation capacity. In particular, human dental pulp-derived stem cells (hDPSCs) stand out as the most prominent source for in vitro neuronal differentiation. In this study, to evaluate the in vivo peripheral nerve regeneration potential of hDPSCs and differentiated neuronal cells from DPSCs (DF-DPSCs), a total of 1 × 10 6 hDPSCs or DF-hDPSCs labeled with PKH26 tracking dye and supplemented with fibrin glue scaffold and collagen tubulization were transplanted into the sciatic nerve resection (5-mm gap) of rat models. At 12 weeks after cell transplantation, both hDPSC and DF-hDPSC groups showed notably increased behavioral activities and higher muscle contraction forces compared with those in the non-cell transplanted control group. In immunohistochemical analysis of regenerated nerve specimens, specific markers for angiogenesis, axonal fiber, and myelin sheath increased in both the cell transplantation groups. Pretransplanted labeled PKH26 were also distinctly detected in the regenerated nerve tissues, indicating that transplanted cells were well-preserved and differentiated into nerve cells. Furthermore, no difference was observed in the nerve regeneration potential between the hDPSC and DF-hDPSC transplanted groups. These results demonstrate that dental pulp tissue is an excellent stem cell source for nerve regeneration, and in vivo transplantation of the undifferentiated hDPSCs could exhibit sufficient and excellent peripheral nerve regeneration potential.
Comparative study of peripheral neuropathy and nerve regeneration in NOD and ICR diabetic mice.
Homs, Judit; Ariza, Lorena; Pagès, Gemma; Verdú, Enrique; Casals, Laura; Udina, Esther; Chillón, Miguel; Bosch, Assumpció; Navarro, Xavier
2011-09-01
The non-obese diabetic (NOD) mouse was suggested as an adequate model for diabetic autonomic neuropathy. We evaluated sensory-motor neuropathy and nerve regeneration following sciatic nerve crush in NOD males rendered diabetic by multiple low doses of streptozotocin, in comparison with similarly treated Institute for Cancer Research (ICR) mice, a widely used model for type I diabetes. Neurophysiological values for both strains showed a decline in motor and sensory nerve conduction velocity at 7 and 8 weeks after induction of diabetes in the intact hindlimb. However, amplitudes of compound muscle and sensory action potentials (CMAPs and CNAPs) were significantly reduced in NOD but not in ICR diabetic mice. Morphometrical analysis showed myelinated fiber loss in highly hyperglycemic NOD mice, but no significant changes in fiber size. There was a reduction of intraepidermal nerve fibers, more pronounced in NOD than in ICR diabetic mice. Interestingly, aldose reductase and poly(ADP-ribose) polymerase (PARP) activities were increased already at 1 week of hyperglycemia, persisting until the end of the experiment in both strains. Muscle and nerve reinnervation was delayed in diabetic mice following sciatic nerve crush, being more marked in NOD mice. Thus, diabetes of mid-duration induces more severe peripheral neuropathy and slower nerve regeneration in NOD than in ICR mice. © 2011 Peripheral Nerve Society.
CHEN, LIJIE; HU, MIN; ZHANG, LIHAI; LIU, SANXIA; LUO, JINCHAO; DENG, TIANZHENG; TAO, YE
2012-01-01
Understanding the microanatomy of the facial nerve is vital to functional restoration of facial nerve injury. This study aimed to locate the spatial orientation of five branches in the extratemporal trunk of the rat facial nerve (ETFN). Fifteen adult Sprague-Dawley albino rats were divided randomly into five groups corresponding to the five facial nerves. Fluoro-Gold™ (FG) was applied to one branch in all three rats in each group. The trunk of the facial nerve was cut at three points for fluorescence detection. Staining results showed that each branch of the facial motor nerve had a topographical orientation in the distal part of the ETFN. The temporal branch was located in the medial and acroscopic quadrant of the nerve trunk. The zygomatic branch was located in the lateral and acroscopic quadrant. The buccal branch occupied the upper half of the nerve trunk, whereas the mandibular branch occupied the lower half. The cervical branch presented a square-shaped distribution in the lateral nerve trunk. In the middle part of the ETFN, the topographical orientation remained clear, but the FG-labeled zone was extended to some extent. In the stylomastoid foramen region, all branches diffused, thereby blurring the orientation. In conclusion, each branch of the facial motor nerve had a topographical orientation and distribution in the crotch and middle part of the ETFN, but the branches diffused near the stylomastoid foramen. PMID:23226737
Sensory nerve action potentials and sensory perception in women with arthritis of the hand.
Calder, Kristina M; Martin, Alison; Lydiate, Jessica; MacDermid, Joy C; Galea, Victoria; MacIntyre, Norma J
2012-05-10
Arthritis of the hand can limit a person's ability to perform daily activities. Whether or not sensory deficits contribute to the disability in this population remains unknown. The primary purpose of this study was to determine if women with osteoarthritis (OA) or rheumatoid arthritis (RA) of the hand have sensory impairments. Sensory function in the dominant hand of women with hand OA or RA and healthy women was evaluated by measuring sensory nerve action potentials (SNAPs) from the median, ulnar and radial nerves, sensory mapping (SM), and vibratory and current perception thresholds (VPT and CPT, respectively) of the second and fifth digits. All SNAP amplitudes were significantly lower for the hand OA and hand RA groups compared with the healthy group (p < 0.05). No group differences were found for SNAP conduction velocities, SM, VPT, and CPT. We propose, based on these findings, that women with hand OA or RA may have axonal loss of sensory fibers in the median, ulnar and radial nerves. Less apparent were losses in conduction speed or sensory perception.
Sensory nerve action potentials and sensory perception in women with arthritis of the hand
2012-01-01
Background Arthritis of the hand can limit a person’s ability to perform daily activities. Whether or not sensory deficits contribute to the disability in this population remains unknown. The primary purpose of this study was to determine if women with osteoarthritis (OA) or rheumatoid arthritis (RA) of the hand have sensory impairments. Methods Sensory function in the dominant hand of women with hand OA or RA and healthy women was evaluated by measuring sensory nerve action potentials (SNAPs) from the median, ulnar and radial nerves, sensory mapping (SM), and vibratory and current perception thresholds (VPT and CPT, respectively) of the second and fifth digits. Results All SNAP amplitudes were significantly lower for the hand OA and hand RA groups compared with the healthy group (p < 0.05). No group differences were found for SNAP conduction velocities, SM, VPT, and CPT. Discussion We propose, based on these findings, that women with hand OA or RA may have axonal loss of sensory fibers in the median, ulnar and radial nerves. Less apparent were losses in conduction speed or sensory perception. PMID:22575001
The optic nerve is a bundle of more than 1 million nerve fibers that carry visual messages. You have one connecting ... retina) to your brain. Damage to an optic nerve can cause vision loss. The type of vision ...
Shock wave treatment improves nerve regeneration in the rat.
Mense, Siegfried; Hoheisel, Ulrich
2013-05-01
The aims of the experiments were to: (1) determine whether low-energy shock wave treatment accelerates the recovery of muscle sensitivity and functionality after a nerve lesion; and (2) assess the effect of shock waves on the regeneration of injured nerve fibers. After compression of a muscle nerve in rats the effects of shock wave treatment on the sequelae of the lesion were tested. In non-anesthetized animals, pressure pain thresholds and exploratory activity were determined. The influence of the treatment on the distance of nerve regeneration was studied in immunohistochemical experiments. Both behavioral and immunohistochemical data show that shock wave treatment accelerates the recovery of muscle sensitivity and functionality and promotes regeneration of injured nerve fibers. Treatment with focused shock waves induces an improvement of nerve regeneration in a rodent model of nerve compression. Copyright © 2012 Wiley Periodicals, Inc.
Biological studies of swine exposed to 60-Hz electric fields. Volume 7. Neurology. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-12-01
Neurophysiological responses in three generations of miniature swine chronically exposed to a 30-kV/m, 60-Hz electric field have been assessed in a series of screening experiments. Results are presented from experiments on peripheral nerve function in parental (F/sub 0/) female swine at 100 days of gestation, and from experiments on synaptic transmission in first- and second-generation (F/sub 1/ and F/sub 2/) progeny at 6 weeks of age, all following chronic exposure to a 60-Hz electric field. In the several measures of peripheral nerve function examined, only two showed consistent differences between exposed and sham-exposed animals: C-fiber (but not B-fiber) conduction velocitymore » was decreased in nerve preparations from exposed swine, and recovery, as measured by the increase in amplitude of the compound action potential, was consistently, although not statistically, less in B- and C-fibers from exposed animals when compared to values for the sham-exposed controls. Although changes (increases or decreases) in various parameters of synaptic transmission were observed between exposed and sham-exposed groups, the differences were not consistent across experiments or generations. Only one measure of synaptic function showed a consistent difference throughout the studies: the conduction velocities of B and C components of the postsynaptic compound action potential were increased following electric-field exposure (statistically significant only in B-fibers of the F/sub 2/ generations). 7 refs., 60 figs., 17 tabs.« less
Konakci, Kadriye Zeynep; Streicher, Johannes; Hoetzenecker, Wolfram; Haberl, Ines; Blumer, Michael Josef Franz; Wieczorek, Grazyna; Meingassner, Josef Gottfried; Paal, Szabolcs Levente; Holzinger, Daniel; Lukas, Julius-Robert; Blumer, Roland
2005-12-01
To analyze palisade endings in extraocular muscles (EOMs) of a primate species and to examine our previous findings in cat that palisade endings are putative effector organs. Eleven monkeys (Macaca fascicularis) of both sexes, between 4 and 6 years of age were analyzed. Whole EOM myotendons were immunostained with four combinations of triple-fluorescent labeling and examined by confocal laser scanning microscopy. Labeling included antibodies against choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), neurofilament, and synaptophysin. Muscle fibers were counterstained with phalloidin. Palisade endings were observed in all monkey EOMs. Nerve fibers extended from the muscle into the tendon and looped back to divide into a terminal arborization (palisade ending) around a single muscle fiber tip. In approximately 30% of the cases, nerve fibers supplying palisade endings often established motor terminals outside the palisade complex. Nerve fibers forming palisade endings were ChAT-neurofilament positive. Axonal branches of palisade endings were ChAT-neurofilament positive as well. All palisade nerve terminals exhibited ChAT-synaptophysin immunoreactivity. Within the palisade complex, palisade nerve terminals exhibited VAChT immunoreactivity. All palisade nerve terminals were VAChT-synaptophysin immunoreactive. The results confirm that in the monkey, palisade endings contain acetylcholine and are therefore most likely effector organs. Palisade endings are also present in human EOMs and because of their location at the myotendinous junction, these organs are of crucial interest for strabismus surgery.
Anatomic assessment of sympathetic peri-arterial renal nerves in man.
Sakakura, Kenichi; Ladich, Elena; Cheng, Qi; Otsuka, Fumiyuki; Yahagi, Kazuyuki; Fowler, David R; Kolodgie, Frank D; Virmani, Renu; Joner, Michael
2014-08-19
Although renal sympathetic denervation therapy has shown promising results in patients with resistant hypertension, the human anatomy of peri-arterial renal nerves is poorly understood. The aim of our study was to investigate the anatomic distribution of peri-arterial sympathetic nerves around human renal arteries. Bilateral renal arteries were collected from human autopsy subjects, and peri-arterial renal nerve anatomy was examined by using morphometric software. The ratio of afferent to efferent nerve fibers was investigated by dual immunofluorescence staining using antibodies targeted for anti-tyrosine hydroxylase and anti-calcitonin gene-related peptide. A total of 10,329 nerves were identified from 20 (12 hypertensive and 8 nonhypertensive) patients. The mean individual number of nerves in the proximal and middle segments was similar (39.6 ± 16.7 per section and 39.9 ± 1 3.9 per section), whereas the distal segment showed fewer nerves (33.6 ± 13.1 per section) (p = 0.01). Mean subject-specific nerve distance to arterial lumen was greatest in proximal segments (3.40 ± 0.78 mm), followed by middle segments (3.10 ± 0.69 mm), and least in distal segments (2.60 ± 0.77 mm) (p < 0.001). The mean number of nerves in the ventral region (11.0 ± 3.5 per section) was greater compared with the dorsal region (6.2 ± 3.0 per section) (p < 0.001). Efferent nerve fibers were predominant (tyrosine hydroxylase/calcitonin gene-related peptide ratio 25.1 ± 33.4; p < 0.0001). Nerve anatomy in hypertensive patients was not considerably different compared with nonhypertensive patients. The density of peri-arterial renal sympathetic nerve fibers is lower in distal segments and dorsal locations. There is a clear predominance of efferent nerve fibers, with decreasing prevalence of afferent nerves from proximal to distal peri-arterial and renal parenchyma. Understanding these anatomic patterns is important for refinement of renal denervation procedures. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Palisade endings are present in canine extraocular muscles and have a cholinergic phenotype.
Rungaldier, Stefanie; Pomikal, Christine; Streicher, Johannes; Blumer, Roland
2009-11-20
Classical proprioceptors, like Golgi tendon organs and muscle spindles are absent in the extraocular muscles (EOMs) of most mammals. Instead, a nerve end organ was detected in the EOMs of each species including sheep, cat, rabbit, rat, monkey, and human examined so far: the palisade ending. Until now no clear evidence appeared that palisade endings are also present in canine EOMs. Here, we analyzed dog EOMs by confocal laser scanning microscopy, 3D reconstruction, and transmission electron microscopy. In EOM wholemount preparations stained with antibodies against neurofilament and synaptophysin we could demonstrate typical palisade endings. Nerve fibers coming from the muscle extend into the tendon. There, the nerve fibers turn 180 degrees and return to branch into preterminal axons which establish nerve terminals around a single muscle fiber tip. Fine structural analysis revealed that each palisade ending in dog EOMs establish nerve terminals on the tendon. In some palisade endings we found nerve terminals contacting the muscle fiber as well. Such neuromuscular contacts have a basal lamina in the synaptic cleft. By using an antibody against choline acetyltransferase (ChAT) we proved that canine palisade endings are ChAT-immunoreactive. This study shows that palisade endings are present in canine EOMs. In line with prior findings in cat and monkey, palisade endings in dog have a cholinergic phenotype.
Xin, Long; Xu, Weixing; Yu, Leijun; Fan, Shunwu; Wang, Wei; Yu, Fang; Wang, Zhenbin
2017-05-12
Growth of nerve fibers has been shown to occur in a rabbit model of intravertebral disc degeneration (IVD) induced by needle puncture. As nerve growth may underlie the process of chronic pain in humans affected by disc degeneration, we sought to investigate the factors underlying nerve ingrowth in a minimally invasive annulotomy rabbit model of IVD by comparing the effects of empty disc defects with those of defects filled with poly(lactic-co-glycolic acid)/fibrin gel (PLGA) plugs. New Zealand white rabbits (n = 24) received annular injuries at three lumbar levels (L3/4, L4/5, and L5/6). The discs were randomly assigned to four groups: (a) annular defect (1.8-mm diameter; 4-mm depth) by mini-trephine, (b) annular defect implanted with a PLGA scaffold containing a fibrin gel, (c) annular puncture by a 16G needle (5-mm depth), and (d) uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, real-time PCR, and analysis of proteoglycan (PG) content. Nerve ingrowth into the discs was assessed by immunostaining with the nerve marker protein gene product 9.5. Injured discs showed a progressive disc space narrowing with significant disc degeneration and proteoglycan loss, as confirmed by imaging results, molecular and compositional analysis, and histological examinations. In 16G punctured discs, nerve ingrowth was observed on the surface of scar tissue. In annular defects, nerve fibers were found to be distributed along small fissures within the fibrocartilaginous-like tissue that filled the AF. In discs filled with PLGA/ fibrin gel, more nerve fibers were observed growing deeper into the inner AF along the open annular track. In addition, innervations scores showed significantly higher than those of punctured discs and empty defects. A limited vascular proliferation was found in the injured sites and regenerated tissues. Nerve ingrowth was significantly higher in PLGA/fibrin-filled discs than in empty defects. Possible explanations include (i) annular fissures along the defect and early loss of proteoglycan may facilitate the ingrowth process and (ii) biodegradable PLGA/fibrin gel may promote adverse growth of nerves and blood vessels into deeper parts of injured disc. The rabbit annular defect model of disc degeneration appears suitable to investigate the effects of nerve ingrowth in relation to pain generation.
A novel rat model of brachial plexus injury with nerve root stumps.
Fang, Jintao; Yang, Jiantao; Yang, Yi; Li, Liang; Qin, Bengang; He, Wenting; Yan, Liwei; Chen, Gang; Tu, Zhehui; Liu, Xiaolin; Gu, Liqiang
2018-02-01
The C5-C6 nerve roots are usually spared from avulsion after brachial plexus injury (BPI) and thus can be used as donors for nerve grafting. To date, there are no appropriate animal models to evaluate spared nerve root stumps. Hence, the aim of this study was to establish and evaluate a rat model with spared nerve root stumps in BPI. In rupture group, the proximal parts of C5-T1 nerve roots were held with the surrounding muscles and the distal parts were pulled by a sudden force after the brachial plexus was fully exposed, and the results were compared with those of sham group. To validate the model, the lengths of C5-T1 spared nerve root stumps were measured and the histologies of the shortest one and the corresponding spinal cord were evaluated. C5 nerve root stump was found to be the shortest. Histology findings demonstrated that the nerve fibers became more irregular and the continuity decreased; numbers and diameters of myelinated axons and thickness of myelin sheaths significantly decreased over time. The survival of motoneurons was reduced, and the death of motoneurons may be related to the apoptotic process. Our model could successfully create BPI model with nerve root stumps by traction, which could simulate injury mechanisms. While other models involve root avulsion or rupturing by distal nerve transection. This model would be suitable for evaluating nerve root stumps and testing new therapeutic strategies for neuroprotection through nerve root stumps in the future. Copyright © 2017. Published by Elsevier B.V.
Castro-Lopes, J M; Coimbra, A
1991-03-01
The spinal cord projections of the 3 main forelimb nerves-median, radial and ulnar, were studied in the rat dorsal horn with transganglionic transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP), or using the disappearance of fluoride resistant acid phosphatase (FRAP) after nerve section. The projection patterns in lamina II were similar following the two procedures. The median and the radial nerve fibers projected to the medial and the intermediate thirds, respectively, of the dorsal horn lamina II in spinal cord segments C4-C8. The ulnar nerve projected to segments C6-C8 between the areas occupied by the other two nerves. The FRAP method also showed that the lateral part of lamina II, which was not filled by radial nerve fibers, received the projections from the dorsal cutaneous branches of cervical spinal nerves. In addition, FRAP disappeared from the medial end of segment T1 after skin incisions extending from the medial brachium to the axilla, which seemed due to severance of the cutaneous branchlets of the lateral anterior thoracic nerve. The FRAP procedure is thus sensitive enough to detect fibers in lamina II arising from small peripheral nerves, and may be used as an alternative to the anterograde tracing methods whenever there are no overlapping projections.
Virtual Instrumentation for a Fiber-Optics-Based Artificial Nerve
NASA Technical Reports Server (NTRS)
Lyons, Donald R.; Kyaw, Thet Mon; Griffin, DeVon (Technical Monitor)
2001-01-01
A LabView-based computer interface for fiber-optic artificial nerves has been devised as a Masters thesis project. This project involves the use of outputs from wavelength multiplexed optical fiber sensors (artificial nerves), which are capable of producing dense optical data outputs for physical measurements. The potential advantages of using optical fiber sensors for sensory function restoration is the fact that well defined WDM-modulated signals can be transmitted to and from the sensing region allowing networked units to replace low-level nerve functions for persons desirous of "intelligent artificial limbs." Various FO sensors can be designed with high sensitivity and the ability to be interfaced with a wide range of devices including miniature shielded electrical conversion units. Our Virtual Instrument (VI) interface software package was developed using LabView's "Laboratory Virtual Instrument Engineering Workbench" package. The virtual instrument has been configured to arrange and encode the data to develop an intelligent response in the form of encoded digitized signal outputs. The architectural layout of our nervous system is such that different touch stimuli from different artificial fiber-optic nerve points correspond to gratings of a distinct resonant wavelength and physical location along the optical fiber. Thus, when an automated, tunable diode laser sends scans, the wavelength spectrum of the artificial nerve, it triggers responses that are encoded with different touch stimuli by way wavelength shifts in the reflected Bragg resonances. The reflected light is detected and a resulting analog signal is fed into ADC1 board and DAQ card. Finally, the software has been written such that the experimenter is able to set the response range during data acquisition.
Bustamante, Jorge; Socolovsky, Mariano; Martins, Roberto S; Emmerich, Juan; Pennini, Maria Gabriela; Lausada, Natalia; Domitrovic, Luis
2011-01-01
Epineural stitches are a means to avoid tension in a nerve suture. We evaluate this technique, relative to interposed grafts and simple neurorraphy, in a rat model. Twenty rats were allocated to four groups. For Group 1, sectioning of the sciatic nerve was performed, a segment 4 mm long discarded, and epineural suture with distal anchoring stitches were placed resulting in slight tension neurorraphy. For Group 2, a simple neurorraphy was performed. For Group 3, a 4 mm long graft was employed and Group 4 served as control. Ninety days after, reoperation, latency of motor action potentials recording and axonal counts were performed. Inter-group comparison was done by means of ANOVA and the non-parametric Kruskal-Wallis test. The mean motor latency for the simple suture (2.27±0.77 ms) was lower than for the other two surgical groups, but lower than among controls (1.69±0.56 ms). Similar values were founding in both group 1 (2.66±0.71 ms) and group 3 (2.64±0.6 ms). When fibers diameters were compared a significant difference was identified between groups 2 and 3 (p=0.048). Good results can be obtained when suturing a nerve employ with epineural anchoring stitches. However, more studies are needed before extrapolating results to human nerve sutures.
Stochastic information transfer from cochlear implant electrodes to auditory nerve fibers
NASA Astrophysics Data System (ADS)
Gao, Xiao; Grayden, David B.; McDonnell, Mark D.
2014-08-01
Cochlear implants, also called bionic ears, are implanted neural prostheses that can restore lost human hearing function by direct electrical stimulation of auditory nerve fibers. Previously, an information-theoretic framework for numerically estimating the optimal number of electrodes in cochlear implants has been devised. This approach relies on a model of stochastic action potential generation and a discrete memoryless channel model of the interface between the array of electrodes and the auditory nerve fibers. Using these models, the stochastic information transfer from cochlear implant electrodes to auditory nerve fibers is estimated from the mutual information between channel inputs (the locations of electrodes) and channel outputs (the set of electrode-activated nerve fibers). Here we describe a revised model of the channel output in the framework that avoids the side effects caused by an "ambiguity state" in the original model and also makes fewer assumptions about perceptual processing in the brain. A detailed comparison of how different assumptions on fibers and current spread modes impact on the information transfer in the original model and in the revised model is presented. We also mathematically derive an upper bound on the mutual information in the revised model, which becomes tighter as the number of electrodes increases. We found that the revised model leads to a significantly larger maximum mutual information and corresponding number of electrodes compared with the original model and conclude that the assumptions made in this part of the modeling framework are crucial to the model's overall utility.
Gerbi, A; Maixent, J M; Ansaldi, J L; Pierlovisi, M; Coste, T; Pelissier, J F; Vague, P; Raccah, D
1999-01-01
Diabetic neuropathy has been associated with a decrease in nerve conduction velocity, Na,K-ATPase activity and characteristic histological damage of the sciatic nerve. The aim of this study was to evaluate the potential effect of a dietary supplementation with fish oil [(n-3) fatty acids] on the sciatic nerve of diabetic rats. Diabetes was induced by intravenous streptozotocin injection. Diabetic animals (n = 20) were fed a nonpurified diet supplemented with either olive oil (DO) or fish oil (DM), and control animals (n = 10) were fed a nonpurified diet supplemented with olive oil at a daily dose of 0.5 g/kg by gavage for 8 wk. Nerves were characterized by their conduction velocity, morphometric analysis and membrane Na, K-ATPase activity. Nerve conduction velocity, as well as Na,K-ATPase activity, was improved by fish oil treatment. A correlation was found between these two variables (R = 0.999, P < 0.05). Moreover, a preventive effect of fish oil was observed on nerve histological damage [endoneurial edema, axonal degeneration (by 10-15%) with demyelination]. Moreover, the normal bimodal distribution of the internal diameter of myelinated fibers was absent in the DO group and was restored in the DM group. These data suggest that fish oil therapy may be effective in the prevention of diabetic neuropathy.
Srivastav, Khushboo; Mahdi, Abbas A.; Shukla, Rajendra K.; Meyer, Carsten H.; Akduman, Levent; Khanna, Vinay K.
2016-01-01
Purpose To study the correlation between serum levels of vitamin B12, folic acid, and homocysteine and the severity of diabetic retinopathy and the correlation with retinal nerve fiber layer (RNFL) thinning on spectral domain optical coherence tomography (SD-OCT). Methods In a tertiary care center–based prospective cross-sectional study, 60 consecutive cases and 20 healthy controls in the age group of 40–65 years were included. The eyes of the cases were divided into three groups according to Early Treatment Diabetic Retinopathy Study (ETDRS) classification: diabetes mellitus without retinopathy (n = 20), non-proliferative diabetic retinopathy with macular edema (n = 20), and proliferative diabetic retinopathy with macular edema (n = 20). The serum levels of vitamin B12 and folic acid were measured using a standard protocol. The serum homocysteine assay was performed using an enzyme-linked immunosorbent assay (ELISA) kit. Average RNFL thickness was measured using SD-OCT. Statistical analysis was used to assess the correlations between the study variables. Results Increased severity of diabetic retinopathy was found to correlate with an increase in the serum levels of homocysteine (F = 53.79; p<0.001). The mean serum levels of vitamin B12 and folic acid were found to be within the normal reference range. A positive correlation was found between retinal nerve fiber layer thinning and serum levels of homocysteine (p<0.001). Conclusions This study, for the first time, demonstrated a correlation between increased homocysteine with a decrease in RNFL thickness and increased severity of diabetic retinopathy. PMID:27994434
Sun, Nina N; Wong, Simon S; Keith, Ingegerd; Witten, Mark L
2004-09-01
To evaluate the role of substance P (SP)-containing C-fiber nerves in the development of the inflammatory responses to sidestream cigarette smoke (SSCS), female Fischer 344 rats were randomly assigned into vehicle and capsaicin groups, respectively. Then, half the number in each group (N = 24) was nose-only exposed to air or 0.4 mg/m3 total particulate matter of SSCS for 4 h/day for 7 days. Exposure of the vehicle rats to SSCS induced obvious pulmonary neurogenic inflammation as indicated by elevations in plasma extravasation and proinflammatory cytokine secretions [interieukin (IL)-1beta and IL-12]. In addition, except for SP release, SSCS exposure significantly induced the tachykininergic toxicities at the gene level: upregulation of beta-preprotachykinin-I (beta-PPT-I) mRNA. However, neither SSCS exposure nor capsaicin pretreatment affects the immunolabeling density of neurokinin-1 receptor (NK-1R) in airway epithelium. SSCS also significantly inactivated pulmonary neutral endopeptidase (NEP) in lung tissue. Moreover, pretreatment with capsaicin significantly exacerbated the SSCS-induced inflammatory responses mentioned above as well as the release of plasma protein. Considering that capsaicin did not affect the normal control baselines of these parameters except for a decrease in NK-1R mRNA, we conclude that the degree of SSCS-induced inflammatory response was exacerbated because of the depletion of stored SP and/or inactivation of capsaicin-sensitive C-fiber nerves. Our data suggest the loss of afferent tachykinin SP signaling may lead to dysfunction of the sensory C-fiber nerve reflexes during exposure to SSCS, suggesting that SP serves a protective role.
Song, Lujie; Zhu, Jianqiang; Zhang, Xiong; Cui, Zhiqiang; Fu, Qiang; Huang, Jianwen; Lu, Hongkai
2016-01-01
Erectile dysfunction (ED) continues to be a significant problem for men following radical prostatectomy. We hypothesize that intracavernous injection of BDNF-hypersecreting human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) can ameliorate ED in a rat model of cavernous nerve electrocautery injury (CNEI). Forty-two male Sprague-Dawley rats were randomly divided into four groups: sham + PBS (n = 6), CNEI + PBS (n = 12), CNEI + hUCB-MSCs (n = 12) and CNEI + BDNF-hUCB-MSCs (n = 12). At day 28 post-surgery, erectile function was examined and specimens were harvested for histology. Immunofluorescence staining, Masson's trichrome staining and transmission electron microscopy were performed to determine the structural changes in corpus cavernosum. Cells that are injected into penis were labeled by BrdU and tracked by immunofluorescence staining. Three days post-surgery, the concentration of BDNF protein in penile tissues was measured by Western blotting. Rats intracavernosally injected with BDNF-hUCB-MSCs showed the most significant improvement in the ratio of maximal ICP to MAP (ICP/MAP). Histological examinations showed moderate recovery of nNOS-positive nerve fibers, ratio of smooth muscle to collagen and smooth muscle content in the CNEI + hUCB-MSCs group and remarkable recovery in the CNEI + BDNF-hUCB-MSCs group compared to the CNEI + PBS group. By TEM examination, atrophy of myelinated and non-myelinated nerve fibers was noted in CNEI + PBS group and significant recovery was observed in two treated groups. There were more BrdU-positive cells in the BDNF-hUCB-MSCs group than in the hUCB-MSCs group both in the penis and in the MPG. Three days post-surgery, the concentration of BDNF protein in penile tissues in BDNF-hUCB-MSCs group was much higher than in other groups. Intracavernous injection of BDNF-hypersecreting hUCB-MSCs can enhance the recovery of erectile function, promote the CNs regeneration and inhibit corpus cavernosum fibrosis after CNEI in a rat model.
Kuga, Nahoko; Tanioka, Asao; Hagihara, Koichiro; Kawai, Tomoyuki
2017-01-01
Bladder smooth muscle shows spontaneous phasic contractions, which undergo a variety of abnormal changes depending on pathological conditions. How abnormal contractions affect the activity of bladder afferent nerves remains to be fully tested. In this study, we examined the relationship between transient increases in bladder pressure, representing transient contraction of bladder smooth muscle, and spiking patterns of bladder afferent fibers of the L6 dorsal root, in rat pathological models. All recordings were performed at a bladder pressure of approximately 10 cmH2O by maintaining the degree of bladder filling. In the cyclophosphamide-induced model, both Aδ and C fibers showed increased sensitivity to transient bladder pressure increases. In the prostaglandin E2-induced model, Aδ fibers, but not C fibers, specifically showed overexcitation that was time-locked with transient bladder pressure increases. These fiber type-specific changes in nerve spike patterns may underlie the symptoms of urinary bladder diseases. PMID:29267380
The effect of cavernous nerve traction on erectile function in rats
Chen, Liping; Wang, Tao; Wang, Shaogang; Liu, Jihong
2017-01-01
We performed this study to evaluate the effect of cavernous nerve (CN) traction on erectile function in rats. Thirty-two 8- week-old Sprague–Dawley rats were divided into four groups: control, 1-minute CN traction, 2-minute CN traction, and 2-minute CN crush. CN traction was performed using a glass hook with a tensile force of 0.2 Newton. One month later, the mean arterial pressure (MAP) and intracavernosal pressure (ICP) in response to CN stimulation were measured to assess erectile function. The penis and major pelvic ganglion (MPG) were harvested to explore the expression of neuronal nitric oxide synthase (nNOS) and neurofilament, fibrosis and apoptosis. The ICP/MAP ratio was reduced in the 2-minute CN traction group compared with the control group (P < 0.05). The ICP/MAP ratio in the CN crush group was lower than in the other three groups (P < 0.05, for each). Expression of nNOS in both MPG and dorsal penile nerve was lower in the CN traction group than in the control group, but was higher than in the CN crush group (P < 0.05). Nerve fiber number in the dorsal penile nerve was reduced by 2-minute CN traction (P < 0.05). The ratios of collagen to smooth muscle content and the apoptosis were both increased the in 2-minute CN traction group compared with the control group (P < 0.05). The findings indicate that CN traction is an effective CN injury model and the injury it caused is relatively mild compared with the CN crush model. PMID:28982169
Ardeshirpour, Farhad; Hurliman, Elisabeth; Wendelschafer-Crabb, Gwen; McAdams, Brian; Hilger, Peter A; Kennedy, William R; Lassig, Amy Anne D; Brenner, Michael J
2017-09-01
Wound healing influences both the cosmetic and functional outcomes of facial surgery. Study of cutaneous innervation may afford insight into patients' preoperative wound healing potential and aid in their selection of appropriate surgical procedures. To present the quantitative and qualitative differences of epidermal nerve fibers (ENFs), neurotransmitters, vasculature, and mast cells in facial skin among patients after primary and revision rhytidectomies. This pilot study collected cutaneous specimens from 8 female patients aged 42 to 66 years who underwent primary rhytidectomy (n = 5) and revision rhytidectomy (n = 3) at Centennial Lakes Surgery Center, Edina, Minnesota, from July 2010 to March 2014. Tissue was processed for confocal/epifluorescence microscopy and indirect immunofluorescent localization of several neural and tissue antigens as well as basement membrane and mast cell markers. Primary rhytidectomy vs revision rhytidectomy with selection of a small area of redundant, otherwise disposed of tissue anterior to the tragus for ENF study. Demographic characteristics included smoking status; 10-point rating scales for facial sensation, pain, and paresthesias; and confocal/epifluorescence microscopy to quantify ENFs, neurotransmitters, vasculature, and mast cells. Patients in the primary rhytidectomy group had a mean (SD) of 54.4 (31.6) ENFs/mm (range, 14.2-99.2 ENFs/mm), and those in the revision rhytidectomy group had a mean (SD) of 18.6 (5.8) ENFs/mm (range, 13.8-25.0 ENFs/mm). A patient in the primary rhytidectomy group was a 25-pack-year smoker and had 14.2 ENFs/mm, the lowest in both groups. In addition to these structural neural changes, functional neural changes in revision rhytidectomy samples included qualitative changes in normal neural antigen prevalence (substance P, calcitonin gene-related peptide, and vasoactive intestinal peptide). Capillary loops appeared less robust and were less common in dermal papilla among samples from both the primary and revision groups, and mast cells were more degranulated. No differences were found in subjective, self-reported postoperative facial sensation. Previous skin elevation was associated with decreased epidermal nerve fiber density and qualitative changes in dermal nerves, capillaries, and mast cells in a clinical sample of patients undergoing rhytidectomy. Future research is needed to determine whether histological findings predict wound healing and to better understand the effects of surgery on regenerative capacity of epidermal nerve fibers. NA.
Sakaue, Yuko; Bellier, Jean-Pierre; Kimura, Shin; D'Este, Loredana; Takeuchi, Yoshihiro; Kimura, Hiroshi
2014-01-01
Cholinergic structures in the arm of the cephalopod Octopus vulgaris were studied by immunohistochemistry using specific antisera for two types (common and peripheral) of acetylcholine synthetic enzyme choline acetyltransferase (ChAT): antiserum raised against the rat common type ChAT (cChAT), which is cross-reactive with molluscan cChAT, and antiserum raised against the rat peripheral type ChAT (pChAT), which has been used to delineate peripheral cholinergic structures in vertebrates, but not previously in invertebrates. Western blot analysis of octopus extracts revealed a single pChAT-positive band, suggesting that pChAT antiserum is cross-reactive with an octopus counterpart of rat pChAT. In immunohistochemistry, only neuronal structures of the octopus arm were stained by cChAT and pChAT antisera, although the pattern of distribution clearly differed between the two antisera. cChAT-positive varicose nerve fibers were observed in both the cerebrobrachial tract and neuropil of the axial nerve cord, while pChAT-positive varicose fibers were detected only in the neuropil of the axial nerve cord. After epitope retrieval, pChAT-positive neuronal cells and their processes became visible in all ganglia of the arm, including the axial and intramuscular nerve cords, and in ganglia of suckers. Moreover, pChAT-positive structures also became detectable in nerve fibers connecting the different ganglia, in smooth nerve fibers among muscle layers and dermal connective tissues, and in sensory cells of the suckers. These results suggest that the octopus arm has two types of cholinergic nerves: cChAT-positive nerves from brain ganglia and pChAT-positive nerves that are intrinsic to the arm.
Kogan, E A; Ovakimyan, A S; Paramonova, N B; Faizullina, N M; Kazachenko, I F; Adamyan, L V
2016-01-01
Endometriosis (EM) is morphologically characterized by the development of extrauterine endometrioid heterotopies, the major clinical symptoms of which is chronic pelvic pain, which is a serious problem not only in modern gynecology, but also in public health as a whole. to investigate neurogenic markers in the foci of EM of various sites and histological structure in women with and without pain syndrome. The investigation was performed using the operative material (resected segments of the intestine, bladder, rectovaginal septum, and small pelvic peritoneum) obtained from 52 women with an intraoperative and morphologically verified diagnosis of EM and (Group 1) and without (Group 2) pain syndrome. Immunohistochemical examination was made on paraffin-embedded tissue sections in accordance with the standard protocols, by using the antibodies: 1) anti-PGP 9.5 polyclonal rabbit antibodies; 2) mouse anti-human neurofilament (NF) protein monoclonal antibodies (Clone 2F1); 3) mouse anti-nerve growth factor (NGF) monoclonal antibodies; 4) monoclonal mouse anti-human NGF receptor p75 (NGFRp75) antibodies (Dako, Denmark). Our findings demonstrate differences in the expression of PGP 9.5, NFs, NGF, and NGFRp75 in the foci and adjacent tissue in painful and painless EM irrespective of the locations of heterotopies. The found molecular features are a manifestation of the remodeling of nerve fibers and nerve endings in the foci of EM and PGP9.5, NGF, and NGFRp75 give rise to nerve fiber neoformation and pain syndrome in EM. At the same time, the immunohistochemical phenotype of EM foci does not depend on their site and reflects the presence or absence of pain syndrome.
Mabe, Abigail M; Hoard, Jennifer L; Duffourc, Michelle M; Hoover, Donald B
2006-10-01
Neurturin (NRTN) is a neurotrophic factor required during development for normal cholinergic innervation of the heart, but whether NRTN continues to function in the adult heart is unknown. We have therefore evaluated NRTN expression in adult mouse heart and the association of NRTN receptors with intracardiac cholinergic neurons and nerve fibers. Mapping the regional distribution and density of cholinergic nerves in mouse heart was an integral part of this goal. Analysis of RNA from adult C57BL/6 mouse hearts demonstrated NRTN expression in atrial and ventricular tissue. Virtually all neurons in the cardiac parasympathetic ganglia exhibited the cholinergic phenotype, and over 90% of these cells contained both components of the NRTN receptor, Ret tyrosine kinase and GDNF family receptor alpha2 (GFRalpha2). Cholinergic nerve fibers, identified by labeling for the high affinity choline transporter, were abundant in the sinus and atrioventricular nodes, ventricular conducting system, interatrial septum, and much of the right atrium, but less abundant in the left atrium. The right ventricular myocardium contained a low density of cholinergic nerves, which were sparse in other regions of the working ventricular myocardium. Some cholinergic nerves were also associated with coronary vessels. GFRalpha2 was present in most cholinergic nerve fibers and in Schwann cells and their processes throughout the heart. Some cholinergic nerve fibers, such as those in the sinus node, also exhibited Ret immunoreactivity. These findings provide the first detailed mapping of cholinergic nerves in mouse heart and suggest that the neurotrophic influence of NRTN on cardiac cholinergic innervation continues in mature animals.
Wang, Yiwen; Danilova, Vicktoria; Cragin, Tiffany; Roberts, Thomas W; Koposov, Alexey; Hellekant, Göran
2009-02-18
Psychophysically, sweet and bitter have long been considered separate taste qualities, evident already to the newborn human. The identification of different receptors for sweet and bitter located on separate cells of the taste buds substantiated this separation. However, this finding leads to the next question: is bitter and sweet also kept separated in the next link from the taste buds, the fibers of the taste nerves? Previous studies in non-human primates, P. troglodytes, C. aethiops, M. mulatta, M. fascicularis and C. jacchus, suggest that the sweet and bitter taste qualities are linked to specific groups of fibers called S and Q fibers. In this study we apply a new sweet taste modifier, lactisole, commercially available as a suppressor of the sweetness of sugars on the human tongue, to test our hypothesis that sweet taste is conveyed in S fibers. We first ascertained that lactisole exerted similar suppression of sweetness in M. fascicularis, as reported in humans, by recording their preference of sweeteners and non- sweeteners with and without lactisole in two-bottle tests. The addition of lactisole significantly diminished the preference for all sweeteners but had no effect on the intake of non-sweet compounds or the intake of water. We then recorded the response to the same taste stimuli in 40 single chorda tympani nerve fibers. Comparison between single fiber nerve responses to stimuli with and without lactisole showed that lactisole only suppressed the responses to sweeteners in S fibers. It had no effect on the responses to any other stimuli in all other taste fibers. In M. fascicularis, lactisole diminishes the attractiveness of compounds, which taste sweet to humans. This behavior is linked to activity of fibers in the S-cluster. Assuming that lactisole blocks the T1R3 monomer of the sweet taste receptor T1R2/R3, these results present further support for the hypothesis that S fibers convey taste from T1R2/R3 receptors, while the impulse activity in non-S fibers originates from other kinds of receptors. The absence of the effect of lactisole on the faint responses in some S fibers to other stimuli as well as the responses to sweet and non-sweet stimuli in non-S fibers suggest that these responses originate from other taste receptors.
Image analysis software for following progression of peripheral neuropathy
NASA Astrophysics Data System (ADS)
Epplin-Zapf, Thomas; Miller, Clayton; Larkin, Sean; Hermesmeyer, Eduardo; Macy, Jenny; Pellegrini, Marco; Luccarelli, Saverio; Staurenghi, Giovanni; Holmes, Timothy
2009-02-01
A relationship has been reported by several research groups [1 - 4] between the density and shapes of nerve fibers in the cornea and the existence and severity of peripheral neuropathy. Peripheral neuropathy is a complication of several prevalent diseases or conditions, which include diabetes, HIV, prolonged alcohol overconsumption and aging. A common clinical technique for confirming the condition is intramuscular electromyography (EMG), which is invasive, so a noninvasive technique like the one proposed here carries important potential advantages for the physician and patient. A software program that automatically detects the nerve fibers, counts them and measures their shapes is being developed and tested. Tests were carried out with a database of subjects with levels of severity of diabetic neuropathy as determined by EMG testing. Results from this testing, that include a linear regression analysis are shown.
Development of the Aortic Baroreflex in Microgravity
NASA Technical Reports Server (NTRS)
Shimizu, Tsuyoshi; Yamasaki, Masao; Waki, Hidefumi; Katsuda, Shin-ichiro; Oishi, Hirotaka; Katahira, Kiyoaki; Nagayama, Tadanori; Miyake, Masao; Miyamoto, Yukako
2003-01-01
Baroreceptors sense pressure in blood vessels and send this information to the brain. The primary baroreceptors are located in the main blood vessel leaving the heart (the aorta) and in the arteries in the neck (the carotid arteries). The brain uses information from the baroreceptors to determine whether blood pressure should be raised or lowered. These reflex responses are called baroreflexes. Changing position within a gravity field (i.e., moving from lying to sitting or standing) powerfully stimulates the baroreflexes. In weightlessness, the amount of stimuli that the baroreflexes receive is dramatically reduced. If this reduction occurs when the pathways that control the baroreflexes are being formed, it is possible that either the structure or function of the baroreceptors may be permanently changed. To study the effect of microgravity on structural and functional development of the aortic baroreflex system, we studied young rats (eight days old at launch) that flew on the Space Shuttle Columbia for 16 days. Six rats were studied on landing day; another six were studied after re-adapting to Earth's gravity for 30 days. On both landing day and 30 days after landing, we tested the sensitivity of the rats' baroreflex response. While the rats were anaesthetized, we recorded their arterial pressure, heart rate, and aortic nerve activity. After the tissues were preserved with perfusion fixation, we also examined the baroreflex structures. On landing day, we found that, compared to the controls, the flight rats had: fewer unmyelinated nerve fibers in their aortic nerves lower baroreflex sensitivity significantly lower contraction ability and wall tension of the aorta a reduced number of smooth muscle cells in the aorta. In the 30-day recovery group, the sensitivity of the baroreflex showed no difference between the flight rats and the control groups, although the unmyelinated fibers of the aortic nerve remained reduced in the flight rats. The results show that spaceflight does affect the development of the aortic baroreflex. The sensitivity of the reflex may be suppressed; however, the function of the blood pressure control system can re-adapt to Earth's gravity if the rats return before maturation. The structural differences in the input pathway of the reflex (Le., the reduction in nerve fibers) may remain permanently.
Challenges for Nerve Repair Using Chitosan-Siloxane Hybrid Porous Scaffolds
Shirosaki, Yuki; Hayakawa, Satoshi; Osaka, Akiyoshi; Lopes, Maria A.; Santos, José D.; Geuna, Stefano; Mauricio, Ana C.
2014-01-01
The treatment of peripheral nerve injuries remains one of the greatest challenges of neurosurgery, as functional recover is rarely satisfactory in these patients. Recently, biodegradable nerve guides have shown great potential for enhancing nerve regeneration. A major advantage of these nerve guides is that no foreign material remains after the device has fulfilled its task, which spares a second surgical intervention. Recently, we studied peripheral nerve regeneration using chitosan-γ-glycidoxypropyltrimethoxysilane (chitosan-GPTMS) porous hybrid membranes. In our studies, these porous membranes significantly improved nerve fiber regeneration and functional recovery in rat models of axonotmetic and neurotmetic sciatic nerve injuries. In particular, the number of regenerated myelinated nerve fibers and myelin thickness were significantly higher in rat treated with chitosan porous hybrid membranes, whether or not they were used in combination with mesenchymal stem cells isolated from the Wharton's jelly of the umbilical cord. In this review, we describe our findings on the use of chitosan-GPTMS hybrids for nerve regeneration. PMID:25054129
GLUT-3 expression in human skeletal muscle
NASA Technical Reports Server (NTRS)
Stuart, C. A.; Wen, G.; Peng, B. H.; Popov, V. L.; Hudnall, S. D.; Campbell, G. A.
2000-01-01
Muscle biopsy homogenates contain GLUT-3 mRNA and protein. Before these studies, it was unclear where GLUT-3 was located in muscle tissue. In situ hybridization using a midmolecule probe demonstrated GLUT-3 within all muscle fibers. Fluorescent-tagged antibody reacting with affinity-purified antibody directed at the carboxy-terminus demonstrated GLUT-3 protein in all fibers. Slow-twitch muscle fibers, identified by NADH-tetrazolium reductase staining, possessed more GLUT-3 protein than fast-twitch fibers. Electron microscopy using affinity-purified primary antibody and gold particle-tagged second antibody showed that the majority of GLUT-3 was in association with triads and transverse tubules inside the fiber. Strong GLUT-3 signals were seen in association with the few nerves that traversed muscle sections. Electron microscopic evaluation of human peripheral nerve demonstrated GLUT-3 within the axon, with many of the particles related to mitochondria. GLUT-3 protein was found in myelin but not in Schwann cells. GLUT-1 protein was not present in nerve cells, axons, myelin, or Schwann cells but was seen at the surface of the peripheral nerve in the perineurium. These studies demonstrated that GLUT-3 mRNA and protein are expressed throughout normal human skeletal muscle, but the protein is predominantly found in the triads of slow-twitch muscle fibers.
Evaluation of biodegradable electric conductive tube-guides and mesenchymal stem cells
Ribeiro, Jorge; Pereira, Tiago; Caseiro, Ana Rita; Armada-da-Silva, Paulo; Pires, Isabel; Prada, Justina; Amorim, Irina; Amado, Sandra; França, Miguel; Gonçalves, Carolina; Lopes, Maria Ascensão; Santos, José Domingos; Silva, Dina Morais; Geuna, Stefano; Luís, Ana Lúcia; Maurício, Ana Colette
2015-01-01
AIM: To study the therapeutic effect of three tube-guides with electrical conductivity associated to mesenchymal stem cells (MSCs) on neuro-muscular regeneration after neurotmesis. METHODS: Rats with 10-mm gap nerve injury were tested using polyvinyl alcohol (PVA), PVA-carbon nanotubes (CNTs) and MSCs, and PVA-polypyrrole (PPy). The regenerated nerves and tibialis anterior muscles were processed for stereological studies after 20 wk. The functional recovery was assessed serially for gait biomechanical analysis, by extensor postural thrust, sciatic functional index and static sciatic functional index (SSI), and by withdrawal reflex latency (WRL). In vitro studies included cytocompatibility, flow cytometry, reverse transcriptase polymerase chain reaction and karyotype analysis of the MSCs. Histopathology of lung, liver, kidneys, and regional lymph nodes ensured the biomaterials biocompatibility. RESULTS: SSI remained negative throughout and independently from treatment. Differences between treted groups in the severity of changes in WRL existed, showing a faster regeneration for PVA-CNTs-MSCs (P < 0.05). At toe-off, less acute ankle joint angles were seen for PVA-CNTs-MSCs group (P = 0.051) suggesting improved ankle muscles function during the push off phase of the gait cycle. In PVA-PPy and PVA-CNTs groups, there was a 25% and 42% increase of average fiber area and a 13% and 21% increase of the “minimal Feret’s diameter” respectively. Stereological analysis disclosed a significantly (P < 0.05) increased myelin thickness (M), ratio myelin thickness/axon diameter (M/d) and ratio axon diameter/fiber diameter (d/D; g-ratio) in PVA-CNT-MSCs group (P < 0.05). CONCLUSION: Results revealed that treatment with MSCs and PVA-CNTs tube-guides induced better nerve fiber regeneration. Functional and kinematics analysis revealed positive synergistic effects brought by MSCs and PVA-CNTs. The PVA-CNTs and PVA-PPy are promising scaffolds with electric conductive properties, bio- and cytocompatible that might prevent the secondary neurogenic muscular atrophy by improving the reestablishment of the neuro-muscular junction. PMID:26240682
Design of barrier coatings on kink-resistant peripheral nerve conduits
Clements, Basak Acan; Bushman, Jared; Murthy, N Sanjeeva; Ezra, Mindy; Pastore, Christopher M; Kohn, Joachim
2016-01-01
Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery. PMID:26977288
Cholinergic innervation of the chick basilar papilla.
Zidanic, Michael
2002-04-01
Antibodies directed against choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine (ACh) and a specific marker of cholinergic neurons, were used to label axons and nerve terminals of efferent fibers that innervate the chick basilar papilla (BP). Two morphologically distinct populations of cholinergic fibers were labeled and classified according to the region of the BP they innervated. The inferior efferent system was composed of thick fibers that coursed radially across the basilar membrane in small fascicles, gave off small branches that innervated short hair cells with large cup-like endings, and continued past the inferior edge of the BP to ramify extensively in the hyaline cell area. The superior efferent system was made up of a group of thin fibers that remained in the superior half of the epithelium and innervated tall hair cells with bouton endings. Both inferior and superior efferent fibers richly innervated the basal two thirds of the BP. However, the apical quarter of the chick BP was virtually devoid of efferent innervation except for a few fibers that gave off bouton endings around the peripheral edges. The distribution of ChAT-positive efferent endings appeared very similar to the population of efferent endings that labeled with synapsin antisera. Double labeling with ChAT and synapsin antibodies showed that the two markers colocalized in all nerve terminals that were identified in BP whole-mounts and frozen sections. These results strongly suggest that all of the efferent fibers that innervate the chick BP are cholinergic. Copyright 2002 Wiley-Liss, Inc.
2012-01-01
Background To evaluate the influence of corneal astigmatism (CA) on retinal nerve fiber layer (RNFL) thickness and optic nerve head(ONH) parameters measured with spectral-domain optical coherence tomography (OCT) in high myopes patients before refractive surgery. Methods Seventy eyes of 35 consecutive refractive surgery candidates were included in this study. The mean age of the subjects was 26.42 ± 6.95 years, the average CA was −1.17 diopters (D; SD 0.64; range −0.2 to-3.3D), All subjects in this study were WTR CA. 34 eyes were in the normal CA group with a mean CA was −0.67 ± 0.28D, 36 eyes were in the high CA group with an average CA of −1.65 ± 0.49D. All subjects underwent ophthalmic examination and imaging with the Cirrus HD OCT. Results No significant difference was noted in the average cup-to-disk ratio, vertical cup-to-disk ratio and cup volume (all P values > 0.05). Compared with the normal CA group, the high CA group had a larger disc area and rim area, thinner RNFL thickness in the temporal quadrant, and the superotemporal and inferotemporal peaks were farther to the temporal horizon (All P values < 0.05). There were no significant differences between the two groups in global average RNFL thickness, as well as superior, nasal and inferior quadrant RNFL thickness (all P values > 0.05). Conclusions The degree of with-the-rule CA should be considered when interpreting ONH parameters and peripapillary RNFL thickness measured by the Cirrus HD OCT. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1148475676881895 PMID:22621341
van Amsterdam, Wouter A C; Blankestijn, Peter J; Goldschmeding, Roel; Bleys, Ronald L A W
2016-03-01
Renal Denervation as a possible treatment for hypertension has been studied extensively, but knowledge on the distribution of nerves surrounding the renal artery is still incomplete. While sympathetic and sensory nerves have been demonstrated, there is no mention of the presence of parasympathetic nerve fibers. To provide a description of the distribution patterns of the renal nerves in man, and, in addition, provide a detailed representation of the relative contribution of the sympathetic, parasympathetic and afferent divisions of the autonomic nervous system. Renal arteries of human cadavers were each divided into four longitudinal segments and immunohistochemically stained with specific markers for afferent, parasympathetic and sympathetic nerves. Nerve fibers were semi-automatically quantified by computerized image analysis, and expressed as cross-sectional area relative to the distance to the lumen. A total of 3372 nerve segments were identified in 8 arteries of 7 cadavers. Sympathetic, parasympathetic and afferent nerves contributed for 73.5% (95% CI: 65.4-81.5%), 17.9% (10.7-25.1%) and 8.7% (5.0-12.3%) of the total cross-sectional nerve area, respectively. Nerves are closer to the lumen in more distal segments and larger bundles that presumably innervate the kidney lie at 1-3.5mm distance from the lumen. The tissue-penetration depth of the ablation required to destroy 50% of the nerve fibers is 2.37 mm in the proximal segment and 1.78 mm in the most distal segments. Sympathetic, parasympathetic and afferent nerves exist in the vicinity of the renal artery. The results warrant further investigation of the role of the parasympathetic nervous system on renal physiology, and may contribute to refinement of the procedure by focusing the ablation on the most distal segment. Copyright © 2015 Elsevier GmbH. All rights reserved.
Corneal Nerve Morphology and Tear Film Substance P in Diabetes.
Markoulli, Maria; You, Jingjing; Kim, Juno; Duong, Carmen L; Tolentino, Jonathan B; Karras, Joshua; Lum, Edward
2017-07-01
This work aims to characterize the relationship between tear film neuropeptide substance P and the structural integrity of the sub-basal nerve plexus in diabetes. Seventeen healthy control participants and nine participants with diabetes were recruited in this cross-sectional study. Total protein content and substance P concentrations were determined in the flush tears of participants. Corneal nerve morphology was assessed by capturing the corneal sub-basal nerve plexus using the Heidelberg Retinal Tomograph II with the Rostock Corneal Module (Heidelberg Engineering GmbH, Heidelberg, Germany) in the central cornea. Corneal nerve fiber density (CNFD) was measured using ACCMetrics (M.A. Dabbah, Imaging Science and Biomedical Engineering, Manchester, UK) on eight captured images. Comparisons between groups were made using independent samples t-tests. Correlations between parameters were analyzed using Pearson's correlations. Substance P concentrations were significantly higher in the tears of the control group compared to participants with diabetes (4150 ± 4752 and 1473 ± 1671 pg/mL, respectively, P = .047). There was no significant difference in total protein content between the groups (3.4 ± 1.8 and 2.6 ± 1.7 mg/mL in the control and diabetes groups, respectively, P = .262). CNFD was significantly lower in the participants with diabetes compared to the control group (16.1 ± 5.7 and 21.5 ± 7.0 mm/mm, respectively, P = .041). There was a moderate correlation between substance P and CNFD (r = 0.48, P = .01). Substance P is expressed at a significantly lower level in the tears of people with diabetes compared with healthy controls. The positive correlation between substance P and corneal nerve density indicates that substance P may be a potential biomarker for corneal nerve health.
Serra, Jordi; Bostock, Hugh; Navarro, Xavier
2010-02-19
Microneurography is a method suitable for recording intraneural single or multiunit action potentials in conscious subjects. Microneurography has rarely been applied to animal experiments, where more invasive methods, like the teased fiber recording technique, are widely used. We have tested the feasibility of microneurographic recordings from the peripheral nerves of rats. Tungsten microelectrodes were inserted into the sciatic nerve at mid-thigh level. Single or multiunit action potentials evoked by regular electrical stimulation were recorded, digitized and displayed as a raster plot of latencies. The method allows unambiguous recording and recognition of single C-fiber action potentials from an in vivo preparation, with minimal disruption of the nerve being recorded. Multiple C-fibers can be recorded simultaneously for several hours, and if the animal is allowed to recover, repeated recording sessions can be obtained from the same nerve at the same level over a period of weeks or months. Also, single C units can be functionally identified by their changes in latency to natural stimuli, and insensitive units can be recognized as 'silent' nociceptors or sympathetic efferents by their distinctive profiles of activity-dependent slowing during repetitive electrical stimulation, or by the effect on spontaneous efferent activity of a proximal anesthetic block. Moreover, information about the biophysical properties of C axons can be obtained from their latency recovery cycles. Finally, we show that this preparation is potentially suitable for the study of C-fiber behavior in models of neuropathies and nerve lesions, both under resting conditions and in response to drug administration.
Peripheral choline acetyltransferase in rat skin demonstrated by immunohistochemistry.
Hanada, Keiji; Kishimoto, Saburo; Bellier, Jean-Pierre; Kimura, Hiroshi
2013-03-01
Conventional choline acetyltransferase immunohistochemistry has been used widely for visualizing central cholinergic neurons and fibers but not often for labeling peripheral structures, probably because of their poor staining. The recent identification of the peripheral type of choline acetyltransferase (pChAT) has enabled the clear immunohistochemical detection of many known peripheral cholinergic elements. Here, we report the presence of pChAT-immunoreactive nerve fibers in rat skin. Intensely stained nerve fibers were distributed in association with eccrine sweat glands, blood vessels, hair follicles and portions just beneath the epidermis. These results suggest that pChAT-positive nerves participate in the sympathetic cholinergic innervation of eccrine sweat glands. Moreover, pChAT also appears to play a role in cutaneous sensory nerve endings. These findings are supported by the presence of many pChAT-positive neuronal cells in the sympathetic ganglion and dorsal root ganglion. Thus, pChAT immunohistochemistry should provide a novel and unique tool for studying cholinergic nerves in the skin.
Phenotyping sensory nerve endings in vitro in the mouse
Zimmermann, Katharina; Hein, Alexander; Hager, Ulrich; Kaczmarek, Jan Stefan; Turnquist, Brian P; Clapham, David E; Reeh, Peter W
2014-01-01
This protocol details methods to identify and record from cutaneous primary afferent axons in an isolated mammalian skin–saphenous nerve preparation. The method is based on extracellular recordings of propagated action potentials from single-fiber receptive fields. Cutaneous nerve endings show graded sensitivities to various stimulus modalities that are quantified by adequate and controlled stimulation of the superfused skin with heat, cold, touch, constant punctate pressure or chemicals. Responses recorded from single-fibers are comparable with those obtained in previous in vivo experiments on the same species. We describe the components and the setting-up of the basic equipment of a skin–nerve recording station (few days), the preparation of the skin and the adherent saphenous nerve in the mouse (15–45 min) and the isolation and recording of neurons (approximately 1–3 h per recording). In addition, stimulation techniques, protocols to achieve single-fiber recordings, issues of data acquisition and action potential discrimination are discussed in detail. PMID:19180088
Palisade endings are present in canine extraocular muscles and have a cholinergic phenotype
RUNGALDIER, Stefanie; POMIKAL, Christine; STREICHER, Johannes; BLUMER, Roland
2016-01-01
Classical proprioceptors, like Golgi tendon organs and muscle spindles are absent in the extraocular muscles (EOMs) of most mammals. Instead, a nerve end organ was detected in the EOMs of each species including sheep, cats, rabbits, rats, monkeys, and man examined so far: the palisade ending. Until now no evidence appeared that palisade endings are present in canine EOMs. We analyzed dog EOMs by confocal laser scanning microscopy, 3D reconstruction, and transmission electron microscopy. In EOM wholemount preparations stained with antibodies against neurofilament and synaptophysin we found typical palisade endings. Nerve fibers coming from the muscle extended into the tendon. There, the nerve fibers turned 180° and returned to branch into preterminal axons which established nerve terminals around a single muscle fiber tip. Fine structural analyses revealed that each palisade ending in dog EOMs established nerve terminals on the tendon. In some palisade endings we found nerve terminals contacting the muscle fiber as well. Such neuromuscular contacts had a basal lamina in the synaptic cleft thereby resembling motor terminals. By using antibodies against choline acetyltransferase (ChAT) we proved that canine palisade endings are ChAT-immunoreactive. This study shows that palisade endings are present in canine EOMs. In line with prior findings in cat and monkey, palisade endings in dog have a cholinergic phenotype. PMID:19766165
Qin, Bing; Zhou, Zimei; Ni, Katherine; Le, Qihua; Xiang, Jun; Wei, Anji; Ma, Weiping; Zhou, Xingtao
2013-01-01
Purpose To evaluate corneal reinnervation, and the corresponding corneal sensitivity and keratocyte density after small incision lenticule extraction (SMILE) and femtosecond laser in situ keratomileusis (FS-LASIK). Methods In this prospective, non-randomized observational study, 18 patients (32 eyes) received SMILE surgery, and 22 patients (42 eyes) received FS-LASIK surgery to correct myopia. The corneal subbasal nerve density and microscopic morphological changes in corneal architecture were evaluated by confocal microscopy prior to surgery and at 1 week, 1 month, 3 months, and 6 months after surgery. A correlation analysis was performed between subbasal corneal nerve density and the corresponding keratocyte density and corneal sensitivity. Results The decrease in subbasal nerve density was less severe in SMILE-treated eyes than in FS-LASIK-treated eyes at 1 week (P = 0.0147), 1 month (P = 0.0243), and 3 months (P = 0.0498), but no difference was detected at the 6-month visit (P = 0.5277). The subbasal nerve density correlated positively with central corneal sensitivity in both groups (r = 0.416, P<0.0001, and r = 0.2567, P = 0.0038 for SMILE group and FS-LASIK group, respectively). The SMILE-treated eyes have a lower risk of developing peripheral empty space with epithelial cells filling in (P = 0.0005). Conclusions The decrease in subbasal nerve fiber density was less severe in the SMILE group than the FS-LASIK group in the first 3 months following the surgeries. The subbasal nerve density was correlated with central corneal sensitivity. PMID:24349069
Li, Meiyan; Niu, Lingling; Qin, Bing; Zhou, Zimei; Ni, Katherine; Le, Qihua; Xiang, Jun; Wei, Anji; Ma, Weiping; Zhou, Xingtao
2013-01-01
To evaluate corneal reinnervation, and the corresponding corneal sensitivity and keratocyte density after small incision lenticule extraction (SMILE) and femtosecond laser in situ keratomileusis (FS-LASIK). In this prospective, non-randomized observational study, 18 patients (32 eyes) received SMILE surgery, and 22 patients (42 eyes) received FS-LASIK surgery to correct myopia. The corneal subbasal nerve density and microscopic morphological changes in corneal architecture were evaluated by confocal microscopy prior to surgery and at 1 week, 1 month, 3 months, and 6 months after surgery. A correlation analysis was performed between subbasal corneal nerve density and the corresponding keratocyte density and corneal sensitivity. The decrease in subbasal nerve density was less severe in SMILE-treated eyes than in FS-LASIK-treated eyes at 1 week (P = 0.0147), 1 month (P = 0.0243), and 3 months (P = 0.0498), but no difference was detected at the 6-month visit (P = 0.5277). The subbasal nerve density correlated positively with central corneal sensitivity in both groups (r = 0.416, P<0.0001, and r = 0.2567, P = 0.0038 for SMILE group and FS-LASIK group, respectively). The SMILE-treated eyes have a lower risk of developing peripheral empty space with epithelial cells filling in (P = 0.0005). The decrease in subbasal nerve fiber density was less severe in the SMILE group than the FS-LASIK group in the first 3 months following the surgeries. The subbasal nerve density was correlated with central corneal sensitivity.
Retinal Nerve Fiber Layer Thickness in Children With ADHD.
Hergüner, Arzu; Alpfidan, İsmail; Yar, Ahmet; Erdoğan, Erkan; Metin, Özge; Sakarya, Yaşar; Hergüner, Sabri
2018-05-01
The current study aims to compare retinal nerve fiber layer (RNFL) thickness, macular thickness, and macular volume between children with ADHD and a control group. The study group included children with ADHD and the control group consisted of age- and gender-matched participants without any psychiatric disorder. In all participants, RNFL thickness, macular thickness, and macular volume were measured by using spectral domain-optical coherence tomography (SD-OCT). ADHD symptom severity was evaluated by using parent-report measures, including Conners' Parent Rating Scale-Revised: Short Form (CPRS-R: S) and the Strengths and Difficulties Questionnaire: Parent Form (SDQ: P). We compared 90 eyes of 45 children with ADHD and 90 eyes of 45 controls. ADHD group had significantly lower RNFL thickness only in nasal quadrant than the controls. The remaining RNFL quadrants, macular thickness, and volume were not significantly different between groups. There was a reverse correlation between RNFL thickness and ADHD symptom severity. This is the first study examining the RNFL thickness in ADHD. Our findings showed that nasal RNFL thickness was lower, indicating reduced unmyelinated axons in the retina of children with ADHD. The results of this study support the evidence that ADHD involves a lag in cortical maturation and this is measurable in the retina.
The association of Helicobacter pylori with choroidal and retinal nerve fiber layer thickness.
Can, Mehmet Erol; Kaplan, Fatma Efe; Uzel, Mehmet Murat; Kiziltoprak, Hasan; Ergun, Mustafa Cagri; Koc, Mustafa; Simsek, Gülcin
2017-08-05
To investigate the effect of Helicobacter pylori (H. pylori) infection on choroidal thickness (CT) and retinal nerve fiber layer thickness (RNFLT). The study included 25 patients with H. pylori infection and 25 healthy individuals as the control group. Helicobacter pylori patients were classified as the pre-treatment (Group 1; n: 25) and the post-treatment (Group 2; n: 25). RNFLT and CT were measured before and after treatment of H. pylori infection, using enhanced depth imaging (EDI) spectral-domain optical coherence tomography (Spectralis, Heidelberg Engineering, Heidelberg, Germany). The axial length and intraocular pressure were also measured. The mean subfoveal CT was 320.96 ± 29.15 μm in Group 1 and 287.48 ± 49.17 in the control group (p = 0.007), while the mean subfoveal CT did not show any difference between Group 2 and the control group (p > 0.05). No statistically significant difference was determined between the H. pylori patients and the control group in respect of RNFLT values (p > 0.05). CT increases during H. pylori infection and returns to the normal range within 6 weeks of treatment. RNFLT does not show any change during H. pylori infection. The data related to the subfoveal CT may be useful in understanding the pathogenesis of central serous chorioretinopathy developing in H. pylori patients.
He, Yifan; Zhu, Jihong; Huang, Fang; Qin, Liu; Fan, Wenguo; He, Hongwen
2014-11-15
The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory behaviors and structural changes in related brain regions, in a mouse model of Alzheimer's disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learning and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltransferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic fibers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no significant differences in histology or behavior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present findings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer's disease, and indicate that tooth extraction should be avoided in these populations.
Abbott, Carla J; Choe, Tiffany E; Burgoyne, Claude F; Cull, Grant; Wang, Lin; Fortune, Brad
2014-01-01
To compare in young and old rats longitudinal measurements of retinal nerve fiber layer thickness (RNFLT) and axonal transport 3-weeks after chronic IOP elevation. IOP was elevated unilaterally in 2- and 9.5-month-old Brown-Norway rats by intracameral injections of magnetic microbeads. RNFLT was measured by spectral domain optical coherence tomography. Anterograde axonal transport was assessed from confocal scanning laser ophthalmolscopy of superior colliculi (SC) after bilateral intravitreal injections of cholera toxin-B-488. Optic nerve sections were graded for damage. Mean IOP was elevated in both groups (young 37, old 38 mmHg, p = 0.95). RNFL in young rats exhibited 10% thickening at 1-week (50.9±8.1 µm, p<0.05) vs. baseline (46.4±2.4 µm), then 7% thinning at 2-weeks (43.0±7.2 µm, p>0.05) and 3-weeks (43.5±4.4 µm, p>0.05), representing 20% loss of dynamic range. RNFLT in old rats showed no significant change at 1-week (44.9±4.1 µm) vs. baseline (49.2±5.3 µm), but progression to 22% thinning at 2-weeks (38.0±3.7 µm, p<0.01) and 3-weeks (40.0±6.6 µm, p<0.05), representing 59% loss of dynamic range. Relative SC fluorescence intensity was reduced in both groups (p<0.001), representing 77-80% loss of dynamic range and a severe transport deficit. Optic nerves showed 75-95% damage (p<0.001). There was greater RNFL thinning in old rats (p<0.05), despite equivalent IOP insult, transport deficit and nerve damage between age groups (all p>0.05). Chronic IOP elevation resulted in severely disrupted axonal transport and optic nerve axon damage in all rats, associated with mild RNFL loss in young rats but a moderate RNFL loss in old rats despite the similar IOP insult. Hence, the glaucomatous injury response within the RNFL depends on age.
Glaucoma drops control intraocular pressure and protect optic nerves in a rat model of glaucoma.
Morrison, J C; Nylander, K B; Lauer, A K; Cepurna, W O; Johnson, E
1998-03-01
To determine whether chronic topical glaucoma therapy can control intraocular pressure (IOP) and protect nerve fibers in a rat model of pressure-induced optic nerve damage. Sixteen adult Brown Norway rats were-administered unilateral episcleral vein injections of hypertonic saline to produce scarring of the aqueous humor outflow pathways. Twice daily applications of either artificial tears (n = 6), 0.5% betaxolol (n = 5), or 0.5% apraclonidine (n = 5) were delivered to both eyes, and awake pressures were monitored with a TonoPen XL tonometer for 17 days before the rats were killed. For animals administered artificial tears, the mean IOP of the experimental eyes was 39 +/- 2 mm Hg compared with 29 +/- 1 mm Hg for the control eyes. This difference was statistically significant (P < 0.001). Mean IOPs in the experimental eyes of animals administered betaxolol and apraclonidine were 29 +/- 7 and 29 +/- 4 mm Hg, respectively, whereas the mean IOP in the control eyes was 28 +/- 1 mm Hg for both groups. There was no statistically significant difference among these values. The mean IOP for the experimental eyes in the betaxolol and apraclonidine groups was lower than that in animals administered artificial tears (P = 0.003). Quantitative histologic analysis of optic nerve damage in experimental eyes showed that four of the six animals administered artificial tears had damage involving 100% of the neural area. This degree of damage appeared in only 3 of 10 animals administered glaucoma therapy. Optic nerve protection was closely correlated with IOP history because damage was limited to less than 10% of the cross-sectional area in all animals in which the maximal IOP was less than or equal to 39 mm Hg, more than 2 SD below the mean value for eyes administered artificial tears. Topical glaucoma therapy in this model can prevent IOP elevation and protect optic nerve fibers.
Attar, Bijan Movahedian; Zalzali, Haidar; Razavi, Mohammad; Ghoreishian, Mehdi; Rezaei, Majid
2012-10-01
Epineural suturing is the most common technique used for peripheral nerve anastomosis. In addition to the foreign body reaction to the suture material, the surgical duration and difficulty of suturing in confined anatomic locations are major problems. We evaluated the effectiveness of fibrin glue as an acceptable alternative for nerve anastomosis in dogs. Eight adult female dogs weighing 18 to 24 kg were used in the present study. The facial nerve was transected bilaterally. On the right side, the facial nerve was subjected to epineural suturing; and on the left side, the nerve was anastomosed using fibrin adhesive. After 16 weeks, the nerve conduction velocity and proportion of the nerve fibers that crossed the anastomosis site were evaluated and compared for the epineural suture (right side) and fibrin glue (left side). The data were analyzed using the paired t test and univariate analysis of variance. The mean postoperative nerve conduction velocity was 29.87 ± 7.65 m/s and 26.75 ± 3.97 m/s on the right and left side, respectively. No statistically significant difference was found in the postoperative nerve conduction velocity between the 2 techniques (P = .444). The proportion of nerve fibers that crossed the anastomotic site was 71.25% ± 7.59% and 72.25% ± 8.31% on the right and left side, respectively. The histologic evaluation showed no statistically significant difference in the proportion of the nerve fibers that crossed the anastomotic site between the 2 techniques (P = .598). The results suggest that the efficacies of epineural suturing and fibrin gluing in peripheral nerve anastomosis are similar. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Engineering a multimodal nerve conduit for repair of injured peripheral nerve
NASA Astrophysics Data System (ADS)
Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.
2013-02-01
Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate hydrogel. This indicates return of some feeling to the limb via the fully-configured conduit. Immunohistochemical analysis of the implanted conduits removed from the rats after the four-week implantation period confirmed the presence of myelinated axons within the conduit and distal to the site of implantation, further supporting that the conduit promoted nerve repair over this period of time. This study describes the design considerations and fabrication of a novel multicomponent, multimodal bio-engineered synthetic conduit for peripheral nerve repair.
Smith, K G; Robinson, P P
1995-12-01
The lingual nerve is sometimes injured during the surgical removal of impacted third molar teeth and may require repair. Removal of the damaged section of nerve prior to repair leaves a gap between the nerve ends, and we have investigated methods of closing the gap. THe characteristics of regenerated fibers in the chorda tympani have been recorded in cats 24 weeks after the removal of a segment of lingual nerve and repair of the defect by three methods. The nerve gap was closed either by stretching the nerve ends together and repairing under tension, or by the insertion of a sural nerve graft or freeze-thawed muscle graft. The properties of gustatory, thermosensitive, and mechanosensitive units and the return of the vasomotor and secretomotor responses were investigated by electrophysiological techniques and the data from each of the repair groups compared with those obtained from a series of normal control animals. After each method of repair, the integrated whole-nerve activity recorded from the chorda tympani during gustatory or thermal stimulation of the tongue was reduced when compared with controls, but there was little significant difference between the repair groups. Recordings made from single units in the chorda tympani revealed that conduction velocities were faster after stretch repair than after sural nerve graft or frozen muscle graft. In addition, 48% of the units had developed into principally gustatory units after stretch repair, indicating a better level of recovery than in the graft groups, which contained 33% and 32%, respectively. The secretomotor responses were also significantly greater after stretch repair than in either of the graft groups or the controls, but there was no difference in the vasomotor responses. These results reveal that repair of a short gap in the lingual nerve by stretching the ends together is followed by better overall recovery than after grafting, but where a graft is used, a similar level of recovery results from use of a frozen muscle graft or a sural nerve graft.
Ma, Qing Ping; Tian, Li
2002-07-26
We have investigated the effect of inflammation on the labeling pattern of cholera toxin B subunit (CTB)-conjugated horseradish peroxidase, an A-fiber marker, by an intra-sciatic nerve injection of the tracer. Following chronic inflammation in one hind paw in rats, there was substantial CTB labeling in lamina II of the spinal dorsal horn, which is normally absent. However, there was no change in the labeling pattern of wheat germ agglutinin or fluoride resistant acid phosphatase/thiamine monophosphatase, two C-fiber markers. The CTB labeling in lamina II after peripheral nerve injury has been interpreted as central sprouting of A-fibers or uptake of the tracer by injured C-fibers. Our results suggest that chronic inflammation and nerve injury may share some common mechanisms in generating allodynia and hyperalgesia.
Chen, S.; Xie, W.; Strong, J. A.; Jiang, J.; Zhang, J.-M.
2015-01-01
Background Endometriosis is a common cause of pain including radicular pain. Ectopic endometrial tissue may directly affect peripheral nerves including the sciatic, which has not been modelled in animals. Methods We developed a rat model for sciatic endometriosis by grafting a piece of autologous uterine tissue around the sciatic nerve. Control animals underwent a similar surgery but received a graft of pelvic fat tissue. Results The uterine grafts survived and developed fluid filled cysts; the adjacent nerve showed signs of swelling and damage. Mechanical and cold hypersensitivity and allodynia of the ipsilateral hindpaw developed gradually over the first two weeks after the surgery, peaked at 2 to 5 weeks, and was almost resolved by 7 weeks. Control animals showed only minor changes in these pain behaviors. Histological signs of inflammation in the uterine graft and in the adjacent nerve were observed at 3 weeks but were resolving by 7 weeks. In vivo fiber recording showed increased spontaneous activity, especially of C fibers, in sciatic nerve proximal to the uterine graft. Several pro-inflammatory cytokines including interluekin-18, VEGF, fractalkine, and MIP-1α, were elevated in the uterine graft plus sciatic nerve samples, compared to samples from normal nerve or nerve plus fat graft. Growth associated protein 43 (GAP43), a marker of regenerating nerve fibers, was observed in the adjacent sciatic nerve as well as in the uterine graft. Conclusions This model shared many features with other rat models of endometriosis, but also had some unique features more closely related to neuropathic pain models. PMID:26688332
Ribeiro, Jorge; Caseiro, Ana Rita; Pereira, Tiago; Armada-da-Silva, Paulo Alexandre; Pires, Isabel; Prada, Justina; Amorim, Irina; Leal Reis, Inês; Amado, Sandra; Santos, José Domingos; Bompasso, Simone; Raimondo, Stefania; Varejão, Artur Severo Proença; Geuna, Stefano; Luís, Ana Lúcia; Maurício, Ana Colette
2017-05-01
The therapeutic effect of three polyvinyl alcohol (PVA) membranes loaded with electrically conductive materials - carbon nanotubes (PVA-CNTs) and polypyrrole (PVA-PPy) - were tested in vivo for neuro-muscular regeneration after an axonotmesis injury in the rat sciatic nerve. The membranes electrical conductivity measured was 1.5 ± 0.5 × 10 -6 S/m, 579 ± 0.6 × 10 -6 S/m, and 1837.5 ± 0.7 × 10 -6 S/m, respectively. At week-12, a residual motor and nociceptive deficit were present in all treated groups, but at week-12, a better recovery to normal gait pattern of the PVA-CNTs and PVA-PPy treated groups was observed. Morphometrical analysis demonstrated that PVA-CNTs group presented higher myelin thickness and lower g-ratio. The tibialis anterior muscle, in the PVA-PPy and PVA-CNTs groups showed a 9% and 19% increase of average fiber size area and a 5% and 10% increase of the "minimal Feret's diameter," respectively. No inflammation, degeneration, fibrosis or necrosis were detected in lung, liver, kidneys, spleen, and regional lymph nodes and absence of carbon deposits was confirmed with Von Kossa and Masson-Fontana stains. In conclusion, the membranes of PVA-CNTs and PVA-PPy are biocompatible and have electrical conductivity. The higher electrical conductivity measured in PVA-CNTs membrane might be responsible for the positive results on maturation of myelinated fibers. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1267-1280, 2017. © 2017 Wiley Periodicals, Inc.
Obersteiner, E. J.; Sharma, R. P.
1978-01-01
Ten day old chick sympathetic ganglia cultured in a microslide assembly were treated with a selected group of organophosphate pesticides to evaluate their cytotoxicity ranges, and the usefulness of such a model for screening pesticides. Examination by phase contrast and light microscopy for chemically-induced morphological alteration of nerve fibers, glial cells and neurons provided the criteria for quantitation and assessment of the toxic effects. Concentrations that produced half-maximal effects ranged from 1 × 10-6M (severely toxic) for methylparathian, diazinon, paraoxon, mevinphos, diisopropylfluorophosphate, tri-o-tolyl phosphate and its mixed isomers to a 1 × 10-3M (intermediate) for malathion, leptophos, coumaphos, mono- and dicrotophos. Some or no effects were evident at 1 × 102-M for O'ethyl-O-p-nitrophenyl phenyl phosphonothioate, tri-m-tolylphosphate, chlorpyriphos and triphenyl phosphate. In all instances, nerve fibers were more sensitive than neurons or glial cells to insecticides. All cellular growth was inhibited at 1 × 10-2M (except triphenyl phosphate). Below 1 x 10-7M, no inhibitory effects were evident. The secondary abnormalities included decreased cellular migration, diffuse cellular growth pattern, increased vacuolization, nerve fiber swelling and cellular degeneration. The cytotoxic effects of these chemicals do not appear to be related to in vivo toxicity or cholinesterase inhibition potential. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6. PMID:565668
Ninomiya, Y; Hellekant, G
1994-01-28
Taste enhancing effects of sodium saccharin (Sac) on D-phenylalanine (D-Phe), first found in mice, were examined by comparing single fiber responses to various taste stimuli in the monkey chorda tympani nerve. Fifteen fibers sampled were divided into the following 5 groups according to their responsiveness to 5 prototypical taste stimuli; 8 sucrose-, 2 quinine-, 2 acid-, 2 NaCl- and one monosodium glutamate (MSG)-best fibers. Out of 8 sucrose-best fibers, 5 fibers showed enhancement of D-Phe responses after the stimulation with Sac, but neither the remaining 3 sucrose-best fibers nor other fibers showed the enhancement. These results suggest that (1) the enhancement of D-Phe responses by Sac also occurs in the monkey peripheral taste system, and (2) there exist distinct receptor sites for D-Phe responsible for occurrence of the enhancement, and (3) taste cells possessing the D-Phe receptor site are innervated by a limited subpopulation of sucrose-best fibers.
Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers.
Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin
2017-07-01
Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB- fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. Copyright © 2017. Published by Elsevier Inc.
The nervus terminalis in the chick: a FMRFamide-immunoreactive and AChE-positive nerve.
Wirsig-Wiechmann, C R
1990-07-16
The chick terminal nerve (TN) was examined by immunocytochemical and histochemical methods. Molluscan cardioexcitatory peptide-immunoreactive (FMRFamide-ir) and acetylcholinesterase (AChE)-positive TN perikarya and fibers were distributed along olfactory and trigeminal nerves. FMRFamide-ir TN fibers terminated in the olfactory lamina propria and epithelium and in ganglia along the rostroventral nasal septum. This initial description of several populations of avian TN neurons should provide the foundation for future developmental studies of this system.
Autonomic nerve development contributes to prostate cancer progression.
Magnon, Claire; Hall, Simon J; Lin, Juan; Xue, Xiaonan; Gerber, Leah; Freedland, Stephen J; Frenette, Paul S
2013-07-12
Nerves are a common feature of the microenvironment, but their role in tumor growth and progression remains unclear. We found that the formation of autonomic nerve fibers in the prostate gland regulates prostate cancer development and dissemination in mouse models. The early phases of tumor development were prevented by chemical or surgical sympathectomy and by genetic deletion of stromal β2- and β3-adrenergic receptors. Tumors were also infiltrated by parasympathetic cholinergic fibers that promoted cancer dissemination. Cholinergic-induced tumor invasion and metastasis were inhibited by pharmacological blockade or genetic disruption of the stromal type 1 muscarinic receptor, leading to improved survival of the mice. A retrospective blinded analysis of prostate adenocarcinoma specimens from 43 patients revealed that the densities of sympathetic and parasympathetic nerve fibers in tumor and surrounding normal tissue, respectively, were associated with poor clinical outcomes. These findings may lead to novel therapeutic approaches for prostate cancer.
The gross anatomy of the renal sympathetic nerves revisited.
Mompeo, Blanca; Maranillo, Eva; Garcia-Touchard, Arturo; Larkin, Theresa; Sanudo, Jose
2016-07-01
Catheter-based renal denervation techniques focus on reducing blood pressure in resistant hypertension. This procedure requires exact knowledge of the anatomical interrelation between the renal arteries and the targeted renal nervous plexus. The aim of this work was to build on classical anatomical studies and describe the gross anatomy and anatomical relationships of the renal arteries and nerve supply to the kidneys in a sample of human cadavers. Twelve human cadavers (six males and six females), age range 73 to 94 years, were dissected. The nervous fibers and renal arteries were dissected using a surgical microscope. The renal plexus along the hilar renal artery comprised a fiber-ganglionic ring surrounding the proximal third of the renal artery, a neural network along the middle and distal thirds, and smaller accessory ganglia along the course of the nerve fibers. The fibers of the neural network were mainly located on the superior (95.83%) and inferior (91.66%) surfaces of the renal artery and they were sparsely interconnected by diagonal fibers. Polar arteries were present in 33.33% of cases and the renal nerve pattern for these was similar to that of the hilar arteries. Effective renal denervation needs to target the superior and inferior surfaces of the hilar and polar arteries, where the fibers of the neural network are present. Clin. Anat. 29:660-664, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Distribution of TRPV1- and TRPV2-immunoreactive afferent nerve endings in rat trachea.
Yamamoto, Yoshio; Sato, Yoshikazu; Taniguchi, Kazuyuki
2007-12-01
Nociception in the trachea is important for respiratory modulation. We investigated the distribution, neurochemical characteristics, and origin of nerve endings with immunoreactivity for candidate sensor channels, TRPV1 and TRPV2, in rat trachea. In the epithelial layer, the intraepithelial nerve endings and dense subepithelial network of nerve fibers were immunoreactive for TRPV1. In contrast, TRPV2 immunoreactivity was observed mainly in nerve fibers of the tracheal submucosal layer and in several intrinsic ganglion cells in the peritracheal plexus. Double immunostaining revealed that some TRPV1-immunoreactive nerve fibers were also immunoreactive for substance P or calcitonin gene-related peptide, but neither neuropeptide colocalized with TRPV2. Injection of the retrograde tracer, fast blue, into the tracheal wall near the thoracic inlet demonstrated labeled neurons in the jugular, nodose, and dorsal root ganglia at segmental levels of C2-C8. In the jugular and nodose ganglia, 59.3% (70/118) and 10.7% (17/159), respectively, of fast blue-labeled neurons were immunoreactive for TRPV1, compared to 8.8% (8/91) and 2.6% (5/191) for TRPV2-immunoreactive. Our results indicate that TRPV1-immunoreactive nerve endings are important for tracheal nociception, and the different expression patterns of TRPV1 and TRPV2 with neuropeptides may reflect different subpopulations of sensory neurons.
Laser Stimulation of Single Auditory Nerve Fibers
Littlefield, Philip D.; Vujanovic, Irena; Mundi, Jagmeet; Matic, Agnella Izzo; Richter, Claus-Peter
2011-01-01
Objectives/Hypothesis One limitation with cochlear implants is the difficulty stimulating spatially discrete spiral ganglion cell groups because of electrode interactions. Multipolar electrodes have improved on this some, but also at the cost of much higher device power consumption. Recently, it has been shown that spatially selective stimulation of the auditory nerve is possible with a mid-infrared laser aimed at the spiral ganglion via the round window. However, these neurons must be driven at adequate rates for optical radiation to be useful in cochlear implants. We herein use single-fiber recordings to characterize the responses of auditory neurons to optical radiation. Study Design In vivo study using normal-hearing adult gerbils. Methods Two diode lasers were used for stimulation of the auditory nerve. They operated between 1.844 μm and 1.873 μm, with pulse durations of 35 μs to 1,000 μs, and at repetition rates up to 1,000 pulses per second (pps). The laser outputs were coupled to a 200-μm-diameter optical fiber placed against the round window membrane and oriented toward the spiral ganglion. The auditory nerve was exposed through a craniotomy, and recordings were taken from single fibers during acoustic and laser stimulation. Results Action potentials occurred 2.5 ms to 4.0 ms after the laser pulse. The latency jitter was up to 3 ms. Maximum rates of discharge averaged 97 ± 52.5 action potentials per second. The neurons did not strictly respond to the laser at stimulation rates over 100 pps. Conclusions Auditory neurons can be stimulated by a laser beam passing through the round window membrane and driven at rates sufficient for useful auditory information. Optical stimulation and electrical stimulation have different characteristics; which could be selectively exploited in future cochlear implants. Level of Evidence Not applicable. PMID:20830761
Multifocal visual evoked potentials for early glaucoma detection.
Weizer, Jennifer S; Musch, David C; Niziol, Leslie M; Khan, Naheed W
2012-07-01
To compare multifocal visual evoked potentials (mfVEP) with other detection methods in early open-angle glaucoma. Ten patients with suspected glaucoma and 5 with early open-angle glaucoma underwent mfVEP, standard automated perimetry (SAP), short-wave automated perimetry, frequency-doubling technology perimetry, and nerve fiber layer optical coherence tomography. Nineteen healthy control subjects underwent mfVEP and SAP for comparison. Comparisons between groups involving continuous variables were made using independent t tests; for categorical variables, Fisher's exact test was used. Monocular mfVEP cluster defects were associated with an increased SAP pattern standard deviation (P = .0195). Visual fields that showed interocular mfVEP cluster defects were more likely to also show superior quadrant nerve fiber layer thinning by OCT (P = .0152). Multifocal visual evoked potential cluster defects are associated with a functional and an anatomic measure that both relate to glaucomatous optic neuropathy. Copyright 2012, SLACK Incorporated.
Chvátal, A
2015-01-01
The works of Jan Evangelista Purkyne, Gabriel Valentin and Robert Remak showed that the nervous system contains not only nerve fibers, but also cellular elements. The use of microscopes and new fixation techniques have enabled the retrieval of accurate data on the structure of nervous tissue and in many European universities microscopes began to be widely used for histological and morphological studies. The present review summarizes the discoveries of the structure of predominantly vertebrate nerve tissue during the period from 1838 to 1865, made by prominent scholars who described the structure of fibers and cells of the nervous system and demonstrated that some nerve fibers are enwrapped by a sheath. In addition, the first attempts were made to make a cytoarchitectonic description of the spinal cord and brain. During the same time the concept of a neuroglial tissue was introduced, first as a tissue for "gluing" nerve fibers, cells and blood capillaries into one unit, but later some glial cells were described for the first time. Microscopic techniques started to be used for examination of physiological as well as pathological nerve tissues. The overall state of knowledge was just a step away from the emergence of the concept of neurons and glial cells.
Microcircuits in the Nervous System
ERIC Educational Resources Information Center
Shepherd, Gordon M.
1978-01-01
Nerve circuits are usually analyzed in terms of the axon, the long fiber of the nerve cell. It now appears that there are many circuits involving only the nerve cell's shorter extensions, the dendrites. (Author/BB)
Pocock, Ginger M.; Aranibar, Roberto G.; Kemp, Nate J.; Specht, Charles S.; Markey, Mia K.; Rylander, H.G.
2009-01-01
Purpose To determine the degree of correlation between spatial characteristics of the retinal nerve fiber layer (RNFL) birefringence (ΔnRNFL) surrounding the optic nerve head (ONH) with the corresponding anatomy of retinal ganglion cell (RGC) axons and their respective organelles. Methods RNFL phase retardation per unit depth (PR/UD, proportional to ΔnRNFL) was measured in two cynomolgus monkeys using enhanced polarization-sensitive optical coherence tomography (EPS-OCT). The monkeys were perfused with glutaraldehyde and eyes were enucleated and prepared for transmission electron microscopy (TEM) histological analysis. Morphological measurements from TEM images were used to estimate values of neurotubule density (ρRNFL), axoplasmic area (Ax) mode, axon area (Aa) mode, slope (u) of neurotubule number versus axoplasmic area [neurotubule packing density], fractional area of axoplasm in the nerve fiber bundle (f), mitochondrial fractional area in the nerve fiber bundle (xm), mitochondriated axon profile fraction (mp), and length of axonal membrane profiles per unit nerve fiber bundle area (Lam/Ab). Registered PR/UD and morphological parameters from corresponding angular sections were then correlated using Pearson’s correlation and multi-level models. Results In one eye, there was a statistically significant correlation between PR/UD and ρRNFL (r = 0.67, P =0.005) and between PR/UD and neurotubule packing density (r = 0.70, P = 0.002). Correlation coefficients of r = 0.81 (P=0.01) and r = 0.50 (P = 0.05) were observed between PR/UD and (Ax) mode for each respective subject. Conclusion Neurotubules are the primary source of birefringence in the RNFL of the primate retina. PMID:19494208
Influence of limb temperature on cutaneous silent periods.
Kofler, Markus; Valls-Solé, Josep; Vasko, Peter; Boček, Václav; Štetkárová, Ivana
2014-09-01
The cutaneous silent period (CSP) is a spinal inhibitory reflex mediated by small-diameter afferents (A-delta fibers) and large-diameter efferents (alpha motoneurons). The effect of limb temperature on CSPs has so far not been assessed. In 27 healthy volunteers (11 males; age 22-58 years) we recorded median nerve motor and sensory action potentials, median nerve F-wave and CSPs induced by noxious digit II stimulation in thenar muscles in a baseline condition at room temperature, and after randomly submersing the forearm in 42 °C warm or 15 °C cold water for 20 min each. In cold limbs, distal and proximal motor and sensory latencies as well as F-wave latencies were prolonged. Motor and sensory nerve conduction velocities were reduced. Compound motor and sensory nerve action potential amplitudes did not differ significantly from baseline. CSP onset and end latencies were more delayed than distal and proximal median nerve motor and sensory latencies, whereas CSP duration was not affected. In warm limbs, opposite but smaller changes were seen in nerve conduction studies and CSPs. The observed CSP shift "en bloc" towards longer latencies without affecting CSP duration during limb cooling concurs with slower conduction velocity in both afferent and efferent fibers. Disparate conduction slowing in afferents and efferents, however, suggests that nociceptive EMG suppression is mediated by fibers of different size in the afferent than in the efferent arm, indirectly supporting the contribution of A-delta fibers as the main afferent input. Limb temperature should be taken into account when testing CSPs in the clinical setting, as different limb temperatures affect CSP latencies more than large-diameter fiber conduction function. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Effects of hyperglycemia on rat cavernous nerve axons: a functional and ultrastructural study.
Zotova, Elena G; Schaumburg, Herbert H; Raine, Cedric S; Cannella, Barbara; Tar, Moses; Melman, Arnold; Arezzo, Joseph C
2008-10-01
The present study explored parallel changes in the physiology and structure of myelinated (Adelta) and unmyelinated (C) small diameter axons in the cavernous nerve of rats associated with streptozotocin-induced hyperglycemia. Damage to these axons is thought to play a key role in diabetic autonomic neuropathy and erectile dysfunction, but their pathophysiology has been poorly studied. Velocities in slow conducting fibers were measured by applying multiple unit procedures; histopathology was evaluated with both light and electron microscopy. To our knowledge, these are the initial studies of slow nerve conduction velocities in the distal segments of the cavernous nerve. We report that hyperglycemia is associated with a substantial reduction in the amplitude of the slow conducting response, as well as a slowing of velocities within this very slow range (< 2.5 m/s). Even with prolonged hyperglycemia (> 4 months), histopathological abnormalities were mild and limited to the distal segments of the cavernous nerve. Structural findings included dystrophic changes in nerve terminals, abnormal accumulations of glycogen granules in unmyelinated and preterminal axons, and necrosis of scattered smooth muscle fibers. The onset of slowing of velocity in the distal cavernous nerve occurred subsequent to slowing in somatic nerves in the same rats. The functional changes in the cavernous nerve anticipated and exceeded the axonal degeneration detected by morphology. The physiologic techniques outlined in these studies are feasible in most electrophysiologic laboratories and could substantially enhance our sensitivity to the onset and progression of small fiber diabetic neuropathy.
EFFECTS OF HYPERGLYCEMIA ON RAT CAVERNOUS NERVE AXONS: A FUNCTIONAL AND ULTRASTRUCTURAL STUDY
Zotova, Elena G.; Schaumburg, Herbert H.; Raine, Cedric S.; Cannella, Barbara; Tar, Moses; Melman, Arnold; Arezzo, Joseph C.
2008-01-01
The present study explored parallel changes in the physiology and structure of myelinated (Aδ) and unmyelinated (C) small diameter axons in the cavernous nerve of rats associated with streptozotocin-induced hyperglycemia. Damage to these axons is thought to play a key role in diabetic autonomic neuropathy and erectile dysfunction, but their pathophysiology has been poorly studied. Velocities in slow conducting fibers were measured by applying multiple unit procedures; histopathology was evaluated with both light and electron microscopy. To our knowledge, these are the initial studies of slow nerve conduction velocities in the distal segments of the cavernous nerve. We report that hyperglycemia is associated with a substantial reduction in the amplitude of the slow conducting response, as well as a slowing of velocities within this very slow range (<2.5 m/sec). Even with prolonged hyperglycemia (> 4 months), histopathological abnormalities were mild and limited to the distal segments of the cavernous nerve. Structural findings included dystrophic changes in nerve terminals, abnormal accumulations of glycogen granules in unmyelinated and preterminal axons, and necrosis of scattered smooth muscle fibers. The onset of slowing of velocity in the distal cavernous nerve occurred subsequent to slowing in somatic nerves in the same rats. The functional changes in the cavernous nerve anticipated and exceeded the axonal degeneration detected by morphology. The physiologic techniques outlined in these studies are feasible in most electrophysiologic laboratories and could substantially enhance our sensitivity to the onset and progression of small fiber diabetic neuropathy. PMID:18687329
Jacquesson, Timothée; Frindel, Carole; Cotton, Francois
2017-04-01
A 24-year-old woman was hit by a bus and suffered an isolated complete oculomotor nerve palsy. Computed tomography scan did not show a skull base fracture. T2*-weighted magnetic resonance imaging revealed petechial cerebral hemorrhages sparing the brainstem. T2 constructive interference in steady state suggested a partial sectioning of the left oculomotor nerve just before entering the superior orbital fissure. Diffusion tensor imaging fiber tractography confirmed a sharp arrest of the left oculomotor nerve. This recent imaging technique could be of interest to assess white fiber damage and help make a diagnosis or prognosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Surgical anatomy of the prostate in the era of radical robotic prostatectomy.
Walz, Jochen; Graefen, Markus; Huland, Hartwig
2011-05-01
New insights in the anatomy of the prostate and the surrounding tissue evolve the technique of radical prostatectomy for the treatment of prostate cancer. Regarding the course of the erectile nerves along the prostate, recent studies confirmed the presence of parasympathetic pro-erectile nerve fibers at the anterolateral aspect of the prostate. Another study of intraoperative electrostimulation of those nerves confirmed an increase in intracavernosal pressure by stimulations between the 1 and 3 o'clock position. Therefore, it is very likely that these anterior nerve fibers have an effect on erectile function. Regarding the urethral sphincter in the male, a study showed no attachment of the external sphincter to the levator ani muscle, probably resulting in an absence of a levator ani support to the continence mechanism. The male urinary sphincter seems to be in isolation responsible for urinary continence. The nerve fibers at the anterolateral aspect of the prostate seem to participate in erectile function, which renders the concept of a high anterior release during nerve sparing beneficial. The isolated urinary sphincter mechanism results in the need to conserve as much urethral length as possible during radical prostatectomy to avoid urinary incontinence.
Olmarker, Kjell
2005-07-01
An experimental study in the pig with autologous transfer of nucleus pulpous and retroperitoneal fat to the subcutaneous space of the back. To evaluate if there is neovascularization or neoinnervation of subcutaneously placed nucleus pulposus, in comparison to retroperitoneal fat, and under simultaneous treatment by certain antiangiogenetic drugs. It has been suggested that intervertebral discs may be invaded by newly formed blood vessels and nerve fibers following injury of the anulus fibrosus. The nerve fibers have been considered to induce low back pain. However, it is still debated whether such ingrowth may occur and, if present, if this is based on the action of angiogenetic substances in the intervertebral disc or simply by normal would healing. In the first series, autologous nucleus pulposus and retroperitoneal fat was placed subcutaneously in 3 pigs. In the second series, autologous nucleus pulposus was placed subcutaneously with simultaneous treatment with methotrexate (n = 3), celecoxib (n = 3), doxycycline (n = 3), and infliximab (n = 3). After 7 days, the tissue was collected and processed immunohistochemically for the visualization of blood vessels and nerve fibers. There was a number of blood vessels and nerve fibers in the nucleus pulposus samples, while no vessels were observed in the fat samples. Neither methotrexate nor celecoxib seemed to be able to reduce the ingrowth of blood vessels (neovascularization) or nerve fibers (neoinnervation). Treatment by doxycycline and infliximab markedly reduced both neovascularization and neoinnervation. Subcutaneously placed autologous nucleus pulposus displays an ingrowth of newly formed blood vessels and nerve fibers within 7 days, in contrast to retroperitoneal fat. Such ingrowth seems to be reduced by doxycycline and infliximab, 2 cytokine inhibitors. The data suggest that the ingrowth may be induced by bioactive substances within the nucleus pulposus. The clinical importance of these data has yet to be elucidated.
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Mayeh, Mona; Burnett, Arthur L.; Farahi, Faramarz; Fried, Nathaniel M.
2010-02-01
The cavernous nerves (CN) course along the prostate surface and are responsible for erectile function. Improved identification and preservation of the CN's is critical to maintaining sexual potency after prostate cancer surgery. Noncontact optical nerve stimulation (ONS) of the CN's was recently demonstrated in a rat model, in vivo, as a potential alternative to electrical nerve stimulation (ENS) for identification of the CN's during prostate surgery. However, the therapeutic window for ONS is narrow, so optimal design of the fiber optic delivery system is critical for safe, reproducible stimulation. This study describes modeling, assembly, and testing of an ONS probe for delivering a small, collimated, flat-top laser beam for uniform CN stimulation. A direct comparison of the magnitude and response time of the intracavernosal pressure (ICP) for both Gaussian and flat-top spatial beam profiles was performed. Thulium fiber laser radiation (λ=1870 nm) was delivered through a 200-μm fiber, with distal fiber tip chemically etched to convert a Gaussian to flat-top beam profile. The laser beam was collimated to a 1-mm-diameter spot using an aspheric lens. Computer simulations of light propagation were used to optimize the probe design. The 10-Fr (3.4-mm-OD) laparoscopic probe provided a constant radiant exposure at the nerve surface. The probe was tested in four rats, in vivo. ONS of the CN's was performed with a 1-mm-diameter spot, 5- ms pulse duration, and pulse rate of 20 Hz for a duration of 15-30 s. The flat-top laser beam profile consistently produced a faster and higher ICP response at a lower radiant exposure than the Gaussian beam profile due, in part, to easier alignment of the more uniform beam with nerve. With further development, ONS may be used as a diagnostic tool for identification of the CN's during laparoscopic and robotic nerve-sparing prostate cancer surgery.
Ontogeny and innervation of taste buds in mouse palatal gustatory epithelium.
Rashwan, Ahmed; Konishi, Hiroyuki; El-Sharaby, Ashraf; Kiyama, Hiroshi
2016-01-01
We investigated the relationship between mouse taste bud development and innervation of the soft palate. We employed scanning electron microscopy and immunohistochemistry using antibodies against protein gene product 9.5 and peripherin to detect sensory nerves, and cytokeratin 8 and α-gustducin to stain palatal taste buds. At E14, nerve fibers were observed along the medial border of the palatal shelves that tracked toward the epithelium. At E15.5, primordial stages of taste buds in the basal lamina of the soft palate first appeared. At E16, the taste buds became large spherical masses of columnar cells scattered in the soft palate basal lamina. At E17, the morphology and also the location of taste buds changed. At E18-19, some taste buds acquired a more elongated shape with a short neck, extending a variable distance from the soft palate basal lamina toward the surface epithelium. At E18, mature taste buds with taste pores and perigemmal nerve fibers were observed on the surface epithelium of the soft palate. The expression of α-gustducin was demonstrated at postnatal day 1 and the number of pored taste buds increased with age and they became pear-shaped at 8 weeks. The percent of pored fungiform-like papillae at birth was 58.3% of the whole palate; this increased to 83.8% at postnatal day 8 and reached a maximum of 95.7% at 12 weeks. The innervation of the soft palate was classified into three types of plexuses in relation to taste buds: basal nerve plexus, intragemmal and perigemmal nerve fibers. This study reveals that the nerve fibers preceded the development of taste buds in the palate of mice, and therefore the nerve fibers have roles in the initial induction of taste buds in the soft palate. Copyright © 2015 Elsevier B.V. All rights reserved.
Julé, Y
1975-05-01
1. Using extracellular electrodes placed on the serosa, we recorded the modifications of the electrical activity of the colonic muslce fibers caused by the stimulation of vagal and splanchnic nerve fibers. 2. Vagal stimulation produces two types of junction potentials: excitatory junction potentials (EJPs) and inhibitory junction potentials (IJPs). The IJPs are elicited by stimulation of vagal fibers which innervate intramural non-adrenergic inhibitory neurons. 3. The conduction velocity of the nerve impulse along the vagal pre-ganglionic fibers is 1.01 m/sec for excitatory fibers and 0.5. m/sec for inhibitory fibers. 4. Splanchnic fiber stimulation causes EJP disappearance, blocking transmission between preganglionic fibers and intramural excitatory neurons, and a decrease in IJP amplitude that most likely indicates a previous hyperpolarization of the smooth muscle. 5. IJP persistence during splanchnic stimulation proves that sympathetic inhibition does not modify the transmission of the vagal influx onto the non-adrenergic inhibitory neurons of the intramural plexuses. 6. Through a comparative study of proximal and distal colonic innervation, we are able to show that there is a similar organization of both regions, that is a double inhibitory innervation: an adrenergic one of a sympathetic origin, and a non adrenergic one of a parasympathetic origin.
Okochi, Masayuki; Ueda, Kazuki; Mochizuki, Yasushi; Okochi, Hiromi
2015-08-01
The aims of the present study were to analyze the effectiveness of current perception threshold (CPT) testing to determine patients' minor paresthesia of the infraorbital region after open reduction and internal fixation (ORIF) for unilateral zygomaticomaxillary bone fracture (UZF) and to clarify which nerve fiber was related to the paresthesia. We conducted a retrospective cohort study of patients who had undergone ORIF after UZF. We also performed neurosensory testing for healthy volunteers who served as the control group. The predictor variables were the period of measurement of Semmes-Weinstein monofilament (S-W) testing and CPT testing (preoperatively and 1 and 5 years postoperatively), measurement side, and disease status (UZF or control). The outcome variables were paresthesia status of the infraorbital nerve region and the results of S-W and CPT testing in both UZF and control groups. The differences in the S-W and CPT values between the affected and unaffected sides in the UZF group and between the UZF and control groups were analyzed by t test (P < .05 was considered significant). The present study included 10 patients (6 males and 4 females), with an average age of 25.0 ± 12.7 years, and 21 controls (10 males and 11 females), with an average age of 24.3 ± 1.7 years. In the control group, the CPT and S-W test results did not show any significant differences between the left and right sides. All 10 patients had paresthesia at 1 and 5 years postoperatively. At 5 years postoperatively, the S-W values in all patients showed normalization. From the results of CPT testing, only the A-β fiber function showed significant improvement at 5 years postoperatively. The CPT test was an effective sensory test for determining minor paresthesia that could not be detected using S-W testing. Paresthesia of the infraorbital nerve region was caused by the damaged A-δ and C fibers. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
El-Nour, H; Lundeberg, L; Al-Tawil, R; Granlund, A; Lonne-Rahm, S-B; Nordlind, K
2006-01-01
Nerve fibers and sensory neuropeptides substance P and calcitonin gene-related peptide (CGRP) have been reported to be involved in allergic contact dermatitis (ACD). In the present study, we investigated the general innervation (using antibody against protein gene product 9.5, PGP 9.5), axonal growth (using antibody against growth associated protein, GAP-43), CGRP, and substance P with its receptor neurokinin 1 (NK1), in positive epicutaneous reactions to nickel sulphate from nickel-allergic patients, at the peak of inflammation, 72 hr after challenge with the antigen. There was an increased (p < 0.01) number of GAP-43 positive fibers in the eczematous compared with control skin, indicating an increased axonal growth already at 72 hr postchallenge. Double staining revealed a coexpression of CGRP and GAP-43 on dermal nerve fibers. There was no difference in the number of substance P and CGRP positive nerve fibers between eczematous and control skin. However, semiquantification analyses showed an increased expression of substance P positive inflammatory cells, being CD3, CD4, or CD8 positive, and NK1R positive inflammatory cells, being tryptase or CD3 positive. These results indicate a contribution of regenerating nerve fibers and substance P to the contact allergic reaction.
Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images
Ramaswamy, Gomathy; Lombardo, Marco; Devaney, Nicholas
2014-01-01
Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumination, residual image motion and image rotation. This processing can be challenging for images of the RNFL due to their low contrast and lack of clearly noticeable features. Here we develop specific processing techniques and show that their application leads to improved image quality on the nerve fiber bundles. This in turn improves the reliability of measures of fiber texture such as the correlation of Gray-Level Co-occurrence Matrix (GLCM). PMID:24940551
Rod-Shaped Neural Units for Aligned 3D Neural Network Connection.
Kato-Negishi, Midori; Onoe, Hiroaki; Ito, Akane; Takeuchi, Shoji
2017-08-01
This paper proposes neural tissue units with aligned nerve fibers (called rod-shaped neural units) that connect neural networks with aligned neurons. To make the proposed units, 3D fiber-shaped neural tissues covered with a calcium alginate hydrogel layer are prepared with a microfluidic system and are cut in an accurate and reproducible manner. These units have aligned nerve fibers inside the hydrogel layer and connectable points on both ends. By connecting the units with a poly(dimethylsiloxane) guide, 3D neural tissues can be constructed and maintained for more than two weeks of culture. In addition, neural networks can be formed between the different neural units via synaptic connections. Experimental results indicate that the proposed rod-shaped neural units are effective tools for the construction of spatially complex connections with aligned nerve fibers in vitro. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images.
Ramaswamy, Gomathy; Lombardo, Marco; Devaney, Nicholas
2014-06-01
Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumination, residual image motion and image rotation. This processing can be challenging for images of the RNFL due to their low contrast and lack of clearly noticeable features. Here we develop specific processing techniques and show that their application leads to improved image quality on the nerve fiber bundles. This in turn improves the reliability of measures of fiber texture such as the correlation of Gray-Level Co-occurrence Matrix (GLCM).
Witkin, J W
1987-01-01
The luteinizing hormone-releasing hormone (LHRH) system was examined immunocytochemically in olfactory bulbs of adult monkeys, including two New World species (squirrel monkey, Saimiri sciureus and owl monkey, Aotus trivirgatus) and one Old World species (cynomolgus macaque, Macaca fasciculata), and in the brain and nasal region of a fetal rhesus macaque Macaca mulatta. LHRH neurons and fibers were found sparsely distributed in the olfactory bulbs in all adult monkeys. There was more LHRH in the accessory olfactory bulb (which is absent in Old World monkeys). In the fetal macaque there was a rich distribution of LHRH neurons and fibers along the pathway of the nervus terminalis, anterior and ventral to the olfactory bulb, and in the nasal septum, with fibers branching into the olfactory epithelium. In addition, there were LHRH neurons and fibers in the optic nerve.
Schwann cell glycogen selectively supports myelinated axon function.
Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R
2012-09-01
Interruption of energy supply to peripheral axons is a cause of axon loss. We determined whether glycogen was present in mammalian peripheral nerve, and whether it supported axon conduction during aglycemia. We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Glycogen was present in sciatic nerve, its concentration varying directly with ambient glucose. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm, and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time course of glycogen loss. Latency to compound action potential (CAP) failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small-diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large-diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. . Copyright © 2012 American Neurological Association.
Schwann Cell Glycogen Selectively Supports Myelinated Axon Function
Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R
2012-01-01
Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913
Wang, Fangyong; Yuan, Yuan; Li, Jianjun
2015-12-01
To investigate the effects of the first neuron connection for the reconstruction of lower extremity function of complete spinal cord injury rats. Forty adult female Sprague Dawley rats of 300-350 g in weight were selected to prepare the models of L₁ transverse spinal cord injury. After 2 weeks of establishing model, the rats were randomly divided into control group (n = 20) and experimental group (n = 20). In the experimental group, the right hind limb function was reconstructed directly by the first neuron; in the control group, the other treatments were the same to the experimental group except that the distal tibial nerve and the proximal femoral nerve were not sutured. The recovery of motor function of lower extremity was observed by the Basso-Beattie-Bresnahan (BBB) scoring system on bilateral hind limbs at 7, 30, 50, and 70 days after operation. The changes of the spinal cord were observed by HE staining, neurofilament 200 immunohistochemistry staining, and the technique of horseradish peroxidase (HRP) tracing. After establishing models, 6 rats died. The right hind limb had no obvious recovery of the motor function, with the BBB score of 0 in 2 groups; the left hind limb motor function was recovered in different degrees, and there was no significant difference in BBB score between 2 groups (P > 0.05). In the experimental group, HE staining showed that the spinal cord was reconstructed with the sciatic nerve, which was embedded in the spinal cord, and the sciatic nerve membrane was clearly identified, and there was no obvious atrophy in the connecting part of the spinal cord. In the experimental group, the expression of nerve fiber was stained with immunohistochemistry, and the axons of the spinal cord were positively by stained and the peripheral nerve was connected with the spinal cord. HRP labelled synapses were detected by HRP retrograde tracing in the experimental group, while there was no HRP labelled synapse in the control group. Direct reconstruction of the first neurons is sufficient in the regeneration of corresponding neural circuit by the growth of residual axon; but the motor function recovery of the target muscles innervated by peripheral nerve is not observed.
Bendella, H; Pavlov, S P; Grosheva, M; Irintchev, A; Angelova, S K; Merkel, D; Sinis, N; Kaidoglou, K; Skouras, E; Dunlop, S A; Angelov, Doychin N
2011-07-01
We have recently shown that manual stimulation of target muscles promotes functional recovery after transection and surgical repair to pure motor nerves (facial: whisking and blink reflex; hypoglossal: tongue position). However, following facial nerve repair, manual stimulation is detrimental if sensory afferent input is eliminated by, e.g., infraorbital nerve extirpation. To further understand the interplay between sensory input and motor recovery, we performed simultaneous cut-and-suture lesions on both the facial and the infraorbital nerves and examined whether stimulation of the sensory afferents from the vibrissae by a forced use would improve motor recovery. The efficacy of 3 treatment paradigms was assessed: removal of the contralateral vibrissae to ensure a maximal use of the ipsilateral ones (vibrissal stimulation; Group 2), manual stimulation of the ipsilateral vibrissal muscles (Group 3), and vibrissal stimulation followed by manual stimulation (Group 4). Data were compared to controls which underwent surgery but did not receive any treatment (Group 1). Four months after surgery, all three treatments significantly improved the amplitude of vibrissal whisking to 30° versus 11° in the controls of Group 1. The three treatments also reduced the degree of polyneuronal innervation of target muscle fibers to 37% versus 58% in Group 1. These findings indicate that forced vibrissal use and manual stimulation, either alone or sequentially, reduce target muscle polyinnervation and improve recovery of whisking function when both the sensory and the motor components of the trigemino-facial system regenerate.
N-cadherin expression in palisade nerve endings of rat vellus hairs.
Kaidoh, Toshiyuki; Inoué, Takao
2008-02-01
Palisade nerve endings (PNs) are mechanoreceptors around vellus hairs of mammals. Each lanceolate nerve ending (LN) of the PN is characterized by a sensory nerve ending symmetrically sandwiched by two processes of type II terminal Schwann cells (tSCIIs). However, the molecular mechanisms underlying the structural organization of the PN are poorly understood. Electron microscopy showed that adherens junctions appeared to adhere to the sensory nerve ending and tSCII processes, so we examined the location of the N-cadherin adhesion system in PNs of rat vellus hairs by using immunoelectron microscopy. N-cadherin localized near both ends of the cell boundary between sensory nerve ending and tSCII processes, which corresponded to the sites of adherens junctions. We further found cadherin-associated proteins, alpha- and beta-catenins, at the linings of adherens junctions. Three-dimensional reconstruction of immunoelectron microscopic serial thin sections showed four linear arrays of N-cadherin arranged longitudinally along the LN beneath the four longitudinal borders of two tSCII processes. In contrast, sensory nerve fibers just proximal to the LNs formed common unmyelinated nerve fibers, in which N-cadherin was located mainly at the mesaxon of type I terminal Schwann cells (tSCIs). These results suggest that the four linear arrays of N-cadherin-mediated junctions adhere the sensory nerve ending and tSCII processes side by side to form the characteristic structure of the LN, and the structural differences between the LNs and the proximal unmyelinated nerve fibers possibly are due to the difference in the pattern of N-cadherin expression between sensory nerve endings and tSCII or tSCI processes. (c) 2007 Wiley-Liss, Inc.
[Lipomatosis of nerve: a clinicopathologic analysis of 15 cases].
MAO, Rong-jun; YANG, Ke-fei; WANG, Jian
2011-03-01
To study the clinicopathologic features of lipomatosis of nerve (NLS). The clinical, radiologic and pathologic features were analyzed in 15 cases of NLS. There were a total of 10 males and 5 females. The age of patients ranged from 4 to 42 years (mean age = 22.4 years). Eleven cases were located in the upper limbs and 4 cases in the lower limbs. The median nerve was the most common involved nerve. The patients typically presented before 30 years of age (often at birth or in early childhood) with a soft and slowly enlarging mass in the limb, with or without accompanying motor and sensory deficits. Some cases also had macrodactyly and carpal tunnel syndrome. MRI showed the presence of fatty tissue between nerve fascicles, resembling coaxial cable in axial plane and assuming a spaghetti-like appearance in coronal plane. On gross examination, the affected nerve was markedly increased in length and diameter. It consisted of a diffusely enlarged greyish-yellow lobulated fusiform beaded mass within the epineural sheath. Histologically, the epineurium was infiltrated by fibrofatty tissue which separated, surrounded and compressed the usually normal-appearing nerve fascicles, resulting in perineural septation of nerve fascicles and microfascicle formation. The infiltration sometimes resulted in concentric arrangement of perineural cells and pseudo-onion bulb-like hypertrophic changes. The perineurial cells might proliferate, with thickening of collagen fibers, degeneration and atrophic changes of nerve bundles. Immunohistochemical study showed that the nerve fibers expressed S-100 protein, neurofilament and CD56 (weak). The endothelial cells and dendritic fibers were highlighted by CD34. The intravascular smooth muscle cells were positive for muscle-specific actin. NLS is a rare benign soft tissue tumor of peripheral nerve. The MRI findings are characteristic. A definitive diagnosis can be made with histologic examination of tissue biopsy.
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2011-03-01
Optical nerve stimulation (ONS) has recently been reported as a potential alternative to electrical nerve stimulation. Continuous-wave (CW) laser stimulation of the prostate cavernous nerves (CN) in a rat model, in vivo, has also been demonstrated in our previous studies. The objective of this study is to present a new all-single-mode-fiber configuration for ONS with the laser operating in CW mode for potential diagnostic applications. An infrared pigtailed single-mode diode laser (λ = 1455 nm) was used in this study for noncontact ONS. This new all-fiber approach introduces several advantages including: (1) a less expensive and more compact ONS system, (2) elimination of alignment of optical components, and (3) an improved spatial beam profile. Successful optical stimulation of the rat CN using this new design was observed after the CN reached a threshold temperature of ~ 41 °C with response times as short as 3 s. Upon further study, this configuration may be useful for identification and preservation of the cavernous nerves during prostate cancer surgery.
Effects of capsaicin in the motor nerve.
Pettorossi, V E; Bortolami, R; Della Torre, G; Brunetti, O
1994-08-01
The injection of capsaicin into the lateral gastrocnemius (LG) muscle of the rat induced an immediate and sustained reduction in the A delta and C components of the compound action potential (CAP) of the LG motor nerve. Conversely, the drug did not immediately affect the CAP wave belonging to fast-conducting fibers or the motor responses to LG nerve stimulation. It seems that capsaicin only affects the group III and IV afferents of LG nerve. However, a week after the injection the capsaicin also altered the motor responses, as shown by the threshold enhancement and amplitude reduction of the muscle twitch and by the decrease of the A alpha-beta CAP components. This late motor impairment was attributed to a central depression following a reduction of capsaicin-sensitive neuron input into the CNS. However, this motor effect was transient since the LG nerve regained the preinjection excitability level in a week and the muscle twitch amplitude reached the control value in a month.
Novakova, Lenka; Axelsson, Markus; Malmeström, Clas; Imberg, Henrik; Elias, Olle; Zetterberg, Henrik; Nerman, Olle; Lycke, Jan
2018-01-01
Neurodegeneration occurs during the early stages of multiple sclerosis. It is an essential, devastating part of the pathophysiology. Tools for measuring the degree of neurodegeneration could improve diagnostics and patient characterization. This study aimed to determine the diagnostic value of biomarkers of degeneration in patients with recent clinical onset of suspected multiple sclerosis, and to evaluate these biomarkers for characterizing disease course. This cross-sectional study included 271 patients with clinical features of suspected multiple sclerosis onset and was the baseline of a prospective study. After diagnostic investigations, the patients were classified into the following disease groups: patients with clinically isolated syndrome (n = 4) or early relapsing remitting multiple sclerosis (early RRMS; n = 93); patients with relapsing remitting multiple sclerosis with disease durations ≥2 years (established RRMS; n = 39); patients without multiple sclerosis, but showing symptoms (symptomatic controls; n = 89); and patients diagnosed with other diseases (n = 46). In addition, we included healthy controls (n = 51) and patients with progressive multiple sclerosis (n = 23). We analyzed six biomarkers of neurodegeneration: cerebrospinal fluid neurofilament light chain levels; cerebral spinal fluid glial fibrillary acidic protein; cerebral spinal fluid tau; retinal nerve fiber layer thickness; macula volume; and the brain parenchymal fraction. Except for increased cerebral spinal fluid neurofilament light chain levels, median 670 ng/L (IQR 400-2110), we could not find signs of early degeneration in the early disease group with recent clinical onset. However, the intrathecal immunoglobin G production and cerebral spinal fluid neurofilament light chain levels showed diagnostic value. Moreover, elevated levels of cerebral spinal fluid glial fibrillary acidic protein, thin retinal nerve fiber layers, and low brain parenchymal fractions were associated with progressive disease, but not with the other phenotypes. Thin retinal nerve fiber layers and low brain parenchymal fractions, which indicated neurodegeneration, were associated with longer disease duration. In clinically suspected multiple sclerosis, intrathecal immunoglobin G production and neurofilament light chain levels had diagnostic value. Therefore, these biomarkers could be included in diagnostic work-ups for multiple sclerosis. We found that the thickness of the retinal nerve fiber layer and the brain parenchymal fraction were not different between individuals that were healthy, symptomatic, or newly diagnosed with multiple sclerosis. This finding suggested that neurodegeneration had not reached a significant magnitude in patients with a recent clinical onset of multiple sclerosis.
Macular and retinal nerve fiber thickness in recovered and persistent amblyopia.
Yassin, Sanaa A; Al-Tamimi, Elham R; Al-Hassan, Sultan
2015-12-01
The aim of this study was to investigate the presence of increased macular or retinal nerve fiber layer thickness (RNFLT) in amblyopic eyes, find if the increased macular or RNFLT is related to the lack of response in amblyopic eyes, and to explore whether the increased central macular thickness (CMT) in amblyopic eyes is purely related to the hyperopia. This is a prospective descriptive study. CMT and peripapillary RNFLT were measured by spectral-domain optical coherence tomography to evaluate 60 patients with unilateral-treated amblyopia (median age 11.00 year). Patients were divided into two groups: 33 patients in recovered amblyopia group and 27 patients in persistent amblyopia group. The mean CMT in the recovered group was 247.31 (±23.4) versus 246.8 (±32.7) µm (p = 0.95) for the persistent group. The mean peripapillary RNFLT was 99.13 (±12.1) versus 99.9 (±14.9) µm (p = 0.85) for the persistent group. In anisometropic amblyopia, there was no significant difference in CMT and RNFLT in either group. Also there was no relation between the type of refractive error and CMT or RNFLT. There was no significant difference in CMT and RNFLT in amblyopic eyes for both the recovered amblyopia group and the persistent amblyopia group to explain the lack of response in persistent amblyopic eyes. Additionally there was no relation between the type of refractive error and CMT or peripapillary RNFLT.
Chronic low-frequency stimulation transforms cat masticatory muscle fibers into jaw-slow fibers.
Kang, Lucia H D; Hoh, Joseph F Y
2011-09-01
Cat masticatory muscle during regeneration expresses masticatory-specific myofibrillar proteins upon innervation by a fast muscle nerve but acquires the jaw-slow phenotype when innervated by a slow muscle nerve. Here, we test the hypothesis that chronic low-frequency stimulation simulating impulses from the slow nerve can result in masticatory-to-slow fiber-type transformation. In six cats, the temporalis muscle was continuously stimulated directly at 10 Hz for up to 12 weeks using a stimulator affixed to the skull. Stimulated muscles were analyzed by immunohistochemistry using, among others, monoclonal antibodies against masticatory-specific myosin heavy chain (MyHC), myosin binding protein-C, and tropomyosins. Under the electrodes, stimulation induced muscle regeneration, which generated slow fibers. Deep to the electrodes, at two to three weeks, two distinct populations of masticatory fibers began to express slow MyHC: 1) evenly distributed fibers that completely suppressed masticatory-specific proteins but transiently co-expressed fetal MyHCs, and 2) incompletely transformed fibers that express slow and masticatory but not fetal MyHCs. SDS-PAGE confirmed de novo expression of slow MyHC and β-tropomyosin in the stimulated muscles. We conclude that chronic low-frequency stimulation induces masticatory-to-slow fiber-type conversion. The two populations of transforming masticatory fibers may differ in their mode of activation or lineage of their myogenic cells.
Maggs, Alison M; Huxley, Clare; Hughes, Simon M
2008-12-01
Innervation regulates the contractile properties of vertebrate muscle fibers, in part through the effect of electrical activity on expression of distinct myosins. Herein we analyze the role of innervation in regulating the accumulation of the general, maturational, and adult forms of rodent slow myosin heavy chain (MyHC) that are defined by the presence of distinct antigenic epitopes. Denervation increases the number of fibers that express general slow MyHC, but it decreases the adult slow MyHC epitope. Cross-reinnervation of slow muscle by a fast nerve leads to an increase in the number of fibers that express fast MyHC. In both cases, there is an increase in the number of fibers that express slow and fast IIA MyHCs, but without the adult slow MyHC epitope. The data suggest that innervation is required for maturation and maintenance of diversity of both slow and fast fibers. The sequence of slow MyHC epitope transitions is a useful biomarker, and it may play a significant role during nerve-dependent changes in muscle fiber function. We applied this detailed muscle analysis to a transgenic mouse model of human motor and sensory neuropathy IA, also known as Charcot-Marie-Tooth disease type 1A (CMT1A), in which electrical conduction in some motor nerves is poor due to demyelination. The mice display atrophy of some muscle fibers and changes in slow and fast MyHC epitope expression, suggestive of a progressive increase in innervation of muscle fibers by fast motor neurons, even at early stages. The potential role of these early changes in disease pathogenesis is assessed.
Vaeggemose, Michael; Pham, Mirko; Ringgaard, Steffen; Tankisi, Hatice; Ejskjaer, Niels; Heiland, Sabine; Poulsen, Per L; Andersen, Henning
2017-07-01
This study evaluates whether diffusion tensor imaging magnetic resonance neurography (DTI-MRN), T2 relaxation time, and proton spin density can detect and grade neuropathic abnormalities in patients with type 1 diabetes. Patients with type 1 diabetes ( n = 49) were included-11 with severe polyneuropathy (sDPN), 13 with mild polyneuropathy (mDPN), and 25 without polyneuropathy (nDPN)-along with 30 healthy control subjects (HCs). Clinical examinations, nerve conduction studies, and vibratory perception thresholds determined the presence and severity of DPN. DTI-MRN covered proximal (sciatic nerve) and distal (tibial nerve) nerve segments of the lower extremity. Fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) were calculated, as were T2 relaxation time and proton spin density obtained from DTI-MRN. All magnetic resonance findings were related to the presence and severity of neuropathy. FA of the sciatic and tibial nerves was lowest in the sDPN group. Corresponding with this, proximal and distal ADCs were highest in patients with sDPN compared with patients with mDPN and nDPN, as well as the HCs. DTI-MRN correlated closely with the severity of neuropathy, demonstrating strong associations with sciatic and tibial nerve findings. Quantitative group differences in proton spin density were also significant, but less pronounced than those for DTI-MRN. In conclusion, DTI-MRN enables detection in peripheral nerves of abnormalities related to DPN, more so than proton spin density or T2 relaxation time. These abnormalities are likely to reflect pathology in sciatic and tibial nerve fibers. © 2017 by the American Diabetes Association.
NASA Astrophysics Data System (ADS)
Shneider, M. N.; Voronin, A. A.; Zheltikov, A. M.
2011-11-01
The Goldman-Albus treatment of the action-potential dynamics is combined with a phenomenological description of molecular hyperpolarizabilities into a closed-form model of the action-potential-sensitive second-harmonic response of myelinated nerve fibers with nodes of Ranvier. This response is shown to be sensitive to nerve demyelination, thus enabling an optical diagnosis of various demyelinating diseases, including multiple sclerosis. The model is applied to examine the nonlinear-optical response of a three-neuron reverberating circuit—the basic element of short-term memory.
Tak, Ali Zeynel Abidin; Sengul, Yıldızhan; Bilak, Şemsettin
2018-03-01
The aim of our study is to assess retinal nerve fiber layer (RNFL), the ganglion cell layer (GCL), inner-plexiform layer (IPL), and choroidal layer in migraine patients with white matter lesion (WML) or without WML, using spectral domain optical coherence tomography (OCT). To our study, 77 migraine patients who are diagnosed with migraine in accordance to the International Classification of Headache Disorders (ICHD)-3 beta and 43 healthy control are included. In accordance to cranial MRI, migraine patients are divided into two groups as those who have white matter lesions (39 patients), and those who do not have a lesion (38 patients). OCT was performed for participants. The average age of participants was comparable. The RNFL average thickness parameter in the migraine group was significantly lower than in the control group (p < 0.01). However, no significant difference was detected among those migraine patients who have WML, and those who do not have. No significant difference is detected among all groups in terms of IPL, GCL, and choroidal layer measuring scales. The proofs showing that affected retinal nerve fiber layer are increased in migraine patients. However, it is not known whether this may affect other layers of retina, or whether there is a correlation between affected retinal structures and white matter lesions. In our study, we found thinner RNFL in migraine patients when we compared with controls but IPL, GCL, and choroid layer values were similar between each patient groups and controls. Also, all parameters were similar between patients with WML and without WML. Studies in this regard are required.
Comparison of peripheral nerve damages according to glucose control timing in experimental diabetes.
Jin, H Y; Kang, S M; Liu, W J; Song, C H; Lee, K A; Baek, H S; Park, T S
2012-09-01
In addition to tight glucose control, early intensive therapy has been reported to be more important for the prevention of diabetic micro- and macro-vascular complications. What is not known exactly is the quantitative difference according to timing delay in glucose control and whether early period control is really better than late control in terms of diabetic peripheral neuropathy. In this study, we investigated the effect of timing differences in glucose control on the peripheral nerves in an experimental diabetic model. 5 groups (6-8 rats in each group) were comprised of normal glucose rats (designated control), rats with hyperglycemia (designated DM), rats with glucose control for the entire 28-week study period (designated DM + INS [W0-28]), rats with glucose control for the early 14-week period followed by hyperglycemia for the late 14-week period (designated DM + INS [W0-14]), and rats with hyperglycemia for the early 14-week period followed by glucose control in the late 14-week period (designated DM + INS [W15-28]). We found that the current perception threshold (CPT) was lower in the DM + INS (W0-28) and DM + INS (W15-28) groups than in the DM + INS (W0-14) or DM groups (P<0.05). The mean myelinated fiber area of the sciatic nerve was significantly greater in the DM + INS (W0-28) and DM + INS (W15-28) groups (63.5±2.32 and 60.1±2.14 um, respectively) than in the DM + INS (W0-14) or DM groups (55.5±2.81 or 51.5±2.64 um, respectively) (P<0.05), and the intraepidermal nerve fiber (IENF) density was significantly higher in the DM + INS (W0-28) and DM + INS (W15-28) groups (6.9±0.46 and 6.8±0.11, respectively) than in the DM + INS (W0-14) or DM groups (59.5±0.32 and 5.3±0.39/mm, respectively) (P<0.05). Our results indicate that continuous glucose control is necessary to alleviate peripheral nerve damage and that glycemic control during the later period may be more important than early period management. The importance of continuous glucose control, including the later period of diabetes, should therefore be emphasized in diabetic peripheral neuropathy. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.
Immunohistologic analysis of spontaneous recurrent laryngeal nerve reinnervation in a rat model.
Rosko, Andrew J; Kupfer, Robbi A; Oh, Sang S; Haring, Catherine T; Feldman, Eva L; Hogikyan, Norman D
2018-03-01
After recurrent laryngeal nerve injury (RLN), spontaneous reinnervation of the larynx occurs with input from multiple sources. The purpose of this study was to determine the timing and efficiency of reinnervation across a resected RLN segment in a rat model of RLN injury. Animal study. Twelve male 60-day-old Sprague Dawley rats underwent resection of a 5-mm segment of the right RLN. Rats were sacrificed at 1, 2, 4, and 12 weeks after nerve injury to harvest the larynx and trachea for immunohistologic analysis. The distal RLN segment was stained with neurofilament, and axons were counted and compared to the nonoperated side. Thyroarytenoid (TA) muscles were stained with alpha-bungarotoxin, synaptophysin, and neurofilament to identify intact neuromuscular junctions (NMJ). The number of intact NMJs from the denervated side was compared to the nonoperated side. Nerve fibers regenerated across the resected RLN gap into the distal recurrent laryngeal nerve to innervate the TA muscle. The number of nerve fibers in the distal nerve segment increased over time and reached the normal number by 12 weeks postdenervation. Axons formed intact neuromuscular junctions in the TA, with 48.8% ± 16.7% of the normal number of intact NMJs at 4 weeks and 88.3% ± 30.1% of the normal number by 12 weeks. Following resection of an RLN segment in a rat model, nerve fibers spontaneously regenerate through the distal segment of the transected nerve and form intact NMJs in order to reinnervate the TA muscle. NA. Laryngoscope, 128:E117-E122, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Longhurst, John C.
2013-01-01
Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the responses of cardiac sympathetic afferent nerves to myocardial ischemia and ischemic mediators like ATP and bradykinin. PMID:23645463
Wu, Z-X; Dey, R D
2006-07-01
Nerve growth factor (NGF), a member of the neurotrophin family, enhances synthesis of neuropeptides in sensory and sympathetic neurons. The aim of this study was to examine the effect of NGF on airway responsiveness and determine whether these effects are mediated through synthesis and release of substance P (SP) from the intrinsic airway neurons. Ferrets were instilled intratracheally with NGF or saline. Tracheal smooth muscle contractility to methacholine and electrical field stimulation (EFS) was assessed in vitro. Contractions of isolated tracheal smooth muscle to EFS at 10 and 30 Hz were significantly increased in the NGF treatment group (10 Hz: 33.57 +/- 2.44%; 30 Hz: 40.12 +/- 2.78%) compared with the control group (10 Hz: 27.24 +/- 2.14%; 30 Hz: 33.33 +/- 2.31%). However, constrictive response to cholinergic agonist was not significantly altered between the NGF treatment group and the control group. The NGF-induced modulation of airway smooth muscle to EFS was maintained in tracheal segments cultured for 24 h, a procedure that causes a significant anatomic and functional loss of SP-containing sensory fibers while maintaining viability of intrinsic airway neurons. The number of SP-containing neurons in longitudinal trunk and superficial muscular plexus and SP nerve fiber density in tracheal smooth muscle all increased significantly in cultured trachea treated with NGF. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the NGF-induced increased contraction to EFS in cultured segments but had no effect in saline controls. These results show that the NGF-enhanced airway smooth muscle contractile responses to EFS are mediated by the actions of SP released from intrinsic airway neurons.
INCOMPLETE REPAIR OF RETINAL STRUCTURE AFTER VITRECTOMY WITH INTERNAL LIMITING MEMBRANE PEELING.
Hisatomi, Toshio; Tachibana, Takashi; Notomi, Shoji; Nakatake, Shunji; Fujiwara, Kohta; Murakami, Yusuke; Ikeda, Yasuhiro; Yoshida, Shigeo; Enaida, Hiroshi; Murata, Toshinori; Sakamoto, Taiji; Sonoda, Koh-Hei; Ishibashi, Tatsuro
2017-08-01
To examine retinal changes after vitrectomy with internal limiting membrane (ILM) peeling, we used a cynomolgus monkey model and focused on surgical damages of ILM peeling for long observational period of 3 years. Vitrectomy was performed followed by ILM peeling similar to clinical settings in humans. Ultrastructural changes of the retina were investigated by light, transmission, and scanning electron microscopy at 3 months and 3 years after ILM peeling. Ultrastructural study showed that the ILM peeled area was still clearly recognized after 3 years. The Müller cell processes covered most of the retina; however, the nerve fiber layer was partly uncovered and exposed to the vitreous space. The arcuate linear nerve fiber bundles were observed as comparable with dissociated optic nerve fiber layer appearance. Small round retinal surface defects were also observed around macula, resembling the dimple sign. Forceps-related retinal thinning was also found on the edge of ILM peeling, where we started peeling with fine forceps. The ultrastructural studies showed that most of ILM peeling area was covered with glial cells during wound healing processes. Retinal changes were found comparable with dissociated optic nerve fiber layer appearance or dimple sign, which were clinically observed with optical coherence tomography.
Extraocular Muscles in Patients With Infantile Nystagmus
Berg, Kathleen T.; Hunter, David G.; Bothun, Erick D.; Antunes-Foschini, Rosalia; McLoon, Linda K.
2013-01-01
Objective To test the hypothesis that the extraocular muscles (EOMs) of patients with infantile nystagmus have muscular and innervational adaptations that may have a role in the involuntary oscillations of the eyes. Methods Specimens of EOMs from 10 patients with infantile nystagmus and postmortem specimens from 10 control subjects were prepared for histologic examination. The following variables were quantified: mean myofiber cross-sectional area, myofiber central nucleation, myelinated nerve density, nerve fiber density, and neuromuscular junction density. Results In contrast to control EOMs, infantile nystagmus EOMs had significantly more centrally nucleated myofibers, consistent with cycles of degeneration and regeneration. The EOMs of patients with nystagmus also had a greater degree of heterogeneity in myofiber size than did those of controls, with no difference in mean myofiber cross-sectional area. Mean myelinated nerve density, nerve fiber density, and neuromuscular junction density were also significantly decreased in infantile nystagmus EOMs. Conclusions The EOMs of patients with infantile nystagmus displayed a distinct hypoinnervated phenotype. This represents the first quantification of changes in central nucleation and myofiber size heterogeneity, as well as decreased myelinated nerve, nerve fiber, and neuromuscular junction density. These results suggest that deficits in motor innervation are a potential basis for the primary loss of motor control. Clinical Relevance Improved understanding of the etiology of nystagmus may direct future diagnostic and treatment strategies. PMID:22411664
Chen, Hsin-Yi; Huang, Mei-Ling; Huang, Wei-Cheng
2010-01-01
Purpose To study the capability of scanning laser polarimetry with variable corneal compensation (GDx VCC) to detect differences in retinal nerve fiber layer thickness between normal and glaucomatous eyes in a Taiwan Chinese population. Methods This study included 44 normal eyes and 107 glaucomatous eyes. The glaucomatous eyes were divided into three subgroups on the basis of its visual field defects (early, moderate, severe). Each subject underwent a GDx-VCC exam and visual field testing. The area under the receiver-operating characteristic curve (AROC) of each relevant parameter was used to differentiate normal from each glaucoma subgroup, respectively. The correlation between visual field index and each parameter was evaluated for the eyes in the glaucoma group. Results For normal vs. early glaucoma, the parameter with the best AROC was Nerve fiber indicator (NFI) (0.942). For normal vs. moderate glaucoma, the parameter showing the best AROC was NFI (0.985). For normal vs. severe glaucoma, the parameter that had the best AROC was NFI (1.000). For early vs. moderate glaucoma, the parameter with the best AROC was NFI (0.732). For moderate vs. severe, the parameter showing the best AROC was temporal-superior-nasal-inferior-temporal average (0.652). For early vs. severe, the parameter with the best AROC was NFI (0.852). Conclusions GDx-VCC-measured parameters may serve as a useful tool to distinguish normal from glaucomatous eyes; in particular, NFI turned out to be the best discriminating parameter.
Facial arthralgia and myalgia: can they be differentiated by trigeminal sensory assessment?
Eliav, Eli; Teich, Sorin; Nitzan, Dorit; El Raziq, Daood Abid; Nahlieli, Oded; Tal, Michael; Gracely, Richard H; Benoliel, Rafael
2003-08-01
Heat and electrical detection thresholds were assessed in 72 patients suffering from painful temporomandibular disorder. Employing widely accepted criteria, 44 patients were classified as suffering from temporomandibular joint (TMJ) arthralgia (i.e. pain originating from the TMJ) and 28 from myalgia (i.e. pain originating from the muscles of mastication). Electrical stimulation was employed to assess thresholds in large myelinated nerve fibers (Abeta) and heat application to assess thresholds in unmyelinated nerve fibers (C). The sensory tests were performed bilaterally in three trigeminal nerve sites: the auriculotemporal nerve territory (AUT), buccal nerve territory (BUC) and the mental nerve territory (MNT). In addition, 22 healthy asymptomatic controls were examined. A subset of ten arthralgia patients underwent arthrocentesis and electrical detection thresholds were additionally assessed following the procedure. Electrical detection threshold ratios were calculated by dividing the affected side by the control side, thus reduced ratios indicate hypersensitivity of the affected side. In control patients, ratios obtained at all sites did not vary significantly from the expected value of 'one' (mean with 95% confidence intervals; AUT, 1:0.95-1.06; BUC, 1.01:0.93-1.11; MNT, 0.97:0.88-1.05, all areas one sample analysis P>0.05). In arthralgia patients mean ratios (+/-SEM) obtained for the AUT territory (0.63+/-0.03) were significantly lower compared to ratios for the MNT (1.02+/-0.03) and BUC (0.96+/-0.04) territories (repeated measures analysis of variance (RANOVA), P<0.0001) and compared to the AUT ratios in myalgia (1.27+/-0.09) and control subjects (1+/-0.06, ANOVA, P<0.0001). In the myalgia group the electrical detection threshold ratios in the AUT territory were significantly elevated compared to the AUT ratios in control subjects (Dunnett test, P<0.05), but only approached statistical significance compared to the MNT (1.07+/-0.04) and BUC (1.11+/-0.06) territories (RANOVA, F(2,27)=3.12, P=0.052). There were no significant differences between and within the groups for electrical detection threshold ratios in the BUC and MNT nerve territories, and for the heat detection thresholds in all tested sites. Following arthrocentesis, mean electrical detection threshold ratios in the AUT territory were significantly elevated from 0.64+/-0.06 to 0.99+/-0.04 indicating resolution of the hypersensitivity (paired t-test, P=0.001). In conclusion, large myelinated fiber hypersensitivity is found in the skin overlying TMJs with clinical pain and pathology but is not found in controls. In patients with muscle-related facial pain there was significant elevation of the electrical detection threshold in the AUT region.
Nesbit, Steven C.; Van Hoof, Alexander G.; Le, Chi C.; Dearworth, James R.
2015-01-01
Few laboratory exercises have been developed using the crayfish as a model for teaching how neural processing is done by sensory organs that detect light stimuli. This article describes the dissection procedures and methods for conducting extracellular recording from light responses of both the optic nerve fibers found in the animal’s eyestalk and from the caudal photoreceptor located in the ventral nerve cord. Instruction for ADInstruments’ data acquisition system is also featured for the data collection and analysis of responses. The comparison provides students a unique view on how spike activities measured from neurons code image-forming and non-image-forming processes. Results from the exercise show longer latency and lower frequency of firing by the caudal photoreceptor compared to optic nerve fibers to demonstrate evidence of different functions. After students learn the dissection, recording procedure, and the functional anatomy, they can develop their own experiments to learn more about the photoreceptive mechanisms and the sensory integration of modalities by these light-responsive interneurons. PMID:26557793
Cases, Mercè; Llobet, Artur; Terni, Beatrice; Gómez de Aranda, Inmaculada; Blanch, Marta; Doohan, Briain; Revill, Alexander; Brown, Angus M; Blasi, Juan; Solsona, Carles
2017-01-01
ε-Toxin is a pore forming toxin produced by Clostridium perfringens types B and D. It is synthesized as a less active prototoxin form that becomes fully active upon proteolytic activation. The toxin produces highly lethal enterotoxaemia in ruminants, has the ability to cross the blood-brain barrier (BBB) and specifically binds to myelinated fibers. We discovered that the toxin induced a release of ATP from isolated mice optic nerves, which are composed of myelinated fibers that are extended from the central nervous system. We also investigated the effect of the toxin on compound action potentials (CAPs) in isolated mice optic nerves. When nerves were stimulated at 100 Hz during 200 ms, the decrease of the amplitude and the area of the CAPs was attenuated in the presence of ε-toxin. The computational modelling of myelinated fibers of mouse optic nerve revealed that the experimental results can be mimicked by an increase of the conductance of myelin and agrees with the pore forming activity of the toxin which binds to myelin and could drill it by making pores. The intimate ultrastructure of myelin was not modified during the periods of time investigated. In summary, the acute action of the toxin produces a subtle functional impact on the propagation of the nerve action potential in myelinated fibers of the central nervous system with an eventual desynchronization of the information. These results may agree with the hypothesis that the toxin could be an environmental trigger of multiple sclerosis (MS).
Terni, Beatrice; Gómez de Aranda, Inmaculada; Blanch, Marta; Brown, Angus M.
2017-01-01
ε-Toxin is a pore forming toxin produced by Clostridium perfringens types B and D. It is synthesized as a less active prototoxin form that becomes fully active upon proteolytic activation. The toxin produces highly lethal enterotoxaemia in ruminants, has the ability to cross the blood–brain barrier (BBB) and specifically binds to myelinated fibers. We discovered that the toxin induced a release of ATP from isolated mice optic nerves, which are composed of myelinated fibers that are extended from the central nervous system. We also investigated the effect of the toxin on compound action potentials (CAPs) in isolated mice optic nerves. When nerves were stimulated at 100 Hz during 200 ms, the decrease of the amplitude and the area of the CAPs was attenuated in the presence of ε-toxin. The computational modelling of myelinated fibers of mouse optic nerve revealed that the experimental results can be mimicked by an increase of the conductance of myelin and agrees with the pore forming activity of the toxin which binds to myelin and could drill it by making pores. The intimate ultrastructure of myelin was not modified during the periods of time investigated. In summary, the acute action of the toxin produces a subtle functional impact on the propagation of the nerve action potential in myelinated fibers of the central nervous system with an eventual desynchronization of the information. These results may agree with the hypothesis that the toxin could be an environmental trigger of multiple sclerosis (MS). PMID:28798954
Frixione, Eugenio
2013-01-01
Available records indicate that the human body has always been conceived, in different periods and cultures, as spanned by multiple channels for internal communication and coherent functioning as a unit-"meridians" in treatises of Chinese medicine, metu in Egyptian papyri, srotas in Ayurvedic Indian texts, and neura in the Western scientific heritage from ancient Greece. Unfortunately, the earliest extant figurative depictions of such pathways of general control, complementary to the blood vessels, are late medieval copies of old crude sketches that attempted to show the main anatomico-physiological systems. The scarcity of adequate illustrations was more than compensated in the Renaissance, when the efforts of both artists and anatomists for the first time produced basically correct renditions of the human nervous system and many other bodily structures. As attention was next focused on microscopic structure as a requisite to understand physiological mechanisms, during the Enlightenment the nerves were revealed to consist of numerous thin tubes or fibers aligned in parallel. Improved microscopy techniques in the nineteenth century led to discovering and delineating still finer fibrils coursing along the cores of the nerve fibers themselves. Electron microscopy, developed throughout the twentieth century, recognized some of these fibrils within nerve fibers as being also tubular. All the progressive stages in understanding nerve construction, at increasingly more detailed scales, have been accompanied by technological advances and by debate about the structure and function relationship. And every step has been a source of amazing imagery. © 2013 Elsevier B.V. All rights reserved.
Dehghani, Cirous; Srinivasan, Sangeetha; Edwards, Katie; Pritchard, Nicola; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan
2017-05-01
Reduced retinal nerve fiber layer (RNFL) thickness has been demonstrated in patients with diabetic peripheral neuropathy (DPN) in cross-sectional studies. This prospective study defines longitudinal alterations to the RNFL thickness in individuals with type 1 diabetes without (DPN-ve) and with (DPN+ve) DPN and in relation to risk factors for nerve damage. A cohort of 105 individuals with type 1 diabetes (20% DPN+ve) with predominantly mild or no retinopathy and no previous retinal photocoagulation underwent spectral-domain optical coherence tomography (SD-OCT) at baseline, 2 years, and 4 years. SD-OCT scans were acquired at 3.45-mm diameter around the optic nerve head and the overall RNFL and RNFL in the nasal, superior, temporal, and inferior quadrants were quantified. By including serial quantified RNFL parameters, linear mixed models were applied to assess the change in RNFL thickness over time and to explore the associations with other clinical variables. There was a significant decline in the overall RNFL thickness (-0.7 μm/y, P = 0.02) and RNFL in the superior quadrant (-1.9 μm/y, P < 0.01) in the DPN+ve group compared with DPN-ve group. The overall RNFL thickness and RNFL in the superior and nasal quadrants were inversely associated with age (β = -0.29, -0.41, and -0.29, respectively; P ≤ 0.02). Sex, retinopathy, diabetes duration, hemoglobin A1c, lipid profile, blood pressure, cigarette use, alcohol consumption, and body mass index did not show any significant effects (P > 0.05). Individuals with DPN showed a progressive RNFL thinning overall and in the superior quadrant, which was more pronounced in older individuals. There may be common pathways for retinal and peripheral neurodegeneration that are independent of conventional DPN risk factors.
Ely, Amanda L; El-Dairi, Mays A; Freedman, Sharon F
2014-11-01
To identify optic nerve head (ONH) cupping reversal and associated optical coherence tomography (OCT) and Humphrey visual field changes in pediatric glaucoma. Retrospective observational case series. Sequential surgical cases of juvenile open-angle glaucoma (OAG) or primary congenital glaucoma (PCG) with sustained postoperative intraocular pressure (IOP) reduction. Group 1 had preoperative and postoperative ONH photographs and OCT; Group 2 had preoperative clinical ONH assessment and postoperative imaging. Cupping evaluation was confirmed by masked glaucoma and neuro-ophthalmology specialists. Of 80 cases, 9 eyes (9 children) met criteria for Group 1; 24 eyes (19 children) met criteria for Group 2. Group 1: Five of 9 eyes (56%) demonstrated cupping reversal, with preoperative vs postoperative mean IOP 34.2 ± 6.6 mm Hg vs 10.6 ± 4.1 mm Hg (P < .00001) and mean average retinal nerve fiber layer (RNFL) 71.0 ± 30 μm vs 62.8 ± 24 μm (P = .4), respectively. RNFL was stable in 4 of 5 eyes (all juvenile OAG), but thinned (Δ = -41 μm) in 1 eye with PCG. Humphrey visual fields (reliable in 2 of 3 eyes) showed no significant change. Group 2: Fourteen of 24 PCG eyes (58%) demonstrated cupping reversal, with preoperative vs postoperative mean IOP 36.1 ± 8.9 mm Hg vs 13.3 ± 2.1 mm Hg (P < .00001). Two eyes had thin RNFL postoperatively despite healthy-appearing ONH. Postoperative RNFL showed statistically significant linear correlation with preoperative (but not postoperative) cup-to-disc ratio. Limitations include small numbers, few reliable Humphrey visual fields, and absent preoperative imaging (Group 2). Some eyes with IOP reduction and ONH cupping reversal show continued RNFL thinning postoperatively. The preoperative ONH cup-to-disc ratio predicted the postoperative RNFL better than the postoperative "reversed and smaller" cup-to-disc ratio. Cupping reversal in pediatric glaucoma may not predict improved ONH health and deserves further study. Copyright © 2014 Elsevier Inc. All rights reserved.
Abdul-Hamid, Manal; Gallaly, Sanaa Rida
2014-05-01
The study aims to investigate the protective effect of Pimpinella anisum oil on aspartame (ASP) which resulted in cerebellar changes. The rats were divided into four equal groups: Group 1: (control group): served as control animals. Group 2: control P. anisum oil received .5 mL/kg/d/b wt. once daily. Group 3 (ASP group): received daily 250 mg/kg/b wt. of ASP dissolved in distilled water and given orally to the animals by intra-gastric tube for 2 months. Group 4: received .5 mL/kg/b wt. of prophylactic P. anisum oil once daily, followed by ASP after 2 h for 2 months. The histopathological approach revealed marked changes in the Purkinje cells, myleinated nerve fibers and granular cells of ASP-treated animals. Some of these cells appeared with deeply stained cytoplasm. Ultrastructural examination showed Purkinje cells with dilated rough endoplasmic reticulum and condensed mitochondria. Granular cells appeared with less c nuclei and surrounded by dissolution of most Mossy rosettes structures. Most myelinated nerve fibers showed thickening of myelinated sheath and others showed splitting of their myelin sheath. The histopathological, immunohistochemical and ultrastructural alterations were much less observed in concomitant use of P. anisum oil with ASP. Cerebellar cortex is considered target areas of ASP neurotoxicity, while P. anisum oil, when used in combination with ASP displays a protective action against neurotoxicity.
Small fiber neuropathy is a common feature of Ehlers-Danlos syndromes
Cazzato, Daniele; Castori, Marco; Lombardi, Raffaella; Caravello, Francesca; Bella, Eleonora Dalla; Petrucci, Antonio; Grammatico, Paola; Dordoni, Chiara; Colombi, Marina
2016-01-01
Objective: To investigate the involvement of small nerve fibers in Ehlers-Danlos syndrome (EDS). Methods: Patients diagnosed with EDS underwent clinical, neurophysiologic, and skin biopsy assessment. We recorded sensory symptoms and signs and evaluated presence and severity of neuropathic pain according to the Douleur Neuropathique 4 (DN4) and ID Pain questionnaires and the Numeric Rating Scale (NRS). Sensory action potential amplitude and conduction velocity of sural nerve was recorded. Skin biopsy was performed at distal leg and intraepidermal nerve fiber density (IENFD) obtained and referred to published sex- and age-adjusted normative reference values. Results: Our cohort included 20 adults with joint hypermobility syndrome/hypermobility EDS, 3 patients with vascular EDS, and 1 patient with classic EDS. All except one patient had neuropathic pain according to DN4 and ID Pain questionnaires and reported 7 or more symptoms at the Small Fiber Neuropathy Symptoms Inventory Questionnaire. Pain intensity was moderate (NRS ≥4 and <7) in 8 patients and severe (NRS ≥7) in 11 patients. Sural nerve conduction study was normal in all patients. All patients showed a decrease of IENFD consistent with the diagnosis of small fiber neuropathy (SFN), regardless of the EDS type. Conclusions: SFN is a common feature in adults with EDS. Skin biopsy could be considered an additional diagnostic tool to investigate pain manifestations in EDS. PMID:27306637
Innervation of taste buds revealed with Brainbow-labeling in mouse.
Zaidi, Faisal N; Cicchini, Vanessa; Kaufman, Daniel; Ko, Elizabeth; Ko, Abraham; Van Tassel, Heather; Whitehead, Mark C
2016-12-01
Nerve fibers that surround and innervate the taste bud were visualized with inherent fluorescence using Brainbow transgenic mice that were generated by mating the founder line L with nestin-cre mice. Multicolor fluorescence revealed perigemmal fibers as branched within the non-taste epithelium and ending in clusters of multiple rounded swellings surrounding the taste pore. Brainbow-labeling also revealed the morphology and branching pattern of single intragemmal fibers. These taste bud fibers frequently innervated both the peripheral bud, where immature gemmal cells are located, and the central bud, where mature, differentiated cells are located. The fibers typically bore preterminal and terminal swellings, growth cones with filopodia, swellings, and rounded retraction bulbs. These results establish an anatomical substrate for taste nerve fibers to contact and remodel among receptor cells at all stages of their differentiation, an interpretation that was supported by staining with GAP-43, a marker for growing fibers and growth cones. © 2016 Anatomical Society.
Speckle reduction during all-fiber common-path optical coherence tomography of the cavernous nerves
NASA Astrophysics Data System (ADS)
Chitchian, Shahab; Fiddy, Michael; Fried, Nathaniel M.
2009-02-01
Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery, which are responsible for erectile function, may improve nerve preservation and postoperative sexual potency. In this study, we use a rat prostate, ex vivo, to evaluate the feasibility of optical coherence tomography (OCT) as a diagnostic tool for real-time imaging and identification of the cavernous nerves. A novel OCT system based on an all single-mode fiber common-path interferometer-based scanning system is used for this purpose. A wavelet shrinkage denoising technique using Stein's unbiased risk estimator (SURE) algorithm to calculate a data-adaptive threshold is implemented for speckle noise reduction in the OCT image. The signal-to-noise ratio (SNR) was improved by 9 dB and the image quality metrics of the cavernous nerves also improved significantly.
Lee, Wei-Chia; Wu, Han-Ching; Huang, Kuo-How; Wu, Huey-Peir; Yu, Hong-Jeng; Wu, Chia-Ching
2014-01-01
Purpose To investigate the relationship between distal symmetric peripheral neuropathy and early stages of autonomic bladder dysfunction in type 2 diabetic women. Materials and Methods A total of 137 diabetic women with minimal coexisting confounders of voiding dysfunction followed at a diabetes clinic were subject to the following evaluations: current perception threshold (CPT) tests on myelinated and unmyelinated nerves at the big toe for peroneal nerve and middle finger for median nerve, uroflowmetry, post-void residual urine volume, and overactive bladder (OAB) symptom score questionnaire. Patients presenting with voiding difficulty also underwent urodynamic studies and intravesical CPT tests. Results Based on the OAB symptom score and urodynamic studies, 19% of diabetic women had the OAB syndrome while 24.8% had unrecognized urodynamic bladder dysfunction (UBD). The OAB group had a significantly greater mean 5 Hz CPT test value at the big toe by comparison to those without OAB. When compared to diabetic women without UBD, those with UBD showed greater mean 5 Hz CPT test values at the middle finger and big toe. The diabetic women categorized as C-fiber hyposensitivity at the middle finger or big toe by using CPT test also had higher odds ratios of UBD. Among diabetic women with UBD, the 5 Hz CPT test values at the big toe and middle finger were significantly associated with intravesical 5 Hz CPT test values. Conclusions Using electrophysiological evidence, our study revealed that hyposensitivity of unmyelinated C fiber afferents at the distal extremities is an indicator of early stages diabetic bladder dysfunction in type 2 diabetic women. The C fiber dysfunction at the distal extremities seems concurrent with vesical C-fiber neuropathy and may be a sentinel for developing early diabetic bladder dysfunction among female patients. PMID:24466107
Up Noh, Sun; Lee, Won-Young; Kim, Won-Serk; Lee, Yong-Taek; Jae Yoon, Kyung
2018-01-01
Background Diabetic neuropathy originating in distal lower extremities is associated with pain early in the disease course, overwhelming in the feet. However, the pathogenesis of diabetic neuropathy remains unclear. Macrophage migration inhibitory factor has been implicated in the onset of neuropathic pain and the development of diabetes. Objective of this study was to observe pain syndromes elicited in the footpad of diabetic neuropathy rat model and to assess the contributory role of migration inhibitory factor in the pathogenesis of diabetic neuropathy. Methods Diabetic neuropathy was made in Sprague Dawley rats by streptozotocin. Pain threshold was evaluated using von Frey monofilaments for 24 weeks. On comparable experiment time after streptozotocin injection, all footpads were prepared for following procedures; glutathione assay, terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling staining, immunohistochemistry staining, real-time reverse transcription polymerase chain reaction, and Western blot. Additionally, human HaCaT skin keratinocytes were treated with methylglyoxal, transfected with migration inhibitory factor/control small interfering RNA, and prepared for real-time reverse transcription polymerase chain reaction and Western blot. Results As compared to sham group, pain threshold was significantly reduced in diabetic neuropathy group, and glutathione was decreased in footpad skin, simultaneously, cell death was increased. Over-expression of migration inhibitory factor, accompanied by low expression of glyoxalase-I and intraepidermal nerve fibers, was shown on the footpad skin lesions of diabetic neuropathy. But, there was no significance in expression of neurotransmitters and inflammatory mediators such as transient receptor potential vanilloid 1, mas-related G protein coupled receptor D, nuclear factor kappa B, tumor necrosis factor-alpha, and interleukin-6 between diabetic neuropathy group and sham group. Intriguingly, small interfering RNA-transfected knockdown of the migration inhibitory factor gene in methylglyoxal-treated skin keratinocytes increased expression of glyoxalase-I and intraepidermal nerve fibers in comparison with control small interfering RNA-transfected cells, which was decreased by induction of methylglyoxal. Conclusions Our findings suggest that migration inhibitory factor can aggravate diabetic neuropathy by suppressing glyoxalase-I and intraepidermal nerve fibers on the footpad skin lesions and provoke pain. Taken together, migration inhibitory factor might offer a pharmacological approach to alleviate pain syndromes in diabetic neuropathy.
Liu, Xiao; Chen, Jun; Gilmore, Kerry J; Higgins, Michael J; Liu, Yong; Wallace, Gordon G
2010-09-15
The purpose of this work was to investigate the potential biomedical application of novel aligned electrospun polypyrrole (PPy)/poly(styrene-beta-isobutylene-beta-styrene) (SIBS) fibers. After successfully aligning the electroactive PPy/SIBS fibers based on our modified electrospinning method, we demonstrated that neurite outgrowth from PC12 cells could be highly orientated parallel to the aligned PPy/SIBS fibers. Physical interactions between the nerve cells and PPy/SIBS fibers through filopodia "sensing" were observed using atomic force microscopy. These observations indicate a role of contact guidance as a mechanism for the observed alignment. This work highlights the capacity for electroactive PPy/SIBS fibers to support and guide nerve cell differentiation through topographic cues, which is a highly desirable characteristic in medical implants for neurological applications. (c) 2010 Wiley Periodicals, Inc.
Matsuo, Kiyoshi; Ban, Ryokuya; Ban, Midori; Yuzuriha, Shunsuke
2014-01-01
The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm.
Ban, Ryokuya; Ban, Midori; Yuzuriha, Shunsuke
2014-01-01
Objective: The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. Methods: We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. Results: Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. Conclusions: The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm. PMID:25210572
Sun, Chengsan; Dayal, Arjun
2015-01-01
Brain-derived neurotrophic factor (BDNF) is expressed in gustatory epithelia and is required for gustatory neurons to locate and innervate their correct target during development. When BDNF is overexpressed throughout the lingual epithelium, beginning embryonically, chorda tympani fibers are misdirected and innervate inappropriate targets, leading to a loss of taste buds. The remaining taste buds are hyperinnervated, demonstrating a disruption of nerve/target matching in the tongue. We tested the hypothesis here that overexpression of BDNF peripherally leads to a disrupted terminal field organization of nerves that carry taste information to the brainstem. The chorda tympani, greater superficial petrosal, and glossopharyngeal nerves were labeled in adult wild-type (WT) mice and in adult mice in which BDNF was overexpressed (OE) to examine the volume and density of their central projections in the nucleus of the solitary tract. We found that the terminal fields of the chorda tympani and greater superficial petrosal nerves and overlapping fields that included these nerves in OE mice were at least 80% greater than the respective field volumes in WT mice. The shapes of terminal fields were similar between the two groups; however, the density and spread of labels were greater in OE mice. Unexpectedly, there were also group-related differences in chorda tympani nerve function, with OE mice showing a greater relative taste response to a concentration series of sucrose. Overall, our results show that disruption in peripheral innervation patterns of sensory neurons have significant effects on peripheral nerve function and central organization of their terminal fields. PMID:25568132
Turan, Kadriye Erkan; Sekeroglu, Hande Taylan; Baytaroglu, Ata; Bezci, Figen; Karahan, Sevilay
2018-01-01
To (a) determine the normative values for optical coherence tomography (OCT) parameters such as central macular thickness, retinal nerve fiber layer thickness, and choroidal thickness in healthy children; (b) investigate the relationships of these parameters with axial length, central corneal thickness, refractive errors, and intraocular pressure; and (c) determine interexaminer agreement for choroidal thickness measurements. In this cross-sectional study, 120 healthy children aged 8-15 years underwent detailed ophthalmological examination and OCT measurements. Choroidal thickness was measured at three separate locations by two independent examiners. The mean global retinal nerve fiber layer thickness was 98.75 ± 9.45 μm (79.0-121.0). The mean central macular thickness was 232.29 ± 29.37 μm (190.0-376.0). The mean subfoveal choroidal thickness obtained by examiner 1 was 344.38 ± 68.83 μm and that obtained by examiner 2 was 344.04 ± 68.92 μm. Interexaminer agreement was between 99.6%-99.8% for choroidal thickness at three separate locations. Central macular thickness increased with axial length (r=0.245, p=0.007). Choroidal thickness increased with age (r=0.291, p=0.001) and decreased with axial length (r=-0.191, p=0.037). Global retinal nerve fiber layer thickness decreased with axial length (r=-0.247, p=0.007) and increased with central corneal thickness (r=0.208, p=0.022). Global retinal nerve fiber layer thickness positively correlated with choroidal thickness (r=0.354, p<0.001). Global retinal nerve fiber layer thickness (r=0.223, p=0.014) and choroidal thickness (r=0.272, p=0.003) increased with the spherical equivalent (D). Optical coherence tomography parameters showed a wide range of variability in children. Retinal nerve fiber layer thickness, central macular thickness, and choroidal thickness were found to be either inter-related or correlated with age, central corneal thickness, axial length, and refractive errors. Furthermore, manual measurements of choroidal thickness showed high interexaminer agreement. Because normative values for optical coherence tomography parameters differed in children, the measurements should be interpreted according to an age-appropriate database.
Imai, S; Konttinen, Y T; Tokunaga, Y; Maeda, T; Hukuda, S; Santavirta, S
1997-09-01
The present study investigated ultrastructural characteristics of calcitonin gene-related peptide-immunoreactive nerve fibers in the posterior longitudinal ligament of the rat lumbar spine. To provide a morphologic basis for assessment of the afferent and, in particular, efferent functions of calcitonin gene-related peptide immunoreactive nerves in the posterior longitudinal ligament and their eventual role in degenerative spondylarthropathies and low back pain. Previous studies using light-microscopic localization of sensory neuronal markers such as calcitonin gene-related peptide have reported the presence of sensory fibers in the supporting structures of the vertebral column. Meanwhile, accumulating research data have suggested efferent properties for calcitonin gene-related peptide, i.e., a trophic action that alters the intrinsic properties of target cells not through transient action of synaptic transmission, but through long-lasting signal transmission by the secreted neuropeptides. To verify such trophic, paracrine actions of the calcitonin gene-related peptide-containing fibers in the posterior longitudinal ligament, however, ultrastructural details of the terminals and their spatial relationship to their eventual target structures have to be elucidated. Rat posterior longitudinal ligaments were stained immunohistochemically for calcitonin gene-related peptide. Light-microscopic analysis of the semithin sections facilitated subsequent electron microscopy of specific sites of the posterior longitudinal ligament to determine ultrastructural details and nerve fiber-target relationships. The rat lumbar posterior longitudinal ligament was found to be innervated by two distinctive calcitonin gene-related peptide immunoreactive nerve networks. In immunoelectronmicroscopy, the fibers of the deep network had numerous free nerve endings, whereas those of the superficial network showed spatial associations with other non-calcitonin gene-related peptide immunoreactive components of the network. In both systems, naked axons not covered by the Schwann cells made close spatial contact with smooth muscle cells: of blood vessels and resident posterior longitudinal ligament fibroblasts. The ultrastructural characteristics of the innervation of the rat posterior longitudinal ligament would be compatible not only with a nociceptive function, but also with neuromodulatory, vasoregulatory, and trophic functions, as has already been established in some visceral organs.
Rousseau, Antoine; Cauquil, Cecile; Dupas, Benedicte; Labbé, Antoine; Baudouin, Christophe; Barreau, Emmanuel; Théaudin, Marie; Lacroix, Catherine; Guiochon-Mantel, Anne; Benmalek, Anouar; Labetoulle, Marc; Adams, David
2016-09-01
Small fiber neuropathy (SFN) is an important feature of transthyretin familial amyloid polyneuropathy (TTR-FAP). A practical and objective method for the clinical evaluation of SFN is needed to improve the management of this disease. In vivo confocal microscopy (IVCM) of the corneal nerves, a rapid noninvasive technique, may be used as a surrogate marker of SFN. To determine the correlation of SFN with IVCM in patients with TTR-FAP. A prospective, single-center, cross-sectional controlled study was conducted at the French National Reference Center for TTR-FAP from June 1, 2013, to June 30, 2014. Fifteen patients with TTR-FAP underwent a complete neurologic examination, including Neuropathy Impairment Score of the Lower Limbs, hand grip strength, and evaluation of vegetative dysfunction, as well as electrophysiologic studies (nerve conduction and electrochemical skin conductance) and intraepidermal nerve fiber density quantification. Patients and 15 controls (matched for age and sex) underwent ophthalmologic assessments, including corneal esthesiometry and IVCM. Correlation of corneal nerve fiber length (CNFL) with the severity of SFN. Of the 15 patients enrolled in the study, 6 were women (40%); mean (SD) age was 54.4 [13.7] years. The CNFL was shorter in the patients than in controls (13.08 vs 17.57 mm/mm2; difference of 4.49 [95% CI, 0.72 to 8.27]; P = .02). The patients' CNFL correlated with the severity of both autonomic neuropathy assessed by the Compound Autonomic Dysfunction Test (rs = 0.66 [95% CI, 0.22 to 0.87]; P = .008) or electrochemical skin conductance (rs = 0.80 [95% CI, 0.50 to 0.93]; P < .001) and sensorimotor neuropathy assessed using the Neuropathy Impairment Score of the Lower Limbs (rs = -0.58 [95% CI, -0.84 to -0.11]; P = .02). Patients with altered sensory nerve action potentials and intraepidermal nerve fiber density had a shorter CNFL (P = .04 and P = .02, respectively). The CNFL could be measured in all patients compared with sensory nerve action potentials (11 patients [73%; 95% CI, 44% to 92%]; P < .001) and intraepidermal nerve fiber density (4 patients [27%; 95% CI, 8% to 55%]; P < .001). In these 15 patients with TTR-FAP, IVCM measurement permitted rapid, noninvasive evaluation of small-fiber alterations in patients and could be used to assess SFN in this setting. The CNFL could be measured in all patients, thus avoiding the floor effect seen with other neuropathy measures. Longitudinal studies with more cases evaluated are needed to define the place of IVCM in monitoring patients with TTR-FAP.
Morphological evidence for local microcircuits in rat vestibular maculae
NASA Technical Reports Server (NTRS)
Ross, M. D.
1997-01-01
Previous studies suggested that intramacular, unmyelinated segments of vestibular afferent nerve fibers and their large afferent endings (calyces) on type I hair cells branch. Many of the branches (processes) contain vesicles and are presynaptic to type II hair cells, other processes, intramacular nerve fibers, and calyces. This study used serial section transmission electron microscopy and three-dimensional reconstruction methods to document the origins and distributions of presynaptic processes of afferents in the medial part of the adult rat utricular macula. The ultrastructural research focused on presynaptic processes whose origin and termination could be observed in a single micrograph. Results showed that calyces had 1) vesiculated, spine-like processes that invaginated type I cells and 2) other, elongate processes that ended on type II cells pre- as well as postsynaptically. Intramacular, unmyelinated segments of afferent nerve fibers gave origin to branches that were presynaptic to type II cells, calyces, calyceal processes, and other nerve fibers in the macula. Synapses with type II cells occurred opposite subsynaptic cisternae (C synapses); all other synapses were asymmetric. Vesicles were pleomorphic but were differentially distributed according to process origin. Small, clear-centered vesicles, approximately 40-60 nm in diameter, predominated in processes originating from afferent nerve fibers and basal parts of calyces. Larger vesicles approximately 70-120 nm in diameter having approximately 40-80 nm electron-opaque cores were dominant in processes originating from the necks of calyces. Results are interpreted to indicate the existence of a complex system of intrinsic feedforward (postsynaptic)-feedback (presynaptic) connections in a network of direct and local microcircuits. The morphological findings support the concept that maculae dynamically preprocess linear acceleratory information before its transmission to the central nervous system.
Seyedi, N; Maruyama, R; Levi, R
1999-08-01
We had shown that bradykinin (BK) generated by cardiac sympathetic nerve endings (i.e., synaptosomes) promotes exocytotic norepinephrine (NE) release in an autocrine mode. Because the synaptosomal preparation may include sensory C-fiber endings, which BK is known to stimulate, sensory nerves could contribute to the proadrenergic effects of BK in the heart. We report that BK is a potent releaser of NE from guinea pig heart synaptosomes (EC(50) approximately 20 nM), an effect mediated by B(2) receptors, and almost completely abolished by prior C-fiber destruction or blockade of calcitonin gene-related peptide and neurokinin-1 receptors. C-fiber destruction also greatly decreased BK-induced NE release from the intact heart, whereas tyramine-induced NE release was unaffected. Furthermore, C-fiber stimulation with capsaicin and activation of calcitonin gene-related peptide and neurokinin-1 receptors initiated NE release from cardiac synaptosomes, indicating that stimulation of sensory neurons in turn activates sympathetic nerve terminals. Thus, BK is likely to release NE in the heart in part by first liberating calcitonin gene-related peptide and Substance P from sensory nerve endings; these neuropeptides then stimulate specific receptors on sympathetic terminals. This action of BK is positively modulated by cyclooxygenase products, attenuated by activation of histamine H(3) receptors, and potentiated at a lower pH. The NE-releasing action of BK is likely to be enhanced in myocardial ischemia, when protons accumulate, C fibers become activated, and the production of prostaglandins and BK increases. Because NE is a major arrhythmogenic agent, the activation of this interneuronal signaling system between sensory and adrenergic neurons may contribute to ischemic dysrhythmias and sudden cardiac death.
An immunoelectron microscopic study of methionine-enkephalin structures in cat prevertebral ganglia.
Benfares, J; Henry, M; Cupo, A; Julé, Y
1995-03-01
Methionine-enkephalin-like immunoreactivity was detected in presynaptic nerve fibers and SIF cells in cat prevertebral ganglia. The immunoreactive nerve fibers contained a mixture of numerous small clear vesicles and a few large vesicles; the immunoreactivity was only confined to the large vesicles. Most of the immunoreactive fibers were in apposition with non-immunoreactive neuronal profiles, without any detectable synaptic membrane specializations. The other immunoreactive fibers formed synaptic contacts mainly with non-immunostained dendrites and to a lesser extent with axons and neuronal soma. The characterization at the ultrastructural level of the enkephalin-like immunoreactive structures is discussed as regards the modalities whereby opiates may be involved in sympathetic ganglionic transmission.
Kremmer, Stephan; Keienburg, Marcus; Anastassiou, Gerasimos; Schallenberg, Maurice; Steuhl, Klaus-Peter; Selbach, J Michael
2012-01-01
To compare the performance of scanning laser topography (SLT) and scanning laser polarimetry (SLP) on the rim of the optic nerve head and its surrounding area and thereby to evaluate whether these imaging technologies are influenced by other factors beyond the thickness of the retinal nerve fiber layer (RNFL). A total of 154 eyes from 5 different groups were examined: young healthy subjects (YNorm), old healthy subjects (ONorm), patients with normal tension glaucoma (NTG), patients with open-angle glaucoma and early glaucomatous damage (OAGE) and patients with open-angle glaucoma and advanced glaucomatous damage (OAGA). SLT and SLP measurements were taken. Four concentric circles were superimposed on each of the images: the first one measuring at the rim of the optic nerve head (1.0 ONHD), the next measuring at 1.25 optic nerve head diameters (ONHD), at 1.5 ONHD and at 1.75 ONHD. The aligned images were analyzed using GDx/NFA software. Both methods showed peaks of RNFL thickness in the superior and inferior segments of the ONH. The maximum thickness, registered by the SLT device was at the ONH rim where the SLP device tended to measure the lowest values. SLT measurements at the ONH were influenced by other tissues besides the RNFL like blood vessels and glial tissues. SLT and SLP were most strongly correlated at distances of 1.25 and 1.5 ONHD. While both imaging technologies are valuable tools in detecting glaucoma, measurements at the ONH rim should be interpreted critically since both methods might provide misleading results. For the assessment of the retinal nerve fiber layer we would like to recommend for both imaging technologies, SLT and SLP, measurements in 1.25 and 1.5 ONHD distance of the rim of the optic nerve head.
Zhang, Zhihua; Yang, Xiaolu; Jin, Huiyi; Qu, Yuan; Zhang, Yuan; Liu, Kun; Xu, Xun
2016-12-06
Conbercept is a recombinant fusion protein with high affinity for all vascular endothelial growth factor isoforms and placental growth factor. The repeated intravitreal injection of conbercept may cause intraocular pressure (IOP) fluctuations and long-term suppression of neurotrophic cytokines, which could lead to retinal nerve fiber layer (RNFL) damage. This retrospective fellow-eye controlled study included 98 eyes of 49 patients. The changes in IOP and RNFL thickness as well as the correlation between RNFL changes and associated factors were evaluated. The IOP value between the baseline and the last follow-up visit in the injection group and the IOP value of the last follow-up visit between the injection and non-injection groups were not significantly different (p = 0.452 and 0.476, respectively). The global average thickness of the RNFL (μm) in the injection group decreased from 108.9 to 106.1; however, the change was not statistically significant (p = 0.118). No significant difference in the average RNFL thickness was observed at the last follow-up visit between the injection and non-injection groups (p = 0.821). The type of disease was the only factor associated with RNFL thickness changes. In conclusion, repeated intravitreal injections with 0.05 mL conbercept revealed an excellent safety profile for RNFL thickness, although short-term IOP changes were observed.
Assessing posterior ocular structures in β-thalassemia minor.
Arifoglu, Hasan Basri; Kucuk, Bekir; Duru, Necati; Altunel, Orhan; Gulhan, Ahmet; Ozen, Mustafa; Aygun, Bilal; Atas, Mustafa
2018-02-01
The aim of this study was to investigate the effect of β-thalassemia minor on choroidal, macular, and peripapillary retinal nerve fiber layer thickness. To form the sample, we recruited 40 patients with β-thalassemia minor and 44 healthy participants. We used spectral-domain optical coherence tomography to take all measurements of ocular thickness, as well as measured intraocular pressure, axial length, and central corneal thickness. We later analyzed correlations of hemoglobin levels with ocular parameters. A statistically significant difference emerged between patients with β-thalassemia minor and the healthy controls in terms of mean values of subfoveal, nasal, and temporal choroidal thickness (p = 0.001, p = 0.016, and p = 0.010, respectively). Except for central macular thickness, differences in paracentral macular thicknesses between the groups were also significant (superior: p < 0.001, inferior: p = 0.007, temporal: p = 0.001, and nasal: p = 0.005). Also, no statistically significant differences were noted for retinal nerve fiber layer thickness between two groups. Mean values of subfoveal, nasal, temporal choroidal, and macular thickness for the four quadrants were significantly lower in patients with β-thalassemia minor than in healthy controls.
Cold Exposure Exacerbates the Development of Diabetic Polyneuropathy in the Rat
Kasselman, Lora J.; Veves, Aristidis; Gibbons, Christopher H.; Rutkove, Seward B.
2009-01-01
Diabetic polyneuropathy (DPN) and cold-induced nerve injury share several pathogenic mechanisms. This study explores whether cold exposure contributes to the development of DPN. Streptozotocin-induced diabetic rats and controls were exposed to a room temperature (23°C) or cold environment (10°C). H-reflex, tail and sciatic motor, and sensory nerve conduction studies were performed. Analyses of sural nerve, intraepidermal nerve fibers, and skin and nerve nitrotyrosine ELISAs were performed. Diabetic animals exposed to a cold environment had an increased H-reflex four weeks earlier than diabetic room temperature animals (P = .03). Cold-exposed diabetic animals also had greater reduction in motor conduction velocities at 20 weeks (P = .017), decreased skin nerve fiber density (P = .037), and increased skin nitrotyrosine levels (P = .047). Cold exposure appears to hasten the development of DPN in the rat STZ model of diabetes. These findings support that further study into the relationship between ambient temperature and DPN is warranted. PMID:20130819
NASA Astrophysics Data System (ADS)
Zwick, Harry; Zuclich, Joseph A.; Stuck, Bruce E.; Gagliano, Donald A.; Lund, David J.; Glickman, Randolph D.
1995-01-01
We have evaluated acute laser retinal exposure in non-human primates using a Rodenstock scanning laser ophthalmoscope (SLO) equipped with spectral imaging laser sources at 488, 514, 633, and 780 nm. Confocal spectral imaging at each laser wavelength allowed evaluation of the image plane from deep within the retinal vascular layer to the more superficial nerve fiber layer in the presence and absence of the short wavelength absorption of the macular pigment. SLO angiography included both fluorescein and indocyanine green procedures to assess the extent of damage to the sensory retina, the retinal pigment epithelium (RPE), and the choroidal vasculature. All laser exposures in this experiment were from a Q-switched Neodymium laser source at an exposure level sufficient to produce vitreous hemorrhage. Confocal imaging of the nerve fiber layer revealed discrete optic nerve sector defects between the lesion site and the macula (retrograde degeneration) as well as between the lesion site and the optic disk (Wallerian degeneration). In multiple hemorrhagic exposures, lesions placed progressively distant from the macula or overlapping the macula formed bridging scars visible at deep retinal levels. Angiography revealed blood flow disturbance at the retina as well as at the choroidal vascular level. These data suggest that acute parafoveal laser retinal injury can involve both direct full thickness damage to the sensory and non-sensory retina and remote nerve fiber degeneration. Such injury has serious functional implications for both central and peripheral visual function.
[Glaucoma and optic nerve drusen: Limitations of optic nerve head OCT].
Poli, M; Colange, J; Goutagny, B; Sellem, E
2017-09-01
Optic nerve head drusen are congenital calcium deposits located in the prelaminar section of the optic nerve head. Their association with visual field defects has been classically described, but the diagnosis of glaucoma is not easy in these cases of altered optic nerve head anatomy. We describe the case of a 67-year-old man with optic nerve head drusen complicated by glaucoma, which was confirmed by visual field and OCT examination of the peripapillary retinal nerve fiber layer (RNFL), but the measurement of the minimum distance between the Bruch membrane opening and the internal limiting membrane (minimum rim width, BMO-MRW) by OCT was normal. OCT of the BMO-MRW is a new diagnostic tool for glaucoma. Superficial optic nerve head drusen, which are found between the internal limiting membrane and the Bruch's membrane opening, overestimate the value of this parameter. BMO-MRW measurement is not adapted to cases of optic nerve head drusen and can cause false-negative results for this parameter, and the diagnosis of glaucoma in this case should be based on other parameters such as the presence of a fascicular defect in the retinal nerve fibers, RNFL or macular ganglion cell complex thinning, as well as visual field data. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
A voltage-controlled capacitive discharge method for electrical activation of peripheral nerves.
Rosellini, Will M; Yoo, Paul B; Engineer, Navzer; Armstrong, Scott; Weiner, Richard L; Burress, Chester; Cauller, Larry
2011-01-01
A voltage-controlled capacitive discharge (VCCD) method was investigated as an alternative to rectangular stimulus pulses currently used in peripheral nerve stimulation therapies. In two anesthetized Gottingen mini pigs, the threshold (total charge per phase) for evoking a compound nerve action potential (CNAP) was compared between constant current (CC) and VCCD methods. Electrical pulses were applied to the tibial and posterior cutaneous femoralis nerves using standard and modified versions of the Medtronic 3778 Octad. In contrast to CC stimulation, the combined application of VCCD pulses with a modified Octad resulted in a marked decrease (-73 ± 7.4%) in the stimulation threshold for evoking a CNAP. This was consistent for different myelinated fiber types and locations of stimulation. The VCCD method provides a highly charge-efficient means of activating myelinated fibers that could potentially be used within a wireless peripheral nerve stimulator system. © 2011 International Neuromodulation Society.
Cotter, M; Phillips, P
1986-09-01
Limb immobilization causes muscle atrophy particularly of slow oxidative fibers which also suffer the greatest decrement in neural activation. In this study a fast muscle, tibialis anterior, was chronically stimulated using an activity pattern characteristic of nerve fibers to slow muscles to see whether or not this could prevent immobilization induced slow fiber atrophy. Four groups of rabbits were used: unoperated controls, stimulated (10 Hz, 8 h/day), immobilized (neutral position), and a stimulated plus immobilized group. The experimental period was 28 to 30 days or 44 to 50 days. Immobilization caused significant decrease in slow oxidative fiber area which was completely prevented by stimulation. In animals tested for the longer period there was 56% hypertrophy. In addition, the combination of stimulation and immobilization caused a two-fold increase in the number of slow oxidative fibers and greatly increased the proportion of intermediate fibers. Stimulation without immobilization had no effect. Slow fibers in stimulated immobilized muscles had a bimodal area distribution; the number of large fibers (mean area 7059 micron2) was the same as the number of slow oxidative fibers in contralateral muscles, suggesting that they were the preexisting slow fibers, and a small fiber population (mean area 3143 micron2) represented newly converted fast fibers. We conclude that slow muscle units benefit from restoration of activity by chronic stimulation. In addition, the combination of stimulation and immobilization accelerates fast to slow fiber conversion. We suggest that isometric conditions as well as enhanced glucocorticoid effects could account for these findings.
Chang, In Boem; Lee, Jeong Hyun
2017-01-01
Purpose: To evaluate changes in choroidal thickness in and outside the macula as a result of hemodialysis (HD) in patients with end-stage renal disease. Methods: Patients with end-stage renal disease treated with maintenance HD in the Dialysis Unit of Sanggye Paik Hospital, Seoul, South Korea, were included in this study. The choroidal thickness was measured in and outside the macula before and after HD (paired t-test). Choroidal thickness in the macula was measured at the foveal center and 1.5 mm temporal to the foveal center and outside the macula was measured at superior, inferior, and nasal area 3.5 mm from the optic disk margin. Peripapillary retinal nerve fiber layer thickness, intraocular pressure, central corneal thickness, and systemic parameters such as serum osmolarity and blood pressure (BP) were measured before and after HD (paired t-test). We divided patients into two groups, diabetic and nondiabetic groups to compare the changes in choroidal thickness. Patients with diabetes were subdivided into two groups: severe retinal change group and moderate retinal change group (Mann–Whitney test). Pearson's correlation test was used to evaluate the correlations between choroidal thickness and changes in serum osmolarity, BP, and body weight loss. Choroidal thickness and peripapillary retinal nerve fiber layer thickness were measured using spectral-domain optical coherence tomography. Results: Fifty-four eyes of 31 patients with end-stage renal disease were included. After HD, the mean intraocular pressure was significantly decreased from 14.8 ± 2.5 mmHg to 13.0 ± 2.6 mmHg (P < 0.001). Choroidal thickness was reduced in all areas (P < 0.001). The reduction in choroidal thickness correlated with body weight loss, decrease in serum osmolarity, and decrease in systolic BP (P < 0.05). In the diabetic group, the mean choroidal thickness changes were greater than those in the nondiabetic group (P < 0.05). The severe retinal change group showed greater changes in choroidal thickness in all areas (P < 0.05). Other factors that significantly decreased after HD included serum osmolarity, body weight, and systolic BP (all P < 0.001). The diabetic group showed greater changes in serum osmolarity and body weight (P < 0.001, P = 0.048, respectively). The measured overall changes in peripapillary retinal nerve fiber layer thickness or central corneal thickness were not statistically significant. Conclusion: Changes in body weight, serum osmolarity, and BP during HD may affect choroidal thickness in and outside the macula. PMID:27557086
Mehrazma, Mitra; Tanzifi, Parin; Rakhshani, Naser
2014-01-01
Objective: The goal of this study is to evaluate some structural changes in muscular, collagenous and neural components as well as expression of Cajal-like cells and apoptosis of smooth muscle cells in congenital ureteropelvic junction obstruction (UPJO). Methods: Tissue specimens were obtained from 25 patients with UPJO and compared with normal ureteropelvic junction regions of 19 autopsies. In paraffin embedded sections the amount of Cajal-like cells, density of nerve fibers and smooth muscle cell apoptosis (using immunohistochemical staining) were determined. Collagen deposition and muscular components were stained by Trichrome-Masson staining and evaluated by image analysis techniques. Arrangement of muscular bundles was also evaluated qualitatively. Findings : The number of Cajal-like cells was significantly lower in patients than in controls. The apoptotic score and mean number of nerve fibers were not statistically different for the two groups. Arrangement of muscular fibers was more irregular in patients than in controls (P<0.001). Collagen deposition was significantly higher in patients than in controls (P<0.001). The mean amount of muscular component was lower in patients than in normal ones. (P= 0.09) Conclusion: We found significant pathologic changes in congenital ureteropelvic junction obstruction such as decrease in Cajal-like cells, increase in collagen deposition and irregular arrangement of muscle fibers. PMID:25793054
Žužek, Monika C; Rozman, Janez; Pečlin, Polona; Vrecl, Milka; Frangež, Robert
2017-02-01
The ability to selectively stimulate Aα, Aβ-fibers and Aδ-fibers in an isolated rat sciatic nerve (SNR) was assessed. The stimulus used was a current, biphasic pulse with a quasitrapezoidal cathodic phase and rectangular anodic phase where parameters were systematically varied: intensity of the cathodic phase (ic); width of the cathodic phase (tc); width of the cathodic exponential decay (texp) and time constant of the exponential decay (τexp). A SNR was stimulated using a pair of hook electrodes while conduction velocity (CV) and compound action potentials (CAP) were measured at two sites along the SNR using another two pairs of electrodes. Results showed that the highest CAP1 (8.5-9 mV), shall be expected when parameters of the stimulus were within the following range: ic=3.8-4 mA, tc=350-400 μs and texp=330-440 μs. Results also showed that with ascending tc and texp, CV of the corresponding superficial region of the SNR was reduced in both, conduction velocity of CAP1 and conduction velocity of CAP2. It was concluded that action potentials (APs) were activated in the Aβ-fibers and Aδ-fibers along with a slight AP inhibition in the Aβ-fibers. The obtained results, could serve as a tool for developing multi-electrode systems that potentially enable fiber-type selective stimulation of nerve fibers.
Li, G Q; Kevetter, G A; Leonard, R B; Prusak, D J; Wood, T G; Correia, M J
2007-04-25
Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and peripheral nervous system and play an important role in modulating the cell activity and function. We have shown that the cholinergic agonist carbachol reduces the pigeon's inwardly rectifying potassium channel (pKir2.1) ionic currents in native vestibular hair cells. We have cloned and sequenced pigeon mAChR subtypes M2-M5 and we have studied the expression of all five mAChR subtypes (M1-M5) in the pigeon vestibular end organs (semicircular canal ampullary cristae and utricular maculae), vestibular nerve fibers and the vestibular (Scarpa's) ganglion using tissue immunohistochemistry (IH), dissociated single cell immunocytochemistry (IC) and Western blotting (WB). We found that vestibular hair cells, nerve fibers and ganglion cells each expressed all five (M1-M5) mAChR subtypes. Two of the three odd-numbered mAChRs (M1, M5) were present on the hair cell cilia, supporting cells and nerve terminals. And all three odd numbered mAChRs (M1, M3 and M5) were expressed on cuticular plates, myelin sheaths and Schwann cells. Even-numbered mAChRs were seen on the nerve terminals. M2 was also shown on the cuticular plates and supporting cells. Vestibular efferent fibers and terminals were not identified in our studies. Results from WB of the dissociated vestibular epithelia, nerve fibers and vestibular ganglia were consistent with the results from IH and IC. Our findings suggest that there is considerable co-expression of the subtypes on the neural elements of the labyrinth. Further electrophysiological and pharmacological studies should delineate the mechanisms of action of muscarinic acetylcholine receptors on structures in the labyrinth.
Vogl, Wayne; Petersen, Hannes; Adams, Arlo; Lillie, Margo A; Shadwick, Robert E
2017-11-01
Nerves that supply the floor of the oral cavity in rorqual whales are extensible to accommodate the dramatic changes in tissue dimensions that occur during "lunge feeding" in this group. We report here that the large nerves innervating the muscle component of the ventral grooved blubber (VGB) in fin whales are branches of cranial nerve VII (facial nerve). Therefore, the muscles of the VGB are homologous to second branchial arch derived muscles, which in humans include the muscles of "facial expression." We speculate, based on the presence of numerous foramina on the dorsolateral surface of the mandibular bones, that general sensation from the VGB likely is carried by branches of the mandibular division (V3) of cranial nerve V (trigeminal nerve), and that these small branches travel in the lipid-rich layer directly underlying the skin. We show that intercostal and phrenic nerves, which are not extensible, have a different wall and nerve core morphology than the large VGB nerves that are branches of VII. Although these VGB nerves are known to have two levels of waviness, the intercostal and phrenic nerves have only one in which the nerve fascicles in the nerve core are moderately wavy. In addition, the VGB nerves have inner and outer parts to their walls with numerous large elastin fibers in the outer part, whereas intercostal and phrenic nerves have single walls formed predominantly of collagen. Our results illustrate that overall nerve morphology depends greatly on location and the forces to which the structures are exposed. Anat Rec, 300:1963-1972, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
[Functional anatomy of the cochlear nerve and the central auditory system].
Simon, E; Perrot, X; Mertens, P
2009-04-01
The auditory pathways are a system of afferent fibers (through the cochlear nerve) and efferent fibers (through the vestibular nerve), which are not limited to a simple information transmitting system but create a veritable integration of the sound stimulus at the different levels, by analyzing its three fundamental elements: frequency (pitch), intensity, and spatial localization of the sound source. From the cochlea to the primary auditory cortex, the auditory fibers are organized anatomically in relation to the characteristic frequency of the sound signal that they transmit (tonotopy). Coding the intensity of the sound signal is based on temporal recruitment (the number of action potentials) and spatial recruitment (the number of inner hair cells recruited near the cell of the frequency that is characteristic of the stimulus). Because of binaural hearing, commissural pathways at each level of the auditory system and integration of the phase shift and the difference in intensity between signals coming from both ears, spatial localization of the sound source is possible. Finally, through the efferent fibers in the vestibular nerve, higher centers exercise control over the activity of the cochlea and adjust the peripheral hearing organ to external sound conditions, thus protecting the auditory system or increasing sensitivity by the attention given to the signal.
Blood pressure control with selective vagal nerve stimulation and minimal side effects
NASA Astrophysics Data System (ADS)
Plachta, Dennis T. T.; Gierthmuehlen, Mortimer; Cota, Oscar; Espinosa, Nayeli; Boeser, Fabian; Herrera, Taliana C.; Stieglitz, Thomas; Zentner, Joseph
2014-06-01
Objective. Hypertension is the largest threat to patient health and a burden to health care systems. Despite various options, 30% of patients do not respond sufficiently to medical treatment. Mechanoreceptors in the aortic arch relay blood pressure (BP) levels through vagal nerve (VN) fibers to the brainstem and trigger the baroreflex, lowering the BP. Selective electrical stimulation of these nerve fibers reduced BP in rats. However, there is no technique described to localize and stimulate these fibers inside the VN without inadvertent stimulation of non-baroreceptive fibers causing side effects like bradycardia and bradypnea. Approach. We present a novel method for selective VN stimulation to reduce BP without the aforementioned side effects. Baroreceptor compound activity of rat VN (n = 5) was localized using a multichannel cuff electrode, true tripolar recording and a coherent averaging algorithm triggered by BP or electrocardiogram. Main results. Tripolar stimulation over electrodes near the barofibers reduced the BP without triggering significant bradycardia and bradypnea. The BP drop was adjusted to 60% of the initial value by varying the stimulation pulse width and duration, and lasted up to five times longer than the stimulation. Significance. The presented method is robust to impedance changes, independent of the electrode's relative position, does not compromise the nerve and can run on implantable, ultra-low power signal processors.
Effects of stochastic sodium channels on extracellular excitation of myelinated nerve fibers.
Mino, Hiroyuki; Grill, Warren M
2002-06-01
The effects of the stochastic gating properties of sodium channels on the extracellular excitation properties of mammalian nerve fibers was determined by computer simulation. To reduce computation time, a hybrid multicompartment cable model including five central nodes of Ranvier containing stochastic sodium channels and 16 flanking nodes containing detenninistic membrane dynamics was developed. The excitation properties of the hybrid cable model were comparable with those of a full stochastic cable model including 21 nodes of Ranvier containing stochastic sodium channels, indicating the validity of the hybrid cable model. The hybrid cable model was used to investigate whether or not the excitation properties of extracellularly activated fibers were influenced by the stochastic gating of sodium channels, including spike latencies, strength-duration (SD), current-distance (IX), and recruitment properties. The stochastic properties of the sodium channels in the hybrid cable model had the greatest impact when considering the temporal dynamics of nerve fibers, i.e., a large variability in latencies, while they did not influence the SD, IX, or recruitment properties as compared with those of the conventional deterministic cable model. These findings suggest that inclusion of stochastic nodes is not important for model-based design of stimulus waveforms for activation of motor nerve fibers. However, in cases where temporal fine structure is important, for example in sensory neural prostheses in the auditory and visual systems, the stochastic properties of the sodium channels may play a key role in the design of stimulus waveforms.
Yu, Tian-Shui; Wang, Xu; Zhang, Hai-Dong; Bai, Ru-Feng; Zhao, Rui; Guan, Da-Wei
2018-01-01
It has been a puzzling forensic task to determine the cause of death as a result of old myocardial infarction (OMI) in the absence of recognizable acute myocardial infarction. Recent studies indicated that the heterogeneous cardiac nerve sprouting and sympathetic hyperinnervation at border zones of the infarcted site played important roles in sudden cardiac death (SCD). So, the present study explored the value of growth associated protein-43 (GAP-43) and tyrosine hydroxylase (TH) as objective and specific neural biomarkers combined with Masson-trichrome staining for forensic autopsy cases. Myocardium of left ventricle of 58 medicolegal autopsy cases, 12 OMI cases, 12 acute/OMI cases, and 34 control cases, were immunostained with anti-GAP-43 and anti-TH antibodies. Immunoreactivity of GAP-43 and TH identified nerve fibers and vascular wall in OMI cases and acute/OMI cases. Specifically, TH-positive nerve fibers were abundant at border zones of the infarcted site. There were a few GAP-43 and TH expressions in the control cases. With Masson-trichrome staining, collagen fibers were blue and cardiac muscle fibers were pink in marked contrast with the surrounding tissue, which improved the location of nerve fibers. Thus, these findings suggest that immunohistochemical detection of GAP-43 and TH combined with Masson-trichrome staining can provide the evidence for the medicolegal expertise of SCD due to OMI, and further demonstrate a close relationship between sympathetic hyperinnervation and SCD.
Neuroanatomical study of Galen's anastomosis (nervus laryngeus) in the dog.
Henry, C; Cazals, Y; Gioux, M; Didier, A; Aran, J M; Traissac, L
1988-01-01
To further knowledge of the laryngeal nerves, the nerve fibers of Galen's anastomosis were studied using two neuroanatomical methods, namely nerve degeneration and horseradish peroxidase labeling. It is demonstrated that the superior laryngeal nerve forms part of the tracheal and esophageal nervous system. The value of the results in relation to physiological laryngeal studies and to human laryngeal diseases is discussed.
Inoue, Makoto; Yamaguchi, Asuka; Kawakami, Megumi; Chun, Jerold; Ueda, Hiroshi
2006-08-16
Among various machineries occurring in the experimental neuropathic pain model, there exists the loss of pain transmission through C-fiber neurons as well as the hypersensitivity through A-fibers. The current study reveals that molecular machineries underlying the latter hypersensitivity are derived from the events through LPA1 receptor and its downstream RhoA-activation following peripheral nerve injury. The loss of C-fiber responses, which are mediated by spinal substance P (SP) pain transmission was observed with the nociceptive flexor responses by intraplantar injection of SP in nerve-injured mice. The immunohistochemistry revealed that SP signal in the dorsal horn was markedly reduced in such mice. All these changes were completely abolished in LPA1-/- mice or by the pretreatment with BoNT/C3, a RhoA inhibitor. In addition, the loss of C-fiber responses and the down-regulation of spinal SP signal induced by single intrathecal LPA injection were also abolished in such treatments. All these results suggest that the loss of pain transmission through polymodal C-fiber neurons is also mediated by the LPA1 activation following nerve injury.
NASA Astrophysics Data System (ADS)
Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo
2009-03-01
This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.
[Repair of spinal cord injury with rats' umbilical cord MSCs].
Zhu, Yuhai; Feng, Shiqing; Wang, Xue
2009-12-01
To study the growth characteristics of umbilical cord MSCs (UCMSCs) in vitro and its effect on the nerve regeneration after spinal cord injury (SCI). UCMSCs isolated from pregnant rats umbilical cord were cultured and purified in vitro. Sixty female Wistar rats weighing (300 +/- 10) g were randomized into three groups (n=20 per group). UCMSCs group (group A) in which UCMSCs suspension injection was conducted; DMEM control group (group B) in which 10% DMEM injection was conducted; sham group (group C) in which the animal received laminectomy only. Establish acute SCI model (T10) by Impactor model-II device in group A and group B. The recovery of the lower extremity was observed using BBB locomotor scoring system, neurofilament 200 (NF-200) immunofluorescence staining was performed to detect the neural regeneration, and then the corticospinal tract (CST) was observed using the biotinylated dextran amine (BDA) tracing. Cultured UCMSCs were spindle-shaped fibrocyte-like adherent growth, swirling or parallelly. The USMSCs expressed CD29, but not CD31, CD45, and HLA-DR. The BBB score was higher in group A than group B 4, 5, and 6 weeks after operation, and there was a significant difference between two groups (P < 0.05). The BBB scores at different time points were significantly lower in groups A and B than that in group C (P < 0.05). UCMSCs was proved to survive and assemble around the injured place by frozen section of the cords 6 weeks after injury. NF-200 positive response area in groups A, B, and C was (11,943 +/- 856), (7,986 +/- 627), and (13,117 +/- 945) pixels, respectively, suggesting there was a significant difference between groups A, C and group B (P < 0.05), and no significant difference was evident between group A and group C (P > 0.05). BDA anterograde tracing 10 weeks after operation demonstrated that more regenerated nerve fibers went through injured area in group A, but just quite few nerve fibers in group B went through the injuried cavity. The ratios of regenerative axons amount to T5 axons in group A and group B were smaller than that of group C (P < 0.05). UCMSCs can proliferate rapidly in vitro, survive and differentiate to neurons after being grafted into injured spinal cord. The transplantation of UCMSCs is effective in promoting functional recovery and axonal regeneration after SCI.
Mugdha, Kumari; Kaur, Apjit; Sinha, Neha; Saxena, Sandeep
2016-01-01
AIM To evaluate retinal nerve fiber layer (RNFL) thickness profile in patients of thyroid ophthalmopathy with no clinical signs of optic nerve dysfunction. METHODS A prospective, case-control, observational study conducted at a tertiary care centre. Inclusion criteria consisted of patients with eyelid retraction in association with any one of: biochemical thyroid dysfunction, exophthalmos, or extraocular muscle involvement; or thyroid dysfunction in association with either exophthalmos or extra-ocular muscle involvement; or a clinical activity score (CAS)>3/7. Two measurements of RNFL thickness were done for each eye, by Cirrus HD-optical coherence tomography 6mo apart. RESULTS Mean age of the sample was 38.75y (range 13-70y) with 18 males and 22 females. Average RNFL thickness at first visit was 92.06±12.44 µm, significantly lower than control group (101.28±6.64 µm) (P=0.0001). Thickness of inferior quadrant decreased from 118.2±21.27 µm to 115.0±22.27 µm after 6mo (P=0.02). There was no correlation between the change in CAS and RNFL thickness. CONCLUSION Decreased RNFL thickness is an important feature of thyroid orbitopathy, which is an inherent outcome of compressive optic neuropathy of any etiology. Subclinical RNFL damage continues in the absence of clinical activity of the disease. RNFL evaluation is essential in Grave's disease and active intervention may be warranted in the presence of significant damage. PMID:27990368
Renno, Waleed M; Benov, Ludmil; Khan, Khalid M
2017-11-01
OBJECTIVE This study examined the capacity of the major polyphenolic green tea extract (-)-epigallocatechin-3-gallate (EGCG) to suppress oxidative stress and stimulate the recovery and prompt the regeneration of sciatic nerve after crush injury. METHODS Adult male Wistar rats were randomly assigned to one of 4 groups: 1) Naïve, 2) Sham (sham injury, surgical control group), 3) Crush (sciatic nerve crush injury treated with saline), and 4) Crush+EGCG (sciatic nerve crush injury treated with intraperitoneally administered EGCG, 50 mg/kg). All animals were tested for motor and sensory neurobehavioral parameters throughout the study. Sciatic nerve and spinal cord tissues were harvested and processed for morphometric and stereological analysis. For the biochemical assays, the time points were Day 1, Day 7, Day 14, and Day 28 after nerve injury. RESULTS After sciatic nerve crush injury, the EGCG-treated animals (Crush+EGCG group) showed significantly better recovery of foot position and toe spread and 50% greater improvement in motor recovery than the saline-treated animals (Crush group). The Crush+EGCG group displayed an early hopping response at the beginning of the 3rd week postinjury. Animals in the Crush+EGCG group also showed a significant reduction in mechanical allodynia and hyperalgesia latencies and significant improvement in recovery from nociception deficits in both heat withdrawal and tail flick withdrawal latencies compared with the Crush group. In both the Crush+EGCG and Crush groups, quantitative evaluation revealed significant morphological evidence of neuroregeneration according to the following parameters: mean cross-sectional area of axons, myelin thickness in the sciatic nerve (from Week 4 to Week 8), increase of myelin basic protein concentration and gene expression in both the injured sciatic nerve and spinal cord, and fiber diameter to axon diameter ratio and myelin thickness to axon diameter ratio at Week 2 after sciatic nerve injury. However, the axon area remained much smaller in both the Crush+EGCG and Crush groups compared with the Sham and Naïve groups. The number of axons per unit area was significantly decreased in the Crush+EGCG and Crush groups compared with controls. Sciatic nerve injury produced generalized oxidative stress manifested as a significant increase of isoprostanes in the urine and decrease of the total antioxidant capacity (TAC) of the blood from Day 7 until Day 14. EGCG-treated rats showed significantly less increase of isoprostanes than saline-treated animals and also showed full recovery of TAC levels by Day 14 after nerve injury. In spinal cord tissue analysis, EGCG-treated animals showed induced glutathione reductase and suppressed induction of heme oxygenase 1 gene expression compared with nontreated animals. CONCLUSIONS EGCG treatment suppressed the crush-induced production of isoprostanes and stimulated the recovery of the TAC and was associated with remarkable alleviation of motor and sensory impairment and significant histomorphological evidence of neuronal regeneration following sciatic nerve crush injury in rats. The findings of this study suggest that EGCG can be used as an adjunctive therapeutic remedy for nerve injury. However, further investigations are needed to establish the antioxidative mechanism involved in the regenerative process after nerve injury. Only upregulation of glutathione reductase supports the idea that EGCG is acting indirectly via induction of enzymes or transcription factors.
The effect of aging on efferent nerve fibers regeneration in mice.
Verdú, E; Butí, M; Navarro, X
1995-10-23
This study evaluates the influence of aging on nerve regeneration and reinnervation of target organs in mice aged 2, 6, 9, 12, 18 and 24 months. In animals of each age group the sciatic nerve was subjected to crush, section or section and suture. Reinnervation of plantar muscles and sweat glands (SG) was evaluated over three months after operation by functional methods. Reappearance of SG secretion and motor responses occurred slightly earlier in young than older mice. The degree of motor and sudomotor reinnervation, with respect to preoperative control values, was also significantly higher in young than old animals. The differences were more pronounced after 12 months of age. The degree of recovery progressively decreased with the severity of the lesion, differences being more marked in older mice. Neurorraphy improved recovery, comparatively more in older than in young mice. These results indicate that, after injuries of peripheral nerves, axonal regeneration and reinnervation are maintained throughout life, but tend to be more delayed and slightly less effective with aging.
Energy-optimal electrical excitation of nerve fibers.
Jezernik, Saso; Morari, Manfred
2005-04-01
We derive, based on an analytical nerve membrane model and optimal control theory of dynamical systems, an energy-optimal stimulation current waveform for electrical excitation of nerve fibers. Optimal stimulation waveforms for nonleaky and leaky membranes are calculated. The case with a leaky membrane is a realistic case. Finally, we compare the waveforms and energies necessary for excitation of a leaky membrane in the case where the stimulation waveform is a square-wave current pulse, and in the case of energy-optimal stimulation. The optimal stimulation waveform is an exponentially rising waveform and necessitates considerably less energy to excite the nerve than a square-wave pulse (especially true for larger pulse durations). The described theoretical results can lead to drastically increased battery lifetime and/or decreased energy transmission requirements for implanted biomedical systems.
NaCl responsive taste cells in the mouse fungiform taste buds.
Yoshida, R; Horio, N; Murata, Y; Yasumatsu, K; Shigemura, N; Ninomiya, Y
2009-03-17
Previous studies have demonstrated that rodents' chorda tympani (CT) nerve fibers responding to NaCl can be classified according to their sensitivities to the epithelial sodium channel (ENaC) blocker amiloride into two groups: amiloride-sensitive (AS) and -insensitive (AI). The AS fibers were shown to respond specifically to NaCl, whereas AI fibers broadly respond to various electrolytes, including NaCl. These data suggest that salt taste transduction in taste cells may be composed of at least two different systems; AS and AI ones. To further address this issue, we investigated the responses to NaCl, KCl and HCl and the amiloride sensitivity of mouse fungiform papilla taste bud cells which are innervated by the CT nerve. Comparable with the CT data, the results indicated that 56 NaCl-responsive cells tested were classified into two groups; 25 cells ( approximately 44%) narrowly responded to NaCl and their NaCl response were inhibited by amiloride (AS cells), whereas the remaining 31 cells ( approximately 56%) responded not only to NaCl, but to KCl and/or HCl and showed no amiloride inhibition of NaCl responses (AI cells). Amiloride applied to the basolateral side of taste cells had no effect on NaCl responses in the AS and AI cells. Single cell reverse transcription-polymerase chain reaction (RT-PCR) experiments indicated that ENaC subunit mRNA was expressed in a subset of AS cells. These findings suggest that the mouse fungiform taste bud is composed of AS and AI cells that can transmit taste information differently to their corresponding types of CT fibers, and apical ENaCs may be involved in the NaCl responses of AS cells.
Barua, Nabanita; Sitaraman, Chitra; Goel, Sonu; Chakraborti, Chandana; Mukherjee, Sonai; Parashar, Hemandra
2016-01-01
Context: Analysis of diagnostic ability of macular ganglionic cell complex and retinal nerve fiber layer (RNFL) in glaucoma. Aim: To correlate functional and structural parameters and comparing predictive value of each of the structural parameters using Fourier-domain (FD) optical coherence tomography (OCT) among primary open angle glaucoma (POAG) and ocular hypertension (OHT) versus normal population. Setting and Design: Single centric, cross-sectional study done in 234 eyes. Materials and Methods: Patients were enrolled in three groups: POAG, ocular hypertensive and normal (40 patients in each group). After comprehensive ophthalmological examination, patients underwent standard automated perimetry and FD-OCT scan in optic nerve head and ganglion cell mode. The relationship was assessed by correlating ganglion cell complex (GCC) parameters with mean deviation. Results were compared with RNFL parameters. Statistical Analysis: Data were analyzed with SPSS, analysis of variance, t-test, Pearson's coefficient, and receiver operating curve. Results: All parameters showed strong correlation with visual field (P < 0.001). Inferior GCC had highest area under curve (AUC) for detecting glaucoma (0.827) in POAG from normal population. However, the difference was not statistically significant (P > 0.5) when compared with other parameters. None of the parameters showed significant diagnostic capability to detect OHT from normal population. In diagnosing early glaucoma from OHT and normal population, only inferior GCC had statistically significant AUC value (0.715). Conclusion: In this study, GCC and RNFL parameters showed equal predictive capability in perimetric versus normal group. In early stage, inferior GCC was the best parameter. In OHT population, single day cross-sectional imaging was not valuable. PMID:27221682
NASA Astrophysics Data System (ADS)
Kutuzov, N. P.; Brazhe, A. R.; Yusipovich, A. I.; Maksimov, G. V.; Dracheva, O. E.; Lyaskovskiy, V. L.; Bulygin, F. V.; Rubin, A. B.
2013-07-01
We demonstrate a successful application of Raman spectroscopy to the problem of lipid ordering with microscopic resolution in different regions of the myelinated nerve fiber. Simultaneous collection of Raman spectra of lipids and carotenoids has enabled us to characterize membrane fluidity and the degree of lipid ordering based on intensity ratios for the 1527/1160 and 2940/2885 cm-1 bands. We show that the intensity profiles of the major Raman bands vary significantly between the three major regions of myelinated nerve fiber: internode, paranode and the node of Ranvier. Mapping Raman peak intensities over these areas suggested that the carotenoid molecules are localized in the myelin membranes of nerve cells. Paranodal membranes were sensitive to extracellular ATP. ATP solutions (7 mM) influenced the 1527/1160 and 2940/2885 cm-1 intensity ratios. Changes in both carotenoid and lipid Raman spectra were in accord and indicated an increase in lipid ordering degree and decrease in membrane fluidity under ATP administration. The collected data provide evidence for the existence of a regulatory purinergic signaling pathway in the peripheral nervous system.
Recent clinical advances in diabetic polyneuropathy.
Horowitz, Steven H
2006-10-01
Recent dramatic increases in the incidence and prevalence of diabetes make an understanding of chronic symmetric sensorimotor diabetic polyneuropathy, the most common and problematic of chronic diabetic complications, essential for a wide range of medical practitioners. The demonstration of neuropathic dysfunction in patients with prediabetes or impaired glucose tolerance emphasizes the susceptibility of peripheral nerve fibers, especially small A delta fibers and C fibers, to relatively mild, short-duration hyperglycemia. New testing can reveal peripheral nerve dysfunction prior to clinical neuropathic symptoms and signs. In the absence of effective medications to halt or reverse nerve damage or promote nerve regeneration, early diagnosis of diabetic polyneuropathy, followed by tight glycemic control with diet and exercise, offers the best opportunity to prevent progressive symptoms of sensory loss, pain, autonomic dysfunction, ulcerations, and amputations. Some patients with impaired glucose tolerance have a reversal of neuropathic features with tight glycemic control. Nonpharmacologic therapies for neuropathic pain in diabetic polyneuropathy appear promising. Tight glycemic control, especially early in diabetes, is the best approach to minimizing the prevalence and severity of diabetic polyneuropathy and makes research into the deleterious effects of even mild hyperglycemia imperative.
[Clinical evaluation of the optic disc in glaucoma].
Greslechner, R; Spiegel, D
2016-10-01
Glaucoma is defined as a progressive neuropathy of the optic nerve, characterized by specific changes of the optic disc, parapapillary region, and retinal nerve fiber layer. Characteristic glaucomatous changes of the optic disc, parapapillary region, and retinal nerve fiber layer are discussed and their ophthalmoscopic examination is described. A literature search in the PubMed database was conducted. A systematic step-by-step approach to a qualitative and quantitative ophthalmoscopic evaluation of the optic disc regarding glaucomatous damage is presented. A systematic, clinical, qualitative, and quantitative assessment of the optic disc can be performed with little effort and forms the basis for diagnosis and treatment of glaucoma.
NASA Technical Reports Server (NTRS)
Friden, J.; Lieber, R. L.; Myers, R. R.; Powell, H. C.; Hargens, A. R.
1989-01-01
The morphological and physiological effects of 4 weeks of high-frequency electrical stimulation (1 h/day, 5 days/week) on cast-immobilized rabbit hindlimbs were investigated in the tibialis anterior muscle and peroneal nerve. In 2 out of 6 animals, high-frequency stimulation with immobilization caused muscle fiber death, internalization of muscle fiber nuclei, connective tissue proliferation, inflammatory response, altered fiber size distribution and variable staining intensities. The fast-twitch fibers were predominantly affected. Two of six peripheral nerves subjected to immobilization and stimulation showed severe damage. Tetanic forces were significantly reduced in the affected muscles. Therefore, the immobilization and high-frequency stimulation may be detrimental to myoneural structure and function and, thus, this combination of therapies should be applied conservatively.
Hoesl, Laura Maria; Tornow, Ralf P; Schrems, Wolfgang A; Horn, Folkert K; Mardin, Christian Y; Kruse, Friedrich E; Juenemann, Anselm G M; Laemmer, Robert
2013-01-01
To investigate the impact of typical scan score (TSS) on discriminating glaucomatous and healthy eyes by scanning laser polarimetry and spectral domain optical coherence tomography (SD-OCT) in 32 peripapillary sectors. One hundred two glaucoma patients and 32 healthy controls underwent standard automated perimetry, 24-hour intraocular pressure profile, optic disc photography, GDxVCC, and SD-OCT measurements. For controls, only very typical scans (TSS=100) were accepted. Glaucoma patients were divided into 3 subgroups (very typical: TSS=100; typical: 99≥TSS≥80, atypical: TSS<80). Receiver operating characteristic curves were constructed for mean retinal nerve fiber layer values, sector data, and nerve fiber indicator (NFI). Sensitivity was estimated at ≥90% specificity to compare the discriminating ability of each imaging modality. For discrimination between healthy and glaucomatous eyes with very typical scans, the NFI and inferior sector analyses 26 to 27 demonstrated the highest sensitivity at ≥90% specificity in GDxVCC and SD-OCT, respectively. For the typical and atypical groups, sensitivity at ≥90% specificity decreased for all 32 peripapillary sectors on an average by 10.9% and 17.9% for GDxVCC and by 4.9% and 0.8% for SD-OCT. For GDxVCC, diagnostic performance of peripapillary sectors decreased with lower TSS, especially in temporosuperior and inferotemporal sectors (sensitivity at ≥90% specificity decreased by 55.3% and by 37.8% in the atypical group). Diagnostic accuracy is comparable for SD-OCT and GDxVCC if typical scans (TSS=100) are investigated. Decreasing TSS is associated with a decrease in diagnostic accuracy for discriminating healthy and glaucomatous eyes by scanning laser polarimetry. NFI is less influenced than the global or sector retinal nerve fiber layer thickness. The TSS score should be included in the standard printout. Diagnostic accuracy of SD-OCT is barely influenced by low TSS.
Radhakrishnan, Rajan; Sluka, Kathleen A
2005-10-01
In this study we investigated the involvement of cutaneous versus knee joint afferents in the antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS) by differentially blocking primary afferents with local anesthetics. Hyperalgesia was induced in rats by inflaming one knee joint with 3% kaolin-carrageenan and assessed by measuring paw withdrawal latency to heat before and 4 hours after injection. Skin surrounding the inflamed knee joint was anesthetized using an anesthetic cream (EMLA). Low (4 Hz) or high (100 Hz) frequency TENS was then applied to the anesthetized skin. In another group, 2% lidocaine gel was injected into the inflamed knee joint, and low or high frequency TENS was applied. Control experiments were done using vehicles. In control and EMLA groups, both low and high frequency TENS completely reversed hyperalgesia. However, injection of lidocaine into the knee joint prevented antihyperalgesia produced by both low and high frequency TENS. Recordings of cord dorsum potentials showed that both low and high frequency TENS at sensory intensity activates only large diameter afferent fibers. Increasing intensity to twice the motor threshold recruits Adelta afferent fibers. Furthermore, application of EMLA cream to the skin reduces the amplitude of the cord dorsum potential by 40% to 70% for both high and low frequency TENS, confirming a loss of large diameter primary afferent input after EMLA is applied to the skin. Thus, inactivation of joint afferents, but not cutaneous afferents, prevents the antihyperalgesia effects of TENS. We conclude that large diameter primary afferent fibers from deep tissue are required and that activation of cutaneous afferents is not sufficient for TENS-induced antihyperalgesia. Transcutaneous electrical nerve stimulation (TENS) is an accepted clinical modality used for pain relief. It is generally believed that TENS analgesia is caused mainly by cutaneous afferent activation. In this study by differentially blocking cutaneous and deep tissue primary afferents, we show that the activation of large diameter primary afferents from deep somatic tissues, and not cutaneous afferents, are pivotal in causing TENS analgesia.
The Effects of the Air Cast Sports Stirrup on Postural Sway in Normal Males
1993-01-01
Pittsburgh Pittsburgh, PAI Paula Sammarone, MA, ATC Date Rangos School of Health Sciences I Director, Athletic Training Duquesne University I Pittsburgh, PA I...sprain occurs, tearing of the ligaments also occur, which results in de- afferentization of the articular nerves (20). 1 Several treatment modalities...intermediate ranges. Articular nerve fibers have lower tensile strength than collagen fibers (21). Since most inversion injuries of the ankle result in some
Pak, Kang Yeun; Park, Sung Who; Byon, Ik Soo; Lee, Ji Eun
2016-08-18
This report details ocular toxocariasis presenting as bilateral scleritis with suspect retinal granuloma in the nerve fiber layer. The patient presented with scleritis, which did not improve with systemic steroid. Intraocular pressure was elevated, and well demarcated hyper-reflective round lesion were noted in both eyes. He had a history of general ache and concurrent onset of ocular symptoms the day after eating raw meat. Systemic work-ups revealed no remarkable abnormalities except antibody for toxocara. Oral albendazole and steroid were prescribed. The inflammation and swellings resolved without recurrence. In the current case, scleritis with suspect granuloma in the nerve fiber layer seems to be caused by toxocara. Ocular toxocariasis can be presented as atypical features. Serologic exams for toxocariasis would be considered not only in typical features but also in other uveitis or scleritis, particularly when the patient has a related history.
Encoding of a spectrally-complex communication sound in the bullfrog's auditory nerve.
Schwartz, J J; Simmons, A M
1990-02-01
1. A population study of eighth nerve responses in the bullfrog, Rana catesbeiana, was undertaken to analyze how the eighth nerve codes the complex spectral and temporal structure of the species-specific advertisement call over a biologically-realistic range of intensities. Synthetic advertisement calls were generated by Fourier synthesis and presented to individual eighth nerve fibers of anesthetized bullfrogs. Fiber responses were analyzed by calculating rate responses based on post-stimulus-time (PST) histograms and temporal responses based on Fourier transforms of period histograms. 2. At stimulus intensities of 70 and 80 dB SPL, normalized rate responses provide a fairly good representation of the complex spectral structure of the stimulus, particularly in the low- and mid-frequency range. At higher intensities, rate responses saturate, and very little of the spectral structure of the complex stimulus can be seen in the profile of rate responses of the population. 3. Both AP and BP fibers phase-lock strongly to the fundamental (100 Hz) of the complex stimulus. These effects are relatively resistant to changes in stimulus intensity. Only a small number of fibers synchronize to the low-frequency spectral energy in the stimulus. The underlying spectral complexity of the stimulus is not accurately reflected in the timing of fiber firing, presumably because firing is 'captured' by the fundamental frequency. 4. Plots of average localized synchronized rate (ALSR), which combine both spectral and temporal information, show a similar, low-pass shape at all stimulus intensities. ALSR plots do not generally provide an accurate representation of the structure of the advertisement call. 5. The data suggest that anuran peripheral auditory fibers may be particularly sensitive to the amplitude envelope of sounds.
Jaken, Robby J; van Gorp, Sebastiaan; Joosten, Elbert A; Losen, Mario; Martínez-Martínez, Pilar; De Baets, Marc; Marcus, Marco A; Deumens, Ronald
2011-12-01
Structural plasticity within the spinal nociceptive network may be fundamental to the chronic nature of neuropathic pain. In the present study, the spatiotemporal expression of growth-associated protein-43 (GAP-43), a protein which has been traditionally implicated in nerve fiber growth and sprouting, was investigated in relation to mechanical pain hypersensitivity. An L5 spinal nerve transection model was validated by the presence of mechanical pain hypersensitivity and an increase in the early neuronal activation marker cFos within the superficial spinal dorsal horn upon innocuous hindpaw stimulation. Spinal GAP-43 was found to be upregulated in the superficial L5 dorsal horn from 5 up to 10 days after injury. GAP-43 was co-localized with calcitonin-gene related peptide (CGRP), but not vesicular glutamate transporter-1 (VGLUT-1), IB4, or protein kinase-γ (PKC-γ), suggesting the regulation of GAP-43 in peptidergic nociceptive afferents. These GAP-43/CGRP fibers may be indicative of sprouting peptidergic fibers. Fiber sprouting largely depends on growth factors, which are typically associated with neuro-inflammatory processes. The putative role of neuropathy-induced GAP-43 expression in the development of mechanical pain hypersensitivity was investigated using the immune modulator propentofylline. Propentofylline treatment strongly attenuated the development of mechanical pain hypersensitivity and glial responses to nerve injury as measured by microglial and astroglial markers, but did not affect neuropathy-induced levels of spinal GAP-43 or GAP-43 regulation in CGRP fibers. We conclude that nerve injury induces structural plasticity in fibers expressing CGRP, which is regarded as a main player in central sensitization. Our data do not, however, support a major role of these structural changes in the onset of mechanical pain hypersensitivity.
Neurogenic vasodilatation and plasma leakage in the skin.
Holzer, P
1998-01-01
1. Primary afferent nerve fibers control cutaneous blood flow and vascular permeability by releasing vasoactive peptides. These vascular reactions and the additional recruitment of leukocytes are commonly embodied in the term neurogenic inflammation. 2. Calcitonin gene-related peptide (CGRP) acting via CGRP1 receptors is the principal transmitter of neurogenic dilatation of arterioles whereas substance P (SP) and neurokinin A (NKA) acting via NK1 receptors mediate the increase in venular permeability. 3. Neurogenic vasodilatation and plasma protein leakage play a role in inflammation because many inflammatory and immune mediators including interleukin-1 beta, nitric oxide, prostanoids, protons, bradykinin, histamine, and 5-hydroxytryptamine can stimulate peptidergic afferent nerve fibers or enhance their excitability. 4. Neurogenic inflammatory reactions can be suppressed by alpha 2-adrenoceptor agonists, histamine acting via H1 receptors, 5-hydroxytryptamine acting via 5-HT1B receptors, opioid peptides, and somatostatin through prejunctional inhibition of peptide release from vasoactive afferent nerve fibers. CGRP, SP, and NKA receptor antagonists are powerful pharmacological tools to inhibit neurogenic inflammation at the postjunctional level. 5. Imbalance between the facilitatory and inhibitory influences on afferent nerve activity has a bearing on chronic inflammatory disease. Impaired nerve function represents a deficit in skin homeostasis while neuronal overactivity is a factor in allergic and hyperreactive disorders of the skin.
[Efferent innervation of the arteries of human leptomeninx in arterial hypertension].
Chertok, V M; Kotsiuba, A E; Babich, E V
2009-01-01
Structure of the efferent nerve plexuses (adrenergic, acetylcholinestherase- and cholinacetyltranspherase-positive, NO-dependent), was studied in the arteries of human leptomeninx with different diameters. Material was obtained from the corpses of the healthy people and of the patients with initial stages of arterial hypertension (AH). It was shown that the concentrations of cholinergic and adrenergic nerve fibers and varicosities in axon terminal part, innervating the arteries with the diameters ranging from 450 till 100 microm, were not significantly different. In these arteries, NO-ergic plexuses were also detected. In patients with AH, regardless the arterial diameters, the significant increase (up to 15-20%) of adrenergic nerve fiber and varicosity concentrations was found. The changes in cholinergic nerve fiber concentration were found to depend on the vessel diameter: the significant decrease of these parameter was observed only in arteries with the diameter of 100-200 microm. No significant changes in nerve plexus concentration was noticed in the arteries with greater or smaller diameter. In NO-ergic neural conductors, the enzyme activity decreased only in the large arteries, and remained almost unchanged in the small vascular branches. The changes in the vasomotor innervation described in AH, are interpreted as a vasomotor innervation dysfunction of the leptomeninx arteries that may result in the hemodynamic disturbances.
A fine-structural survey of the pulpal innervation in the rat mandibular incisor.
Bishop, M A
1981-02-01
The innervation of the rat incisor pulp has been studied using transmission electron microscopy and light microscopy. Transverse sections of mandibular incisor pulp (380-460 gm rats) from numerous positions in the long axis of the tooth were examined systematically in the electron microscopy. Quantitative data on total axon populations were obtained. The nerve fibers were found to pass through the lingual half of the pulp from the apical end to within 2 mm of the incisal tip. Although the nerve fibers were seen to lie amongst the connective tissue cells between the blood vessels, the electron microscopic observations showed that the blood vessels are not innervated. Throughout their pulpal course the nerve fibers showed no trace of perineurial investment. Virtually all the axons were unmyelinated. Total numbers of axons were small (233-328) and peak diameters of 0.3-0.4 microM confirmed the observed immature appearance of the nerve supply. Obvious nerve endings were seldom observed and the axons showed no structural association with odontoblasts. The evidence indicates that, although most axons terminate near the incisal end of the tooth, no specific structure is supplied. The qualitative features of the axons do not suggest autonomic function; however, they are consistent with a sensory role.
Zakharov, A.; Vitale, C.; Kilinc, E.; Koroleva, K.; Fayuk, D.; Shelukhina, I.; Naumenko, N.; Skorinkin, A.; Khazipov, R.; Giniatullin, R.
2015-01-01
Trigeminal nerves in meninges are implicated in generation of nociceptive firing underlying migraine pain. However, the neurochemical mechanisms of nociceptive firing in meningeal trigeminal nerves are little understood. In this study, using suction electrode recordings from peripheral branches of the trigeminal nerve in isolated rat meninges, we analyzed spontaneous and capsaicin-induced orthodromic spiking activity. In control, biphasic single spikes with variable amplitude and shapes were observed. Application of the transient receptor potential vanilloid 1 (TRPV1) agonist capsaicin to meninges dramatically increased firing whereas the amplitudes and shapes of spikes remained essentially unchanged. This effect was antagonized by the specific TRPV1 antagonist capsazepine. Using the clustering approach, several groups of uniform spikes (clusters) were identified. The clustering approach combined with capsaicin application allowed us to detect and to distinguish “responder” (65%) from “non-responder” clusters (35%). Notably, responders fired spikes at frequencies exceeding 10 Hz, high enough to provide postsynaptic temporal summation of excitation at brainstem and spinal cord level. Almost all spikes were suppressed by tetrodotoxin (TTX) suggesting an involvement of the TTX-sensitive sodium channels in nociceptive signaling at the peripheral branches of trigeminal neurons. Our analysis also identified transient (desensitizing) and long-lasting (slowly desensitizing) responses to the continuous application of capsaicin. Thus, the persistent activation of nociceptors in capsaicin-sensitive nerve fibers shown here may be involved in trigeminal pain signaling and plasticity along with the release of migraine-related neuropeptides from TRPV1 positive neurons. Furthermore, cluster analysis could be widely used to characterize the temporal and neurochemical profiles of other pain transducers likely implicated in migraine. PMID:26283923
Chansangpetch, Sunee; Huang, Guofu; Coh, Paul; Oldenburg, Catherine; Amoozgar, Behzad; He, Mingguang; Lin, Shan C
2018-04-01
To compare optic nerve head, peripapillary retinal nerve fiber layer (pRNFL), and ganglion cell complex (GCC) parameters between Caucasian and ethnic Chinese. Normal subjects above 40 years old and self-identified as being Caucasian and Chinese were recruited. They were evaluated with spectral-domain optical coherence tomography (RTVue-100). Parameters related to the optic nerve head, pRNFL, and GCC analysis protocols were acquired. Multivariable linear regression was performed adjusting for potential confounders. Data from 116 Caucasian and 130 Chinese subjects were available for analysis. Mean age of all participants was 66.72 (SD 10.82) years. There were statistically significant differences for disc area (DA), area cup-to-disc, vertical cup-to-disc, and cup volume (P=0.02, 0.004, 0.02, and 0.03, respectively), greater in Chinese. After adjusting for age, sex, axial length (AL), intraocular pressure (IOP), DA, and GCC thickness, Chinese subjects had significantly greater thickness in all pRNFL parameters (mean differences ranged between 4.29 and 9.93 μm; all P<0.001) except the nasal quadrant. GCC outcomes were also adjusted for DA and pRNFL; Caucasians had significantly higher average GCC and inferior GCC (mean difference 2.97 and 3.45 μm, respectively; P<0.01), whereas the Chinese group had significantly higher ganglion cell global loss volume (mean difference 2.47 %, P<0.001). This study suggests there is significantly greater pRNFL thickness in Chinese, which were independent of age, AL, IOP, and DA, and possibly greater GCC in Caucasians after adjustment for age, AL, IOP, DA, and pRNFL thickness.
Discovering the structure of nerve tissue: Part 3: From Jan Evangelista Purkyně to Ludwig Mauthner.
Chvátal, Alexandr
2017-01-01
The previous works of Purkyně, Valentin, and Remak showed that the central and peripheral nervous systems contained not only nerve fibers but also cellular elements. The use of microscopes and new fixation techniques enabled them to accurately obtain data on the structure of nerve tissue and consequently in many European universities microscopes started to become widely used in histological and morphological studies. The present review summarizes important discoveries concerning the structure of neural tissue, mostly from vertebrates, during the period from 1838 to 1865. This review describes the discoveries of famous as well as less well-known scholars of the time, who contributed significantly to current understandings about the structure of neural tissue. The period is characterized by the first descriptions of different types of nerve cells and the first attempts of a cytoarchitectonic description of the spinal cord and brain. During the same time, the concept of a neuroglial tissue was introduced, first as a tissue for "gluing" nerve fibers, cells, and blood capillaries into one unit, but later some glial cells were described for the first time. Questions arose as to whether or not cells in ganglia and the central nervous system had the same morphological and functional properties, and whether nerve fibers and cell bodies were interconnected. Microscopic techniques started to be used for the examination of physiological as well as pathological nerve tissues. The overall state of knowledge was just a step away from the emergence of the concept of neurons and glial cells.
Sakamoto, Junya; Manabe, Yoshitaka; Oyamada, Joichi; Kataoka, Hideki; Nakano, Jiro; Saiki, Kazunobu; Okamoto, Keishi; Tsurumoto, Toshiyuki; Okita, Minoru
2018-07-01
Referred pain in the anterior knee joint is the most common symptom in hip disease patients. The development of referred pain is considered to be related to dichotomizing peripheral sensory fibers. However, no gross anatomical findings identify any dichotomizing fibers innervating both the hip and knee joints. We dissected the femoral and obturator nerves in human cadavers to investigate the distribution of the articular branches in the hip and knee joints. Fourteen embalmed left lower limbs from 14 Japanese adult cadavers (five from females, nine from males, average age 73.8 ± 14.1 years) were observed macroscopically. The articular branches of the femoral and obturator nerves were dissected at the anterior margin of the groin toward the thigh region. After dissections of the articular nerves of the hip joints, the femoral and obturator nerves were exposed from proximally to distally to identify the articular nerves of the knee joints. The branching pattern of the articular branches in the hip and knee joints was recorded. In six of 14 limbs (42.9%), the femoral nerve supplied articular branches to the anteromedial aspect of both the hip and knee joints. These articular branches were derived from the same bundle of femoral nerve. These gross anatomical findings suggested that dichotomizing peripheral sensory fibers innervate the hip and knee joints and these could relate to the referred pain confirmed in the anterior knee joints of patients with hip disease. Clin. Anat. 31:705-709, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Neuroplasticity in the auditory system.
Gil-Loyzaga, P
2005-01-01
An increasing interest on neuroplasticity and nerve regeneration within the auditory receptor and pathway has developed in recent years. The receptor and the auditory pathway are controlled by highly complex circuits that appear during embryonic development. During this early maturation process of the auditory sensory elements, we observe the development of two types of nerve fibers: permanent fibers that will remain to reach full-term maturity and other transient fibers that will ultimately disappear. Both stable and transitory fibers however, as well as developing sensory cells, express, and probably release, their respective neuro-transmitters that could be involved in neuroplasticity. Cell culture experiments have added significant information; the in vitro administration of glutamate or GABA to isolated spiral ganglion neurons clearly modified neural development. Neuroplasticity has been also found in the adult. Nerve regeneration and neuroplasticity have been demonstrated in the adult auditory receptors as well as throughout the auditory pathway. Neuroplasticity studies could prove interesting in the elaboration of current or future therapy strategies (e.g.: cochlear implants or stem cells), but also to really understand the pathogenesis of auditory or language diseases (e.g.: deafness, tinnitus, dyslexia, etc.).
Orellana, Renan; García-Solares, Javier; Donnez, Jacques; van Kerk, Olivier; Dolmans, Marie-Madeleine; Donnez, Olivier
2017-04-01
To evaluate deep nodular endometriotic lesions induced in baboons over 12 months and analyze collective cell migration and nerve fiber density. Morphologic and immunohistochemical analysis of endometriotic lesions induced in baboons over the course of 1 year. Academic research unit. Three female baboons (Papio anubis). Recovery of induced deep nodular endometriotic nodules from baboons. Evaluation of the morphology of glands by analysis of the center of lesions and the invasion front; immunohistochemical staining with Ki67, E-cadherin, and β-catenin for investigation of mitotic activity and cell-cell junctions, and with protein gene product 9.5 and nerve growth factor (NGF) for study of nerve fiber density (NFD). All (100%) of the lesions were invasive 1 year after induction, compared with 42.29% after 6 months. Glands from the invasion front showed significantly reduced thickness but significantly higher mitotic activity. E-Cadherin and β-catenin expression were similar between the center and front. NFD was significantly higher in lesions induced after 1 year than after 6 months, and NGF expression was significantly lower in 1-year lesions than in 6-month lesions. Nodular endometriotic lesions induced in the baboon model were found to be significantly more invasive and innervated after 12 months than after 6 months. The invasive phenotype was highly expressed in glands at the invasion front, and our study suggests that nerve fibers play a role in the development of lesions as observed in women. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
In vivo potency of different ligands on voltage-gated sodium channels.
Safrany-Fark, Arpad; Petrovszki, Zita; Kekesi, Gabriella; Liszli, Peter; Benedek, Gyorgy; Keresztes, Csilla; Horvath, Gyongyi
2015-09-05
The Ranvier nodes of thick myelinated nerve fibers contain almost exclusively voltage-gated sodium channels (Navs), while the unmyelinated fibers have several receptors (e.g., cannabinoid, transient receptor potential vanilloid receptor 1), too. Therefore, a nerve which contains only motor fibers can be an appropriate in vivo model for selective influence of Navs. The goals were to evaluate the potency of local anesthetic drugs on such a nerve in vivo; furthermore, to investigate the effects of ligands with different structures (arachidonic acid, anandamide, capsaicin and nisoxetine) that were proved to inhibit Navs in vitro with antinociceptive properties. The marginal mandibular branch of the facial nerve was explored in anesthetized Wistar rats; after its stimulation, the electrical activity of the vibrissae muscles was registered following the perineural injection of different drugs. Lidocaine, bupivacaine and ropivacaine evoked dose-dependent decrease in electromyographic activity, i.e., lidocaine had lower potency than bupivacaine or ropivacaine. QX-314 did not cause any effect by itself, but its co-application with lidocaine produced a prolonged inhibition. Nisoxetine had a very low potency. While anandamide and capsaicin in high doses caused about 50% decrease in the amplitude of action potential, arachidonic acid did not influence the responses. We proved that the classical local anesthetics have high potency on motor nerves, suggesting that this method might be a reliable model for selective targeting of Navs in vivo circumstances. It is proposed that the effects of these endogenous lipids and capsaicin on sensory fibers are not primarily mediated by Navs. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Reckfort, Julia; Wiese, Hendrik; Dohmen, Melanie; Grässel, David; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus
2013-09-01
The neuroimaging technique 3D-polarized light imaging (3D-PLI) has opened up new avenues to study the complex nerve fiber architecture of the human brain at sub-millimeter spatial resolution. This polarimetry technique is applicable to histological sections of postmortem brains utilizing the birefringence of nerve fibers caused by the regular arrangement of lipids and proteins in the myelin sheaths surrounding axons. 3D-PLI provides a three-dimensional description of the anatomical wiring scheme defined by the in-section direction angle and the out-of-section inclination angle. To date, 3D-PLI is the only available method that allows bridging the microscopic and the macroscopic description of the fiber architecture of the human brain. Here we introduce a new approach to retrieve the inclination angle of the fibers independently of the properties of the used polarimeters. This is relevant because the image resolution and the signal transmission inuence the measured birefringent signal (retardation) significantly. The image resolution was determined using the USAF- 1951 testchart applying the Rayleigh criterion. The signal transmission was measured by elliptical polarizers applying the Michelson contrast and histological slices of the optic tract of a postmortem brain. Based on these results, a modified retardation-inclination transfer function was proposed to extract the fiber inclination. The comparison of the actual and the inclination angles calculated with the theoretically proposed and the modified transfer function revealed a significant improvement in the extraction of the fiber inclinations.
Kun, Alejandra; Canclini, Lucía; Rosso, Gonzalo; Bresque, Mariana; Romeo, Carlos; Hanusz, Alicia; Cal, Karina; Calliari, Aldo; Sotelo Silveira, José; Sotelo, José R
2012-07-01
Very little is known about the function of the F-actin cytoskeleton in the regeneration and pathology of peripheral nerve fibers. The actin cytoskeleton has been associated with maintenance of tissue structure, transmission of traction and contraction forces, and an involvement in cell motility. Therefore, the state of the actin cytoskeleton strongly influences the mechanical properties of cells and intracellular transport therein. In this work, we analyze the distribution of F-actin at Schmidt-Lanterman Incisures (SLI) and nodes of Ranvier (NR) domains in normal, regenerating and pathologic Trembler J (TrJ/+) sciatic nerve fibers, of rats and mice. F-actin was quantified and it was found increased in TrJ/+, both in SLI and NR. However, SLI and NR of regenerating rat sciatic nerve did not show significant differences in F-actin, as compared with normal nerves. Cytochalasin-D and Latrunculin-A were used to disrupt the F-actin network in normal and regenerating rat sciatic nerve fibers. Both drugs disrupt F-actin, but in different ways. Cytochalasin-D did not disrupt Schwann cell (SC) F-actin at the NR. Latrunculin-A did not disrupt F-actin at the boundary region between SC and axon at the NR domain. We surmise that the rearrangement of F-actin in neurological disorders, as presented here, is an important feature of TrJ/+ pathology as a Charcot-Marie-Tooth (CMT) model. Copyright © 2012 Wiley Periodicals, Inc.
Vucic, Steve; Kiernan, Matthew C
2008-03-01
Although the acute clinical effects of ciguatera poisoning, due to ingestion of ciguatoxin, are mediated by activation of transient Na+ channels, the mechanisms underlying ciguatera sensitization remain undefined. Axonal excitability studies were performed by stimulating the median motor and sensory nerves in two patients with ciguatera sensitization. Excitability parameters were all within normal limits, thereby arguing against dysfunction of axonal membrane ion channels in large-diameter fibers in ciguatera sensitization.
Characteristics of peripapillary retinal nerve fiber layer in preterm children.
Wang, Jingyun; Spencer, Rand; Leffler, Joel N; Birch, Eileen E
2012-05-01
To examine quantitatively characteristics of the peripapillary retinal nerve fiber layer (RNFL) in preterm children using Fourier-domain optical coherence tomography (FD-OCT). Prospective cross-sectional study. A 3-mm high-resolution FD-OCT peripapillary RNFL circular scan centered on the optic disc was obtained from right eyes of 25 preterm children (10.6 ± 3.7 years old, 8 preterm and 17 with regressed retinopathy of prematurity with normal-appearing posterior poles) and 54 full-term controls (9.8 ± 3.2 years old). Images were analyzed using Spectralis FD-OCT software to obtain average thickness measurements for 6 sectors (temporal superior, temporal, temporal inferior, nasal inferior, nasal, nasal superior), and the global average. The RNFL global average for preterm children was 8% thinner than for full-term controls. In the preterm group, peripapillary RNFL thickness on the temporal side of the disc was 6% thicker than in full-term controls, while all other peripapillary RNFL sectors were 9% to 13% thinner. In the preterm group, temporal sector peripapillary RNFL thickness was correlated with gestational age (r = -0.47, P < .001), with foveal center total thickness (r = 0.48, P = .008, 1-tailed), and with visual acuity (r = 0.42; P = .026, 1-tailed). The significantly thinner RNFL global average for preterm children suggests that prematurity is associated with subclinical optic nerve hypoplasia. Significant correlations between temporal sector RNFL thickness and both the foveal thickness and visual acuity suggest that the peripapillary RNFL is related to abnormalities in macular development as a result of preterm birth. Copyright © 2012 Elsevier Inc. All rights reserved.
Majzoub, Ramsey K; Bardoel, Janou W J M; Maldonado, Claudio; Barker, John H; Stadelmann, Wayne K
2003-01-01
Dynamic skeletal muscle flaps are designed to perform a specific functional task through contraction and relaxation of their muscle fibers. The most commonly used dynamic skeletal flaps today are for cardiomyoplasty and anal or urinary myoplasty. Low-frequency chronic stimulation of these flaps enables them to use their intrinsic energy stores in a more efficient manner through aerobic metabolic pathways for increased endurance and improved work capacity. The purpose of this study was to (1) determine whether fiber type transformation from fatigue-prone (type II) muscle fibers to fatigue-resistant (type I) muscle fibers could be demonstrated in the authors' chronic canine stomal sphincter model where the rectus abdominis muscle was used to create a functional stomal sphincter, (2) assess whether there is any correlation between the degree of muscle fiber type transformation and the continence times, and (3) examine the long-term effects of the training regimens on the skeletal muscle fibers through histologic and volumetric analysis. Eight dynamic island-flap sphincters were created from a part of the rectus abdominis muscle in mongrel dogs by preserving the deep inferior epigastric vascular pedicle and the most caudal investing intercostal nerve. The muscular sphincters were wrapped around a blind loop of distal ileum and trained with pacing electrodes. Two different training protocols were used. In group A (n = 4), a preexisting anal dynamic graciloplasty training protocol was used. A revised protocol was used in group B (n = 4). Muscle biopsy specimens were obtained before and after training from the rectus abdominis muscle sphincter. Fiber type transformation was assessed using a monoclonal antibody directed against the fatigue-prone type II fibers. Pretraining and posttraining skeletal muscle specimens were examined histologically. A significant fiber type conversion was achieved in both group A and group B animals, with each group achieving greater than 50 percent conversion from fatigue-prone (type II) muscle fibers to fatigue-resistant (type I) muscle fibers. The continence time was different for both groups. Biopsy specimens 1 cm from the electrodes revealed that fiber type transformation was uniform throughout this region of the sphincters. Skeletal muscle fibers within both groups demonstrated a reduction in their fiber diameter and volume. Fiber type transformation is possible in this unique canine island-flap rectus abdominis sphincter model. The relative design of the flap with preservation of the skeletal muscle resting length and neuronal and vascular supply are important characteristics when designing a functional dynamic flap for stomal continence.
Morphological studies of the vestibular nerve
NASA Technical Reports Server (NTRS)
Bergstroem, B.
1973-01-01
The anatomy of the intratemporal part of the vestibular nerve in man, and the possible age related degenerative changes in the nerve were studied. The form and structure of the vestibular ganglion was studied with the light microscope. A numerical analysis of the vestibular nerve, and caliber spectra of the myelinated fibers in the vestibular nerve branches were studied in individuals of varying ages. It was found that the peripheral endings of the vestibular nerve form a complicated pattern inside the vestibular sensory epithelia. A detailed description of the sensory cells and their surface organelles is included.
Peretti, Ana Luiza; Antunes, Juliana Sobral; Lovison, Keli; Kunz, Regina Inês; Castor, Lidyane Regina Gomes; Brancalhão, Rose Meire Costa; Bertolini, Gladson Ricardo Flor; Ribeiro, Lucinéia de Fátima Chasko
2017-01-01
To evaluate the action of vanillin (Vanilla planifolia) on the morphology of tibialis anterior and soleus muscles after peripheral nerve injury. Wistar rats were divided into four groups, with seven animals each: Control Group, Vanillin Group, Injury Group, and Injury + Vanillin Group. The Injury Group and the Injury + Vanillin Group animals were submitted to nerve injury by compression of the sciatic nerve; the Vanillin Group and Injury + Vanillin Group, were treated daily with oral doses of vanillin (150mg/kg) from the 3rd to the 21st day after induction of nerve injury. At the end of the experiment, the tibialis anterior and soleus muscles were dissected and processed for light microscopy and submitted to morphological analysis. The nerve compression promoted morphological changes, typical of denervation, and the treatment with vanillin was responsible for different responses in the studied muscles. For the tibialis anterior, there was an increase in the number of satellite cells, central nuclei and fiber atrophy, as well as fascicular disorganization. In the soleus, only increased vascularization was observed, with no exacerbation of the morphological alterations in the fibers. The treatment with vanillin promoted increase in intramuscular vascularization for the muscles studied, with pro-inflammatory potential for tibialis anterior, but not for soleus muscle. Avaliar a ação da vanilina (Vanilla planifolia) sobre a morfologia dos músculos tibial anterior e sóleo após lesão nervosa periférica. Ratos Wistar foram divididos em quatro grupos, com sete animais cada, sendo Grupo Controle, Grupo Vanilina, Grupo Lesão e Grupo Lesão + Vanilina. Os animais dos Grupos Lesão e Grupo Lesão + Vanilina foram submetidos à lesão nervosa por meio da compressão do nervo isquiático, e os Grupos Vanilina e Grupo Lesão + Vanilina foram tratados diariamente com doses orais de vanilina (150mg/kg) do 3o ao 21o dia após a indução da lesão nervosa. Ao término do experimento, os músculos tibial anterior e sóleo foram dissecados e seguiram o processamento de rotina em microscopia de luz, para posterior análise morfológica. A compressão nervosa promoveu alterações morfológicas características de denervação, sendo que o tratamento com vanilina foi responsável por respostas distintas nos músculos estudados. Para o tibial anterior, houve aumento do número de células satélites, núcleos centrais e atrofia das fibras, bem como desorganização fascicular. Já no sóleo, houve apenas aumento da vascularização, sem exacerbação das alterações morfológicas nas fibras. O tratamento com vanilina promoveu o aumento da vascularização intramuscular para os músculos estudados, com potencial pró-inflamatório para o tibial anterior, o que não ocorreu no músculo sóleo.
Kwon, Jin Young; Yang, Ji Ho; Han, Ji Sang; Kim, Do Gyun
2017-12-01
To compare the retinal nerve fiber layer (RNFL) as well as the macula volume and thickness in the eyes of age-matched healthy controls with no cognitive disabilities with those of elderly people with mild cognitive impairment (MCI) or Alzheimer disease (AD). We used optical coherence tomography (OCT) to determine the effectiveness of the above quantities for early diagnosis of MCI or AD. Ninety eyes were considered in this study, split between 30 normal eyes, 30 eyes from patients with MCI, and 30eyes from patients with AD. All subjects underwent ophthalmologic and cognitive examinations, and measurements of the RNFL thickness as well as macular volume and thickness were taken for all patients using OCT. The mean RNFL thickness upon OCT was significantly thinner in the AD group than in the MCI group (p = 0.01). The RNFL was thinner in the superior quadrant in patients with AD when compared to the healthy controls (p = 0.03). The RNFL thicknesses in the inferior, nasal, and temporal quadrants did not differ significantly between the groups. Measurements in the 12 clock-hour zones revealed that zone 11 had a significantly thinner RNFL in the AD group as compared with the healthy control group (p = 0.02). In zone 2, the MCI group had a significantly thinner RNFL than the AD group (p = 0.03). Our OCT findings revealed a neuroanatomic difference in the RNFL thickness among the three groups, i.e., the AD, MCI, and healthy control groups. This suggests that a change in average RNFL thickness could be a meaningful index for diagnosing early AD. © 2017 The Korean Ophthalmological Society
Changes in crossed spinal reflexes after peripheral nerve injury and repair.
Valero-Cabré, Antoni; Navarro, Xavier
2002-04-01
We investigated the changes induced in crossed extensor reflex responses after peripheral nerve injury and repair in the rat. Adults rats were submitted to non repaired sciatic nerve crush (CRH, n = 9), section repaired by either aligned epineurial suture (CS, n = 11) or silicone tube (SIL4, n = 13), and 8 mm resection repaired by tubulization (SIL8, n = 12). To assess reinnervation, the sciatic nerve was stimulated proximal to the injury site, and the evoked compound muscle action potential (M and H waves) from tibialis anterior and plantar muscles and nerve action potential (CNAP) from the tibial nerve and the 4th digital nerve were recorded at monthly intervals for 3 mo postoperation. Nociceptive reinnervation to the hindpaw was also assessed by plantar algesimetry. Crossed extensor reflexes were evoked by stimulation of the tibial nerve at the ankle and recorded from the contralateral tibialis anterior muscle. Reinnervation of the hindpaw increased progressively with time during the 3 mo after lesion. The degree of muscle and sensory target reinnervation was dependent on the severity of the injury and the nerve gap created. The crossed extensor reflex consisted of three bursts of activity (C1, C2, and C3) of gradually longer latency, lower amplitude, and higher threshold in control rats. During follow-up after sciatic nerve injury, all animals in the operated groups showed recovery of components C1 and C2 and of the reflex H wave, whereas component C3 was detected in a significantly lower proportion of animals in groups with tube repair. The maximal amplitude of components C1 and C2 recovered to values higher than preoperative values, reaching final levels between 150 and 245% at the end of the follow-up in groups CRH, CS, and SIL4. When reflex amplitude was normalized by the CNAP amplitude of the regenerated tibial nerve, components C1 (300-400%) and C2 (150-350%) showed highly increased responses, while C3 was similar to baseline levels. In conclusion, reflexes mediated by myelinated sensory afferents showed, after nerve injuries, a higher degree of facilitation than those mediated by unmyelinated fibers. These changes tended to decline toward baseline values with progressive reinnervation but still remained significant 3 mo after injury.
Tank, Jens; Heusser, Karsten; Brinkmann, Julia; Schmidt, Bernhard M.; Menne, Jan; Bauersachs, Johann; Haller, Hermann; Diedrich, André; Jordan, Jens
2016-01-01
Patients with treatment-resistant arterial hypertension exhibited profound reductions in single sympathetic vasoconstrictor fiber firing rates following renal nerve ablation. In contrast, integrated multi-unit muscle sympathetic nerve activity (MSNA) changed little or not at all. We hypothesized that conventional MSNA analysis may have missed single fiber discharges, thus, obscuring sympathetic inhibition following renal denervation. We studied patients with difficult to control arterial hypertension (age 45–74 years) before, 6 (n=11), and 12 months (n=8) following renal nerve ablation. Electrocardiogram, respiration, brachial, and finger arterial blood pressure (BP), as well as the MSNA raw MSNA signal were analyzed. We detected MSNA action potential spikes using 2 stage kurtosis wavelet denoising techniques to assess mean, median, and maximum spike rates for each beat-to-beat interval. Supine heart rate and systolic BP did not change at 6 (ΔHR: −2±3 bpm; ΔSBP: 2±9 mmHg) or at 12 months (ΔHR: −1±3 mmHg, ΔSBP: −1±9 mmHg) after renal nerve ablation. Mean burst frequency and mean spike frequency at baseline were 34±3 bursts per minute and 8±1 spikes per sec. Both measurements did not change at 6 months (−1.4±3.6 bursts/minute; −0.6±1.4 spikes per sec) or at 12 months (−2.5±4.0 bursts/minute; −2.0±1.6 spikes per sec) following renal nerve ablation. After renal nerve ablation, BP decreased in 3 out of 11 patients. BP and MSNA spike frequency changes were not correlated (slope=−0.06; p=0.369). Spike rate analysis of multi-unit MSNA neurograms further suggests that profound sympathetic inhibition is not a consistent finding following renal nerve ablation. PMID:26324745
NASA Astrophysics Data System (ADS)
Fisher, Lee E.; Ayers, Christopher A.; Ciollaro, Mattia; Ventura, Valérie; Weber, Douglas J.; Gaunt, Robert A.
2014-06-01
Objective. This study describes results of primary afferent neural microstimulation experiments using microelectrode arrays implanted chronically in the lumbar dorsal root ganglia (DRG) of four cats. The goal was to test the stability and selectivity of these microelectrode arrays as a potential interface for restoration of somatosensory feedback after damage to the nervous system such as amputation. Approach. A five-contact nerve-cuff electrode implanted on the sciatic nerve was used to record the antidromic compound action potential response to DRG microstimulation (2-15 µA biphasic pulses, 200 µs cathodal pulse width), and the threshold for eliciting a response was tracked over time. Recorded responses were segregated based on conduction velocity to determine thresholds for recruiting Group I and Group II/Aβ primary afferent fibers. Main results. Thresholds were initially low (5.1 ± 2.3 µA for Group I and 6.3 ± 2.0 µA for Group II/Aβ) and increased over time. Additionally the number of electrodes with thresholds less than or equal to 15 µA decreased over time. Approximately 12% of tested electrodes continued to elicit responses at 15 µA up to 26 weeks after implantation. Higher stimulation intensities (up to 30 µA) were tested in one cat at 23 weeks post-implantation yielding responses on over 20 additional electrodes. Within the first six weeks after implantation, approximately equal numbers of electrodes elicited only Group I or Group II/Aβ responses at threshold, but the relative proportion of Group II/Aβ responses decreased over time. Significance. These results suggest that it is possible to activate Group I or Group II/Aβ primary afferent fibers in isolation with penetrating microelectrode arrays implanted in the DRG, and that those responses can be elicited up to 26 weeks after implantation, although it may be difficult to achieve a consistent response day-to-day with currently available electrode technology. The DRG are compelling targets for sensory neuroprostheses with potential to achieve recruitment of a range of sensory fiber types over multiple months after implantation.
Schober, A; Meyer, D L; Von Bartheld, C S
1994-11-01
Lungfishes possess two cranial nerves that are associated with the olfactory system: the nervus terminalis enters the telencephalon with the olfactory nerve, and the nervus praeopticus enters the diencephalon at the level of the optic nerve. We investigated the central projections of the nervus terminalis and the nervus praeopticus in the Australian lungfish (Neoceratodus forsteri) and in the African lungfish (Protopterus dolloi) by NADPH-diaphorase histochemistry (nitric oxide synthase; NOS) and compared them with the projections of the nervus terminalis of the frog (Xenopus laevis). In Neoceratodus, NOS-positive fascicles of the nervus terminalis divide and project with a ventral component through the septum and with a dorsal component through the pallium; fibers of both trajectories extend caudally beyond the anterior commissure and join the lateral forebrain bundle. In the nervus praeopticus, about 300 fibers contain NOS; they innervate the preoptic nucleus and continue their course through the diencephalon; many fibers cross in the commissure of the posterior tuberculum. In Protopterus, ganglion cells of the nervus terminalis and of the nervus praeopticus contain NOS. NOS-positive fibers of the nervus terminalis project through the septal region but not through the pallium. Several major fascicles cross in the rostral part of the anterior commissure, where they are joined by a small number of NOS-containing fibers of the nervus praeopticus. Both nerves innervate the preoptic nucleus. The number and pathways of the fascicles of the nervus terminalis are not always symmetric between the two sides. The nervus terminalis fascicles remain in a ventral position, whereas the nervus praeopticus gives rise to the more dorsal fascicles. Many fibers of the two nerves extend throughout the diencephalon and cross in the commissure of the posterior tuberculum. These findings demonstrate many similarities but also significant differences between the contributions of the nervus terminalis and the nervus praeopticus to forebrain projections in the two lungfishes. They support the view that the nervus praeopticus is part of a nervus terminalis system comparable to that in frogs and other nonmammalian vertebrates.
1992-01-01
Pulse-labeling studies demonstrate that tubulin synthesized in the neuron cell body (soma) moves somatofugally within the axon (at a rate of several millimeters per day) as a well-defined wave corresponding to the slow component of axonal transport. A major goal of the present study was to determine what proportion of the tubulin in mature motor axons is transported in this wave. Lumbar motor neurons in 9-wk-old rats were labeled by injecting [35S]methionine into the spinal cord 2 wk after motor axons were injured (axotomized) by crushing the sciatic nerve. Immunoprecipitation with mAbs which recognize either class II or III beta-tubulin were used to analyze the distributions of radioactivity in these isotypes in intact and axotomized motor fibers 5 d after labeling. We found that both isotypes were associated with the slow component wave, and that the leading edge of this wave was enriched in the class III isotype. Axotomy resulted in significant increases in the labeling and transport rates of both isotypes. Immunohistochemical examination of peripheral nerve fibers demonstrated that nearly all of the class II and III beta-tubulin in nerve fibers is located within axons. Although the amounts of radioactivity per millimeter of nerve in class II and III beta-tubulin were significantly greater in axotomized than in control nerves (with increases of +160% and +58%, respectively), immunoassay revealed no differences in the amounts of these isotypes in axotomized and control motor fibers. We consider several explanations for this paradox; these include the possibility that the total tubulin content is relatively insensitive to changes in the amount of tubulin transported in the slow component wave because this wave represents the movement of only a small fraction of the tubulin in these motor fibers. PMID:1383234
Zucchiatti, Ilaria; Cicinelli, Maria V; Parodi, Maurizio Battaglia; Pierro, Luisa; Gagliardi, Marco; Accardo, Agostino; Bandello, Francesco
2017-07-01
To analyze the changes in ganglion cell complex and peripapillary retinal nerve fiber layer thickness, in central macular thickness and choroidal thickness on spectral domain optical coherence tomography in patients with neovascular age-related macular degeneration treated with intravitreal ranibizumab injections. All consecutive patients with untreated neovascular age-related macular degeneration received loading phase of three monthly intravitreal ranibizumab, followed by retreatments on a pro re nata protocol for 12 months. changes in ganglion cell complex and retinal nerve fiber layer at the end of follow-up. Secondary outcome: changes in best-corrected visual acuity, central macular thickness, and choroidal thickness at the end of follow-up. Choroidal thickness was measured at 500 μm, 1000 μm, and 1,500 μm intervals nasally, temporally, superiorly, and inferiorly to the fovea, respectively, on horizontal and vertical line scans centered on the fovea. Twenty-four eyes were included. Ganglion cell complex and peripapillary retinal nerve fiber layer thickness did not show statistically significant changes through 12 months (55.6 ± 18.5 and 81.9 ± 9.9 μm at baseline, 52.7 ± 19.3 and 84.6 ± 15.5 μm at month 12, P > 0.05). Central macular thickness showed progressive decrease from baseline to month 12, with maximum reduction at month 3 (P < 0.001). Statistically significant reduction in choroidal thickness was registered in the nasal 500, 1000, and 1,500 μm from the fovea, corresponding to the papillomacular region (from 169.6 ± 45.3 to 153.9 ± 46.9, P < 0.001). Intravitreal ranibizumab injections did not affect retinal nerve fiber layer and ganglion cell complex thickness in 1-year follow-up. Choroidal thickness in papillomacular area and central macular thickness was significantly reduced at the end of treatment. Further studies, with larger sample, longer follow-up, and greater number of injections, are warranted.
Ferreira Junior, Rui Seabra
2016-01-01
Brachial plexus lesion results in loss of motor and sensory function, being more harmful in the neonate. Therefore, this study evaluated neuroprotection and regeneration after neonatal peripheral nerve coaptation with fibrin sealant. Thus, P2 neonatal Lewis rats were divided into three groups: AX: sciatic nerve axotomy (SNA) without treatment; AX+FS: SNA followed by end-to-end coaptation with fibrin sealant derived from snake venom; AX+CFS: SNA followed by end-to-end coaptation with commercial fibrin sealant. Results were analyzed 4, 8, and 12 weeks after lesion. Astrogliosis, microglial reaction, and synapse preservation were evaluated by immunohistochemistry. Neuronal survival, axonal regeneration, and ultrastructural changes at ventral spinal cord were also investigated. Sensory-motor recovery was behaviorally studied. Coaptation preserved synaptic covering on lesioned motoneurons and led to neuronal survival. Reactive gliosis and microglial reaction decreased in the same groups (AX+FS, AX+CFS) at 4 weeks. Regarding axonal regeneration, coaptation allowed recovery of greater number of myelinated fibers, with improved morphometric parameters. Preservation of inhibitory synaptic terminals was accompanied by significant improvement in the motor as well as in the nociceptive recovery. Overall, the present data suggest that acute repair of neonatal peripheral nerves with fibrin sealant results in neuroprotection and regeneration of motor and sensory axons. PMID:27446617
Sarabia-Estrada, Rachel; Bañuelos-Pineda, Jacinto; Osuna Carrasco, Laura P; Jiménez-Vallejo, Salvador; Jiménez-Estrada, Ismael; Rivas-Celis, Efrain; Dueñas-Jiménez, Judith M; Dueñas-Jiménez, Sergio H
2015-07-01
Transection of peripheral nerves produces loss of sensory and/or motor function. After complete nerve cutting, the distal and proximal segment ends retract, but if both ends are bridged with unaltered chitosan, progesterone-impregnated chitosan, or silicone tubes, an axonal repair process begins. Progesterone promotes nerve repair and has neuroprotective effects thwarting regulation of neuron survival, inflammation, and edema. It also modulates aberrant axonal sprouting and demyelination. The authors compared the efficacy of nerve recovery after implantation of progesterone-loaded chitosan, unaltered chitosan, or silicone tubes after sciatic nerve transection in rats. After surgical removal of a 5-mm segment of the proximal sciatic nerve, rats were implanted with progesterone-loaded chitosan, unaltered chitosan, or silicone tubes in the transected nerve for evaluating progesterone and chitosan effects on sciatic nerve repair and ipsilateral hindlimb kinematic function, as well as on gastrocnemius electro-myographic responses. In some experiments, tube implantation was performed 90 minutes after nerve transection. At 90 days after sciatic nerve transection and tube implantation, rats with progesterone-loaded chitosan tubes showed knee angular displacement recovery and better outcomes for step length, velocity of locomotion, and normal hindlimb raising above the ground. In contrast, rats with chitosan-only tubes showed reduced normal raising and pendulum-like hindlimb movements. Aberrant fibers coming from the tibial nerve innervated the gastrocnemius muscle, producing electromyographic responses. Electrical responses in the gastrocnemius muscle produced by sciatic nerve stimulation occurred only when the distal nerve segment was stimulated; they were absent when the proximal or intratubular segment was stimulated. A clear sciatic nerve morphology with some myelinated fiber fascicles appeared in the tube section in rats with progesterone-impregnated chitosan tubes. Some gastrocnemius efferent fibers were partially repaired 90 days after nerve resection. The better outcome in knee angle displacement may be partially attributable to the aberrant neuromuscular synaptic effects, since nerve conduction in the gastrocnemius muscle could be blocked in the progesterone-impregnated chitosan tubes. In addition, in the region of the gap produced by the nerve resection, the number of axons and amount of myelination were reduced in the sciatic nerve implanted with chitosan, progesterone-loaded chitosan, and silicone tubes. At 180 days after sciatic nerve sectioning, the knee kinematic function recovered to a level observed in control rats of a similar age. In rats with progesterone-loaded chitosan tubes, stimulation of the proximal and intratubular sciatic nerve segments produced an electromyographic response. The axon morphology of the proximal and intratubular segments of the sciatic nerve resembled that of the contralateral nontransected nerve. Progesterone-impregnated chitosan tubes produced aberrant innervation of the gastrocnemius muscle, which allowed partial recovery of gait locomotion and could be adequate for reinnervating synergistic denervated muscles while a parent innervation is reestablished. Hindlimb kinematic parameters differed between younger (those at 90 days) and older (those at 180 days) rats.
Bikbov, M M; Fayzrakhmanov, R R; Kalanov, M R
2018-01-01
To compare morpho-functional parameters of retina during vitrectomy with and without internal limiting membrane (ILM) peeling in patients with proliferative diabetic retinopathy. The study included 55 patients (55 eyes) that had underwent vitreoretinal surgery in the setting of antivasoproliferative therapy for proliferative diabetic retinopathy. Patients of the 1 st group (n=27) underwent vitrectomy with silicone tamponade, 2 nd group (n=28) received similar treatment with the addition of ILM peeling. Three months after the treatment, all patients had silicone oil removed. Best Corrected Visual Acuity before treatment was 0.06±0.02 in both groups; after the treatment it improved to 0.1±0.05 (p<0.05) in the 1 st group and to 0.25±0.05 (p 1-2 <0.05) in the 2 nd group. Thickness of the 'nerve fiber layer - internal limiting membrane' in the macular area was 28.67±2.21 µm in both groups before the treatment. By 3-month follow-up its thickness increased to 46.44±2.56 µm (p<0.05) in the 1 st group due to the formation of epiretinal membrane (ERM). In patients of the 2 nd group 'nerve fiber layer' area thickness amounted to 28.41±1.88 µm (p 1-2 <0.05) and ERM could not be identified in any of them. ILM peeling during vitrectomy with following silicone oil tamponade eliminates the risk of ERM formation in patients with proliferative diabetic retinopathy in the follow-up period of up to 6-month and results in better morpho-functional parameters in comparison with patients who received similar treatment but without peeling.
Retina nerve fiber layer and choroidal thickness changes in obstructive sleep apnea syndrome.
Ozge, Gokhan; Dogan, Deniz; Koylu, Mehmet Talay; Ayyildiz, Onder; Akincioglu, Dorukcan; Mumcuoglu, Tarkan; Mutlu, Fatih Mehmet
2016-01-01
The purpose of this study was to determine the effects of obstructive sleep apnea syndrome (OSAS) on the submacular and peripapillary retinal nerve fiber layer (RNFL) and choroidal thickness (ChT). Eighty-four eyes of 42 male patients with OSAS and 112 eyes of 56 aged-matched and body mass index-matched healthy male subjects were enrolled in this case-control study. The ChT and peripapillary RNFL thickness was measured using enhanced depth imaging optical coherence tomography. The ChT and RNFL thickness measurements of the groups were compared, and correlations among the Apnea Hypopnea Index (AHI) values and these measurements were calculated. Right and left eyes were separately evaluated. There were no significant differences in the subfoveal and temporal ChT between the groups (p > 0.05). The OSAS group had significantly thicker ChT at 0.5 and 1.5 mm nasal to the fovea in both eyes than the control group (p < 0.05). The peripapillary ChT were significantly thicker in the OSAS group at all segments except for the temporal and superotemporal segments when compared with the control group (p < 0.05 for all quadrants except temporal and superotemporal). When compared with controls, the OSAS group had significantly thinner nasal RNFL thickness in the right eye (p = 0.01) and thinner mean RNFL thickness in both eyes (p < 0.001). Other RNFL thickness measurements were similar between groups (p > 0.05). Between AHI and mean RNFL thickness showed a median negative correlation (r = - 0.411, p = 0.001). The choroidal thickening in patients with OSAS may be associated with the pathophysiology of the neurodegeneration process of the disease.
Tellez, Armando; Rousselle, Serge; Palmieri, Taylor; Rate, William R; Wicks, Joan; Degrange, Ashley; Hyon, Chelsea M; Gongora, Carlos A; Hart, Randy; Grundy, Will; Kaluza, Greg L; Granada, Juan F
2013-12-01
Catheter-based renal artery denervation has demonstrated to be effective in decreasing blood pressure among patients with refractory hypertension. The anatomic distribution of renal artery nerves may influence the safety and efficacy profile of this procedure. We aimed to describe the anatomic distribution and density of periarterial renal nerves in the porcine model. Thirty arterial renal sections were included in the analysis by harvesting a tissue block containing the renal arteries and perirenal tissue from each animal. Each artery was divided into 3 segments (proximal, mid, and distal) and assessed for total number, size, and depth of the nerves according to the location. Nerve counts were greatest proximally (45.62% of the total nerves) and decreased gradually distally (mid, 24.58%; distal, 29.79%). The distribution in nerve size was similar across all 3 sections (∼40% of the nerves, 50-100 μm; ∼30%, 0-50 μm; ∼20%, 100-200 μm; and ∼10%, 200-500 μm). In the arterial segments ∼45% of the nerves were located within 2 mm from the arterial wall whereas ∼52% of all nerves were located within 2.5 mm from the arterial wall. Sympathetic efferent fibers outnumbered sensory afferent fibers overwhelmingly, intermixed within the nerve bundle. In the porcine model, renal artery nerves are seen more frequently in the proximal segment of the artery. Nerve size distribution appears to be homogeneous throughout the artery length. Nerve bundles progress closer to the arterial wall in the distal segments of the artery. This anatomic distribution may have implications for the future development of renal denervation therapies. Crown Copyright © 2013. Published by Mosby, Inc. All rights reserved.
Paul, Brandon T; Bruce, Ian C; Roberts, Larry E
2017-02-01
Damage to auditory nerve fibers that expresses with suprathreshold sounds but is hidden from the audiogram has been proposed to underlie deficits in temporal coding ability observed among individuals with otherwise normal hearing, and to be present in individuals experiencing chronic tinnitus with clinically normal audiograms. We tested whether these individuals may have hidden synaptic losses on auditory nerve fibers with low spontaneous rates of firing (low-SR fibers) that are important for coding suprathreshold sounds in noise while high-SR fibers determining threshold responses in quiet remain relatively unaffected. Tinnitus and control subjects were required to detect the presence of amplitude modulation (AM) in a 5 kHz, suprathreshold tone (a frequency in the tinnitus frequency region of the tinnitus subjects, whose audiometric thresholds were normal to 12 kHz). The AM tone was embedded within background noise intended to degrade the contribution of high-SR fibers, such that AM coding was preferentially reliant on low-SR fibers. We also recorded by electroencephalography the "envelope following response" (EFR, generated in the auditory midbrain) to a 5 kHz, 85 Hz AM tone presented in the same background noise, and also in quiet (both low-SR and high-SR fibers contributing to AM coding in the latter condition). Control subjects with EFRs that were comparatively resistant to the addition of background noise had better AM detection thresholds than controls whose EFRs were more affected by noise. Simulated auditory nerve responses to our stimulus conditions using a well-established peripheral model suggested that low-SR fibers were better preserved in the former cases. Tinnitus subjects had worse AM detection thresholds and reduced EFRs overall compared to controls. Simulated auditory nerve responses found that in addition to severe low-SR fiber loss, a degree of high-SR fiber loss that would not be expected to affect audiometric thresholds was needed to explain the results in tinnitus subjects. The results indicate that hidden hearing loss could be sufficient to account for impaired temporal coding in individuals with normal audiograms as well as for cases of tinnitus without audiometric hearing loss. Copyright © 2016 Elsevier B.V. All rights reserved.
Segura-Anaya, Edith; Flores-Miranda, Rommel; Martínez-Gómez, Alejandro; Dent, Myrna A R
2018-07-01
The Golgi silver method has been widely used in neuroscience for the study of normal and pathological morphology of neurons. The method has been steadily improved and Bielschowsky's silver staining method (BSSM) is widely used in various pathological conditions, like Alzheimer's disease. In this work, teased sciatic nerves were silver impregnated using BSSM. We also developed simultaneous staining by silver impregnation and single- or double-immunofluorescence of the same section in teased nerve preparations. We immunostained against non-myelinating Schwann cells and different myelinating Schwann cell domains. BSSM teased nerves show a strong staining of axons (black) and a gold-brown staining of myelinating and non-myelinating Schwann cells. We were also able to stain by immunofluorescence these BSSM teased nerves with specific molecular markers against non-myelinating Schwann cells, also against non-compact myelin such as the Schmidt-Lanterman incisures or paranodal regions and compact myelin, but not axons. In peripheral nerves, several silver impregnation methods have been used to stain nerves in paraffin sections, but not in teased nerves to enable the assessment of isolated nerve fibers. In conclusion, BSSM gives accurate information of nerve morphology and combining the procedure with immunofluorescence it would be very useful to study the molecular nerve domain organization of the nerve fibers, and to study the molecular pathology of axon degeneration, or myelin disorders, or of any peripheral neuropathy, also to study demyelination diseases in the central nervous system. Copyright © 2018. Published by Elsevier B.V.
Yan, Yuhui; Shen, Feng-Yi; Agresti, Michael; Zhang, Lin-Ling; Matloub, Hani S; LoGiudice, John A; Havlik, Robert; Li, Jifeng; Gu, Yu-Dong; Yan, Ji-Geng
2017-09-01
Peripheral nerve injury can have a devastating effect on daily life. Calcium concentrations in nerve fibers drastically increase after nerve injury, and this activates downstream processes leading to neuron death. Our previous studies showed that calcium-modulating agents decrease calcium accumulation, which aids in regeneration of injured peripheral nerves; however, the optimal therapeutic window for this application has not yet been identified. In this study, we show that calcium clearance after nerve injury is positively correlated with functional recovery in rats suffering from a crushed sciatic nerve injury. After the nerve injury, calcium accumulation increased. Peak volume is from 2 to 8 weeks post injury; calcium accumulation then gradually decreased over the following 24-week period. The compound muscle action potential (CMAP) measurement from the extensor digitorum longus muscle recovered to nearly normal levels in 24 weeks. Simultaneously, real-time polymerase chain reaction results showed that upregulation of calcium-ATPase (a membrane protein that transports calcium out of nerve fibers) mRNA peaked at 12 weeks. These results suggest that without intervention, the peak in calcium-ATPase mRNA expression in the injured nerve occurs after the peak in calcium accumulation, and CMAP recovery continues beyond 24 weeks. Immediately using calcium-modulating agents after crushed nerve injury improved functional recovery. These studies suggest that a crucial time frame in which to initiate effective clinical approaches to accelerate calcium clearance and nerve regeneration would be prior to 2 weeks post injury. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Gupta, R. C.; Misulis, K. E.; Dettbarn, W. D.
1984-01-01
Muscle disused induced changes in the cholinergic system of sciatic nerve, slow twitch soleus (SOL) and fast twitch extensor digitorum longus (EDL) muscle were studied in rats. Rats with hindlimbs suspended for 2 to 3 weeks showed marked elevation in the activity of choline acetyltransferase (ChAT) in sciatic nerve (38%), in SOL (108%) and in EDL (67%). Acetylcholinesterase (AChE) activity in SOL increased by 163% without changing the molecular forms pattern of 4S, 10S, 12S, and 16S. No significant changes in activity and molecular forms pattern of AChE were seen in EDL or in AChE activity of sciatic nerve. Nicotinic receptor binding of 3H-acetylcholine was increased in both muscles. When measured after 3 weeks of hindlimb suspension the normal distribution of type 1 fibers in SOL was reduced and a corresponding increase in type IIa and IIb fibers is seen. In EDL no significant change in fiber proportion is observed. Muscle activity, such as loadbearing, appears to have a greater controlling influence on the characteristics of the slow twitch SOL muscle than upon the fast twitch EDL muscle.
Wang, Ningshan; Gibbons, Christopher H.; Freeman, Roy
2011-01-01
Confocal imaging uses immunohistochemical binding of specific antibodies to visualize tissues, but technical obstacles limit more widespread use of this technique in the imaging of peripheral nerve tissue. These obstacles include same-species antibody cross-reactivity and weak fluorescent signals of individual and co-localized antigens. The aims of this study were to develop new immunohistochemical techniques for imaging of peripheral nerve fibers. Three-millimeter punch skin biopsies of healthy individuals were fixed, frozen, and cut into 50-µm sections. Tissues were stained with a variety of antibody combinations with two signal amplification systems, streptavidin-biotin-fluorochrome (sABC) and tyramide-horseradish peroxidase-fluorochrome (TSA), used simultaneously to augment immunohistochemical signals. The combination of the TSA and sABC amplification systems provided the first successful co-localization of sympathetic adrenergic and sympathetic cholinergic nerve fibers in cutaneous human sweat glands and vasomotor and pilomotor systems. Primary antibodies from the same species were amplified individually without cross-reactivity or elevated background interference. The confocal fluorescent signal-to-noise ratio increased, and image clarity improved. These modifications to signal amplification systems have the potential for widespread use in the study of human neural tissues. PMID:21411809
UNMEDULLATED FIBERS ORIGINATING IN DORSAL ROOT GANGLIA
Gasser, Herbert S.
1950-01-01
The compound action potential of the unmedullated fibers arising from dorsal root ganglia, as recorded in cat skin nerves after conduction of simultaneously initiated impulses, shows among its components a temporal dispersion corresponding to velocities between 2.3 and 0.7 M.P.S. The maximum representation of the component velocities is at about 1.2 M.P.S. On both sides of the maximum the representation falls off irregularly, in such a way that groupings in the distribution produce in the action potential a configuration in which successive features appear always in the same positions at a given conduction distance. Through this demonstration of a characteristic configuration the system of the unmedullated fibers is brought into analogy with that of the medullated fibers. The unmedullated fibers originating in the dorsal root ganglia have distinctive physiological properties, among which is a large positive potential which reaches its maximum immediately after the spike and decrements to half relaxation in about 50 msec., at 37°C. The positive phases of the unit potentials in the compound action potential, owing to their duration, sum to a much greater extent than the temporally dispersed spikes; and, since they have sizes such that one equivalent to 25 per cent of the spike height would not be at the limit, in the summation process the major portion of the compound action potential is caused to be written at a potential level positive to the starting base line. The position of the spikes in the sequence can be seen in the analyses in Section III. The course of the activity in unit fibers is subject to variation in ways affecting the positive potential. Preliminary descriptions, based on orienting experiments, of how these variations are conditioned are given in Section I. Two of the findings are particularly noteworthy. One is the high sensitivity of the dimensions of the postspike positivity to temperature in the range of temperatures at which skin nerves may be expected to function, even when the environmental temperatures of an animal are moderate. The other is the high sensitivity to conditioning by previous activity. The positivity is first decreased, then replaced by a negative potential of similar duration. Reasons have been given why it is inadvisable at the present time to call the postspike potential an after-potential. A comparison has been made of the properties of the unmedullated fibers arising from dorsal root ganglia with those of fibers arising from sympathetic ganglia. The differences are so great that, in the interest of precision in designation, a division of the C group of fibers into two subgroups is indicated. It is suggested that the two subgroups be named respectively d.r.C and s.C. Measurements have been made of the diameters of the d.r.C fibers in a saphenous nerve stained with silver. Graphs showing the number of fibers at each diameter are presented in Section II. In Section III there are shown constructions, from histological data, of the action potential as it would appear, after 3 cm. of conduction, with the correlation between diameter and velocity in strict linearity. The degree of fit between the constructed and recorded potentials can be seen in Fig. 18. PMID:15428610
Evaluation of a New Scoring System for Retinal Nerve Fiber Layer Photography Using HRA1 in 964 Eyes
Hong, Samin; Moon, Jong Wook; Ha, Seung Joo; Kim, Chan Yun; Seong, Gong Je
2007-01-01
Purpose To evaluate retinal nerve fiber layer (RNFL) defect by a new scoring system for RNFL photography using the Heidelberg Retina Angiograph 1 (HRA1). Methods This retrospective study included 128 healthy eyes and 836 primary open-angle glaucoma eyes. The RNFL photography using HRA1 was interpreted using a new scoring system, and correlated with visual field indices of standard automated perimetry (SAP). Using the presence of RNFL defect, darkness, width, and location, we established the new scoring system of RNFL photos. Results The mean RNFL defect score I in the early, moderate, severe, and control groups were 7.3, 9.2, 10.4, and 3.6, respectively. The mean RNFL defect score II in the early, moderate, severe, and control groups were 14.5, 28.5, 43.4, and 3.4, respectively. Correlations between the RNFL defect score II and the mean deviation of SAP was the strongest of the various combinations (r=-0.675, P<.001). Conclusions Using a new scoring system, we propose a method for semi-quantitative interpretation of RNFL photographs. This scoring system may be helpful to distinguish between normal and glaucomatous eyes, and the score is associated with the severity of visual field loss. PMID:18063886
Mulder, Jan; Hökfelt, Tomas; Knuepfer, Mark M.
2013-01-01
Efferent renal sympathetic nerves reinnervate the kidney after renal denervation in animals and humans. Therefore, the long-term reduction in arterial pressure following renal denervation in drug-resistant hypertensive patients has been attributed to lack of afferent renal sensory reinnervation. However, afferent sensory reinnervation of any organ, including the kidney, is an understudied question. Therefore, we analyzed the time course of sympathetic and sensory reinnervation at multiple time points (1, 4, and 5 days and 1, 2, 3, 4, 6, 9, and 12 wk) after renal denervation in normal Sprague-Dawley rats. Sympathetic and sensory innervation in the innervated and contralateral denervated kidney was determined as optical density (ImageJ) of the sympathetic and sensory nerves identified by immunohistochemistry using antibodies against markers for sympathetic nerves [neuropeptide Y (NPY) and tyrosine hydroxylase (TH)] and sensory nerves [substance P and calcitonin gene-related peptide (CGRP)]. In denervated kidneys, the optical density of NPY-immunoreactive (ir) fibers in the renal cortex and substance P-ir fibers in the pelvic wall was 6, 39, and 100% and 8, 47, and 100%, respectively, of that in the contralateral innervated kidney at 4 days, 4 wk, and 12 wk after denervation. Linear regression analysis of the optical density of the ratio of the denervated/innervated kidney versus time yielded similar intercept and slope values for NPY-ir, TH-ir, substance P-ir, and CGRP-ir fibers (all R2 > 0.76). In conclusion, in normotensive rats, reinnervation of the renal sensory nerves occurs over the same time course as reinnervation of the renal sympathetic nerves, both being complete at 9 to 12 wk following renal denervation. PMID:23408032
Sedlacek, Miloslav; Brenowitz, Stephan D
2014-01-01
Feed-forward inhibition (FFI) represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), principal neurons of the dorsal cochlear nucleus (DCN) that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs) on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and FFI in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of FFI had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition, we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs) in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.
Electrophysiological abnormalities associated with extensive myelinated retinal nerve fibers.
Tay, Su Ann; Sanjay, Srinivasan
2012-07-01
An observational case report of electrophysiological abnormalities in a patient with anisomyopic amblyopia as a result of unilateral extensive myelinated retinal nerve fibers (MNFs) is illustrated. The electrophysiological readings revealed an abnormal pattern electroretinogram (PERG) but normal full-field electroretinogram readings in the affected eye. The visual-evoked potential was also undetectable in that eye. Our findings suggest that extensive MNFs can be associated with electrophysiological abnormalities, in particular the PERG, which can aid in diagnosing the cause of impaired vision when associated with amblyopia.
NASA Astrophysics Data System (ADS)
Ohira, Yoshinobu; Kawano, Fuminori; Goto, Katsumasa; Terada, Masahiro; Ohira, Takashi; Nakai, Naoya; Higo, Yoko; Yoshioka, Toshitada
2008-06-01
Effects of gravitational loading or unloading on the gain of the characteristics in soleus muscle fibers were studied in rats. The tail suspension was performed in newborn rats from the postnatal day 4 to month 3 and the reloading was allowed for 3 months in some rats. Single expression of type I myosin heavy chain (MHC) was observed in ~82% fibers in 3month old controls, but fibers expressing multiple MHC iso-forms were noted in the unloaded rats. Responses of fast or slow MHC protein expression to growth and/or unloading were not directly related to mRNA expression. Although 97% fibers in 3month old controls had a single neuromuscular junction at the central region of fiber, fibers with multiple nerve endplates were seen in the unloaded group. Faster contraction speed and lower maximal tension development, even after normalization with fiber size, were observed in the unloaded pure type I MHC fibers. These parameters generally returned to the age-matched control levels after reloading. It was suggested that antigravity-related tonic activity plays an important role in the gain of single neural innervation and of slow contractile properties and phenotype in soleus muscle fibers, which are not directly related to gene expression.
MedlinePlus Videos and Cool Tools
... about 10,000 taste buds. The taste buds are linked to the brain by nerve fibers. Food particles are detected by the taste buds, which send nerve ... to the brain. Certain areas of the tongue are more sensitive to certain tastes, like bitter, sour, ...
Kitamura, Kei; Cho, Kwang Ho; Jang, Hyung Suk; Murakami, Gen; Yamamoto, Masahito; Abe, Shin-Ichi
2017-01-01
Extraocular muscles are quite different from skeletal muscles in muscle fiber type and nerve supply; the small motor unit may be the most well known. As the first step to understanding the nerve-artery relationship, in this study we measured the distance from the arteriole (25-50 μm in thickness) to the nerve terminal twigs in extraocular muscles. With the aid of immunohistochemistry for nerves and arteries, we examined the arteriole-nerve distance at 10-15 sites in each of 68 extraocular muscles obtained from ten elderly cadavers. The oblique sections were nearly tangential to the muscle plate and included both global and orbital aspects of the muscle. In all muscles, the nerve twigs usually took a course parallel to muscle fibers, in contrast to most arterioles that crossed muscles. Possibly due to polyinnervation, an intramuscular nerve plexus was evident in four rectus and two oblique muscles. The arteriole-nerve distance usually ranged from 300 to 400 μm. However, individual differences were more than two times greater in each of seven muscles. Moreover, in each muscle the difference between sites sometimes reached 1 mm or more. The distance was generally shorter in the rectus and oblique muscles than in the levator palpebrae muscle, which reached statistical significance (p < 0.05). The differences in arteriole-nerve distances between sites within each muscle, between muscles, and between individuals might lead to an individual biological rhythm of fatigue in oculomotor performance.
Effect of Surface Pore Structure of Nerve Guide Conduit on Peripheral Nerve Regeneration
Oh, Se Heang; Kim, Jin Rae; Kwon, Gu Birm; Namgung, Uk; Song, Kyu Sang
2013-01-01
Polycaprolactone (PCL)/Pluronic F127 nerve guide conduits (NGCs) with different surface pore structures (nano-porous inner surface vs. micro-porous inner surface) but similar physical and chemical properties were fabricated by rolling the opposite side of asymmetrically porous PCL/F127 membranes. The effect of the pore structure on peripheral nerve regeneration through the NGCs was investigated using a sciatic nerve defect model of rats. The nerve fibers and tissues were shown to have regenerated along the longitudinal direction through the NGC with a nano-porous inner surface (Nanopore NGC), while they grew toward the porous wall of the NGC with a micro-porous inner surface (Micropore NGC) and, thus, their growth was restricted when compared with the Nanopore NGC, as investigated by immunohistochemical evaluations (by fluorescence microscopy with anti-neurofilament staining and Hoechst staining for growth pattern of nerve fibers), histological evaluations (by light microscopy with Meyer's modified trichrome staining and Toluidine blue staining and transmission electron microscopy for the regeneration of axon and myelin sheath), and FluoroGold retrograde tracing (for reconnection between proximal and distal stumps). The effect of nerve growth factor (NGF) immobilized on the pore surfaces of the NGCs on nerve regeneration was not so significant when compared with NGCs not containing immobilized NGF. The NGC system with different surface pore structures but the same chemical/physical properties seems to be a good tool that is used for elucidating the surface pore effect of NGCs on nerve regeneration. PMID:22871377
Some posterior branches of extralaryngeal recurrent laryngeal nerves have motor fibers.
Cho, Ilyoung; Jo, Min-Gyu; Choi, Sung-Won; Jang, Jeon Yeob; Wang, Soo-Geun; Cha, Wonjae
2017-11-01
Anatomical variations of the recurrent laryngeal nerve (RLN), such as extralaryngeal branching, are a well-known risk factor for RLN injury during thyroid surgery. This study aimed to analyze the surgical anatomy and to investigate the existence of posterior branch motor fibers of extralaryngeal RLNs. Prospective consecutive observational study. This was a prospective cohort study of 366 patients between January 2014 and February 2016. Operative data included the type of operation, incidence of nerve bifurcation, the distances among anatomical landmarks. The motor fibers were evaluated using neurostimulation with laryngeal palpation. A total of 667 RLNs at risk were analyzed in this study, and of these 103 (14.5%) nerves were bifurcated or trifurcated before the laryngeal entry point (LEP). More extralaryngeal branched RLNs were observed on the right side than on the left (17.5% vs. 13.3%, P = .294). The mean distance of the LEP point of division was longer on the left side (16.2 ± 6.7 mm) than on the right (14.7 ± 5.9 mm, P = .132). All branched RLNs had a palpable laryngeal twitch when stimulating anterior branches. When stimulating posterior branches, 28.2%(29/103) of branched RLNs showed palpable laryngeal twitch. Overall incidence of posterior motor branch in total RLNs was 4.3% (29/667). The motor fibers of the RLN are all located in the anterior branch, whereas some posterior branches have motor function. Identification of all of the branches of the RLN may be mandatory to decrease the risk of postoperative nerve injury. 4. Laryngoscope, 127:2678-2685, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Spider Silk Constructs Enhance Axonal Regeneration and Remyelination in Long Nerve Defects in Sheep
Radtke, Christine; Allmeling, Christina; Waldmann, Karl-Heinz; Reimers, Kerstin; Thies, Kerstin; Schenk, Henning C.; Hillmer, Anja; Guggenheim, Merlin; Brandes, Gudrun; Vogt, Peter M.
2011-01-01
Background Surgical reapposition of peripheral nerve results in some axonal regeneration and functional recovery, but the clinical outcome in long distance nerve defects is disappointing and research continues to utilize further interventional approaches to optimize functional recovery. We describe the use of nerve constructs consisting of decellularized vein grafts filled with spider silk fibers as a guiding material to bridge a 6.0 cm tibial nerve defect in adult sheep. Methodology/Principal Findings The nerve constructs were compared to autologous nerve grafts. Regeneration was evaluated for clinical, electrophysiological and histological outcome. Electrophysiological recordings were obtained at 6 months and 10 months post surgery in each group. Ten months later, the nerves were removed and prepared for immunostaining, electrophysiological and electron microscopy. Immunostaining for sodium channel (NaV 1.6) was used to define nodes of Ranvier on regenerated axons in combination with anti-S100 and neurofilament. Anti-S100 was used to identify Schwann cells. Axons regenerated through the constructs and were myelinated indicating migration of Schwann cells into the constructs. Nodes of Ranvier between myelin segments were observed and identified by intense sodium channel (NaV 1.6) staining on the regenerated axons. There was no significant difference in electrophysiological results between control autologous experimental and construct implantation indicating that our construct are an effective alternative to autologous nerve transplantation. Conclusions/Significance This study demonstrates that spider silk enhances Schwann cell migration, axonal regrowth and remyelination including electrophysiological recovery in a long-distance peripheral nerve gap model resulting in functional recovery. This improvement in nerve regeneration could have significant clinical implications for reconstructive nerve surgery. PMID:21364921
Liu, Jianliang; Sun, Juanjuan; Diao, Yumei; Deng, Aijun
2016-09-04
BACKGROUND In our clinical experience we discovered that EEG band power may be correlated with corneal nerve injury in retinoblastoma patients. This study aimed to investigate biomarkers obtained from electroencephalography (EEG) recordings to reflect corneal nerve injury in retinoblastoma patients. MATERIAL AND METHODS Our study included 20 retinoblastoma patients treated at the Department of Ophthalmology, Affiliated Hospital of Weifang Medical University between 2010 and 2014. Twenty normal individuals were included in the control group. EEG activity was recorded continuously with 32 electrodes using standard EEG electrode placement for detecting EEG power. A cornea confocal microscope was used to examine corneal nerve injury in retinoblastoma patients and normal individuals. Spearman rank correlation analysis was used to analyze the correlation between corneal nerve injury and EEG power changes. The sensitivity and specificity of changed EEG power in diagnosis of corneal nerve injury were also analyzed. RESULTS The predominantly slow EEG oscillations changed gradually into faster waves in retinoblastoma patients. The EEG pattern in retinoblastoma patients was characterized by a distinct increase of delta (P<0.01) and significant decrease of theta power P<0.05). Corneal nerves were damaged in corneas of retinoblastoma patients. Corneal nerve injury was positively correlated with delta EEG spectra power and negatively correlated with theta EEG spectra power. The diagnostic sensitivity and specificity by compounding in the series were 60% and 67%, respectively. CONCLUSIONS Changes in delta and theta of EEG appear to be associated with occurrence of corneal nerve injury. Useful information can be provided for evaluating corneal nerve damage in retinoblastoma patients through analyzing EEG power bands.
Protective effect of fenspiride on the bronchi in rats with chronic obstructive pulmonary disease.
Kuzubova, N A; Lebedeva, E S; Fedin, A N; Dvorakovskaya, I V; Titova, O N
2013-06-01
We studied the effect of a non-steroidal anti-inflammatory drug fenspiride on contractive activity of bronchial smooth muscles on the model of chronic obstructive pulmonary disease of rats induced by 60-day exposure to nitrogen dioxide. The administration of fenspiride during the acute stage of the disease (day 15) abolished the constricting effect of the pollutant on the bronchial smooth muscles. Dilatation effect of fenspiride in a low dose (0.15 mg/kg) was mediated by its interaction with nerve endings of bronchial capsaicin-sensitive nerve C-fibers. The interaction of drug with receptors of C-fibers prevented neurogenic inflammation, which was confirmed by the absence of structural changes in the lungs typical of this pathology. The broncholytic effect of fenspiride in a high dose (15 mg/kg) was mediated by not only afferent pathways, but also its direct relaxing action on smooth muscle cells. The observed anti-inflammatory and bronchodilatation effect of fenspiride in very low doses can be used for prevention of chronic obstructive pulmonary disease in risk-group patients contacting with aggressive environmental factors.
Prediction and control of neural responses to pulsatile electrical stimulation
NASA Astrophysics Data System (ADS)
Campbell, Luke J.; Sly, David James; O'Leary, Stephen John
2012-04-01
This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.
Generalized peripheral neuropathy in a dental technician exposed to methyl methacrylate monomer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaghy, M.; Rushworth, G.; Jacobs, J.M.
1991-07-01
A 58-year-old dental prosthetic technician developed generalized sensorimotor peripheral neuropathy. Neurophysiologic studies showed a generalized sensorimotor neuropathy of axonal degeneration type. Examination of a sural nerve biopsy showed a moderately severe axonal neuropathy with loss of large myelinated fibers and unmyelinated axons. There was evidence of slow ongoing degeneration and considerable fiber regeneration. Electron microscopy showed increased numbers of filaments in a few fibers. These findings show resemblances to the nerve changes caused by another acrylic resin, acrylamide. They suggest that the neuropathy may have been caused by 30 years of occupational cutaneous and inhalational exposure to methyl methacrylate monomermore » since they excluded other recognized causes of neuropathy.« less
PATHOGENESIS OF OPTIC DISC EDEMA IN RAISED INTRACRANIAL PRESSURE
Hayreh, Sohan Singh
2015-01-01
Optic disc edema in raised intracranial pressure was first described in 1853. Ever since, there has been a plethora of controversial hypotheses to explain its pathogenesis. I have explored the subject comprehensively by doing basic, experimental and clinical studies. My objective was to investigate the fundamentals of the subject, to test the validity of the previous theories, and finally, based on all these studies, to find a logical explanation for the pathogenesis. My studies included the following issues pertinent to the pathogenesis of optic disc edema in raised intracranial pressure: the anatomy and blood supply of the optic nerve, the roles of the sheath of the optic nerve, of the centripetal flow of fluids along the optic nerve, of compression of the central retinal vein, and of acute intracranial hypertension and its associated effects. I found that, contrary to some previous claims, an acute rise of intracranial pressure was not quickly followed by production of optic disc edema. Then, in rhesus monkeys, I produced experimentally chronic intracranial hypertension by slowly increasing in size space-occupying lesions, in different parts of the brain. Those produced raised cerebrospinal fluid pressure (CSFP) and optic disc edema, identical to those seen in patients with elevated CSFP. Having achieved that, I investigated various aspects of optic disc edema by ophthalmoscopy, stereoscopic color fundus photography and fluorescein fundus angiography, and light microscopic, electron microscopic, horseradish peroxidase and axoplasmic transport studies, and evaluated the effect of opening the sheath of the optic nerve on the optic disc edema. This latter study showed that opening the sheath resulted in resolution of optic disc edema on the side of the sheath fenestration, in spite of high intracranial CSFP, proving that a rise of CSFP in the sheath was the essential pre-requisite for the development of optic disc edema. I also investigated optic disc edema with raised CSFP in patients, by evaluating optic disc and fundus changes by stereoscopic fundus photography and fluorescein fundus angiography. Based on the combined information from all the studies discussed above, it is clear that the pathogenesis of optic disc edema in raised intracranial pressure is a mechanical phenomenon. It is primarily due to a rise of CSFP in the optic nerve sheath, which produces axoplasmic flow stasis in the optic nerve fibers in the surface nerve fiber layer and prelaminar region of the optic nerve head. Axoplasmic flow stasis then results in swelling of the nerve fibers, and consequently of the optic disc. Swelling of the nerve fibers and of the optic disc secondarily compresses the fine, low-pressure venules in that region, resulting in venous stasis and fluid leakage; that leads to the accumulation of extracellular fluid. Contrary to the previous theories, the various vascular changes seen in optic disc edema are secondary and not primary. Thus, optic disc edema in raised CSFP is due to a combination of swollen nerve fibers and the accumulation of extracellular fluid. My studies also provided information about the pathogeneses of visual disturbances in raised intracranial pressure. PMID:26453995
Pathogenesis of optic disc edema in raised intracranial pressure.
Hayreh, Sohan Singh
2016-01-01
Optic disc edema in raised intracranial pressure was first described in 1853. Ever since, there has been a plethora of controversial hypotheses to explain its pathogenesis. I have explored the subject comprehensively by doing basic, experimental and clinical studies. My objective was to investigate the fundamentals of the subject, to test the validity of the previous theories, and finally, based on all these studies, to find a logical explanation for the pathogenesis. My studies included the following issues pertinent to the pathogenesis of optic disc edema in raised intracranial pressure: the anatomy and blood supply of the optic nerve, the roles of the sheath of the optic nerve, of the centripetal flow of fluids along the optic nerve, of compression of the central retinal vein, and of acute intracranial hypertension and its associated effects. I found that, contrary to some previous claims, an acute rise of intracranial pressure was not quickly followed by production of optic disc edema. Then, in rhesus monkeys, I produced experimentally chronic intracranial hypertension by slowly increasing in size space-occupying lesions, in different parts of the brain. Those produced raised cerebrospinal fluid pressure (CSFP) and optic disc edema, identical to those seen in patients with elevated CSFP. Having achieved that, I investigated various aspects of optic disc edema by ophthalmoscopy, stereoscopic color fundus photography and fluorescein fundus angiography, and light microscopic, electron microscopic, horseradish peroxidase and axoplasmic transport studies, and evaluated the effect of opening the sheath of the optic nerve on the optic disc edema. This latter study showed that opening the sheath resulted in resolution of optic disc edema on the side of the sheath fenestration, in spite of high intracranial CSFP, proving that a rise of CSFP in the sheath was the essential pre-requisite for the development of optic disc edema. I also investigated optic disc edema with raised CSFP in patients, by evaluating optic disc and fundus changes by stereoscopic fundus photography and fluorescein fundus angiography. Based on the combined information from all the studies discussed above, it is clear that the pathogenesis of optic disc edema in raised intracranial pressure is a mechanical phenomenon. It is primarily due to a rise of CSFP in the optic nerve sheath, which produces axoplasmic flow stasis in the optic nerve fibers in the surface nerve fiber layer and prelaminar region of the optic nerve head. Axoplasmic flow stasis then results in swelling of the nerve fibers, and consequently of the optic disc. Swelling of the nerve fibers and of the optic disc secondarily compresses the fine, low-pressure venules in that region, resulting in venous stasis and fluid leakage; that leads to the accumulation of extracellular fluid. Contrary to the previous theories, the various vascular changes seen in optic disc edema are secondary and not primary. Thus, optic disc edema in raised CSFP is due to a combination of swollen nerve fibers and the accumulation of extracellular fluid. My studies also provided information about the pathogeneses of visual disturbances in raised intracranial pressure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Immediate versus delayed primary nerve repair in the rabbit sciatic nerve
Piskin, Ahmet; Altunkaynak, Berrin Zühal; Çιtlak, Atilla; Sezgin, Hicabi; Yazιcι, Ozgür; Kaplan, Süleyman
2013-01-01
It is well known that peripheral nerve injury should be treated immediately in the clinic, but in some instances, repair can be delayed. This study investigated the effects of immediate versus delayed (3 days after injury) neurorrhaphy on repair of transected sciatic nerve in New Zealand rabbits using stereological, histomorphological and biomechanical methods. At 8 weeks after immediate and delayed neurorrhaphy, axon number and area in the sciatic nerve, myelin sheath and epineurium thickness, Schwann cell morphology, and the mechanical property of nerve fibers did not differ obviously. These results indicate that delayed neurorrhaphy do not produce any deleterious effect on sciatic nerve repair. PMID:25206663
Scanning laser polarimetry in eyes with exfoliation syndrome.
Dimopoulos, Antonios T; Katsanos, Andreas; Mikropoulos, Dimitrios G; Giannopoulos, Theodoros; Empeslidis, Theodoros; Teus, Miguel A; Holló, Gábor; Konstas, Anastasios G P
2013-01-01
To compare retinal nerve fiber layer thickness (RNFLT) of normotensive eyes with exfoliation syndrome (XFS) and healthy eyes. Sixty-four consecutive individuals with XFS and normal office-time intraocular pressure (IOP) and 72 consecutive healthy controls were prospectively enrolled for a cross-sectional analysis in this hospital-based observational study. The GDx-VCC parameters (temporal-superior-nasal-inferior-temporal [TSNIT] average, superior average, inferior average, TSNIT standard deviation (SD), and nerve fiber indicator [NFI]) were compared between groups. Correlation between various clinical parameters and RNFLT parameters was investigated with Spearman coefficient. The NFI, although within normal limits for both groups, was significantly greater in the XFS group compared to controls: the respective median and interquartile range (IQR) values were 25.1 (22.0-29.0) vs 15.0 (12.0-20.0), p<0.001. In the XFS group, all RNFLT values were significantly lower compared to controls (p<0.001). However, they were all within the normal clinical ranges for both groups: TSNIT average median (IQR): 52.8 (49.7-55.7) vs 56.0 (53.0-59.3) µm; superior average mean (SD): 62.3 (6.7) vs 68.8 (8.2) µm; inferior average mean (SD): 58.0 (7.2) vs 64.8 (7.7) µm, respectively. TSNIT SD was significantly lower in the XFS group, median (IQR): 18.1 (15.4-20.4) vs 21.0 (18.4-23.8), p<0.001. There was no systematic relationship between RNFLT and visual acuity, cup-to-disc ratio, IOP, central corneal thickness, Humphrey mean deviation, and pattern standard deviation in either group. Compared to control eyes, polarimetry-determined RNFLT was lower in XFS eyes with normal IOP. Therefore, close monitoring of RNFLT may facilitate early identification of those XFS eyes that convert to exfoliative glaucoma.
Marasco, Paul D; Bourbeau, Dennis J; Shell, Courtney E; Granja-Vazquez, Rafael; Ina, Jason G
2017-01-01
Kinesthesia is the sense of limb movement. It is fundamental to efficient motor control, yet its neurophysiological components remain poorly understood. The contributions of primary muscle spindles and cutaneous afferents to the kinesthetic sense have been well studied; however, potential contributions from muscle sensory group responses that are different than the muscle spindles have not been ruled out. Electrophysiological recordings in peripheral nerves and brains of male Sprague Dawley rats with a degloved forelimb preparation provide evidence of a rapidly adapting muscle sensory group response that overlaps with vibratory inputs known to generate illusionary perceptions of limb movement in humans (kinesthetic illusion). This group was characteristically distinct from type Ia muscle spindle fibers, the receptor historically attributed to limb movement sensation, suggesting that type Ia muscle spindle fibers may not be the sole carrier of kinesthetic information. The sensory-neural structure of muscles is complex and there are a number of possible sources for this response group; with Golgi tendon organs being the most likely candidate. The rapidly adapting muscle sensory group response projected to proprioceptive brain regions, the rodent homolog of cortical area 3a and the second somatosensory area (S2), with similar adaption and frequency response profiles between the brain and peripheral nerves. Their representational organization was muscle-specific (myocentric) and magnified for proximal and multi-articulate limb joints. Projection to proprioceptive brain areas, myocentric representational magnification of muscles prone to movement error, overlap with illusionary vibrational input, and resonant frequencies of volitional motor unit contraction suggest that this group response may be involved with limb movement processing.
Marasco, Paul D.; Bourbeau, Dennis J.; Shell, Courtney E.; Granja-Vazquez, Rafael; Ina, Jason G.
2017-01-01
Kinesthesia is the sense of limb movement. It is fundamental to efficient motor control, yet its neurophysiological components remain poorly understood. The contributions of primary muscle spindles and cutaneous afferents to the kinesthetic sense have been well studied; however, potential contributions from muscle sensory group responses that are different than the muscle spindles have not been ruled out. Electrophysiological recordings in peripheral nerves and brains of male Sprague Dawley rats with a degloved forelimb preparation provide evidence of a rapidly adapting muscle sensory group response that overlaps with vibratory inputs known to generate illusionary perceptions of limb movement in humans (kinesthetic illusion). This group was characteristically distinct from type Ia muscle spindle fibers, the receptor historically attributed to limb movement sensation, suggesting that type Ia muscle spindle fibers may not be the sole carrier of kinesthetic information. The sensory-neural structure of muscles is complex and there are a number of possible sources for this response group; with Golgi tendon organs being the most likely candidate. The rapidly adapting muscle sensory group response projected to proprioceptive brain regions, the rodent homolog of cortical area 3a and the second somatosensory area (S2), with similar adaption and frequency response profiles between the brain and peripheral nerves. Their representational organization was muscle-specific (myocentric) and magnified for proximal and multi-articulate limb joints. Projection to proprioceptive brain areas, myocentric representational magnification of muscles prone to movement error, overlap with illusionary vibrational input, and resonant frequencies of volitional motor unit contraction suggest that this group response may be involved with limb movement processing. PMID:29182648
Cingu, Abdullah Kursat; Cinar, Yasin; Turkcu, Fatih Mehmet; Sahinoglu-Keskek, Nedime; Sahin, Alparslan; Sahin, Muhammed; Yuksel, Harun; Caca, Ihsan
2014-09-01
The aim of this study was to evaluate the retinal nerve fiber layer (RNFL) thickness in vernal keratoconjunctivitis (VKC) patients who were under long-term topical corticosteroid therapy. Thirty-six eyes of 36 VKC patients with clear cornea and normal videokeratography and 40 eyes of 40 age- and gender-matched normal children were included in the study. Clinical and demographic characteristics of the patients were noted and detailed ophthalmological examination was performed. Visual acuity (VA), spherical equivalent (SE), axial length (AL) and RNFL thickness measurements were compared between the groups. To correct ocular magnification effect on RNFL, we used Littmann's formula. All VKC patients had history of topical corticosteroid use and the mean duration of the topical corticosteroid use was 23.8 ± 9.09 months. There was no significant difference between the groups in terms of intraocular pressure (IOP). VKC group had significantly worse VA, greater SE and AL and thinner mean global, superior and inferior RNFL thickness. There were significant negative correlations between the duration of topical corticosteroid use and the mean global, superior and temporal RNFL thickness in VKC group. After correction of magnification effect, VKC group still had thinner mean global, superior and inferior RNFL thickness, and significant difference between the groups in inferior RNFL thickness did not disappear. Significant RNFL thickness difference between the groups suggests a possible effect of long-term corticosteroid use in VKC patients. Because visual field (VF) analysis in pediatric patients is difficult to perform and IOP may be illusive, RNFL thickness measurements in addition to routine examinations in VKC patients may help clinicians in their practice.
MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type
Wu, Hai; Naya, Francisco J.; McKinsey, Timothy A.; Mercer, Brian; Shelton, John M.; Chin, Eva R.; Simard, Alain R.; Michel, Robin N.; Bassel-Duby, Rhonda; Olson, Eric N.; Williams, R. Sanders
2000-01-01
Different patterns of motor nerve activity drive distinctive programs of gene transcription in skeletal muscles, thereby establishing a high degree of metabolic and physiological specialization among myofiber subtypes. Recently, we proposed that the influence of motor nerve activity on skeletal muscle fiber type is transduced to the relevant genes by calcineurin, which controls the functional activity of NFAT (nuclear family of activated T cell) proteins. Here we demonstrate that calcineurin-dependent gene regulation in skeletal myocytes is mediated also by MEF2 transcription factors, and is integrated with additional calcium-regulated signaling inputs, specifically calmodulin-dependent protein kinase activity. In skeletal muscles of transgenic mice, both NFAT and MEF2 binding sites are necessary for properly regulated function of a slow fiber-specific enhancer, and either forced expression of activated calcineurin or motor nerve stimulation up-regulates a MEF2-dependent reporter gene. These results provide new insights into the molecular mechanisms by which specialized characteristics of skeletal myofiber subtypes are established and maintained. PMID:10790363
Key changes in denervated muscles and their impact on regeneration and reinnervation
Wu, Peng; Chawla, Aditya; Spinner, Robert J.; Yu, Cong; Yaszemski, Michael J.; Windebank, Anthony J.; Wang, Huan
2014-01-01
The neuromuscular junction becomes progressively less receptive to regenerating axons if nerve repair is delayed for a long period of time. It is difficult to ascertain the denervated muscle's residual receptivity by time alone. Other sensitive markers that closely correlate with the extent of denervation should be found. After a denervated muscle develops a fibrillation potential, muscle fiber conduction velocity, muscle fiber diameter, muscle wet weight, and maximal isometric force all decrease; remodeling increases neuromuscular junction fragmentation and plantar area, and expression of myogenesis-related genes is initially up-regulated and then down-regulated. All these changes correlate with both the time course and degree of denervation. The nature and time course of these denervation changes in muscle are reviewed from the literature to explore their roles in assessing both the degree of detrimental changes and the potential success of a nerve repair. Fibrillation potential amplitude, muscle fiber conduction velocity, muscle fiber diameter, mRNA expression levels of myogenic regulatory factors and nicotinic acetylcholine receptor could all reflect the severity and length of denervation and the receptiveness of denervated muscle to regenerating axons, which could possibly offer an important clue for surgical choices and predict the outcomes of delayed nerve repair. PMID:25422641
Sensory Innervation of the Nonspecialized Connective Tissues in the Low Back of the Rat
Corey, Sarah M.; Vizzard, Margaret A.; Badger, Gary J.; Langevin, Helene M.
2011-01-01
Chronic musculoskeletal pain, including low back pain, is a worldwide debilitating condition; however, the mechanisms that underlie its development remain poorly understood. Pathological neuroplastic changes in the sensory innervation of connective tissue may contribute to the development of nonspecific chronic low back pain. Progress in understanding such potentially important abnormalities is hampered by limited knowledge of connective tissue's normal sensory innervation. The goal of this study was to evaluate and quantify the sensory nerve fibers terminating within the nonspecialized connective tissues in the low back of the rat. With 3-dimensional reconstructions of thick (30–80 μm) tissue sections we have for the first time conclusively identified sensory nerve fiber terminations within the collagen matrix of connective tissue in the low back. Using dye labeling techniques with Fast Blue, presumptive dorsal root ganglia cells that innervate the low back were identified. Of the Fast Blue-labeled cells, 60–88% also expressed calcitonin gene-related peptide (CGRP) immunoreactivity. Based on the immunolabeling with CGRP and the approximate size of these nerve fibers (≤2 μm) we hypothesize that they are Aδ or C fibers and thus may play a role in the development of chronic pain. PMID:21411968
End-to-side neurorrhaphy with and without perineurium.
Viterbo, F; Teixeira, E; Hoshino, K; Padovani, C R
1998-01-01
We compared end-to-side neurorraphy with and without the perineural sheath. Twenty rats were used. The peroneal nerve was sectioned and the distal end was sutured to the lateral face of the tibial nerve. We removed the perineural sheath only on the right side, but not on the left side. The proximal end of the peroneal nerve was curved back approximately at a 100 degrees angle and implanted into the adductor muscle. Six months later, the 14 surviving animals were submitted to electrophysiological tests, sacrificed, and the nerves and muscles were taken for histological exams. On the right side, the muscles that had positive response needed an average of 258.89 mV (+/- 92.31) of electric stimulus and on the left side 298.34 mV (+/- 139.32). The average weight of the tibial cranial muscles of the right side was 0.47 g (0.18) and for the left side 0.45 g (0.15). The distal end of the peroneal nerve showed averages of 310.29 (+/- 191.34) nerve fibers on the right side and 287.71 (+/- 183.60) on the left side. The tibial nerve above the neurorraphy showed averages of 939.46 (+/- 223.51) nerve fibers on the right side and 959.46 (+/- 327.48) on the left side. The tibial nerve below the neurorraphy showed averages of 935.17 (+/- 298.65) nerve fibers on the right side and 755.31 (+/- 323.26) on the left side. The average areas of the right tibial cranial muscles were 0.0162 m2 (+/- 0.008), after 230 magnification, and 0.0152 m2 (0.0064) for the left tibial cranial muscles. The histological features of the tibial cranial muscles, taking normal as 100%, were 78.21 (+/- 20.75) on the right side and 82.14 (+/- 15.89) on the left side. The statistical analysis (Student's t test) did not reveal any difference (p > 0.05) among right and left sides for all variables. The authors concluded that the two neurorraphies (with and without perineurium) did not show any difference regarding morphological and electrophysiological features studied.
Cutaneous sensory and autonomic denervation in CADASIL.
Nolano, Maria; Provitera, Vincenzo; Donadio, Vincenzo; Caporaso, Giuseppe; Stancanelli, Annamaria; Califano, Francesca; Pianese, Luigi; Liguori, Rocco; Santoro, Lucio; Ragno, Michele
2016-03-15
To assess the involvement of the peripheral nervous system in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) by means of immunofluorescence and confocal analysis of punch skin biopsies. We recruited 14 unrelated patients with CADASIL (M/F = 9/5; age 53.9 ± 10.5 years) and 52 healthy controls (M/F = 31/21; age 53.8 ± 9.8). Patients underwent clinical and neuroradiologic assessment. Three-millimeter punch skin biopsies were taken from the fingertip, the thigh, and the distal leg and processed using indirect immunofluorescence and a panel of primary antibodies to mark vessels and sensory and autonomic nerve fibers. Intraepidermal nerve fibers (IENF), Meissner corpuscles (MC), and sudomotor, vasomotor, and pilomotor nerves were assessed using confocal microscopy. In patients, compared to controls, we found a severe loss of IENF at the distal leg (p < 0.01), at the thigh (p < 0.01), and at the fingertip (p < 0.01) with a non-length-dependent pattern and a loss of MC (p < 0.01). A severe sudomotor, vasomotor, and pilomotor nerve fiber loss was found by semiquantitative evaluation. Along with nerve loss, a severe derangement of the vascular bed was observed. In our patient population, sensory and autonomic denervation did not correlate with age, sex, type of mutation, or MRI involvement. We found an involvement of the peripheral nervous system in patients with CADASIL through the assessment of cutaneous somatic and autonomic nerves. The neurovascular derangement observed in the skin may reflect, although to a lesser extent, what happens in the CNS. © 2016 American Academy of Neurology.
Chartier, Stephane R.; Thompson, Michelle L.; Longo, Geraldine; Fealk, Michelle N.; Majuta, Lisa A.; Mantyh, Patrick W.
2014-01-01
Skeletal injury is a leading cause of chronic pain and long-term disability worldwide. While most acute skeletal pain can be effectively managed with nonsteroidal anti-inflammatory drugs and opiates, chronic skeletal pain is more difficult to control using these same therapy regimens. One possibility as to why chronic skeletal pain is more difficult to manage over time is that there may be nerve sprouting in non-healed areas of the skeleton that normally receive little (mineralized bone) to no (articular cartilage) innervation. If such ectopic sprouting did occur, it could result in normally nonnoxious loading of the skeleton being perceived as noxious and/or the generation of a neuropathic pain state. To explore this possibility, a mouse model of skeletal pain was generated by inducing a closed fracture of the femur. Examined animals had comminuted fractures and did not fully heal even at 90+ days post fracture. In all mice with nonhealed fractures, exuberant sensory and sympathetic nerve sprouting, an increase in the density of nerve fibers, and the formation of neuroma-like structures near the fracture site were observed. Additionally, all of these animals exhibited significant pain behaviors upon palpation of the nonhealed fracture site. In contrast, sprouting of sensory and sympathetic nerve fibers or significant palpation-induced pain behaviors was never observed in naïve animals. Understanding what drives this ectopic nerve sprouting and the role it plays in skeletal pain may allow a better understanding and treatment of this currently difficult-to-control pain state. PMID:25196264
Dasenbrock, Hormuzdiyar H; Smith, Seth A; Ozturk, Arzu; Farrell, Sheena K; Calabresi, Peter A; Reich, Daniel S
2011-04-01
Visual disability is common in multiple sclerosis, but its relationship to abnormalities of the optic tracts remains unknown. Because they are only rarely affected by lesions, the optic tracts may represent a good model for assessing the imaging properties of normal-appearing white matter in multiple sclerosis. Whole-brain diffusion tensor imaging was performed on 34 individuals with multiple sclerosis and 26 healthy volunteers. The optic tracts were reconstructed by tractography, and tract-specific diffusion indices were quantified. In the multiple-sclerosis group, peripapillary retinal nerve-fiber-layer thickness and total macular volume were measured by optical coherence tomography, and visual acuity at 100%, 2.5%, and 1.25% contrast was examined. After adjusting for age and sex, optic-tract mean and perpendicular diffusivity were higher (P=.002) in multiple sclerosis. Lower optic-tract fractional anisotropy was correlated with retinal nerve-fiber-layer thinning (r=.51, P=.003) and total-macular-volume reduction (r=.59, P=.002). However, optic-tract diffusion indices were not specifically correlated with visual acuity or with their counterparts in the optic radiation. Optic-tract diffusion abnormalities are associated with retinal damage, suggesting that both may be related to optic-nerve injury, but do not appear to contribute strongly to visual disability in multiple sclerosis. Copyright © 2010 by the American Society of Neuroimaging.
Dasenbrock, Hormuzdiyar H.; Smith, Seth A.; Ozturk, Arzu; Farrell, Sheena K.; Calabresi, Peter A.; Reich, Daniel S.
2009-01-01
Background and purpose Visual disability is common in multiple sclerosis, but its relationship to abnormalities of the optic tracts remains unknown. Because they are only rarely affected by lesions, the optic tracts may represent a good model for assessing the imaging properties of normal-appearing white matter in multiple sclerosis. Methods Whole-brain diffusion tensor imaging was performed on 34 individuals with multiple sclerosis and 26 healthy volunteers. The optic tracts were reconstructed by tractography, and tract-specific diffusion indices were quantified. In the multiple-sclerosis group, peripapillary retinal nerve-fiber-layer thickness and total macular volume were measured by optical coherence tomography, and visual acuity at 100%, 2.5%, and 1.25% contrast was examined. Results After adjusting for age and sex, optic-tract mean and perpendicular diffusivity were higher (p=0.002) in multiple sclerosis. Lower optic-tract fractional anisotropy was correlated with retinal nerve-fiber-layer thinning (r=0.51, p=0.003) and total-macular-volume reduction (r=0.59, p=0.002). However, optic-tract diffusion indices were not specifically correlated with visual acuity or with their counterparts in the optic radiation. Conclusions Optic-tract diffusion abnormalities are associated with retinal damage, suggesting that both may be related to optic-nerve injury, but do not appear to contribute strongly to visual disability in multiple sclerosis. PMID:20331501
Kinugasa, Yusuke; Arakawa, Takashi; Murakami, Gen; Fujimiya, Mineko; Sugihara, Kenichi
2014-04-01
Fecal incontinence is a common problem after anal sphincter-preserving operations. The intersphincteric autonomic nerves supplying the internal anal sphincter (IAS) are formed by the union of: (1) nerve fibers from Auerbach's nerve plexus of the most distal part of the rectum and (2) the inferior rectal branches of the pelvic plexus (IRB-PX) running along the conjoint longitudinal muscle coat. The aim of the present study is to identify the detailed morphology of nerves to the IAS. The study comprised histological and immunohistochemical evaluations of paraffin-embedded sections from a large block of anal canal from the preserved 10 cadavers. The IRB-PX came from the superior aspect of the levator ani and ran into the anal canal on the anterolateral side. These nerves contained both sympathetic and parasympathetic fibers, but the sympathetic content was much higher than in nerves from the distal rectum. All intramural ganglion cells in the distal rectum were neuronal nitric oxide synthase-positive and tyrosine hydroxylase-negative and were restricted to above the squamous-columnar epithelial junction. Parasympathetic nerves formed a lattice-like plexus in the circular smooth muscles of the distal rectum, whereas the IAS contained short, longitudinally running sympathetic and parasympathetic nerves, although sympathetic nerves were dominant. The major autonomic nerve input to the IAS seemed not to originate from the distal rectum but from the IRB-PX. Injury to the IRB-PX during surgery seemed to result in loss of innervation to the major part of the IAS.
Renaut bodies in nerves of the trunk of the African elephant, Loxodonta africana.
Witter, Kirsti; Egger, Gunter F; Boeck, Peter
2007-05-01
Renaut bodies are loosely textured, cell-sparse structures in the subperineurial space of peripheral nerves, frequently found at sites of nerve entrapment. The trunk of the elephant is a mobile, richly innervated organ, which serves for food gathering, object grasping and as a tactile organ. These functions of the trunk lead to distortion and mechanical compression of its nerves, which can therefore be expected to contain numerous Renaut bodies. Samples of the trunk wall of an adult African elephant (Loxodonta africana) were examined histologically using conventional staining methods, immunohistochemistry, and lectin histochemistry. Architecture of nerve plexuses and occurrence of Renaut bodies in the elephant trunk were compared with those in tissues surrounding the nasal vestibule of the pig. Prominent nerve plexuses were found in all layers of the elephant trunk. Almost all (81%) nerve profiles contained Renaut bodies, a basophilic, discrete subperineurial layer resembling cushions around the nerve core. In contrast, Renaut bodies were seen in only 15% of nerve profiles in the porcine nasal vestibule. Within Renaut bodies, fusiform fibroblasts and round, ruff-like cells were placed into a matrix of acidic glycosaminoglycans with delicate collagen and very few reticular fibers. The turgor of this matrix is thought to protect nerves against compression and shearing strain. Renaut bodies are readily stained with alcian blue (pH 2.5) favorably in combination with immunohistochemical markers of nerve fibers. They should be regarded as a physiological response to repeated mechanical insults and are distinct from pathological alterations. alterations. (c) 2007 Wiley-Liss, Inc.
Progression of leprosy neuropathy: a case series study
Vital, Robson T; Illarramendi, Ximena; Nascimento, Osvaldo; Hacker, Mariana A; Sarno, Euzenir N; Jardim, Marcia R
2012-01-01
A need still exists to determine the clinical and neurophysiological characteristics of leprosy neuropathy at distinct times of the disease by different methods that measure the various nerve fiber functions. A prospective clinical study was performed with 10 paucibacillary (PB) and 12 multibacillary (MB) patients evaluated at diagnosis and one year after cessation of multidrug therapy (MDT). Peripheral nerve function was assessed clinically and by means of the sympathetic skin response, skin vasomotor reflex, and nerve conduction study (NCS). At diagnosis, 73% of the total 22 patients had nerve function impairment (NFI). Autonomic function (χ2= 5.5, P= 0.019) and NCS (χ2= 7.765, P= 0.01) were significantly more altered in MB than PB patients. At final evaluation, NFI of the MB patients had worsened, especially among the six who had leprosy reaction. As the NFI of PB patients showed improvement, a significant difference between the two groups (χ2= 12.320, P= 0.001) was observed. A high prevalence of neuropathy was observed in newly diagnosed patients. Associating different tests with a thorough clinical neurological evaluation increases detection rates. PMID:22741099